The Library wishes you a nice holiday break. Buildings will be closed from 12/23/22 to 12/31/22. For a full list of closing and opening times, please visit the library hours page.

  • Undergraduate Students
  • Graduate & Medical Students
  • Medical & Clinical Faculty
  • Visiting Scholars
  • Special Collections Researchers
  • Library Staff

Brown University Theses and Dissertations

Brown University Library archives dissertations in accordance with the Brown Graduate School policy .

For dissertations published prior to 2008, please consult the following Dissertation LibGuide

Active filters

Refine your results.

  • 5 Biology and Medicine
  • 5 Biomedical Engineering
  • 4 Chemistry
  • 1 Computer Science
  • 3 Engineering
  • Show More...
  • 2 Bachelors Thesis
  • 14 Doctoral Dissertation
  • 1 Aluminum alloys
  • 1 Aluminum oxide
  • 1 Aluminum--Anodic oxidation
  • 1 Antibacterial agents
  • 1 Fluid, Thermal, and Chemical Processes
  • 1 Mechanics of Solids
  • 1 Artificial intelligence
  • 1 Bio-sensors
  • 1 Biodegradation
  • 1 Bioengineering
  • 1 Biomedical engineering
  • 1 Biomedical engineering--Research
  • 1 Biomimetics
  • 1 Biosensing
  • 2 Biosensors
  • 1 Biotechnology
  • 1 Blood-vessels
  • 1 Bone Implants
  • 1 Cancer cells
  • 1 Cell functions
  • 1 Chemical engineering
  • 1 Coded Computation
  • 1 Computational science and engineering
  • 1 Contrast media (Diagnostic imaging)
  • 1 Deep learning (Machine learning)
  • 1 Defective Graphene
  • 1 Detection
  • 1 Diagnosis
  • 1 Diagnostics
  • 1 Drug Delivery
  • 1 Drug delivery systems
  • 1 Drug-delivery
  • 1 Electrokinetics
  • 1 Emerging Nanomaterials
  • 1 Engineering
  • 1 Engineering design
  • 1 Environment
  • 1 Environmental degradation
  • 1 Fabry-Perot interferometers
  • 1 Fault-Tolerance
  • 1 Functionalization
  • 1 Gadolinium
  • 1 Health risk assessment
  • 1 Integrated circuits--Fault tolerance
  • 1 Ion Batteries
  • 1 Magnetic Nanoparticles
  • 1 Magnetic resonance imaging
  • 1 Material Science
  • 1 Materials science
  • 1 Medical instruments and apparatus
  • 1 Microelectromechanical systems
  • 1 Microelectronics
  • 1 Microfluidic devices
  • 1 Microfluidics
  • 1 Molecular diagnosis
  • 1 Molybdenum disulfide
  • 1 Nano-Selenium
  • 2 Nanomaterials
  • 1 Nanomechanics
  • 1 Nanomedicine
  • 1 Nanoparticle Characterization
  • 1 Nanoparticles
  • 1 Nanopores
  • 1 Nanoscience
  • 3 Nanostructured materials
  • 16 Nanotechnology
  • 1 Nanowire Decoders
  • 1 Nanowires
  • 1 Orthopedic implants
  • 1 Power resources
  • 1 Probabilistic Analysis
  • 1 Radiographic contrast media
  • 1 Remediation
  • 1 Self-assembly (Chemistry)
  • 1 Single molecular test tube
  • 1 Solid Mechanics
  • 1 Stochastic Assembly
  • 1 Surface chemistry
  • 1 Surface properties
  • 1 Targeting
  • 1 Theranostics
  • 1 Thin films--Optical properties
  • 1 Toxicology
  • 1 Vascular stents
  • 1 anodic alumina
  • 1 anodization
  • 1 anodized aluminum
  • 1 antibacterial
  • 1 antibiotic resistance
  • 1 biomaterial
  • 1 bone tissue engineering
  • 1 cancer screening
  • 1 coloration
  • 1 data science
  • 1 diagnostic test
  • 1 diagnostics
  • 1 fabry perot
  • 1 filamentation
  • 1 metabolic simulation
  • 1 nanocrystalline hydroxyapatite
  • 2 nanofabrication
  • 1 nanomaterials
  • 1 nanorough surface
  • 1 optical cavity
  • 1 optical rectification
  • 1 optical resonator
  • 1 physical coloration
  • 1 resistive switching
  • 1 rosette nanotubes
  • 1 self-assembly
  • 1 structural coloration
  • 1 superparamagnetic iron oxide nanoparticles (SPION)
  • 1 tissue engineering

Items (1-16) out of 16 results

  • title (A-Z)
  • title (Z-A)
  • date (old to new)
  • date (new to old)
  • new to the BDR
  • 10 per page
  • 20 per page
  • 50 per page
  • 100 per page

Anodic alumina as a scalable platform for structural coloration and optical rectification

Thumbnail for Anodic alumina as …

Biological Application of Magnetic Nanoparticles in Targeted Therapeutics and Diagnostics

Thumbnail for Biological Application of …

Biologically Inspired Rosette Nanotube Nanocomposites for Bone Tissue Engineering, Orthopedic and Vascular Applications

Thumbnail for Biologically Inspired Rosette …

Biologically Relevant Degradation of 2D Nanomaterials: Kinetics, Hazard Classification and Biomedical Applications

Thumbnail for Biologically Relevant Degradation …

Enhanced Efficacy of Nanotechnology-Driven Approaches against Antibiotic-Resistant Biofilms in the Presence of Metabolites

Thumbnail for Enhanced Efficacy of …

Evaluating the Human Health and Environmental Impacts of Exposure to Two-Dimensional Manganese Dioxide Nanosheets

Thumbnail for Evaluating the Human …

Nano-fabrication and Characterization of Novel Titanium Surfaces for Vascular Stent Application

Thumbnail for Nano-fabrication and Characterization …

Nano-Selenium: Novel Formulations for Biological and Environmental Applications

Thumbnail for Nano-Selenium: Novel Formulations …

Nanopatterned PLGA for Anti-cancer Implant Applications

Thumbnail for Nanopatterned PLGA for …

Novel Devices, Physical Mechanisms, and Analytical Techniques for Use in Next Generation Cellular Diagnostics

Thumbnail for Novel Devices, Physical …

Novel Polymers as Phase Transfer Agents for Gadolinium Oxide Nanoplates: Improving Magnetic Resonance Imaging Contrast

Thumbnail for Novel Polymers as …

Reliable Computing at the Nanoscale

Thumbnail for Reliable Computing at …

Select Nanofabricated Titanium Materials for Enhancing Bone and Skin Growth of Intraosseous Transcutaneous Amputation Prostheses

Thumbnail for Select Nanofabricated Titanium …

Structural and optical characterization of diamond nanowires

Thumbnail for Structural and optical …

The Use of Entropic Cages For Trapping DNA and Controlling its Configurations in Nanopore Studies

Thumbnail for The Use of …

Topics in Nanomechanics, Energy Storage Systems, and Emerging Nanomaterials

Thumbnail for Topics in Nanomechanics, …

Advertisement

Advertisement

Nano-biotechnology, an applicable approach for sustainable future

  • Review Article
  • Published: 09 February 2022
  • Volume 12 , article number  65 , ( 2022 )

Cite this article

  • Nikta Shahcheraghi   ORCID: orcid.org/0000-0002-1748-0050 1 ,
  • Hasti Golchin 2 ,
  • Zahra Sadri 2 ,
  • Yasaman Tabari 3 ,
  • Forough Borhanifar 2 &
  • Shadi Makani 2  

12k Accesses

25 Citations

5 Altmetric

Explore all metrics

Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and plasticity. Diverse biotic (e.g., Capsid of viruses and algae) and abiotic (e.g., Carbon, silver, gold and etc.) materials can be utilized in the synthesis process of nanomaterials. “Nanobiotechnology” is the combination of nanotechnology and biotechnology disciplines. Nano-based approaches are developed to improve the traditional biotechnological methods and overcome their limitations, such as the side effects caused by conventional therapies. Several studies have reported that nanobiotechnology has remarkably enhanced the efficiency of various techniques, including drug delivery, water and soil remediation, and enzymatic processes. In this review, techniques that benefit the most from nano-biotechnological approaches, are categorized into four major fields: medical, industrial, agricultural, and environmental.

Similar content being viewed by others

nanotechnology related thesis topics

Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review

Ahmed I. Osman, Yubing Zhang, … Pow-Seng Yap

nanotechnology related thesis topics

Principles of Photocatalysts and Their Different Applications: A Review

Mohamed A. Hassaan, Mohamed A. El-Nemr, … Ahmed El Nemr

nanotechnology related thesis topics

Applications of Green Synthesized Metal Nanoparticles — a Review

Seerengaraj Vijayaram, Hary Razafindralambo, … Mahdieh Raeeszadeh

Avoid common mistakes on your manuscript.

Introduction

The development process of a sustainable future generally consists of methods that ensure the satisfaction of future needs, while fulfills the current generation’s requirements (Raghav et al. 2020 ). To obtain a proper overview of upcoming demands in the future, it is important to anticipate future stressors (e.g., climate change) (Iwaniec et al. 2020 ). Since nanotechnology is applicable in various majors, it is expected that nano-based techniques will take a key role in a sustainable future (Raghav et al. 2020 ), along with making substantial impacts on the universal economic situation due to their wide range of applications in variant industries (Adam and Youssef 2019 ). The unification of diverse fields in science, Inspired by the oneness of nature, is one of the most noticeable subject matters now in the early twenty-first century. Merging four massively operational fields of science has received great attention in recent decades: nanotechnology, biotechnology, information technology, and cognitive sciences (NBIC), which are known as “convergent technologies” (Roco and Bainbridge 2013 ). Non-renewable sources don’t seem efficient for providing large amounts of energy required in various industrial technologies. Convergent technologies are considered as a remedy for this issue. For instance, several nano-based technologies, which consume biological-renewable energy sources, have been introduced (Zhironkin et al. 2019 ). The unification of material on nanoscale makes the mentioned combination of multiple technologies possible. Hence, nanotechnology plays a critical role in NBIC advancement (Roco and Bainbridge 2013 ). According to the definition set by National Nanotechnology Initiatives in 1999, Nanotechnology is an advanced area of research that allows for the production of a wide class of materials in the nanoscale range (less than 100 nm) to make use of size-and structure-dependent properties and phenomena (Luo et al. 2020 ). Although “nano” is defined as that which is less than 100 nm in size, the use of this definition in the biomedical field is less strict and instead may encompass particles up to 1000 nm in size (Landowski et al. 2020 ). Nanotechnology has a wide range of applications, including Agricultural usages (Ndlovu et al. 2020 ), biofuel production (Zahed et al. 2021a ), cancer Immunotherapy (Goracci et al. 2020 ), carbon capture (Zahed et al. 2021b ) and biomarker detection like nanobiochips, nanoelectrodes, or nanobiosensors (Bayda et al. 2020 ). Nanomaterials (NMs) are chemical substances or materials that are manufactured and used at a very small scale, i.e., 1–100 nm in at least one dimension. NMs are categorized according to their dimensionality, morphology, state, and chemical composition (Saleh 2020 ). NMs can be used for rapid extraction of RNA of the novel coronavirus (Kailasa et al. 2021 ). Expanding nanoscience through various branches can eventually enhance the intelligence and capability of individuals, solve various social issues, cure numerous diseases, and generally improve the quality of mankind's life in the long term (Roco and Bainbridge 2013 ). Deploying nanotechnology into biotechnology will help the commercialization process of nano-based techniques and make them more practical in the industry (Maine et al. 2014 ). The idea of developing interdisciplinary research (IDR) (Jang et al. 2018 ) in science presents a promising landscape of the future, in which human intelligence has reached such high levels that the term “superhuman” would be more proper for humankind. According to the Israeli philosopher Harari, with the appearance of a highly technologically advanced society, only individuals with great intelligence and technological advancements can survive through natural selection in society. He states that superhumans will be produced by society eventually, considering the logic of social Darwinism, and this will be a remarkable phenomenon of the twenty-first century (Mantatov et al. 2019 ). One massive application of nanobiotechnology is enhancing the efficiency of various therapies (Table 1 ). The application of nanobiotechnology in delivering chemical drugs or gene modifying agents to their target cells will increase the efficiency of the treatments and reduce the side effects remarkably. Within the previous two decades, RNA-based therapeutic methods, including messenger RNA (mRNA), microRNA, and small interfering RNA (siRNA), have been supremely developed. These therapeutic approaches are expected to be operative in the treatment and prevention of various diseases, such as cancers, genetic disorders, diabetes, inflammatory diseases, and neurodegenerative diseases (Lin et al. 2020 ). In the case of cancers, conventional therapies (surgery, chemotherapy, and irradiation) may cause severe side effects to patients, plus they are often inefficient for disease treatment (Hager et al. 2020 ). Loading anti-cancer drugs into nanomaterials provides a nano-based drug delivery system that detracts the side effects. Platinum (Pt) compounds are one of the most common anti-cancer drugs since 1978. Pt drugs directly aim at the DNA of the targeted cells, thus covering up the defects of the malformed DNA repair mechanisms in cancerous cells. Encapsulating Pt drugs into liposomes constructs a nano-based drug delivery system for treating cancers (Rottenberg et al. 2021 ). Gold nanoparticles (AuNPs) are advantageous options for cancer treatment and diagnosis. AuNPs are created in the size range between 1 and 150 nm and in various shapes, including nanorods (AuNRs), nanocages, nanostars, and nanoshells (AuNSs). AuNPs consist of high rates of biocapability and exhibit controlled patterns of medicine release in the drug delivery process. AuNPs consist of conduction electrons on their surfaces which get excited by certain wavelengths of light. This feature enables AuNPs to adsorb light and produce heat that is fatal to cells. Destroying the cancerous cells with the heat released under irradiation is called photothermal therapy (PTT) or photodynamic therapy (PDT) (D’Acunto et al. 2021 ).

On the other hand, RNA-based therapies can regulate the expression of immune-relevant genes, therefore increasing anti-tumor immune responses directly. Several nanomaterials have been introduced that can deliver nucleic acid therapeutics to tumors and immune cells (Lin et al. 2020 ). There are biomimetic strategies for providing a co-delivery system that is capable of supporting both chemical and RNA-based therapies (Liu et al. 2019 ). Considering RNAs as therapeutic agents or drug targets requires precise knowledge about the 3D structure of specific RNAs. There are reliable algorithms for pronging the second structure of RNAs, but the tertiary architecture which determines the RNA’s functions is quite challenging to anticipate. Bioinformatics provides several methods for predicting the tertiary structures of RNAs such as Vfold, iFoldRNA, 3DRNA, and RNAComposer. They all face particular hurdles, but it should be noted that the field of computational RNA structure anticipation, has a bright future (Biesiada et al. 2016 ). RNA-based vaccines are quite impressive immunotherapeutic tools in cancer therapies. However, the in vivo delivery of synthesized mRNAs could face some obstacles. Encrusting mRNAs with a lipid-polyethylene glycol (lipid-PEG) shell increases the mRNA delivery rate up to 95% more than the conventional nanoparticle-free mRNA vaccines (Islam et al. 2021 ).

In RNA-based nano-techniques, utilizing large-sized RNAs faces several difficulties. Wang et al. have reported an interesting method of using gold nanoparticles (enriched by expanded genetic alphabet transcriptions) to increase the effectiveness of detecting the large natural or artificially synthesized RNAs through an RNA nano-based labeling technique. These techniques are highly dependent on the conjugation between nanoparticles and RNAs (Wang et al. 2020 ). Since gene sequencing is of great importance, multiple biotechnology-based diagnostic tools, including quantitative PCR, DNA barcoding, next-generation sequencing, and imaging techniques are commonly currently used. These methods are considered economically advantageous, along with providing a reliable diagnosis. Incorporating nano-based sensors with mentioned tools increases the sensitivity and spatiotemporal resolution, which are two fundamental features of the gene sequencing process (Kumar et al. 2020 ). Designing nano-based devices for diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) has been promoted recently. Nanomaterials such as gold nanoparticles, magnetic nanoparticles, and graphene (G) significantly increase the accuracy and decrease the required time and costs. Hence, render beneficial tools for viral detection more effective compared to the traditional techniques. Nanoparticles are specified via anti-bodies to identify particular antigens on the surface of the virus. Suspected samples from the patient, air, and surface can get examined by nano-based serological or molecular diagnosis methods (Abdelhamid and Badr 2021 ).

Nanomaterials can be utilized in the form of membranes. Chemically or physically synthesized nanomembranes remarkably advance the conventional water purification techniques (Lohrasebi and Koslowski 2019 ; Kim et al. 2020 ). Incorporating nanomembranes with bioreactors is the basis of the membrane bioreactor (MBR) technique, which is exploited in wastewater reclamation (Ma et al. 2018 ). Eliminating pollutant components from the environment is one of the main purposes of nanobiotechnology (Table 2 ). In the agricultural fields, nano-bio technologically modified pesticides and fertilizers notably prevent crop loss. Nano-based bioremediation processes have been developed to reduce soil pollutions and are expected to improve both environmental and agricultural approaches (Usman et al. 2020 ). Several studies are expanding the idea of producing nano plants that show better biological performances (e.g., photosynthesis) compared to natural plants (Marchiol 2018 ) (Table 3 ). Enzymes empowered by nanomaterials have rendered higher recovery and productivity rates and thus are potentially able to act spotless in different industrial techniques (Adeel et al. 2018 ; Zhang et al. 2021 ) (Table 4 ).

The objective of this study is to review the applications of nanoscience in enhancing the efficiency of biotechnological methods (Fig.  1 ).

figure 1

Diverse Applications of Nanobiotechnology: multiple techniques, including Drug delivery-based therapies, remediating processes, and industrial nano-bio catalysts benefit from nano-scaled particles

Application of nano-based materials for drug delivery, therapeutic and diagnostic processes

One recently promoted technique in the gene therapy field is the application of the CRISPR/Cas9 systems, which has been indicated to be highly effective in the treatment of monogenic disorders, non-monogenic disorders, and infectious diseases. Emerging studies have suggested that nanocarriers, which are created from Polymer polyethyleneimine (PEI), are more efficient in delivering CRISPR/Cas9 systems to targeted cells compared to the viral carriers (Deng et al. 2019 ). Gene mutation-related diseases such as cancers and human immunodeficiency viruses are potentially treated by DNA-based vaccines. This type of vaccine enhances disease symptoms by delivering specific gene sequences-which are embedded in plasmids- to targeted cells. Despite having clinical utilization, DNA vaccines face limitations in delivering their genetic cargos to the target cells. Designing efficient nano-delivery systems will eliminate such deficiencies PEI (Lim et al. 2020 ). Virus-like nanoparticles (Jeevanandam et al. 2019 ) seem to form applicable nanocarriers for this purpose (Fig.  2 ).

figure 2

Encapsulating therapeutic agents within nanoparticles: embedding medicine or gene-modifying agents into the nanoparticles remarkably enhances the therapeutic efficiency along with diminishing potential side effects

Nanomaterials used in cancer diagnosis can be mainly divided into contrasting agents (magnetic, iron oxide and gold nanoparticles) and fluorescent agents (quantum dots). Some nanocarriers have inherent optical properties (such as carbon nanotubes, gold and magnetic nanoparticles) that can be converted into high energy to cells for destruction and can serve as nanotheranostics (Barani et al. 2021 ).

Nanomaterials used in smart drug delivery-based cancer therapies are categorized as organic and inorganic materials. Micelles, vesicles, multilamellar liposomes, and solid lipid nanoparticles are some examples of self-assembled organic nanomaterials. Other organic materials are not capable of self-assembling and need to be synthesized, such as nanotubes and dendrimers. Gold nanoparticles, quantum dots, mesoporous silica nanoparticles, and superparamagnetic iron oxide nanoparticles (SPIONs) are classified as inorganic nanomaterials (Lombardo et al. 2019 ). SPIONs are vastly utilized in therapeutic approaches, including cancer therapy, radiation therapy, and tissue engineering. SPIONs are synthesized through different physical, chemical, and biological methods. Bacteria and plants are the biomaterials upon which the biological method is based (Samrot et al. 2020 ). Nanoparticles containing both organic and inorganic materials (hybrid nanoparticles) have been indicated to be highly efficient, as well (Lombardo et al. 2019 ). Embedding targeting ligands (e.g., antibodies, peptides, aptamers, and small molecules) on the surface of nanoparticles assures the delivery of medicines to specific sites in the body, such as tumor tissues. The mentioned process is called: “targeted drug delivery system” (Doroudian et al. 2021 ). There are two types of targeting delivery: passive targeting and active targeting. In the passive form, the high aggregations of medicines at the tumor sites are related to the nano-scaled size of the nanocarriers. The tight junctions between epithelial cells of the vessel tissues prevent the nanoparticles from exiting the vessel. The cancerous cells loosen the tight junctions of the adjacent vessels. Therefore, nanocarriers can pass through the vessel and get into the tumor site. The targeting ligands incorporated with nanoparticles are not responsible for the passive targeting action. The binding between the targeting ligands and the particular receptors on the cancerous cells-which are exclusively found on the surface of the tumor cells- causes a more precise drug delivery, which is known as active targeting (Doroudian et al. 2019 ). Although drug-loaded nanoparticles efficiently carry the medicines to target cites, according to the in-vivo studies, these nanoparticles might not be quite biodegradable. Hence using such nanoparticles could lead to toxicities and side effects. It is worth mentioning that Zhou et al. have developed biodegradable nanoparticles using poly (aspartic acid) (PASP) microtube, a thin Fe intermediate layer, and a core of Zn (Zhou et al. 2019 ).

Nano-based drug delivery systems provide highly promising prospects for treating neurodegenerative disorders. It is reasonable to assume that treating neurological diseases by conventional drug delivery systems is extremely challenging due to the presence of the blood–brain barrier (BBB). The blood–brain barrier prevents the entrance of therapeutical agents to the central nervous system (CNS), therefore, making the conventional therapies inadequate. The blood–brain barrier provides a stable environment for the CNS and regulates the cell-to-cell interactions, which take place in the CNS. The dysfunction of the blood–brain barrier leads to severe neurodegenerative disorders (e.g., Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)). The blood–brain barrier is responsible for the proper functioning of the CNS, so naturally, it has a super-sensitive permeability. This feature of the blood–brain barrier is highly related to the tight junctions between the barrier’s cells. Only 1–4 percent of most CNS medicines succeed in passing the blood–brain barrier. Nanoparticles are more likely to pass the barrier because of their nano-scaled size. Encapsulating drugs in nanoparticles can significantly increase the drug transmission rate through the blood–brain barrier (Furtado et al. 2018 ). For instance, graphene, metals, carbon-nanotubes, and metal-oxides are the nanomaterials that can get exploited in the treatment procedure of patients with Alzheimer’s disease (AD). AD is caused by different genetic and environmental cues. Chemical and electrical malformations are observed in the brain of an AD patient. Acrine and physostigmine, which are conventional medicines for AD, have been proved to stimuli severe effects on the gastrointestinal tract and nervous system. Therefore, attention is drawn to nano-based therapies (Nawaz et al. 2021 ). Marcos-Contreras et al. have proposed that the augmentation of VCAM-1 ligands to the drug-loaded nanocarriers can significantly improve the cerebral accumulation rate of nanoparticles in inflamed brains (Marcos-Contreras et al. 2020 ) (Fig.  3 ).

figure 3

Nano-based drug delivery in the therapies of neurodegenerative disorders: blood–brain barrier (BBB) is a noticeable obstacle for conventional medicines; however, drugs encapsulated within nanoparticles efficiently penetrate through the BBB and reach the central nervous system (CNS)

Although nano-based medications of neurodegenerative disorders seem spotless theoretically, the internal environment of the body puts out several obstacles on the path of the medicine nano-delivering. For instance, lipid nanoparticles (LNPs) may safely carry their therapeutic cargos to the targeted cells, but if the drug needs to reach the cytoplasm, lipid nanoparticles are not capable of efficiently crossing the cell membrane. Small interfering RNAs (siRNAs) are delivered to hepatocytes via lipid nanoparticles, but only 2% of them accomplish reaching to the cytoplasm. It should be mentioned that big data and computational methods can help scientists to predict the in-vivo challenges of nano-drug delivery to design proper techniques to overcome them (Paunovska et al. 2019 ). Besides, bioinformatics provides tools for measuring the interaction rate between exploited nanomaterials and drug targets (Nawaz et al. 2021 ). Designing efficient nanomaterials is fundamental for nanotechnological approaches. Carbon nanotubes (CNTs) and graphene-based nanomaterials have been vastly utilized in nanotechnology during the last two decades (Kinloch et al. 2018 ). As a case in point, Single-walled carbon nanotubes (SWCNTs) are considered as excellent options for designing nano-based biomedical approaches, including but not limited to drug delivery systems. The most noticeable features of SWCNTs are their great photophysical properties (Farrera et al. 2017 ). Even though Carbon nanotubes (CNTs) and graphene-based nanomaterials have unique qualities such as high flexibility, they face some challenges in their load transfer capability, dispersion, and viscosity. Hence, creating more applicable and eco-friendly nanomaterials has drawn intense attention (Kinloch et al. 2018 ). AlNadhari et al. have introduced algae as a green and eco-friendly source of materials that can be used in nanoparticles. Algae-based nanoparticles in the biomedical field consist of therapeutical characteristics, such as antibacterial, anti-fungal, and anti-cancer features (AlNadhari et al. 2021 ). Milk-derived proteins such as β-lactoglobulin (β-LG), lactoferrin (LF), and the caseins (CN) are other biological alternatives for synthesizing nanocarriers. Anti-cancer medicines have been embedded into protein-based nanocarriers and successfully deteriorated cancerous tumors (Tavakoli et al. 2021 ). Azarakhsh et al. have demonstrated specific binding sites for the anti-cancer drug, Oxali-palladium (OX) and iron nanoparticles (NP) on the Beta-Casein (β-CN). Hence, the Beta-Casein can perform as an efficient carrier for both agents (Azarakhsh et al. 2021 ). One common strategy in designing nanocarriers for cancer therapies is to create nanoparticles that can detect the vitamin or growth factor receptors on target cells. Cancerous cells usually over-express the receptors for such nutrients so that they can keep their high proliferation rate (Peer et al. 2020 ). Reprogramming the nutrient signaling and micropinocytosis of the cancer cells seriously affects the efficacy of Nano-particulate albumin-bound paclitaxel (nab-paclitaxel, nab-PTX); which is one of the most commonly prescribed nanomedicines (Li et al. 2021 ).

Antimicrobial peptides (AMPs) are short-chain, often cationic, peptides possessing several attributes which make them attractive alternatives to conventional antibiotics with s a low likelihood of resistance developing in target organisms (Meikle et al. 2021 ). Conjugation and functionalization of nanoparticles with potentially active antimicrobial peptides has added advantages that widen their applications in the field of drug discovery as well as a delivery system, including imaging and diagnostics (Mohid and Bhunia 2021 ).

Silver nanoparticles coated with zinc oxide (Ag@ZnO), can stimulate proliferation and migration of human keratinocytes, HaCaT, with increased expression of Ki67 and vinculin at the leading edge of wounds. Interestingly, Ag@ZnO stimulates keratinocytes to produce the antimicrobial peptides hBD2 and RNase7, promoting antibacterial activity against both extracellular and intracellular Staphylococcus aureus isolated from wounds (Majhi et al. 2021 ).

Wound dressing is an important action against an injury. In recent years, nanotechnology has been combined with wound dressing techniques, and there are several new materials and techniques available for this action. The nanoparticles’ dimensions make them suitable for penetrating into the wound. Thus, bioactive agents and drugs can be released locally (De Luca et al. 2021 ). Numerous synthetic and natural materials have been applied for wound healing; Hyaluronic Acid, as an illustration, is one of the most-used materials (Ahire and Dicks 2016 ).

In 2017 Polyethylene Oxide (PEO)-hyaluronic acid (HA) nanofibers as an inhibitor of Listeria monocytogenes infection (Ahire et al. 2017a ). Gauze is a traditional wound dressing used to protect dermal wounds from bacterial infection. In a study in 2021, an antibacterial gauze was prepared by the combined use of antimicrobial peptides and AgNPs. The prepared antibacterial gauze showed excellent antibacterial activity against E.coli, S. enteritidis, S. aureus , and B. cereus and also exhibited good biocompatibility (Chen et al. 2021a , b ). In 2014, Ahire and Dicks introduced 2,3-Dihydroxybenzoic Acid-Containing Nanofiber as a suitable nanomaterial for wound dressing as it prevents Pseudomonas aeruginosa infection (Ahire and Dicks 2014 ). To inhibit the growth of this microorganism, Copper-Containing Anti-Biofilm Nanofiber Scaffolds can be used too. Copper-containing nanoparticles have the potential of inhibiting Escherichia coli growth either (Ahire et al. 2016 ). Surfactin-loaded nanofibers are also a great candidate to be used in wound dressings or in the coating of prosthetic devices to prevent biofilm formation and secondary infections (Ahire et al. 2017b ). In addition to nano-therapies, nano-diagnostic agents- metal nanoparticles- have been indicated to be highly applicable in the detection of viruses, including covid-19 (Fouad 2021 ). Several biotic [e.g., algae (AlNadhari et al. 2021 ) and viral capsid (Jeevanandam et al. 2019 )] and abiotic [e.g., gold, silver, graphene oxide, and zin oxide (Fouad 2021 )] nanomaterials have been reported to be applicable in biomedical processes. The combination of biotic and abiotic sources provides efficient nanomaterials as well. For example, the highly effective graphene-starch nanocomposites, are resulted from embedding graphene-based nanomaterials into the starch biopolymers (Mishra and Manral 2021 ). The delivery of therapeutics via nanoemulsions (NE) has shown striking results. Sánchez-Rubio et al. have successfully defeated deficiencies of vitamin E (e.g., hydrophobicity and low stability) by creating nanoemulsions comprising vitamin E. the sperm samples derived from the red deer’s epididymal tissue was treated with the mentioned nanoemulsions and the sperms’ viability and resistance against oxidative stress, was increased (Sánchez-Rubio et al., 2020 ). Jeong et al. have reported another growth-promoting method that elevates the maturation process of cultured cells. The mentioned technique aims to develop an extremely operational and cost-effective bioreactor that enables in-vitro maturation of heart tissue. Next-generation stage-top incubator (STI) containing nano grooves patterned PDMS diaphragm (NGPPD) was designed to boost cell maturation and myogenic differentiation. The surface of NGPPD was covered with a slim layer of gold (Au) (Jeong et al. 2021 ). Microfluidic systems are proven to have applications in biological analysis, tissue engineering, etc. Embedding nanolitre volumes into micro-sized fluidic channels is the basis of the aforementioned technique (Valencia et al. 2020 ).

Application of nanoparticles on bioreactors as contributory agents

Since wastewater reclamation is a universal challenge and plays a major role in providing clean water for many people across the world, various techniques have been developed for this purpose. Among them, the application of membrane bioreactors (MBRs) in water purification has attracted great attention recently. In the MBR technique, the conventional activated sludge (CAS) process is incorporated with a filtration process provided by a physicochemical membrane (Ma et al. 2018 ). It has been shown that treating the mentioned membrane with nanoparticles in different types of MBR techniques can significantly improve the efficiency of the process (Abass and Zhang 2020 ; Jiang et al. 2019 ). The pharmaceutical industry produces one of the most pollutant wastewaters; which contains various amounts of organic compounds, including benzene, polynuclear aromatic hydrocarbons (PAHs), and heterocyclic, etc. these compounds have high Chemical Oxygen Demand (COD) and low degradability; which makes conventional biological treatments inefficient for treating them. However, applying O 3 , O 3 /Fe 2+ , O 3 /nZVI (nano zerovalent iron) processes in wastewater purgation has made noticeable signs of progress. Nano catalytic ozonation process (O 3 /nZVI) in a semi-batch reactor has the highest effect on advancing degradation amongst all (Malik et al. 2019 ). An experiment conducted in southern Tehran succeeded in removing the Methyl Tertio Butyl Ether (MTBE) and benzene from groundwater, using Fenton’s chemical oxidation with stabilized nano zerovalent iron particles (S-NZVI) as a catalyst. The removal efficiency of MTBE and benzene were increased to 90% and 96%, respectively, by reducing the pH of the reaction environment down to 3.2. Acidification of the environment decreased iron consumption as well (Beryani et al. 2017 ).

Nano-bioremediation

One green and cost-effective approach for treating the pollutant soils to reduce their toxicity is applying living organisms (bacteria, fungi, plants, etc.) through a process named: “bioremediation.” Integrating bioremediation with nanoparticles increases the efficiency of the process (Usman et al. 2020 ). The technology of nano-remediation is a sustainable method to reduce the contaminants of the soil by various means (Yue et al. 2021 ; Sajjadi et al. 2021 ; Lian et al. 2021 ). As an example, the reduction of Cr (VI) levels using this technology is known to be worthwhile in many aspects (Azeez et al. 2020 ; He et al. 2020 ). Chemically active nanoparticles can trigger the dechlorination/dehalogenation process in organic pollutants and neutralize them, consequently. Even the toughest pollutants are targeted in this nano-bio-based remediation method. The time needed for the purgation of highly contaminated soils will be minimized by virtue of the mentioned technique (Usman et al. 2020 ). Iron oxide nanoparticles (NP) and Fe 3 O 4 /biochar nanocomposites are vastly exploited in the synthesis of nanoparticles of nano-bioremediation (Patra Shahi et al. 2021 ). It is worth noting that nano zerovalent iron (nZVI) is an effective technology in the case of remediation that has been applied broadly in recent years due to high levels of reactivity for contaminants (Luo et al. 2021 ; Visentin et al. 2020 ; Ken and Sinha 2020 ; Hou et al. 2019 ; Zhu et al. 2019 ).

The bioremediation process can be used in water purification as well. Separating solid components from liquid waste is a necessary stage in the water remediation process. The fresh market waste may contain infectious components, which can seriously harm humans and plants. Hence, it is important to develop methods to collect, separate, and treat these adverse agents. Solid wastes in the wastewater contain high amounts of carbohydrates and proteins, and they provide matrices for the colonization of infectious organisms. Altogether, the presence of solid wastes improves the growth rate of pathogenic organisms. After solid matters got collected, they should be stored and treated immediately. The treatment process must not be delayed because the enriched environment of the solid wastes can easily get corrupted. One way to treat them is through triggering the fermentation and composting processes. Adding effective microorganisms (EM), such as lactic acid/phototropic bacteria and yeast, accelerates the conventional fermentation and composting processes used for the solid waste treatment (Al-Gheethi et al. 2020 ). Costa et al. have sequenced the whole genome of the strain Streptomyces sp. Z38, and detected growth-promoting, heavy metal-eliminating, and anti-microbial features within specific biosynthetic genes. Streptomyces sp. Z38 seems to be a suitable agent for bioremediation due to its ability to decompose heavy metals such as Cr (VI) and Cd (II). Costa et al. have supplemented the bioactive water (BW) extracted from Streptomyces sp. Z38 with AgNO 3 additives and produced silver nanoparticles (AgNPs) that are capable of performing the bioremediation process (Costa et al. 2020 ). There are other effective nanomaterials exploited to reduce many pollutants from soil and wastewater. For instance, utilization of nano-manganese oxide to eliminate ZnII/CoII from water (Mahmoud et al. 2020 ), application of nano-semiconductors on water and their Photocatalytic effectiveness (Oliveira et al. 2021 ), nano-scaled Iron (II) sulfide exploited to reduce hexavalent chromium from soil (Tan et al. 2020 ), production of nanocomposite for eliminating viruses (Al-Attabi et al. 2019 ), and successful application of nano biosurfactants which cause no toxicity for the environment (Debnath et al. 2021 ). Nano-bioremediation as an emergent approach causes some concerns and benefits at the same time. It is possible that nanomaterials exploited in this method would be a threat to the organism populations that exist naturally in water bodies. On the other hand, new living organisms would be introduced through bioremediation. The mentioned two scenarios can potentially put the anthropogenic features of ecosystems in danger (Weijie et al. 2020 ). Concerning this problem, however, scientists are trying to apply new methods to remove nanoparticles from marine ecosystems via other technologies (Ebrahimbabaie et al. 2020 ).

Designing nano-based water purification techniques, to overcome the problem of lack of clean water, across the world

Waterborne diseases that cause almost 10–20 million deaths annually are considered crucial health-related issues. According to the World Health Organization and environmental protection agencies, the pollution level of several water bodies has long crossed the defined limitations. Thus, developing methods for purging water from adverse components is of great concern (Sahu et al. 2021 ). The water purification process profits extremely from nanobiotechnology. Nanoparticles are extremely efficient in eliminating pollutants (e.g., dye components) due to their nano-scaled size and increased surface areas. In the case of dye removal, magnetic nanoparticles have been proved to be proper candidates (Lohrasebi and Koslowski 2019 ). Nanoadsorbents such as silica gel, activated alumina, clays, limestone, chitosan, activated carbon, and zeolite are cost-effective and profitable options for eliminating the contaminating agents during water purification process (Ali et al. 2020 ).

Copper and copper compounds are potent biocides and have been utilized as a disinfectant for centuries due to their anti-microbial properties. It becomes more functional in its nano form and exhibits outstanding synergist, anti-fungal, and anti-bacterial effects (Bashir et al. 2021 ).

Copper nanoparticles have the potential of combination with other materials like Polyacrylonitrile (PAN) nanofibres and Polyethylene Terephthalate Filters to act more beneficial (Ahire and Neveling 2018 ; Nguyen et al. 2021 ).

Metallic nanomaterials, carbon-based nanomaterials, nanocomposites, and dendrimers are four major types of nanomaterials that can be applied in wastewater purgation (Murshid et al. 2021 ). Graphene-based nano-channels, which are inspired by aquaporin channels, have been utilized as water filters and are expected to enhance the water permeability and the salt rejection rate. It is worth noting that the efficiency of these filters can be affected by various factors. For example, it has been indicated that increasing the charges on the channel will decrease the water flow through the channel but, on the other hand, increase the ion rejection rate (Lohrasebi and Koslowski 2019 ). Carbon nanotubes (CNTs) have rendered noticeable results in eliminating the water contaminants, as well (Kutara et al. 2016 ).

The biosafety of water purification via finger-sized unit (FSU) has been certified by cellular and animal tests. In one study, Li et al. loaded 3D printed finger-sized units with prepared wheat straw (WS). To prepare WS for mentioned technique, the carbonized wheat straw (CWS) was adjusted with nano-scaled zinc oxide during an in-situ surface-modification process (CWS/ZnO). The resulted FSU was able to reduce bacteria, organic dyes, and heavy metal ions; therefore, elevating the purification efficiency. Since WS is one of the major agricultural wastes worldwide, applying it in water purification will not only cost very low but will reduce the air pollution which is caused by burning WS in many countries. The WS has a hallow, flexible, and electrical conductor structure. These features make WS a great candidate for enhancing water purification performance (Li et al. 2019 ).

For designing a nano-based filtering membrane, nanoparticles don’t always have to be chemically synthesized or externally applied on the membrane. An emerging study has suggested a top-down approach that uses biomass to provide a functional membrane for the purification of the emulsions. This method can be used massively in cleaning oily waters resulting from industrial or domestic activities. The biomass used in the mentioned technique is wood tissue. The lignin and hemicellulose fractions are removed sectionally, and therefore, a highly porous, flexible, and durable membrane is provided. Since the lignin is removed and there is no hydrophobia left, the resulting wood membrane consists of outstanding water-absorbing and anti-oil properties. The wood-nanotechnology-based membrane shows significant efficiency due to its numerous advantages, including being green, economical, easy to produce, durable, and having selective wettability (Kim et al. 2020 ).

Rezaei et al. have synthesized a flower-shaped ZnO/GO/Fe 3 O 4 ternary nanocomposite through the co-precipitation method, which is considered a rather fast and easy synthesis approach. The mentioned nanocomposite improves the ZnO degradation through a performance with an efficiency that is more than two times greater than the efficiency of the methods using ZnO particles alone. Hence, the ZnO/GO/Fe 3 O 4 ternary nanocomposite seems to be an economical and time-saving approach for wastewater remediation (Rezaei et al. 2021 ).

It is worth noting that the vast uses of nanoparticles in different industrial products increase the risk of the inevitable release of nanoparticles into the environment, and therefore cause some concerns about the potential damages of nanobiotechnology. The urban wastewater seems to be highly exposed to industrial nanoparticles. The high concentrations of nanoparticles in the urban wastewater contaminate the sewage sludge, consequently. Wastewater treatment plants (WWTPs) are currently exploited to remove nanoparticles from wastewater and sewage sludge (Wang and Chen 2016 ). Nanoparticles synthesized and utilized in the industry can end up in marine ecosystems. Nanoparticles are developed from various chemical components such as carbon, silver, gold, and copper, which are potentially hazardous to live organisms. Since nanoparticles are extremely small in size, likely, they will easily enter the bodies of aquatic animals. It has been demonstrated that the accumulation of nanoparticles in the animal’s body can cause severe morphological and behavioral deformities. Genetic materials of cells may undergo various changes as well (Gökçe 2021 ).

FeO ion, which is known as Nanoscale zerovalent iron particles (nZVI), is massively used in the synthesis of nanoparticles applied in wastewater nano-based treatments. Bensaida et al. have shown that combining nZVI with another metal (Cu) enhances the growth of the microbial populations in the wastewater treated with this nZVI\Cu bimetallic nanoparticles (Bensaida et al. 2021 ).

Exploiting nanobiotechnology-based methods in food industry

Nanotechnology-based pharmaceuticals were developed primarily, but wide applications of nanoscience in food and agricultural industries have been introduced as well (Sahani and Sharma 2020 ). Utilizing nanoscience in any stage of the food production process-either cultivation, production, post-harvest processing, or packaging—seems to be lucrative. The application of nano-based methods in the food industry has various advantages, but the most arguable of them would be its impact on shelf life augmentation and spoilage prevention (Bhuyan et al. 2019 ). Since Oxygen is known as an important cause of food spoilage in the food industry, scientists have developed the technology of advanced coatings based on nanotechnology to prevent Oxygen from spoiling the product (Rovera et al. 2020 ). Multiple nanoparticles have the potential to deliver nutritional or antimicrobial components into food materials (Bhuyan et al. 2019 ). It has been reported that nanotechnology is a good option to deliver pesticides and nutrients successfully into the soil and improve the strength and tolerance of products in different stressful situations and reduce the probable contaminations (Ali et al. 2021 ). Among different nanoparticles such as silver, titanium dioxide, and zinc oxide, nanoliposomes are found to be small and have a large surface area which makes them more adhesive to biological tissues- therefore more bioavailable in comparison to others. Nanoliposomes are suitable candidates for creating a delivery system during food preparation. Food provided with the help of nanotechnology is called “Nano food” (Bhuyan et al. 2019 ). Nano foods can perform as therapeutic options. It is interesting to mention a recent study that has proposed exploiting nanoemulsions to convey needed nutrients to gastrectomy patients. These types of patients usually suffer from conditions like anorexia, energy deficit, and malnutrition, which can be treated by efficient nutrition delivery provided by nano food (Razavi et al. 2020 ). As mentioned earlier, in the food preparation process, antimicrobial components can be delivered along with nutritional components via a nano-based delivery system. Polyphenols are great examples of substantial antioxidant and antimicrobial agents in the food industry. Nevertheless, polyphenols have some limitations, including instability, low solubility, inefficient bioavailability, and being drastically susceptible to being degraded. There are several factors that reinforce degradation: Oxygen, light, pH, and interactions between polyphenols and other components in food. Polyphenol-loaded nanoparticles relatively overcome the mentioned obstacles due to their capacity to protect phenolic compounds against degrading processes (Milinčić et al. 2019 ). As a renewable and biodegradable source, starch is a useful polymer that has been applied in different fields such as the pharmaceutical and food industries. Nano-size starch is an advanced material with new abilities in the matter of hydrophobicity and stability (Wang and Zhang 2020 ). In the field of the food industry, there are also many other new methods based on nanotechnology, for instance, designing natural proteins as nano-architectures to deliver nutraceuticals (Tang 2021 ), new strategies for packaging food products by exploitation of the knowledge of nano-biotechnology, and nanomaterials (Reshmy et al. 2021 ; Jogee et al. 2021 ; Tiwari et al. 2021 ), utilization of the nano-delivery techniques to overcome the problems of consuming bioactive ingredients (Hosseini et al. 2021 ; Ozogul et al. 2021 ), producing nanoparticles in the shape of powder using the nanospray driers (Jafari et al. 2021 ), detection of food contaminants by nano-Ag combinations (Yao et al. 2021 ), and even the application of nano-engineering in the field of the beverage industry (Saari and Chua 2020 ).

Nano-bio catalysts; an attempt to remove the barriers of enzymatic bioprocesses in the biotechnology industry

Organic enzymes, which are normally found in nature, have large applications in the biotechnology industry. Since organic enzymes are green and eco-friendly, they are usually preferred to commercially synthesized enzymes. Pectinase is considered to be extremely useful for manufacturing purposes. Pectinase application in industrial bioprocesses covers a large range from clarification of juice/ wine and tea/coffee fermentation to wastewater and industrial waste remediation. All enzymes- regardless of being organic or chemically synthesized- consist of limitations that make their usage challenging. Three major disadvantages of enzymes are inefficient recoverability, operational stability, and recyclability (Zhang et al. 2021 ). Functional nanomaterial-based bio-carriers render a proper environment for the enzymatic immobilization process, therefore facilitating recovery and recycling of enzymes and enhancing the efficiency of bioprocesses in the long run. Accordingly, designing nano-based carriers with these features has been attracted great attention. To achieve this aim, Graphene- immobilized nano-bio-catalysts have been proved to be greatly useful due to the Graphene’s characteristics: electrical, optical, thermal, and mechanical high potency (Adeel et al. 2018 ; Zhang et al. 2021 ).

Nanomaterial-based nanocatalysts are useful in optimizing the biodiesel production process. This ability is related to the features of nano-scaled materials, including crystallisability, high adsorption and storage potential, having catalytic activities, and great stability and durability. Various materials can be used to create nanoparticles for this mean; some examples are metal oxide (calcium, magnesium oxide, and strontium oxide), Magnetic material, and Carbon. Carbon-based nanomaterials consist of multiple types, such as carbon nanotubes, carbon nanofibers, graphene oxide, and biochar.

All examples mentioned above have been proved to be highly effective in increasing the efficiency of the biodiesel synthesizing process and reducing the time and cost required for operating the process without utilizing nanotechnology (Nizami and Rehan 2018 ).

Replacing non-renewable energy sources with renewable ones is a great step in guaranteeing a sustainable future. Various devices, including solar and fuel cells, have been developed for this purpose. Conventional fuel cells are made from metal reactants instead of fossil fuels. They provide an electron circulation, transfer electrons from the substrate to specific electrodes, and eventually produce sustainable energy. The metals used as catalysts in fuel cells (e.g., hydrogen, methane, and methanol) are usually expensive and non-durable. On the other hand, biofuel cells use cost-effective bio-catalysts (e.g., microbes and enzymes) instead of metal catalysts. Despite the mentioned advantages, biofuel cells have one major limitation: the low rate of electron transfer between substrate and electrodes, which is significantly enhanced by supplementing biofuel cells with nanomaterials. Nanomaterials are able to assemble the substrate (e.g., enzymes) with the electrodes. In other words, using them in the structure of electrodes, the electron absorption of electrodes improves- related to the high surface area rate of nanomaterials- therefore, a direct transition of electrons between enzymes and electrodes develops. Silver nanoparticles-Graphene oxide (Ag-GO), Graphite, Carbon-nanotube forest (CNTF), Carbon nanotube (CNT), and Nitrogen-doped hollow nanospheres with large pores (pNHCSs) are the nanomaterials applied in nano- biofuel cells. Respectively, Glucose oxidase (GO x ), Glucose oxidase and Laccase, Fructose dehydrogenase & laccase, Glucose oxidase and laccase, and NADH dehydrogenase form the enzymatic system of each nanomaterial (Sharma et al. 2021 ).

Metal–organic frameworks (MOFs); highly advantageous materials

Porous materials are known to be highly advantageous due to their high absorption and surface areas. Zeolites, activated carbons, and silicas are examples of this family, but the most eminent member among them are Metal–organic frameworks (MOFs). MOFs have features that make them unique for several applications. For example, MOFs show a high absorption rate, which is caused by their high surface areas. Another property of MOFs is their possession of several adjustable microporous channels, which makes it easy to produce different and changeable functional sites through them. The latest feature brings MOFs the shape and size selectivity. By controlling the starting materials and reaction parameters, it is possible to determine the morphology of MOFs (Kinik et al. 2020 ; Jun et al. 2020 ) into various shapes, including granule, pellet, thin-film, gel, foam, paper sheet, monolith, and hollow structures (Kinik et al. 2020 ).

There are two types of MOFs: (1) neutral MOFs and (2) ionic MOFs. Ionic MOFs are able to be used directly in anion purgation processes. For example, one approach for reducing the pollutant anions from the environment is synthesizing a cationic framework along with extra-framework anions. The synthesis of mentioned frameworks occurs by utilizing neutral nitrogen donors. The extra-framework anions will exchange with pollutant anions through an Ion exchange process called: “Anion trapping”.

Anions are extremely abundant in nature. One of the most pollutant and hazardous anions is phosphates. These toxic anions are highly used in pesticides. Other examples of toxic anions, which are considerably frequent in industrial wastes, are the bulky anions. These are the dye molecules exploited in industry. Various diseases like cancers, lung/kidney dysfunction, and brain diseases, including Alzheimer’s, are caused by dangerous anions like those mentioned above. Hence, creating methods that are able to recognize and delete the perilous anions from the environment is one of the most appreciated scientific approaches. MOFs have been proved to be functional for this mean (Desai et al. 2019 ).

Since MOFs have considerable surface areas and modifiable structure—different open metal sites and other functional groups can be introduced into their frameworks—they are suitable options for numerous applications which are generally related to detection and storage. In the case of storage, they exhibit acceptable physical adsorption for CO 2 (one of the major causes of global warming), H 2 (a clean energy source), and Methane (CH 4 ). The ability to adsorb variant components makes MOFs proper for water purification applications. Several toxic and harmful components which are responsible for water contamination, including organic pollutants (like dyes and oils) and heavy metal ions, can be detected, adsorbed, and removed by MOFs. Introducing different chemical groups into MOFs creates different internal interactions, which enable MOFs to detect target molecules functionally. Therefore, they can be used in active centers of catalysts, photocatalysts, and biosensors (Kinik et al. 2020 ).

MOFs-based nanozymes

Nanozymes are classified into two types: (1) natural enzymes that are incorporated with nanomaterials and (2) nanomaterials that exhibit inherent enzymatic features. Exploiting MOFs as nanomaterials in nanozyme structures will produce an emergent form of nanozymes, called: “MOF-based nanozymes”; which have multiple advantages over conventional forms. MOFs provide more catalytic sites, simplify the entrance of small substrate molecules -due to their porous structure-, enhance the substrate exclusivity, and altogether improve the catalytic function of enzymes. MOF-based nanozymes are effective in designing biosensors, biocatalysis, and biomedical imaging techniques. A recent promising application of them is in cancer therapy which reduces side effects significantly (Ding et al. 2020 ).

Agricultural usages of nanobiotechnology

Applying nanobiotechnology in agriculture to improve the agricultural production rate has been of great importance recently. Achieving this purpose will solve several problems related to the universal hunger dilemma. Several nanofertilizers, nano pesticides, and nano-bio sensors have been created, which are able to increase crop value and decrease crop loss caused by agricultural pests (Usman et al. 2020 ). Conventional chemical pesticides and fertilizers can be deteriorative for soil composition and fertility. This happens because chemical residues can target many molecules other than the ones that have been defined as their main targets (Chhipa 2019 ). Besides, pesticides can have ruinous impacts on the microorganisms that naturally exist in the environment and are required for the crop’s growth (Nehra et al. 2021 ). Utilizing nanoparticles can considerably reduce such unwanted events due to the high exclusivity of these particles. Silver, zinc, iron, titanium, phosphorus, molybdenum, and polymer are suitable materials to be used in the structure of agricultural nanoparticles (Chhipa 2019 ). Nanoparticles containing nutrients, fertilizers, and pesticides, can be sprayed externally to the plant. The folium will adsorb the nanoparticles and send them to the soil (Chugh et al. 2021 ).

Another application of nanobiotechnology in diminishing the damages of some traditional pesticides is designing nano-bio sensors that can efficiently detect toxic pesticides. Dichlorvos is one of these toxic pesticides that accumulate in the air, soil, water, and crops; and therefore causes neural, genetical, respirational, and muscular disorders. Dichlorvos-sensitive Nano-biosensors comprise immobilized enzymes embedded in nanomaterials. Acetylcholinesterase (AChE), tyrosinase enzymes, and some others are options for the enzymatic part of the nanodevice. For the nano- matrix section, both organic (carbon, graphene, chitosan, and onion membrane) and inorganic (silver, gold, silica, and Titania) options are available (Mishra et al. 2021 ). Nanomaterials can enhance the remediation process of contaminated soils through distinct abiotic and biotic directions, including the nano-bioremediation process (Usman et al. 2020 ).

Other than improving the functions of existed plants, the possibility of introducing engineered plants with better performances has been discussed recently. The term “plant nano bionics” refers to a pioneering idea of involving nanoparticles in living plants to make their intrinsic functions adjustable. The landscape of this idea is designing engineered artificial photosynthetic systems, enhancing the growth rate of this new type of plant, and many other novel applications which are expected to grow extremely in the years ahead (Marchiol 2018 ).

It is necessary to mention that inorganic nanoparticles that may be found in consumer products, may alter the gut composition and could lead to various gut-related diseases. Thus, there have to be some limitations in nanoparticle agricultural usages (Gangadoo et al. 2021 ; Ghebretatios et al. 2021 ).

Using nanoparticles in cosmetic products

Nowadays, due to special and distinctive physicochemical characteristics, nanomaterials are being vastly used in different industries. Recent studies are focused on applying nano-based technologies to improve the quality of cosmetic products. Nanostructures are about to deliver active ingredients to the skin. For this reason, it is more suitable to use lipid particles that are better adaptable to dermal absorption. The high stability of the combination of nanomaterials and lipid particles with cosmetic components indicates high efficiency. However, the probable risks of this method should not be ignored (Benrabah et al. 2020 ; Khezri et al. 2018 ). Producing nanoparticles using plants (Phyto-metal nano-based particles) is another advantageous method to decrease the toxicity of nanomaterials and their hazardous effects on the body. For this reason, this material is suitable for dermal uses and cosmetic applications (Paiva-Santos et al. 2021 ). Chitosan nanoparticles with better penetrability (Ta et al. 2021 ; Sakulwech et al. 2018 ), Gold and silver nanoparticles with a higher ability to reduce microbial contaminants (Séby 2021 ), Titanium dioxide (TiO 2 ) nanoparticles deposited with yttrium oxide (Y 2 O 3 ) with better attenuation of ultraviolet radiation and less cytotoxicity (Borrás et al. 2020 ), nanoparticles with high uptake of oily components (de Azevedo Stavale et al. 2019 ) are other examples of the efficient application of nanotechnology in the field of cosmetic products.

Since nanoparticles are small in size, they exhibit perfect penetrability through the skin. Hence, using nanoparticles in cosmetic productions improves the supplementation of skin, hair, or teeth with active cosmetic ingredients (APIs). It is important to note that utilizing nanoparticles for several applications, as an emerging field of science, causes various concerns about being toxic or harmful for the body or the environment. The cosmetic industry’s products are commonly designed for skin, hair, nail, teeth, and therefore, are directly related to the health of the human body. Thus, it is reasonable to assume that there are even more concerns about using nanoparticles in this industry compared to others (Santos et al. 2019 ).

In addition to these cases, nanotechnology can be useful for the detection of harmful components in cosmetic ingredients. Therefore the application of methods like covered iron oxide nanoparticles with silver for detection of mercury contamination in cosmetics (Chen et al. 2021a , b ), Quantitative assessment of the Triamcinolone acetonide (TCA) (which is a hazardous component in high doses) using nanoparticles with luminescence property (Zhang et al. 2019a ), And detection of harmful N-nitrosamines with the utilization of magnetic nanoparticles (Miralles et al. 2019 ) are worth mentioning.

Oil industry benefits from multiple types of nanomaterials

Nanomaterials can play a major role in the advancement of the oil industry. Almost every form of nanomaterial—discussed in previous sections—has been exhibited to have numerous applications in the oil industry. Nanomaterial can be effectively exploited in various processes of this industry, including oil exploration/production and recovering the oilfield. Nanofluids (synthesized from nanomaterials) optimize the oil production process. Nanocatalysts have applications in petrochemical processes along with operating an efficient oil purgation function. Several applications of this technology are mentioned below.

There are nanomembranes designed to provide a proper matrix for separating water and oil from gas. They eventually purify the gas and delete redundant components from wastewater (Saleh 2018 ). Metal workings such as machining and stamping industry require some types of lubricants and coolants, which are mostly oil products. There has been produced an oil-based cutting fluid made up of Al 2 O 3 nanoparticles to decrease the friction force between the object and snipping tool (Subhedar et al. 2021 ). Encapsulation of extracted essential oil from hyssop in a nano-complex improves the antioxidant and antifungal efficiency of the oil (Hadidi et al. 2021 ). The application of nano-silica in the procedure of oil cementing enhances the resistance of the cement (Goyal et al. 2021 ; Thakkar et al. 2020 ). In the process of oil recovery, there is a high energy loss that imposes damages to the injection system and lowers the heat level. To keep the rate of temperature in a higher range and decrease the energy loss, scientists have applied nano-thermal insulators that are more economical (Afra et al. 2021 ; Zhao et al. 2021 ; Zhou et al. 2020 ). Gas and oil products can be cleaned from H 2 S by applying nanomaterials (Agarwal and Sudharsan 2021 ). Utilizing starch nano coatings (Wang et al. 2021 ), Lignin and nano-silica (Gong et al. 2021 ), Lotus leaf coated with nano-SiO 2 (Yang et al. 2021 ), and nano zeolite membrane are new methods for the separation of oil and water due to their high hydrophobic property (Anis et al. 2021 ). Nanotechnology can be used to improve the quality of engine oil, which results in the better stability and lubricity power as well as a reduced rate of released carbon mono oxide (Tonk 2021 ; Saidi et al. 2021 ; Thirugnanam et al. 2021 ; Ardebili et al. 2020 ). Advanced nanoemulsions show high stability and benefits for the oil industry due to the larger surface and the ability to wet (Kumar et al. 2021 ). Encapsulation of essential oils in nanostructures indicates a better performance as a pesticide due to better maintenance of the oil (Campolo et al. 2020 ). Producing an oil-in-water emulsion by applying protein nanoparticles can protect unstable and active ingredients and benefit the medicine and food industry (Xu et al. 2020 ).

Combining diverse fields of science in a manner that they overcome each other’s deficiencies indicates promising results. Within the last decades, biotechnology has made a lot of progress. Merging nanotechnology with biotechnological methods enables scientists to design less time taking, more economical, and more efficient techniques. This Nano-biotechnological approach influences multiple therapeutic, agricultural, environmental, and industrial methods. For instance, the effectiveness of the emergent crisper/cas9 systems increases noticeably by applying the nano-scaled additives at the process.

In this review, we investigated the current advancements and limitations of biotechnology, along with the nano-based alternatives rendered by nanotechnology. It seems highly probable that biotechnology will accomplish even more improvements in the future, and its incorporation with nanotechnology gets humankind one step closer to a sustainable future. Besides, the nano-based techniques are less costly compared to the conventional ones. Thus, with nano-biotechnology promoting, a revolution in the economic situation of the world is not implausible.

Abass OK, Zhang K (2020) Nano-Fe mediated treatment of real hydraulic fracturing flowback and its practical implication on membrane fouling in tandem anaerobic-oxic membrane bioreactor. J Hazard Mater 395:122666

CAS   PubMed   Google Scholar  

Abdelhamid HN, Badr G (2021) Nanobiotechnology as a platform for the diagnosis of COVID-19: a review. Nanotechnol Environ Eng 6(1):1–26

CAS   Google Scholar  

Adam H, Youssef A (2019) Economic impacts of nanotechnology industry: case study on Egypt. In: Proceedings of 10th International Conference on Digital Strategies for Organizational Success. https://doi.org/10.2139/ssrn.3314931

Adeel M, Bilal M, Rasheed T, Sharma A, Iqbal HMN (2018) Graphene and graphene oxide: functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. Int J Biol Macromol 120(Pt B):1430–1440

Afra M, Peyghambarzadeh SM, Shahbazi K, Tahmassebi N (2021) Thermo-economic optimization of steam injection operation in enhanced oil recovery (EOR) using nano-thermal insulation. Energy 226:120409

Agarwal M, Sudharsan J (2021) A comprehensive review on scavenging H 2 S compounds in oil and gas industry by using nanomaterials. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.693

Article   PubMed   PubMed Central   Google Scholar  

Ahire JJ, Dicks LMT (2014) 2,3-dihydroxybenzoic acid-containing nanofiber wound dressings inhibit biofilm formation by Pseudomonas aeruginosa . Antimicrob Agents Chemother 58(4):2098–2104

PubMed   PubMed Central   Google Scholar  

Ahire JJ, Dicks LM (2016) Antimicrobial hyaluronic acid–cefoxitin sodium thin films produced by electrospraying. Curr Microbiol 73(2):236–241

Ahire JJ, Neveling DP (2018) Dicks LM (2018) Polyacrylonitrile (PAN) nanofibres spun with copper nanoparticles: an anti- Escherichia coli membrane for water treatment. Appl Microbiol Biotechnol 102(16):7171–7181

Ahire JJ, Hattingh M, Neveling DP, Dicks LM (2016) Copper-containing anti-biofilm nanofiber scaffolds as a wound dressing material. PLoS ONE 11(3):e0152755

Ahire JJ, Robertson DD, van Reenen AJ, Dicks LMT (2017a) Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes. Biomed Pharmacother 86:143–148

Ahire JJ, Robertson DD, Van Reenen AJ, Dicks LM (2017b) Surfactin-loaded polyvinyl alcohol (PVA) nanofibers alters adhesion of Listeria monocytogenes to polystyrene. Mater Sci Eng C 77:27–33

Ahmadi MH, Ghazvini M, Alhuyi Nazari M, Ahmadi MA, Pourfayaz F, Lorenzini G, Ming T (2019) Renewable energy harvesting with the application of nanotechnology: a review. Int J Energy Res 43(4):1387–1410

Google Scholar  

Al-Attabi R, Rodriguez-Andres J, Schütz JA, Bechelany M, Des Ligneris E, Chen X, Kong L, Morsi YS, Dumee LF (2019) Catalytic electrospun nano-composite membranes for virus capture and remediation. Sep Purif Technol 229:115806

Al-Gheethi AAS, Mohamed RMSR, Noman EA, Kassim AHM (eds) (2020) Prospects of fresh market wastes management in developing countries. Water science and technology library, vol 92. Springer, Cham

Ali M, Hoque M, Safdar Hossain S, Biswas M (2020) Nanoadsorbents for wastewater treatment: next generation biotechnological solution. Int J Environ Sci Technol 17:4095–4132

Ali SS, Al-Tohamy R, Koutra E, Moawad MS, Kornaros M, Mustafa AM, Mahmoud YA-G, Badr A, Osman ME, Elsamahy T (2021) Nanobiotechnological advancements in agriculture and food industry: applications, nanotoxicity, and future perspectives. Sci Total Environ 792:148359

AlNadhari S, Al-Enazi NM, Alshehrei F, Ameen F (2021) A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environ Res 194:110672

Anis SF, Lalia BS, Lesimple A, Hashaikeh R, Hilal N (2021) Superhydrophilic and underwater superoleophobic nano zeolite membranes for efficient oil-in-water nanoemulsion separation. J Water Process Eng 40:101802

Ardebili SMS, Taghipoor A, Solmaz H, Mostafaei M (2020) The effect of nano-biochar on the performance and emissions of a diesel engine fueled with fusel oil-diesel fuel. Fuel 268:117356

Ashraf S, Siddiqa A, Shahida S, Qaisar S (2019) Titanium-based nanocomposite materials for arsenic removal from water: a review. Heliyon 5(5):e01577

Azarakhsh F, Divsalar A, Saboury AA, Eidi A (2021) Simultaneous Delivery of Oxali-palladium and Iron Nanoparticles by β-Casein. Journal of Molecular Liquids:115999

Azeez NA, Dash SS, Gummadi SN, Deepa VS (2020) Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr (VI)]. Chemosphere:129204

Banerjee S, Dubey S, Gautam RK, Chattopadhyaya M, Sharma YC (2019) Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arab J Chem 12(8):5339–5354

Barani M, Bilal M, Sabir F, Rahdar A, Kyzas GZ (2021) Nanotechnology in ovarian cancer: diagnosis and treatment. Life Sci 266:118914

Bashir F, Irfan M, Ahmad T, Iqbal J, Butt MT, Sadef Y, Umbreen M, Shaikh IA, Moniruzzaman M (2021) Efficient utilization of low cost agro materials for incorporation of copper nanoparticles to scrutinize their antibacterial properties in drinking water. Environ Technol Innov 21:101228

Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2020) The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 25(1):112

Benrabah L, Kemel K, Twarog C, Huang N, Solgadi A, Laugel C, Faivre V (2020) Lipid-based Janus nanoparticles for pharmaceutical and cosmetic applications: kinetics and mechanisms of destabilization with time and temperature. Colloids Surfaces B 195:111242

Bensaida K, Eljamal R, Sughihara Y, Eljamal O (2021) The impact of iron bimetallic nanoparticles on bulk microbial growth in wastewater. J Water Process Eng 40:101825

Beryani A, Pardakhti A, Ardestani M, Zahed MA (2017) Benzene and MTBE removal by Fenton’s process using stabilized Nano Zero-Valent Iron particles. J Appl Res Water Wastewater 4(2):343–348. https://doi.org/10.22126/arww.2017.788

Article   Google Scholar  

Bhuyan D, Greene GW, Das RK (2019) Prospects and application of nanobiotechnology in food preservation: molecular perspectives. Crit Rev Biotechnol 39(6):759–778

PubMed   Google Scholar  

Biesiada M, Pachulska-Wieczorek K, Adamiak RW, Purzycka KJ (2016) RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 103:120–127

Borrás MC, Sluyter R, Barker PJ, Konstantinov K, Bakand S (2020) Y2O3 decorated TiO2 nanoparticles: enhanced UV attenuation and suppressed photocatalytic activity with promise for cosmetic and sunscreen applications. J Photochem Photobiol B Biol 207:111883

Campolo O, Giunti G, Laigle M, Michel T, Palmeri V (2020) Essential oil-based nano-emulsions: effect of different surfactants, sonication and plant species on physicochemical characteristics. Ind Crops Prod 157:112935

Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2018) Advances in magnetic nanoparticles for biomedical applications. Adv Healthcare Mater 7(5):1700845

Chai JM, Amelia TSM, Mouriya GK, Bhubalan K, Amirul A-AA, Vigneswari S, Ramakrishna S (2021) Surface-Modified highly biocompatible bacterial-poly (3-hydroxybutyrate-co-4-hydroxybutyrate): a review on the promising next-generation biomaterial. Polymers 13(1):51

Chen H, Gu L, Liao B, Zhou X, Cheng L, Ren B (2020) Advances of anti-caries nanomaterials. Molecules 25(21):5047

CAS   PubMed Central   Google Scholar  

Chen L, Ai J, Cai H, Chen X, Liu Z, Li Z, Dai F (2021a) Antibacterial gauze based on the synergistic antibacterial mechanism of antimicrobial peptides and silver nanoparticles. J Polym Res 28(2):1–9

Chen Z-Y, Gupta A, Chattopadhyay S (2021b) Detection of mercury in spiked cosmetics by surface enhanced Raman spectroscopy using silver shelled iron oxide nanoparticles. Sens Actuators B Chem 337:129788

Chhipa H (2019) Applications of nanotechnology in agriculture. Methods Microbiol 46:115–142

Chiari-Andréo BG, Almeida-Cincotto MGJd, Oshiro JA, Taniguchi CYY, Chiavacci LA, Isaac VLB (2019) Chapter 5—Nanoparticles for cosmetic use and its application. In: Grumezescu AM (ed) Nanoparticles in pharmacotherapy. William Andrew Publishing, pp 113–146

Chugh G, Siddique KH, Solaiman ZM (2021) Nanobiotechnology for agriculture: smart technology for combating nutrient deficiencies with nanotoxicity challenges. Sustainability 13(4):1781

Costa JSD, Hoskisson PA, Paterlini P, Romero CM, Alvarez A (2020) Whole genome sequence of the multi-resistant plant growth-promoting bacteria Streptomyces sp. Z38 with potential application in agroindustry and bio-nanotechnology. Genomics 112(6):4684–4689

D’Acunto M, Cioni P, Gabellieri E, Presciuttini G (2021) Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology 32(19):192001

de Azevedo Stavale A, Fonseca GO, Duarte PS, Macedo LC, Percebom AM (2019) Nanoparticles of surfactant and block copolymers with high uptake of oily ingredients for cosmetic formulations. Colloids Surf A Physicochem Eng Asp 581:123779

De Luca I, Pedram P, Moeini A, Cerruti P, Peluso G, Di Salle A, Germann N (2021) Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: a review. Appl Sci 11(4):1713

Debnath M, Chauhan N, Sharma P, Tomar I (2021) Potential of nano biosurfactants as an ecofriendly green technology for bioremediation. Handbook of nanomaterials for wastewater treatment. Elsevier, pp 1039–1055

Deng H, Huang W, Zhang Z (2019) Nanotechnology based CRISPR/Cas9 system delivery for genome editing: progress and prospect. Nano Res 12(10):2437–2450

Desai AV, Sharma S, Ghosh SK (2019) Metal-organic frameworks for recognition and sequestration of toxic anionic pollutants. Metal-organic frameworks (MOFs) for environmental applications. Elsevier, pp 95–140

Ding S-s, He L, Bian X-w, Tian G (2020) Metal-organic frameworks-based nanozymes for combined cancer therapy. Nano Today 35:100920

Doroudian M, MacLoughlin R, Poynton F, Prina-Mello A, Donnelly SC (2019) Nanotechnology based therapeutics for lung disease. Thorax 74(10):965–976

Doroudian M, O’Neill A, Mac Loughlin R, Prina-Mello A, Volkov Y, Donnelly SC (2021) Nanotechnology in pulmonary medicine. Curr Opin Pharmacol 56:85–92

Du T, Zhang J, Li C, Song T, Li P, Liu J, Du X, Wang S (2020) Gold/silver hybrid nanoparticles with enduring inhibition of coronavirus multiplication through multisite mechanisms. Bioconjug Chem 31(11):2553–2563

Ebrahimbabaie P, Meeinkuirt W, Pichtel J (2020) Phytoremediation of engineered nanoparticles using aquatic plants: mechanisms and practical feasibility. J Environ Sci 93:151–163

Evelyn Roopngam P (2019) Liposome and polymer-based nanomaterials for vaccine applications. Nanomed J 6(1):1–10

Farrera C, Torres Andón F, Feliu N (2017) Carbon nanotubes as optical sensors in biomedicine. ACS Nano 11(11):10637–10643

Fidoski J, Benedetti A, Kirkov A, Iliev A, Stamatoski A, Baftijari D (2020) Nano-emulsion complex (propolis and vitamin C) promotes wound healing in the oral mucosa. Oral Maxillofac Patho J 11(1):1–5

Fouad GI (2021) A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19). Bull Natl Res Cent 45(1):1–22

Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F (2018) Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater 30(46):1801362

Gangadoo S, Nguyen H, Rajapaksha P, Zreiqat H, Latham K, Cozzolino D, Truong VK (2021) Inorganic nanoparticles as food additives and their influence on the human gut microbiota. Environ Sci Nano 8:1500–1518

Ghebretatios M, Schaly S, Prakash S (2021) Nanoparticles in the food industry and their impact on human gut microbiome and diseases. Int J Mol Sci 22(4):1942

CAS   PubMed   PubMed Central   Google Scholar  

Gökçe D (2021) Influences of nanoparticles on aquatic organisms: current situation of nanoparticles effects in aquatic ecosystems. Sust Eng Innov 3(1):54–60

Gong X, Meng Y, Zhu J, Wang X, Lu J, Cheng Y, Tao Y, Wang H (2021) Construct a stable super-hydrophobic surface through acetonitrile extracted lignin and nano-silica and its application in oil-water separation. Ind Crops Prod 166:113471

González-Ballesteros N, Prado-López S, Rodríguez-González J, Lastra M, Rodríguez-Argüelles M (2017) Green synthesis of gold nanoparticles using brown algae Cystoseira baccata : Its activity in colon cancer cells. Colloids Surf B 153:190–198

Goracci M, Pignochino Y, Marchiò S (2020) Phage display-based nanotechnology applications in cancer immunotherapy. Molecules 25(4):843

Goyal S, Joshi P, Singh R (2021) Applications and role of Nano-Silica particles on altering the properties and their usage for oil well cementing. Mater Today Proc 46:10681–10686

Hadidi M, Motamedzadegan A, Jelyani AZ, Khashadeh S (2021) Nanoencapsulation of hyssop essential oil in chitosan-pea protein isolate nano-complex. LWT 144:111254

Hager S, Fittler FJ, Wagner E, Bros M (2020) Nucleic acid-based approaches for tumor therapy. Cells 9(9):2061

Hajiabadi SH, Aghaei H, Kalateh-Aghamohammadi M, Shorgasthi M (2020) An overview on the significance of carbon-based nanomaterials in upstream oil and gas industry. J Pet Sci Eng 186:106783

He Y, Lin H, Luo M, Liu J, Dong Y, Li B (2020) Highly efficient remediation of groundwater co-contaminated with Cr (VI) and nitrate by using nano-Fe/Pd bimetal-loaded zeolite: process product and interaction mechanism. Environ Pollut 263:114479

Hosseini SF, Ramezanzade L, McClements DJ (2021) Recent advances in nanoencapsulation of hydrophobic marine bioactives: bioavailability, safety, and sensory attributes of nano-fortified functional foods. Trends Food Sci Technol 109:322–339

Hou S, Wu B, Peng D, Wang Z, Wang Y, Xu H (2019) Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron. Environ Pollut 252:553–561

Islam MA, Rice J, Reesor E, Zope H, Tao W, Lim M, Ding J, Chen Y, Aduluso D, Zetter BR (2021) Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials 266:120431

Iwaniec DM, Cook EM, Davidson MJ, Berbés-Blázquez M, Georgescu M, Krayenhoff ES, Middel A, Sampson DA, Grimm NB (2020) The co-production of sustainable future scenarios. Landsc Urban Plan 197:103744

Jafari SM, Arpagaus C, Cerqueira MA, Samborska K (2021) Nano spray drying of food ingredients; materials, processing and applications. Trends Food Sci Technol 109:632–646

Jang W, Kwon H, Park Y, Lee H (2018) Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology. Scientometrics 116(1):231–254

Jeevanandam J, Pal K, Danquah MK (2019) Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 157:38–47

Jeong YJ, Kim DS, Kim JY, Oyunbaatar NE, Shanmugasundaram A, Kim ES, Lee DW (2021) On-stage bioreactor platform integrated with nano-patterned and gold-coated PDMS diaphragm for live cell stimulation and imaging. Mater Sci Eng C-Mater Biol Appl 118:9. https://doi.org/10.1016/j.msec.2020.111355

Article   CAS   Google Scholar  

Jiang Y, Khan A, Huang H, Tian Y, Yu X, Xu Q, Mou L, Lv J, Zhang P, Liu P, Deng L, Li X (2019) Using nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as biofilm support enhances oil-refinery wastewater treatment in a biofilm membrane bioreactor. Sci Total Environ 646:606–617

Jogee P, Agarkar G, Rai M (2021) Starch-based films loaded with nano-antimicrobials for food packaging. Biopolymer-based nano films. Elsevier, pp 99–114

Jun B-M, Al-Hamadani YA, Son A, Park CM, Jang M, Jang A, Kim NC, Yoon Y (2020) Applications of metal-organic framework based membranes in water purification: a review. Sep Purif Technol 247:116947

Kailasa SK, Mehta VN, Koduru JR, Basu H, Singhal RK, Murthy Z, Park T-J (2021) An overview of molecular biology and nanotechnology based analytical methods for the detection of SARS-CoV-2: promising biotools for the rapid diagnosis of COVID-19. Analyst 146(5):1489–1513

Karimzadeh Z, Javanbakht S, Namazi H (2019) Carboxymethylcellulose/MOF-5/Graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent. BioImpacts 9(1):5

Ken DS, Sinha A (2020) Recent developments in surface modification of nano zero-valent iron (nZVI): remediation, toxicity and environmental impacts. Environ Nanotechnol Monit Manag 24:100344

Khezri K, Saeedi M, Dizaj SM (2018) Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed Pharmacother 106:1499–1505

Kim S, Kim K, Jun G, Hwang W (2020) Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions. ACS Nano 14(12):17233–17240

Kinik FP, Kampouri S, Ebrahim FM, Valizadeh B, Stylianou KC (2020) Porous metal-organic frameworks for advanced applications. Elsevier

Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553

Korde JM, Kandasubramanian B (2020) Microbiologically extracted poly (hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti-tumor therapies. Mater Sci Eng C 111:110799

Kumar S, Kashyap PL, Mahapatra S, Jasrotia P, Singh GP (2020) New and emerging technologies for detecting Magnaporthe oryzae causing blast disease in crop plants. Crop Prot 143:105473

Kumar N, Verma A, Mandal A (2021) Formation, characteristics and oil industry applications of nanoemulsions: a review. J Pet Sci Eng 206:109042

Kutara BMRNS, Sutharb H, Mohitec KC, Devid R (2016) Bioinformatics, biotechnology and nanotechnology tools for environment engineering: way to sustainable development by wastewater treatment

Landowski LM, Niego B, Sutherland BA, Hagemeyer CE, Howells DW (2020) Applications of nanotechnology in the diagnosis and therapy of stroke. Semin Thromb Hemost 46(5):592–605. https://doi.org/10.1055/s-0039-3399568

Article   CAS   PubMed   Google Scholar  

Le TT, Yoon H, Son M-H, Kang Y-G, Chang Y-S (2019) Treatability of hexabromocyclododecane using Pd/Fe nanoparticles in the soil-plant system: effects of humic acids. Sci Total Environ 689:444–450

Lew TTS, Koman VB, Gordiichuk P, Park M, Strano MS (2020) The emergence of plant nanobionics and living plants as technology. Adv Mater Technol 5(3):1900657

Li T, Fang F, Yang Y, Shen W, Bao W, Zhang T, Ai F, Ding X, Xin H, Wang X (2019) Surface nano-engineered wheat straw for portable and adjustable water purification. Sci Total Environ 655:1028–1036

Li R, Ng TS, Wang SJ, Prytyskach M, Rodell CB, Mikula H, Kohler RH, Garlin MA, Lauffenburger DA, Parangi S (2021) Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nat Nanotechnol. https://doi.org/10.1038/s41565-021-00897-1

Lian M, Wang L, Feng Q, Niu L, Zhao Z, Wang P, Song C, Li X, Zhang Z (2021) Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment. Environ Pollut 280:116879

Lim M, Badruddoza AZM, Firdous J, Azad M, Mannan A, Al-Hilal TA, Cho C-S, Islam MA (2020) Engineered nanodelivery systems to improve DNA vaccine technologies. Pharmaceutics 12(1):30

Lin Y-X, Wang Y, Blake S, Yu M, Mei L, Wang H, Shi J (2020) RNA nanotechnology-mediated cancer immunotherapy. Theranostics 10(1):281–299. https://doi.org/10.7150/thno.35568

Article   CAS   PubMed   PubMed Central   Google Scholar  

Lincy A, Jegathambal P, Mkandawire M, MacQuarrie S (2020) Nano bioremediation of textile dye effluent using magnetite nanoparticles encapsulated alginate beads. J Environ Treat Tech 8(3):936–946

Liu B, Hu F, Zhang JF, Wang CL, Li LL (2019) A biomimetic coordination nanoplatform for controlled encapsulation and delivery of drug-gene combinations. Angew Chem-Int Edit 58(26):8804–8808

Lohrasebi A, Koslowski T (2019) Modeling water purification by an aquaporin-inspired graphene-based nano-channel. J Mol Model 25(9):280

Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. https://doi.org/10.1155/2019/3702518

Luo Y, Wang Q, Zhang Y (2020) Biopolymer-based nanotechnology approaches to deliver bioactive compounds for food applications: a perspective on the past, present, and future. J Agric Food Chem 68(46):12993–13000

Luo Z, Zhu J, Yu L, Yin K (2021) Heavy metal remediation by nano zero-valent iron in the presence of microplastics in groundwater: inhibition and induced promotion on aging effects. Environ Pollut 287:117628

Lyu P, Javidi-Parsijani P, Atala A, Lu B (2019) Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient ‘hit-and-run’genome editing. Nucleic Acids Res 47(17):e99–e99

Ma J, Dai R, Chen M, Khan SJ, Wang Z (2018) Applications of membrane bioreactors for water reclamation: micropollutant removal, mechanisms and perspectives. Biores Technol 269:532–543

Mahmoud ME, Allam EA, El-Sharkawy RM, Soliman MA, Saad EA, El-Khatib AM (2020) Nano-manganese oxide-functionalized-oleyl amine as a simple and low cost nanosorbent for remediation of ZnII/CoII and their radioactive nuclides 65Zn and 60Co from water. Appl Radiat Isot 159:108989

Maine E, Thomas V, Bliemel M, Murira A, Utterback J (2014) The emergence of the nanobiotechnology industry. Nat Nanotechnol 9(1):2–5

Majhi RK, Mohanty S, Khan MI, Mishra A, Brauner A (2021) Ag@ ZnO nanoparticles induce antimicrobial peptides and promote migration and antibacterial activity of keratinocytes. ACS Infect Dis. https://doi.org/10.1021/acsinfecdis.0c00903

Malik SN, Khan SM, Ghosh PC, Vaidya AN, Kanade G, Mudliar SN (2019) Treatment of pharmaceutical industrial wastewater by nano-catalyzed ozonation in a semi-batch reactor for improved biodegradability. Sci Total Environ 678:114–122

Manikanika KJ, Jaswal S (2021) Role of nanotechnology in the world of cosmetology: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.12.638

Mantatov V, Mantatova L, Nasibulina A, Tutubalin V (2019) The conception of sustainable development in the light of converging technologies. Eur Asian J Bio Sci 13(2):2159–2165

Marchiol L (2018) Nanotechnology in agriculture: new opportunities and perspectives. New Visions Plant Sci 9(4):161

Marcos-Contreras OA, Greineder CF, Kiseleva RY, Parhiz H, Walsh LR, Zuluaga-Ramirez V, Myerson JW, Hood ED, Villa CH, Tombacz I, Pardi N, Seliga A, Mui BL, Tam YK, Glassman PM, Shuvaev VV, Nong J, Brenner JS, Khoshnejad M, Madden T, Weissmann D, Persidsky Y, Muzykantov VR (2020) Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood–brain barrier. Proc Natl Acad Sci 117(7):3405–3414

Meikle TG, Dharmadana D, Hoffmann SV, Jones NC, Drummond CJ, Conn CE (2021) Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles. J Colloid Interface Sci 587:90–100

Milinčić DD, Popović DA, Lević SM, Kostić A, Tešić ŽL, Nedović VA, Pešić MB (2019) Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials. https://doi.org/10.3390/nano9111629

Miralles P, van Gemert I, Chisvert A, Salvador A (2019) Stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles-metal organic framework composite: determination of N-nitrosamines in cosmetic products. J Chromatogr A 1604:460465

Mishra R, Manral A (2021) Graphene functionalized starch biopolymer nanocomposites: fabrication, characterization, and applications. Graphene based biopolymer nanocomposites. Springer, pp 173–189

Mishra A, Kumar J, Melo JS, Sandaka BP (2021) Progressive development in biosensors for detection of dichlorvos pesticide: a review. J Environ Chem Eng 9(2):105067

Mofijur M, Siddiki SYA, Ahmed MB, Djavanroodi F, Fattah IR, Ong HC, Chowdhury M, Mahlia T (2020) Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources-A mini-review. Chemosphere 270:128642

Mohid SA, Bhunia A (2021) Combining antimicrobial peptides with nanotechnology: an emerging field in theranostics. Curr Protein Pept Sci 21(4):413–428

Murshid S, Gopinath KP, Prakash DG (2021) Current nanotechnology based solutions for sustainable wastewater treatment. Curr Anal Chem 17(2):166–184

Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2020) Green-synthesized nanocatalysts and nanomaterials for water treatment: current challenges and future perspectives. J Hazard Mater 401:123401

Nawaz MZ, Attique SA, Alshammari FA, Alhamdi HW, Alghamdi HA, Yan W (2021) A nanoinformatics approach to evaluate the pharmacological properties of nanoparticles for the treatment of Alzheimer’s disease. Comb Chem High Throughput Screening. https://doi.org/10.2174/1386207324666210217145733

Ndlovu N, Mayaya T, Muitire C, Munyengwa N (2020) Nanotechnology applications in crop production and food systems. Int J Plant Breeding Crop Sci 7(1):624–634

Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim K-H, Kumar S (2021) Emerging nanobiotechnology in agriculture for the management of pesticide residues. J Hazard Mater 401:123369

Nguyen VT, Vu QH, Pham TN, Trinh KS (2021) Antibacterial filtration using polyethylene terephthalate filters coated with copper nanoparticles. J Nanomater. https://doi.org/10.1155/2021/6628362

Nizami A-S, Rehan M (2018) Towards nanotechnology-based biofuel industry. Biofuel Res J 5(2):798

Oliveira AG, de Lara AJ, Montanha MC, Ogawa CYL, de Souza Freitas TKF, Moraes JCG, Sato F, Lima SM, da Cunha Andrade LH, Hechenleitner AAW (2021) Wastewater treatment using Mg-doped ZnO nano-semiconductors: a study of their potential use in environmental remediation. J PhotochemPhotobiol A Chem 407:113078

Ozogul F, Elabed N, Ceylan Z, Ocak E, Ozogul Y (2021) Nano-technological approaches for plant and marine-based polysaccharides for nano-encapsulations and their applications in food industry. Elsevier, pp 187–236

Paiva-Santos AC, Herdade AM, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Paranhos A, Veiga F (2021) Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm 597:120311

Patel RM, Dahane TM, Godbole S, Kambala SS, Mangal K (2020) Applications of nanotechnology in prosthodontics. J Evol Med Dent Sci 9(47):3566–3572

Patra Shahi M, Kumari P, Mahobiya D, Kumar Shahi S (2021) Chapter 4—nano-bioremediation of environmental contaminants: applications, challenges, and future prospects. In: Kumar V, Saxena G, Shah MP (eds) Bioremediation for environmental sustainability. Elsevier, pp 83–98

Paunovska K, Loughrey D, Sago CD, Langer R, Dahlman JE (2019) Using large datasets to understand nanotechnology. Adv Mater 31(43):1902798

Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2020) Nanocarriers as an emerging platform for cancer therapy. Nano-enabled medical applications. Jenny Stanford Publishing, pp 61–91

Rabiee N, Bagherzadeh M, Ghasemi A, Zare H, Ahmadi S, Fatahi Y, Dinarvand R, Rabiee M, Ramakrishna S, Shokouhimehr M (2020) Point-of-use rapid detection of sars-cov-2: nanotechnology-enabled solutions for the COVID-19 pandemic. Int J Mol Sci 21(14):5126

Raghav S, Yadav PK, Kumar D (2020) Nanotechnology for a sustainable future. Handbook of nanomaterials for manufacturing applications. Elsevier, pp 465–492

Razavi R, Kenari RE, Farmani J, Jahanshahi M (2020) Fabrication of zein/alginate delivery system for nanofood model based on pumpkin. Int J Biol Macromol 165(Pt B):3123–3134

Reshmy R, Philip E, Madhavan A, Sindhu R, Pugazhendhi A, Binod P, Sirohi R, Awasthi MK, Tarafdar A, Pandey A (2021) Advanced biomaterials for sustainable applications in the food industry: updates and challenges. Environ Pollut 283:117071

Rezaei M, Shokuhfar A, Shahcheraghi N (2021) Preparation and photocatalytic performance of flower-shaped Zno/GO/Fe 3 O 4 on degradation of rhodamine B. Defect and diffusion forum. Trans Tech Publications, pp 161–172

Roco MC, Bainbridge WS (2013) Converging technologies for improving human performance: nanotechnology, biotechnology, information technology and cognitive science. Springer Science Business Media

Rottenberg S, Disler C, Perego P (2021) The rediscovery of platinum-based cancer therapy. Nat Rev Cancer 21(1):37–50

Rovera C, Ghaani M, Farris S (2020) Nano-inspired oxygen barrier coatings for food packaging applications: an overview. Trends Food Sci Technol 97:210–220

Ruan X, Liu D, Niu X, Wang Y, Simpson CD, Cheng N, Du D, Lin Y (2019) 2D Graphene oxide/Fe-MOF nanozyme nest with superior peroxidase-like activity and its application for detection of woodsmoke exposure biomarker. Anal Chem 91(21):13847–13854

Saari NHM, Chua LS (2020) Nano-based products in beverage industry. Nanoengineering in the beverage industry. Elsevier, pp 405–436

Sahani S, Sharma YC (2020) Advancements in applications of nanotechnology in global food industry. Food Chem 342:128318

Sahu J, Karri RR, Zabed HM, Shams S, Qi X (2021) Current perspectives and future prospects of nano-biotechnology in wastewater treatment. Sep Purif Rev 50(2):139–158

Saidi MZ, El Moujahid C, Pasc A, Canilho N, Delgado-Sanchez C, Celzard A, Fierro V, Kouitat-Njiwa R, Chafik T (2021) Enhanced tribological properties of wind turbine engine oil formulated with flower-shaped MoS2 nano-additives. Colloids Surfaces A 620:126509

Sajjadi M, Ahmadpoor F, Nasrollahzadeh M, Ghafuri H (2021) Lignin-derived (nano) materials for environmental pollution remediation: current challenges and future perspectives. Int J Biol Macromol 178:394–423

Sakulwech S, Lourith N, Ruktanonchai U, Kanlayavattanakul M (2018) Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian J Pharm Sci 13(5):498–504

Saleh TA (2018) Nanotechnology in oil and gas industries. Springer, Cham

Saleh TA (2020) Nanomaterials: classification, properties, and environmental toxicities. Environ Technol Innov 20:101067

Samrot AV, Sahithya CS, Selvarani J, Purayil SK, Ponnaiah P (2020) A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr Res Green Sust Chem 4:100042

Sánchez-Rubio F, Soria-Meneses PJ, Jurado-Campos A, Bartolome-Garcia J, Gomez-Rubio V, Soler AJ, Arroyo-Jimenez M, Santander-Ortega M, Plaza-Oliver M, Lozano M (2020) Nanotechnology in reproduction: vitamin E nanoemulsions for reducing oxidative stress in sperm cells. Free Radical Biol Med 160:47–56

Santos AC, Morais F, Simões A, Pereira I, Sequeira JAD, Pereira-Silva M, Veiga F, Ribeiro A (2019) Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv 16(4):313–330

Séby F (2021) Metal and metal oxide nanoparticles in cosmetics and skin care products. Elsevier

Selivanovitch E, Douglas T (2019) Virus capsid assembly across different length scales inspire the development of virus-based biomaterials. Curr Opin Virol 36:38–46

Sharma A, Singh G, Arya SK (2021) Biofuel cell nanodevices. Int J Hydrogen Energy 46(4):3270–3288

Singh R, Misra V, Mudiam MKR, Chauhan LKS, Singh RP (2012) Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions. J Hazard Mater 237–238:355–364

Subhedar DG, Patel YS, Ramani BM, Patange GS (2021) An experimental investigation on the effect of Al 2 O 3 /cutting oil based nano coolant for minimum quantity lubrication drilling of SS 304. Cleaner Eng Technol 3:100104

Ta Q, Ting J, Harwood S, Browning N, Simm A, Ross K, Olier I, Al-Kassas R (2021) Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin. Eur J Pharm Sci 160:105765

Tan H, Wang C, Li H, Peng D, Zeng C, Xu H (2020) Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr-resistant microflora. Chemosphere 242:125251

Tang C-H (2021) Assembly of food proteins for nano-encapsulation and delivery of nutraceuticals (a mini-review). Food Hydrocoll 117:106710

Tavakoli N, Divsalar A, Haertlé T, Sawyer L, Saboury AA, Muronetz V (2021) Milk protein-based nanodelivery systems for the cancer treatment. J Nanost Chem 11:483–500

Thakkar A, Raval A, Chandra S, Shah M, Sircar A (2020) A comprehensive review of the application of nano-silica in oil well cementing. Petroleum 6(2):123–129

Thangadurai D, Sangeetha J, Prasad R (2020) Nanotechnology for food, agriculture, and environment. Springer International Publishing

Thirugnanam C, Dharmaprabhakaran T, Kalaimurugan K, Somasundaram D, Kumar AV, Ali MMJ (2021) Emission analysis of Palmyrah seed oil bio-diesel with NiO nano-particles on CI engine. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.01.87

Thomas S, Kumar Mishra P, Talegaonkar S (2015) Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des 21(42):6165–6188

Tiwari K, Singh R, Negi P, Dani R, Rawat A (2021) Application of nanomaterials in food packaging industry: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.01.385

Tonk R (2021) The science and technology of using nano-materials in engine oil as a lubricant additives. Mater Today Proc 37:3475–3479

Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Ur Rehman H, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778

Valencia PM, Farokhzad OC, Karnik R, Langer R (2020) Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nano-enabled medical applications. Jenny Stanford Publishing, pp 93–112

Vázquez-Núñez E, Molina-Guerrero CE, Peña-Castro JM, Fernández-Luqueño F, de la Rosa-Álvarez M (2020) Use of nanotechnology for the bioremediation of contaminants: a review. Processes 8(7):826

Visentin C, da Silva Trentin AW, Braun AB, Thomé A (2020) Nano scale zero valent iron production methods applied to contaminated sites remediation: an overview of production and environmental aspects. J Hazard Mater 410:124614

Wang D, Chen Y (2016) Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Crit Rev Biotechnol 36(5):816–828

Wang Y, Zhang G (2020) The preparation of modified nano-starch and its application in food industry. Food Res Int 140:110009

Wang S, Chen Y, Wang S, Li P, Mirkin CA, Farha OK (2019) DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins. J Am Chem Soc 141(6):2215–2219

Wang Y, Chen Y, Hu Y, Fang X (2020) Site-specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription. Proc Natl Acad Sci 117(37):22823–22832

Wang F, Chang R, Ma R, Tian Y (2021) Eco-friendly and superhydrophobic nano-starch based coatings for self-cleaning application and oil-water separation. Carbohydr Polym 271:118410

Weijie M, Chongnv W, Xuming P, Weixin J, Yuhang W, Benhui S (2020) TiO2 nanoparticles and multi-walled carbon nanotubes monitoring and bioremediation potential using ciliates Pseudocohnilembus persalinus . Ecotoxicol Environ Saf 187:109825

Xu B, Liu C, Sun H, Wang X, Huang F (2020) Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers. Colloids Surfaces B 187:110646

Yadwade R, Gharpure S, Ankamwar B (2021) Nanotechnology in cosmetics pros and cons. Nano Express 2(2):022003

Yang Y, Li B, Peng J, Lei Z, Zhu E, Zhang X, Feng X, Mi Y (2021) The demulsification of crude oil emulsion driven by a natural lotus leaf grafted with nano-SiO2. J Environ Chem Eng 9(4):105586

Yao L, Ouyang L, Lv J, Dai P, Zhu L (2021) Rapid and sensitive SERS detection of food contaminants by using nano-Ag aggregates with controllable hydrophobicity. Microchem J 166:106221

Yue T, Liu J, Yang Y, Chen S (2021) Feasibility of cleaning As-and U-containing soil of a gold mine by using biologically nano-sized FeS: implications for soil remediation technology. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.101775

Zahed MA, Revayati M, Shahcheraghi N, Maghsoudi F, Tabari Y (2021a) Modeling and optimization of biodiesel synthesis using TiO2–ZnO nanocatalyst and characteristics of biodiesel made from waste sunflower oil. Curr Res Green Sustain Chem 4:100223

Zahed MA, Movahed E, Khodayari A, Zanganeh S, Badamaki M (2021b) Biotechnology for carbon capture and fixation: critical review and future directions. J Environ Manag 293:112830

Zhang S, Yao T, Wang S, Feng R, Chen L, Zhu V, Hu G, Zhang H, Yang G (2019a) Upconversion luminescence nanoparticles-based immunochromatographic assay for quantitative detection of triamcinolone acetonide in cosmetics. Spectrochim Acta Part A Mol Biomol Spectrosc 214:302–308

Zhang X, Wu D, Zhou X, Yu Y, Liu J, Hu N, Wang H, Li G, Wu Y (2019b) Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Analyt Chem 121:115668

Zhang SS, Bilal M, Zdarta J, Cui JD, Kumar A, Franco M, Ferreira LFR, Iqbal HMN (2021) Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Res Int 140:17

Zhao R, Heng M, Chen C, Li T, Shi Y, Wang J (2021) Catalytic effects of Al2O3 nano-particles on thermal cracking of heavy oil during in-situ combustion process. J Pet Sci Eng. https://doi.org/10.1016/j.petrol.2021.108978

Zhironkin S, Demchenko S, Kayachev G, Taran E, Zhironkina O (2019) Convergent and nature-like technologies as the basis for sustainable development in the 21st Century. In: E3S Web of Conferences. EDP Sciences, p 03008

Zhou M, Hou T, Li J, Yu S, Xu Z, Yin M, Wang J, Wang X (2019) Self-propelled and targeted drug delivery of poly(aspartic acid)/Iron–zinc microrocket in the stomach. ACS Nano 13(2):1324–1332

Zhou Y, Wu X, Zhong X, Reagen S, Zhang S, Sun W, Pu H, Zhao JX (2020) Polymer nanoparticles based nano-fluid for enhanced oil recovery at harsh formation conditions. Fuel 267:117251

Zhu L, Tong L, Zhao N, Li J, Lv Y (2019) Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution. Chemosphere 219:493–503

Download references

Author information

Authors and affiliations.

Department of Engineering, University of Science and Culture, Tehran, Iran

Nikta Shahcheraghi

Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911, Tehran, Iran

Hasti Golchin, Zahra Sadri, Forough Borhanifar & Shadi Makani

Faculty of Sciences and Advanced Technologies, Science and Culture University, 1461968151, Tehran, Iran

Yasaman Tabari

You can also search for this author in PubMed   Google Scholar

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Corresponding author

Correspondence to Nikta Shahcheraghi .

Ethics declarations

Conflict of interest.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Shahcheraghi, N., Golchin, H., Sadri, Z. et al. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech 12 , 65 (2022). https://doi.org/10.1007/s13205-021-03108-9

Download citation

Received : 28 July 2021

Accepted : 30 December 2021

Published : 09 February 2022

DOI : https://doi.org/10.1007/s13205-021-03108-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Nanotechnology
  • Nano-biotechnology
  • Nanomaterial
  • Nano-therapies
  • Find a journal
  • Publish with us
  • Track your research

Union College

Schaffer Library LibGuides

Nanomaterials and nanotechnologies, getting started, team presentation topics.

  • Primo and search tips
  • Anatomy of a journal article
  • Writing and journaling
  • Annotated bibliographies
  • Help and contact

Not sure where to begin? Try a  topic explorer  that allows you to see a larger field and its subfields. A great source for this is  Credo Reference.

  • Go directly to the Credo Reference topic explorer for nanotechnologies

Credo Reference topic page for nanotechnology

Credo reference mind map for nanotechnology.

Nanotechnology mind map page for Credo

Team presentations will be on the topics below. Use Credo to begin your search. Sample entries include:

  • Online book:  Webster, Thomas J. (2012). Nanomedicine: Technologies and Applications.  Cambridge: Elsevier Science & Technology.
  • Sample Primo search on drug delivery and nanomaterials
  • Sample Primo search on nanotechnology and climate change
  •   Online book:  Sridharan, Karthiyayini (2018).  Emerging Trends of Nanotechnology in Environment and Sustainability : a Review-Based Approach. SpringerBriefs in Environmental Science. 
  • Sample Primo search on nanotechnology and energy storage
  • Sample Primo search on nanotechnology and photonics

Society journal websites

Don't forget about the society journal websites that will help you find peer-reviewed articles about nanotechnology right away. Recommended ones include:

Recommended society databases (x = particularly strong in this field)

Search suggestions

Sample Primo searches include the topics below. A few are linked to actual Primo searches so you can see how the search is formed and how it affects the search results. Just go to Primo and copy one of these searches in to see your results:

  • Start your search with Primo
  • Nanotechnology AND "drug delivery"
  • Nanomaterials AND "energy storage"
  • Nanomaterials AND pollution
  • Nanotechnology AND (global warming OR climate change)
  • Nanomaterials AND medicine AND sensors
  • Nanotechnology AND "medical implants"
  • Nanotechnology AND "solar panels"
  • Nanotechnology AND "oil spills"
  • << Previous: Home
  • Next: Primo and search tips >>
  • Last Updated: Apr 12, 2024 10:05 AM
  • URL: https://libguides.union.edu/nanoscience

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Nanoscience and technology articles from across Nature Portfolio

Nanoscience and technology is the branch of science that studies systems and manipulates matter on atomic, molecular and supramolecular scales (the nanometre scale). On such a length scale, quantum mechanical and surface boundary effects become relevant, conferring properties on materials that are not observable on larger, macroscopic length scales.

nanotechnology related thesis topics

Nanoparticle fix opens up tricky technique to forensic applications

A technique called surface-enhanced Raman spectroscopy can detect tiny quantities of compounds in solution, but has been difficult to use for quantitative analysis. A digital approach involving nanoparticles suggests a way forward.

  • Peter J. Vikesland

nanotechnology related thesis topics

Knocking out metal atoms

Metal vacancies capable of generating magnetism can be created in 2D semiconductors by atomic-scale etching induced by electron-beam irradiation.

  • Marijn A. van Huis

nanotechnology related thesis topics

Scalable, high-quality 2D telluride nanosheets for energy and catalysis applications

An innovative solid-state lithiation strategy allows the exfoliation of layered transition-metal tellurides into nanosheets in an unprecedentedly short time, without sacrificing their quality. The observation of physical phenomena typically seen in highly crystalline TMT nanosheets opens the way to their use in applications such as batteries and micro-supercapacitors.

Related Subjects

  • DNA nanotechnology
  • Nanobiotechnology
  • Nanomedicine
  • Nanoscale devices
  • Nanoscale materials
  • Nanotoxicology
  • Other nanotechnology
  • Techniques and instrumentation

Latest Research and Reviews

nanotechnology related thesis topics

Mechanoelectronic stimulation of autologous extracellular vesicle biosynthesis implant for gut microbiota modulation

Pathogenic gut microbiota is responsible for a few debilitating gastrointestinal Diseases. Here, the authors develop a wireless mechanoelectronic device designed to manufacture of functional vesicles in vivo to regulate microbiome.

  • Shuangshuang Wan
  • Kepeng Wang
  • Lianhui Wang

nanotechnology related thesis topics

A CMOS-compatible oscillation-based VO 2 Ising machine solver

Oscillating neural networks promise ultralow power consumption and rapid computation for tackling complex optimization problems. Here, the authors demonstrate VO 2 oscillators to solve NP-complete problems with projected power consumption of 13 µW/oscillator.

  • Olivier Maher
  • Manuel Jiménez
  • Siegfried Karg

nanotechnology related thesis topics

Palladium anchored to BisPyP@bilayer-SiO 2 @NMP organic–inorganic hybrid as an efficient and recoverable novel nanocatalyst in suzuki and stille C–C coupling reactions

  • Eid Ahmed Abdalrazaq
  • Hala Kh. Mohammed
  • Rohollah Fathollahi

nanotechnology related thesis topics

Exciton polariton condensation from bound states in the continuum at room temperature

Bound states in continuum have attracted attention in various platforms, and recently condensation of bound states in continuum polariton modes was demonstrated at low temperatures. Here the authors report the observation of such a state in a periodic air-hole perovskite-based photonic crystal at room temperature.

  • Shuai Zhang
  • Xinfeng Liu

nanotechnology related thesis topics

Molecular robotic agents that survey molecular landscapes for information retrieval

Various methods, using DNA, have been reported for the recording of biomolecular interactions, but most are either destructive in nature or are limited to reporting pairwise interactions. Here the authors develop DNA-based motors, termed ‘crawlers’, that roam around and record their trajectories to allow the examination of molecular environments.

  • Sungwook Woo
  • Sinem K. Saka

nanotechnology related thesis topics

The efficacy of green silica nanoparticles synthesized from rice straw in the management of Callosobruchus maculatus (Col., Bruchidae)

  • Samar Sayed Ibrahim
  • Huda Hassan Elbehery

Advertisement

News and Comment

nanotechnology related thesis topics

Acute, controlled inhalation of thin graphene oxide nanosheets in humans with null cardiorespiratory effects

A double-blind, randomized, controlled human exposure trial of highly purified and thin nanometre-sized graphene oxide nanosheets shows that acute inhalation of aerosolized nanoparticles is not associated with harmful effects in healthy humans.

nanotechnology related thesis topics

A flexible bioelectronic bandage for accelerated repair of intestinal wounds

A flexible, biodegradable and self-powered electronic bandage is designed to deliver dual-mode electrical stimulation, which can synergistically accelerate local intestinal wound healing. This approach also shows promise for reducing postoperative complications and could have broad potential for application in other tissues and organs.

nanotechnology related thesis topics

Cryogenic optical data link for superconducting circuits

An optical fibre-fed superconducting electro-optic modulator with gigahertz bandwidth and attojoule per bit electric power consumption offers a fast, efficient means to connect superconducting circuits to the room temperature environment.

  • Paolo Pintus
  • Galan Moody

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

nanotechnology related thesis topics

  • Bibliography
  • More Referencing guides Blog Automated transliteration Relevant bibliographies by topics
  • Automated transliteration
  • Relevant bibliographies by topics
  • Referencing guides

Recent Advances in Biomedical Nanotechnology Related to Natural Products

Affiliation.

  • 1 School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.
  • PMID: 37605408
  • DOI: 10.2174/1389201024666230821090222

Natural product processing via nanotechnology has opened the door to innovative and significant applications in medical fields. On one hand, plants-derived bioactive ingredients such as phenols, pentacyclic triterpenes and flavonoids exhibit significant pharmacological activities, on another hand, most of them are hydrophobic in nature, posing challenges to their use. To overcome this issue, nanoencapsulation technology is employed to encapsulate these lipophilic compounds and enhance their bioavailability. In this regard, various nano-sized vehicles, including degradable functional polymer organic compounds, mesoporous silicon or carbon materials, offer superior stability and retention for bioactive ingredients against decomposition and loss during delivery as well as sustained release. On the other hand, some naturally occurring polymers, lipids and even microorganisms, which constitute a significant portion of Earth's biomass, show promising potential for biomedical applications as well. Through nano-processing, these natural products can be developed into nano-delivery systems with desirable characteristics for encapsulation a wide range of bioactive components and therapeutic agents, facilitating in vivo drug transport. Beyond the presentation of the most recent nanoencapsulation and nano-processing advancements with formulations mainly based on natural products, this review emphasizes the importance of their physicochemical properties at the nanoscale and their potential in disease therapy.

Keywords: bioavailability;; biomedicine;; nano processing;; nano-delivery system;; nanoencapsulation;; natural products;.

Copyright© Bentham Science Publishers; For any queries, please email at [email protected].

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of molecules

Nanotechnology: A Revolution in Modern Industry

Shiza malik.

1 Bridging Health Foundation, Rawalpindi 46000, Pakistan

Khalid Muhammad

2 Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates

Yasir Waheed

3 Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan

4 Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon

Associated Data

Not applicable.

Nanotechnology, contrary to its name, has massively revolutionized industries around the world. This paper predominantly deals with data regarding the applications of nanotechnology in the modernization of several industries. A comprehensive research strategy is adopted to incorporate the latest data driven from major science platforms. Resultantly, a broad-spectrum overview is presented which comprises the diverse applications of nanotechnology in modern industries. This study reveals that nanotechnology is not limited to research labs or small-scale manufacturing units of nanomedicine, but instead has taken a major share in different industries. Companies around the world are now trying to make their innovations more efficient in terms of structuring, working, and designing outlook and productivity by taking advantage of nanotechnology. From small-scale manufacturing and processing units such as those in agriculture, food, and medicine industries to larger-scale production units such as those operating in industries of automobiles, civil engineering, and environmental management, nanotechnology has manifested the modernization of almost every industrial domain on a global scale. With pronounced cooperation among researchers, industrialists, scientists, technologists, environmentalists, and educationists, the more sustainable development of nano-based industries can be predicted in the future.

1. Introduction

Nanotechnology has slowly yet deeply taken over different industries worldwide. This rapid pace of technological revolution can especially be seen in the developed world, where nano-scale markets have taken over rapidly in the past decade. Nanotechnology is not a new concept since it has now become a general-purpose technology. Four generations of nanomaterials have emerged on the surface and are used in interdisciplinary scientific fields; these are active and passive nanoassemblies, general nanosystems, and small-scale molecular nanosystems [ 1 ].

This rapid development of nanoscience is proof that, soon, nano-scale manufacturing will be incorporated into almost every domain of science and technology. This review article will cover the recent advanced applications of nanotechnology in different industries, mainly agriculture, food, cosmetics, medicine, healthcare, automotive, oil and gas industries, chemical, and mechanical industries [ 2 , 3 ]. Moreover, a brief glimpse of the drawbacks of nanotechnology will be highlighted for each industry to help the scientific community become aware of the ills and benefits of nanotechnology side by side. Nanotechnology is a process that combines the basic attributes of biological, physical, and chemical sciences. These processes occur at the minute scale of nanometers. Physically, the size is reduced; chemically, new bonds and chemical properties are governed; and biological actions are produced at the nano scale, such as drug bonding and delivery at particular sites [ 4 , 5 ].

Nanotechnology provides a link between classical and quantum mechanics in a gray area called a mesoscopic system. This mesoscopic system is being used to manufacture nanoassemblies of nature such as agricultural products, nanomedicine, and nanotools for treatment and diagnostic purposes in the medical industry [ 6 ]. Diseases that were previously untreatable are now being curtailed via nano-based medications and diagnostic kits. This technology has greatly affected bulk industrial manufacturing and production as well. Instead of manufacturing materials by cutting down on massive amounts of material, nanotechnology uses the reverse engineering principle, which operates in nature. It allows the manufacturing of products at the nano scale, such as atoms, and then develops products to work at a deeper scale [ 7 ].

Worldwide, millions and billions of dollars and euros are being spent in nanotechnology to utilize the great potential of this new science, especially in the developed world in Europe, China, and America [ 8 ]. However, developing nations are still lagging behind as they are not even able to meet the industrial progression of the previous decade [ 9 ]. This lag is mainly because these countries are still fighting economically, and they need some time to walk down the road of nanotechnology. However, it is pertinent to say that both the developed and developing world’s scientific communities agree that nanotechnology will be the next step in technological generation [ 10 ]. This will make further industrial upgrading and investment in the field of nanotechnology indispensable in the coming years.

With advances in science and technology, the scientific community adopts technologies and products that are relatively cheap, safe, and cleaner than previous technologies. Moreover, they are concerned about the financial standing of technologies, as natural resources in the world are shrinking excessively [ 11 ]. Nanotechnology thus provides a gateway to this problem. This technology is clear, cleaner, and more affordable compared to previous mass bulking and heavy machinery. Moreover, nanotechnology holds the potential to be implemented in every aspect of life. This will mainly include nanomaterial sciences, nanoelectronics, and nanomedicine, being inculcated in all dimensions of chemistry and the physical and biological world [ 12 ]. Thus, it is not wrong to predict that nanotechnology will become a compulsory field of study for future generations [ 13 ]. This review inculcates the basic applications of nanotechnology in vital industries worldwide and their implications for future industrial progress [ 14 ].

2. Nanotechnology Applications

2.1. applications of nanotechnology in different industries.

After thorough and careful analyses, a wide range of industries—in which nanotechnology is producing remarkable applications—have been studied, reviewed, and selected to be made part of this review. It should be notified that multiple subcategories of industrial links may be discussed under one heading to elaborate upon the wide-scale applications of nanotechnology in different industries. A graphical abstract at the beginning of this article indicates the different industries in which nanotechnology is imparting remarkable implications, details of which are briefly discussed under different headings in the next session.

2.2. Nanotechnology and Computer Industry

Nanotechnology has taken its origins from microengineering concepts in physics and material sciences [ 15 ]. Nanoscaling is not a new concept in the computer industry, as technologists and technicians have been working for a long time to design such modified forms of computer-based technologies that require minimum space for the most efficient work. Resultantly, the usage of nanotubes instead of silicon chips is being increasingly experimented upon in computer devices. Feynman and Drexler’s work has greatly inspired computer scientists to design revolutionary nanocomputers from which wide-scale advantages could be attained [ 13 ]. A few years ago, it was an unimaginable to consider laptops, mobiles, and other handy gadgets as thin as we have today, and it is impossible for even the common man to think that with the passage of time, more advanced, sophisticated, and lighter computer devices will be commonly used. Nanotechnology holds the potential to make this possible [ 16 ].

Energy-efficient, sustainable, and urbanized technologies have been emerging since the beginning of the 21st century. The improvement via nanotechnology in information and communication technology (ICT) is noteworthy in terms of the improvements achieved in interconnected communities, economic competitiveness, environmental stability during demographic shifts, and global development [ 17 ]. The major implications of renewable technology incorporate the roles of ICT and nanotechnology as enablers of environmental sustainability. The traditional methods of product resizing, re-functioning, and enhanced computational capabilities, due to their expensiveness and complicated manufacturing traits, have slowly been replaced by nanotechnological renovations. Novel technologies such as smart sensors logic elements, nanochips, memory storage nanodevices, optoelectronics, quantum computing, and lab-on-a-chip technologies are important in this regard [ 18 ].

Both private and public spending are increasing in the field of nanocomputing. The growth of marketing and industrialization in the biotechnology and computer industries are running in parallel, and their expected growth rates for the coming years are far higher. Researchers and technologists believe that by linking the advanced field of nanotechnology and informatics and computational industries, various problems in human society such as basic need fulfillment can be easily accomplished in line with the establishment of sustainable goals by the end of this decade [ 19 ]. The fourth industrial revolution is based upon the supporting pillars derived from hyperphysical systems including artificial intelligence, machine learning, the internet of things, robots, drones, cloud computing, fast internet technologies (5G and 6G), 3D printing, and block chain technologies [ 20 ].

Most of these technologies have a set basis in computing, nanotechnology, biotechnology, material science renovations, and satellite technologies. Nanotechnology offers useful alterations in the physiochemical, mechanical, magnetic, electrical, and optical properties of computing materials which enable innovative and newer products [ 21 ]. Thus, nanotechnology is providing a pathway for another broad-spectrum revolution in the field of automotive, aerospace, renewable energy, information technology, bioinformatics, and environmental management, all of which have root origins from nanotechnological improvements in computers. Sensors involved in software and data algorithms employ nanomaterials to induce greater sensitivity and processabilities with minimal margin-to-machine errors [ 22 ]. Nanomaterials provide better characteristics and robustness to sensor technologies which mean they are chemically inert, corrosion-resistant, and have greater tolerance profiles toward temperature and alkalinity [ 22 ].

Moreover, the use of semiconductor nanomaterials in the field of quantum computing has increased overall processing speeds with better accuracy and transmissibility. These technologies offer the creation of different components and communication protocols at the nano level, which is often called the internet of nano things [ 23 ]. This area is still in a continuous development and improvement phase with the potential for telecommunication, industrial, and medical applications. This field has taken its origin from the internet of things, which is a hyperphysical world of sensors, software, and other related technologies which allow broad-scale communication via internet operating devices [ 17 ]. The applications of these technologies range from being on the simple home scale to being on the complex industrial scale. The internet of things is mainly capable of gathering and distributing large-scale data via internet-based equipment and modern gadgets. In short, the internet of nano things is applicable to software, hardware, and network connection which could be used for data manipulation, collection, and sharing across the globe [ 24 ].

Another application of nanotechnology in the computer and information industry comes in the form of artificial intelligence, machine learning, and big data platforms which have set the basis for the fourth industrial revolution. Vast amounts of raw data are collected through interconnected robotic devices, sensors, and machines which have properties of nanomaterials [ 18 ]. After wide-scale data gathering, the next step is the amalgamation of the internet of things and the internet of people to prepare a greater analysis, understanding, and utilization of the gathered information for human benefit [ 4 ]. Such data complications can be easily understood through the use of big data in the medical industry, in which epidemiological data provide benefits for disease management [ 2 ]. Yet another example is the applications in business, where sales and retail-related data help to elucidate the target markets, sales industry, and consumer behavioral inferences for greater market consumption patterns [ 19 ].

Similarly, an important dimension of nanotechnology and computer combination comes in the form of drone and robotics technology. These technologies have a rising number of applications in maintenance, inspections, transportation, deliverability, and data inspection [ 25 ]. Drones, robots, and the internet of things are being perfectly amalgamated with the industrial sector to achieve greater goals. Drones tend to be more mobile but rely more on human control as compared to robots, which are less mobile but have larger potential for self-operation [ 26 ]. However, now, more mobile drones with better autonomous profiles are being developed to help out in the domain of manufacturing industries. These devices intensify and increase the pace of automation and precision in industries along with providing the benefits of lower costs and fewer errors [ 24 ]. The integrated fields of robotics, the internet of things, and nanotechnology are often called the internet of robotics and nano things. This field of nanorobotics is increasing the flexibility and dexterity in manufacturing processes compared to traditional robotics [ 25 ].

Drones, on the contrary, help to manage tasks that are otherwise difficult or dangerous to be managed by humans, such as working from a far distance or in dangerous regions. Nanosensors help to equip drones with the qualities of improved detection and sensation more precisely than previous sensor technologies [ 21 , 27 ]. Moreover, the over-potential of working hours, battery, and maintenance have also been improved with the operationalization of nano-based sensors in drone technology. These drones are inclusively used for various purposes such as maintaining operations, employing safety profiling, security surveys, and mapping areas [ 18 ]. However, limitations such as high speed, legal and ethical limitations, safety concerns, and greater automobility are some of the drawbacks of aerial and robotic drone technologies [ 26 ].

Three-dimensional printing is yet another important application of the nanocomputer industry, in which an integrated modus operandi works to help in production management [ 28 ]. Nanotechnology-based 3D printing offers the benefits of an autonomous, integrated, intelligent exchange network of information which enables wide-scale production benefits. These technologies have enabled a lesser need for industrial infrastructure, minimized post-processing operations, reduced waste material generation, and reduced need for human presence for overall industrial management [ 28 , 29 ]. Moreover, the benefits of 3D printing and similar technologies have potentially increased flexibility in terms of customized items, minimal environmental impacts, and sustainable practices with lower resource and energy consumption. The use of nano-scale and processed resins, metallic raw material, and thermoplastics along with other raw materials allow for customized properties of 3D printing technology [ 29 ].

The application of nanotechnology in computers cannot be distinguished from other industrial applications, because everything in modern industries is controlled by a systemic network in association with a network of computers and similar technologies. Thus, the fields of electronics, manufacturing, processing, and packaging, among several others, are interlinked with nanocomputer science [ 11 , 15 ]. Silicon tubes have had immense applications that revolutionized the industrial revolution in the 20th century; now, the industrial revolution is in yet another revolutionary phase based on nanostructures [ 16 ]. Silicon tubes have been slowly replaced with nanotubes, which are allowing a great deal of improvement and efficiency in computing technology. Similarly, lab-on-a-chip technology and memory chips are being formulated at nano scales to lessen the storage space but increase the storage volume within a small, flexible, and easily workable chip in computers for their subsequent applications in multiple other industries.

Hundreds of nanotechnology computer-related products have been marketed in the last 20 years of the nanotechnological revolution [ 30 ]. Modern industries such as textiles, automotive, civil engineering, construction, solar technologies, environmental applications, medicine, transportation agriculture, and food processing, among others are largely reaping the benefits of nano-scale computer chips and other devices. In simple terms, everything out there in nanoindustrial applications has something to do with computer-based applications in the nanoindustry [ 31 , 32 , 33 ]. Thus, all the applications discussed in this review more or less originate from nanocomputers. These applications are enabling considerable improvement and positive reports within the industrial sector. Having said that, it is hoped that computer scientists will remain engaged and will keep on collaborating with scientists in other fields to further explore the opportunities associated with nanocomputer sciences.

2.3. Nanotechnology and Bioprocessing Industries

Scientific and engineering rigor is being carried out to the link fields of nanotechnology with contributions to the bioprocessing industry. Researchers are interested in how the basics of nanomaterials could be used for the high-quality manufacturing of food and other biomaterials [ 15 , 34 ]. Pathogenic identification, food monitoring, biosensor devices, and smart packaging materials, especially those that are reusable and biodegradable, and the nanoencapsulation of active food compounds are only a few nanotechnological applications which have been the prime focus of the research community in recent years. Eventually, societal acceptability and dealing with social, cultural, and ethical concerns will allow the successful delivery of nano-based bio-processed products into the common markets for public usage [ 20 , 35 ].

With the increasing population worldwide, food requirements are increasing in addition to the concerns regarding the production of safe, healthy, and recurring food options. Sensors and diagnostic devices will help improve the sensitivity in food quality monitoring [ 36 ]. Moreover, the fake industrial application of food products could be easily scanned out of a system with the application of nanotechnology which could control brand protection throughout bio-processing [ 6 ]. The power usage in food production might also be controlled after a total nanotechnological application in the food industry. The decrease in power consumption would ultimately be positive for the environment. This could directly bring in the interplay of environment, food, and nanotechnology and would help to reduce environmental concerns in future [ 37 ].

One of the important implications of nanotechnology in bioprocessing industries can be accustomed to fermentation processes; these technologies are under usage for greater industrial demand and improved biomolecule production at a very low cost, unlike traditional fermentation processes [ 35 ]. The successful implementation and integration of fermentation and nanotechnology have allowed the development of biocompatible, safe, and nontoxic substances and nanostructures with wide-scale application in the field of food, bioprocessing, and winemaking industries [ 38 ]. Another important application is in the food monitoring and food supply chain management, present in various subsectors such as production, storage, distribution, and toxicity management. Nanodevices and nanomaterials are incorporated into chemical and biological sensor technologies to improve overall analytical performance with regard to parameters such as response time, sensitivity, selectivity, accuracy, and reliability [ 39 ]. The conventional methods of food monitoring are slowly being replaced with modern nano-based materials such as nanowires, nanocomposites, nanotubes, nanorods, nanosheets, and other materials that function to immobilize and label components [ 40 ]. These methods are either electrochemically or optically managed. For food monitoring, several assays are proposed and implemented with their roots in nano-based technologies; they may include molecular and diagnostic assays, immunological assays, and electrochemical and optical assays such as surface-enhanced Raman scattering and colorimetry technologies [ 34 ]. Materials ranging from heavy materials to microorganisms, pesticides, allergens, and antibiotics are easily monitored during commercial processing and bioprocessing in industries.

Additionally, nanotechnology has presented marvelous transformations in bio-composting materials. With the rising demand for biodegradable composites worldwide to reduce the environmental impact and increase the efficiency of industrial output, there is an increasing need for sustainable technologies [ 41 ]. Nanocomposites are thus being formulated with valuable mechanical properties better than conventional polymers, thus establishing their applicability in industries. The improved properties include optical, mechanical, catalytic, electrochemical, and electrical ones [ 42 ]. These biodegradable polymers are not only used in bioprocessing industries to create food products with relevant benefits but are also being deployed in the biomedical field, therapeutic industries, biotechnology base tissue engineering field, packing, sensor industries, drug delivery technology, water remediation, food industries, and cosmetics industries as well [ 2 , 24 , 34 , 43 ]. These nanocomposites have outstanding characteristics of biocompatibility, lower toxicities, antimicrobial activity, thermal resistance, and overall improved biodegradation properties which make them worthy of applications in products [ 44 ]. However, it is still imperative to conduct wide-scale toxicity and safety profiling for these and other nanomaterials to ensure the safety requirements, customer satisfaction, and public benefit are met [ 44 ].

Moreover, the advancement of nanotechnology has also been conferred to the development of functional food items. The exposure and integration of nanotechnology and the food industry have resulted in larger quantities of sustainable, safer, and healthier food products for human consumption, which is a growing need for the rising population worldwide [ 45 ]. The overall positive impact of nanotechnology in food processing, manufacturing, packing, pathogenic detection, monitoring, and production profiles necessitates the wide-scale application of this technology in the food industry worldwide [ 4 , 41 ]. Recent research has shown how the delivery of bioactive compounds and essential ingredients is and can be improved by the application of nanomaterials (nanoencapsulation) in food products [ 46 ]. These technologies improve the protection performance and sensitivity of bioactive ingredients while preventing unnecessary interaction with other constituents of foods, thus establishing clear-cut improved bioactivity and solubility profiles of nanofoods, thereby improving human health benefits. However, it should be kept in mind that the safety regards of these food should be carefully regulated with safety profiling, as they directly interact with human bodies [ 47 ].

2.4. Nanotechnology and Agri-Industries

Agriculture is the backbone of the economies of various nations around the globe. It is a major contributing factor to the world economy in general and plays a critical role in population maintenance by providing nutritional needs to them. As global weather patterns are changing owing to the dramatic changes caused by global warming, it is accepted that agriculture will be greatly affected [ 48 ]. Under this scenario, it is always better to take proactive measures to make agricultural practices more secure and sustainable than before. Modern technology is thus being employed worldwide. Nanotechnology has also come to play an effective role in this interplay of sustainable technologies. It plays an important role during the production, processing, storing, packaging, and transport of agricultural industrial products [ 49 ].

Nanotechnology has introduced certain precision farming techniques to enhance plant nutrients’ absorbance, alongside better pathogenic detection against agricultural diseases. Fertilizers are being improved by the application of nanoclays and zeolites which play effective roles in soil nutrient broths and in the restoration soil fertility [ 49 ]. Modern concepts of smart seeds and seed banks are also programmed to germinate under favorable conditions for their survival; nanopolymeric mixtures are used for coating in these scenarios [ 50 ]. Herbicides, pesticides, fungicides, and insecticides are also being revolutionized through nanotechnology applications. It has also been considered to upgrade linked fields of poultry and animal husbandry via the application of nanotechnology in treatment and disinfection practices.

2.5. Nanotechnology and Food Industry

The applications of nanotechnology in the food industry are immense and include food manufacturing, packaging, safety measures, drug delivery to specific sites [ 51 ], smart diets, and other modern preservatives, as summarized in Figure 1 . Nanomaterials such as polymer/clay nanocomposites are used in packing materials due to their high barrier properties against environmental impacts [ 52 ]. Similarly, nanoparticle mixtures are used as antimicrobial agents to protect stored food products against rapid microbial decay, especially in canned products. Similarly, several nanosensor and nano-assembly-based assays are used for microbial detection processes in food storage and manufacturing industries [ 53 ].

An external file that holds a picture, illustration, etc.
Object name is molecules-28-00661-g001.jpg

Nanotechnology applications in food and interconnected industries.

Nanoassemblies hold the potential to detect small gasses and organic and inorganic residues alongside microscopic pathogenic entities [ 54 ]. It should, however, be kept in mind that most of these nanoparticles are not directly added to food species because of the risk of toxicity that may be attached to such metallic nanoparticles. Work is being carried out to predict the toxicity attached, so that in the future, these products’ market acceptability could be increased [ 55 ]. With this, it is pertinent to say that nanotechnology is rapidly taking steps into the food industry for packing, sensing, storage, and antimicrobial applications [ 56 ].

Nanotechnology is also revolutionizing the dairy industry worldwide [ 57 ]. An outline of potential applications of nanotechnology in the dairy industry may include: improved processing methods, improved food contact and mixing, better yields, the increased shelf life and safety of dairy-based products, improved packaging, and antimicrobial resistance [ 58 ]. Additionally, nanocarriers are increasingly applied to transfer biologically active substances, drugs, enhanced flavors, colors, odors, and other food characteristics to dairy products [ 59 ].

These compounds exhibit higher delivery, solubility, and absorption properties to their targeted system. However, the problem of public acceptability due to the fear of unknown or potential side effects associated with nano-based dairy and food products needs to be addressed for the wider-scale commercialization of these products [ 60 ].

2.5.1. Nanotechnology, Poultry and Meat Industry

The poultry industry is a big chunk of the food industry and contributes millions of dollars every year to food industries around the world. Various commercial food chains are running throughout the world, the bases of which start from healthy poultry industries. The incidence of widespread foodborne diseases that originate from poultry, milk, and meat farms is a great concern for the food industry. Nanobiotechnology is certainly playing a productive role in tackling food pathogens such as those which procreate from Salmonella and Campylobacter infections by allowing increased poultry consumption while maintaining the affordability and safety of manufactured chicken products [ 61 ]. Several nano-based tools and materials such as nano-enabled disinfectants, surface biocides, protective clothing, air and water filters, packaging materials, biosensors, and detective devices are being used to confirm the authenticity and traceability of poultry products [ 62 ]. Moreover, nano-based materials are used to reduce foodborne pathogens and spoilage organisms before the food becomes part of the supply chain [ 63 ].

2.5.2. Nanotechnology—Fruit and Vegetable Industry

As already described, nanotechnology has made its way far ahead in the food industry. The agricultural, medicinal, and fruit and vegetable industries cannot remain unaffected under this scenario. Scientists are trying to increase the shelf life of fresh organic products to fulfill the nutritional needs of a growing population. From horticulture to food processing, packaging, and pathogenic detection technology, nanotechnology plays a vital role in the safety and production of vegetables and fruits [ 64 ].

Conventional technologies are now being replaced with nanotechnology due to their benefits of cost-effectiveness, satisfactory results, and overall shelf life improvement compared to past practices. Although some risks may be attached, nanotechnology has not yet reported high-grade toxicity to organic fresh green products. These technologies serve the purpose of providing safe and sufficient food sources to customers while reducing postharvest wastage, which is a major concern in developing nations [ 55 ]. Nanopackaging provides the benefits of lower humidity, oxygen passage, and optimal water vapor transmission rates. Hence, in the longer run, the shelf life of such products is increased to the desired level using nanotechnology [ 65 ].

2.5.3. Nanotechnology and Winemaking Industry

The winemaking industry is a big commercial application of the food industry worldwide. The usage of nanotechnology is also expanding in this industry. Nanotechnology serves the purpose of sensing technology through employment as nanoelectronics, nanoelectrochemical, and biological, amperometric, or fluorimetric sensors. These nanomaterials help to analyze the wine components, including polyphenols, organic acids, biogenic amines, or sulfur dioxide, and ensure they are at appropriate levels during the production of wine and complete processing [ 66 ].

Efforts are being made to further improve sensing nanotechnology to increase the accuracy, selectivity, sensitivity, and rapid response rate for wine sampling, production, and treatment procedures [ 53 ]. Specific nanoassemblies that are used in winemaking industries include carbon nanorods, nanodots, nanotubes, and metallic nanoparticles such as gold, silver, zinc oxide, iron oxide, and other types of nanocomposites. Recent research studies have introduced the concept of electronic tongues, nanoliquid chromatography, mesoporous silica, and applications of magnetic nanoparticles in winemaking products [ 67 ]. An elaborative account of these nanomaterials is out of the scope of the present study; however, on a broader scale, it is not wrong to say that nanotechnology is successfully reaping in the field of enology.

2.6. Nanotechnology and Packaging Industries

The packaging industry is continuously under improvement since the issue of environmentalism has been raised around the globe. Several different concerns are linked to the packaging industry; primarily, packaging should provide food safety to deliver the best quality to the consumer end. In addition, packaging needs to be environmentally friendly to reduce the food-waste-related pollution concern and to make the industrial processes more sustainable. Trials are being carried out to reduce the burden by replacing non-biodegradable plastic packaging materials with eco-friendly organic biopolymer-based materials which are processed at the nano scale to incur the beneficial properties of nanotechnology [ 68 ].

The nanomanufacturing of packaging biomaterials has proven effective in food packaging industries, as nanomanufacturing not only contributes to increasing food safety and production but also tackles environmental issues [ 69 ]. Some examples of these packaging nanomaterials may include anticaking agents, nanoadditives, delivery systems for nutraceuticals, and many more. The nanocompositions of packing materials are formed by mixing nanofillers and biopolymers to enhance packaging’s functionality [ 70 ]. Nanomaterials with antimicrobial properties are preferred in these cases, and they are mixed with a polymer to prevent the contamination of the packaged material. It is important to mention here that this technology is not only limited to food packaging; instead, packaging nanotechnology is now also being introduced in certain other industries such as textile, leather, and cosmetic industries in which it is providing large benefits to those industries [ 64 ].

2.7. Nanotechnology and Construction Industry and Civil Engineering

Efficient construction is the new normal application for sustainable development. The incorporation of nanomaterials in the construction industry is increasing to further the sustainability concern [ 71 ]. Nanomaterials are added to act as binding agents in cement. These nanoparticles enhance the chemical and physical properties of strength, durability, and workability for the long-lasting potential of the construction industry. Materials such as silicon dioxide which were previously also in use are now manufactured at the nano scale [ 71 ]. These nanostructures along with polymeric additives increase the density and stability of construction suspension [ 72 ]. The aspect of sustainable development is being applied to the manufacture of modern technologies coupled with beneficial applications of nanotechnology. This concept has produced novel isolative and smart window technologies which have driven roots in nanoengineering, such as vacuum insulation panels (VIPs) and phase change materials (PCMs), which provide thermal insulation effects and thus save energy and improve indoor air quality in homes [ 73 ].

A few of the unique properties of nanomaterials in construction include light structure, strengthened structural composition, low maintenance requirements, resistant coatings, improved pipe and bridge joining materials, improved cementitious materials, extensive fire resistance, sound absorption, and insulation properties, as well as the enhanced reflectivity of glass surfaces [ 74 ]. As elaborated under the heading of civil engineering applications, concrete’s properties are the most commonly discussed and widely changing in the construction industry because of concrete’s minute structure, which can be easily converted to the nano scale [ 75 ]. More specifically, the combination of nano-SiO 2 in cement could improve its performance in terms of compressiveness, large volumes with increased compressiveness, improved pore size distribution, and texture strength [ 76 ].

Moreover, some studies are also being carried out to improve the cracking properties of concrete by the application of microencapsulated healing polymers, which reduce the cracking properties of cement [ 77 ]. Moreover, some other construction materials, such as steel, are undergoing research to change their structural composites through nano-scale manufacturing. This nanoscaling improves steel’s properties such as improved corrosion resistance, increased weldability, the ease of handling for designing building materials, and construction work [ 78 ]. Additionally, coating materials have been improved by being manufactured at the nano scale. This has led to different improved coating properties such as functional improvement; anticorrosive action; high-temperature, fire, scratch, and abrasion resistance; antibacterial and antifouling self-healing capabilities; and self-assembly, among other useful applications [ 79 ].

Nanotechnology improves the compressive flexural properties of cement and reduces its porosity, making it absorb less water compared to traditional cementation preparations. This is because of the high surface-to-volume ratio of nanosized particles. Such an approach helps in reducing the amount of cement in concrete, making it more cost-effective, more strengthening, and eco-friendly, known as ‘green concrete’. Besides concrete, the revolutionary characteristics of nanotechnology are now also being adopted in other construction materials such as steel, glass, paper, wood, and multiple other engineering materials to upgrade the construction industry [ 80 ].

Similarly, carbon nanotubes, nanorods, and nanofibers are rapidly replacing steel constructions. These nanostructures along with nanoclay formations increase the mechanical properties and thus have paved the way for a new branch of civil engineering in terms of nanoengineering [ 80 ]. Apart from cement formulations, nanoparticles are included in repair mortars and concrete with healing properties that help in crack recovery in buildings. Furthermore, nanostructures, titanium dioxide, zinc, and other metallic oxides are being employed for the production of photocatalytic products with antipathogenic, self-cleaning, and water- and germ-repellent built-in technologies [ 33 ]. Similarly, quantum dot technologies are progressively employed for solar energy generation (a concept discussed later). These photovoltaic cells contribute to saving the maximum amount of solar energy [ 81 ].

2.8. Nanotechnology and Textiles Industry

The textile industry achieved glory in the 21st century with enormous outgrowth through social media platforms. Large brands have taken over the market worldwide, and millions are earned every year through textile industries. With the passing of time, nanotechnology is being slowly incorporated into the textile fiber industry owing to its unique and valuable properties. Previously, fabrics manufactured via conventional methods often curtailed the temporary effects of durability and quality [ 82 ]. However, the age of nanotechnology has allowed these fabric industries to employ nanotechnology to provide high durability, flexibility, and quality to clothes which is not lost upon laundering and wearing. The high surface-to-volume ratio of nanomaterials keeps high surface energy and thus provides better affinity to their fabrics, leading to long-term durability [ 82 ]. Moreover, a thin layering and coating of nanoparticles on the fabric make them breathable and make them smooth to the touch. This layering is carried out by processes such as printing, washing, padding, rinsing, drying, and curing to attach nanoparticles on the fabric surface. These processes are carried out to impart the properties of water repellence, soil resistance, flame resistance, hydrophobicity, wrinkle resistance, antibacterial and antistatic properties, and increased dyeability to the clothes [ 83 ].

The unique properties of nanomaterials in textile industries have attracted large-scale businesses for the financial benefits attached to their application. For this reason, competitors are increasing in nanotextile industry speedily, which may make the conventional textile industry sidelined in the near future [ 84 ]. Some benefits associated with nanotextile engineering and industry may include: improved cleaning surfaces, soil, wrinkle, stain, and color damage resistance, higher wettability and strike-through characteristics, malodor- and soil-removal abilities, abrasion resistance, a modified version of surface friction, and color enhancement through nanomaterials [ 85 ].

These characteristics have hugely improved the functionality and performance characteristics of textile and fiber materials [ 86 ]. Based upon the numerous advantages, nanotextile technology is increasingly being used in various inter-related fields, including in medical clothes, geotextiles, shock-resistant textiles, and fire-resistant and water-resistant textiles [ 87 ]. These textiles and fibers help overcome severe environmental conditions in special industries where high temperatures, pressure, and other conditions are adjusted for manufacturing purposes. These textiles are now increasingly called smart clothes due to renewed nanotechnological application to traditional methods [ 88 ].

The increasing demand for durable, appealing, and functionally outstanding textile products with a couple of factors of sustainability has allowed science to incorporate nanotechnology in the textile sector. These nano-based materials offer textile properties such as stain-repellent, wrinkle-free textures and fibers’ electrical conductivity alongside guaranteeing comfort and flexibility in clothing [ 82 ]. The characteristics of nanomaterials are also exhibited in the form of connected garments creation that undergo sensations to respond to external stimuli through electrical, colorant, or physiological signals. Thus, a kind of interconnection develops between the fields of photonic, electrical, textile and nanotechnologies [ 89 ]. Their interconnected applications confer the properties of high-scale performance, lasting durability, and connectivity in textile fibers. However, the concerns of nanotoxicity, the chances of the release of nanomaterials during washing, and the overall environmental impact of nanotextiles are important challenges that need to be ascertained and dealt with successfully in the coming years to ensure wide-scale acceptance and the global broad-spectrum application of nanotextiles [ 90 ].

The global market for the textile industry is constantly on the rise; with so many new brands, the competition is rising in regard to pricing, material, product outlook, and market exposure. Under this scenario, nanotechnology has contributed in terms of value addition to textiles by contributing the properties of water repellence, self-cleaning, and protection from radiation and UV light, along with safety against flames and microorganisms [ 82 ]. A whole new market of smart clothes is slowly taking our international markets along with improvements in textile machinery and economic standing. These advances have effectively established the sustainable character of the textile industry and have created grounds to meet the customer’s demand [ 91 ]. Some important examples of smart clothing originating from the nanotextile industry can be seen in products such as bulletproof jackets, fabric coatings, and advanced nanofibers. Fabric coatings and pressure pads can exhibit characteristics of invisibility and entail a silver, nickel, or gold nanoparticle-based material with inherent antimicrobial properties [ 92 ]. Such materials are effectively being utilized and introduced into the medical industry for bandages, dressings, etc. [ 92 ].

Similarly, woven optical fibers are already making progress in the textile and IT industry. With the incorporation of nanomaterials, optical fibers are being utilized for a range of purposes such as light transmission, sensing technologies, deformation, improved formational characteristic detection, and long-range data transmission. These optical fibers with phase-changing material properties can also be utilized for thermostability maintenance in the fiber industry. Thus, these fibers have combined applications in the computer, IT, and textile sectors [ 93 ]. In addition, the nano cellulosic material that is naturally obtained from plants confers properties of stiffness, strength, durability, and large surface area to volume ratios, which is acquired through the large number of surface hydroxyl groups embedded in nanocellulose particles [ 94 ]. Moreover, the characteristics of high resistance, lower weight, cost-effectiveness, and electrical conductivity are some additional benefits which are also linked to these nanocellulosic fibers [ 93 ]. The aforementioned technologies will allow industrialists to manufacture fabrics based on nanomaterials through a variety of chemical, physical, and biological processes. The scope of improvement in the textile properties, cost, and production methods is making the nanotextile industry a strong field of interest for future industrial investments.

2.9. Nanotechnology and Transport and Automobile Industry

The automotive industry is always improving its production. Nanotechnology is one such tool that could impart the automotive industry with a totally new approach to manufacturing. Automobile shaping could be improved greatly without any changes to the raw materials used. The replacement of conventional fabrication procedures with advanced nanomanufacturing is required to achieve the required outcome. Nanotechnology intends to partly renovate the automobile industry by enhancing the technical performance and reducing production costs excessively. However, there is a gap in fully harnessing the potential of nanomaterials in the automotive industry. Industrialists who were previously strict about automotive industrial principles are ready to employ novelties attached to nanotechnology to create successful applications to automobiles in the future [ 95 ]. Nanotechnology could provide assistance in manufacturing methods with an impartment of extended life properties. Cars that have been manufactured with nanotechnology applications have shown lower failure rates and enhanced self-repairing properties. Although the initial investment in the nanoautomated industry is high, the outcomes are enormous.

The concept of sustainable transport could also be applied to the manufacturing of such nano-based technology which is CO 2 free and imparts safe driving and quiet, clean, and wider-screen cars, which, in the future, may be called nanocars. The major interplay of nanotechnology and the automotive industry comes in the manufacturing of car parts, engines, paints, coating materials, suspensions, breaks, lubrication, and exhaust systems [ 32 ]. These properties are largely imparted via carbon nanotubes and carbon black, which renders new functionalities to automobiles. These products were previously in use, but nanoscaling and nanocoating allow for enhanced environmental, thermal, and mechanical stability to be imparted to the new generation of automobiles. In simple terms, automobiles manufactured with principal nanonovelties could result in cars with less wearing risk, better gliding potential, thinner coating lubrication requirements, and long service bodies with weight reductions [ 31 ]. These properties will ultimately reduce costs and will impart more space for improved automobile manufacturing in the future. Similarly, the development of electric cars and cars built on super capacitor technology is increasingly based on nanotechnology. The implications of nanotechnology in the form of rubber fillers, body frames made of light alloys, nanoelectronic components, nanocoatings of the interior and exterior of cars, self-repairing materials against external pressure, nanotextiles for interiors, and nanosensors are some of the nanotechnological-based implications of the automotive industry [ 96 ]. Owing to these properties, nanotechnology ventures are rapidly progressing in the automobile industry. It is expected that, soon, the automobile industry will commercialize nanotechnological perspectives on their branding strategies.

2.10. Nanotechnology, Healthcare, and Medical Industry

The genesis of nanomedicine simply cannot be ignored when we talk about the large fields of biological sciences, biotechnology, and medicine. Nanotechnology is already making its way beyond the imagination in the broader vision of nanobiotechnology. The quality of human life is continuously improved by the successful applications of nanotechnology in medicine, and resultantly, the entire new field of nanomedicine has come to the surface, which has allowed scientists to create upgraded versions of diagnostics, treatment, screening, sequencing, disease prevention, and proactive actions for healthcare [ 97 ]. These practices may also involve drug manufacturing, designing, conjugation, and efficient delivery options with advances in nano-based genomics, tissue engineering, and gene therapy. With this, it could be predicted that soon, nanomedicine will be the foremost research interest for the coming generation of biologists to study the useful impacts and risks that might be associated with them [ 98 ]. As illustrated in Figure 2 , we summarized the applications of nanotechnology in different subfields of the medical industry.

An external file that holds a picture, illustration, etc.
Object name is molecules-28-00661-g002.jpg

Nanotechnology applications in medical industry. Nanotechnology has a broad range of applications in various diagnostics and treatments using nanorobotics and drug delivery systems.

In various medical procedures, scientists are exploring the potential benefits of nanotechnology. In the field of medical tools, various robotic characters have been applied which have their origins in nano-scale computers, such as diagnostic surfaces, sensor technologies, and sample purification kits [ 99 ]. Similarly, some modifications are being accepted in diagnostics with the development of devices that are capable of working, responding, and modifying within the human body with the sole purpose of early diagnosis and treatment. Regenerative medicine has led to nanomanufacturing applications in addition to cell therapy and tissue engineering [ 100 ]. Similarly, some latest technologies in the form of ‘lab-on-a-chip’, as elaborated upon earlier, are being introduced with large implications in different fields such as nanomedicine, diagnostics, dentistry, and cosmetics industries [ 101 ]. Some updated nanotechnology applications in genomics and proteomics fields have developed molecular insights into antimicrobial diseases. Moreover, medicine, programming, nanoengineering, and biotechnology are being merged to create applications such as surgical nanorobotics, nanobioelectrics, and drug delivery methods [ 102 ]. All of these together help scientists and clinicians to better understand the pathophysiology of diseases and to bring about better treatment solutions in the future.

Specifically, the field of nanocomputers and linked devices help to control activation responses and their rates in mechanical procedures [ 2 ]. Through these mechanical devices, specific actions of medical and dental procedures are executed accurately. Moreover, programmed nanomachines and nanorobots allow medical practitioners to carry out medical procedures precisely at even sub-cellular levels [ 4 ]. In diagnostics fields, the use of such nanodevices is expanding rapidly, which allows predictions to be made about disease etiology and helps to regulate treatment options [ 103 ]. The use of in vitro diagnosis allows increased efficiency in disease apprehension. Meanwhile, in in vivo diagnoses, such devices have been made which carry out the screening of diseased states and respond to any kind of toxicities or carcinogenic or pathological irregularities that the body faces [ 104 ].

Similarly, the field of regenerative medicine is employing nanomaterials in various medical procedures such as cell therapy, tissue engineering, and gene sequencing for the greater outlook of treatment and reparation of cells, tissues, and organs. Nanoassemblies have been recorded in research for applications in powerful tissue regeneration technologies with properties of cell adhesion, migration, and cellular differentiation [ 102 ]. Additionally, nanotechnology is being applied in antimicrobial (antibacterial and antiviral) fields. The microscopic abilities of these pathogens are determined through nano-scale technologies [ 100 ]. Greek medicinal practices have long been using metals to cure pathogenic diseases, but the field of nanotechnology has presented a new method to improve such traditional medical practices; for example, nanosized silver nanomaterials are being used to cure burn wounds owing to the easy penetration of nanomaterials at the cellular level [ 102 , 105 ].

In the field of bioinformatics and computational biology, genomic and proteomic technologies are elucidating molecular insights into disease management [ 106 ]. The scope of targeted and personalized therapies related to pathogenic and pathophysiological diseases have greatly provided spaces for nanotechnological innovative technologies [ 107 , 108 ]. They also incorporate the benefits of cost-effectiveness and time saving [ 109 ]. Similarly, nanosensors and nanomicrobivores are utilized for military purposes such as the detection of airborne chemical agents which could cause serious toxic outcomes otherwise [ 102 ]. Some nanosensors also serve a purpose similar to phagocytes to clear toxic pathogens from the bloodstream without causing septic shock conditions, especially due to the inhalation of prohibited drugs and banned substances [ 100 , 105 , 110 ]. These technologies are also used for dose specifications and to neutralize overdosing incidences [ 110 ] Nano-scale molecules work as anticancer and antiviral nucleoside analogs with or without other adjuvants [ 21 ].

Another application of nanotechnology in the medical industry is in bone regeneration technology. Scientists are working on bone graft technology for bone reformation and muscular re-structuring [ 111 , 112 ]. Principle investigations of biomineralization, collagen mimic coatings, collagen fibers, and artificial muscles and joints are being conducted to revolutionize the field of osteology and bone tissue engineering [ 113 , 114 ]. Similarly, drug delivery technologies are excessively considering nanoscaling options to improve drug delivery stability and pharmacodynamic and pharmacokinetic profiles at a large scale [ 110 ]. The use of nanorobots is an important step that allows drugs to travel across the circulatory system and deliver drug entities to specifically targeted sites [ 99 , 115 ]. Scientists are even working on nanorobots-based wireless intracellular and intra-nucleolar nano-scale surgeries for multiple malignancies, which otherwise remain incurable [ 102 ]. These nanorobotics can work at such a minute level that they can even cut a single neuronic dendrite without causing harm to complex neuronal networks [ 116 ].

Another important application of nanotechnology in the medical field is oncology. Nanotechnology is providing a good opportunity for researchers to develop such nanoagents, fluorescent materials, molecular diagnostics kits, and specific targeted drugs that may help to diagnose and cure carcinogenesis [ 104 ]. Scientists are trying various protocols of adjoining already-available drugs with nanoparticulate conjugation to enhance drug specificity and targeting in organs [ 104 , 107 , 117 ]. Nanomedicine acts as the carrier of hundreds of specific anticancerous molecules that could be projected at tumor sites; moreover, the tumor imaging and immunotherapy approaches linked with nanomedicine are also a potential field of interest when it comes to cancer treatment management [ 112 , 117 ]. A focus is also being drawn toward lessening the impact of chemotherapeutic drugs by increasing their tumor-targeting efficiency and improving their pharmacokinetic and pharmacodynamic properties [ 112 ]. Similarly, heat-induced ablation treatment against cancer cells alongside gene therapy protocols is also being coupled with nanorobotics [ 99 , 118 ]. Anticancerous drugs may utilize the Enhanced Permeation and Retention Effect (EPR effect) by applications of nano assemblies such as liposomes, albumin nanospheres, micelles, and gold nanoparticles, which confirms effective treatment strategies against cancer [ 119 ]. Such advances in nanomedicine will bring about a more calculated, outlined, and technically programmed field of nanomedicine through association and cooperation between physicians, clinicians, researchers, and technologies.

2.10.1. Nanoindustry and Dentistry

Nanodentistry is yet another subfield of nanomedicine that involves broad-scale applications of nanotechnology ranging from diagnosis, prevention, cure, prognosis, and treatment options for dental care [ 120 ]. Some important applications in oral nanotechnology include dentition denaturalization, hypersensitivity cure, orthodontic realignment problems, and modernized enameling options for the maintenance of oral health [ 2 , 121 ]. Similarly, mechanical dentifrobots work to sensitize nerve impulse traffic at the core of a tooth in real-time calculation and hence could regulate tooth tissue penetration and maintenance for normal functioning [ 122 ]. The functioning is coupled with programmed nanocomputers to execute an action from external stimuli via connection with localized internal nerve stimuli. Similarly, there are other broad-range applications of nanotechnology in tooth repair, hypersensitivity treatment, tooth repositioning, and denaturalization technologies [ 4 , 118 , 120 , 121 ]. Some of the applications of nanotechnology in the field of dentistry are elaborated upon in Figure 3 .

An external file that holds a picture, illustration, etc.
Object name is molecules-28-00661-g003.jpg

Nanotechnology applications in field of dentistry. Nanotechnology can be largely used in dentistry to repair and treat dental issues.

2.10.2. Nanotechnology and Cosmetics Industry

The cosmetics industry, as part of the greater healthcare industry, is continuously evolving. Nanotechnology-based renovations are progressively incorporated into cosmetics industries as well. Products are designed with novel formulations, therapeutic benefits, and aesthetic output [ 123 ]. The nanocosmetics industry employs the usage of lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, nanosponges, nanoemulsions, nanogels, liposomes, aquasomes, niosomes, dendrimers, and fullerenes, etc., among other such nanoparticles [ 101 ]. These nanomaterials bring about specific characteristics such as drug delivery, enhanced absorption, improved esthetic value, and enhanced shelf life. The benefits of nanotechnology are greatly captured in the improvement of skin, hair, nail, lip, and dental care products, and those associated with hygienic concerns. Changes to the skin barrier have been largely curtailed owing to the function of the nano scale of materials. The nanosize of active ingredients allows them to easily permeate skin barriers and generate the required dermal effect [ 124 ].

More profoundly, nanomaterials’ application is encouraged in the production of sun-protective cosmetics products such as sunblock lotions and creams. The main ingredient used is the rational combination of cinnamates (derived from carnauba wax) and titanium dioxide nanosuspensions which provide sun-protective effects in cosmetics products [ 125 ]. Similarly, nanoparticle suspensions are being applied in nanostructured lipid carriers (NLCs) for dermal and pharmaceutical applications [ 126 ]. They exhibit the properties of controlled drug-carrying and realizing properties, along with direct drug targeting, occlusion, and increased penetration and absorption to the skin surface. Moreover, these carrier nanoemulsions exhibit excellent tolerability to intense environmental and body conditions [ 127 ]. Moreover, these lipid nanocarriers have been researched and declared safe for potential cosmetic and pharmaceutical applications. However, more research is still required to assess the risk/benefit ratio of their excessive application [ 128 ].

2.11. Nanotechnology Industries and Environment

The environment, society, and technology are becoming excessively linked under a common slogan of sustainable development. Nanotechnology plays a key role in the 21st century to modify the technical and experimental outlook of various industries. Environmental applications cannot stand still against revolutionary applications of nanotechnology. Since the environment has much to do with the physical and chemical world around a living being, the nano scale of products greatly changes and affects environmental sustainability [ 129 ]. The subsequent introduction of nanomaterials in chemistry, physics, biotechnology, computer science, and space, food, and chemical industries, in general, directly impacts environmental sciences.

With regard to environmental applications, the remarkable research and applications of nanotechnology are increasing in the processing of raw materials, product manufacturing, contaminate treatment, soil and wastewater treatment, energy storage, and hazardous waste management [ 130 ]. In developed nations, it is now widely suggested that nanotechnology could play an effective role in tackling environmental issues. In fact, the application of nanotechnology could be implemented for water and cell cleaning technologies, drinking safety measures, and the detoxification of contaminants and pollutants from the environment such as heavy metals, organochlorine pesticides, and solvents, etc., which may involve reprocessing although nanofiltration. Moreover, the efficiency and durability of materials can be increased with mechanical stress and weathering phenomena. Similarly, the use of nanocage-based emulsions is being used for optical imaging techniques [ 131 ].

In short, the literature provides immense relevance to how nanotechnology is proving itself through groundbreaking innovative technologies in environmental sciences. The focus, for now, is kept on remediation technologies with prime attention on water treatment, since water scarcity is being faced worldwide and is becoming critical with time. There is a need for the scientific community to actively conduct research on comprehending the properties of nanomaterials for their high surface area, related chemical properties, high mobility, and unique mechanical and magnetic properties which could be used for to achieve a sustainable environment [ 132 ].

2.12. Nanotechnology—Oil and Gas Industry

The oil and gas industry makes up a big part of the fossil industry, which is slowly depleting with the rising consumption. Although nanotechnology has been successfully applied to the fields of construction, medicine, and computer science, its application in the oil and gas industry is still limited, especially in exploration and production technologies [ 133 ]. The major issue in this industry is to improve oil recovery and the further exploitation of alternative energy sources. This is because the cost of oil production and further purification is immense compared to crude oil prices. Nanotechnologists believe that they could overcome the technological barriers to developing such nanomaterials that would help in curtailing these problems.

Governments are putting millions of dollars into the exploration, drilling, production, refining, wastewater treatment, and transport of crude oil and gas. Nanotechnology can provide assistance in the precise measurement of reservoir conditions. Similarly, nanofluids have been proven to exhibit better performance in oil production industries. Nanocatalyses enhance the separation processing of oil, water, and gases, thus bringing an efficient impurity removal process to the oil and gas industry. Nanofabrication and nanomembrane technologies are excessively being utilized for the separation and purification of fossil materials [ 134 ]. Finally, functional and modified nanomaterials can produce smart, cost-effective, and durable equipment for the processing and manufacturing of oil and gas. In short, there is immense ground for the improvement of the fossil fuel industry if nanotechnology could be correctly directed in this industry [ 135 ].

2.13. Nanotechnology and Renewable Energy (Solar) Industry

Renewable energy sources are the solutions to many environmental problems in today’s world. This makes the renewable energy industry a major part of the environmental industry. Subsequently, nanotechnology needs to be considered in the energy affairs of the world. Nanotechnologies are increasingly applied in solar, hydrogen, biomass, geothermal, and tidal wave energy production. Although, scientists are convinced that much more needs to be discovered before enhancing the benefits of coupled nanotechnology and renewable energy [ 136 ].

Nanotechnology has procured its application way down the road of renewable energy sources. Solar collectors have been specifically given much importance since their usage is encouraged throughout the world, and with events of intense solar radiation, the production and dependence of solar energy will be helpful for fulfilling future energy needs. Research data are available regarding the theoretical, numerical, and experimental approaches adopted for upgrading solar collectors with the employment of nanotechnologies [ 137 ].

These applications include the nanoengineering of flat solar plates, direct absorption plates, parabolic troughs, and wavy plates and heat pipes. In most of these instruments and solar collection devices, the use of nanofluids is becoming common and plays a crucial role in increasing the working efficiency of these devices. A gap, however, exists concerning the usage of nanomaterials in the useful manufacturing design of solar panels and their associated possible efficiencies which could be brought to the solar panel industry. Moreover, work needs to be done regarding the cost-effectiveness and efficiency analyses of traditional and nanotechnology-based solar devices so that appropriate measures could be adopted for the future generation of nanosolar collectors [ 138 ].

2.14. Nanotechnology and Wood Industry

The wood industry is one of the main economic drivers in various countries where forest growth is immense and heavy industrial setups rely on manufacturing and selling wood-based products [ 139 ]. However, the rising environmental concerns against deforestation are a major cause for researchers to think about a method for the sustainable usage of wood products. Hence, nanotechnology has set its foot in the wood industry in various applications such as the production of biodegradable materials in the paper and pulp industry, timber and furniture industry, wood preservatives, wood composites, and applications in lignocellulosic-based materials [ 140 ]. Resultantly, new products are introduced into the market with enhanced performance (stronger yet lighter products), increased economic potential, and reduced environmental impact.

One method of nano-based application in the wood industry is the derivation of nanomaterials directly from the forest, which is now called nanocellulose material, known broadly for its sustainable characteristics [ 141 ]. This factor has pushed the wood industry to convert cellulosic material to nanocellulose with increased strength, low weight, and increased electromagnetic response along with a larger surface area [ 142 ]. These characteristics are then further used as reinforcing agents in different subcategories of wood-based industries, including substrate, stabilizer, electronics, batteries, sensor technologies, food, medicine, and cosmetics industries [ 143 ]. Moreover, functional characteristics such as the durability, UV absorption, fire resistance, and decreased water absorption of wood-based biodegradable products are also being improved with the application of nanomaterials such as nanozinc oxide or nanotitanium oxide [ 144 ]. Similarly, wood biodegradable properties are reduced through the application of nanoencapsulated preservatives to improve the impregnation of wood with the increasing penetration of applied chemicals and a reduced leaching effect.

Cellulosic nanomaterials exhibit nanofibrillar structures which can be made multifunctional for application in construction, furniture, food, pharmaceuticals, and other wood-based industries [ 145 ]. Research is emerging in which promising results are predicted in different industries in which nanofibers, nanofillers, nanoemulsions, nanocomposites, and nano-scaled chemical materials are used to increase the potential advantages of manufactured wood products [ 146 ]. The outstanding properties of nanocellulusice materials have largely curtailed the environmental concerns in the wood industry in the form of their potential renewable characteristics, self-assembling properties, and well-defined architecture. However, there are a few challenges related to such industries, such as cost/benefit analyses, a lack of compatibility and acceptability from the public owing to a lack of proper commercialization, and a persistent knowledge gap in some places [ 145 ]. Therefore, more effort is required to increase the applications and acceptability of nano-based wood products in the market worldwide.

2.15. Nanotechnology and Chemical Industries

Nanotechnology can be easily applied to various chemical compositions such as polymeric substances; this application can bring about structural and functional changes in those chemical materials and can address various industrial applications including medicine, physics, electronics, chemical, and material industries, among others [ 76 , 132 , 138 ]. One such industrial application is in electricity production, in which different nanomaterials driven from silver, golden, and organic sources could be utilized to make the overall production process cheaper and effective [ 147 ]. Another effective application is in the coatings and textile industry, which has already been discussed briefly. In these industries, enzymatic catalysis in combination with nanotechnology accelerates reaction times, saving money and bringing about high-quality final products. Similarly, the water cleaning industry can utilize the benefits of nanomaterials in the form of silver and magnetic nanoparticles to create strong forces of attraction that easily separate heavy material from untreated water [ 148 ]. Similarly, there is a wide range of chemicals that can be potentially upgraded, although the nano scale for application in biomedical industries is discussed under the heading of nanotechnology and medicine.

Another major application of nanotechnology in the chemical industry includes the surfactant industry, which is used for cleaning paper, inks, agrochemicals, drugs, pharmaceuticals, and some food products [ 149 ]. The traditional surfactant application was of great environmental and health concern, but with the newer and improved manufacturing and nanoscaling of surfactants, environmentally friendly applications have been made possible. These newer types may include biosurfactants obtained via the process of fermentation and bio-based surfactants produced through organic manufacturing. More research is required to establish the risks and side effects of these nanochemical agents [ 3 ].

3. Closing Remarks

Nanotechnology, within a short period, has taken over all disciplinary fields of science, whether it is physics, biology, or chemistry. Now, it is predicted to enormously impact manufacturing technology owing to the evidential and proven benefits of micro scaling. Every field of industry, such as computing, information technology, engineering, medicine, agriculture, and food, among others, is now originating an entire new field in association with nanotechnology. These industries are widely known as nanocomputer, nanoengineering, nanoinformatics, nanobiotechnology, nanomedicine, nanoagriculture, and nanofood industries. The most brilliant discoveries are being made in nanomedicine, while the most cost-effective and vibrant technologies are being introduced in materials and mechanical sciences.

The very purpose of nanotechnology, in layman’s terms, is to ease out the manufacturing process and improve the quality of end products and processes. In this regard, it is easy and predictable that it is not difficult for nanotechnology to slowly take out most of the manufacturing process for industrial improvement. With every coming year, more high-tech and more effective-looking nanotechnologies are being introduced. This is smoothing out the basis of a whole new era of nanomindustries. However, the constructive need is to expand the research basis of nanoapplications to entail the rigorous possible pros of this technology and simultaneously figure out a method to deal with the cons of the said technology.

The miniaturization of computer devices has continued for many years and is now being processed at the nanometer scale. However, a gap remains to explore further options for the nanoscaling of computers and complex electronic devices, including computer processors. Moreover, there is an immense need to enable the controlled production and usage of such nanotechnologies in the real world, because if not, they could threaten the world of technology. Scientists should keep on working on producing nanoelectronic devices with more power and energy efficiency. This is important in order to extract the maximum benefits from the hands of nanotechnology and computer sciences [ 5 ].

Under the influence of nanotechnology, food bioprocessing is showing improvement, as proven by several scientific types of research and industrial applications in food chain and agricultural fields. Moreover, the aspect of sustainability is being introduced to convert the environment, food chains, processing industries, and production methods to save some resources for future generations. The usage of precision farming technologies based upon nanoengineering, modern nano-scale fertilizers, and pesticides are of great importance in this regard. Moreover, a combined nanotechnological aspect is also being successfully applied to the food industry, affecting every dimension of packing, sensing, storage, manufacturing, and antimicrobial applications. It is pertinent to say that although the applications of nanotechnology in the food, agriculture, winemaking, poultry, and associated packaging industries are immense, the need is to accurately conduct the risk assessment and potential toxicity of nanomaterials to avoid any damage to the commercial food chains and animal husbandry practices [ 63 ].

The exposure of the nano-based building industry is immense for civil and mechanical engineers; now, we need to use these technologies to actually bring about changes in those countries in which the population is immense, construction material is depleting, and environmental sustainability problems are hovering upon the state. By carefully assessing the sustainability potential of these nanomaterials, their environmental, hazardous, and health risks could be controlled, and they could likely be removed from the construction and automobile industry all over the world with sincere scientific and technical rigor [ 150 ]. It is expected that soon, the construction and automobile industry will commercialize the nanotechnological perspectives alongside sustainability features in their branding strategies. These nano-scale materials could allow the lifecycle management of automotive and construction industries with the provision of sustainable, safe, comfortable, cost-effective, and more eco-friendly automobiles [ 32 ]. The need is to explore the unacknowledged and untapped potential of nanotechnology applications in these industry industries.

Similarly, nanotechnology-based applications in consumer products such as textile and esthetics industries are immense and impressive. Professional development involves the application of nanotechnology-based UV-protective coatings in clothes which are of utmost need with climatic changes [ 73 ]. The application of nanotechnology overcomes the limitations of conventional production methods and makes the process more suitable and green-technology-based. These properties have allowed the textile companies to effectively apply nanotechnology for the manufacture of better products [ 90 ]. With greater consumer acceptability and market demand, millions are spent in the cosmetic industry to enable the further usage of nanotechnology. Researchers are hopeful that nanotechnology would be used to further upgrade the cosmetics industry in the near future [ 123 ].

Furthermore, the breakthrough applications of nanomedicine are not hidden from the scientific community. If nanomedicine is accepted worldwide in the coming years, then the hope is that the domain of diagnosis and treatment will become more customized, personalized, and genetically targeted for individual patients. Treatment options will ultimately become excessive in number and more successful in accomplishment. However, these assumptions will stay a dream if the research remains limited to scientific understanding.

The real outcome will be the application of this research into the experimental domain and clinical practices to make them more productive and beneficial for the medical industry. For this cause, a combined effort of technical ability, professional skills, research, experimentation, and the cooperation of clinicians, physicians, researchers, and technology is imperative. However, despite all functional beneficial characteristics, work needs to be done and more exploration is required to learn more about nanotechnology and its potential in different industries, especially nanomedicine, and to take into account and curtail the risks and harms attached to the said domain of science.

Additionally, climatic conditions, as mentioned before, along with fossil fuel depletion, have pushed scientists to realize a low-energy-consuming and more productive technological renovation in the form of nanoengineered materials [ 48 ]. Now, they are employing nanomaterials to save energy and harvest the maximum remaining natural resources. There is immense ground for the improvement of the fossil fuel industry if nanotechnology could be correctly directed in this industry [ 135 ]. The beneficial applications within the solar industry, gas and oil industry, and conversion fields require comparative cost-effectiveness and efficiency analyses of traditional and nano-based technologies so that appropriate measures could be adopted for the future generation of nano-based products in said industries [ 138 ].

As every new technology is used in industries, linked social, ethical, environmental, and human safety issues arise to halt the pace of progress. These issues need to be addressed and analyzed along with improving nanotechnology so that this technology easily incorporates into different industries without creating social, moral, and ethical concerns. Wide-scale collaboration is needed among technologists, engineers, biologists, and industrials for a prospective future associated with the wide-scale application of nanotechnology in diversified fields.

4. Conclusions

Highly cost-effective and vibrant nanotechnologies are being introduced in materials and mechanical sciences. A comprehensive overview of such technologies has been covered in this study. This review will help researchers and professionals from different fields to delve deeper into the applications of nanotechnology in their particular areas of interest. Indeed, the applications of nanotechnology are immense, yet the risks attached to unlimited applications remain unclear and unpronounced. Thus, more work needs to be linked and carefully ascertained so that further solutions can be determined in the realm of nanotoxicology. Moreover, it is recommended that researchers, technicians, and industrialists should cooperate at the field and educational level to explore options and usefully exploit nanotechnology in field experiments. Additionally, more developments should be made and carefully assessed at the nano scale for a future world, so that we are aware of this massive technology. The magnificent applications of nanotechnology in the industrial world makes one think that soon, the offerings of nanotechnology will be incorporated into every possible industry. However, there is a need to take precautionary measures to be aware of and educate ourselves about the environmental and pollution concerns alongside health-related harms to living things that may arise due to the deviant use of nanotechnology. This is important because the aspect of sustainability is being increasingly considered throughout the world. So, by coupling the aspect of sustainability with nanotechnology, a prosperous future of nanotechnology can be guaranteed.

Funding Statement

K.M.’s work is supported by United Arab Emirates University-UPAR-Grant#G3458, SURE plus Grant#3908 and SDG research programme grant#4065.

Author Contributions

Conceptualization, Y.W. methodology, S.M. validation, S.M., K.M. and Y.W. formal analysis, S.M., K.M. and Y.W. investigation, S.M., K.M. and Y.W. resources, K.M. and Y.W. data curation, S.M., K.M. and Y.W. writing—original draft preparation, S.M. writing—review and editing, S.M., K.M. and Y.W. supervision, Y.W. project administration, K.M. and Y.W. funding acquisition, Y.W. and K.M. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

“Nanostitches” enable lighter and tougher composite materials

Press contact :, media download.

A diagram shows a box of rows of long silver tubes stacked on top of each other. Tiny brown objects representing carbon nanotubes are in between the layers. An inset enlarges the brown objects and they are an array of tree-like scaffolding.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

A diagram shows a box of rows of long silver tubes stacked on top of each other. Tiny brown objects representing carbon nanotubes are in between the layers. An inset enlarges the brown objects and they are an array of tree-like scaffolding.

Previous image Next image

To save on fuel and reduce aircraft emissions, engineers are looking to build lighter, stronger airplanes out of advanced composites. These engineered materials are made from high-performance fibers that are embedded in polymer sheets. The sheets can be stacked and pressed into one multilayered material and made into extremely lightweight and durable structures.

But composite materials have one main vulnerability: the space between layers, which is typically filled with polymer “glue” to bond the layers together. In the event of an impact or strike, cracks can easily spread between layers and weaken the material, even though there may be no visible damage to the layers themselves. Over time, as these hidden cracks spread between layers, the composite could suddenly crumble without warning.

Now, MIT engineers have shown they can prevent cracks from spreading between composite’s layers, using an approach they developed called “nanostitching,” in which they deposit chemically grown microscopic forests of carbon nanotubes between composite layers. The tiny, densely packed fibers grip and hold the layers together, like ultrastrong Velcro, preventing the layers from peeling or shearing apart.

In experiments with an advanced composite known as thin-ply carbon fiber laminate, the team demonstrated that layers bonded with nanostitching improved the material’s resistance to cracks by up to 60 percent, compared with composites with conventional polymers. The researchers say the results help to address the main vulnerability in advanced composites.

“Just like phyllo dough flakes apart, composite layers can peel apart because this interlaminar region is the Achilles’ heel of composites,” says Brian Wardle, professor of aeronautics and astronautics at MIT. “We’re showing that nanostitching makes this normally weak region so strong and tough that a crack will not grow there. So, we could expect the next generation of aircraft to have composites held together with this nano-Velcro, to make aircraft safer and have greater longevity.”

Wardle and his colleagues have published their results today in the journal ACS Applied Materials and Interfaces . The study’s first author is former MIT visiting graduate student and postdoc Carolina Furtado, along with Reed Kopp, Xinchen Ni, Carlos Sarrado, Estelle Kalfon-Cohen, and Pedro Camanho.

Forest growth

At MIT, Wardle is director of the necstlab (pronounced “next lab”), where he and his group first developed the concept for nanostitching. The approach involves “growing” a forest of vertically aligned carbon nanotubes — hollow fibers of carbon, each so small that tens of billions of the the nanotubes can stand in an area smaller than a fingernail. To grow the nanotubes, the team used a process of chemical vapor deposition to react various catalysts in an oven, causing carbon to settle onto a surface as tiny, hair-like supports. The supports are eventually removed, leaving behind a densely packed forest of microscopic, vertical rolls of carbon.

The lab has previously shown that the nanotube forests can be grown and adhered to layers of composite material, and that this fiber-reinforced compound improves the material’s overall strength. The researchers had also seen some signs that the fibers can improve a composite’s resistance to cracks between layers.

In their new study, the engineers took a more in-depth look at the between-layer region in composites to test and quantify how nanostitching would improve the region’s resistance to cracks. In particular, the study focused on an advanced composite material known as thin-ply carbon fiber laminates.

“This is an emerging composite technology, where each layer, or ply, is about 50 microns thin, compared to standard composite plies that are 150 microns, which is about the diameter of a human hair. There’s evidence to suggest they are better than standard-thickness composites. And we wanted to see whether there might be synergy between our nanostitching and this thin-ply technology, since it could lead to more resilient aircraft, high-value aerospace structures, and space and military vehicles,” Wardle says.

Velcro grip

The study’s experiments were led by Carolina Furtado, who joined the effort as part of the MIT-Portugal program in 2016, continued the project as a postdoc, and is now a professor at the University of Porto in Portugal, where her research focuses on modeling cracks and damage in advanced composites.

In her tests, Furtado used the group’s techniques of chemical vapor deposition to grow densely packed forests of vertically aligned carbon nanotubes. She also fabricated samples of thin-ply carbon fiber laminates. The resulting advanced composite was about 3 millimeters thick and comprised 60 layers, each made from stiff, horizontal fibers embedded in a polymer sheet.

She transferred and adhered the nanotube forest in between the two middle layers of the composite, then cooked the material in an autoclave to cure. To test crack resistance, the researchers placed a crack on the edge of the composite, right at the start of the region between the two middle layers.

“In fracture testing, we always start with a crack because we want to test whether and how far the crack will spread,” Furtado explains.

The researchers then placed samples of the nanotube-reinforced composite in an experimental setup to test their resilience to “delamination,” or the potential for layers to separate.

“There’s lots of ways you can get precursors to delamination, such as from impacts, like tool drop, bird strike, runway kickup in aircraft, and there could be almost no visible damage, but internally it has a delamination,” Wardle says. “Just like a human, if you’ve got a hairline fracture in a bone, it’s not good. Just because you can’t see it doesn’t mean it’s not impacting you. And damage in composites is hard to inspect.”

To examine nanostitching’s potential to prevent delamination, the team placed their samples in a setup to test three delamination modes, in which a crack could spread through the between-layer region and peel the layers apart or cause them to slide against each other, or do a combination of both. All three of these modes are the most common ways in which conventional composites can internally flake and crumble.

The tests, in which the researchers precisely measured the force required to peel or shear the composite’s layers, revealed that the nanostitched held fast, and the initial crack that the researchers made was unable to spread further between the layers. The nanostitched samples were up to 62 percent tougher and more resistant to cracks, compared with the same advanced composite material that was held together with conventional polymers.

“This is a new composite technology, turbocharged by our nanotubes,” Wardle says.

“The authors have demonsrated that thin plies and nanostitching together have made significant increase in toughness,” says Stephen Tsai, emeritus professor of aeronautics and astronautics at Stanford University. “Composites are degraded by their weak interlaminar strength. Any improvement shown in this work will increase the design allowable, and reduce the weight and cost of composites technology.”

The researchers envision that any vehicle or structure that incorporates conventional composites could be made lighter, tougher, and more resilient with nanostitching.

“You could have selective reinforcement of problematic areas, to reinforce holes or bolted joints, or places where delamination might happen,” Furtado says. “This opens a big window of opportunity.”

Share this news article on:

Related links.

  • Brian Wardle
  • Department of Aeronautics and Astronautics

Related Topics

  • Carbon materials
  • Aeronautical and astronautical engineering
  • Materials science and engineering
  • Nanoscience and nanotechnology

Related Articles

A closeup of a sheet of black carbon with lumpy edges, and the MIT logo appears as if embossed in grey.

In nanotube science, is boron nitride the new carbon?

Sodium-containing compounds, such as those found in common household ingredients like detergent, baking soda, and table salt, are surprisingly effective ingredients for cooking up carbon nanotubes, new MIT study finds.

Pantry ingredients can help grow carbon nanotubes

MIT aerospace engineers have found a way to bond composite layers, producing a material that is substantially stronger and more resistant to damage than other advanced composites. The improvement may lead to stronger, lighter airplane parts.

Carbon nanotube “stitches” strengthen composites

A new film of carbon nanotubes cures composites for airplane wings and fuselages, using only 1 percent of the energy required by traditional, oven-based manufacturing processes.

Taking aircraft manufacturing out of the oven

Previous item Next item

More MIT News

A collage of portraits of the four individuals.

Four MIT faculty named 2023 AAAS Fellows

Read full story →

Blue word balloons in the background are like anonymous tweets. Two green balloons stand out. In the center, orange balloons state that “this post is endorsed by someone published before at CHI and has over 1000 citations” and “@Rita has relevant experience on this topic.”

For more open and equitable public discussions on social media, try “meronymity”

Headshot of Erin Kara with out-of-focus galaxies in the background

Erin Kara named Edgerton Award winner

Collage of 10 grayscale headshots on a frame labeled “HBCU Science Journalism Fellowship"

Knight Science Journalism Program launches HBCU Science Journalism Fellowship

Standing outdoors in front of a large orange structure, a man shows a woman a square, handheld stitching machine.

Q&A: Claire Walsh on how J-PAL’s King Climate Action Initiative tackles the twin climate and poverty crises

A lab technician standing over a piece of equipment, resembling a dryer, with a cloud of vapor coming out of it

A home where world-changing innovations take flight

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

share this!

April 18, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Team finds direct evidence of 'itinerant breeding' in East Coast shorebird species

by University of Rhode Island

Team finds direct evidence of 'itinerant breeding' in East Coast shorebird species

Migration and reproduction are two of the most demanding events in a bird's annual cycle, so much so that the vast majority of migratory birds separate the two tasks into different times of the year.

But a study by University of Rhode Island researchers has found direct evidence of a species—the American woodcock, a migratory shorebird from eastern and central North America—that overlaps periods of migration and reproduction, a rare breeding strategy known as "itinerant breeding." Their work, backed by collaborators across the East Coast, was published in the journal Proceedings of the Royal Society B .

"I think this is a very exciting moment for bird researchers," said Colby Slezak, a URI Ph.D. student in biological and environmental sciences who led the study. "It's interesting to see that these distinct periods in a bird's annual cycle are not so cut and dried. We often think of migration, breeding, fall migration and wintering as separate events. But woodcock are combining two of these into one period, which is interesting because both are so energetically expensive."

"Each year the period of migration is distinct from the period of breeding in the vast majority of migratory birds, presumably because doing so at the same time is simply too costly," said Scott McWilliams, URI professor in natural resources science and principal investigator on the study. "This paper provides the best documented case of a migratory bird that is an itinerant breeder. Such itinerant breeding is exceptionally rare, and documenting exceptions often proves the rules of nature."

The American woodcock—also called a timberdoodle, bogsucker, night partridge, and Labrador twister, among many more—is a migratory shorebird that occurs throughout eastern and central North America but its populations have been declining over the past half century. The species is known for its long, needlelike bill that can extract earthworms from deep in the ground and the males' elaborate mating dance and "peent" call to attract females, Slezak said.

While there are about a dozen bird species in the world believed to be itinerant breeders, the study is the first to show direct evidence of the rare strategy. "They've suspected other species of being itinerant breeders, but this is the first time we've had detailed GPS-tracking data and on-the-ground verification of nests to confirm that this was happening." said Slezak, of Broadalbin, New York.

To do that, the study benefitted from the work of scores of biologists from federal, state and non-governmental agencies along the American woodcock's flyway, from the southern U.S. into Canada, who tagged more than 350 females with GPS transmitters between 2019 and 2022. That initiative was part of the University of Maine's Eastern Woodcock Migration Research Cooperative.

Slezak, whose work on the study was part of his dissertation research, organized and analyzed the tracking data and alerted collaborators along the bird's range to verify possible nesting locations. URI graduate students Liam Corcoran, Megan Gray and Shannon Wesson also worked on other aspects of the woodcock project, all part of a collaborative research program with biologists from the Rhode Island Department of Environmental Management Division of Fish & Wildlife.

"I was looking for really short movement patterns during the breeding season to find suspected nests," Slezak said. "Relying on all of these collaborators from across the East Coast, I would reach out to them to tell them there was a suspected nest. They would travel out to the sites, sometimes quite far. It was amazing that we got the buy-in that we did."

Based on GPS tracking of more than 200 females, the URI study found that more than 80% of the tagged females nested more than once during migration—some up to six times. During northward migration, females traveled an average of 800 kilometers between first and second nests, and shorter distances between subsequent nests, the study said.

During 2021–22, URI researchers oversaw onsite verification of 26 nests from 22 females. Four females nested more than once, three of which migrated a substantial distance northward after their first nest attempt, the study said.

"There are many records of woodcock males singing along their migration routes, which has always been a mystery because it's energetically expensive," said Slezak. "With this new data on females, we're seeing that females are also nesting in the south early, moving north and nesting as they go. So, these males are probably getting breeding opportunities along the way."

While migration and reproduction take a lot of energy, American woodcock reduce the cost in other ways, Slezak said. They have shorter migration distances than other species and have the flexibility of using various young-forest habitats. Also, females are larger than males and their eggs are small relative to the size of the females.

"A lot of birds probably can't do it because they don't have these lower reproductive costs that woodcock have evolved to do," he said.

Another evolutionary driver of itinerant breeding in woodcock could be predation. While they use a variety of habitats—wetlands, young forests with different tree types—they often nest near edges of open fields, leaving them prone to numerous predators.

"We think most of these post-nesting migratory movements are in response to predation events," he said. "They're sitting on the nest and something comes and eats the eggs. The female takes off and keeps migrating north before trying to nest again. What we don't know is: if the female has a successful nest , does she stop nesting the rest of the year?"

Despite steady declines in woodcock populations and their preferred young forest habitat over the last half century, the study offers a glimmer of hope for woodcock, and other itinerant breeders facing the challenges of ongoing human development and climate change.

"Itinerant breeders may be more flexible in their response to environmental change because they are willing to breed in a wide variety of places," said Slezak. "So as long as some suitable habitat remains, the consequences may be less."

Journal information: Proceedings of the Royal Society B

Provided by University of Rhode Island

Explore further

Feedback to editors

nanotechnology related thesis topics

Scientists grow human mini-lungs as animal alternative for nanomaterial safety testing

23 minutes ago

nanotechnology related thesis topics

Training of brain processes makes reading more efficient

24 minutes ago

nanotechnology related thesis topics

'Human-induced' climate change behind deadly Sahel heat wave: Study

34 minutes ago

nanotechnology related thesis topics

Thermal properties of new 2D materials for microchips can now be measured well

49 minutes ago

nanotechnology related thesis topics

How insects control their wings: The mysterious mechanics of insect flight

56 minutes ago

nanotechnology related thesis topics

Data-driven music: Converting climate measurements into music

58 minutes ago

nanotechnology related thesis topics

Discovery of new ancient giant snake in India

nanotechnology related thesis topics

Researchers create nanomembrane to increase reaction rate in chemical production

nanotechnology related thesis topics

Researchers reveal a hidden trait in Mycobacterium genomes governing stress adaptation

nanotechnology related thesis topics

Scientists experimentally observe current-driven antiskyrmion sliding

2 hours ago

Relevant PhysicsForums posts

Can four legged animals drink from beneath their feet.

Apr 15, 2024

Mold in Plastic Water Bottles? What does it eat?

Apr 14, 2024

Dolphins don't breathe through their esophagus

Is this egg-laying or something else.

Apr 13, 2024

Color Recognition: What we see vs animals with a larger color range

Apr 12, 2024

How to Implement Beamforming in Ultrasound Diffraction Tomography

Apr 10, 2024

More from Biology and Medical

Related Stories

nanotechnology related thesis topics

Rare 'itinerant breeding' behavior revealed in California bird

Oct 15, 2019

nanotechnology related thesis topics

Study explores the possible benefits of cooperative polyandry

May 2, 2019

nanotechnology related thesis topics

Shorebirds more likely to divorce after successful breeding

Sep 24, 2020

nanotechnology related thesis topics

Canberra's superb parrots caught up in housing crisis

Feb 10, 2023

nanotechnology related thesis topics

Biologists discover migratory patterns of two North American grassland bird species

Feb 5, 2019

nanotechnology related thesis topics

Put eggs all in one basket, or spread them around? Birds know best

Feb 27, 2019

Recommended for you

nanotechnology related thesis topics

Soil bacteria link their life strategies to soil conditions: Study

18 hours ago

nanotechnology related thesis topics

Honey bees experience multiple health stressors out in the field

21 hours ago

nanotechnology related thesis topics

East coast mussel shells are becoming more porous in warming waters

nanotechnology related thesis topics

Mountain chickadees have remarkable memories. A new study explains why

22 hours ago

nanotechnology related thesis topics

New study calls into question prior study results that found tumor transmission slowing in Tasmanian devils

Apr 17, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. Nanotechnology: Basic introduction to the nanotechnology

    nanotechnology related thesis topics

  2. Studying The Future Prospective Of Nanotechnology Computer Science

    nanotechnology related thesis topics

  3. dna-nanotechnology-thesis (1).pptx

    nanotechnology related thesis topics

  4. Thesis on nanotechnology

    nanotechnology related thesis topics

  5. 🎉 Nanotechnology thesis topics. The most innovative PhD thesis in

    nanotechnology related thesis topics

  6. Recent Trends in Nanochemistry and Nanotechnology : AkiNik Publications

    nanotechnology related thesis topics

VIDEO

  1. Susan Lindquist: Protein Folding and Nanotechnology

  2. Nanobots 😨 l What Is Nanotechnology ⁉️ New In Science & Technology #scienceandtechnology #science

  3. Nanotechnology

  4. Architecture Thesis Topics: Sustainability #architecture #thesis #thesisproject #design #school

  5. Navigating Nano Episode 23: Dr. Jie Liu

  6. Top 10 Human Resource Thesis research topics research paper

COMMENTS

  1. Frontiers in Nanotechnology

    Nanotechnology-enabled Agriculture and its Environmental Impact. Xiaoping Xin. Zhenli He. Wiqar Ahmad. 629 views. An interdisciplinary journal across nanoscience and nanotechnology, at the interface of chemistry, physics, materials science and engineering. It focuses on new nanofabrication methods and their ap...

  2. Brown Digital Repository

    Nano-Selenium: Novel Formulations for Biological and Environmental Applications. Description: This dissertation demonstrates, in multiple ways, that nanotechnology can be used to engineer effective solutions. This dissertation employs the colloidal route for synthesis of elemental ….

  3. Thesis

    Nanotechnology is starting to play a role in a number of commercial products, though in an evolutionary, rather than revolutionary way, says Peter Dobson. Peter Dobson Thesis 08 Nov 2016

  4. Selected Topics in Nanoscience and Nanotechnology

    Selected Topics in Nanoscience and Nanotechnology contains a collection of papers in the subfields of scanning probe microscopy, nanofabrication, functional nanoparticles and nanomaterials, molecular engineering and bionanotechnology. Written by experts in their respective fields, it is intended for a general scientific readership who may be non-specialists in these subjects, but who want a ...

  5. Research articles

    Tumour cell behaviour is an underdeveloped target for cancer intervention. Here the authors report on a spatiotemporal interaction between tumour cells and osteoclasts in initial bone metastases ...

  6. Nano-biotechnology, an applicable approach for sustainable future

    Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and plasticity. Diverse biotic (e.g., Capsid of viruses ...

  7. Articles in 2020

    New mechanistic insights into nanoparticle-plant interactions show that specifically designed silica nanoparticles have the potential to serve as an inexpensive, highly efficient, safe and ...

  8. Teaching Nanotechnology through Research Proposals

    At the beginning of the course, every student chooses a partner and a nanotechnology-related topic for the project. A list of topics is available for inspiration (see Figure S1 in the Supporting Information), but the students are encouraged to propose any contemporary nanotechnology-related topic that sparks their interest. In the course of 8 ...

  9. Analysis of Nanosciences and Nanotechnology and Their Applications

    Nanotechnology is a relatively recent topic in scientific research developments. However, central concepts exist over a longer period. ... Nanotechnology encompasses science, engineering, and technology at the nanoscale, which is about 1 to 100 nanometers. a nanometer is small as one-billionth of a meter. For reference, a

  10. Teaching Nanotechnology through Research Proposals

    Combined with interactive lectures in which the students critically discuss newly introduced concepts and topics, this creates a unique interplay of teaching methods which may be used in an introductory nanotechnology course. The importance of writing a research/grant proposal in science has already been recognized,63−65 and teaching ...

  11. Nanotechnology: A Revolution in Modern Industry

    Nanotechnology, contrary to its name, has massively revolutionized industries around the world. This paper predominantly deals with data regarding the applications of nanotechnology in the modernization of several industries. A comprehensive research strategy is adopted to incorporate the latest data driven from major science platforms. Resultantly, a broad-spectrum overview is presented which ...

  12. (PDF) Nanotechnology: A Review

    Nanotechnology is the study of the controlling the matter on an atom and molecular scale. Generally nanotechnology deals with structures sized between 1-100 nanometers in at least one. dimension ...

  13. Exploring your topic

    Sample Primo search on nanotechnology and climate change; Energy capture and storage Online book: Sridharan, Karthiyayini (2018). Emerging Trends of Nanotechnology in Environment and Sustainability: a Review-Based Approach. SpringerBriefs in Environmental Science. Sample Primo search on nanotechnology and energy storage; Electronics and photonics

  14. Molecules

    The topics related to nanotechnology have recently attracted a great deal of attention from scientists around the world. Over the past 20 years, the number of literature items related to this subject has experienced tremendous growth, as shown in the chart below . The number of scientific papers with the keyword "nano" is increasing over ...

  15. Delineating development trends of nanotechnology in the semiconductor

    During the period, 3001.194 nanotechnology-related papers have been published annually on average, whereas 226.290 nanotechnology-related patents have been applied annually on average. ... On the contrary, quantum device is relatively more science-oriented than other topics because related research subjects such as quantum computing are still ...

  16. Nanoscience and technology

    RSS Feed. Nanoscience and technology is the branch of science that studies systems and manipulates matter on atomic, molecular and supramolecular scales (the nanometre scale). On such a length ...

  17. Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest

    1. Introduction. Nanotechnology and nanodelivery systems are innovative areas of science that comprise the design, characterization, manufacturing, and application of materials, devices, and systems at the nanoscale level (1-100 nm). Nanotechnology, being recognized as one of the revolutionizing technologies, is extensively studied in the ...

  18. Dissertations / Theses: 'Nanotechnology research'

    Video (online) Consult the top 50 dissertations / theses for your research on the topic 'Nanotechnology research.'. Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA ...

  19. Nano-biotechnology, an applicable approach for sustainable future

    Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and ...

  20. Dissertations / Theses: 'Nanoscience and Nanotechnology'

    The context of this dissertation study is Project Nanoscience and Nanotechnology Outreach (NANO), a secondary level professional development program for teachers that provides a summer workshop, academic year coaching and the opportunity for teacher participants to borrow a table-top Phenom scanning electron microscope and a research grade ...

  21. Recent Advances in Biomedical Nanotechnology Related to ...

    Abstract. Natural product processing via nanotechnology has opened the door to innovative and significant applications in medical fields. On one hand, plants-derived bioactive ingredients such as phenols, pentacyclic triterpenes and flavonoids exhibit significant pharmacological activities, on another hand, most of them are hydrophobic in ...

  22. (PDF) Teaching Nanotechnology through Research Proposals

    course, 64 66 67 69. we feel that a research proposal is a highly. suited approach for a course on nanotechnology where there is a. strong emphasis on the most recent advances and on the ...

  23. Nanotechnology: A Revolution in Modern Industry

    Abstract. Nanotechnology, contrary to its name, has massively revolutionized industries around the world. This paper predominantly deals with data regarding the applications of nanotechnology in the modernization of several industries. A comprehensive research strategy is adopted to incorporate the latest data driven from major science platforms.

  24. "Nanostitches" enable lighter and tougher composite materials

    Caption: Nanostitching involves "growing" a forest of vertically aligned carbon nanotubes (CNT) on a wafer of silicon, through a process of chemical vapor deposition. The CNT-deposited wafer (to the left in grid "a") is then inverted and pressed onto a larger composite ply (b), and lifted away, leaving the CNTs on the composite's surface (c).

  25. Team finds direct evidence of 'itinerant breeding' in East Coast

    Slezak, whose work on the study was part of his dissertation research, organized and analyzed the tracking data and alerted collaborators along the bird's range to verify possible nesting locations.