graphic representation meaning in english

Graphical Representation

Graphical representation definition.

Graphical representation refers to the use of charts and graphs to visually display, analyze, clarify, and interpret numerical data, functions, and other qualitative structures. ‍

graphic representation meaning in english

What is Graphical Representation?

Graphical representation refers to the use of intuitive charts to clearly visualize and simplify data sets. Data is ingested into graphical representation of data software and then represented by a variety of symbols, such as lines on a line chart, bars on a bar chart, or slices on a pie chart, from which users can gain greater insight than by numerical analysis alone. 

Representational graphics can quickly illustrate general behavior and highlight phenomenons, anomalies, and relationships between data points that may otherwise be overlooked, and may contribute to predictions and better, data-driven decisions. The types of representational graphics used will depend on the type of data being explored.

Types of Graphical Representation

Data charts are available in a wide variety of maps, diagrams, and graphs that typically include textual titles and legends to denote the purpose, measurement units, and variables of the chart. Choosing the most appropriate chart depends on a variety of different factors -- the nature of the data, the purpose of the chart, and whether a graphical representation of qualitative data or a graphical representation of quantitative data is being depicted. There are dozens of different formats for graphical representation of data. Some of the most popular charts include:

  • Bar Graph -- contains a vertical axis and horizontal axis and displays data as rectangular bars with lengths proportional to the values that they represent; a useful visual aid for marketing purposes
  • Choropleth -- thematic map in which an aggregate summary of a geographic characteristic within an area is represented by patterns of shading proportionate to a statistical variable
  • Flow Chart -- diagram that depicts a workflow graphical representation with the use of arrows and geometric shapes; a useful visual aid for business and finance purposes
  • Heatmap -- a colored, two-dimensional matrix of cells in which each cell represents a grouping of data and each cell’s color indicates its relative value
  • Histogram – frequency distribution and graphical representation uses adjacent vertical bars erected over discrete intervals to represent the data frequency within a given interval; a useful visual aid for meteorology and environment purposes
  • Line Graph – displays continuous data; ideal for predicting future events over time;  a useful visual aid for marketing purposes
  • Pie Chart -- shows percentage values as a slice of pie; a useful visual aid for marketing purposes
  • Pointmap -- CAD & GIS contract mapping and drafting solution that visualizes the location of data on a map by plotting geographic latitude and longitude data
  • Scatter plot -- a diagram that shows the relationship between two sets of data, where each dot represents individual pieces of data and each axis represents a quantitative measure
  • Stacked Bar Graph -- a graph in which each bar is segmented into parts, with the entire bar representing the whole, and each segment representing different categories of that whole; a useful visual aid for political science and sociology purposes
  • Timeline Chart -- a long bar labelled with dates paralleling it that display a list of events in chronological order, a useful visual aid for history charting purposes
  • Tree Diagram -- a hierarchical genealogical tree that illustrates a family structure; a useful visual aid for history charting purposes
  • Venn Diagram -- consists of multiple overlapping usually circles, each representing a set; the default inner join graphical representation

Proprietary and open source software for graphical representation of data is available in a wide variety of programming languages. Software packages often provide spreadsheets equipped with built-in charting functions.

Advantages and Disadvantages of Graphical Representation of Data

Tabular and graphical representation of data are a vital component in analyzing and understanding large quantities of numerical data and the relationship between data points. Data visualization is one of the most fundamental approaches to data analysis, providing an intuitive and universal means to visualize, abstract, and share complex data patterns. The primary advantages of graphical representation of data are:

  • Facilitates and improves learning: graphics make data easy to understand and eliminate language and literacy barriers
  • Understanding content: visuals are more effective than text in human understanding
  • Flexibility of use: graphical representation can be leveraged in nearly every field involving data
  • Increases structured thinking: users can make quick, data-driven decisions at a glance with visual aids
  • Supports creative, personalized reports for more engaging and stimulating visual  presentations 
  • Improves communication: analyzing graphs that highlight relevant themes is significantly faster than reading through a descriptive report line by line
  • Shows the whole picture: an instantaneous, full view of all variables, time frames, data behavior and relationships

Disadvantages of graphical representation of data typically concern the cost of human effort and resources, the process of selecting the most appropriate graphical and tabular representation of data, greater design complexity of visualizing data, and the potential for human bias.

Why Graphical Representation of Data is Important

Graphic visual representation of information is a crucial component in understanding and identifying patterns and trends in the ever increasing flow of data. Graphical representation enables the quick analysis of large amounts of data at one time and can aid in making predictions and informed decisions. Data visualizations also make collaboration significantly more efficient by using familiar visual metaphors to illustrate relationships and highlight meaning, eliminating complex, long-winded explanations of an otherwise chaotic-looking array of figures. 

Data only has value once its significance has been revealed and consumed, and its consumption is best facilitated with graphical representation tools that are designed with human cognition and perception in mind. Human visual processing is very efficient at detecting relationships and changes between sizes, shapes, colors, and quantities. Attempting to gain insight from numerical data alone, especially in big data instances in which there may be billions of rows of data, is exceedingly cumbersome and inefficient.

Does HEAVY.AI Offer a Graphical Representation Solution?

HEAVY.AI's visual analytics platform is an interactive data visualization client that works seamlessly with server-side technologies HEAVY.AIDB and Render to enable data science analysts to easily visualize and instantly interact with massive datasets. Analysts can interact with conventional charts and data tables, as well as big data graphical representations such as massive-scale scatterplots and geo charts. Data visualization contributes to a broad range of use cases, including performance analysis in business and guiding research in academia.

  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

Visual Representation

What is visual representation.

Visual Representation refers to the principles by which markings on a surface are made and interpreted. Designers use representations like typography and illustrations to communicate information, emotions and concepts. Color, imagery, typography and layout are crucial in this communication.

Alan Blackwell, cognition scientist and professor, gives a brief introduction to visual representation:

  • Transcript loading…

We can see visual representation throughout human history, from cave drawings to data visualization :

Art uses visual representation to express emotions and abstract ideas.

Financial forecasting graphs condense data and research into a more straightforward format.

Icons on user interfaces (UI) represent different actions users can take.

The color of a notification indicates its nature and meaning.

A painting of an abstract night sky over a village, with a tree in the foreground.

Van Gogh's "The Starry Night" uses visuals to evoke deep emotions, representing an abstract, dreamy night sky. It exemplifies how art can communicate complex feelings and ideas.

© Public domain

Importance of Visual Representation in Design

Designers use visual representation for internal and external use throughout the design process . For example:

Storyboards are illustrations that outline users’ actions and where they perform them.

Sitemaps are diagrams that show the hierarchy and navigation structure of a website.

Wireframes are sketches that bring together elements of a user interface's structure.

Usability reports use graphs and charts to communicate data gathered from usability testing.

User interfaces visually represent information contained in applications and computerized devices.

A sample usability report that shows a few statistics, a bell curve and a donut chart.

This usability report is straightforward to understand. Yet, the data behind the visualizations could come from thousands of answered surveys.

© Interaction Design Foundation, CC BY-SA 4.0

Visual representation simplifies complex ideas and data and makes them easy to understand. Without these visual aids, designers would struggle to communicate their ideas, findings and products . For example, it would be easier to create a mockup of an e-commerce website interface than to describe it with words.

A side-by-side comparison of a simple mockup, and a very verbose description of the same mockup. A developer understands the simple one, and is confused by the verbose one.

Visual representation simplifies the communication of designs. Without mockups, it would be difficult for developers to reproduce designs using words alone.

Types of Visual Representation

Below are some of the most common forms of visual representation designers use.

Text and Typography

Text represents language and ideas through written characters and symbols. Readers visually perceive and interpret these characters. Typography turns text into a visual form, influencing its perception and interpretation.

We have developed the conventions of typography over centuries , for example, in documents, newspapers and magazines. These conventions include:

Text arranged on a grid brings clarity and structure. Gridded text makes complex information easier to navigate and understand. Tables, columns and other formats help organize content logically and enhance readability.

Contrasting text sizes create a visual hierarchy and draw attention to critical areas. For example, headings use larger text while body copy uses smaller text. This contrast helps readers distinguish between primary and secondary information.

Adequate spacing and paragraphing improve the readability and appearance of the text. These conventions prevent the content from appearing cluttered. Spacing and paragraphing make it easier for the eye to follow and for the brain to process the information.

Balanced image-to-text ratios create engaging layouts. Images break the monotony of text, provide visual relief and illustrate or emphasize points made in the text. A well-planned ratio ensures neither text nor images overwhelm each other. Effective ratios make designs more effective and appealing.

Designers use these conventions because people are familiar with them and better understand text presented in this manner.

A table of names and numbers indicating the funerals of victims of the plague in London in 1665.

This table of funerals from the plague in London in 1665 uses typographic conventions still used today. For example, the author arranged the information in a table and used contrasting text styling to highlight information in the header.

Illustrations and Drawings

Designers use illustrations and drawings independently or alongside text. An example of illustration used to communicate information is the assembly instructions created by furniture retailer IKEA. If IKEA used text instead of illustrations in their instructions, people would find it harder to assemble the furniture.

A diagram showing how to assemble a chest of drawers from furniture retailer IKEA.

IKEA assembly instructions use illustrations to inform customers how to build their furniture. The only text used is numeric to denote step and part numbers. IKEA communicates this information visually to: 1. Enable simple communication, 2. Ensure their instructions are easy to follow, regardless of the customer’s language.

© IKEA, Fair use

Illustrations and drawings can often convey the core message of a visual representation more effectively than a photograph. They focus on the core message , while a photograph might distract a viewer with additional details (such as who this person is, where they are from, etc.)

For example, in IKEA’s case, photographing a person building a piece of furniture might be complicated. Further, photographs may not be easy to understand in a black-and-white print, leading to higher printing costs. To be useful, the pictures would also need to be larger and would occupy more space on a printed manual, further adding to the costs.

But imagine a girl winking—this is something we can easily photograph. 

Ivan Sutherland, creator of the first graphical user interface, used his computer program Sketchpad to draw a winking girl. While not realistic, Sutherland's representation effectively portrays a winking girl. The drawing's abstract, generic elements contrast with the distinct winking eye. The graphical conventions of lines and shapes represent the eyes and mouth. The simplicity of the drawing does not draw attention away from the winking.

A simple illustration of a winking girl next to a photograph of a winking girl.

A photo might distract from the focused message compared to Sutherland's representation. In the photo, the other aspects of the image (i.e., the particular person) distract the viewer from this message.

© Ivan Sutherland, CC BY-SA 3.0 and Amina Filkins, Pexels License

Information and Data Visualization

Designers and other stakeholders use data and information visualization across many industries.

Data visualization uses charts and graphs to show raw data in a graphic form. Information visualization goes further, including more context and complex data sets. Information visualization often uses interactive elements to share a deeper understanding.

For example, most computerized devices have a battery level indicator. This is a type of data visualization. IV takes this further by allowing you to click on the battery indicator for further insights. These insights may include the apps that use the most battery and the last time you charged your device.

A simple battery level icon next to a screenshot of a battery information dashboard.

macOS displays a battery icon in the menu bar that visualizes your device’s battery level. This is an example of data visualization. Meanwhile, macOS’s settings tell you battery level over time, screen-on-usage and when you last charged your device. These insights are actionable; users may notice their battery drains at a specific time. This is an example of information visualization.

© Low Battery by Jemis Mali, CC BY-NC-ND 4.0, and Apple, Fair use

Information visualization is not exclusive to numeric data. It encompasses representations like diagrams and maps. For example, Google Maps collates various types of data and information into one interface:

Data Representation: Google Maps transforms complex geographical data into an easily understandable and navigable visual map.

Interactivity: Users can interactively customize views that show traffic, satellite imagery and more in real-time.

Layered Information: Google Maps layers multiple data types (e.g., traffic, weather) over geographical maps for comprehensive visualization.

User-Centered Design : The interface is intuitive and user-friendly, with symbols and colors for straightforward data interpretation.

A screenshot of Google Maps showing the Design Museum in London, UK. On the left is a profile of the location, on the right is the map.

The volume of data contained in one screenshot of Google Maps is massive. However, this information is presented clearly to the user. Google Maps highlights different terrains with colors and local places and businesses with icons and colors. The panel on the left lists the selected location’s profile, which includes an image, rating and contact information.

© Google, Fair use

Symbolic Correspondence

Symbolic correspondence uses universally recognized symbols and signs to convey specific meanings . This method employs widely recognized visual cues for immediate understanding. Symbolic correspondence removes the need for textual explanation.

For instance, a magnifying glass icon in UI design signifies the search function. Similarly, in environmental design, symbols for restrooms, parking and amenities guide visitors effectively.

A screenshot of the homepage Interaction Design Foundation website. Across the top is a menu bar. Beneath the menu bar is a header image with a call to action.

The Interaction Design Foundation (IxDF) website uses the universal magnifying glass symbol to signify the search function. Similarly, the play icon draws attention to a link to watch a video.

How Designers Create Visual Representations

Visual language.

Designers use elements like color , shape and texture to create a communicative visual experience. Designers use these 8 principles:

Size – Larger elements tend to capture users' attention readily.

Color – Users are typically drawn to bright colors over muted shades.

Contrast – Colors with stark contrasts catch the eye more effectively.

Alignment – Unaligned elements are more noticeable than those aligned ones.

Repetition – Similar styles repeated imply a relationship in content.

Proximity – Elements placed near each other appear to be connected.

Whitespace – Elements surrounded by ample space attract the eye.

Texture and Style – Users often notice richer textures before flat designs.

graphic representation meaning in english

The 8 visual design principles.

In web design , visual hierarchy uses color and repetition to direct the user's attention. Color choice is crucial as it creates contrast between different elements. Repetition helps to organize the design—it uses recurring elements to establish consistency and familiarity.

In this video, Alan Dix, Professor and Expert in Human-Computer Interaction, explains how visual alignment affects how we read and absorb information:

Correspondence Techniques

Designers use correspondence techniques to align visual elements with their conceptual meanings. These techniques include color coding, spatial arrangement and specific imagery. In information visualization, different colors can represent various data sets. This correspondence aids users in quickly identifying trends and relationships .

Two pie charts showing user satisfaction. One visualizes data 1 day after release, and the other 1 month after release. The colors are consistent between both charts, but the segment sizes are different.

Color coding enables the stakeholder to see the relationship and trend between the two pie charts easily.

In user interface design, correspondence techniques link elements with meaning. An example is color-coding notifications to state their nature. For instance, red for warnings and green for confirmation. These techniques are informative and intuitive and enhance the user experience.

A screenshot of an Interaction Design Foundation course page. It features information about the course and a video. Beneath this is a pop-up asking the user if they want to drop this course.

The IxDF website uses blue for call-to-actions (CTAs) and red for warnings. These colors inform the user of the nature of the action of buttons and other interactive elements.

Perception and Interpretation

If visual language is how designers create representations, then visual perception and interpretation are how users receive those representations. Consider a painting—the viewer’s eyes take in colors, shapes and lines, and the brain perceives these visual elements as a painting.

In this video, Alan Dix explains how the interplay of sensation, perception and culture is crucial to understanding visual experiences in design:

Copyright holder: Michael Murphy _ Appearance time: 07:19 - 07:37 _ Link: https://www.youtube.com/watch?v=C67JuZnBBDc

Visual perception principles are essential for creating compelling, engaging visual representations. For example, Gestalt principles explain how we perceive visual information. These rules describe how we group similar items, spot patterns and simplify complex images. Designers apply Gestalt principles to arrange content on websites and other interfaces. This application creates visually appealing and easily understood designs.

In this video, design expert and teacher Mia Cinelli discusses the significance of Gestalt principles in visual design . She introduces fundamental principles, like figure/ground relationships, similarity and proximity.

Interpretation

Everyone's experiences, culture and physical abilities dictate how they interpret visual representations. For this reason, designers carefully consider how users interpret their visual representations. They employ user research and testing to ensure their designs are attractive and functional.

A painting of a woman sitting and looking straight at the viewer. Her expression is difficult to read.

Leonardo da Vinci's "Mona Lisa", is one of the most famous paintings in the world. The piece is renowned for its subject's enigmatic expression. Some interpret her smile as content and serene, while others see it as sad or mischievous. Not everyone interprets this visual representation in the same way.

Color is an excellent example of how one person, compared to another, may interpret a visual element. Take the color red:

In Chinese culture, red symbolizes luck, while in some parts of Africa, it can mean death or illness.

A personal experience may mean a user has a negative or positive connotation with red.

People with protanopia and deuteranopia color blindness cannot distinguish between red and green.

In this video, Joann and Arielle Eckstut, leading color consultants and authors, explain how many factors influence how we perceive and interpret color:

Learn More about Visual Representation

Read Alan Blackwell’s chapter on visual representation from The Encyclopedia of Human-Computer Interaction.

Learn about the F-Shaped Pattern For Reading Web Content from Jakob Nielsen.

Read Smashing Magazine’s article, Visual Design Language: The Building Blocks Of Design .

Take the IxDF’s course, Perception and Memory in HCI and UX .

Questions related to Visual Representation

Some highly cited research on visual representation and related topics includes:

Roland, P. E., & Gulyás, B. (1994). Visual imagery and visual representation. Trends in Neurosciences, 17(7), 281-287. Roland and Gulyás' study explores how the brain creates visual imagination. They look at whether imagining things like objects and scenes uses the same parts of the brain as seeing them does. Their research shows the brain uses certain areas specifically for imagination. These areas are different from the areas used for seeing. This research is essential for understanding how our brain works with vision.

Lurie, N. H., & Mason, C. H. (2007). Visual Representation: Implications for Decision Making. Journal of Marketing, 71(1), 160-177.

This article looks at how visualization tools help in understanding complicated marketing data. It discusses how these tools affect decision-making in marketing. The article gives a detailed method to assess the impact of visuals on the study and combination of vast quantities of marketing data. It explores the benefits and possible biases visuals can bring to marketing choices. These factors make the article an essential resource for researchers and marketing experts. The article suggests using visual tools and detailed analysis together for the best results.

Lohse, G. L., Biolsi, K., Walker, N., & Rueter, H. H. (1994, December). A classification of visual representations. Communications of the ACM, 37(12), 36+.

This publication looks at how visuals help communicate and make information easier to understand. It divides these visuals into six types: graphs, tables, maps, diagrams, networks and icons. The article also looks at different ways these visuals share information effectively.

​​If you’d like to cite content from the IxDF website , click the ‘cite this article’ button near the top of your screen.

Some recommended books on visual representation and related topics include:

Chaplin, E. (1994). Sociology and Visual Representation (1st ed.) . Routledge.

Chaplin's book describes how visual art analysis has changed from ancient times to today. It shows how photography, post-modernism and feminism have changed how we see art. The book combines words and images in its analysis and looks into real-life social sciences studies.

Mitchell, W. J. T. (1994). Picture Theory. The University of Chicago Press.

Mitchell's book explores the important role and meaning of pictures in the late twentieth century. It discusses the change from focusing on language to focusing on images in cultural studies. The book deeply examines the interaction between images and text in different cultural forms like literature, art and media. This detailed study of how we see and read visual representations has become an essential reference for scholars and professionals.

Koffka, K. (1935). Principles of Gestalt Psychology. Harcourt, Brace & World.

"Principles of Gestalt Psychology" by Koffka, released in 1935, is a critical book in its field. It's known as a foundational work in Gestalt psychology, laying out the basic ideas of the theory and how they apply to how we see and think. Koffka's thorough study of Gestalt psychology's principles has profoundly influenced how we understand human perception. This book has been a significant reference in later research and writings.

A visual representation, like an infographic or chart, uses visual elements to show information or data. These types of visuals make complicated information easier to understand and more user-friendly.

Designers harness visual representations in design and communication. Infographics and charts, for instance, distill data for easier audience comprehension and retention.

For an introduction to designing basic information visualizations, take our course, Information Visualization .

Text is a crucial design and communication element, transforming language visually. Designers use font style, size, color and layout to convey emotions and messages effectively.

Designers utilize text for both literal communication and aesthetic enhancement. Their typography choices significantly impact design aesthetics, user experience and readability.

Designers should always consider text's visual impact in their designs. This consideration includes font choice, placement, color and interaction with other design elements.

In this video, design expert and teacher Mia Cinelli teaches how Gestalt principles apply to typography:

Designers use visual elements in projects to convey information, ideas, and messages. Designers use images, colors, shapes and typography for impactful designs.

In UI/UX design, visual representation is vital. Icons, buttons and colors provide contrast for intuitive, user-friendly website and app interfaces.

Graphic design leverages visual representation to create attention-grabbing marketing materials. Careful color, imagery and layout choices create an emotional connection.

Product design relies on visual representation for prototyping and idea presentation. Designers and stakeholders use visual representations to envision functional, aesthetically pleasing products.

Our brains process visuals 60,000 times faster than text. This fact highlights the crucial role of visual representation in design.

Our course, Visual Design: The Ultimate Guide , teaches you how to use visual design elements and principles in your work effectively.

Visual representation, crucial in UX, facilitates interaction, comprehension and emotion. It combines elements like images and typography for better interfaces.

Effective visuals guide users, highlight features and improve navigation. Icons and color schemes communicate functions and set interaction tones.

UX design research shows visual elements significantly impact emotions. 90% of brain-transmitted information is visual.

To create functional, accessible visuals, designers use color contrast and consistent iconography. These elements improve readability and inclusivity.

An excellent example of visual representation in UX is Apple's iOS interface. iOS combines a clean, minimalist design with intuitive navigation. As a result, the operating system is both visually appealing and user-friendly.

Michal Malewicz, Creative Director and CEO at Hype4, explains why visual skills are important in design:

Learn more about UI design from Michal in our Master Class, Beyond Interfaces: The UI Design Skills You Need to Know .

The fundamental principles of effective visual representation are:

Clarity : Designers convey messages clearly, avoiding clutter.

Simplicity : Embrace simple designs for ease and recall.

Emphasis : Designers highlight key elements distinctively.

Balance : Balance ensures design stability and structure.

Alignment : Designers enhance coherence through alignment.

Contrast : Use contrast for dynamic, distinct designs.

Repetition : Repeating elements unify and guide designs.

Designers practice these principles in their projects. They also analyze successful designs and seek feedback to improve their skills.

Read our topic description of Gestalt principles to learn more about creating effective visual designs. The Gestalt principles explain how humans group elements, recognize patterns and simplify object perception.

Color theory is vital in design, helping designers craft visually appealing and compelling works. Designers understand color interactions, psychological impacts and symbolism. These elements help designers enhance communication and guide attention.

Designers use complementary , analogous and triadic colors for contrast, harmony and balance. Understanding color temperature also plays a crucial role in design perception.

Color symbolism is crucial, as different colors can represent specific emotions and messages. For instance, blue can symbolize trust and calmness, while red can indicate energy and urgency.

Cultural variations significantly influence color perception and symbolism. Designers consider these differences to ensure their designs resonate with diverse audiences.

For actionable insights, designers should:

Experiment with color schemes for effective messaging. 

Assess colors' psychological impact on the audience. 

Use color contrast to highlight critical elements. 

Ensure color choices are accessible to all.

In this video, Joann and Arielle Eckstut, leading color consultants and authors, give their six tips for choosing color:

Learn more about color from Joann and Arielle in our Master Class, How To Use Color Theory To Enhance Your Designs .

Typography and font choice are crucial in design, impacting readability and mood. Designers utilize them for effective communication and expression.

Designers' perception of information varies with font type. Serif fonts can imply formality, while sans-serifs can give a more modern look.

Typography choices by designers influence readability and user experience. Well-spaced, distinct fonts enhance readability, whereas decorative fonts may hinder it.

Designers use typography to evoke emotions and set a design's tone. Choices in font size, style and color affect the emotional impact and message clarity.

Designers use typography to direct attention, create hierarchy and establish rhythm. These benefits help with brand recognition and consistency across mediums.

Read our article to learn how web fonts are critical to the online user experience .

Designers create a balance between simplicity and complexity in their work. They focus on the main messages and highlight important parts. Designers use the principles of visual hierarchy, like size, color and spacing. They also use empty space to make their designs clear and understandable.

The Gestalt law of Prägnanz suggests people naturally simplify complex images. This principle aids in making even intricate information accessible and engaging.

Through iteration and feedback, designers refine visuals. They remove extraneous elements and highlight vital information. Testing with the target audience ensures the design resonates and is comprehensible.

Michal Malewicz explains how to master hierarchy in UI design using the Gestalt rule of proximity:

Literature on Visual Representation

Here’s the entire UX literature on Visual Representation by the Interaction Design Foundation, collated in one place:

Learn more about Visual Representation

Take a deep dive into Visual Representation with our course Perception and Memory in HCI and UX .

How does all of this fit with interaction design and user experience? The simple answer is that most of our understanding of human experience comes from our own experiences and just being ourselves. That might extend to people like us, but it gives us no real grasp of the whole range of human experience and abilities. By considering more closely how humans perceive and interact with our world, we can gain real insights into what designs will work for a broader audience: those younger or older than us, more or less capable, more or less skilled and so on.

“You can design for all the people some of the time, and some of the people all the time, but you cannot design for all the people all the time.“ – William Hudson (with apologies to Abraham Lincoln)

While “design for all of the people all of the time” is an impossible goal, understanding how the human machine operates is essential to getting ever closer. And of course, building solutions for people with a wide range of abilities, including those with accessibility issues, involves knowing how and why some human faculties fail. As our course tutor, Professor Alan Dix, points out, this is not only a moral duty but, in most countries, also a legal obligation.

Portfolio Project

In the “ Build Your Portfolio: Perception and Memory Project ”, you’ll find a series of practical exercises that will give you first-hand experience in applying what we’ll cover. If you want to complete these optional exercises, you’ll create a series of case studies for your portfolio which you can show your future employer or freelance customers.

This in-depth, video-based course is created with the amazing Alan Dix , the co-author of the internationally best-selling textbook  Human-Computer Interaction and a superstar in the field of Human-Computer Interaction . Alan is currently a professor and Director of the Computational Foundry at Swansea University.

Gain an Industry-Recognized UX Course Certificate

Use your industry-recognized Course Certificate on your resume , CV , LinkedIn profile or your website.

All open-source articles on Visual Representation

Data visualization for human perception.

graphic representation meaning in english

The Key Elements & Principles of Visual Design

graphic representation meaning in english

  • 1.1k shares

Guidelines for Good Visual Information Representations

graphic representation meaning in english

  • 4 years ago

Philosophy of Interaction

Information visualization – an introduction to multivariate analysis.

graphic representation meaning in english

  • 8 years ago

Aesthetic Computing

How to represent linear data visually for information visualization.

graphic representation meaning in english

  • 5 years ago

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this page , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share the knowledge!

Share this content on:

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this page.

New to UX Design? We’re Giving You a Free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

  • Math Article

Graphical Representation

Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical representation. Some of them are as follows:

  • Line Graphs – Line graph or the linear graph is used to display the continuous data and it is useful for predicting future events over time.
  • Bar Graphs – Bar Graph is used to display the category of data and it compares the data using solid bars to represent the quantities.
  • Histograms – The graph that uses bars to represent the frequency of numerical data that are organised into intervals. Since all the intervals are equal and continuous, all the bars have the same width.
  • Line Plot – It shows the frequency of data on a given number line. ‘ x ‘ is placed above a number line each time when that data occurs again.
  • Frequency Table – The table shows the number of pieces of data that falls within the given interval.
  • Circle Graph – Also known as the pie chart that shows the relationships of the parts of the whole. The circle is considered with 100% and the categories occupied is represented with that specific percentage like 15%, 56%, etc.
  • Stem and Leaf Plot – In the stem and leaf plot, the data are organised from least value to the greatest value. The digits of the least place values from the leaves and the next place value digit forms the stems.
  • Box and Whisker Plot – The plot diagram summarises the data by dividing into four parts. Box and whisker show the range (spread) and the middle ( median) of the data.

Graphical Representation

General Rules for Graphical Representation of Data

There are certain rules to effectively present the information in the graphical representation. They are:

  • Suitable Title: Make sure that the appropriate title is given to the graph which indicates the subject of the presentation.
  • Measurement Unit: Mention the measurement unit in the graph.
  • Proper Scale: To represent the data in an accurate manner, choose a proper scale.
  • Index: Index the appropriate colours, shades, lines, design in the graphs for better understanding.
  • Data Sources: Include the source of information wherever it is necessary at the bottom of the graph.
  • Keep it Simple: Construct a graph in an easy way that everyone can understand.
  • Neat: Choose the correct size, fonts, colours etc in such a way that the graph should be a visual aid for the presentation of information.

Graphical Representation in Maths

In Mathematics, a graph is defined as a chart with statistical data, which are represented in the form of curves or lines drawn across the coordinate point plotted on its surface. It helps to study the relationship between two variables where it helps to measure the change in the variable amount with respect to another variable within a given interval of time. It helps to study the series distribution and frequency distribution for a given problem.  There are two types of graphs to visually depict the information. They are:

  • Time Series Graphs – Example: Line Graph
  • Frequency Distribution Graphs – Example: Frequency Polygon Graph

Principles of Graphical Representation

Algebraic principles are applied to all types of graphical representation of data. In graphs, it is represented using two lines called coordinate axes. The horizontal axis is denoted as the x-axis and the vertical axis is denoted as the y-axis. The point at which two lines intersect is called an origin ‘O’. Consider x-axis, the distance from the origin to the right side will take a positive value and the distance from the origin to the left side will take a negative value. Similarly, for the y-axis, the points above the origin will take a positive value, and the points below the origin will a negative value.

Principles of graphical representation

Generally, the frequency distribution is represented in four methods, namely

  • Smoothed frequency graph
  • Pie diagram
  • Cumulative or ogive frequency graph
  • Frequency Polygon

Merits of Using Graphs

Some of the merits of using graphs are as follows:

  • The graph is easily understood by everyone without any prior knowledge.
  • It saves time
  • It allows us to relate and compare the data for different time periods
  • It is used in statistics to determine the mean, median and mode for different data, as well as in the interpolation and the extrapolation of data.

Example for Frequency polygonGraph

Here are the steps to follow to find the frequency distribution of a frequency polygon and it is represented in a graphical way.

  • Obtain the frequency distribution and find the midpoints of each class interval.
  • Represent the midpoints along x-axis and frequencies along the y-axis.
  • Plot the points corresponding to the frequency at each midpoint.
  • Join these points, using lines in order.
  • To complete the polygon, join the point at each end immediately to the lower or higher class marks on the x-axis.

Draw the frequency polygon for the following data

Mark the class interval along x-axis and frequencies along the y-axis.

Let assume that class interval 0-10 with frequency zero and 90-100 with frequency zero.

Now calculate the midpoint of the class interval.

Using the midpoint and the frequency value from the above table, plot the points A (5, 0), B (15, 4), C (25, 6), D (35, 8), E (45, 10), F (55, 12), G (65, 14), H (75, 7), I (85, 5) and J (95, 0).

To obtain the frequency polygon ABCDEFGHIJ, draw the line segments AB, BC, CD, DE, EF, FG, GH, HI, IJ, and connect all the points.

graphic representation meaning in english

Frequently Asked Questions

What are the different types of graphical representation.

Some of the various types of graphical representation include:

  • Line Graphs
  • Frequency Table
  • Circle Graph, etc.

Read More:  Types of Graphs

What are the Advantages of Graphical Method?

Some of the advantages of graphical representation are:

  • It makes data more easily understandable.
  • It saves time.
  • It makes the comparison of data more efficient.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

graphic representation meaning in english

Very useful for understand the basic concepts in simple and easy way. Its very useful to all students whether they are school students or college sudents

Thanks very much for the information

graphic representation meaning in english

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Introduction to Graphs

Table of Contents

15 December 2020                 

Read time: 6 minutes

Introduction

What are graphs?

What are the different types of data?

What are the different types of graphical representations?

The graph is nothing but an organized representation of data. It helps us to understand the data. Data are the numerical information collected through observation.

The word data came from the Latin word Datum which means “something given”

After a research question is developed, data is being collected continuously through observation. Then it is organized, summarized, classified, and then represented graphically.

Differences between Data and information: Data is the raw fact without any add on but the information is the meaning derived from data.

Introduction to Graphs-PDF

The graph is nothing but an organized representation of data. It helps us to understand the data. Data are the numerical information collected through observation. Here is a downloadable PDF to explore more.

  • Line and Bar Graphs Application
  • Graphs in Mathematics & Statistics

What are the different Types of Data?

There are two types of Data :

Types of Data

Quantitative

The data which are statistical or numerical are known as Quantitive data. Quantitive data is generated through. Quantitative data is also known as Structured data. Experiments, Tests, Surveys, Market Report.

Quantitive data is again divided into Continuous data and Discrete data.

Continuous Data

Continuous data is the data which can have any value. That means Continuous data can give infinite outcomes so it should be grouped before representing on a graph.

  • The speed of a vehicle as it passes a checkpoint
  • The mass of a cooking apple
  • The time taken by a volunteer to perform a task

Discrete Data

Discrete data can have certain values. That means only a finite number can be categorized as discrete data.

  • Numbers of cars sold at a dealership during a given month
  • Number of houses in certain block
  • Number of fish caught on a fishing trip
  • Number of complaints received at the office of airline on a given day
  • Number of customers who visit at bank during any given hour
  • Number of heads obtained in three tosses of a coin

Differences between Discrete and Continuous data

  • Numerical data could be either discrete or continuous
  • Continuous data can take any numerical value (within a range); For example, weight, height, etc.
  • There can be an infinite number of possible values in continuous data
  • Discrete data can take only certain values by finite ‘jumps’, i.e., it ‘jumps’ from one value to another but does not take any intermediate value between them (For example, number of students in the class)

Qualitative

Data that deals with description or quality instead of numbers are known as Quantitative data. Qualitative data is also known as unstructured data. Because this type of data is loosely compact and can’t be analyzed conventionally.

Different Types of Graphical Representations

There are many types of graph we can use to represent data. They are as follows,

A bar graph or chart is a way to represent data by rectangular column or bar. The heights or length of the bar is proportional to the values.

A bar graph or chart

A line graph is a type of graph where the information or data is plotted as some dots which are known as markers and then they are added to each other by a straight line.

The line graph is normally used to represent the data that changes over time.

A line graph

A histogram graph is a graph where the information is represented along with the height of the rectangular bar. Though it does look like a bar graph, there is a fundamental difference between them. With the histogram, each column represents a range of quantitative data when a bar graph represents categorical variables.

Histogram and Piechart

The other name of the pie chart is a circle graph. It is a circular chart where numerical information represents as slices or in fractional form or percentage where the whole circle is 100%.

Pie chart

  • Stem and leaf plot

The stem and leaf plot is a way to represents quantitative data according to frequency ranges or frequency distribution.

In the stem and leaf plot, each data is split into stem and leaf, which is 32 will be split into 3 stems and 2 leaves.

Stem and leaf plot

Frequency table: Frequency means the number of occurrences of an event. A frequency distribution table is a graph or chart which shows the frequency of events. It is denoted as ‘f’ .

Frequency table

Pictograph or Pictogram is the earliest way to represents data in a pictorial form or by using symbols or images. And each image represents a particular number of things.

Pictograph or Pictogram

According to the above-mentioned Pictograph, the number of Appels sold on Monday is 6x2=12.

  • Scatter diagrams

Scatter diagram or scatter plot is a way of graphical representation by using cartesian coordinates of two variables. The plot shows the relationship between two variables. Below there is a data table as well as a Scattergram as per the given data.

What is the meaning of Graphical representation?

Graphical representation is a way to represent and analyze quantitive data. A graph is a kind of a chart where data are plotted as variables across the coordinate. It became easy to analyze the extent of change of one variable based on the change of other variables.

Principles of graphical representation

The principles of graphical representation are algebraic. In a graph, there are two lines known as Axis or Coordinate axis. These are the X-axis and Y-axis. The horizontal axis is the X-axis and the vertical axis is the Y-axis. They are perpendicular to each other and intersect at O or point of Origin.

On the right side of the Origin, the Xaxis has a positive value and on the left side, it has a negative value. In the same way, the upper side of the Origin Y-axis has a positive value where the down one is with a negative value.

When X-axis and y-axis intersected each other at the origin it divides the plane into four parts which are called Quadrant I, Quadrant II, Quadrant III, Quadrant IV.

Principles of graphical representation

The location on the coordinate plane is known as the ordered pair and it is written as (x,y). That means the first value will be on the x-axis and the second one is on the y-axis. When we will plot any coordinate, we always have to start counting from the origin and have to move along the x-axis, if it is positive then to the right side, and if it is negative then to the left side. Then from the x-axis, we have to plot the y’s value, which means we have to move up for positive value or down if the value is negative along with the y-axis.

In the following graph, 1st ordered pair (2,3) where both the values of x and y are positive and it is on quadrant I. 2nd ordered pair (-3,1), here the value of x is negative and value of y is positive and it is in quadrant II. 3rd ordered pair (-1.5, -2.5), here the value of x as well as y both are Negative and in quadrant III.

Principles of graphical representation

Methods of representing a frequency distribution

There are four methods to represent a frequency distribution graphically. These are,

  • Smoothed Frequency graph
  • Cumulative frequency graph or Ogive.
  • Pie diagram.

Advantages and Disadvantages of Graphical representation of data

  • It improves the way of analyzing and learning as the graphical representation makes the data easy to understand.
  • It can be used in almost all fields from mathematics to physics to psychology and so on.
  • It is easy to understand for its visual impacts.
  • It shows the whole and huge data in an instance.

The main disadvantage of graphical representation of data is that it takes a lot of effort as well as resources to find the most appropriate data and then represents it graphically.

You may also like:

  • Graphing a Quadratic Function
  • Empirical Relationship Between Mean, Median, and Mode

Not only in mathematics but almost in every field the graph is a very important way to store, analyze, and represents information. After any research work or after any survey the next step is to organize the observation or information and plotting them on a graph paper or plane. The visual representation of information makes the understanding of crucial components or trends easier.

A huge amount of data can be store or analyze in a small space.

The graphical representation of data helps to decide by following the trend.

A complete Idea: Graphical representation constitutes a clear and comprehensive idea in the minds of the audience. Reading a large number (say hundreds) of pages may not help to make a decision. Anyone can get a clear idea just by looking into the graph or design.

Graphs are a very conceptual topic, so it is essential to get a complete understanding of the concept. Graphs are great visual aids and help explain numerous things better, they are important in everyday life. Get better at graphs with us, sign up for a free trial . 

About Cuemath

Cuemath, a student-friendly mathematics and coding platform, conducts regular Online Classes for academics and skill-development, and their Mental Math App, on both iOS and Android , is a one-stop solution for kids to develop multiple skills. Understand the Cuemath Fee structure and sign up for a free trial.

Frequently Asked Questions (FAQs)

What is data.

Data are characteristics or information, usually numerical, that are collected through observation.

How do you differentiate between data and information?

Data is the raw fact without any add on but the information is the meaning derived from data.

What are the types of data?

There are two types of Data:

Two types of Data

What are the ways to represent data?

Tables, charts and graphs are all ways of representing data , and they can be used for two broad purposes. The first is to support the collection, organisation and analysis of data as part of the process of a scientific study.

- Tables, charts and graphs are all ways of representing data, and they can be used for two broad purposes. The first is to support the collection, organisation and analysis of data as part of the process of a scientific study.

What are the different types of graphs?

Different types of graphs include:

Talk to our experts

1800-120-456-456

  • Graphical Representation

ffImage

What is a Graph

In mathematics, a graph is a diagrammatic illustration that is used to represent data values in a systematic, organized and understandable manner.  It is indeed a very tedious task to analyze lots of data. However, when the same numerical data is represented in a pictorial form, it becomes easy to understand the relationship between the provided data objects and the concepts represented. It is often said that a picture is worth a thousand words. Therefore, graphs are particularly useful when it comes to displaying and analyzing data. 

The data have shown on the graph usually represents a relationship between various things for comparison among them. It could also help us to understand the changing trends over some time. With the help of graphs, it becomes easier to comprehend information.

Types of Graphical Representation 

To represent various kinds of data, different kinds of graphs are used. Some of the commonly used graphs are as follows: 

In a line graph, a line shows trends in data. It can also be used to predict the changing trends of the displayed data objects in the future. 

A bar graph is used when data has been categorized or sorted. It is the best kind of graph for comparing data. In this, solid bars are used to represent different categories or data values.

A histogram is similar to a bar graph. However, instead of making comparisons, it groups the numerical data into ranges. It is most commonly used to show frequency distributions. 

Pie or Circle Graph

In a pie chart, a circle represents statistical graphics. It is divided into many slices or pies to represent the proportion of numbers. The length of the arc of each pipe corresponds to the quantity represented by it.

Stem and Leaf Graph

A stem and leaf plot is a special type of table in which the data values are divided into a stem, which represents the initial digit or digits, and a leaf, which usually represents the last digit. 

How to plot the Data Accurately on Graphs?

It is of utmost importance that the information which is being represented graphically should be accurate and easy to understand. The various points that should be kept in mind are: 

The scale chosen to plot the graph should be according to the data values that have to be represented.

The index makes it easier for the reader to read and interpret the data represented by various colours, patterns, designs, etc.

The Source of Data

As and when necessary, the source of data can be mentioned at the bottom of the graph. 

The purpose of making the graph is defeated if the representation does not look tidy. Hence, it must be ensured that the data so represented is neat and visually appealing. 

There is no need to unnecessarily complicate the graph. The simpler, the better.

Basics of Graphical Representation

A graph usually consists of two lines called the coordinate axes. The horizontal line is called the x-axis, and the vertical line is called the y axis. The intersection of the two axes is the point of origin. The values on the x-axis towards the right of the origin are considered positive, and towards the left are negative. Similarly, on the y-axis, the values above the origin will be positive and the values below the origin will be negative. 

 Benefits of using Graphs 

Graphs save time. If the same information is written down, it becomes a period process to spot the trends and be able to analyze the data properly. 

A graph can be used to represent information neatly and also takes less space.

It is easy to understand.

Analysing a graphical representation of data does not take much and helps in making quick decisions. 

Graphs give you a summarized version of a long report that contains a large amount of data. 

Graphs and tables are less likely to have any errors and mistakes. 

Graphical representation of two or more data sets will allow you to compare the information and take preventive measures to avoid mistakes in the future. 

By making the data easy to understand, graphs eliminate the literacy barriers so that anyone can analyse and interpret the presented data. 

With just a glance at the graphical representation, a person can make quick and informed decisions.  

Some Rules for Graphical Representation of Data 

Like any other mathematical concept, graphical representation also has some rules you must follow. These rules will help you present the information on a graph effectively. Below are the rules for graphical representation of data: 

When you are making a graph, you should give it an appropriate title that highlights the subject of the given data.

While making a graph, do not forget to mention the measurement unit. 

Make an index using colours, designs, shades, lines, etc. to make the graphical representation easier to understand.  

You have to choose an appropriate scale to represent the given set of data. 

Construct the graph as simple as possible so that everyone can easily understand the presented data.

Whether you are making a pie chart or a bar graph, it should look neat and clean so that the teacher can easily read the figures. 

Importance of Graphical Representation 

Graphical representation gives you a visual presentation of the given data to make it easier to understand. Graphs help you identify different patterns over a short and long period. It assists you in the interpretation of data and comparison of two or more data sets. Here are reasons why graphical representation is important: 

Graphs are widely accepted in the corporate world as it summarises the data into an understandable format and avoids wastage of time. 

When you want to compare two or more different data sets, graphs are your best choice. A graphical representation of all the data sets will allow you to quickly analyze the information and help you in making quick decisions. 

Through descriptive reports and information, it becomes difficult to make decisions. However, with graphs, the management can analyse the situation more clearly and make the right decisions. 

With tables and graphs, the information can be presented in an organised and logical manner, making it easier to understand for anyone. 

Graphical representation of data does not demand much of your time, improving the overall efficiency. You can quickly make the graphs within minutes and focus on other important work. 

Qualitative representation might include many grammatical errors and other mistakes that can mislead the person reading it. Since graphs involve numerical representation of data, there are fewer chances of errors and mistakes. 

Graphs give you the entire summary of a large amount of data.    

arrow-right

FAQs on Graphical Representation

1. What is a frequency polygon graph?

A frequency polygon graph can be used to represent the same set of data which is represented by a histogram. In this type of graph, lines are used to connect the midpoints of each interval. The frequencies of the data interval are represented by the height at which the midpoints are plotted in the graph. A frequency polygon can be created using the already drawn histogram, or by calculating the midpoint from the intervals of the frequency distribution table. To calculate the midpoint, we need to find the average of the upper and the lower values of the interval/range. 

Frequency polygon gives us an idea regarding the shape of the data and the trends that it follows during a particular duration of time. 

Steps to draw a frequency polygon: 

Calculate the classmark for each interval, which is equal to (upper limit + lower limit)/2. 

Represent the class marks on the x-axis and their corresponding frequencies on the y-axis. 

For every class mark on the x-axis, plot the frequencies of the y-axis.  

Join all the obtained points to get a curve.

The figure obtained is called a frequency polygon. 

2. What is the difference between a Bar Graph and a Histogram?

The most commonly visible difference between a bar graph and a histogram is that, in a bar graph, the bars have spaces between them, whereas, in a histogram, the bars are drawn adjacent to each other, without leaving any spaces. 

As they both make use of bars to represent the data, it becomes slightly difficult to understand the fundamental difference between the two. A histogram is a graphical representation that uses bars to demonstrate the frequency of numerical data. In a histogram, elements are grouped, so they can be considered as ranges.

A bar graph is a diagrammatic representation that uses bars for the comparison of different categories of data.  The plotted elements are treated as individual entities, and not as a range. The bars can be drawn horizontally or vertically. The height of the bar corresponds to the size of the data object.

3. From which platform can I learn Graphical Representation?

Vedantu is the best e-learning platform from where you can learn Graphical Representation. To start studying the concept of graphical representations, you can visit our official website or download our mobile app from the app store or play store. Our learning platform is available to all students across the globe for absolutely free. Apart from the Graphical Representation, you will find plenty of study material for different topics of Maths. From the website, you can learn concepts, such as Number System, Area of Triangle, Factorisation, and much more.    

4. What are the advantages of a Bar Graph?

A bar graph is the most widely used method of graphical representation. Below are some of the advantages of a bar graph: 

A bar graph shows every category from the given frequency distribution. 

Bar graphs summarize a large chunk of data into a simple, understandable, and interpretable form. 

With a bar graph, you can easily compare two or more different data sets. 

You can study the varying patterns in a bar graph over a long period. 

A bar graph makes the trends easier to highlight than other types of graphical representation.  

5. How to decide which graph is suitable for a situation?

Sometimes, the question does not specify which type of graph you have to use. In these cases, you will have to analyze the given data and decide which graph will be more suitable. When you have to compare two different categories of data sets, you should use a bar graph as it makes the data easy to interpret. If you have to find the trends and progress over a short period, you can use line graphs. Moreover, when you have to represent a whole graphically, a pie chart is the best option.   

Visual Representation

  • Reference work entry
  • pp 3405–3410
  • Cite this reference work entry

Book cover

  • Yannis Ioannidis 3  

407 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

Card S.K., Mackinlay J.D., and Shneiderman B. Information visualization. In Readings in Information Visualization: Using Vision to Think, 1999, pp. 1–34.

Google Scholar  

Card S.K., Mackinlay J.D., and Shneiderman B. Readings in Information Visualization: Using Vision to Think. Morgan Kaufman, Los Altos, CA, 1999.

Foley J.D., van Dam A., Feiner S.K., and Hughes J.F. Computer Graphics: Principles and Practice. Addison-Wesley, Reading, MA, 1990.

Haber E.M., Ioannidis Y., and Livny M. Foundations of visual metaphors for schema display. J. Intell. Inf. Syst., 3(3/4):263–298, 1994.

Article   Google Scholar  

Mitchell W. Representation. In Critical Terms for Literary Study,Lentricchia F and McLaughlin T. (eds.), 2nd edn., Chicago, IL. University of Chicago Press, 1995.

Tufte E.R. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CO, 1983.

Tufte E.R. Envisioning Information. Graphics Press, Cheshire, CO, 1990.

Download references

Author information

Authors and affiliations.

University of Athens, Athens, Greece

Yannis Ioannidis

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

College of Computing, Georgia Institute of Technology, 266 Ferst Drive, 30332-0765, Atlanta, GA, USA

LING LIU ( Professor ) ( Professor )

Database Research Group David R. Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, ON, Canada

M. TAMER ÖZSU ( Professor and Director, University Research Chair ) ( Professor and Director, University Research Chair )

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry.

Ioannidis, Y. (2009). Visual Representation. In: LIU, L., ÖZSU, M.T. (eds) Encyclopedia of Database Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39940-9_449

Download citation

DOI : https://doi.org/10.1007/978-0-387-39940-9_449

Publisher Name : Springer, Boston, MA

Print ISBN : 978-0-387-35544-3

Online ISBN : 978-0-387-39940-9

eBook Packages : Computer Science Reference Module Computer Science and Engineering

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Go to the homepage

Example sentences graphic representation of

It was a graphic representation of the difference between obsession and anonymity.
Graphic representation of visualizations obviously help.
The graph of a function on real numbers may be mapped directly to the graphic representation of the function.
A graphic representation of the craters and lava from one or other volcano have shown notably their history and relations.
The maps help give the reader a graphic representation of the environment and may vary in the level of spatiality and labeling.

Definition of 'graphic' graphic

IPA Pronunciation Guide

Definition of 'representation' representation

Related word partners graphic representation of, browse alphabetically graphic representation of.

  • graphic novel
  • graphic picture
  • graphic print
  • graphic representation of
  • graphic shows
  • All ENGLISH words that begin with 'G'

Quick word challenge

Quiz Review

Score: 0 / 5

Tile

Wordle Helper

Tile

Scrabble Tools

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

2: Graphical Representations of Data

  • Last updated
  • Save as PDF
  • Page ID 22222

In this chapter, you will study numerical and graphical ways to describe and display your data. This area of statistics is called "Descriptive Statistics." You will learn how to calculate, and even more importantly, how to interpret these measurements and graphs.

  • 2.1: Introduction In this chapter, you will study numerical and graphical ways to describe and display your data. This area of statistics is called "Descriptive Statistics." You will learn how to calculate, and even more importantly, how to interpret these measurements and graphs. In this chapter, we will briefly look at stem-and-leaf plots, line graphs, and bar graphs, as well as frequency polygons, and time series graphs. Our emphasis will be on histograms and box plots.
  • 2.2: Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs A stem-and-leaf plot is a way to plot data and look at the distribution, where all data values within a class are visible. The advantage in a stem-and-leaf plot is that all values are listed, unlike a histogram, which gives classes of data values. A line graph is often used to represent a set of data values in which a quantity varies with time. These graphs are useful for finding trends.  A bar graph is a chart that uses either horizontal or vertical bars to show comparisons among categories.
  • 2.3: Histograms, Frequency Polygons, and Time Series Graphs A histogram is a graphic version of a frequency distribution. The graph consists of bars of equal width drawn adjacent to each other. The horizontal scale represents classes of quantitative data values and the vertical scale represents frequencies. The heights of the bars correspond to frequency values. Histograms are typically used for large, continuous, quantitative data sets. A frequency polygon can also be used when graphing large data sets with data points that repeat.
  • 2.4: Using Excel to Create Graphs Using technology to create graphs will make the graphs faster to create, more precise, and give the ability to use larger amounts of data. This section focuses on using Excel to create graphs.
  • 2.5: Graphs that Deceive It's common to see graphs displayed in a misleading manner in social media and other instances. This could be done purposefully to make a point, or it could be accidental. Either way, it's important to recognize these instances to ensure you are not misled.
  • 2.E: Graphical Representations of Data (Exercises) These are homework exercises to accompany the Textmap created for "Introductory Statistics" by OpenStax.

Contributors and Attributions

Barbara Illowsky and Susan Dean (De Anza College) with many other contributing authors. Content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/[email protected] .

  • Dictionaries home
  • American English
  • Collocations
  • German-English
  • Grammar home
  • Practical English Usage
  • Learn & Practise Grammar (Beta)
  • Word Lists home
  • My Word Lists
  • Recent additions
  • Resources home
  • Text Checker

Definition of representation noun from the Oxford Advanced Learner's Dictionary

representation

  • the negative representation of single mothers in the media
  • The snake swallowing its tail is a representation of infinity.
  • The film offers a realistic representation of life in rural Spain.
  • There are many ways of generating a two-dimensional representation of an object.
  • a book showing graphic representations of the periodic table
  • a realistic cinematic representation of the Depression
  • artistic representations of the parent/​child relationship
  • contemporary media representations of youth
  • the written representation of a spoken text
  • a form of representation
  • a means of representation

Want to learn more?

Find out which words work together and produce more natural-sounding English with the Oxford Collocations Dictionary app. Try it for free as part of the Oxford Advanced Learner’s Dictionary app.

graphic representation meaning in english

  • Cambridge Dictionary +Plus

graphic representation

Meanings of graphic and representation.

Your browser doesn't support HTML5 audio

(Definition of graphic and representation from the Cambridge English Dictionary © Cambridge University Press)

  • Examples of graphic representation

{{randomImageQuizHook.quizId}}

Word of the Day

sung by a group of people without any musical instruments

Shoots, blooms and blossom: talking about plants

Shoots, blooms and blossom: talking about plants

graphic representation meaning in english

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists

{{message}}

There was a problem sending your report.

  • Definition of graphic
  • Definition of representation
  • Other collocations with representation

IMAGES

  1. Graphical Representation

    graphic representation meaning in english

  2. Graphical Representation

    graphic representation meaning in english

  3. Graphical Representations Explained

    graphic representation meaning in english

  4. Meaning & Significance Of Colors In Graphic Design

    graphic representation meaning in english

  5. What is Graphical Representation? Definition and FAQs

    graphic representation meaning in english

  6. Graphical Representation

    graphic representation meaning in english

VIDEO

  1. Graphics Meaning

  2. Graphic Meaning In Bengali /Graphic mane ki

  3. 100 Important Word Meaning

  4. LESSON 1 INTRODUCTORY LESSON TO PHOTOSHOP GRAPHIC DESIGNING TRAINING

  5. Representation

  6. Perspective Drawing Mastery [H’s Architecture One-on-One]

COMMENTS

  1. GRAPHICAL REPRESENTATION definition and meaning

    GRAPHICAL REPRESENTATION definition | Meaning, pronunciation, translations and examples

  2. Graphical Representation

    Graphical representation is a form of visually displaying data through various methods like graphs, diagrams, charts, and plots. It helps in sorting, visualizing, and presenting data in a clear manner through different types of graphs. Statistics mainly use graphical representation to show data.

  3. What is Graphical Representation? Definition and FAQs

    Graphical representation refers to the use of intuitive charts to clearly visualize and simplify data sets. Data is ingested into graphical representation of data software and then represented by a variety of symbols, such as lines on a line chart, bars on a bar chart, or slices on a pie chart, from which users can gain greater insight than by ...

  4. What is Visual Representation?

    Visual Representation refers to the principles by which markings on a surface are made and interpreted. Designers use representations like typography and illustrations to communicate information, emotions and concepts. Color, imagery, typography and layout are crucial in this communication. Alan Blackwell, cognition scientist and professor ...

  5. Graphical Representation

    Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical ...

  6. GRAPHICAL

    GRAPHICAL meaning: represented by or relating to a graph. Learn more.

  7. Introduction to Graphs

    What is the meaning of Graphical representation? Graphical representation is a way to represent and analyze quantitive data. A graph is a kind of a chart where data are plotted as variables across the coordinate. It became easy to analyze the extent of change of one variable based on the change of other variables.

  8. GRAPHICAL definition and meaning

    A graphical representation of something uses graphs or similar images to represent statistics.... Click for English pronunciations, examples sentences, video.

  9. Graphical Representation

    Importance of Graphical Representation. Graphical representation gives you a visual presentation of the given data to make it easier to understand. Graphs help you identify different patterns over a short and long period. It assists you in the interpretation of data and comparison of two or more data sets.

  10. graphical representation collocation

    Examples of graphical representation in a sentence, how to use it. 19 examples: The graphical representation of the graph will have the semi-edges cut short. - Symbolic…

  11. GRAPHICAL

    GRAPHICAL definition: represented by or relating to a graph. Learn more.

  12. Visual Representation

    Definition. The concept of "representation" captures the signs that stand in for and take the place of something else [ 5 ]. Visual representation, in particular, refers to the special case when these signs are visual (as opposed to textual, mathematical, etc.). On the other hand, there is no limit on what may be (visually) represented ...

  13. Writing systems: the graphic representation of language

    Writing is a visual representation of speech and, quite recently, of sign language. There are three basic types of writing; each shows a different intimacy to language. Logographic writing uses symbols that represent whole words or morphemes. The same logogram, having the same meaning, could be pronounced entirely differently in different ...

  14. Graphical Representation: Types, Rules, Principles & Examples

    A graphical representation is the geometrical image of a set of data that preserves its characteristics and displays them at a glance. It is a mathematical picture of data points. It enables us to think about a statistical problem in visual terms. It is an effective tool for the preparation, understanding and interpretation of the collected data.

  15. graphic adjective

    This is a very graphic account of life in Victorian England. Word Origin mid 17th cent.: via Latin from Greek graphikos , from graphē 'writing, drawing'. See graphic in the Oxford Advanced American Dictionary See graphic in the Oxford Learner's Dictionary of Academic English

  16. graphic representation collocation

    Examples of graphic representation in a sentence, how to use it. 20 examples: Figure 3 provides a graphic representation of those patterns of diagnoses exhibited by par…

  17. GRAPHIC REPRESENTATION OF definition in American English

    a genre of fantasy fiction that portrays amoral or morally ambiguous characters engaged in violent struggles in dystopian environments. SEE FULL DEFINITION. SEE PREVIOUS WORDS. GRAPHIC REPRESENTATION OF definition: If you say that a description or account of something unpleasant is graphic , you are... | Meaning, pronunciation, translations and ...

  18. 2: Graphical Representations of Data

    2.3: Histograms, Frequency Polygons, and Time Series Graphs. A histogram is a graphic version of a frequency distribution. The graph consists of bars of equal width drawn adjacent to each other. The horizontal scale represents classes of quantitative data values and the vertical scale represents frequencies. The heights of the bars correspond ...

  19. representation noun

    representation by a lawyer; direct representation in Parliament; Whether guilty or innocent, we are still entitled to legal representation. They had a strong representation in government. The task force had broad representation with members drawn from different departments. The party has increased its representation in Parliament.

  20. GRAPHIC

    GRAPHIC meaning: 1. very clear and powerful: 2. related to drawing or printing: 3. relating to, using, or…. Learn more.

  21. Total Solar Eclipse 2024: Live Updates

    Viewing the total eclipse on July 9, 1945, in New York City. The New York Times. For centuries, people have been clamoring to glimpse solar eclipses. From astronomers with custom-built ...

  22. graphic representation in a sentence

    Examples of graphic representation in a sentence, how to use it. 20 examples: Figure 3 provides a graphic representation of those patterns of diagnoses…