Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 08 March 2018

Meta-analysis and the science of research synthesis

  • Jessica Gurevitch 1 ,
  • Julia Koricheva 2 ,
  • Shinichi Nakagawa 3 , 4 &
  • Gavin Stewart 5  

Nature volume  555 ,  pages 175–182 ( 2018 ) Cite this article

58k Accesses

956 Citations

735 Altmetric

Metrics details

  • Biodiversity
  • Outcomes research

Meta-analysis is the quantitative, scientific synthesis of research results. Since the term and modern approaches to research synthesis were first introduced in the 1970s, meta-analysis has had a revolutionary effect in many scientific fields, helping to establish evidence-based practice and to resolve seemingly contradictory research outcomes. At the same time, its implementation has engendered criticism and controversy, in some cases general and others specific to particular disciplines. Here we take the opportunity provided by the recent fortieth anniversary of meta-analysis to reflect on the accomplishments, limitations, recent advances and directions for future developments in the field of research synthesis.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

meta analysis research paper

Similar content being viewed by others

meta analysis research paper

Eight problems with literature reviews and how to fix them

meta analysis research paper

The past, present and future of Registered Reports

meta analysis research paper

Reporting guidelines for precision medicine research of clinical relevance: the BePRECISE checklist

Jennions, M. D ., Lortie, C. J. & Koricheva, J. in The Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J . et al.) Ch. 23 , 364–380 (Princeton Univ. Press, 2013)

Article   Google Scholar  

Roberts, P. D ., Stewart, G. B. & Pullin, A. S. Are review articles a reliable source of evidence to support conservation and environmental management? A comparison with medicine. Biol. Conserv. 132 , 409–423 (2006)

Bastian, H ., Glasziou, P . & Chalmers, I. Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? PLoS Med. 7 , e1000326 (2010)

Article   PubMed   PubMed Central   Google Scholar  

Borman, G. D. & Grigg, J. A. in The Handbook of Research Synthesis and Meta-analysis 2nd edn (eds Cooper, H. M . et al.) 497–519 (Russell Sage Foundation, 2009)

Ioannidis, J. P. A. The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses. Milbank Q. 94 , 485–514 (2016)

Koricheva, J . & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102 , 828–844 (2014)

Littell, J. H . & Shlonsky, A. Making sense of meta-analysis: a critique of “effectiveness of long-term psychodynamic psychotherapy”. Clin. Soc. Work J. 39 , 340–346 (2011)

Morrissey, M. B. Meta-analysis of magnitudes, differences and variation in evolutionary parameters. J. Evol. Biol. 29 , 1882–1904 (2016)

Article   CAS   PubMed   Google Scholar  

Whittaker, R. J. Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness-productivity relationship. Ecology 91 , 2522–2533 (2010)

Article   PubMed   Google Scholar  

Begley, C. G . & Ellis, L. M. Drug development: Raise standards for preclinical cancer research. Nature 483 , 531–533 (2012); clarification 485 , 41 (2012)

Article   CAS   ADS   PubMed   Google Scholar  

Hillebrand, H . & Cardinale, B. J. A critique for meta-analyses and the productivity-diversity relationship. Ecology 91 , 2545–2549 (2010)

Moher, D . et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6 , e1000097 (2009). This paper provides a consensus regarding the reporting requirements for medical meta-analysis and has been highly influential in ensuring good reporting practice and standardizing language in evidence-based medicine, with further guidance for protocols, individual patient data meta-analyses and animal studies.

Moher, D . et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4 , 1 (2015)

Nakagawa, S . & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26 , 1253–1274 (2012)

Nakagawa, S ., Noble, D. W. A ., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15 , 18 (2017)

Hedges, L. & Olkin, I. Statistical Methods for Meta-analysis (Academic Press, 1985)

Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36 , 1–48 (2010)

Anzures-Cabrera, J . & Higgins, J. P. T. Graphical displays for meta-analysis: an overview with suggestions for practice. Res. Synth. Methods 1 , 66–80 (2010)

Egger, M ., Davey Smith, G ., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315 , 629–634 (1997)

Article   CAS   Google Scholar  

Duval, S . & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56 , 455–463 (2000)

Article   CAS   MATH   PubMed   Google Scholar  

Leimu, R . & Koricheva, J. Cumulative meta-analysis: a new tool for detection of temporal trends and publication bias in ecology. Proc. R. Soc. Lond. B 271 , 1961–1966 (2004)

Higgins, J. P. T . & Green, S. (eds) Cochrane Handbook for Systematic Reviews of Interventions : Version 5.1.0 (Wiley, 2011). This large collaborative work provides definitive guidance for the production of systematic reviews in medicine and is of broad interest for methods development outside the medical field.

Lau, J ., Rothstein, H. R . & Stewart, G. B. in The Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J . et al.) Ch. 25 , 407–419 (Princeton Univ. Press, 2013)

Lortie, C. J ., Stewart, G ., Rothstein, H. & Lau, J. How to critically read ecological meta-analyses. Res. Synth. Methods 6 , 124–133 (2015)

Murad, M. H . & Montori, V. M. Synthesizing evidence: shifting the focus from individual studies to the body of evidence. J. Am. Med. Assoc. 309 , 2217–2218 (2013)

Rasmussen, S. A ., Chu, S. Y ., Kim, S. Y ., Schmid, C. H . & Lau, J. Maternal obesity and risk of neural tube defects: a meta-analysis. Am. J. Obstet. Gynecol. 198 , 611–619 (2008)

Littell, J. H ., Campbell, M ., Green, S . & Toews, B. Multisystemic therapy for social, emotional, and behavioral problems in youth aged 10–17. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004797.pub4 (2005)

Schmidt, F. L. What do data really mean? Research findings, meta-analysis, and cumulative knowledge in psychology. Am. Psychol. 47 , 1173–1181 (1992)

Button, K. S . et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14 , 365–376 (2013); erratum 14 , 451 (2013)

Parker, T. H . et al. Transparency in ecology and evolution: real problems, real solutions. Trends Ecol. Evol. 31 , 711–719 (2016)

Stewart, G. Meta-analysis in applied ecology. Biol. Lett. 6 , 78–81 (2010)

Sutherland, W. J ., Pullin, A. S ., Dolman, P. M . & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19 , 305–308 (2004)

Lowry, E . et al. Biological invasions: a field synopsis, systematic review, and database of the literature. Ecol. Evol. 3 , 182–196 (2013)

Article   PubMed Central   Google Scholar  

Parmesan, C . & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421 , 37–42 (2003)

Jennions, M. D ., Lortie, C. J . & Koricheva, J. in The Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J . et al.) Ch. 24 , 381–403 (Princeton Univ. Press, 2013)

Balvanera, P . et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9 , 1146–1156 (2006)

Cardinale, B. J . et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443 , 989–992 (2006)

Rey Benayas, J. M ., Newton, A. C ., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325 , 1121–1124 (2009)

Article   ADS   PubMed   CAS   Google Scholar  

Leimu, R ., Mutikainen, P. I. A ., Koricheva, J. & Fischer, M. How general are positive relationships between plant population size, fitness and genetic variation? J. Ecol. 94 , 942–952 (2006)

Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163 , 192–211 (2004)

Gurevitch, J. in The Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J . et al.) Ch. 19 , 313–320 (Princeton Univ. Press, 2013)

Rustad, L . et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126 , 543–562 (2001)

Adams, D. C. Phylogenetic meta-analysis. Evolution 62 , 567–572 (2008)

Hadfield, J. D . & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23 , 494–508 (2010)

Lajeunesse, M. J. Meta-analysis and the comparative phylogenetic method. Am. Nat. 174 , 369–381 (2009)

Rosenberg, M. S ., Adams, D. C . & Gurevitch, J. MetaWin: Statistical Software for Meta-Analysis with Resampling Tests Version 1 (Sinauer Associates, 1997)

Wallace, B. C . et al. OpenMEE: intuitive, open-source software for meta-analysis in ecology and evolutionary biology. Methods Ecol. Evol. 8 , 941–947 (2016)

Gurevitch, J ., Morrison, J. A . & Hedges, L. V. The interaction between competition and predation: a meta-analysis of field experiments. Am. Nat. 155 , 435–453 (2000)

Adams, D. C ., Gurevitch, J . & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78 , 1277–1283 (1997)

Gurevitch, J . & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80 , 1142–1149 (1999)

Schmid, C. H . & Mengersen, K. in The Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J . et al.) Ch. 11 , 145–173 (Princeton Univ. Press, 2013)

Eysenck, H. J. Exercise in mega-silliness. Am. Psychol. 33 , 517 (1978)

Simberloff, D. Rejoinder to: Don’t calculate effect sizes; study ecological effects. Ecol. Lett. 9 , 921–922 (2006)

Cadotte, M. W ., Mehrkens, L. R . & Menge, D. N. L. Gauging the impact of meta-analysis on ecology. Evol. Ecol. 26 , 1153–1167 (2012)

Koricheva, J ., Jennions, M. D. & Lau, J. in The Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J . et al.) Ch. 15 , 237–254 (Princeton Univ. Press, 2013)

Lau, J ., Ioannidis, J. P. A ., Terrin, N ., Schmid, C. H . & Olkin, I. The case of the misleading funnel plot. Br. Med. J. 333 , 597–600 (2006)

Vetter, D ., Rucker, G. & Storch, I. Meta-analysis: a need for well-defined usage in ecology and conservation biology. Ecosphere 4 , 1–24 (2013)

Mengersen, K ., Jennions, M. D. & Schmid, C. H. in The Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J. et al.) Ch. 16 , 255–283 (Princeton Univ. Press, 2013)

Patsopoulos, N. A ., Analatos, A. A. & Ioannidis, J. P. A. Relative citation impact of various study designs in the health sciences. J. Am. Med. Assoc. 293 , 2362–2366 (2005)

Kueffer, C . et al. Fame, glory and neglect in meta-analyses. Trends Ecol. Evol. 26 , 493–494 (2011)

Cohnstaedt, L. W. & Poland, J. Review Articles: The black-market of scientific currency. Ann. Entomol. Soc. Am. 110 , 90 (2017)

Longo, D. L. & Drazen, J. M. Data sharing. N. Engl. J. Med. 374 , 276–277 (2016)

Gauch, H. G. Scientific Method in Practice (Cambridge Univ. Press, 2003)

Science Staff. Dealing with data: introduction. Challenges and opportunities. Science 331 , 692–693 (2011)

Nosek, B. A . et al. Promoting an open research culture. Science 348 , 1422–1425 (2015)

Article   CAS   ADS   PubMed   PubMed Central   Google Scholar  

Stewart, L. A . et al. Preferred reporting items for a systematic review and meta-analysis of individual participant data: the PRISMA-IPD statement. J. Am. Med. Assoc. 313 , 1657–1665 (2015)

Saldanha, I. J . et al. Evaluating Data Abstraction Assistant, a novel software application for data abstraction during systematic reviews: protocol for a randomized controlled trial. Syst. Rev. 5 , 196 (2016)

Tipton, E. & Pustejovsky, J. E. Small-sample adjustments for tests of moderators and model fit using robust variance estimation in meta-regression. J. Educ. Behav. Stat. 40 , 604–634 (2015)

Mengersen, K ., MacNeil, M. A . & Caley, M. J. The potential for meta-analysis to support decision analysis in ecology. Res. Synth. Methods 6 , 111–121 (2015)

Ashby, D. Bayesian statistics in medicine: a 25 year review. Stat. Med. 25 , 3589–3631 (2006)

Article   MathSciNet   PubMed   Google Scholar  

Senior, A. M . et al. Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. Ecology 97 , 3293–3299 (2016)

McAuley, L ., Pham, B ., Tugwell, P . & Moher, D. Does the inclusion of grey literature influence estimates of intervention effectiveness reported in meta-analyses? Lancet 356 , 1228–1231 (2000)

Koricheva, J ., Gurevitch, J . & Mengersen, K. (eds) The Handbook of Meta-Analysis in Ecology and Evolution (Princeton Univ. Press, 2013) This book provides the first comprehensive guide to undertaking meta-analyses in ecology and evolution and is also relevant to other fields where heterogeneity is expected, incorporating explicit consideration of the different approaches used in different domains.

Lumley, T. Network meta-analysis for indirect treatment comparisons. Stat. Med. 21 , 2313–2324 (2002)

Zarin, W . et al. Characteristics and knowledge synthesis approach for 456 network meta-analyses: a scoping review. BMC Med. 15 , 3 (2017)

Elliott, J. H . et al. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap. PLoS Med. 11 , e1001603 (2014)

Vandvik, P. O ., Brignardello-Petersen, R . & Guyatt, G. H. Living cumulative network meta-analysis to reduce waste in research: a paradigmatic shift for systematic reviews? BMC Med. 14 , 59 (2016)

Jarvinen, A. A meta-analytic study of the effects of female age on laying date and clutch size in the Great Tit Parus major and the Pied Flycatcher Ficedula hypoleuca . Ibis 133 , 62–67 (1991)

Arnqvist, G. & Wooster, D. Meta-analysis: synthesizing research findings in ecology and evolution. Trends Ecol. Evol. 10 , 236–240 (1995)

Hedges, L. V ., Gurevitch, J . & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80 , 1150–1156 (1999)

Gurevitch, J ., Curtis, P. S. & Jones, M. H. Meta-analysis in ecology. Adv. Ecol. Res 32 , 199–247 (2001)

Lajeunesse, M. J. phyloMeta: a program for phylogenetic comparative analyses with meta-analysis. Bioinformatics 27 , 2603–2604 (2011)

CAS   PubMed   Google Scholar  

Pearson, K. Report on certain enteric fever inoculation statistics. Br. Med. J. 2 , 1243–1246 (1904)

Fisher, R. A. Statistical Methods for Research Workers (Oliver and Boyd, 1925)

Yates, F. & Cochran, W. G. The analysis of groups of experiments. J. Agric. Sci. 28 , 556–580 (1938)

Cochran, W. G. The combination of estimates from different experiments. Biometrics 10 , 101–129 (1954)

Smith, M. L . & Glass, G. V. Meta-analysis of psychotherapy outcome studies. Am. Psychol. 32 , 752–760 (1977)

Glass, G. V. Meta-analysis at middle age: a personal history. Res. Synth. Methods 6 , 221–231 (2015)

Cooper, H. M ., Hedges, L. V . & Valentine, J. C. (eds) The Handbook of Research Synthesis and Meta-analysis 2nd edn (Russell Sage Foundation, 2009). This book is an important compilation that builds on the ground-breaking first edition to set the standard for best practice in meta-analysis, primarily in the social sciences but with applications to medicine and other fields.

Rosenthal, R. Meta-analytic Procedures for Social Research (Sage, 1991)

Hunter, J. E ., Schmidt, F. L. & Jackson, G. B. Meta-analysis: Cumulating Research Findings Across Studies (Sage, 1982)

Gurevitch, J ., Morrow, L. L ., Wallace, A . & Walsh, J. S. A meta-analysis of competition in field experiments. Am. Nat. 140 , 539–572 (1992). This influential early ecological meta-analysis reports multiple experimental outcomes on a longstanding and controversial topic that introduced a wide range of ecologists to research synthesis methods.

O’Rourke, K. An historical perspective on meta-analysis: dealing quantitatively with varying study results. J. R. Soc. Med. 100 , 579–582 (2007)

Shadish, W. R . & Lecy, J. D. The meta-analytic big bang. Res. Synth. Methods 6 , 246–264 (2015)

Glass, G. V. Primary, secondary, and meta-analysis of research. Educ. Res. 5 , 3–8 (1976)

DerSimonian, R . & Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 7 , 177–188 (1986)

Lipsey, M. W . & Wilson, D. B. The efficacy of psychological, educational, and behavioral treatment. Confirmation from meta-analysis. Am. Psychol. 48 , 1181–1209 (1993)

Chalmers, I. & Altman, D. G. Systematic Reviews (BMJ Publishing Group, 1995)

Moher, D . et al. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of reporting of meta-analyses. Lancet 354 , 1896–1900 (1999)

Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21 , 1539–1558 (2002)

Download references

Acknowledgements

We dedicate this Review to the memory of Ingram Olkin and William Shadish, founding members of the Society for Research Synthesis Methodology who made tremendous contributions to the development of meta-analysis and research synthesis and to the supervision of generations of students. We thank L. Lagisz for help in preparing the figures. We are grateful to the Center for Open Science and the Laura and John Arnold Foundation for hosting and funding a workshop, which was the origination of this article. S.N. is supported by Australian Research Council Future Fellowship (FT130100268). J.G. acknowledges funding from the US National Science Foundation (ABI 1262402).

Author information

Authors and affiliations.

Department of Ecology and Evolution, Stony Brook University, Stony Brook, 11794-5245, New York, USA

Jessica Gurevitch

School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, Surrey, UK

Julia Koricheva

Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia

Shinichi Nakagawa

Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, 2010, New South Wales, Australia

School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

Gavin Stewart

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed equally in designing the study and writing the manuscript, and so are listed alphabetically.

Corresponding authors

Correspondence to Jessica Gurevitch , Julia Koricheva , Shinichi Nakagawa or Gavin Stewart .

Ethics declarations

Competing interests.

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks D. Altman, M. Lajeunesse, D. Moher and G. Romero for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PowerPoint slides

Powerpoint slide for fig. 1, rights and permissions.

Reprints and permissions

About this article

Cite this article.

Gurevitch, J., Koricheva, J., Nakagawa, S. et al. Meta-analysis and the science of research synthesis. Nature 555 , 175–182 (2018). https://doi.org/10.1038/nature25753

Download citation

Received : 04 March 2017

Accepted : 12 January 2018

Published : 08 March 2018

Issue Date : 08 March 2018

DOI : https://doi.org/10.1038/nature25753

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Accelerating evidence synthesis for safety assessment through clinicaltrials.gov platform: a feasibility study.

BMC Medical Research Methodology (2024)

Investigate the relationship between the retraction reasons and the quality of methodology in non-Cochrane retracted systematic reviews: a systematic review

  • Azita Shahraki-Mohammadi
  • Leila Keikha
  • Razieh Zahedi

Systematic Reviews (2024)

A meta-analysis on global change drivers and the risk of infectious disease

  • Michael B. Mahon
  • Alexandra Sack
  • Jason R. Rohr

Nature (2024)

Systematic review of the uncertainty of coral reef futures under climate change

  • Shannon G. Klein
  • Cassandra Roch
  • Carlos M. Duarte

Nature Communications (2024)

A population-scale analysis of 36 gut microbiome studies reveals universal species signatures for common diseases

  • Qiulong Yan

npj Biofilms and Microbiomes (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

meta analysis research paper

A Guide to Conducting a Meta-Analysis

  • Published: 21 May 2016
  • Volume 26 , pages 121–128, ( 2016 )

Cite this article

meta analysis research paper

  • Mike W.-L. Cheung 1 &
  • Ranjith Vijayakumar 1  

21k Accesses

135 Citations

9 Altmetric

Explore all metrics

Meta-analysis is widely accepted as the preferred method to synthesize research findings in various disciplines. This paper provides an introduction to when and how to conduct a meta-analysis. Several practical questions, such as advantages of meta-analysis over conventional narrative review and the number of studies required for a meta-analysis, are addressed. Common meta-analytic models are then introduced. An artificial dataset is used to illustrate how a meta-analysis is conducted in several software packages. The paper concludes with some common pitfalls of meta-analysis and their solutions. The primary goal of this paper is to provide a summary background to readers who would like to conduct their first meta-analytic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

meta analysis research paper

Introduction to Meta-analysis

meta analysis research paper

Introduction to Meta-Analysis

meta analysis research paper

Systematic Reviews and Meta-Analysis: A Guide for Beginners

Aytug, Z. G., Rothstein, H. R., Zhou, W., & Kern, M. C. (2012). Revealed or concealed? Transparency of procedures, decisions, and judgment calls in meta-analyses. Organizational Research Methods, 15 (1), 103–133. doi: 10.1177/1094428111403495 .

Article   Google Scholar  

Bax, L., Yu, L.-M., Ikeda, N., & Moons, K. G. (2007). A systematic comparison of software dedicated to meta-analysis of causal studies. BMC Medical Research Methodology, 7 (1), 40. doi: 10.1186/1471-2288-7-40 .

Article   PubMed   PubMed Central   Google Scholar  

Borenstein, M. (2009). Effect sizes for continuous data. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 221–235). New York: Russell Sage Foundation.

Google Scholar  

Borenstein, M., Hedges, L. V., & Rothstein, H. R. (2005). Comprehensive meta-analysis (version 2) . Englewood NJ: Biostat.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis . Chichester, West Sussex, U.K.; Hoboken: John Wiley & Sons.

Book   Google Scholar  

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1 (2), 97–111. doi: 10.1002/jrsm.12 .

Article   PubMed   Google Scholar  

Chalmers, I., Hedges, L. V., & Cooper, H. (2002). A brief history of research synthesis. Evaluation & the Health Professions, 25 (1), 12–37. doi: 10.1177/0163278702025001003 .

Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 20 (3), 429–454. doi: 10.1080/10705511.2013.797827 .

Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychological Methods, 19 (2), 211–229. doi: 10.1037/a0032968 .

Cheung, M. W.-L. (2015a). Meta-analysis: A structural equation modeling approach . Chichester, West Sussex: John Wiley & Sons, Inc..

Cheung, M. W.-L. (2015b). metaSEM: an R package for meta-analysis using structural equation modeling. Frontiers in Psychology, 5 (1521). doi: 10.3389/fpsyg.2014.01521 .

Cheung, M. W.-L., Ho, R. C. M., Lim, Y., & Mak, A. (2012). Conducting a meta-analysis: Basics and good practices. International Journal of Rheumatic Diseases , 15 (2), 129–135. doi: 10.1111/j.1756-185X.2012.01712.x

Cooper, H., & Hedges, L. V. (2009). Research synthesis as a scientific process. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 3–16). New York: Russell Sage Foundation.

Cooper, H., Maxwell, S., Stone, A., & Sher, K. (2008). Reporting standards for research in psychology why do we need them? What might they be? American Psychologist, 63 (9), 839–851. doi: 10.1037/0003-066X.63.9.839 .

Cooper, H. M., Hedges, L. V., & Valentine, J. C. (2009). The handbook of research synthesis and meta-analysis (2nd ed.). New York: Russell Sage Foundation.

Davey, J., Turner, R. M., Clarke, M. J., & Higgins, J. P. (2011). Characteristics of meta-analyses and their component studies in the Cochrane database of systematic reviews: a cross-sectional, descriptive analysis. BMC Medical Research Methodology, 11 , 160. doi: 10.1186/1471-2288-11-160 .

Dewey, M. (2015). CRAN task view: Meta-analysis. Retrieved from http://CRAN.R-project.org/view=MetaAnalysis

Dickersin, K., Chan, S., Chalmersx, T. C., Sacks, H. S., & Smith, H. (1987). Publication bias and clinical trials. Controlled Clinical Trials, 8 (4), 343–353. doi: 10.1016/0197-2456(87)90155-3 .

Article   CAS   PubMed   Google Scholar  

Easterbrook, P. J., Gopalan, R., Berlin, J. A., & Matthews, D. R. (1991). Publication bias in clinical research. The Lancet, 337 (8746), 867–872. doi: 10.1016/0140-6736(91)90201-Y .

Article   CAS   Google Scholar  

Eysenck, H. J. (1978). An exercise in mega-silliness. American Psychologist, 33 (5), 517.

Ferguson, C. J., & Brannick, M. T. (2012). Publication bias in psychological science: prevalence, methods for identifying and controlling, and implications for the use of meta-analyses. Psychological Methods, 17 (1), 120–128. doi: 10.1037/a0024445 .

Fioravanti, M., Carlone, O., Vitale, B., Cinti, M. E., & Clare, L. (2005). A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychology Review, 15 (2), 73–95. doi: 10.1007/s11065-005-6254-9 .

Fleiss, J. L., & Berlin, J. A. (2009). Effect sizes for dichotomous data. In H. M. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 237–253). New York: Russell Sage Foundation.

Francis, G. (2013). Replication, statistical consistency, and publication bias. Journal of Mathematical Psychology, 57 (5), 153–169. doi: 10.1016/j.jmp.2013.02.003 .

Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5 (10), 3–8. doi: 10.2307/1174772 .

Harwell, M. (1997). An empirical study of Hedge’s homogeneity test. Psychological Methods, 2 (2), 219–231. doi: 10.1037/1082-989X.2.2.219 .

Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis . Orlando, FL: Academic Press.

Hedges, L. V., & Pigott, T. D. (2001). The power of statistical tests in meta-analysis. Psychological Methods, 6 (3), 203–217. doi: 10.1037/1082-989X.6.3.203 .

Hedges, L. V., & Pigott, T. D. (2004). The power of statistical tests for moderators in meta-analysis. Psychological Methods, 9 (4), 426–445. doi: 10.1037/1082-989X.9.4.426 .

Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21 (11), 1539–1558. doi: 10.1002/sim.1186 .

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327 (7414), 557–560.

Huedo-Medina, T. B., Sanchez-Meca, J., Marin-Martinez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis. Q statistic or I2 index? Psychological Methods June 2006, 11 (2), 193–206.

PubMed   Google Scholar  

Hunt, M. (1997). How science takes stock: The story of meta-analysis . New York: Russell Sage Foundation.

Koricheva, J., Gurevitch, J., & Mengersen, K. (Eds.) (2013). Handbook of meta-analysis in ecology and evolution . Princeton: Princeton University Press.

Kupfersmid, J., & Fiala, M. (1991). A survey of attitudes and behaviors of authors who publish in psychology and education journals. American Psychologist, 46 (3), 249–250. doi: 10.1037/0003-066X.46.3.249 .

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339 (jul21 1), b2700–b2700. doi: 10.1136/bmj.b2700 .

Lindsay, D. S. (2015). Replication in psychological science. Psychological Science, 26 (12), 1827–1832. doi: 10.1177/0956797615616374 .

Lipsey, M. W., & Wilson, D. (2000). Practical meta-analysis. Sage Publications, Inc ,Thousand Oaks.

Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis. Oxford University Press. Retrieved from http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195326543.001.0001/acprof-9780195326543

Lucas, R. E., & Brent Donnellan, M. (2013). Improving the replicability and reproducibility of research published in the journal of research in personality. Journal of Research in Personality, 47 (4), 453–454. doi: 10.1016/j.jrp.2013.05.002 .

Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? American Psychologist, 70 (6), 487–498. doi: 10.1037/a0039400 .

Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods, 7 (1), 105–125. doi: 10.1037/1082-989X.7.1.105 .

National Research Council (1992). Combining information: statistical issues and opportunities for research . Washington, DC: National Academies Press.

O’Rourke, K. (2007). An historical perspective on meta-analysis: dealing quantitatively with varying study results. JRSM, 100 (12), 579–582. doi: 10.1258/jrsm.100.12.579 .

Open Science Collaboration (2012). An open, large-scale, collaborative effort to estimate the reproducibility of psychological science. Perspectives on Psychological Science, 7 (6), 657–660. doi: 10.1177/1745691612462588 .

Open Science Collaboration (2015). Estimating the reproducibility of psychological. Science, 349 (6251), aac4716. doi: 10.1126/science.aac4716 .

Palmer, T. M., & Sterne, J. A. C. (Eds.) (2016). Meta-analysis: an updated collection from the Stata journal (2nd ed.). College Station: Stata Press.

Pearson, K. (1904). Report on certain enteric fever inoculation statistics. BMJ, 2 (2288), 1243–1246. doi: 10.1136/bmj.2.2288.1243 .

Pigott, T. D. (2012). Advances in meta-analysis. New York: Springer. Retrieved from http://www.springer.com.libproxy1.nus.edu.sg/statistics/social+sciences+%26+law/book/978-1-4614-2277-8

R Development Core Team. (2016). R : a language and environment for statistical computing . Vienna, Austria. Retrieved from http://www.R-project.org /

Reed, J. G., & Baxter, P. M. (2009). Using reference databases. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 73–101). New York: Russell Sage Foundation.

Rothstein, H. R., & Bushman, B. J. (2012). Publication bias in psychological science: comment on Ferguson and Brannick (2012). Psychological Methods, 17 (1), 129–136. doi: 10.1037/a0027128 .

Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta-analysis: Prevention, assessment and adjustments . Chichester: John Wiley and Sons.

Schmidt, F. L., & Hunter, J. E. (2015). Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.). Thousand Oaks, CA: Sage.

Shadish, W. R. (2015). Introduction to the special issue on the origins of modern meta-analysis. Research Synthesis Methods, 6 (3), 219–220. doi: 10.1002/jrsm.1148 .

Smith, M. L., & Glass, G. V. (1977). Meta-analysis of psychotherapy outcome studies. American Psychologist, 32 (9), 752–760.

Song, F., Parekh, S., Hooper, L., Loke, Y., Ryder, J., Sutton, A., et al. (2010). Dissemination and publication of research findings: an updated review of related biases. Health Technology Assessment, 14 (8). doi: 10.3310/hta14080 .

Sterne, J. A. C., Egger, M., & Sutton, A. J. (2001). Meta-analysis software. In M. Egger, G. D. Smith, & D. G. Altman (Eds.), Systematic Reviews in Health Care : Meta-Analysis in Context (pp. 336–346). London: BMJ Publishing Group. Retrieved from doi: 10.1002/9780470693926.ch17/summary

Valentine, J. C., Pigott, T. D., & Rothstein, H. R. (2010). How many studies do you need? A primer on statistical power for meta-analysis. Journal of Educational and Behavioral Statistics, 35 (2), 215–247. doi: 10.3102/1076998609346961 .

Viechtbauer, W. (2007). Hypothesis tests for population heterogeneity in meta-analysis. British Journal of Mathematical and Statistical Psychology, 60 (1), 29–60. doi: 10.1348/000711005X64042 .

Wallace, B. C., Schmid, C. H., Lau, J., & Trikalinos, T. A. (2009). Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Medical Research Methodology, 9 (1), 80. doi: 10.1186/1471-2288-9-80 .

Weare, K., & Nind, M. (2011). Mental health promotion and problem prevention in schools: what does the evidence say? Health Promotion International, 26 (suppl 1), i29–i69. doi: 10.1093/heapro/dar075 .

Download references

Acknowledgments

Mike W.-L. Cheung was supported by the Academic Research Fund Tier 1 (FY2013-FRC5-002) from the Ministry of Education, Singapore. We would like to thank Maggie Chan for providing comments on an earlier version of this manuscript.

Author information

Authors and affiliations.

Department of Psychology, Faculty of Arts and Social Sciences, National University of Singapore, Block AS4, Level 2, 9 Arts Link, Singapore, 117570, Singapore

Mike W.-L. Cheung & Ranjith Vijayakumar

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Mike W.-L. Cheung .

Rights and permissions

Reprints and permissions

About this article

Cheung, M.WL., Vijayakumar, R. A Guide to Conducting a Meta-Analysis. Neuropsychol Rev 26 , 121–128 (2016). https://doi.org/10.1007/s11065-016-9319-z

Download citation

Received : 29 February 2016

Accepted : 02 May 2016

Published : 21 May 2016

Issue Date : June 2016

DOI : https://doi.org/10.1007/s11065-016-9319-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Literature review
  • Systematic review
  • Meta-analysis
  • Moderator analysis
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) Conducting a meta-analysis for your student dissertation

    meta analysis research paper

  2. (PDF) Introduction to Meta-Analysis

    meta analysis research paper

  3. How Is A Meta-Analysis Performed?

    meta analysis research paper

  4. PPT

    meta analysis research paper

  5. (PDF) Will your paper be used in a meta-analysis? Make the reach of

    meta analysis research paper

  6. Meta Analysis Reconciling the Results of Independent Studies Research Paper

    meta analysis research paper

VIDEO

  1. Meta Analysis Research Methodology #research

  2. Statistical Procedure in Meta-Essentials

  3. Statistical Power of a Meta-Analysis

  4. Meta Analysis Research (मेटा विश्लेषण अनुसंधान) #ugcnet #ResearchMethodology #educationalbyarun

  5. What is a Meta-Analysis?

  6. Thesis (students): Where do I start? Technical spoken. Meta Analysis, Research Paper