Fractions Worksheets
Welcome to the fractions worksheets page at Math-Drills.com where the cup is half full! This is one of our more popular pages most likely because learning fractions is incredibly important in a person's life and it is a math topic that many approach with trepidation due to its bad rap over the years. Fractions really aren't that difficult to master especially with the support of our wide selection of worksheets.
This page includes Fractions worksheets for understanding fractions including modeling, comparing, ordering, simplifying and converting fractions and operations with fractions. We start you off with the obvious: modeling fractions. It is a great idea if students can actually understand what a fraction is, so please do spend some time with the modeling aspect. Relating modeling to real life helps a great deal too as it is much easier to relate to half a cookie than to half a square. Ask most students what you get if you add half a cookie and another half a cookie, and they'll probably let you know that it makes one delicious snack.
The other fractions worksheets on this page are devoted to helping students understand the concept of fractions. From comparing and ordering to simplifying and converting... by the time students master the material on this page, operations of fractions will be a walk in the park.
Most Popular Fractions Worksheets this Week
Fraction Circles
Fraction circle manipulatives are mainly used for comparing fractions, but they can be used for a variety of other purposes such as representing and identifying fractions, adding and subtracting fractions, and as probability spinners. There are a variety of options depending on your purpose. Fraction circles come in small and large versions, labeled and unlabeled versions and in three different color schemes: black and white, color, and light gray. The color scheme matches the fraction strips and use colors that are meant to show good contrast among themselves. Do note that there is a significant prevalence of color-blindness in the population, so don't rely on all students being able to differentiate the colors.
Suggested activity for comparing fractions: Photocopy the black and white version onto an overhead projection slide and another copy onto a piece of paper. Alternatively, you can use two pieces of paper and hold them up to the light for this activity. Use a pencil to represent the first fraction on the paper copy. Use a non-permanent overhead pen to represent the second fraction. Lay the slide over the paper and compare the two circles. You should easily be able to tell which is greater or lesser or if the two fractions are equal. Re-use both sheets by erasing the pencil and washing off the marker.
Adding fractions with fraction circles will involve two copies on paper. Cut out the fraction circles and segments of one copy and leave the other copy intact. To add 1/3 + 1/2, for example, place a 1/3 segment and a 1/2 segment into a circle and hold it over various fractions on the intact copy to see what 1/2 + 1/3 is equivalent to. 5/6 or 10/12 should work.
- Small Fraction Circles Small Fraction Circles in Black and White with Labels Small Fraction Circles in Color with Labels Small Fraction Circles in Light Gray with Labels Small Fraction Circles in Black and White Unlabeled Small Fraction Circles in Color Unlabeled Small Fraction Circles in Light Gray Unlabeled
- Large Fraction Circles Large Fraction Circles in Black and White with Labels Large Fraction Circles in Color with Labels Large Fraction Circles in Light Gray with Labels Large Fraction Circles in Black and White Unlabeled Large Fraction Circles in Color Unlabeled Large Fraction Circles in Light Gray Unlabeled
Fraction Strips
Fractions strips are often used for comparing fractions. Students are able to see quite easily the relationships and equivalence between fractions with different denominators. It can be quite useful for students to have two copies: one copy cut into strips and the other copy kept intact. They can then use the cut-out strips on the intact page to individually compare fractions. For example, they can use the halves strip to see what other fractions are equivalent to one-half. This can also be accomplished with a straight edge such as a ruler without cutting out any strips. Pairs or groups of strips can also be compared side-by-side if they are cut out. Addition and subtraction (etc.) are also possibilities; for example, adding a one-quarter and one-third can be accomplished by shifting the thirds strip so that it starts at the end of one-quarter then finding a strip that matches the end of the one-third mark (7/12 should do it).
Teachers might consider copying the fraction strips onto overhead projection acetates for whole class or group activities. Acetate versions are also useful as a hands-on manipulative for students in conjunction with an uncut page.
The "Smart" Fraction Strips include strips in a more useful order, eliminate the 7ths and 11ths strips as they don't have any equivalents and include 15ths and 16ths. The colors are consistent with the classic versions, so the two sets can be combined.
- Classic Fraction Strips with Labels Classic Fraction Strips in Black and White With Labels Classic Fraction Strips in Color With Labels Classic Fraction Strips in Gray With Labels
- Unlabeled Classic Fraction Strips Classic Fraction Strips in Black and White Unlabeled Classic Fraction Strips in Color Unlabeled Classic Fraction Strips in Gray Unlabeled
- Smart Fraction Strips with Labels Smart Fraction Strips in Black and White With Labels Smart Fraction Strips in Color With Labels Smart Fraction Strips in Gray With Labels
Modeling fractions
Fractions can represent parts of a group or parts of a whole. In these worksheets, fractions are modeled as parts of a group. Besides using the worksheets in this section, you can also try some more interesting ways of modeling fractions. Healthy snacks can make great models for fractions. Can you cut a cucumber into thirds? A tomato into quarters? Can you make two-thirds of the grapes red and one-third green?
- Modeling Fractions with Groups of Shapes Coloring Groups of Shapes to Represent Fractions Identifying Fractions from Colored Groups of Shapes (Only Simplified Fractions up to Eighths) Identifying Fractions from Colored Groups of Shapes (Halves Only) Identifying Fractions from Colored Groups of Shapes (Halves and Thirds) Identifying Fractions from Colored Groups of Shapes (Halves, Thirds and Fourths) Identifying Fractions from Colored Groups of Shapes (Up to Fifths) Identifying Fractions from Colored Groups of Shapes (Up to Sixths) Identifying Fractions from Colored Groups of Shapes (Up to Eighths) Identifying Fractions from Colored Groups of Shapes (OLD Version; Print Too Light)
- Modeling Fractions with Rectangles Modeling Halves Modeling Thirds Modeling Halves and Thirds Modeling Fourths (Color Version) Modeling Fourths (Grey Version) Coloring Fourths Models Modeling Fifths Coloring Fifths Models Modeling Sixths Coloring Sixths Models
- Modeling Fractions with Circles Modeling Halves, Thirds and Fourths Coloring Halves, Thirds and Fourths Modeling Halves, Thirds, Fourths, and Fifths Coloring Halves, Thirds, Fourths, and Fifths Modeling Halves to Sixths Coloring Halves to Sixths Modeling Halves to Eighths Coloring Halves to Eighths Modeling Halves to Twelfths Coloring Halves to Twelfths
Ratio and Proportion Worksheets
The equivalent fractions models worksheets include only the "baking fractions" in the A versions. To see more difficult and varied fractions, please choose the B to J versions after loading the A version. More picture ratios can be found on holiday and seasonal pages. Try searching for picture ratios to find more.
- Picture Ratios Autumn Trees Part-to-Part Picture Ratios ( Grouped ) Autumn Trees Part-to-Part and Part-to-Whole Picture Ratios ( Grouped )
- Equivalent Fractions Equivalent Fractions With Blanks ( Multiply Right ) ✎ Equivalent Fractions With Blanks ( Divide Left ) ✎ Equivalent Fractions With Blanks ( Multiply Right or Divide Left ) ✎ Equivalent Fractions With Blanks ( Divide Right ) ✎ Equivalent Fractions With Blanks ( Multiply Left ) ✎ Equivalent Fractions With Blanks ( Multiply Left or Divide Right ) ✎ Equivalent Fractions With Blanks ( Multiply or Divide Right ) ✎ Equivalent Fractions With Blanks ( Multiply or Divide Left ) ✎ Equivalent Fractions With Blanks ( Multiply or Divide in Either Direction ) ✎ Are These Fractions Equivalent? (Multiplier 2 to 5) Are These Fractions Equivalent? (Multiplier 5 to 15) Equivalent Fractions Models Equivalent Fractions Models with the Simplified Fraction First Equivalent Fractions Models with the Simplified Fraction Second
- Equivalent Ratios Equivalent Ratios with Blanks Only on Right Equivalent Ratios with Blanks Anywhere Equivalent Ratios with x 's
Comparing and Ordering Fractions
Comparing fractions involves deciding which of two fractions is greater in value or if the two fractions are equal in value. There are generally four methods that can be used for comparing fractions. First is to use common denominators . If both fractions have the same denominator, comparing the fractions simply involves comparing the numerators. Equivalent fractions can be used to convert one or both fractions, so they have common denominators. A second method is to convert both fractions to a decimal and compare the decimal numbers. Visualization is the third method. Using something like fraction strips , two fractions can be compared with a visual tool. The fourth method is to use a cross-multiplication strategy where the numerator of the first fraction is multiplied by the denominator of the second fraction; then the numerator of the second fraction is multiplied by the denominator of the first fraction. The resulting products can be compared to decide which fraction is greater (or if they are equal).
- Comparing Proper Fractions Comparing Proper Fractions to Sixths ✎ Comparing Proper Fractions to Ninths (No Sevenths) ✎ Comparing Proper Fractions to Ninths ✎ Comparing Proper Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Proper Fractions to Twelfths ✎
The worksheets in this section also include improper fractions. This might make the task of comparing even easier for some questions that involve both a proper and an improper fraction. If students recognize one fraction is greater than one and the other fraction is less than one, the greater fraction will be obvious.
- Comparing Proper and Improper Fractions Comparing Proper and Improper Fractions to Sixths ✎ Comparing Proper and Improper Fractions to Ninths (No Sevenths) ✎ Comparing Proper and Improper Fractions to Ninths ✎ Comparing Proper and Improper Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Proper and Improper Fractions to Twelfths ✎ Comparing Improper Fractions to Sixths ✎ Comparing Improper Fractions to Ninths (No Sevenths) ✎ Comparing Improper Fractions to Ninths ✎ Comparing Improper Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Improper Fractions to Twelfths ✎
This section additionally includes mixed fractions. When comparing mixed and improper fractions, it is useful to convert one of the fractions to the other's form either in writing or mentally. Converting to a mixed fraction is probably the better route since the first step is to compare the whole number portions, and if one is greater than the other, the proper fraction portion can be ignored. If the whole number portions are equal, the proper fractions must be compared to see which number is greater.
- Comparing Proper, Improper and Mixed Fractions Comparing Proper, Improper and Mixed Fractions to Sixths ✎ Comparing Proper, Improper and Mixed Fractions to Ninths (No Sevenths) ✎ Comparing Proper, Improper and Mixed Fractions to Ninths ✎ Comparing Proper, Improper and Mixed Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Proper, Improper and Mixed Fractions to Twelfths ✎
- Comparing Improper and Mixed Fractions Comparing Improper and Mixed Fractions to Sixths ✎ Comparing Improper and Mixed Fractions to Ninths (No Sevenths) ✎ Comparing Improper and Mixed Fractions to Ninths ✎ Comparing Improper and Mixed Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Improper and Mixed Fractions to Twelfths ✎
- Comparing Mixed Fractions Comparing Mixed Fractions to Sixths ✎ Comparing Mixed Fractions to Ninths (No Sevenths) ✎ Comparing Mixed Fractions to Ninths ✎ Comparing Mixed Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Mixed Fractions to Twelfths ✎
Many of the same strategies that work for comparing fractions also work for ordering fractions. Using manipulatives such as fraction strips, using number lines, or finding decimal equivalents will all have your student(s) putting fractions in the correct order in no time. We've probably said this before, but make sure that you emphasize that when comparing or ordering fractions, students understand that the whole needs to be the same. Comparing half the population of Canada with a third of the population of the United States won't cut it. Try using some visuals to reinforce this important concept. Even though we've included number lines below, feel free to use your own strategies.
- Ordering Fractions with Easy Denominators on a Number Line Ordering Fractions with Easy Denominators to 10 on a Number Line Ordering Fractions with Easy Denominators to 24 on a Number Line Ordering Fractions with Easy Denominators to 60 on a Number Line Ordering Fractions with Easy Denominators to 100 on a Number Line
- Ordering Fractions with Easy Denominators on a Number Line (Including Negative Fractions) Ordering Fractions with Easy Denominators to 10 + Negatives on a Number Line Ordering Fractions with Easy Denominators to 24 + Negatives on a Number Line Ordering Fractions with Easy Denominators to 60 + Negatives on a Number Line Ordering Fractions with Easy Denominators to 100 + Negatives on a Number Line
- Ordering Fractions with All Denominators on a Number Line Ordering Fractions with All Denominators to 10 on a Number Line Ordering Fractions with All Denominators to 24 on a Number Line Ordering Fractions with All Denominators to 60 on a Number Line Ordering Fractions with All Denominators to 100 on a Number Line
- Ordering Fractions with All Denominators on a Number Line (Including Negative Fractions) Ordering Fractions with All Denominators to 10 + Negatives on a Number Line Ordering Fractions with All Denominators to 24 + Negatives on a Number Line Ordering Fractions with All Denominators to 60 + Negatives on a Number Line Ordering Fractions with All Denominators to 100 + Negatives on a Number Line
The ordering fractions worksheets in this section do not include a number line, to allow for students to use various sorting strategies.
- Ordering Positive Fractions Ordering Positive Fractions with Like Denominators Ordering Positive Fractions with Like Numerators Ordering Positive Fractions with Like Numerators or Denominators Ordering Positive Fractions with Proper Fractions Only Ordering Positive Fractions with Improper Fractions Ordering Positive Fractions with Mixed Fractions Ordering Positive Fractions with Improper and Mixed Fractions
- Ordering Positive and Negative Fractions Ordering Positive and Negative Fractions with Like Denominators Ordering Positive and Negative Fractions with Like Numerators Ordering Positive and Negative Fractions with Like Numerators or Denominators Ordering Positive and Negative Fractions with Proper Fractions Only Ordering Positive and Negative Fractions with Improper Fractions Ordering Positive and Negative Fractions with Mixed Fractions Ordering Positive and Negative Fractions with Improper and Mixed Fractions
Simplifying & Converting Fractions Worksheets
Rounding fractions helps students to understand fractions a little better and can be applied to estimating answers to fractions questions. For example, if one had to estimate 1 4/7 × 6, they could probably say the answer was about 9 since 1 4/7 is about 1 1/2 and 1 1/2 × 6 is 9.
- Rounding Fractions with Helper Lines Rounding Fractions to the Nearest Whole with Helper Lines Rounding Mixed Numbers to the Nearest Whole with Helper Lines Rounding Fractions to the Nearest Half with Helper Lines Rounding Mixed Numbers to the Nearest Half with Helper Lines
- Rounding Fractions Rounding Fractions to the Nearest Whole Rounding Mixed Numbers to the Nearest Whole Rounding Fractions to the Nearest Half Rounding Mixed Numbers to the Nearest Half
Learning how to simplify fractions makes a student's life much easier later on when learning operations with fractions. It also helps them to learn that different-looking fractions can be equivalent. One way of demonstrating this is to divide out two equivalent fractions. For example 3/2 and 6/4 both result in a quotient of 1.5 when divided. By practicing simplifying fractions, students will hopefully recognize unsimplified fractions when they start adding, subtracting, multiplying and dividing with fractions.
- Simplifying Fractions Simplify Fractions (easier) Simplify Fractions (harder) Simplify Improper Fractions (easier) Simplify Improper Fractions (harder)
- Converting Between Improper and Mixed Fractions Converting Mixed Fractions to Improper Fractions Converting Improper Fractions to Mixed Fractions Converting Between (both ways) Mixed and Improper Fractions
- Converting Between Fractions and Decimals Converting Fractions to Terminating Decimals Converting Fractions to Terminating and Repeating Decimals Converting Terminating Decimals to Fractions Converting Terminating and Repeating Decimals to Fractions Converting Fractions to Hundredths
- Converting Between Fractions, Decimals, Percents and Ratios with Terminating Decimals Only Converting Fractions to Decimals, Percents and Part-to- Part Ratios ( Terminating Decimals Only) Converting Fractions to Decimals, Percents and Part-to- Whole Ratios ( Terminating Decimals Only) Converting Decimals to Fractions, Percents and Part-to- Part Ratios ( Terminating Decimals Only) Converting Decimals to Fractions, Percents and Part-to- Whole Ratios ( Terminating Decimals Only) Converting Percents to Fractions, Decimals and Part-to- Part Ratios ( Terminating Decimals Only) Converting Percents to Fractions, Decimals and Part-to- Whole Ratios ( Terminating Decimals Only) Converting Part-to-Part Ratios to Fractions, Decimals and Percents ( Terminating Decimals Only) Converting Part-to-Whole Ratios to Fractions, Decimals and Percents ( Terminating Decimals Only) Converting Various Fractions, Decimals, Percents and Part-to- Part Ratios ( Terminating Decimals Only) Converting Various Fractions, Decimals, Percents and Part-to- Whole Ratios ( Terminating Decimals Only)
- Converting Between Fractions, Decimals, Percents and Ratios with Terminating and Repeating Decimals Converting Fractions to Decimals, Percents and Part-to- Part Ratios Converting Fractions to Decimals, Percents and Part-to- Whole Ratios Converting Decimals to Fractions, Percents and Part-to- Part Ratios Converting Decimals to Fractions, Percents and Part-to- Whole Ratios Converting Percents to Fractions, Decimals and Part-to- Part Ratios Converting Percents to Fractions, Decimals and Part-to- Whole Ratios Converting Part-to-Part Ratios to Fractions, Decimals and Percents Converting Part-to-Whole Ratios to Fractions, Decimals and Percents Converting Various Fractions, Decimals, Percents and Part-to- Part Ratios Converting Various Fractions, Decimals, Percents and Part-to- Whole Ratios Converting Various Fractions, Decimals, Percents and Part-to- Part Ratios with 7ths and 11ths Converting Various Fractions, Decimals, Percents and Part-to- Whole Ratios with 7ths and 11ths
Multiplying Fractions
Multiplying fractions is usually less confusing operationally than any other operation and can be less confusing conceptually if approached in the right way. The algorithm for multiplying is simply multiply the numerators then multiply the denominators. The magic word in understanding the multiplication of fractions is, "of." For example what is two-thirds OF six? What is a third OF a half? When you use the word, "of," it gets much easier to visualize fractions multiplication. Example: cut a loaf of bread in half, then cut the half into thirds. One third OF a half loaf of bread is the same as 1/3 x 1/2 and tastes delicious with butter.
- Multiplying Two Proper Fraction Multiplying Two Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ ✎ Multiplying Two Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Proper Fractions with No Simplifying (Printable Only) Multiplying Two Proper Fractions with All Simplifying (Printable Only) Multiplying Two Proper Fractions with Some Simplifying (Printable Only)
- Multiplying Proper and Improper Fractions Multiplying Proper and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions with No Simplifying (Printable Only) Multiplying Proper and Improper Fractions with All Simplifying (Printable Only) Multiplying Proper and Improper Fractions with Some Simplifying (Printable Only)
- Multiplying Two Improper Fractions Multiplying Two Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Improper Fractions with No Simplifying (Printable Only) Multiplying Two Improper Fractions with All Simplifying (Printable Only) Multiplying Two Improper Fractions with Some Simplifying (Printable Only)
- Multiplying Proper and Mixed Fractions Multiplying Proper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Mixed Fractions with No Simplifying (Printable Only) Multiplying Proper and Mixed Fractions with All Simplifying (Printable Only) Multiplying Proper and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying Two Mixed Fractions Multiplying Two Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Mixed Fractions with No Simplifying (Printable Only) Multiplying Two Mixed Fractions with All Simplifying (Printable Only) Multiplying Two Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying Whole Numbers and Proper Fractions Multiplying Whole Numbers and Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Proper Fractions with No Simplifying (Printable Only) Multiplying Whole Numbers and Proper Fractions with All Simplifying (Printable Only) Multiplying Whole Numbers and Proper Fractions with Some Simplifying (Printable Only)
- Multiplying Whole Numbers and Improper Fractions Multiplying Whole Numbers and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Improper Fractions with No Simplifying (Printable Only) Multiplying Whole Numbers and Improper Fractions with All Simplifying (Printable Only) Multiplying Whole Numbers and Improper Fractions with Some Simplifying (Printable Only)
- Multiplying Whole Numbers and Mixed Fractions Multiplying Whole Numbers and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Mixed Fractions with No Simplifying (Printable Only) Multiplying Whole Numbers and Mixed Fractions with All Simplifying (Printable Only) Multiplying Whole Numbers and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying Proper, Improper and Mixed Fractions Multiplying Proper, Improper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper, Improper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper, Improper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper, Improper and Mixed Fractions with No Simplifying (Printable Only) Multiplying Proper, Improper and Mixed Fractions with All Simplifying (Printable Only) Multiplying Proper, Improper and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying 3 Fractions Multiplying 3 Proper Fractions (Fillable, Savable, Printable) ✎ Multiplying 3 Proper and Improper Fractions (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions and Whole Numbers (3 factors) (Fillable, Savable, Printable) ✎ Multiplying Fractions and Mixed Fractions (3 factors) (Fillable, Savable, Printable) ✎ Multiplying 3 Mixed Fractions (Fillable, Savable, Printable) ✎
Dividing Fractions
Conceptually, dividing fractions is probably the most difficult of all the operations, but we're going to help you out. The algorithm for dividing fractions is just like multiplying fractions, but you find the inverse of the second fraction or you cross-multiply. This gets you the right answer which is extremely important especially if you're building a bridge. We told you how to conceptualize fraction multiplication, but how does it work with division? Easy! You just need to learn the magic phrase: "How many ____'s are there in ______? For example, in the question 6 ÷ 1/2, you would ask, "How many halves are there in 6?" It becomes a little more difficult when both numbers are fractions, but it isn't a giant leap to figure it out. 1/2 ÷ 1/4 is a fairly easy example, especially if you think in terms of U.S. or Canadian coins. How many quarters are there in a half dollar?
- Dividing Two Proper Fractions Dividing Two Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Proper Fractions with No Simplifying (Printable Only) Dividing Two Proper Fractions with All Simplifying (Printable Only) Dividing Two Proper Fractions with Some Simplifying (Printable Only)
- Dividing Proper and Improper Fractions Dividing Proper and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Improper Fractions with No Simplifying (Printable Only) Dividing Proper and Improper Fractions with All Simplifying (Printable Only) Dividing Proper and Improper Fractions with Some Simplifying (Printable Only)
- Dividing Two Improper Fractions Dividing Two Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Improper Fractions with No Simplifying (Printable Only) Dividing Two Improper Fractions with All Simplifying (Printable Only) Dividing Two Improper Fractions with Some Simplifying (Printable Only)
- Dividing Proper and Mixed Fractions Dividing Proper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Mixed Fractions with No Simplifying (Printable Only) Dividing Proper and Mixed Fractions with All Simplifying (Printable Only) Dividing Proper and Mixed Fractions with Some Simplifying (Printable Only)
- Dividing Two Mixed Fractions Dividing Two Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Mixed Fractions with No Simplifying (Printable Only) Dividing Two Mixed Fractions with All Simplifying (Printable Only) Dividing Two Mixed Fractions with Some Simplifying (Printable Only)
- Dividing Whole Numbers and Proper Fractions Dividing Whole Numbers and Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Proper Fractions with No Simplifying (Printable Only) Dividing Whole Numbers and Proper Fractions with All Simplifying (Printable Only) Dividing Whole Numbers and Proper Fractions with Some Simplifying (Printable Only)
- Dividing Whole Numbers and Improper Fractions Dividing Whole Numbers and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Improper Fractions with No Simplifying (Printable Only) Dividing Whole Numbers and Improper Fractions with All Simplifying (Printable Only) Dividing Whole Numbers and Improper Fractions with Some Simplifying (Printable Only)
- Dividing Whole Numbers and Mixed Fractions Dividing Whole Numbers and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Mixed Fractions with No Simplifying (Printable Only) Dividing Whole Numbers and Mixed Fractions with All Simplifying (Printable Only) Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Printable Only)
- Dividing Proper, Improper and Mixed Fractions Dividing Proper, Improper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper, Improper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper, Improper and Mixed Fractions with No Simplifying (Printable Only) Dividing Proper, Improper and Mixed Fractions with All Simplifying (Printable Only) Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Printable Only)
- Dividing 3 Fractions Dividing 3 Fractions Dividing 3 Fractions (Some Whole Numbers) Dividing 3 Fractions (Some Mixed) Dividing 3 Mixed Fractions
Multiplying and Dividing Fractions
This section includes worksheets with both multiplication and division mixed on each worksheet. Students will have to pay attention to the signs.
- Multiplying and Dividing Two Proper Fractions Multiplying and Dividing Two Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Proper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Two Proper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Two Proper Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Proper and Improper Fractions Multiplying and Dividing Proper and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Improper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Proper and Improper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Proper and Improper Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Two Improper Fractions Multiplying and Dividing Two Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Improper Fractions (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Improper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Two Improper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Two Improper Fractions (Printable Only)
- Multiplying and Dividing Proper and Mixed Fractions Multiplying and Dividing Proper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Proper and Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Proper and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Two Mixed Fractions Multiplying and Dividing Two Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Two Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Two Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Whole Numbers and Proper Fractions Fractions Multiplying and Dividing Whole Numbers and Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Proper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Proper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Proper Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Whole Numbers and Improper Fractions Multiplying and Dividing Whole Numbers and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Improper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Improper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Improper Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Whole Numbers and Mixed Fractions Multiplying and Dividing Whole Numbers and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Proper, Improper and Mixed Fractions Multiplying and Dividing Proper, Improper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper, Improper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper, Improper and Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Proper, Improper and Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing 3 Fractions Multiplying/Dividing Fractions (three factors) Multiplying/Dividing Mixed Fractions (3 factors)
Adding Fractions
Adding fractions requires the annoying common denominator. Make it easy on your students by first teaching the concepts of equivalent fractions and least common multiples. Once students are familiar with those two concepts, the idea of finding fractions with common denominators for adding becomes that much easier. Spending time on modeling fractions will also help students to understand fractions addition. Relating fractions to familiar examples will certainly help. For example, if you add a 1/2 banana and a 1/2 banana, you get a whole banana. What happens if you add a 1/2 banana and 3/4 of another banana?
- Adding Two Proper Fractions with Equal Denominators and Proper Fraction Results Adding Two Proper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Proper Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Proper Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Proper Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Equal Denominators and Mixed Fraction Results Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Similar Denominators and Proper Fraction Results Adding Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Proper Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Proper Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Proper Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Similar Denominators and Mixed Fraction Results Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Unlike Denominators and Proper Fraction Results Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Unlike Denominators and Mixed Fraction Results Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Result, and Some Simplifying (Printable Only)
- Adding Proper and Improper Fractions with Equal Denominators Adding Proper and Improper Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Equal Denominators and No Simplifying (Printable Only) Adding Proper and Improper Fractions with Equal Denominators and All Simplifying (Printable Only) Adding Proper and Improper Fractions with Equal Denominators and Some Simplifying (Printable Only)
- Adding Proper and Improper Fractions with Similar Denominators Adding Proper and Improper Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Similar Denominators and No Simplifying (Printable Only) Adding Proper and Improper Fractions with Similar Denominators and All Simplifying (Printable Only) Adding Proper and Improper Fractions with Similar Denominators and Some Simplifying (Printable Only)
- Adding Proper and Improper Fractions with Unlike Denominators Adding Proper and Improper Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Unlike Denominators and No Simplifying (Printable Only) Adding Proper and Improper Fractions with Unlike Denominators and All Simplifying (Printable Only) Adding Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Printable Only)
A common strategy to use when adding mixed fractions is to convert the mixed fractions to improper fractions, complete the addition, then switch back. Another strategy which requires a little less brainpower is to look at the whole numbers and fractions separately. Add the whole numbers first. Add the fractions second. If the resulting fraction is improper, then it needs to be converted to a mixed number. The whole number portion can be added to the original whole number portion.
- Adding Two Mixed Fractions with Equal Denominators Adding Two Mixed Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Equal Denominators and No Simplifying (Printable Only) Adding Two Mixed Fractions with Equal Denominators and All Simplifying (Printable Only) Adding Two Mixed Fractions with Equal Denominators and Some Simplifying (Printable Only)
- Adding Two Mixed Fractions with Similar Denominators Adding Two Mixed Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Similar Denominators and Some Simplifying Adding Two Mixed Fractions with Similar Denominators and No Simplifying (Printable Only) Adding Two Mixed Fractions with Similar Denominators and All Simplifying (Printable Only) Adding Two Mixed Fractions with Similar Denominators and Some Simplifying (Printable Only)
- Adding Two Mixed Fractions with Unlike Denominators Adding Two Mixed Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Unlike Denominators and No Simplifying (Printable Only) Adding Two Mixed Fractions with Unlike Denominators and All Simplifying (Printable Only) Adding Two Mixed Fractions with Unlike Denominators and Some Simplifying (Printable Only)
Subtracting Fractions
There isn't a lot of difference between adding and subtracting fractions. Both require a common denominator which requires some prerequisite knowledge. The only difference is the second and subsequent numerators are subtracted from the first one. There is a danger that you might end up with a negative number when subtracting fractions, so students might need to learn what it means in that case. When it comes to any concept in fractions, it is always a good idea to relate it to a familiar or easy-to-understand situation. For example, 7/8 - 3/4 = 1/8 could be given meaning in the context of a race. The first runner was 7/8 around the track when the second runner was 3/4 around the track. How far ahead was the first runner? (1/8 of the track).
- Subtracting Two Proper Fractions with Equal Denominators and Proper Fraction Results Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Two Proper Fractions with Similar Denominators and Proper Fraction Results Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Two Proper Fractions with Unlike Denominators and Proper Fraction Results Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Equal Denominators and Proper Fraction Results Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Similar Denominators and Proper Fraction Results Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Unlike Denominators and Proper Fraction Results Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Equal Denominators and Mixed Fraction Results Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Similar Denominators and Mixed Fraction Results Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Unlike Denominators and Mixed Fraction Results Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Mixed Fractions with Equal Denominators Subtracting Mixed Fractions with Equal Denominators, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Equal Denominators, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Equal Denominators, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Equal Denominators, and No Simplifying (Printable Only) Subtracting Mixed Fractions with Equal Denominators, and All Simplifying (Printable Only) Subtracting Mixed Fractions with Equal Denominators, and Some Simplifying (Printable Only)
- Subtracting Mixed Fractions with Similar Denominators Subtracting Mixed Fractions with Similar Denominators, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Similar Denominators, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Similar Denominators, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Similar Denominators, and No Simplifying (Printable Only) Subtracting Mixed Fractions with Similar Denominators, and All Simplifying (Printable Only) Subtracting Mixed Fractions with Similar Denominators, and Some Simplifying (Printable Only)
- Subtracting Mixed Fractions with Unlike Denominators Subtracting Mixed Fractions with Unlike Denominators, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Unlike Denominators, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Unlike Denominators, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Unlike Denominators, and No Simplifying (Printable Only) Subtracting Mixed Fractions with Unlike Denominators, and All Simplifying (Printable Only) Subtracting Mixed Fractions with Unlike Denominators, and Some Simplifying (Printable Only)
Adding and Subtracting Fractions
Mixing up the signs on operations with fractions worksheets makes students pay more attention to what they are doing and allows for a good test of their skills in more than one operation.
- Adding and Subtracting Proper and Improper Fractions Adding and Subtracting Proper and Improper Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Proper and Improper Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Proper and Improper Fractions with Equal Denominators and Some Simplifying (Printable Only) Adding and Subtracting Proper and Improper Fractions with Similar Denominators and Some Simplifying (Printable Only) Adding and Subtracting Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Printable Only)
- Adding and Subtracting Mixed Fractions Adding and Subtracting Mixed Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Mixed Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Mixed Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Mixed Fractions with Equal Denominators and Some Simplifying (Printable Only) Adding and Subtracting Mixed Fractions with Similar Denominators and Some Simplifying (Printable Only) Adding and Subtracting Mixed Fractions with Unlike Denominators and Some Simplifying (Printable Only) Adding/Subtracting Three Fractions/Mixed Fractions
All Operations Fractions Worksheets
- All Operations with Two Proper Fractions with Equal Denominators and Proper Fraction Results All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and No Simplifying (Printable Only) All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and All Simplifying (Printable Only) All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and Some Simplifying (Printable Only)
- All Operations with Two Proper Fractions with Similar Denominators and Proper Fraction Results All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and No Simplifying (Printable Only) All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and All Simplifying (Printable Only) All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and Some Simplifying (Printable Only)
- All Operations with Two Proper Fractions with Unlike Denominators and Proper Fraction Results All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and No Simplifying (Printable Only) All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and All Simplifying (Printable Only) All Operations with Two Proper Fractions with Unlike Denominators, Mixed Fractions Results and Some Simplifying (Printable Only)
- All Operations with Proper and Improper Fractions with Equal Denominators All Operations with Proper and Improper Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Equal Denominators and No Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Equal Denominators and All Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Equal Denominators and Some Simplifying (Printable Only)
- All Operations with Proper and Improper Fractions with Similar Denominators All Operations with Proper and Improper Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Similar Denominators and No Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Similar Denominators and All Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Similar Denominators and Some Simplifying (Printable Only)
- All Operations with Proper and Improper Fractions with Unlike Denominators All Operations with Proper and Improper Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Unlike Denominators and No Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Unlike Denominators and All Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Printable Only)
- All Operations with Two Mixed Fractions with Equal Denominators All Operations with Two Mixed Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Equal Denominators and No Simplifying (Printable Only) All Operations with Two Mixed Fractions with Equal Denominators and All Simplifying (Printable Only) All Operations with Two Mixed Fractions with Equal Denominators and Some Simplifying (Printable Only)
- All Operations with Two Mixed Fractions with Similar Denominators All Operations with Two Mixed Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Similar Denominators and No Simplifying (Printable Only) All Operations with Two Mixed Fractions with Similar Denominators and All Simplifying (Printable Only) All Operations with Two Mixed Fractions with Similar Denominators and Some Simplifying (Printable Only)
- All Operations with Two Mixed Fractions with Unlike Denominators All Operations with Two Mixed Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Unlike Denominators and No Simplifying (Printable Only) All Operations with Two Mixed Fractions with Unlike Denominators and All Simplifying (Printable Only) All Operations with Two Mixed Fractions with Unlike Denominators and Some Simplifying (Printable Only)
- All Operations with 3 Fractions All Operations with Three Fractions Including Some Improper Fractions All Operations with Three Fractions Including Some Negative and Some Improper Fractions
Operations with Negative Fractions Worksheets
Although some of these worksheets are single operations, it should be helpful to have all of these in the same location. There are some special considerations when completing operations with negative fractions. It is usually very helpful to change any mixed numbers to an improper fraction before proceeding. It is important to pay attention to the signs and know the rules for multiplying positives and negatives (++ = +, +- = -, -+ = - and -- = +).
- Adding with Negative Fractions Adding Negative Proper Fractions with Unlike Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Proper Fractions with Unlike Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Mixed Fractions with Unlike Denominators Up to Sixths, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Mixed Fractions with Unlike Denominators Up to Twelfths, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Adding Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Adding Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Adding Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
- Subtracting with Negative Fractions Subtracting Negative Proper Fractions with Unlike Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Proper Fractions with Unlike Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Mixed Fractions with Unlike Denominators Up to Sixths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Mixed Fractions with Unlike Denominators Up to Twelfths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Subtracting Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Subtracting Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Subtracting Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
- Multiplying with Negative Fractions Multiplying Negative Proper Fractions with Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Proper Fractions with Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Mixed Fractions with Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Mixed Fractions with Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Multiplying Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Multiplying Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Multiplying Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
- Dividing with Negative Fractions Dividing Negative Proper Fractions with Denominators Up to Sixths, Mixed Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Proper Fractions with Denominators Up to Twelfths, Mixed Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Mixed Fractions with Denominators Up to Twelfths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Mixed Fractions with Denominators Up to Twelfths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Dividing Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Dividing Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Dividing Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
Order of Operations with Fractions Worksheets
The order of operations worksheets in this section actually reside on the Order of Operations page, but they are included here for your convenience.
- Order of Operations with Fractions 2-Step Order of Operations with Fractions 3-Step Order of Operations with Fractions 4-Step Order of Operations with Fractions 5-Step Order of Operations with Fractions 6-Step Order of Operations with Fractions
- Order of Operations with Fractions (No Exponents) 2-Step Order of Operations with Fractions (No Exponents) 3-Step Order of Operations with Fractions (No Exponents) 4-Step Order of Operations with Fractions (No Exponents) 5-Step Order of Operations with Fractions (No Exponents) 6-Step Order of Operations with Fractions (No Exponents)
- Order of Operations with Positive and Negative Fractions 2-Step Order of Operations with Positive & Negative Fractions 3-Step Order of Operations with Positive & Negative Fractions 4-Step Order of Operations with Positive & Negative Fractions 5-Step Order of Operations with Positive & Negative Fractions 6-Step Order of Operations with Positive & Negative Fractions
Copyright © 2005-2024 Math-Drills.com You may use the math worksheets on this website according to our Terms of Use to help students learn math.
- Number Charts
- Multiplication
- Long division
- Basic operations
- Telling time
- Place value
- Roman numerals
- Fractions & related
- Add, subtract, multiply, and divide fractions
- Mixed numbers vs. fractions
- Equivalent fractions
- Prime factorization & factors
- Fraction Calculator
- Decimals & Percent
- Add, subtract, multiply, and divide decimals
- Fractions to decimals
- Percents to decimals
- Percentage of a number
- Percent word problems
- Classify triangles
- Classify quadrilaterals
- Circle worksheets
- Area & perimeter of rectangles
- Area of triangles & polygons
- Coordinate grid, including moves & reflections
- Volume & surface area
- Pre-algebra
- Square Roots
- Order of operations
- Scientific notation
- Proportions
- Ratio word problems
- Write expressions
- Evaluate expressions
- Simplify expressions
- Linear equations
- Linear inequalities
- Graphing & slope
- Equation calculator
- Equation editor
- Elementary Math Games
- Addition and subtraction
- Math facts practice
- The four operations
- Factoring and number theory
- Geometry topics
- Middle/High School
- Statistics & Graphs
- Probability
- Trigonometry
- Logic and proof
- For all levels
- Favorite math puzzles
- Favorite challenging puzzles
- Math in real world
- Problem solving & projects
- For gifted children
- Math history
- Math games and fun websites
- Interactive math tutorials
- Math help & online tutoring
- Assessment, review & test prep
- Online math curricula
- Parallelogram
- Quadrilateral
- Parallelepiped
- Tetrahedron
- Dodecahedron
- Rectangular Prism
- Fibonacci Sequence
- Golden Ratio
- Fraction Calculator
- Mixed Fraction Calculator
- Greatest Common Factor Calulator
- Decimal to Fraction Calculator
- Whole Numbers
- Rational Numbers
- Place Value
- Irrational Numbers
- Natural Numbers
- Binary Operation
- Numerator and Denominator
- Order of Operations (PEMDAS)
- Scientific Notation
- Triangular Number
- Complex Number
- Binary Number System
- Binomial Theorem
- Quartic Function
- Mathematical Induction
- Group Theory
- Modular Arithmetic
- Euler’s Number
- Inequalities
- De Morgan’s Laws
- Transcendental Numbers
Table of Contents
Last modified on October 26th, 2024
#ezw_tco-2 .ez-toc-title{ font-size: 120%; ; ; } #ezw_tco-2 .ez-toc-widget-container ul.ez-toc-list li.active{ background-color: #ededed; } chapter outline
Operations with fractions.
Similar to operations with whole numbers, the four basic operations – addition, subtraction, multiplication, and division, are also performed on fractions to simplify problems involving them.
Adding and Subtracting
To add or subtract fractions, they must have the same denominator. If not, we need to find their common denominator.
With Like Denominators
When adding or subtracting the fractions with the same denominator, we simply add or subtract the numerators.
Let us add ${\dfrac{1}{4}}$ and ${\dfrac{5}{4}}$
Identifying the Denominators
Here, the denominators are 4 and 4
Adding the Numerators
Now, ${\dfrac{1}{4}+\dfrac{5}{4}}$
On adding the numerators,
= ${\dfrac{1+5}{4}}$
= ${\dfrac{6}{4}}$
Simplifying
${\dfrac{3}{2}}$
Similarly, now let us subtract: ${\dfrac{7}{3}-\dfrac{2}{3}}$
Given, ${\dfrac{7}{3}-\dfrac{2}{3}}$
Here, the denominators are 3 and 3
Now, ${\dfrac{7}{3}-\dfrac{2}{3}}$
Subtracting the Numerators
= ${\dfrac{7-2}{3}}$
= ${\dfrac{5}{3}}$, which is in its simplest form.
Thus, the difference is ${\dfrac{5}{3}}$
With Unlike Denominators
When adding or subtracting the fractions with different denominators, we find the common denominator first and then add or subtract the numerators.
Let us subtract ${\dfrac{5}{9}}$ from ${\dfrac{4}{3}}$
${\dfrac{4}{3}-\dfrac{5}{9}}$
Here, the denominators are 9 and 3, which are different.
Finding the LCM of the Denominators
The LCM of 9 and 3 is 9
Making the Denominators the Same
Converting ${\dfrac{4}{3}}$ to its equivalent fraction with 9 as the denominator,
${\dfrac{4}{3}}$ = ${\dfrac{4\times 3}{3\times 3}}$ = ${\dfrac{12}{9}}$
Now, we have ${\dfrac{12}{9}-\dfrac{5}{9}}$
On subtracting the numerators,
= ${\dfrac{12-5}{9}}$
= ${\dfrac{7}{9}}$
Now, let us add: ${\dfrac{4}{5}+\dfrac{2}{7}}$
Given, ${\dfrac{4}{5}+\dfrac{2}{7}}$
Here, the denominators are 5 and 7, which are different.
The LCM of 5 and 7 is 35
Making the Denominators the Same
Now, converting ${\dfrac{4}{5}}$ and ${\dfrac{2}{7}}$ to their equivalent fractions with 35 as the denominator,
${\dfrac{4}{5}}$ = ${\dfrac{4\times 7}{5\times 7}}$ = ${\dfrac{28}{35}}$
${\dfrac{2}{7}}$ = ${\dfrac{2\times 5}{7\times 5}}$ = ${\dfrac{10}{35}}$
Now, we have ${\dfrac{4}{5}+\dfrac{2}{7}}$
Adding the Numerators
= ${\dfrac{28}{35}+\dfrac{10}{35}}$
= ${\dfrac{28+10}{35}}$
= ${\dfrac{38}{35}}$, which is in its simplest form.
Thus, the sum is ${\dfrac{38}{35}}$
Multiplying and Dividing
To multiply fractions, we multiply the numerators and the denominators separately to get the product.
Let us multiply ${\dfrac{2}{3}\times \dfrac{5}{6}}$
Multiplying the Numerators and Denominators Separately
= ${\dfrac{2\times 5}{3\times 6}}$
= ${\dfrac{10}{18}}$
Simplifying
= ${\dfrac{5}{9}}$
Thus, the product is ${\dfrac{5}{9}}$
Problem – Multiplying by an INTEGER
Multiply ${\dfrac{7}{6}\times 10}$
Given, ${\dfrac{7}{6}\times 10}$ Multiplying the Numerators and Denominators Separately = ${\dfrac{7\times 10}{6}}$ = ${\dfrac{70}{6}}$ Simplifying, = ${\dfrac{35}{3}}$ Thus, the product is ${\dfrac{35}{3}}$ To divide fractions, we multiply the first fraction by the reciprocal of the second fraction. Let us divide ${\dfrac{2}{3}}$ by ${\dfrac{5}{6}}$ Finding the Reciprocal of the Second Fraction Here, the reciprocal of ${\dfrac{5}{6}}$ is ${\dfrac{6}{5}}$ Now, ${\dfrac{2}{3}\div \dfrac{5}{6}}$ Multiplying it by the First Fraction = ${\dfrac{2}{3}\times \dfrac{6}{5}}$ = ${\dfrac{2\times 6}{3\times 5}}$ = ${\dfrac{12}{15}}$ Simplifying = ${\dfrac{4}{5}}$ Thus, the quotient is ${\dfrac{4}{5}}$
Divide ${\dfrac{14}{15}\div \dfrac{12}{18}}$
Given, ${\dfrac{14}{15}\div \dfrac{12}{18}}$ Finding the Reciprocal of the Second Fraction Here, the reciprocal of ${\dfrac{12}{18}}$ is ${\dfrac{18}{12}}$ Multiplying it by the First Fraction = ${\dfrac{14}{15}\times \dfrac{18}{12}}$ = ${\dfrac{14\times 18}{15\times 12}}$ = ${\dfrac{252}{180}}$ Simplifying, = ${\dfrac{7}{5}}$ Thus, the quotient is ${\dfrac{7}{5}}$
Here is a summary of what we have learned so far.
- Privacy Policy
- Trigonometry
Join Our Newsletter
© 2024 Mathmonks.com . All rights reserved. Reproduction in whole or in part without permission is prohibited.
Fraction Worksheets
Conversion :: Addition :: Subtraction :: Multiplication :: Division
Conversions
Fractions - addition, fractions - subtraction, fractions - multiplication, fractions - division.
High Impact Tutoring Built By Math Experts
Personalized standards-aligned one-on-one math tutoring for schools and districts
In order to access this I need to be confident with:
Fractions operations
Here you will learn about fractions operations, including how to add, subtract, multiply and divide with fractions.
Students will first learn about fractions operations as part of number and operations in fractions in elementary school. They will continue to build on this knowledge in the number system in 6th grade and 7th grade.
Every week, we teach lessons on fractions operations to students in schools and districts across the US as part of our online one-on-one math tutoring programs. On this page we’ve broken down everything we’ve learnt about teaching this topic effectively.
What are fractions operations?
Fractions operations are when you add, subtract, multiply or divide with fractions.
For example,
[FREE] Fraction Operations Worksheet (Grade 4 to 6)
Use this quiz to check your students’ understanding of fraction operations. 10+ questions with answers on adding, subtracting, multiplying, and dividing with fractions to easily identify areas for improvement!
Adding and subtracting fractions
Adding and subtracting fractions means finding the sum or the difference of two or more fractions. To do this, find a common denominator (bottom number), add the two numerators (top numbers), and keep the denominators the same.
The numerator shows the number of parts out of the whole and the denominator shows how many equal parts the whole is divided into.
The equation is taking \, \cfrac{1}{8} \, away from \, \cfrac{4}{8} \, .
Since the denominators are the same, the parts are the same size.
You subtract to see how many parts are left: 4-1 = 3.
There are 3 parts and the size is still eighths, so the denominator stays the same.
When fractions have unlike denominators, create equivalent fractions with common denominators to solve.
The parts are NOT the same size, since the denominators are different.
Use equivalent fractions to create a common denominator of 10.
Multiply the numerator and denominator of \, \cfrac{2}{5} \, by 2.
\cfrac{2 \, \times \, 2}{5 \, \times \, 2}=\cfrac{4}{10}
Add to find how many parts there are in all: 2 + 4 = 6.
There are 6 parts and the size is still tenths, so the denominator stays the same.
The sum could also be written as the equivalent fraction \, \cfrac{3}{5} \, .
Step-by-step guide: Adding fractions
Step-by-step guide: Subtracting fractions
Step-by-step guide: Adding and subtracting fractions
Multiplying and dividing fractions
Multiplying and dividing fractions means using multiplication and division to calculate with fractions. Fraction multiplication and division can be solved using models or an algorithm.
Using models:
In the model, \, \cfrac{2}{3} \, is yellow and \, \cfrac{1}{2} \, is blue.
The product is where the fractions overlap in green.
The model shows \, \cfrac{2}{3} \, of \, \cfrac{1}{2}, \, so \, \cfrac{1}{2} \times \cfrac{2}{3} = \cfrac{2}{6} \, .
Using the algorithm:
To multiply fractions , you multiply the numerators together, and multiply the denominators together:
\cfrac{1}{2} \, \times \, \cfrac{2}{3}=\cfrac{2}{6} \, .
You can also divide fractions with a model or an algorithm.
Think of this equation as how many \, \cfrac{1}{4} \, fit into \, \cfrac{1}{2} \, .
In the model, \, \cfrac{1}{2} \, is orange and \, \cfrac{1}{4} \, is yellow.
To divide into equal groups, use the equivalent fraction \, \cfrac{2}{4} \, .
The quotient is the final fraction formed when \, \cfrac{2}{4} \, is put into a group of \, \cfrac{1}{4} \, .
Two groups of \cfrac{1}{4} can be made, so \cfrac{1}{2} \div \cfrac{1}{4}=2.
KEEP the first fraction, FLIP the second fraction, CHANGE to multiplication.
\cfrac{1}{2} \div \cfrac{1}{4}
Keep the dividend (first fraction): \, \cfrac{1}{2}
Take the reciprocal of the divisor (flip the second fraction): \, \cfrac{1}{4} \rightarrow \cfrac{4}{1}
Change to multiplication: \, \cfrac{1}{2} \times \cfrac{4}{1}
Multiply the fractions: \, \cfrac{1}{2} \times \cfrac{4}{1}=\cfrac{4}{2} \, which simplifies to 2.
\cfrac{1}{2} \div \cfrac{1}{4}=2
Since \, \cfrac{1}{2} \, is larger than \, \cfrac{1}{4} \, , the answer makes sense.
A larger number divided by a smaller number, will have a quotient of greater than 1.
Notice that it is not necessary to create a common denominator to multiply and divide fractions when using the algorithm, like it is to add and subtract fractions.
Step-by-step guide: Multiplying fractions
Step-by-step guide: Dividing fractions
Step-by-step guide: Multiplying and dividing fractions
The algorithm for dividing fractions involves using the reciprocal .
When two numbers are multiplied by something other than 1, and have a product of 1, they are reciprocals.
This is also known as the multiplicative inverse.
The reciprocal of all numbers can be found by writing the number as a fraction and then flipping it so that the numerator becomes the denominator and the denominator becomes the numerator.
Step-by-step guide: Reciprocal
Step-by-step guide: Multiplicative inverse
Common Core State Standards
How does this relate to 4th grade math, 5th grade math, and 6th grade math?
- Grade 4 – Number and Operations – Fractions (4.NF.B.3a) Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
- Grade 4 – Number and Operations – Fractions (4.NF.B.3c) Add and subtract mixed numbers with like denominators, for example, by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
- Grade 4 – Number and Operations – Fractions (4.NF.B.4b) Understand a multiple of \, \cfrac{a}{b} \, as a multiple of \, \cfrac{1}{b} \, , and use this understanding to multiply a fraction by a whole number.
- Grade 5 – Number and Operations – Fractions (5.NF.A.1) Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, \, \cfrac{2}{3} + \cfrac{5}{4} = \cfrac{8}{12} + \cfrac{15}{12} = \cfrac{23}{12} \, . \; ( In general, \, \cfrac{a}{b} + \cfrac{c}{d} = \cfrac{(ad \, + \, bc)}{bd} \, . )
- Grade 5 – Number and Operations – Fractions (5.NF.B.4b) Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
- Grade 6 – Number System (6.NS.A.1) Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
How to use fractions operations
There are a lot of ways to use fractions operations. For more specific step-by-step guides, check out the fraction pages linked in the “What are fractions operations?” section above or read through the examples below.
Fractions operations examples
Example 1: adding fractions with like denominators.
Solve \, \cfrac{5}{8}+\cfrac{7}{8} \, .
Add or subtract the numerators (top numbers).
Since the denominators are the same, the parts are the same size. You add to see how many parts there are in total: 5 + 7 = 12.
2 Write your answer as a fraction.
There are 12 parts, and the size is still eighths, so the denominator stays the same.
\cfrac{12}{8} \, is an improper fraction and converts to the mixed number 1 \, \cfrac{4}{8} \, .
\cfrac{5}{8}+\cfrac{7}{8}=1 \cfrac{4}{8}
You can also write this answer as the equivalent mixed number \, 1 \cfrac{1}{2} \, .
Example 2: subtracting fractions with unlike denominators
Solve \cfrac{6}{10}-\cfrac{1}{3} \, .
Create common denominators (bottom numbers).
Since \, \cfrac{6}{10} \, and \, \cfrac{1}{3} \, do not have like denominators, the parts are NOT the same size.
Multiply the numerator and denominator by the opposite denominator to create equivalent fractions with common denominators.
\cfrac{6 \, \times \, 3}{10 \, \times \, 3}=\cfrac{18}{30} \quad and \quad \cfrac{1 \, \times \, 10}{3 \, \times \, 10}=\cfrac{10}{30}
Now use the equivalent fractions to solve: \, \cfrac{18}{30}-\cfrac{10}{30} \, .
Since the denominators are the same, the parts are the same size. You subtract to see how many parts are left: 18-10 = 8.
Write your answer as a fraction.
There are 8 parts and the size is still thirtieths, so the denominator stays the same.
\cfrac{18}{30}-\cfrac{10}{30}=\cfrac{8}{30}
You can also write this answer as the equivalent fraction \, \cfrac{4}{15} \, .
Example 3: multiplying a mixed number by a fraction with the algorithm
Solve 1 \, \cfrac{11}{12} \times \cfrac{3}{4} \, .
Convert whole numbers and mixed numbers to improper fractions.
Convert the mixed number to an improper fraction.
Multiply the numerators together.
\cfrac{23}{12} \times \cfrac{3}{4}=\cfrac{69}{}
Multiply the denominators together.
\cfrac{23}{12} \times \cfrac{3}{4}=\cfrac{69}{48}
If possible, simplify or convert to a mixed number.
The numerator is greater than the denominator, so the improper fraction can be converted to a mixed number.
\cfrac{69}{48}=1 \, \cfrac{21}{48}
The product can be simplified. 21 and 48 have a common factor of 3.
\cfrac{21 \, \div \, 3}{48 \, \div \, 3}=\cfrac{7}{16}
So, \, \cfrac{23}{12} \times \cfrac{3}{4}=\cfrac{69}{48} \, or 1 \, \cfrac{7}{16} \, .
Example 4: dividing a fraction by a fraction
Divide the numbers \, \cfrac{1}{12} \div \cfrac{1}{4} \, .
Take the reciprocal (flip) of the divisor (second fraction).
\cfrac{1}{4} \, → \, \cfrac{4}{1}
Change the division sign to a multiplication sign.
\cfrac{1}{12} \, \times \, \cfrac{4}{1}
Multiply the fractions together.
\cfrac{1}{12} \, \times \, \cfrac{4}{1}=\cfrac{4}{12}
\cfrac{4}{12}=\cfrac{1}{3}
This can also be solved with a model.
You can think of this equation as how many \, \cfrac{1}{4} \, fit into \, \cfrac{1}{12} \, .
In the model, \, \cfrac{1}{12} \, is yellow and \, \cfrac{1}{4} \, is orange.
To divide into equal groups, the fractional pieces need to be the same size.
Use \, \cfrac{1}{12} \, and \, \cfrac{3}{12} \, to solve.
The quotient is the final fraction formed when \, \cfrac{1}{12} \, is put into groups of \, \cfrac{3}{12} \, .
One out of the three parts are filled, so \, \cfrac{1}{12} \div \cfrac{3}{12}=\cfrac{1}{3} \, .
Example 5: adding mixed numbers with unlike denominators
There are 2 \, \cfrac{1}{3} \, pounds of red apples and 4 \, \cfrac{1}{6} \, pounds of green apples.
How many pounds of apples are there in all?
Create an equation to model the problem.
2 \cfrac{1}{3}+4 \cfrac{1}{6}= \, ?
Add or subtract the whole numbers.
Since \, \cfrac{1}{3} \, and \, \cfrac{1}{6} \, do not have like denominators, the parts are NOT the same size.
Use equivalent fractions to create a common denominator.
A common denominator of 6 can be used.
Multiply the numerator and denominator of \, \cfrac{1}{3} \, by 2 to create an equivalent fraction.
\cfrac{1}{3}=\cfrac{1 \, \times \, 2}{3 \, \times \, 2}=\cfrac{2}{6} \quad and \quad \cfrac{1}{6}
Add or subtract the fractions.
Since the denominators are the same, the parts are the same size. You add to see how many parts there are in total: 2 + 1 = 3.
There are 3 parts, and the size is still sixths, so the denominator stays the same.
Write your answer as a mixed number.
Add the whole number and fraction together.
You can also write this answer as the equivalent mixed number 6 \, \cfrac{1}{2} \, .
There are 6 \, \cfrac{1}{2} \, pounds of apples in all.
Example 6: word problem dividing with fractions
Each seed needs \, \cfrac{1}{5} \, cup of soil. How many seeds can be planted with 11 cups of soil?
11 \div \cfrac{1}{5}= \, ?
Change any mixed numbers to an improper fraction.
Change 11 to an improper fraction.
11=\cfrac{11}{1}
Take the reciprocal (flip) of the divisor (second fractions).
\cfrac{1}{5} \, → \, \cfrac{5}{1}
\cfrac{11}{1} \times \cfrac{5}{1}
\cfrac{11}{1} \times \cfrac{5}{1}=\cfrac{55}{1}
If possible, simplify or convert to a mixed number (mixed fraction).
\cfrac{55}{1}=55
55 seeds can be planted with 11 cups of soil.
Teaching tips for fractions operations
- Fraction work in lower grades emphasizes understanding through models, including area models and number lines. To support students in upper grades, always have digital or physical models available for students to use as they work with fractions operations.
- Fraction worksheets can be useful when students are developing understanding around basic operations with fractions. However, when students have successful strategies and can flexibly operate, make the practice more engaging by using math games or real world projects that allow students to use fractions in a variety of situations.
- Highlight patterns within and between the operations as students are learning and encourage them to look for patterns on their own. This will help students make sense of the algorithms used to operate with fractions and minimize conceptual errors.
- Let students find reciprocal numbers on their own by consistently asking questions such as, “What number multiplied by 7 will have a product of 1 ?” Each time this is discussed, write these equations on an anchor chart and students will begin to see a pattern over time. Although worksheets can serve a purpose and help with skill and test prep practice, having students discover and make sense of mathematical concepts is more meaningful for building long lasting understanding.
Easy mistakes to make
- Forgetting how to find the reciprocal of a whole number Whole numbers can be written as an improper fraction and then the numerator and denominator of the improper fraction can be flipped to find the reciprocal of the whole number. For example, 16 can be written as \, \cfrac{16}{1} \, and the reciprocal is \, \cfrac{1}{16} \, .
Practice fractions operations questions
1. Solve \, \cfrac{5}{9}+\cfrac{2}{9} \, .
Since the denominators are the same, the parts are the same size. You add to see how many parts there are in total: 5 + 2 = 7.
There are 7 parts and the size is still ninths, so the denominator stays the same.
\cfrac{5}{9}+\cfrac{2}{9}=\cfrac{7}{9}
2. Solve \, 2 \, \cfrac{3}{10}-1 \, \cfrac{4}{5} \, .
The equation is taking \, 1 \cfrac{4}{5} \, away from \, 2 \cfrac{3}{10} \, .
Start with the fractions. Since \, \cfrac{3}{10} \, and \, \cfrac{4}{5} \, do not have like denominators, the parts are NOT the same size.
Use equivalent fractions to create a common denominator. Both denominators are multiples of 10.
\cfrac{3}{10} \quad and \quad \cfrac{4 \, \times \, 2}{5 \, \times \, 2}=\cfrac{8}{10}
Now use the equivalent fraction to solve: 2 \, \cfrac{3}{10}-1 \, \cfrac{8}{10}
However, there are not enough parts to take 8 away from 3.
You can break one of the wholes into \cfrac{10}{10} \, …
Now you can solve 1 \, \cfrac{13}{10}-1 \, \cfrac{8}{10}.
You subtract to see how many parts are left: 13-8 = 5.
There are 5 parts and the size is still tenths, so the denominator stays the same.
\cfrac{13}{10}-\cfrac{8}{10}=\cfrac{5}{10}
Subtract the whole numbers.
1 \, \cfrac{13}{10}-1 \, \cfrac{8}{10}=\cfrac{5}{10}
You can also write this answer as the equivalent fraction \, \cfrac{1}{2} \, .
3. Solve \, \cfrac{1}{4} \times \cfrac{2}{5} \, .
To solve using a model, draw a rectangle. Divide one side into fourths.
Divide the other side into fifths.
Shade in \, \cfrac{1}{4} \, with yellow and \, \cfrac{2}{5} with blue.
The model shows \, \cfrac{2}{5} \, of \, \cfrac{1}{4} \, , so \, \cfrac{1}{4} \times \cfrac{2}{5}=\cfrac{2}{20} \, , because there are 2 green squares and the whole has 20 squares in total.
The product can be simplified. Both 2 and 20 have a factor of 2, so they can be divided by 2 :
\, \cfrac{2 \, \div \, 2}{20 \, \div \, 2}=\cfrac{1}{10} \, .
So, \, \cfrac{1}{4} \times \cfrac{2}{5}=\cfrac{2}{20} \; or \; \cfrac{1}{10}
4. Solve \, 2 \, \cfrac{1}{6} \div 1 \, \cfrac{2}{3} \, . Write the quotient in lowest terms.
Change the mixed numbers to improper fractions:
Keep the dividend (first fraction): \, \cfrac{13}{6}
Take the reciprocal of the divisor (flip the second fraction): \, \cfrac{5}{3} → \cfrac{3}{5}
Change to multiplication: \, \cfrac{13}{6} \times \cfrac{3}{5}
Multiply the fractions: \, \cfrac{13}{6} \times \cfrac{3}{5}=\cfrac{39}{30}
Change back into a mixed number: \, \cfrac{39}{30}=1 \, \cfrac{9}{30}
Simplify: \, \cfrac{9 \, \div \, 3}{30 \, \div \, 3}=\cfrac{3}{10} \, , so the answer in lowest terms is \, 1 \, \cfrac{3}{10} \, .
5. Rashad is cutting a 12 \, ft rope into smaller \, \cfrac{2}{3} \, ft pieces. How many smaller pieces of rope will he have?
8 smaller pieces of rope
12 smaller pieces of rope
18 smaller pieces of rope
\cfrac{24}{3} smaller pieces of rope
Use the equation \, 12 \div \cfrac{2}{3}= \, ?
Draw 12 wholes and break them up into thirds.
Create groups of \, \cfrac{2}{3} \, .
There are 18 groups of \, \cfrac{2}{3} \, .
Rashad will have 18 pieces of smaller rope.
6. A recipe calls for 3 \, \cfrac{1}{4} \, cups of strawberries. If Tyler has 5 \, \cfrac{5}{8} \, cups of strawberries, how many will he have left after he makes 1 recipe?
2 \, \cfrac{3}{8} cups
2 \, \cfrac{4}{4} cups
8 \, \cfrac{7}{8} cups
8 \, \cfrac{6}{12} cups
Use the equation 5 \cfrac{5}{8}-3 \cfrac{1}{4}= \, ?
Start with the fraction.
Since \, \cfrac{5}{8} \, and \, \cfrac{1}{4} \, do not have like denominators, the parts are NOT the same size.
A common denominator of 8 can be used.
Multiply the numerator and denominator of \, \cfrac{1}{4} \, by 2 to create an equivalent fraction.
\cfrac{5}{8} \quad and \quad \cfrac{1}{4}=\cfrac{1 \, \times \, 2}{4 \, \times \, 2}=\cfrac{2}{8}
You subtract to see how many parts there are in total: 5-2 = 3.
There are 2 parts and the size is still eighths, so the denominator stays the same.
There will be \, 2 \cfrac{3}{8} \, cups of strawberries left.
Fractions operations FAQs
No, although using these operations will create different denominators and numerators, as long as they are multiplied or divided by the same thing, the value of the fraction will remain the same.
No, unless the question specifies the lowest terms, it is valid to answer without using the least common denominator (LCD). However, as students progress in their understanding of fractions, it is a good idea to encourage them to practice this skill. Also be mindful of standard expectations, as they may vary from state to state.
Yes, just like any other type of number, to solve multistep problems correctly, the order of operations must be followed.
The multiplicative inverse of a number is the reciprocal. For any integer, that is the number written as the numerator over a denominator of 1. For any rational number, that is switching the numerator and denominator.
The next lessons are
- Algebraic expression
- Converting fractions decimals and percents
- Interpret fractions as division
- Fraction word problems
Still stuck?
At Third Space Learning, we specialize in helping teachers and school leaders to provide personalized math support for more of their students through high-quality, online one-on-one math tutoring delivered by subject experts.
Each week, our tutors support thousands of students who are at risk of not meeting their grade-level expectations, and help accelerate their progress and boost their confidence.
Find out how we can help your students achieve success with our math tutoring programs .
[FREE] Common Core Practice Tests (3rd to 8th Grade)
Prepare for math tests in your state with these 3rd Grade to 8th Grade practice assessments for Common Core and state equivalents.
Get your 6 multiple choice practice tests with detailed answers to support test prep, created by US math teachers for US math teachers!
IMAGES
VIDEO
COMMENTS
This page includes Fractions worksheets for understanding fractions including modeling, comparing, ordering, simplifying and converting fractions and operations with fractions. We start you off with the obvious: modeling fractions.
This worksheet generator produces a variety of worksheets for the four basic operations (addition, subtraction, multiplication, and division) with fractions and mixed numbers, including with negative fractions. You can make the worksheets in both html and PDF formats.
Operations With Fractions. Similar to operations with whole numbers, the four basic operations – addition, subtraction, multiplication, and division, are also performed on fractions to simplify problems involving them.
Fractions - Division. Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.
Free fractions operations math school topic guide, including step-by-step examples, free practice questions, teaching tips, and more!
Fractions with Like Denominators. To add (or subtract) two or more fractions that have the same denominators, add (or subtract) the numerators and place the resulting sum over the common denominator. Reduce if possible.