• USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • The Research Problem/Question
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question. In the social and behavioral sciences, studies are most often framed around examining a problem that needs to be understood and resolved in order to improve society and the human condition.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Guba, Egon G., and Yvonna S. Lincoln. “Competing Paradigms in Qualitative Research.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, editors. (Thousand Oaks, CA: Sage, 1994), pp. 105-117; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study.
  • Anchors the research questions, hypotheses, or assumptions to follow . It offers a concise statement about the purpose of your paper.
  • Place the topic into a particular context that defines the parameters of what is to be investigated.
  • Provide the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. This declarative question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What?" question requires a commitment on your part to not only show that you have reviewed the literature, but that you have thoroughly considered the significance of the research problem and its implications applied to creating new knowledge and understanding or informing practice.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible pronouncements; it also does include unspecific determinates like "very" or "giant"],
  • Demonstrate a researchable topic or issue [i.e., feasibility of conducting the study is based upon access to information that can be effectively acquired, gathered, interpreted, synthesized, and understood],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question or small set of questions accompanied by key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's conceptual boundaries or parameters or limitations,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [i.e., regardless of the type of research, it is important to demonstrate that the research is not trivial],
  • Does not have unnecessary jargon or overly complex sentence constructions; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Brown, Perry J., Allen Dyer, and Ross S. Whaley. "Recreation Research—So What?" Journal of Leisure Research 5 (1973): 16-24; Castellanos, Susie. Critical Writing and Thinking. The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Selwyn, Neil. "‘So What?’…A Question that Every Journal Article Needs to Answer." Learning, Media, and Technology 39 (2014): 1-5; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518.

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena. This a common approach to defining a problem in the clinical social sciences or behavioral sciences.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe the significance of a situation, state, or existence of a specific phenomenon. This problem is often associated with revealing hidden or understudied issues.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate specific qualities or characteristics that may be connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study,
  • A declaration of originality [e.g., mentioning a knowledge void or a lack of clarity about a topic that will be revealed in the literature review of prior research],
  • An indication of the central focus of the study [establishing the boundaries of analysis], and
  • An explanation of the study's significance or the benefits to be derived from investigating the research problem.

NOTE :   A statement describing the research problem of your paper should not be viewed as a thesis statement that you may be familiar with from high school. Given the content listed above, a description of the research problem is usually a short paragraph in length.

II.  Sources of Problems for Investigation

The identification of a problem to study can be challenging, not because there's a lack of issues that could be investigated, but due to the challenge of formulating an academically relevant and researchable problem which is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life and in society that the researcher is familiar with. These deductions from human behavior are then placed within an empirical frame of reference through research. From a theory, the researcher can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis, and hence, the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. This can be an intellectually stimulating exercise. A review of pertinent literature should include examining research from related disciplines that can reveal new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue that any single discipline may be able to provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal interviews or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings more relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, lawyers, business leaders, etc., offers the chance to identify practical, “real world” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Don't undervalue your everyday experiences or encounters as worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society or related to your community, your neighborhood, your family, or your personal life. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can be derived from a thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps exist in understanding a topic or where an issue has been understudied. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied in a different context or to different study sample [i.e., different setting or different group of people]. Also, authors frequently conclude their studies by noting implications for further research; read the conclusion of pertinent studies because statements about further research can be a valuable source for identifying new problems to investigate. The fact that a researcher has identified a topic worthy of further exploration validates the fact it is worth pursuing.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered, gradually leading the reader to the more specific issues you are investigating. The statement need not be lengthy, but a good research problem should incorporate the following features:

1.  Compelling Topic The problem chosen should be one that motivates you to address it but simple curiosity is not a good enough reason to pursue a research study because this does not indicate significance. The problem that you choose to explore must be important to you, but it must also be viewed as important by your readers and to a the larger academic and/or social community that could be impacted by the results of your study. 2.  Supports Multiple Perspectives The problem must be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb in the social sciences is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. 3.  Researchability This isn't a real word but it represents an important aspect of creating a good research statement. It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex research project and realize that you don't have enough prior research to draw from for your analysis. There's nothing inherently wrong with original research, but you must choose research problems that can be supported, in some way, by the resources available to you. If you are not sure if something is researchable, don't assume that it isn't if you don't find information right away--seek help from a librarian !

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about, whereas a problem is something to be solved or framed as a question raised for inquiry, consideration, or solution, or explained as a source of perplexity, distress, or vexation. In short, a research topic is something to be understood; a research problem is something that needs to be investigated.

IV.  Asking Analytical Questions about the Research Problem

Research problems in the social and behavioral sciences are often analyzed around critical questions that must be investigated. These questions can be explicitly listed in the introduction [i.e., "This study addresses three research questions about women's psychological recovery from domestic abuse in multi-generational home settings..."], or, the questions are implied in the text as specific areas of study related to the research problem. Explicitly listing your research questions at the end of your introduction can help in designing a clear roadmap of what you plan to address in your study, whereas, implicitly integrating them into the text of the introduction allows you to create a more compelling narrative around the key issues under investigation. Either approach is appropriate.

The number of questions you attempt to address should be based on the complexity of the problem you are investigating and what areas of inquiry you find most critical to study. Practical considerations, such as, the length of the paper you are writing or the availability of resources to analyze the issue can also factor in how many questions to ask. In general, however, there should be no more than four research questions underpinning a single research problem.

Given this, well-developed analytical questions can focus on any of the following:

  • Highlights a genuine dilemma, area of ambiguity, or point of confusion about a topic open to interpretation by your readers;
  • Yields an answer that is unexpected and not obvious rather than inevitable and self-evident;
  • Provokes meaningful thought or discussion;
  • Raises the visibility of the key ideas or concepts that may be understudied or hidden;
  • Suggests the need for complex analysis or argument rather than a basic description or summary; and,
  • Offers a specific path of inquiry that avoids eliciting generalizations about the problem.

NOTE:   Questions of how and why concerning a research problem often require more analysis than questions about who, what, where, and when. You should still ask yourself these latter questions, however. Thinking introspectively about the who, what, where, and when of a research problem can help ensure that you have thoroughly considered all aspects of the problem under investigation and helps define the scope of the study in relation to the problem.

V.  Mistakes to Avoid

Beware of circular reasoning! Do not state the research problem as simply the absence of the thing you are suggesting. For example, if you propose the following, "The problem in this community is that there is no hospital," this only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "So What?" test . In this example, the problem does not reveal the relevance of why you are investigating the fact there is no hospital in the community [e.g., perhaps there's a hospital in the community ten miles away]; it does not elucidate the significance of why one should study the fact there is no hospital in the community [e.g., that hospital in the community ten miles away has no emergency room]; the research problem does not offer an intellectual pathway towards adding new knowledge or clarifying prior knowledge [e.g., the county in which there is no hospital already conducted a study about the need for a hospital, but it was conducted ten years ago]; and, the problem does not offer meaningful outcomes that lead to recommendations that can be generalized for other situations or that could suggest areas for further research [e.g., the challenges of building a new hospital serves as a case study for other communities].

Alvesson, Mats and Jörgen Sandberg. “Generating Research Questions Through Problematization.” Academy of Management Review 36 (April 2011): 247-271 ; Choosing and Refining Topics. Writing@CSU. Colorado State University; D'Souza, Victor S. "Use of Induction and Deduction in Research in Social Sciences: An Illustration." Journal of the Indian Law Institute 24 (1982): 655-661; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question. The Writing Center. George Mason University; Invention: Developing a Thesis Statement. The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation. The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements. University College Writing Centre. University of Toronto; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518; Trochim, William M.K. Problem Formulation. Research Methods Knowledge Base. 2006; Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Walk, Kerry. Asking an Analytical Question. [Class handout or worksheet]. Princeton University; White, Patrick. Developing Research Questions: A Guide for Social Scientists . New York: Palgrave McMillan, 2009; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: Apr 29, 2024 1:49 PM
  • URL: https://libguides.usc.edu/writingguide

Grad Coach

The Research Problem & Statement

What they are & how to write them (with examples)

By: Derek Jansen (MBA) | Expert Reviewed By: Eunice Rautenbach (DTech) | March 2023

If you’re new to academic research, you’re bound to encounter the concept of a “ research problem ” or “ problem statement ” fairly early in your learning journey. Having a good research problem is essential, as it provides a foundation for developing high-quality research, from relatively small research papers to a full-length PhD dissertations and theses.

In this post, we’ll unpack what a research problem is and how it’s related to a problem statement . We’ll also share some examples and provide a step-by-step process you can follow to identify and evaluate study-worthy research problems for your own project.

Overview: Research Problem 101

What is a research problem.

  • What is a problem statement?

Where do research problems come from?

  • How to find a suitable research problem
  • Key takeaways

A research problem is, at the simplest level, the core issue that a study will try to solve or (at least) examine. In other words, it’s an explicit declaration about the problem that your dissertation, thesis or research paper will address. More technically, it identifies the research gap that the study will attempt to fill (more on that later).

Let’s look at an example to make the research problem a little more tangible.

To justify a hypothetical study, you might argue that there’s currently a lack of research regarding the challenges experienced by first-generation college students when writing their dissertations [ PROBLEM ] . As a result, these students struggle to successfully complete their dissertations, leading to higher-than-average dropout rates [ CONSEQUENCE ]. Therefore, your study will aim to address this lack of research – i.e., this research problem [ SOLUTION ].

A research problem can be theoretical in nature, focusing on an area of academic research that is lacking in some way. Alternatively, a research problem can be more applied in nature, focused on finding a practical solution to an established problem within an industry or an organisation. In other words, theoretical research problems are motivated by the desire to grow the overall body of knowledge , while applied research problems are motivated by the need to find practical solutions to current real-world problems (such as the one in the example above).

As you can probably see, the research problem acts as the driving force behind any study , as it directly shapes the research aims, objectives and research questions , as well as the research approach. Therefore, it’s really important to develop a very clearly articulated research problem before you even start your research proposal . A vague research problem will lead to unfocused, potentially conflicting research aims, objectives and research questions .

Free Webinar: How To Find A Dissertation Research Topic

What is a research problem statement?

As the name suggests, a problem statement (within a research context, at least) is an explicit statement that clearly and concisely articulates the specific research problem your study will address. While your research problem can span over multiple paragraphs, your problem statement should be brief , ideally no longer than one paragraph . Importantly, it must clearly state what the problem is (whether theoretical or practical in nature) and how the study will address it.

Here’s an example of a statement of the problem in a research context:

Rural communities across Ghana lack access to clean water, leading to high rates of waterborne illnesses and infant mortality. Despite this, there is little research investigating the effectiveness of community-led water supply projects within the Ghanaian context. Therefore, this study aims to investigate the effectiveness of such projects in improving access to clean water and reducing rates of waterborne illnesses in these communities.

As you can see, this problem statement clearly and concisely identifies the issue that needs to be addressed (i.e., a lack of research regarding the effectiveness of community-led water supply projects) and the research question that the study aims to answer (i.e., are community-led water supply projects effective in reducing waterborne illnesses?), all within one short paragraph.

Need a helping hand?

research problem is selected from the standpoint of

Wherever there is a lack of well-established and agreed-upon academic literature , there is an opportunity for research problems to arise, since there is a paucity of (credible) knowledge. In other words, research problems are derived from research gaps . These gaps can arise from various sources, including the emergence of new frontiers or new contexts, as well as disagreements within the existing research.

Let’s look at each of these scenarios:

New frontiers – new technologies, discoveries or breakthroughs can open up entirely new frontiers where there is very little existing research, thereby creating fresh research gaps. For example, as generative AI technology became accessible to the general public in 2023, the full implications and knock-on effects of this were (or perhaps, still are) largely unknown and therefore present multiple avenues for researchers to explore.

New contexts – very often, existing research tends to be concentrated on specific contexts and geographies. Therefore, even within well-studied fields, there is often a lack of research within niche contexts. For example, just because a study finds certain results within a western context doesn’t mean that it would necessarily find the same within an eastern context. If there’s reason to believe that results may vary across these geographies, a potential research gap emerges.

Disagreements – within many areas of existing research, there are (quite naturally) conflicting views between researchers, where each side presents strong points that pull in opposing directions. In such cases, it’s still somewhat uncertain as to which viewpoint (if any) is more accurate. As a result, there is room for further research in an attempt to “settle” the debate.

Of course, many other potential scenarios can give rise to research gaps, and consequently, research problems, but these common ones are a useful starting point. If you’re interested in research gaps, you can learn more here .

How to find a research problem

Given that research problems flow from research gaps , finding a strong research problem for your research project means that you’ll need to first identify a clear research gap. Below, we’ll present a four-step process to help you find and evaluate potential research problems.

If you’ve read our other articles about finding a research topic , you’ll find the process below very familiar as the research problem is the foundation of any study . In other words, finding a research problem is much the same as finding a research topic.

Step 1 – Identify your area of interest

Naturally, the starting point is to first identify a general area of interest . Chances are you already have something in mind, but if not, have a look at past dissertations and theses within your institution to get some inspiration. These present a goldmine of information as they’ll not only give you ideas for your own research, but they’ll also help you see exactly what the norms and expectations are for these types of projects.

At this stage, you don’t need to get super specific. The objective is simply to identify a couple of potential research areas that interest you. For example, if you’re undertaking research as part of a business degree, you may be interested in social media marketing strategies for small businesses, leadership strategies for multinational companies, etc.

Depending on the type of project you’re undertaking, there may also be restrictions or requirements regarding what topic areas you’re allowed to investigate, what type of methodology you can utilise, etc. So, be sure to first familiarise yourself with your institution’s specific requirements and keep these front of mind as you explore potential research ideas.

Step 2 – Review the literature and develop a shortlist

Once you’ve decided on an area that interests you, it’s time to sink your teeth into the literature . In other words, you’ll need to familiarise yourself with the existing research regarding your interest area. Google Scholar is a good starting point for this, as you can simply enter a few keywords and quickly get a feel for what’s out there. Keep an eye out for recent literature reviews and systematic review-type journal articles, as these will provide a good overview of the current state of research.

At this stage, you don’t need to read every journal article from start to finish . A good strategy is to pay attention to the abstract, intro and conclusion , as together these provide a snapshot of the key takeaways. As you work your way through the literature, keep an eye out for what’s missing – in other words, what questions does the current research not answer adequately (or at all)? Importantly, pay attention to the section titled “ further research is needed ”, typically found towards the very end of each journal article. This section will specifically outline potential research gaps that you can explore, based on the current state of knowledge (provided the article you’re looking at is recent).

Take the time to engage with the literature and develop a big-picture understanding of the current state of knowledge. Reviewing the literature takes time and is an iterative process , but it’s an essential part of the research process, so don’t cut corners at this stage.

As you work through the review process, take note of any potential research gaps that are of interest to you. From there, develop a shortlist of potential research gaps (and resultant research problems) – ideally 3 – 5 options that interest you.

The relationship between the research problem and research gap

Step 3 – Evaluate your potential options

Once you’ve developed your shortlist, you’ll need to evaluate your options to identify a winner. There are many potential evaluation criteria that you can use, but we’ll outline three common ones here: value, practicality and personal appeal.

Value – a good research problem needs to create value when successfully addressed. Ask yourself:

  • Who will this study benefit (e.g., practitioners, researchers, academia)?
  • How will it benefit them specifically?
  • How much will it benefit them?

Practicality – a good research problem needs to be manageable in light of your resources. Ask yourself:

  • What data will I need access to?
  • What knowledge and skills will I need to undertake the analysis?
  • What equipment or software will I need to process and/or analyse the data?
  • How much time will I need?
  • What costs might I incur?

Personal appeal – a research project is a commitment, so the research problem that you choose needs to be genuinely attractive and interesting to you. Ask yourself:

  • How appealing is the prospect of solving this research problem (on a scale of 1 – 10)?
  • Why, specifically, is it attractive (or unattractive) to me?
  • Does the research align with my longer-term goals (e.g., career goals, educational path, etc)?

Depending on how many potential options you have, you may want to consider creating a spreadsheet where you numerically rate each of the options in terms of these criteria. Remember to also include any criteria specified by your institution . From there, tally up the numbers and pick a winner.

Step 4 – Craft your problem statement

Once you’ve selected your research problem, the final step is to craft a problem statement. Remember, your problem statement needs to be a concise outline of what the core issue is and how your study will address it. Aim to fit this within one paragraph – don’t waffle on. Have a look at the problem statement example we mentioned earlier if you need some inspiration.

Key Takeaways

We’ve covered a lot of ground. Let’s do a quick recap of the key takeaways:

  • A research problem is an explanation of the issue that your study will try to solve. This explanation needs to highlight the problem , the consequence and the solution or response.
  • A problem statement is a clear and concise summary of the research problem , typically contained within one paragraph.
  • Research problems emerge from research gaps , which themselves can emerge from multiple potential sources, including new frontiers, new contexts or disagreements within the existing literature.
  • To find a research problem, you need to first identify your area of interest , then review the literature and develop a shortlist, after which you’ll evaluate your options, select a winner and craft a problem statement .

research problem is selected from the standpoint of

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Research limitations vs delimitations

I APPRECIATE YOUR CONCISE AND MIND-CAPTIVATING INSIGHTS ON THE STATEMENT OF PROBLEMS. PLEASE I STILL NEED SOME SAMPLES RELATED TO SUICIDES.

Poonam

Very pleased and appreciate clear information.

Tabatha Cotto

Your videos and information have been a life saver for me throughout my dissertation journey. I wish I’d discovered them sooner. Thank you!

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Organizing Your Social Sciences Research Paper: Choosing a Research Problem

  • Purpose of Guide
  • Writing a Research Proposal
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • The Research Problem/Question
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Evaluating Sources
  • Reading Research Effectively
  • Primary Sources
  • Secondary Sources
  • What Is Scholarly vs. Popular?
  • Is it Peer-Reviewed?
  • Qualitative Methods
  • Quantitative Methods
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism [linked guide]
  • Annotated Bibliography
  • Grading Someone Else's Paper

A research problem is the main organizing principle guiding the analysis of your paper. The problem under investigation offers us an occasion for writing and a focus that governs what we want to say. It represents the core subject matter of scholarly communication, and the means by which we arrive at other topics of conversations and the discovery of new knowledge and understanding.

Choosing a Research Problem

Do not assume that choosing a research problem to study will be a quick or easy task! You should be thinking about it at the start of the course. There are generally three ways you are asked to write about a research problem : 1) your professor provides you with a general topic from which you study a particular aspect; 2) your professor provides you with a list of possible topics to study and you choose a topic from that list; or, 3) your professor leaves it up to you to choose a topic and you only have to obtain permission to write about it before beginning your investigation. Here are some strategies for getting started for each scenario.

Alvesson, Mats and Jörgen Sandberg. Constructing Research Questions: Doing Interesting Research . London: Sage, 2013; Chapter 1: Research and the Research Problem. Nicholas Walliman . Your Research Project: Designing and Planning Your Work . 3rd edition. Thousand Oaks, CA: Sage Publications, 2011.

I. How To Begin: You are given the topic to write about

Step 1 : Identify concepts and terms that make up the topic statement . For example, your professor wants the class to focus on the following research problem: “Is the European Union a credible security actor with the capacity to contribute to confronting global terrorism?" The main concepts is this problem are: European Union, global terrorism, credibility [ hint : focus on identifying proper nouns, nouns or noun phrases, and action verbs in the assignment description]. Step 2 : Review related literature to help refine how you will approach examining the topic and finding a way to analyze it . You can begin by doing any or all of the following: reading through background information from materials listed in your course syllabus; searching the University Libraries Catalog to find a recent book on the topic and, if appropriate, more specialized works about the topic; conducting a preliminary review of the research literature using multidisciplinary library databases such as Start Your Research or subject-specific databases from the " Databases By Subject " page.

Choose the advanced search option feature and enter into each search box the main concept terms you developed in Step 1. Also consider using their synonyms to retrieve relevant articles. This will help you refine and frame the scope of the research problem. You will likely need to do this several times before you can finalize how to approach writing about the topic. NOTE : Always review the references from your most relevant research results cited by the authors in footnotes, endnotes, or a bibliography to locate related research on your topic. This is a good strategy for identifying important prior research about the topic because titles that are repeatedly cited indicate their significance in laying a foundation for understanding the problem. However, if you’re having trouble at this point locating relevant research literature, ask a librarian for help!

ANOTHER NOTE :  If you find an article from a journal that's particularly helpful, put quotes around the title of the article and paste it into Google Scholar . If the article record appears, look for a "cited by" reference followed by a number. This link indicates how many times other researchers have subsequently cited that article since it was first published. This is an excellent strategy for identifying more current, related research on your topic. Finding additional cited by references from your original list of cited by references helps you navigate through the literature and, by so doing, understand the evolution of thought around a particular research problem. Step 3 : Since social science research papers are generally designed to get you to develop your own ideas and arguments, look for sources that can help broaden, modify, or strengthen your initial thoughts and arguments. For example, if you decide to argue that the European Union is ill prepared to take on responsibilities for broader global security because of the debt crisis in many EU countries, then focus on identifying sources that support as well as refute this position. From the advanced search option in Start Your Research , a sample search would use "European Union" in one search box, "global security" in the second search box, and adding a third search box to include "debt crisis."

There are least four appropriate roles your related literature plays in helping you formulate how to begin your analysis :

  • Sources of criticism -- frequently, you'll find yourself reading materials that are relevant to your chosen topic, but you disagree with the author's position. Therefore, one way that you can use a source is to describe the counter-argument, provide evidence from your review of the literature as to why the prevailing argument is unsatisfactory, and to discuss how your own view is more appropriate based upon your interpretation of the evidence.
  • Sources of new ideas -- while a general goal in writing college research papers in the social sciences is to approach a research problem with some basic idea of what position you'd like to take and what grounds you'd like to stand upon, it is certainly acceptable [and often encouraged] to read the literature and extend, modify, and refine your own position in light of the ideas proposed by others. Just make sure that you cite the sources !
  • Sources for historical context -- another role your related literature plays in helping you formulate how to begin your analysis is to place issues and events in proper historical context. This can help to demonstrate familiarity with developments in relevant scholarship about your topic, provide a means of comparing historical versus contemporary issues and events, and identifying key people, places, and events that had an important role related to the research problem.
  • Sources of interdisciplinary insight -- an advantage of using databases like Start Your Research to begin exploring your topic is that it covers publications from a variety of different disciplines. Another way to formulate how to study the topic is to look at it from different disciplinary perspectives. If the topic concerns immigration reform, for example, ask yourself, how do studies from sociological journals found by searching Start Your Research vary in their analysis from those in law journals. A goal in reviewing related literature is to provide a means of approaching a topic from multiple perspectives rather than the perspective offered from just one discipline.

NOTE : Remember to keep careful notes at every stage or utilize a citation management system like Endnote. You may think you'll remember what you have searched and where you found things, but it’s easy to forget or get confused. Most databases have a search history feature that allows you to go back and see what searches you conducted previously as long as you haven't closed your session. If you start over, that history could be deleted.

Step 4 : Assuming you've done an effective job of synthesizing and thinking about the results of your initial search for related literature, you're ready to prepare a detailed outline for your paper that lays the foundation for a more in-depth and focused review of relevant research literature [after consulting with a librarian, if needed!]. How will you know you haven't done an effective job of synthesizing and thinking about the results of our initial search for related literature? A good indication is that you start composing your paper outline and gaps appear in how you want to approach the study. This indicates the need to gather further background information and analysis about your research problem.

II. How To Begin: Your professor leaves it up to you to choose a topic

Step 1 : Under this scenario, the key process is turning an idea or general thought into a topic that can be configured into a research problem. When given an assignment where you choose the research topic, don't begin by thinking about what to write about, but rather, ask yourself the question, "What do I want to know?" Treat an open-ended assignment as an opportunity to learn about something that's new or exciting to you.

Step 2 : If you lack ideas, or wish to gain focus, try any or all of the following strategies:

  • Review your course readings, particularly the suggested readings, for topic ideas. Don't just review what you've already read but jump ahead in the syllabus to readings that have not been covered yet.
  • Search the University Libraries Catalog for a good, recently published book and, if appropriate, more specialized works related to the discipline area of the course [e.g., for the course SOCI 335, search for books on population and society].
  • Browse through some current journals in your subject discipline. Even if most of the articles are not relevant, you can skim through the contents quickly. You only need one to be the spark that begins the process of wanting to learn more about a topic. Consult with a librarian and/or your professor about the core journals within your subject discipline.
  • Think about essays you have written for past classes, other courses you have taken, or academic lectures and programs you have attended. Thinking back, what interested you the most? What would you like to know more about? Place this in the context of the current course assignment.
  • Search online media sources, such as CNN , the Los Angeles Times , Huffington Post , Fox News , or Newsweek , to see if your idea has been covered by the media. Use this coverage to refine your idea into something that you'd like to investigate further, but in a more deliberate, scholarly way based on a particular problem that needs to be researched.

Step 3 : To build upon your initial idea, use the suggestions under this tab to help narrow , broaden , or increase the timeliness of your idea so you can write it out as a research problem.

Once you are comfortable with having turned your idea into a research problem, follow Steps 1 - 4 listed in Part I above to further develop it into a research paper.

Alderman, Jim. " Choosing a Research Topic ." Beginning Library and Information Systems Strategies. Paper 17. Jacksonville, FL: University of North Florida Digital Commons, 2014; Alvesson, Mats and Jörgen Sandberg. Constructing Research Questions: Doing Interesting Research . London: Sage, 2013; Chapter 2: Choosing a Research Topic. Adrian R. Eley. Becoming a Successful Early Career Researcher . New York: Routledge, 2012; Answering the Question . Academic Skills Centre. University of Canberra; Brainstorming . Department of English Writing Guide. George Mason University; Brainstorming . The Writing Center. University of North Carolina; Chapter 1: Research and the Research Problem. Nicholas Walliman . Your Research Project: Designing and Planning Your Work . 3rd edition. Thousand Oaks, CA: Sage Publications, 2011; Choosing a Topic . The Writing Lab and The OWL. Purdue University;  Coming Up With Your Topic . Institute for Writing Rhetoric. Dartmouth College; How To Write a Thesis Statement . Writing Tutorial Services, Center for Innovative Teaching and Learning. Indiana University; Identify Your Question . Start Your Research. University Library, University of California, Santa Cruz; The Process of Writing a Research Paper . Department of History. Trent University; Trochim, William M.K. Problem Formulation . Research Methods Knowledge Base. 2006.

III. How To Begin: You are provided a list of possible topics to choose from

I.  How To Begin:  You are provided a list of possible topics to choose from Step 1 : I know what you’re thinking--which topic from this list my professor has given me will be the easiest to find the most information on? An effective instructor should never include a topic that is so obscure or complex that no research is available to examine and from which to begin to design a study. Instead of searching for the path of least resistance choose a topic that you find interesting in some way, or that is controversial and that you have a strong opinion about, or has some personal meaning for you. You're going to be working on your topic for quite some time, so choose one that you find interesting and engaging or that motivates you to take a position. Embrace the opportunity to learn something new! Once you’ve settled on a topic of interest from the list, follow Steps 1 - 4 listed above to further develop it into a research paper.

NOTE : It’s ok to review related literature to help refine how you will approach analyzing a topic, and then discover that the topic isn’t all that interesting to you. In that case, you can choose another from the list. Just don’t wait too long to make a switch and, of course, be sure to inform your professor that you are changing your topic.

Resources for Identifying a Topic

Resources for identifying a research problem.

If you are having difficulty identifying a topic to study or need basic background information, the following web resources and databases can be useful:

  • CQ Researcher This link opens in a new window Reports with overviews, background and timeline of a topic; an assessment of the current situation; tables and maps; pro/con statements from opposing positions. Topics include health, social trends, criminal justice, international affairs, education, the environment, technology, economy, and global affairs. 1923 to present.
  • New York Times Topics Each topic page collects news, reference and archival information, photos, graphics, audio and video files published on a variety of topics. Content is available without charge on articles going back to 1981.

TexShare

Writing Tip

Don't be a Martyr!

In thinking about a research topic to study, don't adopt the mindset of pursuing an esoteric or incredibly complicated topic just to impress your professor but that, in reality, does not have any real interest to you. As best as you can, choose a topic that has at least some interest to you or that you care about. Obviously, this is easier for courses within your major, but even for those nasty prerequisite classes that you must take in order to graduate [and that provide an additional revenue stream to the university], try to apply issues associated with your major to the general topic given to you. For example, if you are an IR major taking a philosophy class where the assignment asks you to apply the question of "what is truth" to some aspect of life, you could choose to study how government leaders attempt to shape truth through the use of propaganda.

Another Writing Tip

Not Finding Anything on Your Topic? Ask a Librarian!

Librarians are experts in locating information and providing strategies for analyzing existing knowledge in new ways. Don't assume or jump to the conclusion that your topic is too narrowly defined or obscure just because you haven’t found any information about it. Always consult a librarian before you consider giving up on finding information about the topic you want to investigate. If there isn't a lot of information about your topic, a librarian can often help you identify a closely related topic that you can study. Follow this link to contact a librarian.

  • << Previous: Independent and Dependent Variables
  • Next: Narrowing a Topic Idea >>
  • Last Updated: Sep 8, 2023 12:19 PM
  • URL: https://guides.library.txstate.edu/socialscienceresearch
  • Privacy Policy

Research Method

Home » Research Problem – Examples, Types and Guide

Research Problem – Examples, Types and Guide

Table of Contents

Research Problem

Research Problem

Definition:

Research problem is a specific and well-defined issue or question that a researcher seeks to investigate through research. It is the starting point of any research project, as it sets the direction, scope, and purpose of the study.

Types of Research Problems

Types of Research Problems are as follows:

Descriptive problems

These problems involve describing or documenting a particular phenomenon, event, or situation. For example, a researcher might investigate the demographics of a particular population, such as their age, gender, income, and education.

Exploratory problems

These problems are designed to explore a particular topic or issue in depth, often with the goal of generating new ideas or hypotheses. For example, a researcher might explore the factors that contribute to job satisfaction among employees in a particular industry.

Explanatory Problems

These problems seek to explain why a particular phenomenon or event occurs, and they typically involve testing hypotheses or theories. For example, a researcher might investigate the relationship between exercise and mental health, with the goal of determining whether exercise has a causal effect on mental health.

Predictive Problems

These problems involve making predictions or forecasts about future events or trends. For example, a researcher might investigate the factors that predict future success in a particular field or industry.

Evaluative Problems

These problems involve assessing the effectiveness of a particular intervention, program, or policy. For example, a researcher might evaluate the impact of a new teaching method on student learning outcomes.

How to Define a Research Problem

Defining a research problem involves identifying a specific question or issue that a researcher seeks to address through a research study. Here are the steps to follow when defining a research problem:

  • Identify a broad research topic : Start by identifying a broad topic that you are interested in researching. This could be based on your personal interests, observations, or gaps in the existing literature.
  • Conduct a literature review : Once you have identified a broad topic, conduct a thorough literature review to identify the current state of knowledge in the field. This will help you identify gaps or inconsistencies in the existing research that can be addressed through your study.
  • Refine the research question: Based on the gaps or inconsistencies identified in the literature review, refine your research question to a specific, clear, and well-defined problem statement. Your research question should be feasible, relevant, and important to the field of study.
  • Develop a hypothesis: Based on the research question, develop a hypothesis that states the expected relationship between variables.
  • Define the scope and limitations: Clearly define the scope and limitations of your research problem. This will help you focus your study and ensure that your research objectives are achievable.
  • Get feedback: Get feedback from your advisor or colleagues to ensure that your research problem is clear, feasible, and relevant to the field of study.

Components of a Research Problem

The components of a research problem typically include the following:

  • Topic : The general subject or area of interest that the research will explore.
  • Research Question : A clear and specific question that the research seeks to answer or investigate.
  • Objective : A statement that describes the purpose of the research, what it aims to achieve, and the expected outcomes.
  • Hypothesis : An educated guess or prediction about the relationship between variables, which is tested during the research.
  • Variables : The factors or elements that are being studied, measured, or manipulated in the research.
  • Methodology : The overall approach and methods that will be used to conduct the research.
  • Scope and Limitations : A description of the boundaries and parameters of the research, including what will be included and excluded, and any potential constraints or limitations.
  • Significance: A statement that explains the potential value or impact of the research, its contribution to the field of study, and how it will add to the existing knowledge.

Research Problem Examples

Following are some Research Problem Examples:

Research Problem Examples in Psychology are as follows:

  • Exploring the impact of social media on adolescent mental health.
  • Investigating the effectiveness of cognitive-behavioral therapy for treating anxiety disorders.
  • Studying the impact of prenatal stress on child development outcomes.
  • Analyzing the factors that contribute to addiction and relapse in substance abuse treatment.
  • Examining the impact of personality traits on romantic relationships.

Research Problem Examples in Sociology are as follows:

  • Investigating the relationship between social support and mental health outcomes in marginalized communities.
  • Studying the impact of globalization on labor markets and employment opportunities.
  • Analyzing the causes and consequences of gentrification in urban neighborhoods.
  • Investigating the impact of family structure on social mobility and economic outcomes.
  • Examining the effects of social capital on community development and resilience.

Research Problem Examples in Economics are as follows:

  • Studying the effects of trade policies on economic growth and development.
  • Analyzing the impact of automation and artificial intelligence on labor markets and employment opportunities.
  • Investigating the factors that contribute to economic inequality and poverty.
  • Examining the impact of fiscal and monetary policies on inflation and economic stability.
  • Studying the relationship between education and economic outcomes, such as income and employment.

Political Science

Research Problem Examples in Political Science are as follows:

  • Analyzing the causes and consequences of political polarization and partisan behavior.
  • Investigating the impact of social movements on political change and policymaking.
  • Studying the role of media and communication in shaping public opinion and political discourse.
  • Examining the effectiveness of electoral systems in promoting democratic governance and representation.
  • Investigating the impact of international organizations and agreements on global governance and security.

Environmental Science

Research Problem Examples in Environmental Science are as follows:

  • Studying the impact of air pollution on human health and well-being.
  • Investigating the effects of deforestation on climate change and biodiversity loss.
  • Analyzing the impact of ocean acidification on marine ecosystems and food webs.
  • Studying the relationship between urban development and ecological resilience.
  • Examining the effectiveness of environmental policies and regulations in promoting sustainability and conservation.

Research Problem Examples in Education are as follows:

  • Investigating the impact of teacher training and professional development on student learning outcomes.
  • Studying the effectiveness of technology-enhanced learning in promoting student engagement and achievement.
  • Analyzing the factors that contribute to achievement gaps and educational inequality.
  • Examining the impact of parental involvement on student motivation and achievement.
  • Studying the effectiveness of alternative educational models, such as homeschooling and online learning.

Research Problem Examples in History are as follows:

  • Analyzing the social and economic factors that contributed to the rise and fall of ancient civilizations.
  • Investigating the impact of colonialism on indigenous societies and cultures.
  • Studying the role of religion in shaping political and social movements throughout history.
  • Analyzing the impact of the Industrial Revolution on economic and social structures.
  • Examining the causes and consequences of global conflicts, such as World War I and II.

Research Problem Examples in Business are as follows:

  • Studying the impact of corporate social responsibility on brand reputation and consumer behavior.
  • Investigating the effectiveness of leadership development programs in improving organizational performance and employee satisfaction.
  • Analyzing the factors that contribute to successful entrepreneurship and small business development.
  • Examining the impact of mergers and acquisitions on market competition and consumer welfare.
  • Studying the effectiveness of marketing strategies and advertising campaigns in promoting brand awareness and sales.

Research Problem Example for Students

An Example of a Research Problem for Students could be:

“How does social media usage affect the academic performance of high school students?”

This research problem is specific, measurable, and relevant. It is specific because it focuses on a particular area of interest, which is the impact of social media on academic performance. It is measurable because the researcher can collect data on social media usage and academic performance to evaluate the relationship between the two variables. It is relevant because it addresses a current and important issue that affects high school students.

To conduct research on this problem, the researcher could use various methods, such as surveys, interviews, and statistical analysis of academic records. The results of the study could provide insights into the relationship between social media usage and academic performance, which could help educators and parents develop effective strategies for managing social media use among students.

Another example of a research problem for students:

“Does participation in extracurricular activities impact the academic performance of middle school students?”

This research problem is also specific, measurable, and relevant. It is specific because it focuses on a particular type of activity, extracurricular activities, and its impact on academic performance. It is measurable because the researcher can collect data on students’ participation in extracurricular activities and their academic performance to evaluate the relationship between the two variables. It is relevant because extracurricular activities are an essential part of the middle school experience, and their impact on academic performance is a topic of interest to educators and parents.

To conduct research on this problem, the researcher could use surveys, interviews, and academic records analysis. The results of the study could provide insights into the relationship between extracurricular activities and academic performance, which could help educators and parents make informed decisions about the types of activities that are most beneficial for middle school students.

Applications of Research Problem

Applications of Research Problem are as follows:

  • Academic research: Research problems are used to guide academic research in various fields, including social sciences, natural sciences, humanities, and engineering. Researchers use research problems to identify gaps in knowledge, address theoretical or practical problems, and explore new areas of study.
  • Business research : Research problems are used to guide business research, including market research, consumer behavior research, and organizational research. Researchers use research problems to identify business challenges, explore opportunities, and develop strategies for business growth and success.
  • Healthcare research : Research problems are used to guide healthcare research, including medical research, clinical research, and health services research. Researchers use research problems to identify healthcare challenges, develop new treatments and interventions, and improve healthcare delivery and outcomes.
  • Public policy research : Research problems are used to guide public policy research, including policy analysis, program evaluation, and policy development. Researchers use research problems to identify social issues, assess the effectiveness of existing policies and programs, and develop new policies and programs to address societal challenges.
  • Environmental research : Research problems are used to guide environmental research, including environmental science, ecology, and environmental management. Researchers use research problems to identify environmental challenges, assess the impact of human activities on the environment, and develop sustainable solutions to protect the environment.

Purpose of Research Problems

The purpose of research problems is to identify an area of study that requires further investigation and to formulate a clear, concise and specific research question. A research problem defines the specific issue or problem that needs to be addressed and serves as the foundation for the research project.

Identifying a research problem is important because it helps to establish the direction of the research and sets the stage for the research design, methods, and analysis. It also ensures that the research is relevant and contributes to the existing body of knowledge in the field.

A well-formulated research problem should:

  • Clearly define the specific issue or problem that needs to be investigated
  • Be specific and narrow enough to be manageable in terms of time, resources, and scope
  • Be relevant to the field of study and contribute to the existing body of knowledge
  • Be feasible and realistic in terms of available data, resources, and research methods
  • Be interesting and intellectually stimulating for the researcher and potential readers or audiences.

Characteristics of Research Problem

The characteristics of a research problem refer to the specific features that a problem must possess to qualify as a suitable research topic. Some of the key characteristics of a research problem are:

  • Clarity : A research problem should be clearly defined and stated in a way that it is easily understood by the researcher and other readers. The problem should be specific, unambiguous, and easy to comprehend.
  • Relevance : A research problem should be relevant to the field of study, and it should contribute to the existing body of knowledge. The problem should address a gap in knowledge, a theoretical or practical problem, or a real-world issue that requires further investigation.
  • Feasibility : A research problem should be feasible in terms of the availability of data, resources, and research methods. It should be realistic and practical to conduct the study within the available time, budget, and resources.
  • Novelty : A research problem should be novel or original in some way. It should represent a new or innovative perspective on an existing problem, or it should explore a new area of study or apply an existing theory to a new context.
  • Importance : A research problem should be important or significant in terms of its potential impact on the field or society. It should have the potential to produce new knowledge, advance existing theories, or address a pressing societal issue.
  • Manageability : A research problem should be manageable in terms of its scope and complexity. It should be specific enough to be investigated within the available time and resources, and it should be broad enough to provide meaningful results.

Advantages of Research Problem

The advantages of a well-defined research problem are as follows:

  • Focus : A research problem provides a clear and focused direction for the research study. It ensures that the study stays on track and does not deviate from the research question.
  • Clarity : A research problem provides clarity and specificity to the research question. It ensures that the research is not too broad or too narrow and that the research objectives are clearly defined.
  • Relevance : A research problem ensures that the research study is relevant to the field of study and contributes to the existing body of knowledge. It addresses gaps in knowledge, theoretical or practical problems, or real-world issues that require further investigation.
  • Feasibility : A research problem ensures that the research study is feasible in terms of the availability of data, resources, and research methods. It ensures that the research is realistic and practical to conduct within the available time, budget, and resources.
  • Novelty : A research problem ensures that the research study is original and innovative. It represents a new or unique perspective on an existing problem, explores a new area of study, or applies an existing theory to a new context.
  • Importance : A research problem ensures that the research study is important and significant in terms of its potential impact on the field or society. It has the potential to produce new knowledge, advance existing theories, or address a pressing societal issue.
  • Rigor : A research problem ensures that the research study is rigorous and follows established research methods and practices. It ensures that the research is conducted in a systematic, objective, and unbiased manner.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

research problem is selected from the standpoint of

Defining a Research Problem

Defining a research problem is the fuel that drives the scientific process, and is the foundation of any research method and experimental design, from true experiment to case study.

This article is a part of the guide:

  • Null Hypothesis
  • Research Hypothesis
  • Selecting Method
  • Test Hypothesis

Browse Full Outline

  • 1 Scientific Method
  • 2.1.1 Null Hypothesis
  • 2.1.2 Research Hypothesis
  • 2.2 Prediction
  • 2.3 Conceptual Variable
  • 3.1 Operationalization
  • 3.2 Selecting Method
  • 3.3 Measurements
  • 3.4 Scientific Observation
  • 4.1 Empirical Evidence
  • 5.1 Generalization
  • 5.2 Errors in Conclusion

It is one of the first statements made in any research paper and, as well as defining the research area, should include a quick synopsis of how the hypothesis was arrived at.

Operationalization is then used to give some indication of the exact definitions of the variables, and the type of scientific measurements used.

This will lead to the proposal of a viable hypothesis . As an aside, when scientists are putting forward proposals for research funds, the quality of their research problem often makes the difference between success and failure.

research problem is selected from the standpoint of

Structuring the Research Problem

Look at any scientific paper, and you will see the research problem, written almost like a statement of intent.

Defining a research problem is crucial in defining the quality of the answers, and determines the exact research method used. A quantitative experimental design uses deductive reasoning to arrive at a testable hypothesis .

Qualitative research designs use inductive reasoning to propose a research statement.

Reasoning Cycle - Scientific Research

Formulating the research problem begins during the first steps of the scientific process .

As an example, a literature review and a study of previous experiments, and research, might throw up some vague areas of interest.

Many scientific researchers look at an area where a previous researcher generated some interesting results, but never followed up. It could be an interesting area of research, which nobody else has fully explored.

A scientist may even review a successful experiment, disagree with the results , the tests used, or the methodology , and decide to refine the research process, retesting the hypothesis .

This is called the conceptual definition, and is an overall view of the problem. A science report will generally begin with an overview of the previous research and real-world observations. The researcher will then state how this led to defining a research problem.

The Operational Definitions

The operational definition is the determining the scalar properties of the variables .

For example, temperature, weight and time are usually well known and defined, with only the exact scale used needing definition. If a researcher is measuring abstract concepts, such as intelligence, emotions, and subjective responses, then a system of measuring numerically needs to be established, allowing statistical analysis and replication.

For example, intelligence may be measured with IQ and human responses could be measured with a questionnaire from ‘1- strongly disagree’, to ‘5 - strongly agree’.

Behavioral biologists and social scientists might design an ordinal scale for measuring and rating behavior. These measurements are always subjective, but allow statistics and replication of the whole research method. This is all an essential part of defining a research problem.

Examples of Defining a Research Problem

An anthropologist might find references to a relatively unknown tribe in Papua New Guinea. Through inductive reasoning , she arrives at the research problem and asks,

‘How do these people live and how does their culture relate to nearby tribes?’

She has found a gap in knowledge, and she seeks to fill it, using a qualitative case study , without a hypothesis.

The Bandura Bobo Doll Experiment is a good example of using deductive reasoning to arrive at a research problem and hypothesis.

Anecdotal evidence showed that violent behavior amongst children was increasing. Bandura believed that higher levels of violent adult role models on television, was a contributor to this rise. This was expanded into a hypothesis , and operationalization of the variables, and scientific measurement scale , led to a robust experimental design.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Oct 2, 2008). Defining a Research Problem. Retrieved Apr 29, 2024 from Explorable.com: https://explorable.com/defining-a-research-problem

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Get all these articles in 1 guide.

Want the full version to study at home, take to school or just scribble on?

Whether you are an academic novice, or you simply want to brush up your skills, this book will take your academic writing skills to the next level.

research problem is selected from the standpoint of

Download electronic versions: - Epub for mobiles and tablets - For Kindle here - PDF version here

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

research problem is selected from the standpoint of

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

Overview of the Research Process

  • First Online: 01 January 2012

Cite this chapter

research problem is selected from the standpoint of

  • Phyllis G. Supino EdD 3  

6291 Accesses

1 Citations

1 Altmetric

Research is a rigorous problem-solving process whose ultimate goal is the discovery of new knowledge. Research may include the description of a new phenomenon, definition of a new relationship, development of a new model, or application of an existing principle or procedure to a new context. Research is systematic, logical, empirical, reductive, replicable and transmittable, and generalizable. Research can be classified according to a variety of dimensions: basic, applied, or translational; hypothesis generating or hypothesis testing; retrospective or prospective; longitudinal or cross-sectional; observational or experimental; and quantitative or qualitative. The ultimate success of a research project is heavily dependent on adequate planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Calvert J, Martin BR (2001) Changing conceptions of basic research? Brighton, England: Background document for the Workshop on Policy Relevance and Measurement of Basic Research, Oslo, 29–30 Oct 2001. Brighton, England: SPRU.

Google Scholar  

Leedy PD. Practical research. Planning and design. 6th ed. Upper Saddle River: Prentice Hall; 1997.

Tuckman BW. Conducting educational research. 3rd ed. New York: Harcourt Brace Jovanovich; 1972.

Tanenbaum SJ. Knowing and acting in medical practice. The epistemological policies of outcomes research. J Health Polit Policy Law. 1994;19:27–44.

Article   PubMed   CAS   Google Scholar  

Richardson WS. We should overcome the barriers to evidence-based clinical diagnosis! J Clin Epidemiol. 2007;60:217–27.

Article   PubMed   Google Scholar  

MacCorquodale K, Meehl PE. On a distinction between hypothetical constructs and intervening variables. Psych Rev. 1948;55:95–107.

Article   CAS   Google Scholar  

The National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research: The Belmont Report: Ethical principles and guidelines for the protection of human subjects of research. Washington: DHEW Publication No. (OS) 78–0012, Appendix I, DHEW Publication No. (OS) 78–0013, Appendix II, DHEW Publication (OS) 780014; 1978.

Coryn CLS. The fundamental characteristics of research. J Multidisciplinary Eval. 2006;3:124–33.

Smith NL, Brandon PR. Fundamental issues in evaluation. New York: Guilford; 2008.

Committee on Criteria for Federal Support of Research and Development, National Academy of Sciences, National Academy of Engineering, Institute of Medicine, National Research Council. Allocating federal funds for science and technology. Washington, DC: The National Academies; 1995.

Busse R, Fleming I. A critical look at cardiovascular translational research. Am J Physiol Heart Circ Physiol. 1999;277:H1655–60.

CAS   Google Scholar  

Schuster DP, Powers WJ. Translational and experimental clinical research. Philadelphia: Lippincott, Williams & Williams; 2005.

Woolf SH. The meaning of translational research and why it matters. JAMA. 2008;299:211–21.

Robertson D, Williams GH. Clinical and translational science: principles of human research. London: Elsevier; 2009.

Goldblatt EM, Lee WH. From bench to bedside: the growing use of translational research in cancer medicine. Am J Transl Res. 2010;2:1–18.

PubMed   Google Scholar  

Milloy SJ. Science without sense: the risky business of public health research. In: Chapter 5, Mining for statistical associations. Cato Institute. 2009. http://www.junkscience.com/news/sws/sws-chapter5.html . Retrieved 29 Oct 2009.

Gawande A. The cancer-cluster myth. The New Yorker, 8 Feb 1999, p. 34–37.

Kerlinger F. [Chapter 2: problems and hypotheses]. In: Foundations of behavioral research 3rd edn. Orlando: Harcourt, Brace; 1986.

Ioannidis JP. Why most published research findings are false. PLoS Med. 2005;2:e124. Epub 2005 Aug 30.

Andersen B. Methodological errors in medical research. Oxford: Blackwell Scientific Publications; 1990.

DeAngelis C. An introduction to clinical research. New York: Oxford University Press; 1990.

Hennekens CH, Buring JE. Epidemiology in medicine. 1st ed. Boston: Little Brown; 1987.

Jekel JF. Epidemiology, biostatistics, and preventive medicine. 3rd ed. Philadelphia: Saunders Elsevier; 2007.

Hess DR. Retrospective studies and chart reviews. Respir Care. 2004;49:1171–4.

Wissow L, Pascoe J. Types of research models and methods (chapter four). In: An introduction to clinical research. New York: Oxford University Press; 1990.

Bacchieri A, Della Cioppa G. Fundamentals of clinical research: bridging medicine, statistics and operations. Milan: Springer; 2007.

Wood MJ, Ross-Kerr JC. Basic steps in planning nursing research. From question to proposal. 6th ed. Boston: Jones and Barlett; 2005.

DeVita VT, Lawrence TS, Rosenberg SA, Weinberg RA, DePinho RA. Cancer. Principles and practice of oncology, vol. 1. Philadelphia: Wolters Klewer/Lippincott Williams & Wilkins; 2008.

Portney LG, Watkins MP. Foundations of clinical research. Applications to practice. 2nd ed. Upper Saddle River: Prentice Hall Health; 2000.

Marks RG. Designing a research project. The basics of biomedical research methodology. Belmont: Lifetime Learning Publications: A division of Wadsworth; 1982.

Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research. Lancet. 1991;337:867–72.

Download references

Author information

Authors and affiliations.

Department of Medicine, College of Medicine, SUNY Downstate Medical Center, 450 Clarkson Avenue, 1199, Brooklyn, NY, 11203, USA

Phyllis G. Supino EdD

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Phyllis G. Supino EdD .

Editor information

Editors and affiliations.

, Cardiovascular Medicine, SUNY Downstate Medical Center, Clarkson Avenue, box 1199 450, Brooklyn, 11203, USA

Phyllis G. Supino

, Cardiovascualr Medicine, SUNY Downstate Medical Center, Clarkson Avenue 450, Brooklyn, 11203, USA

Jeffrey S. Borer

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Supino, P.G. (2012). Overview of the Research Process. In: Supino, P., Borer, J. (eds) Principles of Research Methodology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3360-6_1

Download citation

DOI : https://doi.org/10.1007/978-1-4614-3360-6_1

Published : 18 April 2012

Publisher Name : Springer, New York, NY

Print ISBN : 978-1-4614-3359-0

Online ISBN : 978-1-4614-3360-6

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • How it works

Research Problem – Definition, Steps & Tips

Published by Jamie Walker at August 12th, 2021 , Revised On October 3, 2023

Once you have chosen a research topic, the next stage is to explain the research problem: the detailed issue, ambiguity of the research, gap analysis, or gaps in knowledge and findings that you will discuss.

Here, in this article, we explore a research problem in a dissertation or an essay with some research problem examples to help you better understand how and when you should write a research problem.

“A research problem is a specific statement relating to an area of concern and is contingent on the type of research. Some research studies focus on theoretical and practical problems, while some focus on only one.”

The problem statement in the dissertation, essay, research paper, and other academic papers should be clearly stated and intended to expand information, knowledge, and contribution to change.

This article will assist in identifying and elaborating a research problem if you are unsure how to define your research problem. The most notable challenge in the research process is to formulate and identify a research problem. Formulating a problem statement and research questions while finalizing the research proposal or introduction for your dissertation or thesis is necessary.

Why is Research Problem Critical?

An interesting research topic is only the first step. The real challenge of the research process is to develop a well-rounded research problem.

A well-formulated research problem helps understand the research procedure; without it, your research will appear unforeseeable and awkward.

Research is a procedure based on a sequence and a research problem aids in following and completing the research in a sequence. Repetition of existing literature is something that should be avoided in research.

Therefore research problem in a dissertation or an essay needs to be well thought out and presented with a clear purpose. Hence, your research work contributes more value to existing knowledge. You need to be well aware of the problem so you can present logical solutions.

Formulating a research problem is the first step of conducting research, whether you are writing an essay, research paper,   dissertation , or  research proposal .

Looking for dissertation help?

Researchprospect to the rescue then.

We have expert writers on our team who are skilled at helping students with dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!

What is a Research Problem

Step 1: Identifying Problem Area – What is Research Problem

The most significant step in any research is to look for  unexplored areas, topics, and controversies . You aim to find gaps that your work will fill. Here are some research problem examples for you to better understand the concept.

Practical Research Problems

To conduct practical research, you will need practical research problems that are typically identified by analysing reports, previous research studies, and interactions with the experienced personals of pertinent disciplines. You might search for:

  • Problems with performance or competence in an organization
  • Institutional practices that could be enhanced
  • Practitioners of relevant fields and their areas of concern
  • Problems confronted by specific groups of people within your area of study

If your research work relates to an internship or a job, then it will be critical for you to identify a research problem that addresses certain issues faced by the firm the job or internship pertains to.

Examples of Practical Research Problems

Decreased voter participation in county A, as compared to the rest of the country.

The high employee turnover rate of department X of company Y influenced efficiency and team performance.

A charity institution, Y, suffers a lack of funding resulting in budget cuts for its programmes.

Theoretical Research Problems

Theoretical research relates to predicting, explaining, and understanding various phenomena. It also expands and challenges existing information and knowledge.

Identification of a research problem in theoretical research is achieved by analysing theories and fresh research literature relating to a broad area of research. This practice helps to find gaps in the research done by others and endorse the argument of your topic.

Here are some questions that you should bear in mind.

  • A case or framework that has not been deeply analysed
  • An ambiguity between more than one viewpoints
  • An unstudied condition or relationships
  • A problematic issue that needs to be addressed

Theoretical issues often contain practical implications, but immediate issues are often not resolved by these results. If that is the case, you might want to adopt a different research approach  to achieve the desired outcomes.

Examples of Theoretical Research Problems

Long-term Vitamin D deficiency affects cardiac patients are not well researched.

The relationship between races, sex, and income imbalances needs to be studied with reference to the economy of a specific country or region.

The disagreement among historians of Scottish nationalism regarding the contributions of Imperial Britain in the creation of the national identity for Scotland.

Hire an Expert Writer

Proposal and dissertation orders completed by our expert writers are

  • Formally drafted in academic style
  • Plagiarism free
  • 100% Confidential
  • Never Resold
  • Include unlimited free revisions
  • Completed to match exact client requirements

Step 2: Understanding the Research Problem

The researcher further investigates the selected area of research to find knowledge and information relating to the research problem to address the findings in the research.

Background and Rationale

  • Population influenced by the problem?
  • Is it a persistent problem, or is it recently revealed?
  • Research that has already been conducted on this problem?
  • Any proposed solution to the problem?
  • Recent arguments concerning the problem, what are the gaps in the problem?

How to Write a First Class Dissertation Proposal or Research Proposal

Particularity and Suitability

  • What specific place, time, and/or people will be focused on?
  • Any aspects of research that you may not be able to deal with?
  • What will be the concerns if the problem remains unresolved?
  • What are the benefices of the problem resolution (e.g. future researcher or organisation’s management)?

Example of a Specific Research Problem

A non-profit institution X has been examined on their existing support base retention, but the existing research does not incorporate an understanding of how to effectively target new donors. To continue their work, the institution needs more research and find strategies for effective fundraising.

Once the problem is narrowed down, the next stage is to propose a problem statement and hypothesis or research questions.

If you are unsure about what a research problem is and how to define the research problem, then you might want to take advantage of our dissertation proposal writing service. You may also want to take a look at our essay writing service if you need help with identifying a research problem for your essay.

Frequently Asked Questions

What is research problem with example.

A research problem is a specific challenge that requires investigation. Example: “What is the impact of social media on mental health among adolescents?” This problem drives research to analyse the relationship between social media use and mental well-being in young people.

How many types of research problems do we have?

  • Descriptive: Describing phenomena as they exist.
  • Explanatory: Understanding causes and effects.
  • Exploratory: Investigating little-understood phenomena.
  • Predictive: Forecasting future outcomes.
  • Prescriptive: Recommending actions.
  • Normative: Describing what ought to be.

What are the principles of the research problem?

  • Relevance: Addresses a significant issue.
  • Re searchability: Amenable to empirical investigation.
  • Clarity: Clearly defined without ambiguity.
  • Specificity: Narrowly framed, avoiding vagueness.
  • Feasibility: Realistic to conduct with available resources.
  • Novelty: Offers new insights or challenges existing knowledge.
  • Ethical considerations: Respect rights, dignity, and safety.

Why is research problem important?

A research problem is crucial because it identifies knowledge gaps, directs the inquiry’s focus, and forms the foundation for generating hypotheses or questions. It drives the methodology and determination of study relevance, ensuring that research contributes meaningfully to academic discourse and potentially addresses real-world challenges.

How do you write a research problem?

To write a research problem, identify a knowledge gap or an unresolved issue in your field. Start with a broad topic, then narrow it down. Clearly articulate the problem in a concise statement, ensuring it’s researchable, significant, and relevant. Ground it in the existing literature to highlight its importance and context.

How can we solve research problem?

To solve a research problem, start by conducting a thorough literature review. Formulate hypotheses or research questions. Choose an appropriate research methodology. Collect and analyse data systematically. Interpret findings in the context of existing knowledge. Ensure validity and reliability, and discuss implications, limitations, and potential future research directions.

You May Also Like

Find how to write research questions with the mentioned steps required for a perfect research question. Choose an interesting topic and begin your research.

Repository of ten perfect research question examples will provide you a better perspective about how to create research questions.

How to write a hypothesis for dissertation,? A hypothesis is a statement that can be tested with the help of experimental or theoretical research.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Sacred Heart University Library

Organizing Academic Research Papers: The Research Problem/Question

  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • How to Manage Group Projects
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Acknowledgements

A research problem is a statement about an area of concern, a condition to be improved, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or in practice that points to the need for meaningful understanding and deliberate investigation. In some social science disciplines the research problem is typically posed in the form of a question. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study and the research questions or hypotheses to follow.
  • Places the problem into a particular context that defines the parameters of what is to be investigated.
  • Provides the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. The "So What?" question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What" question requires a commitment on your part to not only show that you have researched the material, but that you have thought about its significance.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible statements],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question and key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's boundaries or parameters,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [regardless of the type of research, it is important to address the “so what” question by demonstrating that the research is not trivial],
  • Does not have unnecessary jargon; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Castellanos, Susie. Critical Writing and Thinking . The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem. Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements . The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements . The Writing Lab and The OWL. Purdue University.  

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe a situation, state, or existence of a specific phenomenon.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate qualities/characteristics that are connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study
  • A declaration of originality [e.g., mentioning a knowledge void, which would be supported by the literature review]
  • An indication of the central focus of the study, and
  • An explanation of the study's significance or the benefits to be derived from an investigating the problem.

II.  Sources of Problems for Investigation

Identifying a problem to study can be challenging, not because there is a lack of issues that could be investigated, but due to pursuing a goal of formulating a socially relevant and researchable problem statement that is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these three broad sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life in society that the researcher is familiar with. These deductions from human behavior are then fitted within an empirical frame of reference through research. From a theory, the research can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis and hence the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. A review of pertinent literature should include examining research from related disciplines, which can expose you to new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue than any single discipline might provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings increasingly relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, etc., offers the chance to identify practical, “real worl” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Your everyday experiences can give rise to worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society, your community, or in your neighborhood. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can often be derived from an extensive and thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps remain in our understanding of a topic. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied to different study sample [i.e., different groups of people]. Also, authors frequently conclude their studies by noting implications for further research; this can also be a valuable source of problems to investigate.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered and then gradually leads the reader to the more narrow questions you are posing. The statement need not be lengthy but a good research problem should incorporate the following features:

Compelling topic Simple curiosity is not a good enough reason to pursue a research study. The problem that you choose to explore must be important to you and to a larger community you share. The problem chosen must be one that motivates you to address it. Supports multiple perspectives The problem most be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. Researchable It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex  research project and realize that you don't have much to draw on for your research. Choose research problems that can be supported by the resources available to you. Not sure? Seek out help  from a librarian!

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about whereas a problem is something to solve or framed as a question that must be answered.

IV.  Mistakes to Avoid

Beware of circular reasoning . Don’t state that the research problem as simply the absence of the thing you are suggesting. For example, if you propose, "The problem in this community is that it has no hospital."

This only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "so what?" test because it does not reveal the relevance of why you are investigating the problem of having no hospital in the community [e.g., there's a hospital in the community ten miles away] and because the research problem does not elucidate the significance of why one should study the fact that no hospital exists in the community [e.g., that hospital in the community ten miles away has no emergency room].

Choosing and Refining Topics . Writing@CSU. Colorado State University; Ellis, Timothy J. and Yair Levy Nova Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem. Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question . The Writing Center. George Mason University; Invention: Developing a Thesis Statement . The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation . The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements . University College Writing Centre. University of Toronto; Trochim, William M.K. Problem Formulation . Research Methods Knowledge Base. 2006; Thesis and Purpose Statements . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements . The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements . The Writing Lab and The OWL. Purdue University.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: Jul 18, 2023 11:58 AM
  • URL: https://library.sacredheart.edu/c.php?g=29803
  • QuickSearch
  • Library Catalog
  • Databases A-Z
  • Publication Finder
  • Course Reserves
  • Citation Linker
  • Digital Commons
  • Our Website

Research Support

  • Ask a Librarian
  • Appointments
  • Interlibrary Loan (ILL)
  • Research Guides
  • Databases by Subject
  • Citation Help

Using the Library

  • Reserve a Group Study Room
  • Renew Books
  • Honors Study Rooms
  • Off-Campus Access
  • Library Policies
  • Library Technology

User Information

  • Grad Students
  • Online Students
  • COVID-19 Updates
  • Staff Directory
  • News & Announcements
  • Library Newsletter

My Accounts

  • Interlibrary Loan
  • Staff Site Login

Sacred Heart University

FIND US ON  

Geektonight

What is Research Problem? Components, Identifying, Formulating,

  • Post last modified: 13 August 2023
  • Reading time: 10 mins read
  • Post category: Research Methodology

Coursera 7-Day Trail offer

What is Research Problem?

A research problem refers to an area or issue that requires investigation, analysis, and resolution through a systematic and scientific approach. It is a specific question, gap, or challenge within a particular field of study that researchers aim to address through their research endeavors.

Table of Content

  • 1 What is Research Problem?
  • 2 Concept of a Research Problem
  • 3 Need to Define a Research Problem
  • 4 Conditions and Components of a Research Problem
  • 5 Identifying a Research Problem
  • 6 Formulating a Research Problem

Concept of a Research Problem

The first step in any research project is to identify the problem. When we specifically talk about research related to a business organisation, the first step is to identify the problem that is being faced by the concerned organisation. The researchers need to develop a concrete, unambiguous and easily comprehensible definition of the problem that requires research.

If the research problem is not well-defined, the research project may be affected. You may also consider defining research problem and carrying out literature review as the foundation on which the entire research process is based.

In general, a research problem refers to a problem that a researcher has witnessed or experienced in a theoretical or real-life situation and wants to develop a solution for the same. The research problem is only a problem statement and it does not describe how to do something. It must be remembered that a research problem is always related to some kind of management dilemma

Need to Define a Research Problem

The researchers must clearly define or formulate the research problem in order to represent a clear picture of what they wish to achieve through their research. When a researcher starts off his research with a well-formulated research problem, it becomes easier to carry out the research.

Some of the major reasons for which a research problem must be defined are:

  • Select useful information for research
  • Segregate useful information from irrelevant information
  • Monitor the research progress
  • Ensure research is centred around a problem
  • What data should be collected?
  • What data attributes are relevant and need to be analysed?
  • What relationships should be investigated?
  • Determine the structure of the study
  • Ensure that the research is centred around the research problem only

Defining a research problem well helps the decision makers in getting good research results if right questions are asked. On the contrary, correct answer to a wrong question will lead to bad research results.

Conditions and Components of a Research Problem

Conditions necessary for the existence of a research problem are:

  • Existence of a problem whose solution is not known currently
  • Existence of an individual, group or organisation to which the given problem can be attributed
  • Existence of at least two alternative courses of action that can be pursued by a researcher
  • At least two feasible outcomes of the course of action and out of two outcomes, one outcome should be more preferable to the other

A research problem consists of certain specific components as follows:

  • Manager/Decision-maker (individual/group/institution) and his/ her objectives The individual, group or an institution is the one who is facing the problem. At times, the different individuals or groups related to a problem do not agree with the problem statement as their objectives differ from one another. The decision makers must agree on a concrete and clearly worded problem statemen.
  • Environment or context of the problem
  • Nature of the problem
  • Alternative courses of problem
  • A set of consequences related to courses of action and the occurrence of events that are not under the control of the manager/decision maker
  • A state of uncertainty for which a course of action is best

Identifying a Research Problem

Identifying a research problem is an important and time-consuming activity. Research problem identification involves understanding the given social problem that needs to be investigated in order to solve it. In most cases, the researchers usually identify a research problem by using their observation, knowledge, wisdom and skills. Identifying a research problem can be as simple as recognising the difficulties and problems in your workplace.

Certain other factors that are considered while identifying a research problem include:

  • Potential research problems raised at the end of journal articles
  • Large-scale reports and data records in the field may disclose the findings or facts based on data that require further investigation
  • Personal interest of the researcher
  • Knowledge and competence of the researcher
  • Availability of resources such as large-scale data collection, time and finance
  • Relative importance of different problems
  • Practical utility of finding answers to a problem
  • Data availability for a problem

Formulating a Research Problem

Formulating a research problem is usually done under the first step of research process, i.e., defining the research problem. Identification, clarification and formulation of a research problem is done using different steps as:

  • Discover the Management Dilemma
  • Define the Management Question
  • Define the Research Question
  • Refine the Research Question(s)

You have already studied why it is important to clarify a research question. The next step is to discover the management dilemma. The entire research process starts with a management dilemma. For instance, an organisation facing increasing number of customer complaints may want to carry out research.

At most times, the researchers state the management dilemma followed by developing questions which are then broken down into specific set of questions. Management dilemma, in most cases, is a symptom of the actual problem being faced by an organisation.

A few examples of management dilemma are low turnover, high attrition, high product defect rate, low quality, increasing costs, decreasing profits, low employee morale, high absenteeism, flexibility and remote work issues, use of technology, increasing market share of a competitor, decline in plant/production capacity, distribution of profit between dividends and retained earnings, etc.

If an organisation tracks its performance indicators on a regular basis, it is quite easy to identify the management dilemma. Now, the difficult task for a researcher to choose a particular management dilemma among the given set of management dilemmas.

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?
  • What is Hypothesis?

Sampling Method

  • Research Methods

Data Collection in Research

  • Methods of Collecting Data

Application of Business Research

  • Levels of Measurement
  • What is Sampling?
  • Hypothesis Testing
  • Research Report
  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

What is experiments variables, types, lab, field, what is scaling techniques types, classifications, techniques, what is questionnaire design characteristics, types, don’t, what is research design types, measures of relationship, what is causal research advantages, disadvantages, how to perform, data processing in research, what is descriptive research types, features, primary data and secondary data, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal growth.

research problem is selected from the standpoint of

Development

research problem is selected from the standpoint of

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Research process
  • How to Define a Research Problem | Ideas & Examples

How to Define a Research Problem | Ideas & Examples

Published on 8 November 2022 by Shona McCombes and Tegan George.

A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge.

Some research will do both of these things, but usually the research problem focuses on one or the other. The type of research problem you choose depends on your broad topic of interest and the type of research you think will fit best.

This article helps you identify and refine a research problem. When writing your research proposal or introduction , formulate it as a problem statement and/or research questions .

Table of contents

Why is the research problem important, step 1: identify a broad problem area, step 2: learn more about the problem, frequently asked questions about research problems.

Having an interesting topic isn’t a strong enough basis for academic research. Without a well-defined research problem, you are likely to end up with an unfocused and unmanageable project.

You might end up repeating what other people have already said, trying to say too much, or doing research without a clear purpose and justification. You need a clear problem in order to do research that contributes new and relevant insights.

Whether you’re planning your thesis , starting a research paper , or writing a research proposal , the research problem is the first step towards knowing exactly what you’ll do and why.

Prevent plagiarism, run a free check.

As you read about your topic, look for under-explored aspects or areas of concern, conflict, or controversy. Your goal is to find a gap that your research project can fill.

Practical research problems

If you are doing practical research, you can identify a problem by reading reports, following up on previous research, or talking to people who work in the relevant field or organisation. You might look for:

  • Issues with performance or efficiency
  • Processes that could be improved
  • Areas of concern among practitioners
  • Difficulties faced by specific groups of people

Examples of practical research problems

Voter turnout in New England has been decreasing, in contrast to the rest of the country.

The HR department of a local chain of restaurants has a high staff turnover rate.

A non-profit organisation faces a funding gap that means some of its programs will have to be cut.

Theoretical research problems

If you are doing theoretical research, you can identify a research problem by reading existing research, theory, and debates on your topic to find a gap in what is currently known about it. You might look for:

  • A phenomenon or context that has not been closely studied
  • A contradiction between two or more perspectives
  • A situation or relationship that is not well understood
  • A troubling question that has yet to be resolved

Examples of theoretical research problems

The effects of long-term Vitamin D deficiency on cardiovascular health are not well understood.

The relationship between gender, race, and income inequality has yet to be closely studied in the context of the millennial gig economy.

Historians of Scottish nationalism disagree about the role of the British Empire in the development of Scotland’s national identity.

Next, you have to find out what is already known about the problem, and pinpoint the exact aspect that your research will address.

Context and background

  • Who does the problem affect?
  • Is it a newly-discovered problem, or a well-established one?
  • What research has already been done?
  • What, if any, solutions have been proposed?
  • What are the current debates about the problem? What is missing from these debates?

Specificity and relevance

  • What particular place, time, and/or group of people will you focus on?
  • What aspects will you not be able to tackle?
  • What will the consequences be if the problem is not resolved?

Example of a specific research problem

A local non-profit organisation focused on alleviating food insecurity has always fundraised from its existing support base. It lacks understanding of how best to target potential new donors. To be able to continue its work, the organisation requires research into more effective fundraising strategies.

Once you have narrowed down your research problem, the next step is to formulate a problem statement , as well as your research questions or hypotheses .

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement.

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis – a prediction that will be confirmed or disproved by your research.

Research objectives describe what you intend your research project to accomplish.

They summarise the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. & George, T. (2022, November 08). How to Define a Research Problem | Ideas & Examples. Scribbr. Retrieved 29 April 2024, from https://www.scribbr.co.uk/the-research-process/define-research-problem/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, dissertation & thesis outline | example & free templates, example theoretical framework of a dissertation or thesis, how to write a strong hypothesis | guide & examples.

Mcqmate logo

View all MCQs in

No comments yet

Related MCQs

  • Which of the following is a problem assciated with survey research
  • Research refers to the search for-:
  • The objective of research should be:
  • Census method of research is which type of method?
  • A research hypothesis can take either
  • Media Research is related to
  • Market research is done to target:
  • The most immediate step of market research is
  • Which of the following best suits for 'Action Research?
  • Research is which type of activity

This paper is in the following e-collection/theme issue:

Published on 29.4.2024 in Vol 26 (2024)

The Applications of Artificial Intelligence for Assessing Fall Risk: Systematic Review

Authors of this article:

Author Orcid Image

  • Ana González-Castro 1 , PT, MSc   ; 
  • Raquel Leirós-Rodríguez 2 , PT, PhD   ; 
  • Camino Prada-García 3 , MD, PhD   ; 
  • José Alberto Benítez-Andrades 4 , PhD  

1 Nursing and Physical Therapy Department, Universidad de León, Ponferrada, Spain

2 SALBIS Research Group, Nursing and Physical Therapy Department, Universidad de León, Ponferrada, Spain

3 Department of Preventive Medicine and Public Health, Universidad de Valladolid, Valladolid, Spain

4 SALBIS Research Group, Department of Electric, Systems and Automatics Engineering, Universidad de León, León, Spain

Corresponding Author:

Ana González-Castro, PT, MSc

Nursing and Physical Therapy Department

Universidad de León

Astorga Ave

Ponferrada, 24401

Phone: 34 987442000

Email: [email protected]

Background: Falls and their consequences are a serious public health problem worldwide. Each year, 37.3 million falls requiring medical attention occur. Therefore, the analysis of fall risk is of great importance for prevention. Artificial intelligence (AI) represents an innovative tool for creating predictive statistical models of fall risk through data analysis.

Objective: The aim of this review was to analyze the available evidence on the applications of AI in the analysis of data related to postural control and fall risk.

Methods: A literature search was conducted in 6 databases with the following inclusion criteria: the articles had to be published within the last 5 years (from 2018 to 2024), they had to apply some method of AI, AI analyses had to be applied to data from samples consisting of humans, and the analyzed sample had to consist of individuals with independent walking with or without the assistance of external orthopedic devices.

Results: We obtained a total of 3858 articles, of which 22 were finally selected. Data extraction for subsequent analysis varied in the different studies: 82% (18/22) of them extracted data through tests or functional assessments, and the remaining 18% (4/22) of them extracted through existing medical records. Different AI techniques were used throughout the articles. All the research included in the review obtained accuracy values of >70% in the predictive models obtained through AI.

Conclusions: The use of AI proves to be a valuable tool for creating predictive models of fall risk. The use of this tool could have a significant socioeconomic impact as it enables the development of low-cost predictive models with a high level of accuracy.

Trial Registration: PROSPERO CRD42023443277; https://tinyurl.com/4sb72ssv

Introduction

According to alarming figures reported by the World Health Organization in 2021, falls cause 37.3 million injuries annually that require medical attention and result in 684,000 deaths [ 1 ]. These figures indicate a significant impact of falls on the health care system and on society, both directly and indirectly [ 2 , 3 ].

Life expectancy has progressively increased over the years, leading to an aging population [ 4 ]. By 2050, it is estimated that 16% of the population will be >65 years of age. In this group, the incidence of falls has steadily risen, becoming the leading cause of accidental injury and death (accounting for 55.8% of such deaths, according to some research) [ 5 , 6 ]. It is estimated that 30% of this population falls at least once a year, negatively impacting their physical and psychological well-being [ 7 , 8 ].

Physically, falls are often associated with severe complications that can lead to extended hospitalizations [ 9 ]. These hospitalizations are usually due to serious injuries, often cranioencephalic trauma, fractures, or soft tissue injuries [ 10 , 11 ]. Psychologically, falls among the older adult population tend to result in self-imposed limitations due to the fear of falling again [ 10 , 12 ]. These limitations lead to social isolation as individuals avoid participating in activities or even individual mobility [ 13 ]. Consequently, falls can lead to psychological conditions such as anxiety and depression [ 14 , 15 ]. Numerous research studies on the risk of falls are currently underway, with ongoing investigations into various innovations and intervention ideas [ 16 - 19 ]. These studies encompass the identification of fall risk factors [ 20 , 21 ], strategies for prevention [ 22 , 23 ], and the outcomes following rehabilitation [ 23 , 24 ].

In the health care field, artificial intelligence (AI) is characterized by data management and processing, offering new possibilities to the health care paradigm [ 24 ]. Some applications of AI in the health care domain include assessing tumor interaction processes [ 25 ], serving as a tool for image-based diagnostics [ 26 , 27 ], participating in virus detection [ 28 ], and, most importantly, as a statistical and predictive method [ 29 - 32 ].

Several publications have combined AI techniques to address health care issues [ 33 - 35 ]. Within the field of predictive models, it is important to understand certain differentiations. In AI, we have machine learning and deep learning [ 36 - 38 ]. Machine learning encompasses a set of techniques applied to data and can be done in a supervised or unsupervised manner [ 39 , 40 ]. On the other hand, deep learning is typically used to work with larger data sets compared to machine learning, and its computational cost is higher [ 41 , 42 ].

Some examples of AI techniques include the gradient boosting machine [ 43 ], learning method, and the long short-term memory (LSTM) [ 44 ] and the convolutional neural network (CNN) [ 45 ], all of them are deep learning methods.

For all the reasons mentioned in the preceding section, it was considered necessary to conduct a systematic review to analyze the scientific evidence of AI applications in the analysis of data related to postural control and the risk of falls.

Data Sources and Searches

This systematic review and meta-analysis were prospectively registered on PROSPERO (ID CRD42023443277) and followed the Meta-Analyses of Observational Studies in Epidemiology checklist [ 46 ] and the recommendations of the Cochrane Collaboration [ 47 ].

The search was conducted in January 2024 on the following databases: PubMed, Scopus, ScienceDirect, Web of Science, CINAHL, and Cochrane Library. The Medical Subject Headings (MeSH) terms used for the search included machine learning , artificial intelligent , accidental falls , rehabilitation , and physical therapy specialty . The terms “predictive model” and “algorithms” were also used. These terms were combined using the Boolean operators AND and OR ( Textbox 1 ).

  • (“machine learning”[MeSH Terms] OR “artificial intelligent”[MeSH Terms]) AND “accidental falls”[MeSH Terms]
  • (“machine learning”[MeSH Terms] OR “artificial intelligent”) AND (“rehabilitation”[MeSH Terms] OR “physical therapy specialty”[MeSH Terms])
  • “accidental falls” [Title/Abstract] AND “algorithms” [Title/Abstract]
  • “accidental falls”[Title/Abstract] AND “predictive model” [Title/Abstract]
  • TITLE-ABS-KEY (“machine learning” OR “artificial intelligent”) AND TITLE-ABS-KEY (“accidental falls”)
  • TITLE-ABS-KEY (“machine learning” OR “artificial intelligent”) AND TITLE-ABS-KEY (“rehabilitation” OR “physical therapy specialty”)
  • TITLE-ABS-KEY (“accidental falls” AND “algorithms”)
  • TITLE-ABS-KEY (“accidental falls” AND “predictive model”)

ScienceDirect

  • Title, abstract, keywords: (“machine learning” OR “artificial intelligent”) AND “accidental falls”
  • Title, abstract, keywords: (“machine learning” OR “artificial intelligent”) AND (“rehabilitation” OR “physical therapy specialty”)
  • Title, abstract, keywords: (“accidental falls” AND “algorithms”)
  • Title, abstract, keywords: (“accidental falls” AND “predictive model”)

Web of Science

  • TS=(“machine learning” OR “artificial intelligent”) AND TS=“accidental falls”
  • TS=(“machine learning” OR “artificial intelligent”) AND TS= (“rehabilitation” OR “physical therapy specialty”)
  • AB= (“accidental falls” AND “algorithms”)
  • AB= (“accidental falls” AND “predictive model”)
  • (MH “machine learning” OR MH “artificial intelligent”) AND MH “accidental falls”
  • (MH “machine learning” OR MH “artificial intelligent”) AND (MH “rehabilitation” OR MH “physical therapy specialty”)
  • (AB “accidental falls”) AND (AB “algorithms”)
  • (AB “accidental falls”) AND (AB “predictive model”)

Cochrane Library

  • (“machine learning” OR “artificial intelligent”) in Title Abstract Keyword AND “accidental falls” in Title Abstract Keyword
  • (“machine learning” OR “artificial intelligent”) in Title Abstract Keyword AND (“rehabilitation” OR “physical therapy specialty”) in Title Abstract Keyword
  • “accidental falls” in Title Abstract Keyword AND “algorithms” in Title Abstract Keyword
  • “accidental falls” in Title Abstract Keyword AND “predictive model” in Title Abstract Keyword

Study Selection

After removing duplicates, 2 reviewers (AGC and RLR) independently screened articles for eligibility. In the case of disagreement, a third reviewer (JABA) finally decided whether the study should be included or not. We calculated the κ coefficient and percentage agreement scores to assess reliability before any consensus and estimated the interrater reliability using κ. Interrater reliability was estimated using κ>0.7 indicating a high level of agreement between the reviewers, κ of 0.5 to 0.7 indicating a moderate level of agreement, and κ<0.5 indicating a low level of agreement [ 48 ].

For the selection of results, the inclusion criteria were established as follows: (1) articles should have been published in the last 5 years (from 2018 to the present); (2) they must apply some AI method; (3) AI analyses should be applied to data from samples of humans; and (4) the sample analyzed should consist of people with independent walking, with or without the use of external orthopedic devices.

After screening the data, extracting, obtaining, and screening the titles and abstracts for inclusion criteria, the selected abstracts were obtained in full texts. Titles and abstracts lacking sufficient information regarding inclusion criteria were also obtained as full texts. Full-text articles were selected in case of compliance with inclusion criteria by the 2 reviewers using a data extraction form.

Data Extraction and Quality Assessment

The 2 reviewers mentioned independently extracting data from the included studies using a customized data extraction table in Excel (Microsoft Corporation). In case of disagreement, both reviewers debated until an agreement was reached.

The data extracted from the included articles for further analysis were: demographic information (title, authors, journal, and year), characteristics of the sample (age, inclusion and exclusion criteria, and number of participants), study-specific parameters (study type, AI techniques applied, and data analyzed), and the results obtained. Tables were used to describe both the studies’ characteristics and the extracted data.

Assessment of Risk of Bias

The methodological quality of the selected articles was evaluated using the Critical Review Form for Quantitative Studies [ 49 ]. The ROBINS-E (Risk of Bias in Nonrandomized Studies of Exposures) tool was used to evaluate the risk of bias [ 50 ].

Characteristics of the Selected Studies

A total of 3858 articles were initially retrieved, with 1563 duplicates removed. From the remaining 2295 articles, 2271 were excluded based on the initial selection criteria, leaving 24 articles for the subsequent analysis. In this second analysis, 2 articles were removed as they were systematic reviews, and 22 articles were finally selected [ 51 - 72 ] ( Figure 1 ). After the first reading of all candidate full texts, the kappa score for inclusion of the results of reviewers 1 and 2 was 0.98, indicating a very high level of agreement.

The methodological quality of the 22 analyzed studies (Table S1 in Multimedia Appendix 1 [ 51 , 52 , 54 , 56 , 58 , 59 , 61 , 63 , 64 , 69 , 70 , 72 ]) ranged from 11 points in 2 (9.1%) studies [ 52 , 65 ] to 16 points in 7 (32%) studies [ 53 , 54 , 56 , 63 , 69 - 71 ].

research problem is selected from the standpoint of

Study Characteristics and Risk of Bias

All the selected articles were cross-sectional observational studies ( Table 1 ).

In total, 34 characteristics affecting the risk of falls were extracted and classified into high fall-risk and low fall-risk groups with the largest sample sizes significantly differing from the rest. Studies based on data collected from various health care systems had larger sample sizes, ranging from 22,515 to 265,225 participants [ 60 , 65 , 67 ]. In contrast, studies that applied some form of evaluation test had sample sizes ranging from 8 participants [ 56 ] to 746 participants [ 55 ].

It is worth noting the various studies conducted by Dubois et al [ 54 , 72 ], whose publications on fall risk and machine learning started in 2018 and progressed until 2021. A total of 9.1% (2/22) of the articles by this author were included in the final selection [ 54 , 72 ]. Both articles used samples with the same characteristics, even though the first one was composed of 43 participants [ 54 ] and the last one had 30 participants [ 72 ]. All 86.4% (19/22) of the articles used samples of individuals aged ≥65 years [ 51 - 60 , 62 - 65 , 68 - 72 ]. In the remaining 13.6% (3/22) of the articles, the ages ranged between 16 and 62 years [ 61 , 66 , 67 ].

Althobaiti et al [ 61 ] used a sample of participants between the ages of 19 and 35 years for their research, where these participants had to reproduce examples of falls for subsequent analysis. In 2022, Ladios-Martin et al [ 67 ] extracted medical data from participants aged >16 years for their research. Finally, in 2023, the study by Maray et al [ 66 ] used 3 types of samples, with ages ranging from 21 to 62 years. Among the 22 selected articles, only 1 (4.5%) of them did not describe the characteristics of its sample [ 52 ].

Finally, regarding the sex of the samples, 13.6% (3/22) of the articles specified in the characteristics of their samples that only female individuals were included among their participants [ 53 , 59 , 70 ].

a AI: artificial intelligence.

b ML: machine learning.

c nd: none described.

d ADL: activities of daily living.

e TUG: Timed Up and Go.

f BBS: Berg Balance Scale.

g ASM: associative skill memories.

h CNN: convolutional neural network.

i FP: fall prevention.

j IMU: inertial measurement unit.

k AUROC: area under the receiver operating characteristic curve.

l AUPR: area under the precision-recall curve.

m MFS: Morse Fall Scale.

n XGB: extreme gradient boosting.

o MCT: motor control test.

p GBM: gradient boosting machine.

q RF: random forest.

r LOOCV: leave-one-out cross-validation.

s LSTM: long short-term memory.

Applied Assessment Procedures

All articles initially analyzed the characteristics of their samples to subsequently create a predictive model of the risk of falls. However, they did not all follow the same evaluation process.

Regarding the applied assessment procedures, 3 main options stood out: studies with tests or assessments accompanied by sensors or accelerometers [ 51 - 57 , 59 , 61 - 63 , 66 , 70 - 72 ], studies with tests or assessments accompanied by cameras [ 68 , 69 ], or studies based on medical records [ 58 , 60 , 65 , 67 ] ( Figure 2 ). Guillan et al [ 64 ] performed a physical and functional evaluation of the participants. In their study, they evaluated parameters such as walking speed, stride frequency and length, and the minimum space between the toes. Afterward, they asked them to record the fall events they had during the past 2 years in a personal diary.

research problem is selected from the standpoint of

In total, 22.7% (5/22) of the studies used the Timed Up and Go test [ 53 , 54 , 69 , 71 , 72 ]. In 18.2% (4/22) of them, the participants performed the test while wearing a sensor to collect data [ 53 , 54 , 71 , 72 ]. In 1 (4.5%) study, the test was recorded with a camera for later analysis [ 69 ]. Another commonly used method in studies was to ask participants to perform everyday tasks or activities of daily living while a sensor collected data for subsequent analysis. Specifically, 18.2% (4/22) of the studies used this method to gather data [ 51 , 56 , 61 , 62 ].

A total of 22.7% (5/22) of the studies asked participants to simulate falls and nonfalls while a sensor collected data [ 52 , 61 - 63 , 66 ]. In this way, the data obtained were used to create the predictive model of falls. As for the tests used, Eichler et al [ 68 ] asked participants to perform the Berg Balance Scale while a camera recorded their performance.

Finally, other authors created their own battery of tests for data extraction [ 55 , 59 , 64 , 70 ]. Gillain et al [ 64 ] used gait records to analyze speed, stride length, frequency, symmetry, regularity, and foot separation. Hu et al [ 59 ] asked their participants to perform normal walking, the postural reflexive response test, and the motor control test. In the study by Noh et al [ 55 ], gait tests were conducted, involving walking 20 m at different speeds. Finally, Greene et al [ 70 ] created a 12-question questionnaire and asked their participants to maintain balance while holding a mobile phone in their hand.

AI Techniques

The selected articles used various techniques within AI. They all had the same objective in applying these techniques, which was to achieve a predictive and classification model for the risk of falls [ 51 - 72 ].

In chronological order, in 2018, Nait Aicha et al [ 51 ] compared single-task learning models with multitask learning, obtaining better evaluation results through multitask learning. In the same year, Dubois et al [ 54 ] applied AI techniques that analyzed multiple parameters to classify the risk of falls in their sample. Qiu et al [ 53 ], also in the same year, used 6 machine learning models (logistic regression, naïve Bayes, decision tree, RF, boosted tree, and support vector machine) in their research.

In contrast, in 2019, Ferrete et al [ 52 ] compared the applicability of 2 different deep learning models: the classifier based on associative skill memories and a CNN classifier. In the same year, after confirming the applicability of AI as a predictive method for the risk of falls, various authors investigated through methods such as the RF to identify factors that can predict and quantify the risk of falls [ 63 , 65 ].

Among the selected articles, 5 (22.7%) were published in 2020 [ 58 - 62 ]. The research conducted by Tunca et al [ 62 ] compared the applicability of deep learning LSTM networks with traditional machine learning applied to the risk of falls. Hu et al [ 59 ] first used cross-validation, where algorithms were trained randomly, and then used the gradient boosting machine algorithm to classify participants as high or low risk. Ye et al [ 60 ] and Hsu et al [ 58 ] both used the extreme gradient boosting (XGBoost) algorithm based on machine learning to create their predictive model. In the same year, Althobaiti et al [ 61 ] trained machine learning models for their research.

In 2021, Lockhart et al [ 57 ] started using 3 deep learning techniques simultaneously with the same goal as before: to create a predictive model for the risk of falls. Specifically, they used the RF, RF with feature engineering, and RF with feature engineering and linear and nonlinear variables. Noh et al [ 55 ], again in the same year, used the XGBoost algorithm, while Roshdibenam et al [ 71 ], on the other hand, used the CNN algorithm for each location of the wearable sensors used in their research. Various machine learning techniques were used for classifying the risk of falls and for balance loss events in the research by Hauth et al [ 56 ]. Dubois et al [ 72 ] used the following algorithms: decision tree, adaptive boosting, neural net, naïve Bayes, k-nearest neighbors, linear support vector machine, radial basis function support vector machine, RF, and quadratic discriminant analysis. Hauth et al [ 56 ], on the other hand, used regularized logistic regression and bidirectional LSTM networks. In the research conducted by Greene et al [ 70 ], AI was used, but the specific procedure that they followed is not described.

Tang et al [ 69 ] published their research with innovation up to that point. In their study, they used a smart gait analyzer with the help of deep learning techniques to assess the diagnostic accuracy of fall risk through vision. Months later, in August 2022, Ladios-Martin et al [ 67 ] published their research, in which they compared 2 deep learning models to achieve the best results in terms of specificity and sensitivity in detecting fall risk. The first model used the Bayesian Point Machine algorithm with a fall prevention variable, and the second one did not use the variable. They obtained better results when using that variable, a mitigating factor defined as a set of care interventions carried out by professionals to prevent the patient from experiencing a fall during hospitalization. Particularly controversial, as its exclusion could obscure the model’s performance. Eichler et al [ 68 ], on the other hand, used machine learning–based classifier training and later tested the performance of RFs in score predictions.

Finally, in January 2023, Maray et al [ 66 ] published their research, linking the previously mentioned terms (AI and fall risk) with 3 wearable devices that are commonly used today. They collected data through these devices and applied transfer learning to generalize the model across heterogeneous devices.

The results of the 22 articles provided promising data, and all of them agreed on the feasibility of applying various AI techniques as a method for predicting and classifying the risk of falls. Specifically, the accuracy values obtained in the studies exceed 70%. Noh et al [ 55 ] achieved the “lowest” accuracy among the studies conducted, with a 70% accuracy rate. Ribeiro et al [ 52 ] obtained an accuracy of 92.7% when using CNN to differentiate between normal gait and fall events. Hsu et al [ 58 ] further demonstrated that the XGBoost model is more sensitive than the Morse Fall Scale. Similarly, in their comparative study, Nait Aicha et al [ 51 ] also showed that a predictive model created from accelerometer data with AI is comparable to conventional models for assessing the risk of falls. More specifically, Dubois et al [ 54 ] concluded that using 1 gait-related parameter (excluding velocity) in combination with another parameter related to seated position allowed for the correct classification of individuals according to their risk of falls.

Principal Findings

The aim of this research was to analyze the scientific evidence regarding the applications of AI in the analysis of data related to postural control and the risk of falls. On the basis of the analysis of results, it can be asserted that the following risk factors were identified in the analyzed studies: age [ 65 ], daily habits [ 65 ], clinical diagnoses [ 65 ], environmental and hygiene factors [ 65 ], sex [ 64 ], stride length [ 55 , 72 ], gait speed [ 55 ], and posture [ 55 ]. This aligns with other research that also identifies sex [ 73 , 74 ], age [ 73 ], and gait speed [ 75 ].

On the other hand, the “fear of falling” has been identified in various studies as a risk factor and a predictor of falls [ 73 , 76 ], but it was not identified in any of the studies included in this review.

As for the characteristics of the analyzed samples, only 9.1% (2/22) of the articles used a sample composed exclusively of women [ 53 , 59 ], and no article used a sample composed exclusively of men. This fact is incongruent with reality, as women have a longer life expectancy than men, and therefore, the number of women aged >65 years is greater than the number of men of the same age [ 77 ]. Furthermore, women experience more falls than men [ 78 ]. The connection between menopause and its consequences, including osteopenia, suggests a higher risk of falls among older women than among men of the same age [ 79 , 80 ].

Within the realm of analysis tools, the most frequently used devices to analyze participants were accelerometers [ 51 - 57 , 59 , 61 - 63 , 66 , 70 - 72 ]. However, only 36.4% (8/22) of the studies provided all the information regarding the characteristics of these devices [ 51 , 53 , 59 , 61 , 63 , 66 , 70 , 72 ]. On the other hand, 18.2% (4/22) of the studies used the term “inertial measurement unit” as the sole description of the devices used [ 55 - 57 , 71 ].

The fact that most of the analyzed procedures involved the use of inertial sensors reflects the current widespread use of these devices for postural control analysis. These sensors, in general (and triaxial accelerometers in particular), have demonstrated great diagnostic capacity for balance [ 81 ]. In addition, they exhibit good sensitivity and reliability, combined with their portability and low economic cost [ 82 ]. Another advantage of triaxial accelerometers is their versatility in both adult and pediatric populations [ 83 - 86 ], although the studies included in this review did not address the pediatric population.

The remaining studies extracted data from cameras [ 68 , 69 ], medical records [ 58 , 60 , 65 , 67 ], and other functional and clinical tests [ 59 , 64 , 70 ]. Regarding the AI techniques used, out of the 18.2% (4/22) of articles that used deep learning techniques [ 52 , 57 , 62 , 71 ], only 4.5% (1/22) did not provide a description of the sample characteristics [ 52 ]. In this case, the authors focused on the AI landscape, while the rest of the articles strike a balance between AI and health sciences.

Regarding the validity of the generated models, only 40.9% (9/22) of the articles assessed this characteristic [ 52 , 53 , 55 , 61 - 64 , 68 , 69 ]. The authors of these 9 (N=22, 40.9%) articles evaluated the validity of the models through accuracy. All the results obtained reflected accuracies exceeding 70%, with Ribeiro et al [ 52 ] achieving a notable accuracy of 92.7% and 100%. Specifically, they obtained a 92.7% accuracy through the CNN model for distinguishing normal gait, the prefall condition, and the falling situation, considering the step before the fall, and 100% when not considering it [ 52 ].

The positive results of sensitivity and specificity can only be compared between the studies of Qiu et al [ 53 ] and Gillain et al [ 64 ], as they were the only ones to take them into account, and in both investigations, they were very high. Similarly, in the case of the F 1 -score, only Althobaiti et al [ 61 ] examined this validity measure. This measure is the result of combining precision and recall into a single figure, and the outcome obtained by these researchers was promising.

Despite these differences, the 22 studies obtained promising results in the health care field [ 51 - 72 ]. Specifically, their outcomes highlight the potential of AI integration into clinical settings. However, further research is necessary to explore how health care professionals can effectively use these predictive models. Consequently, future research should focus on studying the application and integration of the already-developed models. In this context, fall prevention plans could be implemented for the target populations identified by the predictive models. This approach would allow for a retrospective analysis to determine if the combination of predictive models with prevention programs effectively reduces the prevalence of falls in the population.

Limitations

Regarding limitations, the articles showed significant variation in the sample sizes selected. Moreover, even in the study with the largest sample size (with 265,225 participants [ 60 ]), the amount of data analyzed was relatively small. In addition, several of the databases used were not generated specifically for the published research but rather derived from existing medical records [ 58 , 60 , 65 , 67 ]. This could explain the significant variability in the variables analyzed across different studies.

Despite the limitations, this research has strengths, such as being the first systematic review on the use of AI as a tool to analyze postural control and the risk of falls. Furthermore, a total of 6 databases were used for the literature search, and a comprehensive article selection process was carried out by 3 researchers. Finally, only cross-sectional observational studies were selected, and they shared the same objective.

Conclusions

The use of AI in the analysis of data related to postural control and the risk of falls proves to be a valuable tool for creating predictive models of fall risk. It has been identified that most AI studies analyze accelerometer data from sensors, with triaxial accelerometers being the most frequently used.

For future research, it would be beneficial to provide more detailed descriptions of the measurement procedures and the AI techniques used. In addition, exploring larger databases could lead to the development of more robust models.

Conflicts of Interest

None declared.

Quality scores of reviewed studies (Critical Review Form for Quantitative Studies tool results).

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist.

  • Step safely: strategies for preventing and managing falls across the life-course. World Health Organization. 2021. URL: https://www.who.int/publications/i/item/978924002191-4 [accessed 2024-04-02]
  • Keall MD, Pierse N, Howden-Chapman P, Guria J, Cunningham CW, Baker MG. Cost-benefit analysis of fall injuries prevented by a programme of home modifications: a cluster randomised controlled trial. Inj Prev. Feb 2017;23(1):22-26. [ CrossRef ] [ Medline ]
  • Almada M, Brochado P, Portela D, Midão L, Costa E. Prevalence of falls and associated factors among community-dwelling older adults: a cross-sectional study. J Frailty Aging. 2021;10(1):10-16. [ CrossRef ] [ Medline ]
  • Menéndez-González L, Izaguirre-Riesgo A, Tranche-Iparraguirre S, Montero-Rodríguez Á, Orts-Cortés MI. [Prevalence and associated factors of frailty in adults over 70 years in the community]. Aten Primaria. Dec 2021;53(10):102128. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Guirguis-Blake JM, Michael YL, Perdue LA, Coppola EL, Beil TL. Interventions to prevent falls in older adults: updated evidence report and systematic review for the US preventive services task force. JAMA. Apr 24, 2018;319(16):1705-1716. [ CrossRef ] [ Medline ]
  • Pereira CB, Kanashiro AM. Falls in older adults: a practical approach. Arq Neuropsiquiatr. May 2022;80(5 Suppl 1):313-323. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Byun M, Kim J, Kim M. Physical and psychological factors affecting falls in older patients with arthritis. Int J Environ Res Public Health. Feb 09, 2020;17(3):1098. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Goh HT, Nadarajah M, Hamzah NB, Varadan P, Tan MP. Falls and fear of falling after stroke: a case-control study. PM R. Dec 04, 2016;8(12):1173-1180. [ CrossRef ] [ Medline ]
  • Alanazi FK, Lapkin S, Molloy L, Sim J. The impact of safety culture, quality of care, missed care and nurse staffing on patient falls: a multisource association study. J Clin Nurs. Oct 12, 2023;32(19-20):7260-7272. [ CrossRef ] [ Medline ]
  • Hossain A, Lall R, Ji C, Bruce J, Underwood M, Lamb SE. Comparison of different statistical models for the analysis of fracture events: findings from the Prevention of Falls Injury Trial (PreFIT). BMC Med Res Methodol. Oct 02, 2023;23(1):216. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Williams CT, Whyman J, Loewenthal J, Chahal K. Managing geriatric patients with falls and fractures. Orthop Clin North Am. Jul 2023;54(3S):e1-12. [ CrossRef ] [ Medline ]
  • Gadhvi C, Bean D, Rice D. A systematic review of fear of falling and related constructs after hip fracture: prevalence, measurement, associations with physical function, and interventions. BMC Geriatr. Jun 23, 2023;23(1):385. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lohman MC, Fallahi A, Mishio Bawa E, Wei J, Merchant AT. Social mediators of the association between depression and falls among older adults. J Aging Health. Aug 12, 2023;35(7-8):593-603. [ CrossRef ] [ Medline ]
  • Smith AD, Silva AO, Rodrigues RA, Moreira MA, Nogueira JD, Tura LF. Assessment of risk of falls in elderly living at home. Rev Lat Am Enfermagem. Apr 06, 2017;25:e2754. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Koh V, Matchar DB, Chan A. Physical strength and mental health mediate the association between pain and falls (recurrent and/or injurious) among community-dwelling older adults in Singapore. Arch Gerontol Geriatr. Sep 2023;112:105015. [ CrossRef ] [ Medline ]
  • Soh SE, Morgan PE, Hopmans R, Barker AL, Ackerman IN. The feasibility and acceptability of a falls prevention e-learning program for physiotherapists. Physiother Theory Pract. Mar 18, 2023;39(3):631-640. [ CrossRef ] [ Medline ]
  • Morat T, Snyders M, Kroeber P, De Luca A, Squeri V, Hochheim M, et al. Evaluation of a novel technology-supported fall prevention intervention - study protocol of a multi-centre randomised controlled trial in older adults at increased risk of falls. BMC Geriatr. Feb 18, 2023;23(1):103. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • You T, Koren Y, Butts WJ, Moraes CA, Yeh GY, Wayne PM, et al. Pilot studies of recruitment and feasibility of remote Tai Chi in racially diverse older adults with multisite pain. Contemp Clin Trials. May 2023;128:107164. [ CrossRef ] [ Medline ]
  • Aldana-Benítez D, Caicedo-Pareja MJ, Sánchez DP, Ordoñez-Mora LT. Dance as a neurorehabilitation strategy: a systematic review. J Bodyw Mov Ther. Jul 2023;35:348-363. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Jawad A, Baattaiah BA, Alharbi MD, Chevidikunnan MF, Khan F. Factors contributing to falls in people with multiple sclerosis: the exploration of the moderation and mediation effects. Mult Scler Relat Disord. Aug 2023;76:104838. [ CrossRef ] [ Medline ]
  • Warren C, Rizo E, Decker E, Hasse A. A comprehensive analysis of risk factors associated with inpatient falls. J Patient Saf. Oct 01, 2023;19(6):396-402. [ CrossRef ] [ Medline ]
  • Gross M, Roigk P, Schoene D, Ritter Y, Pauly P, Becker C, et al. Bundesinitiative Sturzprävention. [Update of the recommendations of the federal falls prevention initiative-identification and prevention of the risk of falling in older people living at home]. Z Gerontol Geriatr. Oct 11, 2023;56(6):448-457. [ CrossRef ] [ Medline ]
  • Li S, Li Y, Liang Q, Yang WJ, Zi R, Wu X, et al. Effects of tele-exercise rehabilitation intervention on women at high risk of osteoporotic fractures: study protocol for a randomised controlled trial. BMJ Open. Nov 07, 2022;12(11):e064328. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. Dec 2017;2(4):230-243. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ye Y, Wu X, Wang H, Ye H, Zhao K, Yao S, et al. Artificial intelligence-assisted analysis for tumor-immune interaction within the invasive margin of colorectal cancer. Ann Med. Dec 2023;55(1):2215541. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kuwahara T, Hara K, Mizuno N, Haba S, Okuno N, Fukui T, et al. Current status of artificial intelligence analysis for the treatment of pancreaticobiliary diseases using endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography. DEN Open. Apr 30, 2024;4(1):e267. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Yokote A, Umeno J, Kawasaki K, Fujioka S, Fuyuno Y, Matsuno Y, et al. Small bowel capsule endoscopy examination and open access database with artificial intelligence: the SEE-artificial intelligence project. DEN Open. Apr 22, 2024;4(1):e258. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ramalingam M, Jaisankar A, Cheng L, Krishnan S, Lan L, Hassan A, et al. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. Discov Nano. Dec 01, 2023;18(1):58. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Yerukala Sathipati S, Tsai MJ, Shukla SK, Ho SY. Artificial intelligence-driven pan-cancer analysis reveals miRNA signatures for cancer stage prediction. HGG Adv. Jul 13, 2023;4(3):100190. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Liu J, Dan W, Liu X, Zhong X, Chen C, He Q, et al. Development and validation of predictive model based on deep learning method for classification of dyslipidemia in Chinese medicine. Health Inf Sci Syst. Dec 06, 2023;11(1):21. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Carou-Senra P, Ong JJ, Castro BM, Seoane-Viaño I, Rodríguez-Pombo L, Cabalar P, et al. Predicting pharmaceutical inkjet printing outcomes using machine learning. Int J Pharm X. Dec 2023;5:100181. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Li X, Zhu Y, Zhao W, Shi R, Wang Z, Pan H, et al. Machine learning algorithm to predict the in-hospital mortality in critically ill patients with chronic kidney disease. Ren Fail. Dec 2023;45(1):2212790. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Bonnin M, Müller-Fouarge F, Estienne T, Bekadar S, Pouchy C, Ait Si Selmi T. Artificial intelligence radiographic analysis tool for total knee arthroplasty. J Arthroplasty. Jul 2023;38(7 Suppl 2):S199-207.e2. [ CrossRef ] [ Medline ]
  • Kao DP. Intelligent artificial intelligence: present considerations and future implications of machine learning applied to electrocardiogram interpretation. Circ Cardiovasc Qual Outcomes. Sep 2019;12(9):e006021. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • van der Stigchel B, van den Bosch K, van Diggelen J, Haselager P. Intelligent decision support in medical triage: are people robust to biased advice? J Public Health (Oxf). Aug 28, 2023;45(3):689-696. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Jakhar D, Kaur I. Artificial intelligence, machine learning and deep learning: definitions and differences. Clin Exp Dermatol. Jan 09, 2020;45(1):131-132. [ CrossRef ] [ Medline ]
  • Ghosh M, Thirugnanam A. Introduction to artificial intelligence. In: Srinivasa KG, Siddesh GM, Sekhar SR, editors. Artificial Intelligence for Information Management: A Healthcare Perspective. Cham, Switzerland. Springer; 2021;88-44.
  • Taulli T. Artificial Intelligence Basics: A Non-Technical Introduction. Berkeley, CA. Apress Berkeley; 2019.
  • Patil S, Joda T, Soffe B, Awan KH, Fageeh HN, Tovani-Palone MR, et al. Efficacy of artificial intelligence in the detection of periodontal bone loss and classification of periodontal diseases: a systematic review. J Am Dent Assoc. Sep 2023;154(9):795-804.e1. [ CrossRef ] [ Medline ]
  • Quek LJ, Heikkonen MR, Lau Y. Use of artificial intelligence techniques for detection of mild cognitive impairment: a systematic scoping review. J Clin Nurs. Sep 10, 2023;32(17-18):5752-5762. [ CrossRef ] [ Medline ]
  • Tan D, Mohd Nasir NF, Abdul Manan H, Yahya N. Prediction of toxicity outcomes following radiotherapy using deep learning-based models: a systematic review. Cancer Radiother. Sep 2023;27(5):398-406. [ CrossRef ] [ Medline ]
  • Rabilloud N, Allaume P, Acosta O, De Crevoisier R, Bourgade R, Loussouarn D, et al. Deep learning methodologies applied to digital pathology in prostate cancer: a systematic review. Diagnostics (Basel). Aug 14, 2023;13(16):2676. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Li K, Yao S, Zhang Z, Cao B, Wilson C, Kalos D, et al. Efficient gradient boosting for prognostic biomarker discovery. Bioinformatics. Mar 04, 2022;38(6):1631-1638. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chen T, Chen Y, Li H, Gao T, Tu H, Li S. Driver intent-based intersection autonomous driving collision avoidance reinforcement learning algorithm. Sensors (Basel). Dec 16, 2022;22(24):9943. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Huynh QT, Nguyen PH, Le HX, Ngo LT, Trinh NT, Tran MT, et al. Automatic acne object detection and acne severity grading using smartphone images and artificial intelligence. Diagnostics (Basel). Aug 03, 2022;12(8):1879. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Brooke BS, Schwartz TA, Pawlik TM. MOOSE reporting guidelines for meta-analyses of observational studies. JAMA Surg. Aug 01, 2021;156(8):787-788. [ CrossRef ] [ Medline ]
  • Scholten RJ, Clarke M, Hetherington J. The Cochrane collaboration. Eur J Clin Nutr. Aug 28, 2005;59 Suppl 1(S1):S147-S196. [ CrossRef ] [ Medline ]
  • Warrens MJ. Kappa coefficients for dichotomous-nominal classifications. Adv Data Anal Classif. Apr 07, 2020;15(1):193-208. [ CrossRef ]
  • Law M, Stewart D, Letts L, Pollock N, Bosch J. Guidelines for critical review of qualitative studies. McMaster University Occupational Therapy Evidence-Based Practice Research Group. URL: https://www.canchild.ca/system/tenon/assets/attachments/000/000/360/original/qualguide.pdf [accessed 2024-04-05]
  • Higgins JP, Morgan RL, Rooney AA, Taylor KW, Thayer KA, Silva RA, et al. Risk of bias in non-randomized studies - of exposure (ROBINS-E). ROBINS-E tool. URL: https://www.riskofbias.info/welcome/robins-e-tool [accessed 2024-04-02]
  • Nait Aicha A, Englebienne G, van Schooten KS, Pijnappels M, Kröse B. Deep learning to predict falls in older adults based on daily-life trunk accelerometry. Sensors (Basel). May 22, 2018;18(5):1654. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ribeiro NF, André J, Costa L, Santos CP. Development of a strategy to predict and detect falls using wearable sensors. J Med Syst. Apr 04, 2019;43(5):134. [ CrossRef ] [ Medline ]
  • Qiu H, Rehman RZ, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. Nov 05, 2018;8(1):16349. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Dubois A, Bihl T, Bresciani JP. Automatic measurement of fall risk indicators in timed up and go test. Inform Health Soc Care. Sep 13, 2019;44(3):237-245. [ CrossRef ] [ Medline ]
  • Noh B, Youm C, Goh E, Lee M, Park H, Jeon H, et al. XGBoost based machine learning approach to predict the risk of fall in older adults using gait outcomes. Sci Rep. Jun 09, 2021;11(1):12183. [ CrossRef ] [ Medline ]
  • Hauth J, Jabri S, Kamran F, Feleke EW, Nigusie K, Ojeda LV, et al. Automated loss-of-balance event identification in older adults at risk of falls during real-world walking using wearable inertial measurement units. Sensors (Basel). Jul 07, 2021;21(14):4661. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lockhart TE, Soangra R, Yoon H, Wu T, Frames CW, Weaver R. Prediction of fall risk among community-dwelling older adults using a wearable system. Sci Rep. 2021;11(1):20976. [ CrossRef ]
  • Hsu YC, Weng HH, Kuo CY, Chu TP, Tsai YH. Prediction of fall events during admission using eXtreme gradient boosting: a comparative validation study. Sci Rep. Oct 08, 2020;10(1):16777. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Hu Y, Bishnoi A, Kaur R, Sowers R, Hernandez ME. Exploration of machine learning to identify community dwelling older adults with balance dysfunction using short duration accelerometer data. In: Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2020. Presented at: EMBC '20; July 20-24, 2020;812-815; Montreal, QC. URL: https://ieeexplore.ieee.org/document/9175871 [ CrossRef ]
  • Ye C, Li J, Hao S, Liu M, Jin H, Zheng L, et al. Identification of elders at higher risk for fall with statewide electronic health records and a machine learning algorithm. Int J Med Inform. May 2020;137:104105. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Althobaiti T, Katsigiannis S, Ramzan N. Triaxial accelerometer-based falls and activities of daily life detection using machine learning. Sensors (Basel). Jul 06, 2020;20(13):3777. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Tunca C, Salur G, Ersoy C. Deep learning for fall risk assessment with inertial sensors: utilizing domain knowledge in spatio-temporal gait parameters. IEEE J Biomed Health Inform. Jul 2020;24(7):1994-2005. [ CrossRef ]
  • Kim K, Yun G, Park SK, Kim DH. Fall detection for the elderly based on 3-axis accelerometer and depth sensor fusion with random forest classifier. In: Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2019. Presented at: EMBC '19; July 23-27, 2019;4611-4614; Berlin, Germany. URL: https://ieeexplore.ieee.org/document/8856698 [ CrossRef ]
  • Gillain S, Boutaayamou M, Schwartz C, Brüls O, Bruyère O, Croisier JL, et al. Using supervised learning machine algorithm to identify future fallers based on gait patterns: a two-year longitudinal study. Exp Gerontol. Nov 2019;127:110730. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lo Y, Lynch SF, Urbanowicz RJ, Olson RS, Ritter AZ, Whitehouse CR, et al. Using machine learning on home health care assessments to predict fall risk. Stud Health Technol Inform. Aug 21, 2019;264:684-688. [ CrossRef ] [ Medline ]
  • Maray N, Ngu AH, Ni J, Debnath M, Wang L. Transfer learning on small datasets for improved fall detection. Sensors (Basel). Jan 18, 2023;23(3):1105. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ladios-Martin M, Cabañero-Martínez MJ, Fernández-de-Maya J, Ballesta-López FJ, Belso-Garzas A, Zamora-Aznar FM, et al. Development of a predictive inpatient falls risk model using machine learning. J Nurs Manag. Nov 30, 2022;30(8):3777-3786. [ CrossRef ] [ Medline ]
  • Eichler N, Raz S, Toledano-Shubi A, Livne D, Shimshoni I, Hel-Or H. Automatic and efficient fall risk assessment based on machine learning. Sensors (Basel). Feb 17, 2022;22(4):1557. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Tang YM, Wang YH, Feng XY, Zou QS, Wang Q, Ding J, et al. Diagnostic value of a vision-based intelligent gait analyzer in screening for gait abnormalities. Gait Posture. Jan 2022;91:205-211. [ CrossRef ] [ Medline ]
  • Greene BR, McManus K, Ader LG, Caulfield B. Unsupervised assessment of balance and falls risk using a smartphone and machine learning. Sensors (Basel). Jul 13, 2021;21(14):4770. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Roshdibenam V, Jogerst GJ, Butler NR, Baek S. Machine learning prediction of fall risk in older adults using timed up and go test kinematics. Sensors (Basel). May 17, 2021;21(10):3481. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Dubois A, Bihl T, Bresciani JP. Identifying fall risk predictors by monitoring daily activities at home using a depth sensor coupled to machine learning algorithms. Sensors (Basel). Mar 11, 2021;21(6):1957. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Vo MT, Thonglor R, Moncatar TJ, Han TD, Tejativaddhana P, Nakamura K. Fear of falling and associated factors among older adults in Southeast Asia: a systematic review. Public Health. Sep 2023;222:215-228. [ CrossRef ] [ Medline ]
  • Torun E, Az A, Akdemir T, Solakoğlu GA, Açiksari K, Güngörer B. Evaluation of the risk factors for falls in the geriatric population presenting to the emergency department. Ulus Travma Acil Cerrahi Derg. Aug 2023;29(8):897-903. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Son NK, Ryu YU, Jeong HW, Jang YH, Kim HD. Comparison of 2 different exercise approaches: Tai Chi versus Otago, in community-dwelling older women. J Geriatr Phys Ther. 2016;39(2):51-57. [ CrossRef ] [ Medline ]
  • Sawa R, Doi T, Tsutsumimoto K, Nakakubo S, Kurita S, Kiuchi Y, et al. Overlapping status of frailty and fear of falling: an elevated risk of incident disability in community-dwelling older adults. Aging Clin Exp Res. Sep 11, 2023;35(9):1937-1944. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Calazans JA, Permanyer I. Levels, trends, and determinants of cause-of-death diversity in a global perspective: 1990-2019. BMC Public Health. Apr 05, 2023;23(1):650. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kakara R, Bergen G, Burns E, Stevens M. Nonfatal and fatal falls among adults aged ≥65 years - United States, 2020-2021. MMWR Morb Mortal Wkly Rep. Sep 01, 2023;72(35):938-943. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Dostan A, Dobson CA, Vanicek N. Relationship between stair ascent gait speed, bone density and gait characteristics of postmenopausal women. PLoS One. Mar 22, 2023;18(3):e0283333. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Zheng Y, Wang X, Zhang ZK, Guo B, Dang L, He B, et al. Bushen Yijing Fang reduces fall risk in late postmenopausal women with osteopenia: a randomized double-blind and placebo-controlled trial. Sci Rep. Feb 14, 2019;9(1):2089. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Woelfle T, Bourguignon L, Lorscheider J, Kappos L, Naegelin Y, Jutzeler CR. Wearable sensor technologies to assess motor functions in people with multiple sclerosis: systematic scoping review and perspective. J Med Internet Res. Jul 27, 2023;25:e44428. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Abdollah V, Dief TN, Ralston J, Ho C, Rouhani H. Investigating the validity of a single tri-axial accelerometer mounted on the head for monitoring the activities of daily living and the timed-up and go test. Gait Posture. Oct 2021;90:137-140. [ CrossRef ] [ Medline ]
  • Mielke GI, de Almeida Mendes M, Ekelund U, Rowlands AV, Reichert FF, Crochemore-Silva I. Absolute intensity thresholds for tri-axial wrist and waist accelerometer-measured movement behaviors in adults. Scand J Med Sci Sports. Sep 12, 2023;33(9):1752-1764. [ CrossRef ] [ Medline ]
  • Löppönen A, Delecluse C, Suorsa K, Karavirta L, Leskinen T, Meulemans L, et al. Association of sit-to-stand capacity and free-living performance using Thigh-Worn accelerometers among 60- to 90-yr-old adults. Med Sci Sports Exerc. Sep 01, 2023;55(9):1525-1532. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • García-Soidán JL, Leirós-Rodríguez R, Romo-Pérez V, García-Liñeira J. Accelerometric assessment of postural balance in children: a systematic review. Diagnostics (Basel). Dec 22, 2020;11(1):8. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Leirós-Rodríguez R, García-Soidán JL, Romo-Pérez V. Analyzing the use of accelerometers as a method of early diagnosis of alterations in balance in elderly people: a systematic review. Sensors (Basel). Sep 09, 2019;19(18):3883. [ FREE Full text ] [ CrossRef ] [ Medline ]

Abbreviations

Edited by A Mavragani; submitted 28.11.23; peer-reviewed by E Andrade, M Behzadifar, A Suárez; comments to author 09.01.24; revised version received 30.01.24; accepted 13.02.24; published 29.04.24.

©Ana González-Castro, Raquel Leirós-Rodríguez, Camino Prada-García, José Alberto Benítez-Andrades. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 29.04.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

BREAKING: Judge in Trump's hush money trial threatens to jail the former president if he continues to violate his gag order

Bird flu virus found in pasteurized milk, though officials maintain supply is safe

The Food and Drug Administration said Tuesday that fragments of the bird flu virus had been detected in some samples of pasteurized milk in the U.S. While the agency maintains that the milk is safe to drink, it notes that it is still waiting on the results of studies to confirm this.

The findings come less than a month after an outbreak of the H5N1 strain of bird flu was found, for the first time , in herds of dairy cows in several states . It has since been detected in herds in eight states . 

The FDA has been working with the Centers for Disease Control and Prevention and the U.S. Department of Agriculture to investigate the outbreak.

The fragments of the virus were found while testing samples of pasteurized milk, the FDA said. The testing method, called PCR testing, looks for bits of genetic material; a positive result doesn’t mean that live, infectious virus has been found.

“Based on available information, pasteurization is likely to inactivate the virus, however the process is not expected to remove the presence of viral particles,” the agency said in a release that it plans to make public later Tuesday. “To date, we have seen nothing that would change our assessment that the commercial milk supply is safe.”

The FDA is specifically testing whether pasteurization inactivates bird flu in cow milk. The findings will be available in the “next few days to weeks,” it said.

As a part of its testing, it will use so-called egg inoculation tests — considered the gold standard for determining if a sample is infectious — in which a chicken egg is injected with a small amount of infected milk and monitored to see if active virus begins to replicate.

Michael Osterholm, an infectious disease expert and director of the Center for Infectious Disease Research and Policy at the University of Minnesota, said he was not surprised by the preliminary findings. 

“If you tested most milk, you’d find E. coli and listeria and other things in it, too, but they’d all be dead. Pasteurization doesn’t take them out, it just kills them,” he said. That is, dead particles are unlikely to cause a person to get sick. 

“I wouldn’t have any problem drinking milk tonight from an influenza standpoint at all,” Osterholm said. “My grandchildren could drink the milk tonight.”

But there has been a scarcity of information on the matter coming from the USDA, he said. More data is needed to fully understand what’s going on with the current bird flu virus in dairy cows.

“We have a need for a lot of additional information that hasn’t been forthcoming,” Osterholm said. “We don’t know the epidemiology on these farms. We don’t know how many farms, how many samples. We have been very concerned.”

The FDA said it has also recommended that milk producers take precautions when discarding milk from sick cows so that the discarded milk does not become a source of spread. 

One person has been infected during the current outbreak. The person, a dairy worker in Texas , had a mild case and only developed conjunctivitis, or pinkeye.

A senior official at the CDC also said the agency is monitoring the situation for signs of unusual illness in people and has not seen any beyond the Texas case.

Still, the virus remains a cause of concern among health officials, given its particularly high mortality rate of around 50%. Bird flu doesn’t spread easily from person to person, but there’s worry that it could mutate as it spreads among cows to a version that spreads more easily among people. So far, there’s no evidence indicating that has happened, according to the CDC .

research problem is selected from the standpoint of

Berkeley Lovelace Jr. is a health and medical reporter for NBC News. He covers the Food and Drug Administration, with a special focus on Covid vaccines, prescription drug pricing and health care. He previously covered the biotech and pharmaceutical industry with CNBC.

research problem is selected from the standpoint of

Erika Edwards is a health and medical news writer and reporter for NBC News and "TODAY."

IMAGES

  1. Research problem is selected from the standpoint of

    research problem is selected from the standpoint of

  2. Selection and Formulation of Research Problem

    research problem is selected from the standpoint of

  3. How to Select a Research Problem [Step-by-Step Guide]

    research problem is selected from the standpoint of

  4. Research Problem Definition

    research problem is selected from the standpoint of

  5. PPT

    research problem is selected from the standpoint of

  6. How to Formulate a Research Problem: Useful Tips

    research problem is selected from the standpoint of

VIDEO

  1. Proposal 101: What Is A Research Topic?

  2. Adult Ed Mini Series Winter 2024

  3. Unlocking the Secrets of Psychedelics

  4. Concept of Research Problem and Its Selection

  5. Criteria Of Good Research

  6. Formulating the Research Questions (STATEMENT OF THE PROBLEM)

COMMENTS

  1. 1. Choosing a Research Problem

    The research problem, therefore, is the main organizing principle guiding the analysis of your research. The problem under investigation establishes an occasion for writing and a focus that governs what you want to say. It represents the core subject matter of scholarly communication and the means by which scholars arrive at other topics of ...

  2. What is a Research Problem? Characteristics, Types, and Examples

    A research problem is a gap in existing knowledge, a contradiction in an established theory, or a real-world challenge that a researcher aims to address in their research. It is at the heart of any scientific inquiry, directing the trajectory of an investigation. The statement of a problem orients the reader to the importance of the topic, sets ...

  3. The Research Problem/Question

    A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation.

  4. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  5. The Research Problem & Problem Statement

    From there, tally up the numbers and pick a winner. Step 4 - Craft your problem statement. Once you've selected your research problem, the final step is to craft a problem statement. Remember, your problem statement needs to be a concise outline of what the core issue is and how your study will address it.

  6. Choosing a Research Problem

    A research problem is the main organizing principle guiding the analysis of your paper. The problem under investigation offers us an occasion for writing and a focus that governs what we want to say. It represents the core subject matter of scholarly communication, and the means by which we arrive at other topics of conversations and the discovery of new knowledge and understanding.

  7. Research Problem

    Feasibility: A research problem should be feasible in terms of the availability of data, resources, and research methods. It should be realistic and practical to conduct the study within the available time, budget, and resources. Novelty: A research problem should be novel or original in some way.

  8. PDF Formulating Research Problems

    They discipline research in the interest of testing theory, accumulating knowledge, and achieving a theoretical standpoint independent of the time and place in which researchers presently find themselves. Overcoming Methodological Constraints on Problem Formulation Both sides in the foregoing debate clearly have merit. However, in

  9. What is a Research Problem? Definition, Importance and ...

    A research problem statement should be clear, concise, and specific, outlining the issue, its context, and significance. While a research problem is a broad statement of the primary issue ...

  10. Defining a Research Problem

    Defining a research problem is the fuel that drives the scientific process, and is the foundation of any research method and experimental design, from true experiment to case study. It is one of the first statements made in any research paper and, as well as defining the research area, should include a quick synopsis of how the hypothesis was ...

  11. Research Problem and Questions

    The research problem is the questions or challenges that the proposed research is posed to answer or solve to fill the knowledge gap in existing studies or contribute to the existing knowledge body in the study area. Generally, a research problem can be referred to as a specific issue, difficulty, or challenge that a researcher or a team of researchers experiences and wants to solve in the ...

  12. Overview of the Research Process

    Research is a rigorous problem-solving process whose ultimate goal is the discovery of new knowledge. Research may include the description of a new phenomenon, definition of a new relationship, development of a new model, or application of an existing principle or procedure to a new context. Research is systematic, logical, empirical, reductive, replicable and transmittable, and generalizable.

  13. Research Problem

    Research is a procedure based on a sequence and a research problem aids in following and completing the research in a sequence. Repetition of existing literature is something that should be avoided in research. Therefore research problem in a dissertation or an essay needs to be well thought out and presented with a clear purpose.

  14. (PDF) Identifying and Formulating the Research Problem

    identify and determine the problem to study. Identifying a research problem is important. because, as the issue or concern in a particular setting that motivates and guides the need. Parlindungan ...

  15. The Research Problem/Question

    A research problem is a statement about an area of concern, a condition to be improved, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or in practice that points to the need for meaningful understanding and deliberate investigation. In some social science disciplines the research problem is typically posed in the form of a question.

  16. PDF SELECTING AND DEFINING A RESEARCH PROBLEM By

    because with no research problem to work on, he/she has nothing to do. A researchable problem could be a gap in the knowledge of a given field; that expectation and reality do not correlate; that a phenomenon breaks a system or the like, i.e. something does not seem right; perhaps a phenomenon has not yet been categorised or a disciplinary ...

  17. What Is Research Problem? Components, Identifying, Formulating

    Formulating a research problem is usually done under the first step of research process, i.e., defining the research problem. Identification, clarification and formulation of a research problem is done using different steps as: You have already studied why it is important to clarify a research question.

  18. PDF UNIT 3 RESEARCH PROCESS I: FORMULATION OF RESEARCH PROBLEM

    These two criteria are translated into various activities of researchers through the research process. Unit 3 and Unit 4 intend to describe the research process in detail. Formulation of research problem, the first step in the research process, is considered as the most important phase of a research project. This step starts with the selection ...

  19. Research Methodology MCQ

    37) Research problem is selected from the standpoint of. Answer: b) Observation. 41) What are those conditions where a research problem is not viable? a. It is new and adds something to knowledge b. It can be researched c. It has utility and relevance d. It contains dependent and independent variables. Answer: d) It contains dependent and ...

  20. The research problem is selected from the standpoint of

    The research problem is selected from the standpoint of. (a) Researcher's interest. (b) Financial support. (c) Social relevance. (d) Availability of relevant literature. 50 % students answered this correctly. Check.

  21. Research Methodology MCQ (Multiple Choice Questions)

    37) Research problem is selected from the standpoint of. a. Social relevance b. Financial support c. Researcher's interest d. Availability of relevant literature Hide Answer Workspace. Answer: a) Social relevance Explanation: No explanation. 38) The F-test: a. Is essentially a two-tailed test. b. Is essentially a one-tailed test. c.

  22. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  23. Research problem is selected from the stand point of?

    Research problem is selected from the stand point of? A. Researcher's interest: B. Financial support: C. Social relevance: D. Availbility of relevant literature ... Which of the following is a problem assciated with survey research Research refers to the search for-: The objective of research should be: ...

  24. Journal of Medical Internet Research

    Background: Falls and their consequences are a serious public health problem worldwide. Each year, 37.3 million falls requiring medical attention occur. Therefore, the analysis of fall risk is of great importance for prevention. Artificial intelligence (AI) represents an innovative tool for creating predictive statistical models of fall risk through data analysis.

  25. Marina industry faces big challenges, investors look to double down on

    According to research from IbisWorld, the marina industry as a whole generates roughly $6.7 billion in revenue annually. The bulk of that money comes from boat-storage and docking services.

  26. Bird flu virus found in pasteurized milk, though officials maintain

    By Berkeley Lovelace Jr. and Erika Edwards. The Food and Drug Administration said Tuesday that fragments of the bird flu virus had been detected in some samples of pasteurized milk in the U.S ...