Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

Module 1: Problem Solving Strategies

  • Last updated
  • Save as PDF
  • Page ID 10352

Unlike exercises, there is never a simple recipe for solving a problem. You can get better and better at solving problems, both by building up your background knowledge and by simply practicing. As you solve more problems (and learn how other people solved them), you learn strategies and techniques that can be useful. But no single strategy works every time.

Pólya’s How to Solve It

George Pólya was a great champion in the field of teaching effective problem solving skills. He was born in Hungary in 1887, received his Ph.D. at the University of Budapest, and was a professor at Stanford University (among other universities). He wrote many mathematical papers along with three books, most famously, “How to Solve it.” Pólya died at the age 98 in 1985.1

1. Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY

Screen Shot 2018-08-30 at 4.43.05 PM.png

In 1945, Pólya published the short book How to Solve It , which gave a four-step method for solving mathematical problems:

First, you have to understand the problem.

After understanding, then make a plan.

Carry out the plan.

Look back on your work. How could it be better?

This is all well and good, but how do you actually do these steps?!?! Steps 1. and 2. are particularly mysterious! How do you “make a plan?” That is where you need some tools in your toolbox, and some experience to draw upon.

Much has been written since 1945 to explain these steps in more detail, but the truth is that they are more art than science. This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems!

Problem Solving Strategy 1 (Guess and Test)

Make a guess and test to see if it satisfies the demands of the problem. If it doesn't, alter the guess appropriately and check again. Keep doing this until you find a solution.

Mr. Jones has a total of 25 chickens and cows on his farm. How many of each does he have if all together there are 76 feet?

Step 1: Understanding the problem

We are given in the problem that there are 25 chickens and cows.

All together there are 76 feet.

Chickens have 2 feet and cows have 4 feet.

We are trying to determine how many cows and how many chickens Mr. Jones has on his farm.

Step 2: Devise a plan

Going to use Guess and test along with making a tab

Many times the strategy below is used with guess and test.

Make a table and look for a pattern:

Procedure: Make a table reflecting the data in the problem. If done in an orderly way, such a table will often reveal patterns and relationships that suggest how the problem can be solved.

Step 3: Carry out the plan:

Notice we are going in the wrong direction! The total number of feet is decreasing!

Better! The total number of feet are increasing!

Step 4: Looking back:

Check: 12 + 13 = 25 heads

24 + 52 = 76 feet.

We have found the solution to this problem. I could use this strategy when there are a limited number of possible answers and when two items are the same but they have one characteristic that is different.

Videos to watch:

1. Click on this link to see an example of “Guess and Test”

http://www.mathstories.com/strategies.htm

2. Click on this link to see another example of Guess and Test.

http://www.mathinaction.org/problem-solving-strategies.html

Check in question 1:

clipboard_e6298bbd7c7f66d9eb9affcd33892ef0d.png

Place the digits 8, 10, 11, 12, and 13 in the circles to make the sums across and vertically equal 31. (5 points)

Check in question 2:

Old McDonald has 250 chickens and goats in the barnyard. Altogether there are 760 feet . How many of each animal does he have? Make sure you use Polya’s 4 problem solving steps. (12 points)

Problem Solving Strategy 2 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric thinking visually can help!

Videos to watch demonstrating how to use "Draw a Picture".

1. Click on this link to see an example of “Draw a Picture”

2. Click on this link to see another example of Draw a Picture.

Problem Solving Strategy 3 ( Using a variable to find the sum of a sequence.)

Gauss's strategy for sequences.

last term = fixed number ( n -1) + first term

The fix number is the the amount each term is increasing or decreasing by. "n" is the number of terms you have. You can use this formula to find the last term in the sequence or the number of terms you have in a sequence.

Ex: 2, 5, 8, ... Find the 200th term.

Last term = 3(200-1) +2

Last term is 599.

To find the sum of a sequence: sum = [(first term + last term) (number of terms)]/ 2

Sum = (2 + 599) (200) then divide by 2

Sum = 60,100

Check in question 3: (10 points)

Find the 320 th term of 7, 10, 13, 16 …

Then find the sum of the first 320 terms.

Problem Solving Strategy 4 (Working Backwards)

This is considered a strategy in many schools. If you are given an answer, and the steps that were taken to arrive at that answer, you should be able to determine the starting point.

Videos to watch demonstrating of “Working Backwards”

https://www.youtube.com/watch?v=5FFWTsMEeJw

Karen is thinking of a number. If you double it, and subtract 7, you obtain 11. What is Karen’s number?

1. We start with 11 and work backwards.

2. The opposite of subtraction is addition. We will add 7 to 11. We are now at 18.

3. The opposite of doubling something is dividing by 2. 18/2 = 9

4. This should be our answer. Looking back:

9 x 2 = 18 -7 = 11

5. We have the right answer.

Check in question 4:

Christina is thinking of a number.

If you multiply her number by 93, add 6, and divide by 3, you obtain 436. What is her number? Solve this problem by working backwards. (5 points)

Problem Solving Strategy 5 (Looking for a Pattern)

Definition: A sequence is a pattern involving an ordered arrangement of numbers.

We first need to find a pattern.

Ask yourself as you search for a pattern – are the numbers growing steadily larger? Steadily smaller? How is each number related?

Example 1: 1, 4, 7, 10, 13…

Find the next 2 numbers. The pattern is each number is increasing by 3. The next two numbers would be 16 and 19.

Example 2: 1, 4, 9, 16 … find the next 2 numbers. It looks like each successive number is increase by the next odd number. 1 + 3 = 4.

So the next number would be

25 + 11 = 36

Example 3: 10, 7, 4, 1, -2… find the next 2 numbers.

In this sequence, the numbers are decreasing by 3. So the next 2 numbers would be -2 -3 = -5

-5 – 3 = -8

Example 4: 1, 2, 4, 8 … find the next two numbers.

This example is a little bit harder. The numbers are increasing but not by a constant. Maybe a factor?

So each number is being multiplied by 2.

16 x 2 = 32

1. Click on this link to see an example of “Looking for a Pattern”

2. Click on this link to see another example of Looking for a Pattern.

Problem Solving Strategy 6 (Make a List)

Example 1 : Can perfect squares end in a 2 or a 3?

List all the squares of the numbers 1 to 20.

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400.

Now look at the number in the ones digits. Notice they are 0, 1, 4, 5, 6, or 9. Notice none of the perfect squares end in 2, 3, 7, or 8. This list suggests that perfect squares cannot end in a 2, 3, 7 or 8.

How many different amounts of money can you have in your pocket if you have only three coins including only dimes and quarters?

Quarter’s dimes

0 3 30 cents

1 2 45 cents

2 1 60 cents

3 0 75 cents

Videos demonstrating "Make a List"

Check in question 5:

How many ways can you make change for 23 cents using only pennies, nickels, and dimes? (10 points)

Problem Solving Strategy 7 (Solve a Simpler Problem)

Geometric Sequences:

How would we find the nth term?

Solve a simpler problem:

1, 3, 9, 27.

1. To get from 1 to 3 what did we do?

2. To get from 3 to 9 what did we do?

Let’s set up a table:

Term Number what did we do

logical reasoning strategy problem solving

Looking back: How would you find the nth term?

logical reasoning strategy problem solving

Find the 10 th term of the above sequence.

Let L = the tenth term

logical reasoning strategy problem solving

Problem Solving Strategy 8 (Process of Elimination)

This strategy can be used when there is only one possible solution.

I’m thinking of a number.

The number is odd.

It is more than 1 but less than 100.

It is greater than 20.

It is less than 5 times 7.

The sum of the digits is 7.

It is evenly divisible by 5.

a. We know it is an odd number between 1 and 100.

b. It is greater than 20 but less than 35

21, 23, 25, 27, 29, 31, 33, 35. These are the possibilities.

c. The sum of the digits is 7

21 (2+1=3) No 23 (2+3 = 5) No 25 (2 + 5= 7) Yes Using the same process we see there are no other numbers that meet this criteria. Also we notice 25 is divisible by 5. By using the strategy elimination, we have found our answer.

Check in question 6: (8 points)

Jose is thinking of a number.

The number is not odd.

The sum of the digits is divisible by 2.

The number is a multiple of 11.

It is greater than 5 times 4.

It is a multiple of 6

It is less than 7 times 8 +23

What is the number?

Click on this link for a quick review of the problem solving strategies.

https://garyhall.org.uk/maths-problem-solving-strategies.html

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

logical reasoning strategy problem solving

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

logical reasoning strategy problem solving

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Course: LSAT   >   Unit 1

Getting started with logical reasoning.

  • Introduction to arguments
  • Catalog of question types
  • Types of conclusions
  • Types of evidence
  • Types of flaws
  • Identify the conclusion | Quick guide
  • Identify the conclusion | Learn more
  • Identify the conclusion | Examples
  • Identify an entailment | Quick guide
  • Identify an entailment | Learn more
  • Strongly supported inferences | Quick guide
  • Strongly supported inferences | Learn more
  • Disputes | Quick guide
  • Disputes | Learn more
  • Identify the technique | Quick guide
  • Identify the technique | Learn more
  • Identify the role | Quick guide
  • Identify the role | learn more
  • Identify the principle | Quick guide
  • Identify the principle | Learn more
  • Match structure | Quick guide
  • Match structure | Learn more
  • Match principles | Quick guide
  • Match principles | Learn more
  • Identify a flaw | Quick guide
  • Identify a flaw | Learn more
  • Match a flaw | Quick guide
  • Match a flaw | Learn more
  • Necessary assumptions | Quick guide
  • Necessary assumptions | Learn more
  • Sufficient assumptions | Quick guide
  • Sufficient assumptions | Learn more
  • Strengthen and weaken | Quick guide
  • Strengthen and weaken | Learn more
  • Helpful to know | Quick guide
  • Helpful to know | learn more
  • Explain or resolve | Quick guide
  • Explain or resolve | Learn more

Logical Reasoning overview

  • Two scored sections with 24-26 questions each
  • Logical Reasoning makes up roughly half of your total points .

Anatomy of a Logical Reasoning question

  • Passage/stimulus: This text is where we’ll find the argument or the information that forms the basis for answering the question. Sometimes there will be two arguments, if two people are presented as speakers.
  • Question/task: This text, found beneath the stimulus, poses a question. For example, it may ask what assumption is necessary to the argument, or what must be true based on the statements above.
  • Choices: You’ll be presented with five choices, of which you may select only one. You’ll see us refer to the correct choice as the “answer” throughout Khan Academy’s LSAT practice.

What can I do to tackle the Logical Reasoning section most effectively?

Dos and don’ts.

  • Don’t panic: You’re not obligated to do the questions in any order, or even to do a given question at all. Many students find success maximizing their score by skipping a select handful of questions entirely, either because they know a question will take too long to solve, or because they just don’t know how to solve it.
  • Don’t be influenced by your own views, knowledge, or experience about an issue or topic: The LSAT doesn’t require any outside expertise. All of the information that you need will be presented in the passage. When you add your own unwarranted assumptions, you’re moving away from the precision of the test’s language and toward more errors. This is one of the most common mistakes that students make on the LSAT!
  • Don’t time yourself too early on: When learning a new skill, it’s good policy to avoid introducing time considerations until you’re ready. If you were learning piano, you wouldn’t play a piece at full-speed before you’d practiced the passages very slowly, and then less slowly, and then less slowly still. Give yourself time and room to build your skill and confidence. Only when you’re feeling good about the mechanics of your approach should you introduce a stopwatch.
  • Do read with your pencil: Active reading strategies can help you better understand logical reasoning arguments and prevent you from “zoning out” while you read. Active readers like to underline or bracket an argument’s conclusion when they find it. They also like to circle keywords, such as “however”, “therefore”, “likely”, “all”, and many others that you’ll learn throughout your studies with us. If you’re reading with your pencil, you’re much less likely to wonder what you just read in the last minute.
  • Do learn all of the question types: An effective approach to a necessary assumption question is very different from an effective approach to an explain question, even though the passage will look very similar in both. In fact, the same argument passage could theoretically be used to ask you a question about the conclusion, its assumptions or vulnerabilities to criticism, its technique, the role of one of its statements, a principle it displays, or what new info might strengthen or weaken it!
  • Do spend time on the fundamentals: The temptation to churn through a high volume of questions can be strong, but strong LSAT-takers carefully and patiently learn the basics. For example, you’ll need to be able to identify a conclusion quickly and accurately before you’ll be able to progress with assumptions or flaws (identifying gaps in arguments). Similarly, a firm understanding of basic conditional reasoning will be invaluable as you approach many challenging questions. Be patient with yourself!

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Forgot password? New user? Sign up

Existing user? Log in

Logical Puzzles

Already have an account? Log in here.

  • Andrew Hayes

A logical puzzle is a problem that can be solved through deductive reasoning. This page gives a summary of the types of logical puzzles one might come across and the problem-solving techniques used to solve them.

Elimination Grids

Truth tellers and liars, cryptograms, arithmetic puzzles, river crossing puzzle, tour puzzles, battleship puzzles, chess puzzles, k-level thinking, other puzzles.

Main Article: Propositional Logic See Also: Predicate Logic

One of the simplest types of logical puzzles is a syllogism . In this type of puzzle, you are given a set of statements, and you are required to determine some truth from those statements. These types of puzzles can often be solved by applying principles from propositional logic and predicate logic . The following syllogism is from Charles Lutwidge Dodgson, better known under his pen name, Lewis Carroll.

I have a dish of potatoes. The following statements are true: No potatoes of mine, that are new, have been boiled. All my potatoes in this dish are fit to eat. No unboiled potatoes of mine are fit to eat. Are there any new potatoes in this dish? The first and third statements can be connected by a transitive argument. All of the new potatoes are unboiled, and unboiled potatoes aren't fit to eat, so no new potatoes are fit to eat. The second statement can be expressed as the equivalent contrapositive. All of the potatoes in the dish are fit to eat; if there is a potato that is not fit to eat, it isn't in the dish. Then, once again, a transitive argument is applied. New potatoes aren't fit to eat, and inedible potatoes aren't in the dish. Thus, there are no new potatoes in the dish. \(_\square\)

Given below are three statements followed by three conclusions. Take the three statements to be true even if they vary from commonly known facts. Read the statements and decide which conclusions follow logically from the statements.

Statements: 1. All actors are musicians. 2. No musician is a singer. 3. Some singers are dancers.

Conclusions: 1. Some actors are singers. 2. Some dancers are actors. 3. No actor is a singer.

Answer Choices: a) Only conclusion 1 follows. b) Only conclusion 2 follows. c) Only conclusion 3 follows. d) At least 2 of the conclusions follows.

Main Article: Elimination Grids

Some logical puzzles require you to determine the correct pairings for sets of objects. These puzzles can often be solved with the process of elimination, and an elimination grid is an effective tool to apply this process.

An example of an elimination grid

Elimination grids are aligned such that each row represents an object within a set, and each column represents an object to be paired with an object from that set. Check marks and X marks are used to show which objects pair, and which objects do not pair.

Mr. and Mrs. Tan have four children--three boys and a girl-- who each like one of the colors--blue, green, red, yellow-- and one of the letters--P, Q, R, S.

  • The oldest child likes the letter Q.
  • The youngest child likes green.
  • Alfred likes the letter S.
  • Brenda has an older brother who likes R.
  • The one who likes blue isn't the oldest.
  • The one who likes red likes the letter P.
  • Charles likes yellow.

Based on the above facts, Darius is the \(\text{__________}.\)

Main Article: Truth-Tellers and Liars

A variation on elimination puzzles is a truth-teller and liar puzzle , also known as a knights and knaves puzzle . In this type of puzzle, you are given a set of people and their respective statements, and you are also told that some of the people always tell the truth and some always lie. The goal of the puzzle is to deduce the truth from the given statements.

20\(^\text{th}\) century mathematician Raymond Smullyan popularized these types of puzzles.

You are in a room with three chests. You know at least one has treasure, and if a chest has no treasure, it contains deadly poison.

Each chest has a message on it, but all the messages are lying .

  • Left chest: "The middle chest has treasure."
  • Middle chest: "All these chests have treasure."
  • Right chest: "Only one of these chests has treasure."

Which chests have treasure?

There are two people, A and B , each of whom is either a knight or a knave.

A says, "At least one of us is a knave."

What are A and B ?

\(\) Details and Assumptions:

  • A knight always tells the truth.
  • A knave always lies.
Main Article: Cryptograms

A cryptogram is a puzzle in which numerical digits in a number sentence are replaced with characters, and the goal of the puzzle is to determine the values of these characters.

\[ \begin{array} { l l l l l } & &P & P & Q \\ & &P & Q & Q \\ + && Q & Q & Q \\ \hline & & 8 & 7 & 6 \\ \end{array} \]

In the sum shown above, \(P\) and \(Q\) each represent a digit. What is the value of \(P+Q\)?

\[ \overline{EVE} \div \overline{DID} = 0. \overline{TALKTALKTALKTALK\ldots} \]

Given that \(E,V,D,I,T,A,L\) and \(K \) are distinct single digits, let \(\overline{EVE} \) and \( \overline{DID} \) be two coprime 3-digit positive integers and \(\overline{TALK} \) be a 4-digit integer, such that the equation above holds true, where the right hand side is a repeating decimal number.

Find the value of the sum \( \overline{EVE} + \overline{DID} + \overline{TALK} \).

Main Articles: Fill in the Blanks and Operator Search

Arithmetic puzzles contain a series of numbers, operations, and blanks in order, and the object of the puzzle is to fill in the blanks to obtain a desired result.

\[\huge{\Box \times \Box \Box = \Box \Box \Box}\]

Fill the boxes above with the digits \(1,2,3,4,5,6\), with no digit repeated, such that the equation is true.

Enter your answer by concatenating all digits in the order they appear. For example, if the answer is \(1 \times 23 = 456\), enter \(123456\) as your final answer.

Also try its sister problem.

\[ \LARGE{\begin{eqnarray} \boxed{\phantom0} \; + \; \boxed{\phantom0} \; &=& \; \boxed{\phantom0} \\ \boxed{\phantom0} \; - \; \boxed{\phantom0} \; &=& \; \boxed{\phantom0} \\ \boxed{\phantom0} \; \times \; \boxed{\phantom0}\; &=& \; \boxed{\phantom0} \\ \boxed{\phantom0} \; \div \; \boxed{\phantom0} \; &=& \; \boxed{\phantom0} \\ \end{eqnarray}} \]

Put one of the integers \(1, 2, \ldots , 13\) into each of the boxes, such that twelve of these numbers are used once for each (and one number is not used at all) and all four equations are true.

What is the sum of all possible values of the missing (not used) number?

Main Article: River Crossing Puzzles

In a river crossing puzzle , the goal is to find a way to move a group of people or objects across a river (or some other kind of obstacle), and to do it in the fewest amount of steps or least amount of time.

A famous river crossing problem is Richard Hovasse's bridge and torch problem , written below.

Four people come to a river in the night. There is a narrow bridge, but it can only hold two people at a time. They have one torch and, because it's night, the torch has to be used when crossing the bridge. Person A can cross the bridge in one minute, B in two minutes, C in five minutes, and D in eight minutes. When two people cross the bridge together, they must move at the slower person's pace. The question is, can they all get across the bridge in 15 minutes or less? Assume that a solution minimizes the total number of crosses. This gives a total of five crosses--three pair crosses and two solo crosses. Also, assume we always choose the fastest for the solo cross. First, we show that if the two slowest persons (C and D) cross separately, they accumulate a total crossing time of 15. This is done by taking persons A, C, D: D+A+C+A = 8+1+5+1=15. (Here we use A because we know that using A to cross both C and D separately is the most efficient.) But, the time has elapsed and persons A and B are still on the starting side of the bridge and must cross. So it is not possible for the two slowest (C and D) to cross separately. Second, we show that in order for C and D to cross together that they need to cross on the second pair cross: i.e. not C or D, so A and B, must cross together first. Remember our assumption at the beginning states that we should minimize crosses, so we have five crosses--3 pair crossings and 2 single crossings. Assume that C and D cross first. But then C or D must cross back to bring the torch to the other side, so whoever solo-crossed must cross again. Hence, they will cross separately. Also, it is impossible for them to cross together last, since this implies that one of them must have crossed previously, otherwise there would be three persons total on the start side. So, since there are only three choices for the pair crossings and C and D cannot cross first or last, they must cross together on the second, or middle, pair crossing. Putting all this together, A and B must cross first, since we know C and D cannot and we are minimizing crossings. Then, A must cross next, since we assume we should choose the fastest to make the solo cross. Then we are at the second, or middle, pair crossing, so C and D must go. Then we choose to send the fastest back, which is B. A and B are now on the start side and must cross for the last pair crossing. This gives us, B+A+D+B+B = 2+1+8+2+2 = 15. It is possible for all four people to cross in 15 minutes. \(_\square\)
Main Article: Tour Puzzles See Also: Eulerian Path

In a tour puzzle , the goal is to determine the correct path for an object to traverse a graph. These kinds of puzzles can take several forms: chess tours, maze traversals, eulerian paths , and others.

Find the path that leads from the star in the center back to the star in the center. Paths can only go in the direction of an arrow. Image Credit: Eric Fisk Show Solution The solution path is outlined in red below.
Determine a path through the below graph such that each edge is traversed exactly once . Show Solution There are several possible solutions. One possible solution is shown below, with the edges marked in the order they are traversed.

A chess tour is an interesting type of puzzle in its own right, and is explained in detail further down the page.

Main Article: Nonograms

A nonogram is a grid-based puzzle in which a series of numerical clues are given beside a rectangular grid. When the puzzle is completed, a picture is formed in the grid.

The puzzle begins with a series of numbers on the left and above the grid. Each of these numbers represents a consecutive run of shaded spaces in the corresponding row or column. Each consecutive run is separated from other runs by at least one empty space. The puzzle is complete when all of the numbers have been satisfied. The primary technique to solve these puzzles is the process of elimination. If the puzzle is designed correctly, there should be no guesswork required.

Complete the nonogram: Show Solution

One of the many logical puzzles is the Battleship puzzle (sometimes called Bimaru, Yubotu, Solitaire Battleships or Battleship Solitaire). The puzzle is based on the Battleship game.

Solitaire Battleships was invented by Jaime Poniachik in Argentina and was first featured in the magazine Humor & Juegos.

This is an example of a solved Battleship puzzle. The puzzle consists of a 10 × 10 small squares, which contain the following:

  • 1 battleship 4 squares long
  • 2 cruisers 3 squares long each
  • 3 destroyers 2 squares long each
  • 4 submarines 1 square long each.

They can be put horizontally or vertically, but never diagonally. The boats are placed so that no boats touch each other, not even vertically. The numbers beside the row/column indicate the numbers of squares occupied in the row/column, respectively. ⬤ indicates a submarine and ⬛ indicates the body of a ship, while the half circles indicate the beginning/end of a ship.

The goal of the game is to fill in the grid with water or ships.

Main Article: Sudoku

A sudoku is a puzzle on a \(9\times 9\) grid in which each row, column, and smaller square portion contains each of the digits 1 through 9, each no more than once. Each puzzle begins with some of the spaces on the grid filled in. The goal is to fill in the remaining spaces on the puzzle. The puzzle is solved primarily through the process of elimination. No guesswork should be required to solve, and there should be only one solution for any given puzzle.

Solve the sudoku puzzle: Puzzle generated by Open Sky Sudoku Generator Each row should contain the each of the digits 1 through 9 exactly once. The same is true for columns and the smaller \(3\times 3\) squares. Show Solution
Main Article: Chess Puzzles See Also: Reduced Games , Opening Strategies , and Rook Strategies

Chess puzzles take the rules of chess and challenge you to perform certain actions or deduce board states.

One kind of chess puzzle is a chess tour , related to the tour puzzles mentioned in the section above. This kind of puzzle challenges you to develop a tour of a chess piece around the board, applying the rules of how that piece moves.

Dan and Sam play a game on a \(5\times3\) board. Dan places a White Knight on a corner and Sam places a Black Knight on the nearest corner. Each one moves his Knight in his turn to squares that have not been already visited by any of the Knights at any moment of the match.

For example, Dan moves, then Sam, and Dan wants to go to Black Knight's initial square, but he can't, because this square has been occupied earlier.

When someone can't move, he loses. If Dan begins, who will win, assuming both players play optimally?

This is the seventeenth problem of the set Winning Strategies.

Due to its well-defined ruleset, the game of chess affords many different types of puzzles. The problem below shows that you can even deduce whose turn it is from a certain boardstate (or perhaps you cannot).

Whose move is it now?

Main Article: K-Level Thinking See Also: Induction - Introduction

K-level thinking is the name of a kind of assumption in certain logic puzzles. In these types of puzzles, there are a number of actors in a situation, and each of them is perfectly logical in their decision-making. Furthermore, each of these actors is aware that all other actors in the situation are perfectly logical in their decision-making.

Calvin, Zandra, and Eli are students in Mr. Silverman's math class. Mr. Silverman hands each of them a sealed envelope with a number written inside.

He tells them that they each have a positive integer and the sum of the three numbers is 14. They each open their envelope and inspect their own number without seeing the other numbers.

Calvin says,"I know that Zandra and Eli each have a different number." Zandra replies, "I already knew that all three of our numbers were different." After a brief pause Eli finally says, "Ah, now I know what number everyone has!"

What number did each student get?

Format your answer by writing Calvin's number first, then Zandra's number, and finally Eli's number. For example, if Calvin has 8, Zandra has 12, and Eli has 8, the answer would be 8128.

Two logicians must find two distinct integers \(A\) and \(B\) such that they are both between 2 and 100 inclusive, and \(A\) divides \(B\). The first logician knows the sum \( A + B \) and the second logician knows the difference \(B-A\).

Then the following discussion takes place:

Logician 1: I don't know them. Logician 2: I already knew that.

Logician 1: I already know that you are supposed to know that. Logician 2: I think that... I know... that you were about to say that!

Logician 1: I still can't figure out what the two numbers are. Logician 2: Oops! My bad... my previous conclusion was unwarranted. I didn't know that yet!

What are the two numbers?

Enter your answer as a decimal number \(A.B\). \((\)For example, if \(A=23\) and \(B=92\), write \(23.92.)\)

Note: In this problem, the participants are not in a contest on who finds numbers first. If one of them has sufficient information to determine the numbers, he may keep this quiet. Therefore nothing may be inferred from silence. The only information to be used are the explicit declarations in the dialogue.

Of course, the puzzles outlined above aren't the only types of puzzles one might encounter. Below are a few more logical puzzles that are unrelated to the types outlined above.

You are asked to guess an integer between \(1\) and \(N\) inclusive.

Each time you make a guess, you are told either

(a) you are too high, (b) you are too low, or (c) you got it!

You are allowed to guess too high twice and too low twice, but if you have a \(3^\text{rd}\) guess that is too high or a \(3^\text{rd}\) guess that is too low, you are out.

What is the maximum \(N\) for which you are guaranteed to accomplish this?

\(\) Clarification : For example, if you were allowed to guess too high once and too low once, you could guarantee to guess the right answer if \(N=5\), but not for \(N>5\). So, in this case, the answer would be \(5\).

You play a game with a pile of \(N\) gold coins.

You and a friend take turns removing 1, 3, or 6 coins from the pile. The winner is the one who takes the last coin.

For the person that goes first, how many winning strategies are there for \(N < 1000?\)

\(\) Clarification: For \(1 \leq N \leq 999\), for how many values of \(N\) can the first player develop a winning strategy?

Problem Loading...

Note Loading...

Set Loading...

Math teaching support you can trust

logical reasoning strategy problem solving

resources downloaded

logical reasoning strategy problem solving

one-on-one tutoring sessions

logical reasoning strategy problem solving

schools supported

[FREE] Fun Math Games & Activities

Engage your students with our ready-to-go packs of no-prep games and activities for a range of abilities across Kindergarten to Grade 5!

Fluency, Reasoning and Problem Solving: What This Looks Like In Every Math Lesson

Neil almond.

Fluency, reasoning and problem solving are central strands of mathematical competency, as recognized by the National Council of Teachers of Mathematics (NCTM) and the National Research Council’s report ‘Adding It Up’.

They are key components to the Standards of Mathematical Practice, standards that are interwoven into every mathematics lesson. Here we look at how these three approaches or elements of math can be interwoven in a child’s math education through elementary and middle school.

We look at what fluency, reasoning and problem solving are, how to teach them, and how to know how a child is progressing in each – as well as what to do when they’re not, and what to avoid.

The hope is that this blog will help elementary and middle school teachers think carefully about their practice and the pedagogical choices they make around the teaching of what the common core refers to as ‘mathematical practices’, and reasoning and problem solving in particular.

Before we can think about what this would look like in Common Core math examples and other state-specific math frameworks, we need to understand the background to these terms.

What is fluency in math?

What is reasoning in math, what is problem solving in math, mathematical problem solving is a learned skill, performance vs learning: what to avoid when teaching fluency, reasoning, and problem solving.

  • What IS ‘performance vs learning’?
  • Teaching to “cover the curriculum” hinders development of strong problem solving skills.
  • Fluency and reasoning – Best practice in a lesson, a unit, and a semester

Best practice for problem solving in a lesson, a unit, and a semester 

Fluency, reasoning and problem solving should not be taught by rote , the ultimate guide to problem solving techniques.

Develop problem solving skills in the classroom with this free, downloadable worksheet

Fluency in math is a fairly broad concept. The basics of mathematical fluency – as defined by the Common Core State Standards for math – involve knowing key mathematical skills and being able to carry them out flexibly, accurately and efficiently.

But true fluency in math (at least up to middle school) means being able to apply the same skill to multiple contexts, and being able to choose the most appropriate method for a particular task.

Fluency in math lessons means we teach the content using a range of representations, to ensure that all students understand and have sufficient time to practice what is taught.

Read more: How the best schools develop math fluency

Reasoning in math is the process of applying logical thinking to a situation to derive the correct problem solving strategy for a given question, and using this method to develop and describe a solution.

Put more simply, mathematical reasoning is the bridge between fluency and problem solving. It allows students to use the former to accurately carry out the latter.

Read more: Developing math reasoning: the mathematical skills required and how to teach them .

It’s sometimes easier to start off with what problem solving is not. Problem solving is not necessarily just about answering word problems in math. If a child already has a readily available method to solve this sort of problem, problem solving has not occurred. Problem solving in math is finding a way to apply knowledge and skills you have to answer unfamiliar types of problems.

Read more: Math problem solving: strategies and resources for primary school teachers .

We are all problem solvers

First off, problem solving should not be seen as something that some students can do and some cannot. Every single person is born with an innate level of problem-solving ability.

Early on as a species on this planet, we solved problems like recognizing faces we know, protecting ourselves against other species, and as babies the problem of getting food (by crying relentlessly until we were fed).

All these scenarios are a form of what the evolutionary psychologist David Geary (1995) calls biologically primary knowledge. We have been solving these problems for millennia and they are so ingrained in our DNA that we learn them without any specific instruction.

image of baby crying used to illustrate ingrained problem solving skills.

Why then, if we have this innate ability, does actually teaching problem solving seem so hard?

As you might have guessed, the domain of mathematics is far from innate. Math doesn’t just happen to us; we need to learn it. It needs to be passed down from experts that have the knowledge to novices who do not.

This is what Geary calls biologically secondary knowledge. Solving problems (within the domain of math) is a mixture of both primary and secondary knowledge.

The issue is that problem solving in domains that are classified as biologically secondary knowledge (like math) can only be improved by practicing elements of that domain.

So there is no generic problem-solving skill that can be taught in isolation and transferred to other areas.

This will have important ramifications for pedagogical choices, which I will go into more detail about later on in this blog.

The educationalist Dylan Wiliam had this to say on the matter: ‘for…problem solving, the idea that students can learn these skills in one context and apply them in another is essentially wrong.’ (Wiliam, 2018) So what is the best method of teaching problem solving to elementary and middle school math students?

The answer is that we teach them plenty of domain specific biological secondary knowledge – in this case, math. Our ability to successfully problem solve requires us to have a deep understanding of content and fluency of facts and mathematical procedures.

Here is what cognitive psychologist Daniel Willingham (2010) has to say:

‘Data from the last thirty years leads to a conclusion that is not scientifically challengeable: thinking well requires knowing facts, and that’s true not simply because you need something to think about.

The very processes that teachers care about most—critical thinking processes such as reasoning and problem solving—are intimately intertwined with factual knowledge that is stored in long-term memory (not just found in the environment).’

Colin Foster (2019), a reader in Mathematics Education in the Mathematics Education Center at Loughborough University, UK, says, ‘I think of fluency and mathematical reasoning, not as ends in themselves, but as means to support students in the most important goal of all: solving problems.’

In that paper he produces this pyramid:

pyramid diagram showing the link between fluency, reasoning and problem solving

This is important for two reasons:

1)    It splits up reasoning skills and problem solving into two different entities

2)    It demonstrates that fluency is not something to be rushed through to get to the ‘problem solving’ stage but is rather the foundation of problem solving.

In my own work I adapt this model and turn it into a cone shape, as education seems to have a problem with pyramids and gross misinterpretation of them (think Bloom’s taxonomy).

conical diagram showing the link between fluency, reasoning skills and problem solving

Notice how we need plenty of fluency of facts, concepts, procedures and mathematical language.

Having this fluency will help with improving logical reasoning skills, which will then lend themselves to solving mathematical problems – but only if it is truly learnt and there is systematic retrieval of this information carefully planned across the curriculum.

I mean to make no sweeping generalization here; this was my experience both at university when training and from working in schools.

At some point, schools become obsessed with the ridiculous notion of moving students through content at an accelerated rate. I have heard it used in all manner of educational contexts while training and being a teacher. ‘You will need to show ‘accelerated progress in math’ in this lesson,’ ‘School officials will be looking for ‘accelerated progress’ etc.

I have no doubt that all of this came from a good place and from those wanting the best possible outcomes – but it is misguided.

I remember being told that we needed to get students onto the problem solving questions as soon as possible to demonstrate this mystical ‘accelerated progress’.

This makes sense; you have a group of students and you have taken them from not knowing something to working out pretty sophisticated 2-step or multi-step word problems within an hour. How is that not ‘accelerated progress?’

This was a frequent feature of my lessons up until last academic year: teach a mathematical procedure; get the students to do about 10 of them in their books; mark these and if the majority were correct, model some reasoning/problem solving questions from the same content as the fluency content; give the students some reasoning and word problem questions and that was it.

I wondered if I was the only one who had been taught this while at university so I did a quick poll on Twitter and found that was not the case.

twitter poll regarding teaching of problem solving techniques in primary school

I know these numbers won’t be big enough for a representative sample but it still shows that others are familiar with this approach.

The issue with the lesson framework I mentioned above is that it does not take into account ‘performance vs learning.’

What IS ‘performance vs learning’?

The premise is that performance in a lesson is not a good proxy for learning.

Yes, those students were performing well after I had modeled a mathematical procedure for them, and managed to get questions correct.

But if problem solving depends on a deep knowledge of mathematics, this approach to lesson structure is going to be very ineffective.

As mentioned earlier, the reasoning and problem solving questions were based on the same math content as the fluency exercises, making it more likely that students would solve problems correctly whether they fully understood them or not.

Chances are that all they’d need to do is find the numbers in the questions and use the same method they used in the fluency section to get their answers (a process referred to as “number plucking”) – not exactly high level problem solving skills.

Teaching to “cover the curriculum” hinders development of strong problem solving skills.

This is one of my worries with ‘math mastery schemes’ that block content so that, in some circumstances, it is not looked at again until the following year (and with new objectives).

The pressure for teachers to ‘get through the curriculum’ results in many opportunities to revisit content being missed in the classroom.

Students are unintentionally forced to skip ahead in the fluency, reasoning, problem solving chain without proper consolidation of the earlier processes.

As David Didau (2019) puts it, ‘When novices face a problem for which they do not have a conveniently stored solution, they have to rely on the costlier means-end analysis.

This is likely to lead to cognitive overload because it involves trying to work through and hold in mind multiple possible solutions.

It’s a bit like trying to juggle five objects at once without previous practice. Solving problems is an inefficient way to get better at problem solving.’

Fluency and reasoning – Best practice in a lesson, a unit, and a semester

By now I hope you have realized that when it comes to problem solving, fluency is king. As such we should look to mastery math based teaching to ensure that the fluency that students need is there.

The answer to what fluency looks like will obviously depend on many factors, including the content being taught and the grade you find yourself teaching.

But we should not consider rushing them on to problem solving or logical reasoning in the early stages of this new content as it has not been learnt, only performed.

I would say that in the early stages of learning, content that requires the end goal of being fluent should take up the majority of lesson time – approximately 60%. The rest of the time should be spent rehearsing and retrieving other knowledge that is at risk of being forgotten about.

This blog on mental math strategies students should learn at each grade level is a good place to start when thinking about the core aspects of fluency that students should achieve.

Little and often is a good mantra when we think about fluency, particularly when revisiting the key mathematical skills of number bond fluency or multiplication fluency. So when it comes to what fluency could look like throughout the day, consider all the opportunities to get students practicing.

They could chant multiplication facts when transitioning. If a lesson in another subject has finished earlier than expected, use that time to quiz students on number bonds. Have fluency exercises as part of the morning work.

Read more: How to teach multiplication for instant recall

What about best practice over a longer period?

Thinking about what fluency could look like across a unit of work would again depend on the unit itself.

Look at this unit below from a popular scheme of work.

example scheme of work

They recommend 20 days to cover 9 objectives. One of these specifically mentions problem solving so I will forget about that one at the moment – so that gives 8 objectives.

I would recommend that the fluency of this unit look something like this:

example first lesson of a unit of work targeted towards fluency

This type of structure is heavily borrowed from Mark McCourt’s phased learning idea from his book ‘Teaching for Mastery.’

This should not be seen as something set in stone; it would greatly depend on the needs of the class in front of you. But it gives an idea of what fluency could look like across a unit of lessons – though not necessarily all math lessons.

When we think about a semester, we can draw on similar ideas to the one above except that your lessons could also pull on content from previous units from that semester.

So lesson one may focus 60% on the new unit and 40% on what was learnt in the previous unit.

The structure could then follow a similar pattern to the one above.

When an adult first learns something new, we cannot solve a problem with it straight away. We need to become familiar with the idea and practice before we can make connections, reason and problem solve with it.

The same is true for students. Indeed, it could take up to two years ‘between the mathematics a student can use in imitative exercises and that they have sufficiently absorbed and connected to use autonomously in non-routine problem solving.’ (Burkhardt, 2017).

Practice with facts that are secure

So when we plan for reasoning and problem solving, we need to be looking at content from 2 years ago to base these questions on.

You could get students in 3rd grade to solve complicated place value problems with the numbers they should know from 1st or 2nd grade. This would lessen the cognitive load , freeing up valuable working memory so they can actually focus on solving the problems using content they are familiar with.

Increase complexity gradually

Once they practice solving these types of problems, they can draw on this knowledge later when solving problems with more difficult numbers.

This is what Mark McCourt calls the ‘Behave’ phase. In his book he writes:

‘Many teachers find it an uncomfortable – perhaps even illogical – process to plan the ‘Behave’ phase as one that relates to much earlier learning rather than the new idea, but it is crucial to do so if we want to bring about optimal gains in learning, understanding and long term recall.’  (Mark McCourt, 2019)

This just shows the fallacy of ‘accelerated progress’; in the space of 20 minutes some teachers are taught to move students from fluency through to non-routine problem solving, or we are somehow not catering to the needs of the child.

When considering what problem solving lessons could look like, here’s an example structure based on the objectives above.

example lesson of a unit using fluency and reasoning to embed problem solving

It is important to reiterate that this is not something that should be set in stone. Key to getting the most out of this teaching for mastery approach is ensuring your students (across abilities) are interested and engaged in their work.

Depending on the previous attainment and abilities of the children in your class, you may find that a few have come across some of the mathematical ideas you have been teaching, and so they are able to problem solve effectively with these ideas.

Equally likely is encountering students on the opposite side of the spectrum, who may not have fully grasped the concept of place value and will need to go further back than 2 years and solve even simpler problems.

In order to have the greatest impact on class performance, you will have to account for these varying experiences in your lessons.

Read more: 

  • Math Mastery Toolkit : A Practical Guide To Mastery Teaching And Learning
  • Problem Solving and Reasoning Questions and Answers
  • Get to Grips with Math Problem Solving For Elementary Students
  • Mixed Ability Teaching for Mastery: Classroom How To
  • 21 Math Challenges To Really Stretch Your More Able Students
  • Why You Should Be Incorporating Stem Sentences Into Your Elementary Math Teaching

Do you have students who need extra support in math? Give your students more opportunities to consolidate learning and practice skills through personalized math tutoring with their own dedicated online math tutor. Each student receives differentiated instruction designed to close their individual learning gaps, and scaffolded learning ensures every student learns at the right pace. Lessons are aligned with your state’s standards and assessments, plus you’ll receive regular reports every step of the way. Personalized one-on-one math tutoring programs are available for: – 2nd grade tutoring – 3rd grade tutoring – 4th grade tutoring – 5th grade tutoring – 6th grade tutoring – 7th grade tutoring – 8th grade tutoring Why not learn more about how it works ?

The content in this article was originally written by primary school lead teacher Neil Almond and has since been revised and adapted for US schools by elementary math teacher Jaclyn Wassell.

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

  • PRINT TO PLAY
  • DIGITAL GAMES

logical reasoning strategy problem solving

Problem-Solving Strategies

October 16, 2019

There are many different ways to solve a math problem, and equipping students with problem-solving strategies is just as important as teaching computation and algorithms. Problem-solving strategies help students visualize the problem or present the given information in a way that can lead them to the solution. Solving word problems using strategies works great as a number talks activity and helps to revise many skills.

Problem-solving strategies

1. create a diagram/picture, 2. guess and check., 3. make a table or a list., 4. logical reasoning., 5. find a pattern, 6. work backward, 1. create a diagram/draw a picture.

Creating a diagram helps students visualize the problem and reach the solution. A diagram can be a picture with labels, or a representation of the problem with objects that can be manipulated. Role-playing and acting out the problem like a story can help get to the solution.

Alice spent 3/4 of her babysitting money on comic books. She is left with $6. How much money did she make from babysitting?

logical reasoning strategy problem solving

2. Guess and check

Teach students the same strategy research mathematicians use.

With this strategy, students solve problems by making a reasonable guess depending on the information given. Then they check to see if the answer is correct and they improve it accordingly.  By repeating this process, a student can arrive at a correct answer that has been checked. It is recommended that the students keep a record of their guesses by making a chart, a table or a list. This is a flexible strategy that works for many types of problems. When students are stuck, guessing and checking helps them start and explore the problem. However, there is a trap. Exactly because it is such a simple strategy to use, some students find it difficult to consider other strategies. As problems get more complicated, other strategies become more important and more effective.

Find two numbers that have sum 11 and product 24.

Try/guess  5 and 6  the product is 30 too high

  adjust  to 4 and 7 with product 28 still high

  adjust  again 3 and 8 product 24

3. Make a table or a list

Carefully organize the information on a table or list according to the problem information. It might be a table of numbers, a table with ticks and crosses to solve a logic problem or a list of possible answers. Seeing the given information sorted out on a table or a list will help find patterns and lead to the correct solution.

To make sure you are listing all the information correctly read the problem carefully.

Find the common factors of 24, 30 and 18

logical reasoning strategy problem solving

Logical reasoning is the process of using logical, systemic steps to arrive at a conclusion based on given facts and mathematic principles. Read and understand the problem. Then find the information that helps you start solving the problem. Continue with each piece of information and write possible answers.

Thomas, Helen, Bill, and Mary have cats that are black, brown, white, or gray. The cats’ names are Buddy, Lucky, Fifi, and Moo. Buddy is brown. Thoma’s cat, Lucky, is not gray. Helen’s cat is white but is not named Moo. The gray cat belongs to Bill. Which cat belongs to each student, and what is its color?

A table or list is useful in solving logic problems.

Since Lucky is not gray it can be black or brown. However, Buddy is brown so Lucky has to be black.

Buddy is brown so it cannot be Helen’s cat. Helen’s cat cannot be Moo, Buddy or Lucky, so it is Fifi.

Therefore, Moo is Bill’s cat and Buddy is Mary’s cat.

5. Find a pattern.

Finding a pattern is a strategy in which students look for patterns in the given information in order to solve the problem. When the problem consists of data like numbers or events that are repeated then it can be solved using the “find a pattern” problem-solving strategy. Data can be organized in a table or a list to reveal the pattern and help discover the “rule” of the pattern.

 The “rule” can then be used to find the answer to the question and complete the table/list.

Shannon’s Pizzeria made 5 pizzas on Sunday, 10 pizzas on Monday, 20 pizzas on Tuesday, and 40 pizzas on Wednesday. If this pattern continues, how many pizzas will the pizzeria make on Saturday?

6. Working backward

Problems that can be solved with this strategy are the ones that  list a series of events or a sequence of steps .

In this strategy, the students must start with the solution and work back to the beginning. Each operation must be reversed to get back to the beginning. So if working forwards requires addition, when students work backward they will need to subtract. And if they multiply working forwards, they must divide when working backward.

Mom bought a box of candy. Mary took 5 of them, Nick took 4 of them and 31 were given out on Halloween night. The next morning they found 8 pieces of candy in the box. How many candy pieces were in the box when mom bought it.

For this problem, we know that the final number of candy was 8, so if we work backward to “put back” the candy that was taken from the box we can reach the number of candy pieces that were in the box, to begin with.

The candy was taken away so we will normally subtract them. However, to get back to the original number of candy we need to work backward and do the opposite, which is to add them.

8 candy pieces were left + the 31 given out + plus the ones Mary took + the ones Nick took

8+31+5+4= 48   Answer: The box came with 48 pieces of candy.

Selecting the best strategy for a problem comes with practice and often problems will require the use of more than one strategies.

Print and digital activities

I have created a collection of print and digital activity cards and worksheets with word problems (print and google slides) to solve using the strategies above. The collection includes 70 problems (5 challenge ones) and their solution s and explanations.

sample below

logical reasoning strategy problem solving

How to use the activity cards

Allow the students to use manipulatives to solve the problems. (counters, shapes, lego blocks, Cuisenaire blocks, base 10 blocks, clocks) They can use manipulatives to create a picture and visualize the problem. They can use counters for the guess and check strategy. Discuss which strategy/strategies are better for solving each problem. Discuss the different ways. Use the activities as warm-ups, number talks, initiate discussions, group work, challenge, escape rooms, and more.

Ask your students to write their own problems using the problems in this resource, and more, as examples. Start with a simple type. Students learn a lot when trying to compose a problem. They can share the problem with their partner or the whole class. Make a collection of problems to share with another class.

For the google slides the students can use text boxes to explain their thinking with words, add shapes and lines to create diagrams, and add (insert) tables and diagrams.

Many of the problems can be solved faster by using algebraic expressions. However, since I created this resource for grades 4 and up I chose to show simple conceptual ways of solving the problems using the strategies above. You can suggest different ways of solving the problems based on the grade level.

Find the free and premium versions of the resource below. The premium version includes 70 problems (challenge problems included) and their solutions

There are 2 versions of the resource

70 google slides with explanations + 70 printable task cards

70 google slides with explanations + 11 worksheets

You might also like

logical reasoning strategy problem solving

Multiplying fractions/mixed numbers/simplifying

logical reasoning strategy problem solving

Adding and subtracting fractions

logical reasoning strategy problem solving

AM/PM, 24-hour clock, Elapsed Time – ideas, games, and activities

logical reasoning strategy problem solving

Teaching area, ideas, games, print, and digital activities

logical reasoning strategy problem solving

Multi-Digit Multiplication, Area model, Partial Products algorithm, Puzzles, Word problems

logical reasoning strategy problem solving

Place Value – Representing and adding 2/3 digit numbers with manipulatives

logical reasoning strategy problem solving

Multiplication Mission – arrays, properties, multiples, factors, division

logical reasoning strategy problem solving

Fractions Games and activities – Equivalence, make 1, compare, add, subtract, like, unlike

logical reasoning strategy problem solving

Diving into Division -Teaching division conceptually

logical reasoning strategy problem solving

Expressions with arrays

logical reasoning strategy problem solving

Decimals, Decimal fractions, Percentages – print and digital

logical reasoning strategy problem solving

Solving Word Problems- Math talks-Strategies, Ideas and Activities-print and digital

Check out our best selling card games now available at amazon.com and amazon.ca.

logical reasoning strategy problem solving

Chicken Escape

A multiplayer card game that makes mental math practice fun! Chicken Escape is a fast-paced multiplayer card game. While playing…

logical reasoning strategy problem solving

How to learn logical reasoning for coding and beyond

logical reasoning strategy problem solving

Become a Software Engineer in Months, Not Years

From your first line of code, to your first day on the job — Educative has you covered. Join 2M+ developers learning in-demand programming skills.

From the binary digits that computers use to represent data, to the most sophisticated AI programs, logic is key to the development and implementation of the technologies we rely on. Logic isn’t just a tool for programmers, though. We all use logical reasoning on a daily basis to think through problems and make decisions.

There are a lot of advantages to burnishing your logic skills. If you’re learning to code , practicing logical reasoning will help you understand how programming languages work and how programmers use them to solve problems. If you’re not at that stage yet, that’s all right: learning logical reasoning will make you a more effective and self-aware thinker , and that has applications far beyond programming.

Today, we’re going to discuss logical reasoning: what it is, why it’s important in the context of programming, and how you can start learning it.

We’ll cover :

Logical reasoning defined

2 types of logical reasoning, how programmers use logical reasoning, strategies for practicing logical reasoning, next steps for learning logical reasoning.

Learn to code today. Try one of our courses on programming fundamentals: Learn to Code: Python for Absolute Beginners Learn to Code: C++ for Absolute Beginners Learn to Code: C# for Absolute Beginners Learn to Code: Java for Absolute Beginners Learn to Code: Javascript for Absolute Beginners Learn to Code: Ruby for Absolute Beginners

Narrowly defined, logical reasoning is the practice of applying induction, deduction, or another logical method to a problem. More broadly, using logical reasoning means analyzing the relationships among the constituent parts of an argument or process . It involves thinking about how elements interact to bring about a certain result.

Logical reasoning has tons of practical applications. You can use it to construct strong arguments and analyze the arguments of others. You can use it to develop step-based processes that are efficient, effective, and internally coherent. This is why logical reasoning is so important to so many disciplines. Philosophers, scientists, mathematicians, and computer programmers all use logic in their work.

There are many types of logical reasoning. We’ll discuss two of the most important before exploring the role of logical reasoning in programming, specifically.

Inductive reasoning involves evaluating a body of information to derive a general conclusion . Whenever you engage in research, you’re using inductive reasoning insofar as you’re gathering evidence and using it to better understand the topic at hand. It’s important to remember, however, that the conclusions you’ll arrive at through induction will often be built on evidence that is incomplete. This means that the outcome of inductive reasoning tends to be probable rather than certain.

Deductive reasoning is the process of deriving conclusions from general statements or principles called premises . The syllogism is one of the most basic forms of deductive reasoning. A syllogism includes a major premise, a minor premise, and a conclusion. Here’s an example:

“All bears have fur. A polar bear is a type of bear. Therefore, polar bears have fur.”

In this case, the premises are true, and they lead logically to the conclusion. A deductive argument can easily go wrong if the conclusion doesn’t follow logically from the premises or if one or more of the premises are false. The following syllogism is flawed:

“All bears live in forests. A polar bear is a type of bear. Therefore, polar bears live in forests.”

The major premise is incorrect, so the conclusion is also incorrect.

In summary, while induction involves deriving general principles from specific cases, deduction involves applying general principles to specific cases.

Logical reasoning plays an important role in programming. Let’s discuss some of the ways that programmers use logic in their work.

Problem-solving

Programmers use logical reasoning for problem-solving . Before you start coding a program, you’ll have to wrestle with questions about what the program is trying to accomplish, what features it will need to have, what programming language you’ll write it in, and so on. Inductive and deductive reasoning are useful tools for answering process questions like these.

Writing code

Coding is the process of writing instructions in a language a computer can read. These instructions direct the computer to perform a set of operations . Writing functioning code requires applying logic. Imperative programming , for instance, is a paradigm based on issuing commands for a program to follow on a step-by-step basis. Writing these commands is a logical process. It requires thinking about the relationships between parts. Do the commands interact with each other to bring about the desired outcome? If not, the code isn’t going to work.

Writing functioning code is also dependent on understanding the logic of the programming language you’re using. For example, the logical operators and, or, and not in Python are derived from Boolean logic , and they’re an important part of conditional statements and other logical expressions.

Creating algorithms

Algorithms used in machine learning and artificial intelligence also rely on logic. An algorithm is a set of instructions that tells a program what to do on the basis of certain inputs. A simple decision tree algorithm, for instance, will consist of a series of branching decisions. The logic of each branch is fairly simple: “If a certain condition is met, do A . If not, do B .” These branching decisions are repeated through later stages of the program to specify the appropriate end result based on the inputs.

The best way to practice logical reasoning is by consciously implementing it in your daily life. Here are a few exercises that might be helpful.

Find a news article or thinkpiece in a reputable publication. Read it and try to pick out the author’s primary claim . Then, try to identify the pieces of evidence that the author uses to support that claim. Does the author’s claim follow logically from the evidence? Or does the claim go beyond what the evidence actually supports?

Analyzing how authors use evidence to support their arguments is a great way of practicing inductive reasoning.

Next time you’re planning how to tackle a new project, break your process down into steps and then write them down on paper. Does the end result follow logically from the steps that precede it? Or does the process contain steps that are redundant, unnecessary, or counterproductive?

Remember that logic is all about coherence among the constituent elements of an argument or process. Thinking logically means thinking holistically about how relationships and interactions lead to a certain result.

Find an issue being presented for discussion at the next meeting of your local City Council or zoning board. Formulate a position on it, and use logical reasoning to construct an argument that articulates and defends that position .

As we discussed earlier, logical reasoning is a great tool for analyzing others’ arguments, but you can also use it to construct sound arguments of your own. The best way to practice this is by taking a position on an issue and trying to convince others that you’re right.

There’s a good chance you already use the forms of logical reasoning we’ve described in this article. We arrive at judgments and decisions by evaluating evidence (induction) and applying principles that we believe to be true (deduction). Even so, studying logical reasoning and consciously applying it can make you a more rigorous and self-aware thinker. It will help you to pick out flaws in your logic and others’ , and it will help you to solve problems and build more efficient processes – in programming work and beyond.

If you’re interested in learning more about how programmers think, consider exploring Educative’s learn to code courses.

  • Learn to Code: Python for Absolute Beginners
  • Learn to Code: C++ for Absolute Beginners
  • Learn to Code: C# for Absolute Beginners
  • Learn to Code: Java for Absolute Beginners
  • Learn to Code: JavaScript for Absolute Beginners
  • Learn to Code: Ruby for Absolute Beginners

They provide an introduction to programming and how programmers solve problems. It also offers some insight into the logical structure of programming languages, explaining, for instance, how conditional statements work to ensure that programs perform the right operations in response to inputs.

Whether you’re learning to code or just trying to strengthen your problem-solving skills, you’ll find that the rigorous, step-by-step thinking that logical reasoning requires is a major asset.

Happy learning!

Continue learning about computers and programming

Absolute beginner’s guide to computers and programming

How to think like a programmer: 3 misconceptions debunked

How much math do you need to know to be a developer?

Haven’t found what you were looking for? Contact Us

How can I practice my logic?

To practice logic in coding, try the following:

  • Solve challenges on platforms like LeetCode or Educative.
  • Build small projects.
  • Debug and fix code errors.
  • Study data structures.
  • Participate in coding contests.
  • Collaborate in peer programming.
  • Learn different programming paradigms.
  • Read and analyze open-source code.

logical reasoning strategy problem solving

Learn in-demand tech skills in half the time

Mock Interview

Skill Paths

Assessments

Learn to Code

Tech Interview Prep

Generative AI

Data Science

Machine Learning

GitHub Students Scholarship

Early Access Courses

For Individuals

Try for Free

Gift a Subscription

Become an Author

Become an Affiliate

Earn Referral Credits

Cheatsheets

Frequently Asked Questions

Privacy Policy

Cookie Policy

Terms of Service

Business Terms of Service

Data Processing Agreement

Copyright © 2024 Educative, Inc. All rights reserved.

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

logical reasoning strategy problem solving

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

logical reasoning strategy problem solving

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size

Logical Reasoning in Formal and Everyday Reasoning Tasks

  • Open access
  • Published: 26 December 2019
  • Volume 18 , pages 1673–1694, ( 2020 )

Cite this article

You have full access to this open access article

  • Hugo Bronkhorst   ORCID: orcid.org/0000-0002-8181-1299 1 ,
  • Gerrit Roorda 2 ,
  • Cor Suhre 2 &
  • Martin Goedhart 1  

73k Accesses

20 Citations

7 Altmetric

Explore all metrics

Logical reasoning is of great societal importance and, as stressed by the twenty-first century skills framework, also seen as a key aspect for the development of critical thinking. This study aims at exploring secondary school students’ logical reasoning strategies in formal reasoning and everyday reasoning tasks. With task-based interviews among 4 16- and 17-year-old pre-university students, we explored their reasoning strategies and the reasoning difficulties they encounter. In this article, we present results from linear ordering tasks, tasks with invalid syllogisms and a task with implicit reasoning in a newspaper article. The linear ordering tasks and the tasks with invalid syllogisms are presented formally (with symbols) and non-formally in ordinary language (without symbols). In tasks that were familiar to our students, they used rule-based reasoning strategies and provided correct answers although their initial interpretation differed. In tasks that were unfamiliar to our students, they almost always used informal interpretations and their answers were influenced by their own knowledge. When working on the newspaper article task, the students did not use strong formal schemes, which could have provided a clear overview. At the end of the article, we present a scheme showing which reasoning strategies are used by students in different types of tasks. This scheme might increase teachers’ awareness of the variety in reasoning strategies and can guide classroom discourse during courses on logical reasoning. We suggest that using suitable formalisations and visualisations might structure and improve students’ reasoning as well.

Similar content being viewed by others

logical reasoning strategy problem solving

Human inference beyond syllogisms: an approach using external graphical representations

Yuri Sato, Gem Stapleton, … Zohreh Shams

logical reasoning strategy problem solving

Putting Context Dependent Human Logical Reasoning into the Right Context

How diagrams can support syllogistic reasoning: an experimental study.

Yuri Sato & Koji Mineshima

Avoid common mistakes on your manuscript.

Introduction

P21's Framework for twenty-first Century Learning describes critical thinking as an important skill to be successful in professional and everyday life situations in an increasingly complex world (P21, 2015 ). Of great value for critical thinking is ‘reason effectively’, which is explained in the twenty-first century skills framework as “[using] various types of reasoning (inductive, deductive, etc.) as appropriate to the situation” (P21, 2015 , p. 4). Liu, Ludu, and Holton ( 2015 ) support this view and consider valid logical reasoning as a key element for sound critical thinking. Other authors suggest that improving logical reasoning skills as part of higher order thinking skills is an important objective of education (Zohar & Dori, 2003 ).

To support the development of critical thinking, it seems essential that teachers devote attention to students’ strategies to reason logically. So far, not much is known about the reasoning processes of secondary school students in different logical reasoning tasks. Therefore, this article addresses this issue by exploring how 16- and 17-year-old students reason within formal reasoning and everyday reasoning tasks. The information provided by this study seems important to increase teachers’ awareness of reasoning strategies used by students and reasoning difficulties they encounter, as well as to be able to develop instruction materials to support and improve students’ logical reasoning skills.

Theoretical Background

Halpern ( 2014 ) describes critical thinking as “purposeful, reasoned, and goal-directed” (p. 8) and contends that many definitions of critical thinking in literature use the term “reasoning/logic” (p. 8), so being able to apply the rules of logic can be seen as a requirement for critical thinking. Many studies report difficulties with logical reasoning for different age groups (e.g. Daniel & Klaczynski, 2006 ; Galotti, 1989 ; O’Brien, Shapiro, & Reali, 1971 ; Stanovich, West, & Toplak, 2016 ). Because of those difficulties, it is by no means certain that secondary school students are able to reason logically and thus develop their critical thinking abilities autonomously.

Formal Reasoning.

The area of logic can be divided into formal logic and informal logic. Aristotle already differentiated between formal logic with syllogisms described in Analytica Priora and ‘dialectics’ in his combined work Topica exploring arguments and opinions (Aristotle, 2015 version). Almost 2000 years later, Gottlob Frege (1848 – 1925) studied and developed formal systems to analyse thoughts, reasoning, and inferences. Also, he developed the so-called ‘predicate logic’, inspired by Leibniz (1646 – 1716), which is more advanced than the ‘propositional logic’ (Look, 2013 ; Zalta, 2016 ). Nowadays, those types of systems are often called ‘symbolic logic’ with strict validity as a key aspect (De Pater & Vergauwen, 2005 ) in which formal deductive reasoning is applied.

In general, formal systems contain a set of rules and symbols and the reasoning within these systems will provide valid results as long as one follows the defined rules (Schoenfeld, 1991 ). The corresponding reasoning is often called formal reasoning and “characterized by rules of logic and mathematics, with fixed and unchanging premises” (Teig & Scherer, 2016 , p. 1). The same use of formal procedures can be found in definitions of logical reasoning as well. For instance “Logical reasoning involves determining what would follow from stated premises if they were true” (Franks et al., 2013 , p. 146), and “When we reason logically, we are following a set of rules that specify how we ‘ought to’ derive conclusions” (Halpern, 2014 , p. 176).

However, there is no consensus on the term reasoning and it is not exclusively used for formal deductive reasoning or mathematical situations only. Although reasoning in mathematics differs immensely from everyday reasoning (Yackel & Hanna, 2003 ), even reasoning in mathematical proof is not only a formal procedure, but involves discussion, discovery, and exploration (Lakatos, 1976 ) and shows us a need for more informal methods when approaching formal reasoning problems.

Informal Reasoning.

In the previous section, we indicated that, dependent on the situation, reasoning demands more than applying rules of logic. For instance, the importance of transforming information as stated by Galotti ( 1989 ): “[Reasoning is a] mental activity that consists of transforming given information … in order to reach conclusions” (p. 333) and the role of samenesses as stated by Grossen ( 1991 ): “Analogical and logical reasoning are strategies for finding and using samenesses. … logical reasoning applies these derived samenesses in order to understand and control our experience” (p. 343).

The notion of broadening formal methods with more informal methods is not new. Toulmin already discusses the limitations of formal logic for all sorts of arguments in his famous book The Uses of Argument ( 1958 ). He distinguishes different logical types to emphasise how logic is used in different fields, such as law, science, and daily-life situations. In his layout of an argument, he schematises the grounds for a claim balanced with reasons that rebut a claim. He also uses qualifiers to indicate the probability of a claim.

Philosophers and educators were also dissatisfied with the dominance of formal logic, that they considered as inappropriate for evaluating real-life arguments, and started in the 1970s an informal logic movement for another approach of analysing arguments stated in ordinary, daily-life language (Van Eemeren et al., 2014 ). One of the major textbooks still in print today is Logical Self-Defense (Johnson & Blair, 2006 ), which covers an introduction in “logical thinking, reasoning, or critical thinking … that focuses on the interpretation and assessment of ‘real life’ arguments” (p. xix). In literature, this is often indicated as informal or everyday reasoning, but this term has various meanings, from reasoning originating from formal systems to all reasoning related to everyday life events (Blair & Johnson, 2000 ; Voss, Perkins, & Segal, 1991 ). Different from formal reasoning, the reasoning and the conclusions depend on the context and can be questioned on their validity as already shown by Toulmin. Therefore, the topics are open for debate and invite to ponder on justifications and objections. The argument, as the result of the reasoning, often concerns open-ended, ill-structured real world problems without one conclusive, correct response (Cerbin, 1988 ; Kuhn, 1991 ). For this, Johnson and Blair ( 2006 ) use “acceptable premises that are relevant to the conclusion and supply sufficient evidence to justify accepting it” (p. xiii). The use of acceptable premises can arise from practical reasons to reach a certain goal and often includes presumptions or presuppositions. Walton ( 1996 ) uses the term ‘presumptive reasoning’ for this kind of arguments, which he sees as dialogues.

Although presumptive reasoning is not always conclusive or accepted by everyone, it is, in particular if full knowledge is unavailable or unobtainable, according to Walton, the best supplement to describe and discuss everyday life reasoning, for which he uses argumentation schemes. Even though Blair ( 1999 ) acknowledges the importance of presumptive reasoning for describing human reasoning and the strength of conclusions derived from the premises, he questions if all arguments are dialogues and discusses the completeness of the schemes.

To sum up, we define informal reasoning as reasoning in ordinary language to construct an argument which requires a critical review of the given premises and transforming of information, as well as finding additional or similar information provided by the problem solver or by external sources.

Towards a Definition for Logical Reasoning in This Study.

Now, we have seen that for well-founded reasoning, formal and informal methods are useful, we need to formulate a definition of logical reasoning for this study, which captures both aspects. A definition of logical reasoning should contain both the context and the way of reasoning, which can consist of formal and informal strategies. In other words, a definition of logical reasoning should not be synonymous with formal deductive reasoning. Important key words taken from the previous sections are ‘derive conclusions’ from Halpern and ‘transforming information’ from Galotti. That can be done with rules derived from formal systems, but that is not a necessity, so informal reasoning will also be part of our definition and thus seen as a valid reasoning process. Therefore, we conclude that logical reasoning involves several steps and define logical reasoning for this study as selecting and interpreting information from a given context , making connections and verifying and drawing conclusions based on provided and interpreted information and the associated rules and processes.

Formal and Everyday Reasoning Tasks.

Until now, we focused on the ways of reasoning and stressed the importance of the context. If we want to study how students reason in a variety of contexts, we have to differentiate between closed tasks with one correct answer and more open tasks. For this, we will use Galotti’s ( 1989 , p. 335) division: ‘formal reasoning tasks’ and ‘everyday reasoning tasks’. Formal reasoning tasks are self-contained, in which all premises are provided. For those tasks, established procedures are often available which lead to one conclusive answer. In everyday reasoning tasks, premises might be implicit or not provided at all. For those tasks, established procedures are often not available and it depends on the situation when an answer is good enough. In daily-life situations, everyday reasoning problems “are [often] not self-contained” and “the content of the problem typically has potential personal relevance” (Galotti, 1989 , p. 335). For both types of tasks, but for everyday reasoning tasks in particular, selecting and encoding relevant information is of great importance. We will call that the interpretation of the task.

Formal reasoning tasks may be provided in different forms: with symbols and completely in ordinary language without symbols. As shown in Fig.  1 , we differentiate formal reasoning tasks in formally stated and in non-formally stated tasks. Formally stated tasks are stated with a certain set of symbols, for example a task with the premises ‘(1) All A are B. (2) All B are C.’ Non-formally stated tasks are tasks stated in ordinary language, for example a task with the premises ‘(1) All mandarins are oranges. (2) All oranges are fruits.’ For each task, students’ reasoning starts with an interpretation of the given information. That might be either a formal interpretation, in other words, an interpretation within a certain set of symbols (e.g. A ⊆ B ⊆ C ⇒ “All A are C”), or an informal interpretation in ordinary language.

figure 1

Types of tasks and interpretation

Everyday reasoning tasks are not translatable to formal reasoning tasks and often contain implicit premises as, for instance, in everyday life stories. Like in formal reasoning tasks, students will need to interpret the information in everyday reasoning tasks as well. That can be done completely informally, but a formal representation, such as a schematic overview, might help students to get an overview of the given situation. In this study, we focus both on students’ interpretation and the reasoning strategies that follow from there.

Formalisations.

From prior research among university students (e.g. Lehman, Lempert, & Nisbett, 1988 ; Stenning, 1996 ), we conjecture that reasoning in all kinds of situations will benefit from the use of formal representations or formalisations. We will use the term formalisation in its broadest sense, including all sorts of symbols, schematisations, visualisations, formal notations and (formal) reasoning schemes. Stenning ( 1996 ) gives support for the role of (elementary) formal notations and rules by mentioning that “learning elementary logic can [emphasis added] improve reasoning skills” (p. 227) and can help to understand formal thoughts and arguments. Also, Lehman et al. ( 1988 ) found support for the notion that reasoning in general can improve as a result of teaching formal rules within a particular field. Nonetheless, this does not imply that every formalisation is helpful: The chosen representation should support the thinking process for the specific context, rather than that it should capture all aspects (McKendree, Small, Stenning, & Conlon, 2002 ). In this study, we will investigate which formalisations are used by the participants and if those formalisations are beneficial.

Research Questions

Since little is known about the reasoning processes of 16- and 17-year-old students in logical reasoning tasks, our aim is to explore their reasoning strategies. Because of its exploratory nature, we selected, according to the division provided in Fig. 1 , three elementary types of reasoning tasks: two formal reasoning tasks, to be presented with (formally stated) and without (non-formally stated) symbols, and an everyday reasoning task. Our exploratory study was guided by the following research questions: (1) How do students reason towards a conclusion in formal reasoning and everyday reasoning tasks, whether or not by using formalisations? And (2) what kind of reasoning difficulties do they encounter when proceeding to a conclusion?

For this exploratory study, we selected closed tasks (formal reasoning tasks) concerning linear ordering and syllogisms and an open-ended newspaper comprehension task (everyday reasoning task). The formal reasoning tasks were presented formally and non-formally, of which the non-formally stated task is a counter-item of the formally stated one. A non-formally stated counter-item is a translation of the corresponding formally stated task in ordinary language and vice versa. Both tasks have similar conclusions as final answer, so that the reasoning processes can be compared. Figures  2 and 3 show these formal reasoning tasks, both formally stated and non-formally stated.

figure 2

Formal reasoning tasks about linear ordering, formally and non-formally stated

figure 3

Formal reasoning tasks about invalid syllogisms, formally and non-formally stated

Figure 4 shows the everyday reasoning task and this task does not have a counter-item. This newspaper task is an open-ended task with implicit premises and hidden assumptions. In this task, students have to reconstruct the line of the argument. An expert in logic validated all items by checking wording and comprehensibility of the tasks.

figure 4

Everyday reasoning task, reasoning in a newspaper article

This selection of tasks captures each category shown in Fig. 1 in which we expect different reasoning strategies and contains familiar and unfamiliar tasks to our students. For each task, we provide example interpretations and solutions below. These solutions are used as reference solutions to check the correctness of students’ answers, but, of course, the reasoning towards a conclusion can differ. In the everyday reasoning task in particular, different formulations are possible.

The linear ordering tasks (see Fig. 2 ), which are formal reasoning tasks, have ‘P > S’ and ‘Peter is older than Sally’ as correct answers respectively. If taken a formal interpretation, the reasoning can be P > Q > R > S for the order of the letters. If taken an informal interpretation, you can take example ages for the four persons. For example, if Peter is 50 years old, then Quint can be 20 years old, because Peter is older than Quint. Rosie is younger than Quint, so Rosie can be 10 years old. Rosie is older than Sally, so Sally can be 5 years old. In conclusion, if Peter is 50 years old and Sally 5 years old, then Peter must be older than Sally.

The syllogism tasks (see Fig. 3 ), which are formal reasoning tasks too, should have ‘does not follow necessarily from the given premises’ as correct answer as the only valid conclusive option. For the formally stated version of the syllogism task, possible formal and informal interpretations are visualised in Fig.  5 . At the left, the given syllogism is translated into ordinary language completely and thus called an informal interpretation. In this case, it is example-based with a counterexample in ordinary language, which is, of course, a sufficient explanation why the conclusion does not necessarily follow from these premises. However, it is important to recognise that an example does not always lead to a general conclusion, in particular for valid syllogisms, so in that case, there must be a translation back to the formal setting.

figure 5

Formal and informal interpretations of the formally stated syllogism task

The formal interpretation with Euler diagrams at the right of Fig. 5 shows that C does not necessarily overlap with A. In this interpretation, the original given set of letter symbols is used. Similar diagrams can be drawn for the non-formally stated version of the task.

The everyday reasoning task (Fig. 4 ) requires students to (1) identify the premises (reasons) leading to the author’s conclusion, and (2) to hypothesise how these premises might be connected to the conclusion by using general knowledge or evidence that might support the author’s conclusion. Our example solution (see Fig.  6 ) is scheme-based with phrases in ordinary language. We analyse such a scheme as a formal interpretation in which the three reasons (the identified premises) are linked directly or indirectly to the author’s conclusion. For the third reason, one needs an additional reasoning step by mentioning another hidden assumption to make the argument complete. We assume that there is sufficient general knowledge on this subject among the participants. The arrows represent if-then statements and are not only part of the formal scheme, but also formalisations in themselves.

figure 6

Formal scheme for the everyday reasoning task

Nevertheless, the if-then statements in the scheme can be explained in full sentences too. For the first two reasons, that will look like ‘If people smoke or inhale particulate matter, then it will affect their health and thus shorten their life.’ Such considerations based on common knowledge still show the connection, but it is not yet formalised, neither with a scheme, nor with any symbols and thus considered as a completely informal interpretation (see Fig. 1 ). As soon as one introduces logical symbols, we will call those symbols formalisations. In combination with the if-then rule, the sentence can be represented as ‘(smoking ∨ inhaling particulate matter) ⇒ unhealthy ⇒ shorter life’.

Participants

Our participants are Dutch secondary school students in their penultimate year of pre-university secondary education (11th graders) and volunteered to participate in think-aloud sessions. The first author of this article was their teacher and they all signed an informed consent. These students did not take advanced mathematics or science, but followed a mathematics course in which logical reasoning has recently become a compulsory domain (College voor Toetsen en Examens, 2016 ). This study was conducted before the participants received teaching in logical reasoning. In this article, work is discussed from two male (Edgar, James) and two female students (Anne, Susan).

We conducted task-based interviews in which students solved logical reasoning tasks aloud (Goldin, 2000 ; Van Someren, Barnard, & Sandberg, 1994 ). The interviews were conducted in Dutch and recorded with a smartpen so that verbal and written information could be connected. The students were asked to say aloud everything they were thinking of. The interviewer, who is the first author of this article, refrained from commenting as much as possible, so that ‘free problem-solving’ was a key aspect of the sessions. If a student did not understand the task or thought it was done, the interviewer would ask additional (clarification) questions, but did never provide feedback on the given answers.

The transcripts of the interviews were analysed in Dutch and selected parts were translated to English for this article. Students’ task solving was analysed qualitatively in an interpretive way and data-driven (Cohen, Manion, & Morrison, 2007 ). To get a clear picture of the reasoning process, the data sources, interview transcripts and students’ written notes, were analysed according to our definition of logical reasoning. Our analysis included the following steps: (1) students’ understanding of the task, (2) students’ interpretation of the task, (3) students’ reasoning process and strategies used, (4) students’ use of formalisations and (5) the correctness of students’ final answers. If students switch between interpretations, we will call the predominant interpretation, their main interpretation.

Students’ reasoning in counter-items is intended as an exploration of possible variation in reasoning. Because students worked on only one of each two counter-items, we cannot analyse the differences between individual students’ strategies on alternative versions of similar closed tasks.

To judge the correctness of their final answers, students’ written notes, as well as the interview transcripts, are used and compared. Possible differences are marked and combined with their interpretations and reasoning. We have to note that the verbal explanations in itself can be seen as informal, because if students are asked to do tasks aloud, they use ordinary language, but if explained with a (given) set of symbols, the interpretation of the task can still be formal. Furthermore, the verbal explanations are linked to written notes, in which possible use of formalisations is clearly visible.

Table 1 provides an overview of the results. Thereafter, for each task students’ reasoning will be illustrated in detail.

Reasoning with Linear Ordering

Formal reasoning tasks with linear ordering (see Fig. 2 ) are familiar to the students because these types of tasks are common in primary and secondary education. We summarise the findings first: All four students used rule-based strategies, but their initial interpretation differed. All answers were correct and well-reasoned. Only one student came up with an additional formalisation other than the given symbols. She used a very suitable tool, a number line representation with formal letters symbols, to get a clear overview of the order. We will present a detailed description of the four students.

Formally Stated, Edgar.

Edgar interprets the task in a formal way by copying the formal notation, see first three lines in Fig.  7 . After writing that down, his first statements are switching to example-based reasoning (informal interpretation) that involves filling in some numbers (line [1] in transcript). After that, he quickly weighs his two interpretations (lines [2] and [3]) and switches back to the formal situation, by comparing the given letters P, R and S with the symbol for ‘greater than’ (line [4] and Fig. 7 ). Although the verbal explanations are in words, inherent to thinking aloud, he solves the task by following mathematical rules by staying in the formal system with the corresponding formal symbols. This way of reasoning provides the correct answer quickly and using the given symbols only gives a clear structure: P > R, R > S, P > S.

figure 7

Formally stated linear ordering task at the left, Edgar’s written notes at the right

Edgar: [1] well, yes, you could just fill in numbers of course as an example, [2] well oh no, let's wait[3] we are not going to do that at first [4] uhm, P is greater than Q, so P is also greater than R, …

Formally Stated, Anne.

After reading the task, Anne starts immediately with a translation of the formal symbols into expressions in ordinary language by writing down ‘greater than’ and ‘less than’ in full, thus giving an informal transformation of most of the formally stated task (see Fig.  8 ). Although she still reasons with the given formal letters, she switches to ordinary language for applying the mathematical rules. She provides the correct answer.

figure 8

Anne’s written notes at the left, English translation at the right

Non-formally Stated, Susan.

Susan translates the non-formally stated version of this formal reasoning task immediately into a formal situation with letter abbreviations for the names and the symbols > and < for ‘older than’ and ‘younger than’. Besides these formal symbols, she puts the letters in sequential order horizontally, which can be seen as a ‘number line’ representation with formal letter symbols, starting with P-Q-R reasoning that Q must be in the middle, see Fig.  9 . We call that another formalisation. After adding S as well, she comes to the right conclusion that Peter must be older than Sally, which is a translation from her formal system to the conclusion asked for in ordinary language.

figure 9

Susan’s written notes

Non-formally Stated, James.

James reasons in words within the non-formally stated version of this task leading to a correct conclusion. We call his interpretation informal with a correct application of mathematical rules. After the confirmation that he has to write his reasoning down, his written explanation is completely in ordinary language, using the given names and the phrases ‘older than’ and ‘younger than’ (see Fig.  10 ). So, James’s interpretation is completely informal without switching.

figure 10

James’s written notes at the left, English translation at the right

Reasoning with an Invalid Syllogism

Formal reasoning tasks with syllogisms (see Fig. 3 ) are unfamiliar tasks to these students because they are not used to reasoning within syllogisms. We summarise the findings first: Three of the four students used an informal interpretation, but only two students provided a correct answer. The formally stated version caused difficulties due to not understanding the task or due to incomplete translations to an informal example. Also, the misinterpretation of ‘are’ and the confusion between ‘all’ and ‘some’ are noteworthy. We also found that a recognisable non-formally stated context can support the reasoning, despite some hindrance of real-life experiences concerning the context as well. We present a detailed description of the four students.

Formally Stated, Susan.

Susan shows that she understands that she has to accept the two premises in this formal reasoning task, regardless of their truths by writing “true” behind it, see Fig.  11 . Her next step is formalising the given statements even further by introducing the equality sign, see first lines in her written notes in Fig.  12 , so she interprets the task completely formally.

figure 11

Susan accepts the given premises, English translation at the right

figure 12

Formalisations used by Susan, English translation at the right

Susan tries to reason with the given letters four times (see four sections transcript) before she gives up. Again, her verbal explanations are in ordinary language, of course, inherent to thinking aloud, but she uses the given letters and stays in the formal system, so we call that a formal interpretation. In her first try (lines [1] – [7] in transcript), she states that A and B are equal (line [5]), but she cannot connect this with C. In her second try (lines [8] – [14]), she starts with stating that A and B are equal, but cannot connect C with that although saying that some B are not C (line [10]). In her third try (lines [15] – [17]), she says, once more, that A and B are equal, but she cannot connect that with C, because she does not know which B’s are C. The fourth time she writes down the last two lines shown in Fig.  12 , connecting some with a symbol for approximately, but that does not help either (lines [18] – [25]). It is important to notice that she uses the equality sign each time as equal to which conflicts with the original premise containing an inclusion.

After underlining her conclusion ‘A ≈ C’ in the fourth try, she gives up and sighs: “I just do not understand the logic of all this” (line [25]). Susan only reasoned with the given letters and formal symbols and did not switch to an informal situation.

Susan: [1] all A are B, …, so is equal [2] but some of those are C[3] so some are not, some A are not either, some A are [4] … mmm … [5] all A are B, so A and B are equal [6] some B are C, so some B are only A [7] and some B are C … mmm … [start reasoning from the beginning again] [8] all A are B, A and B are equal [9] some of those are C and some are not [10] some B are not C [11] some A, that is also B [12] some B … some A are C [13] … but all A are B, and some B are C, some A are C [rereading given syllogism] [14] no, I don’t think so [start reasoning from the beginning again] [15] I think that, … uhm …, if all A are B, A and B are equal [16] but some B are C, so some of those B’s, that has to be the case, do not necessarily have to be A, because you do not know which B’s are C, because those are equal to C, and A and B are equal, some A are C [17] ow, I really think this is difficult … [start reasoning from the beginning once more] [18] okay, all A are B [writes down A=B] [19] some B are C, so approximately [writes down B≈C] [20] and some A are C, but A and B are equal[21] some of those B are C [writes down behind A=B: ➔ B≈C] [22] and some A are C [writes down A≈C] [23] so, my conclusion, … mmm … [underlines A≈C] [24] I really don’t know [25] I just do not understand the logic of all this

Formally Stated, James.

James recognises that he does not know how to solve this task in a formal way by expressing “I don’t know”, so he switches to an informal interpretation of the formally stated task: starting with searching for an example in ordinary language. This can be seen as analogy- and example-based reasoning. His explanation is closely related to our example in Fig. 5 , but James only looks for one valid example instead of a counterexample. He chooses an example in which ‘some’ represents all apes (line [3] in transcript), because the set of apes not being mammals is empty. We assume that he did not recognise that because of his incorrect conclusion. He tries to use a logical structure ‘if-then’ (lines [2] – [4]) as well, but that does not solve the problem. After the valid conclusion of his example in ordinary language, he tries to explain the validity of his conclusion in a more formal way with the given letters (lines [5] – [7]) and writes that down as well (see Fig.  13 ). For this, James also states that A and B are equal (line [5]) in the same way as Susan did, and is not able to provide a more precise explanation after clarification questions by the interviewer.

figure 13

James: [1] okay, well, I am going to have a look with a similar example I think [2] if, uhm, all humans are apes [3] some apes are mammals [4] then some humans are … also mammals [5] so, I think it is correct, because A and B are equal, [6] because that is necessarily true, [7] so if that’s the case for some B, it is also the case for A

Non-formally Stated, Edgar.

Edgar’s interpretation of the non-formally stated version of this formal reasoning task is informal. He draws the correct conclusion quite easily (line [2] in transcript). He also explains, although this is not necessarily true, the possibility that some flowers might refer to roses as well as to other flowers (line [6]), which shows a notion of the rules of logic. In his written notes (see Fig.  14 ) he also shows that the word flower could contain more than one type of flowers. This reflection is quite strong and shows insight in the generality of a syllogism.

figure 14

Edgar’s written notes at the left, English translation at the right

Edgar: [1] uhm… well… let’s see… [2] yes, you would say that this does not follow logically, because some flowers does not necessarily refer to all roses [3] let’s see [4] some, yes, [5] uhm… [6] it does not have to mean that roses fade quickly since some flowers might also be daisies or, well, something, or other flowers consequently

Non-formally Stated, Anne.

Anne also draws the right conclusion in the non-formally stated version of this task. She uses an informal interpretation and comes up with a correct answer quickly (line [1] in transcript) and provides a more complete explanation in her next sentence (line [2]), which is similar to her written answer (see Fig.  15 ). However, Anne is not completely sure about her answer. Asked for an explanation, she says that her uncertainty comes from her knowledge about fading flowers (line [8] and [9]), although she recognises that one cannot conclude that from these premises, which shows that she understands the rules of logic.

figure 15

Anne:  [1] You do not know if it’s the roses that fade, so you also don’t know if some roses fade quickly. [2] All roses can still be flowers, and some flowers can still fade quickly, but that does not have to mean that roses [sighs] fade quickly. [3] Yes, I think so. [4] I am less certain about this one. … [5] because roses can still be flowers, but, ow wait, and [6] … that does not have to mean that, per se, the roses fade quickly, … Intvwr: [7] And why are you less sure than in the previous task? Anne:  [8] uhm… yes, because, some flowers fade quickly, yes, I don’t know, I know, I think it’s difficult to explain, but I am just more in doubt here, because … [9] I was thinking because I know, of course, that there are many other species of flowers than only roses, only from these premises you cannot see that of course

Reasoning in a Newspaper Article

An everyday reasoning task about the analysis of a newspaper article (see Fig. 4 ) is considered unfamiliar to these students. We summarise the findings first: Both students used informal interpretations and only some basic formalisations to sum up reasons or make connections even though one of the students (Susan) provided to some extent a schematic overview. Although not essential, they did not build a (strong) formal scheme as, for example, shown in Fig. 6 . We present a detailed description of the two students.

Susan starts this task with identifying the three premises (step 1) in a structured way by writing down the three reasons mentioned in the article behind bullets (see first three lines Fig.  16 ). Thereafter, she takes her time to reconsider these reasons, the wording of the task and the phrase ‘hidden assumption’. She writes down “the hidden assumption is that people from Rotterdam live less healthy”, which hypothesises how the premises are linked to the conclusion (step 2). She explains that “it has to do with people’s health” because of the first two reasons, smoking and worse environment, but Susan struggles with an explanation for the third reason: lower education and income level (see line [1] in transcript). This reason demands more evidence. Susan implies that poorer families are the missing connection for the lower income (line [4]). For that, she uses another formalisation, which structures her written notes: an arrow to make the connection. Verbally, she provides a further explanation for the assumption ‘poorer families’ (line [5]), but she did not write that down.

figure 16

Susan’s written notes at the left, English translation at the right

Overall, in her verbal explanation, she has connected all the mentioned reasons with a hidden assumption leading to her main assumption ‘poorer health’, which she underlines as well. In her written notes, she uses formalisations at three moments: at the beginning (bullets) for the first step involving identifying the premises, and arrows at two times for connections, either with hypothesised evidence based on her own knowledge (step 2), or to emphasise the main hidden assumption. Her notes provide more or less a schematic overview, but Susan did not compile a complete formal scheme.

Susan: [1] ... mmm, so ... the lower education and income level what does that have to do with ... lower level of education, ... mmm ..., yes, the amount of smokers has to do with health and the high concentration of particulate matter in the air, so it means that the health of people from Rotterdam is worse than the health of other people in the Netherlands [2] uh, to link, explain how the reasons mentioned are linked to the shorter life, by describing the hidden assumption, uhm ... [3] The shorter life is caused by ... the ... poorer health in Rotterdam compared to other Dutch people. [4] Then, the hidden assumption is that poorer health and ... maybe, uh ... lower education and income level, so perhaps poorer families [draws an arrow to connect this with lower education and income level] [5] ... and they may not buy very expensive and organic food and everything, so they would live less healthy or something, I think the hidden assumption is that they eat less healthy, or live less healthy lives especially, yes that’s what I think [6] This is what I think, the poorer health [underlines poorer health], that’s the hidden assumption. [adds arrow]

Anne underlines the three main reasons in the text: smokers, particulate matter, lower education and income level, which shows that she identified the premises (step 1). After that, she lists the three reasons behind bullets (see Fig.  17 ). That is the only formalisation she uses. The rest of the reasoning, verbal and written, is done in ordinary language. For the second and third reason, she provides a hidden assumption: “particulate matter is bad for someone and thus shortens one’s life, and the lower education level and the lower income level leads to poorer living conditions and thus shortens one’s life”. She uses her own knowledge to state that particulate matter is bad for someone’s health and to hypothesise that a lower income level leads to poorer living conditions (step 2). However, she forgets to provide a connection for the first reason, so the interviewer asked for further explanations before she added “bad for you and thus” (see top line Fig.  17 ) for the connection between smoking and shortening one’s life.

figure 17

Overal, Anne identified the premises quite quickly and provided support for the reasons easily. Probably, she assumed that the connection between smoking and a shorter life was generally known, so that she only provided additional evidence after a clarification question by the interviewer.

Conclusions and Discussion

The purpose of this study was to gain insights into the reasoning processes of 16- and 17-year-old pre-university secondary school students on logical reasoning tasks, aimed at fostering their critical thinking skills as an important objective in the twenty-first century skills framework (P21, 2015 ). In this exploratory study, we investigated (1) the way of reasoning students used in formal reasoning and everyday reasoning tasks and their use of formalisations, and (2) the difficulties they encounter in their reasoning.

In the linear ordering tasks and in the syllogism tasks, students used rule-, analogy- and example-based reasoning strategies. In the newspaper article task, students reasoned partly scheme-based, but mainly in ordinary language only. Except for the formally stated syllogism task, students used appropriate strategies to find correct answers. Although the linear ordering tasks are familiar to the students, both formats (formally and non-formally stated) led to formal and informal interpretations.

Students do not always feel certain about their method and answer, in particular in the syllogism tasks and in the everyday reasoning task. The incomplete written answers in the everyday reasoning task show that our students probably have doubts if their answers are good enough, because they have the feeling that more answers are possible. Even though the newspaper task is taken from an everyday life context and—we expect—recognisable and meaningful, students still fulfil a task for which they expect that there should be one correct answer, as is common in mathematics tasks (e.g. Jäder, Sidenvall, & Sumpter, 2017 ). The doubt students express is in line with Galotti’s ( 1989 ) description for everyday reasoning tasks, because she states that “it is often unclear whether the current ‘best’ solution is good enough” (p. 335) in contrast to formal reasoning tasks where “it is typically unambiguous when the problem is solved” (p. 335).

In our formally stated syllogism task, the students misinterpreted the phrases ‘all…are…’ and ‘some…are…’. Consequently, they did not see that their representations, such as the use of the equality sign as a formal symbol, were not suitable. Susan was completely stuck in the formally stated version and could not find a way out. The misuse of the equality sign (=) for ‘all… are…’ is a common mistake (e.g. Galotti, 1989 , p. 336). Stenning and Van Lambalgen ( 2008 ) also describe difficulties with understanding and interpreting syllogisms.

An overview of our findings is visualised in a scheme (Fig.  18 ) as an extension of Fig. 1 . We showed that students’ initial interpretations, their first thoughts, do not always match with their later choices, so students seem to switch between formal and informal interpretations. This is visualised by the arrow in the scheme. The strategies included in this scheme are derived from our exploratory study among 16- and 17-year-old students and might not provide a complete overview. Consequently, the overview can be supplemented with argumentation schemes based on presumptive reasoning (Walton, 1996 ; Walton, Reed, & Macagno, 2008 ) in further research. Our everyday reasoning task gives only a limited view of students’ possible reasoning strategies, because students were only asked to identify the premises and to use their own knowledge to find connections with the conclusion. They were not asked to find rebuttals or further backing of the claims. The connections provided by the students should be sufficient for justifiable reasoning. This correspondents to the earlier mentioned description from Johnson and Blair ( 2006 ) about acceptable premises.

figure 18

Types of tasks combined with students’ interpretations and reasoning strategies

Each of the strategies shown in Fig.  18 can be supported by the use of formalisations. For example, in the non-formally stated linear ordering task, Susan used letter abbreviations, mathematical symbols and a number line representation. For cases in which students reason in ordinary language without clearly showing causality, comparison or examples, we added the category ‘informal reasoning’. This category is based on our definition of informal reasoning in the corresponding section in the Theoretical Background. We believe it is important to present ‘informal reasoning’ as separate category in the scheme, because students still managed to construct an argument in ordinary language, but without clearly showing a visible reasoning strategy, such as rule-based, example-based, scheme-based, et cetera.. Therefore, we used a dotted line in Fig.  18 . Consequently, in that case, formalisations can only be used to a certain extent as, for example, shown by Anne in her analysis of the newspaper article where she separated her three informal arguments by bullets.

In this article, we hypothesised that suitable formalisations can support the reasoning process and summarised those tools at the right-hand side of Fig. 18 . We believe that our hypothesis is strengthened by the findings in this exploratory study. Symbols (like ‘greater than’ and ‘less than’, or the equality sign) and letter abbreviations are suitable tools to shorten notations, while other tools (like a number line representation) are strong tools to visualise information. Although not used by our students, Venn and Euler diagrams are also strong tools to visualise data. However, it is our conviction that the use of formalisations, including visualisations such as Venn and Euler diagrams, is teachable and can be linked to the strategies used by the students, also in everyday reasoning tasks.

A limitation of the study is related to our choice of tasks. In our selection of tasks, we used formally stated tasks and non-formally stated tasks as counter-items for similar reasoning problems. In our design, different students worked on one of the counter-items and therefore, we could not compare the performance of an individual student on both tasks. The non-formally stated tasks were more easily to interpret by the students and led to other strategies, because their prior knowledge was helpful. Hintikka ( 2001 ) explains that “in real-life reasoning, even when it is purely deductive, familiarity with the subject matter can be strategically helpful” (p. 46). On the other hand, sometimes our students may doubt their answers, because premises in the task (e.g. Anne in the non-formally stated syllogism task) might conflict with their prior knowledge. In general, this means that our counter-items (formally versus non-formally stated tasks) cannot be considered as equivalent.

Despite the fact that our study has a limitation in the number of participants (small and selective sample) and a limited number of tasks, the information in Fig.  18 shows a variety of reasoning strategies, which is important for teachers to understand the diversity of students’ reasoning and possible difficulties in the interpretations of tasks, in particular for tasks that are not familiar to students or lead to incorrect answers.

Future Research and Recommendations

This study not only shows the complex matter of reasoning and everyday life reasoning in particular, it also confirms that more research is needed as already mentioned by Galotti ( 1989 , 2017 ). Our exploratory study is a first step to get insights in the reasoning process of 16- and 17-year-old pre-university students and shows a gap between their verbal and written explanations. We will continue our research for an in-depth understanding. Unfamiliar tasks, such as all sorts of non-formally stated syllogisms (formal reasoning tasks) and everyday reasoning tasks seem to be useful contexts to investigate how students solve reasoning tasks and which formalisations, including visualisations, they use. Our definition of logical reasoning, mentioned in the Theoretical Background, fits this future research.

Our results show that students do not structure everyday life contexts automatically, so it is plausible that similar difficulties occur in authentic everyday life reasoning too. In future research, we intend to show that students may be supported by learning more structured reasoning strategies and the use of formalisations and visualisations.

One of the key aspects for lessons in logical reasoning must be classroom discourse when solving reasoning tasks. Lakatos ( 1976 ) already stressed the importance of dialogue in the construction of mathematical and logical reasoning. Our research might increase teachers’ awareness of that importance and, more practically, for which Fig.  18 serves as a guideline for discussion. Different interpretations and possible strategies used by students are made explicit and can be used as input for classroom discussions. We suggest that formalisations and visualisations are part of those discussions and might establish a deeper understanding. Above all, logical reasoning tasks where several ways of reasoning are possible, are highly connected to the twenty-first century skills (P21, 2015 ), and thus with the development of critical thinking skills.

Aristotle. (2015).  Topics  (W. A. Pickard-Cambridge, Trans.). London: Aeterna Press.

Blair, J. A. (1999). [Review of the book Argumentation schemes for presumptive reasoning , by D. N. Walton] Argumentation, 13 , 338–343.

Blair, J. A., & Johnson, R. H. (2000). Informal logic: An overview. Informal Logic, 20 (2), 93–107.

Google Scholar  

Cerbin, B. (1988). The nature and development of informal reasoning skills in college students . Retrieved from ERIC database. (ED298805).

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education (6th ed.). New York: Routledge/Taylor & Francis Group.

Book   Google Scholar  

College voor Toetsen en Examens. (2016). Wiskunde C vwo, syllabus centraal examen 2018 (bij het nieuwe examenprogramma) nader vastgesteld 2 . https://www.examenblad.nl/examenstof/syllabus-2018-wiskunde-c-vwo/2018/vwo/f=/syllabus_wiskunde_C_2_versie_vwo_2018_nader_vastgesteld2_def.pdf . Accessed 27 Oct 2016.

Daniel, D. B., & Klaczynski, P. A. (2006). Developmental and individual differences in conditional reasoning: Effects of logic instructions and alternative antecedents. Child Development, 77 (2), 339–354.

Article   Google Scholar  

De Pater, W. A., & Vergauwen, R. (2005). Logica: formeel en informeel . Leuven: Universitaire pers.

Franks, B. A., Therriault, D. J., Buhr, M. I., Chiang, E. S., Gonzalez, C. M., Kwon, H. K., . . . Wang, X. (2013). Looking back: Reasoning and metacognition with narrative texts. Metacognition Learning, 8 (2), 145–171.

Galotti, K. M. (1989). Approaches to studying formal and everyday reasoning. Psychological Bulletin, 105 (3), 331–351.

Galotti, K. M. (2017). Cognitive development: Infancy through adolescence (2nd ed.). Thousand Oaks: Sage.

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517–545). Mahwah: Erlbaum.

Grossen, B. (1991). The fundamental skills of higher order thinking. Journal of Learning Disabilities, 24 (6), 343–353.

Halpern, D. F. (2014). Thought and knowledge: An introduction to critical thinking (5th ed.). New York: Psychology Press.

Hintikka, J. (2001). Is logic the key to all good reasoning? Argumentation, 15 (1), 35–57.

Jäder, J., Sidenvall, J., & Sumpter, L. (2017). Students’ mathematical reasoning and beliefs in non-routine task solving. International Journal of Science and Mathematics Education, 15 (4), 759–776.

Johnson, R. H., & Blair, J. A. (2006). Logical self-defence . New York: Idebate press.

Kuhn, D. (1991). The skills of argument . Cambridge: Cambridge University Press.

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery . J. Worrall & E. Zahar (Eds.). Cambridge: Cambridge University Press.

Lehman, D. R., Lempert, R. O., & Nisbett, R. E. (1988). The effects of graduate training on reasoning: Formal discipline and thinking about everyday-life events. American Psychologist, 43 (6), 431–442.

Liu, H., Ludu, M., & Holton, D. (2015). Can K-12 math teachers train students to make valid logical reasoning? In X. Ge, D. Ifenthaler, & J. M. Spector (Eds.), Emerging technologies for STEAM education: Full STEAM ahead (pp. 331–353). Cham: Springer International Publishing.

Chapter   Google Scholar  

Look, B. C. (2013). Gottfried Wilhelm Leibniz. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2014 ed). https://plato.stanford.edu/archives/spr2014/entries/leibniz/ . Accessed 21 Nov 2016.

McKendree, J., Small, C., Stenning, K., & Conlon, T. (2002). The role of representation in teaching and learning critical thinking. Educational Review, 54 (1), 57–67.

O’Brien, T. C., Shapiro, B. J., & Reali, N. C. (1971). Logical thinking—Language and context. Educational Studies in Mathematics, 4 (2), 201–219.

P21. (2015). P21 framework definitions. http://www.p21.org/storage/documents/docs/P21_Framework_Definitions_New_Logo_2015.pdf . Accessed 5 Oct 2018.

Schoenfeld, A. H. (1991). On mathematics as sense-making: An informal attack on the unfortunate divorce of formal and informal mathematics. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 311–343). Hillsdale: Erlbaum.

Stanovich, K. E., West, R. F., & Toplak, M. E. (2016). The rationality quotient: Toward a test of rational thinking . Cambridge: MIT Press.

Stenning, K. (1996). Embedding logic in communication: Lessons from the logic classroom. In J. van Benthem, F. H. van Eemeren, R. Grootendorst, & F. Veltman (Eds.), Logic and argumentation (pp. 227–240). Amsterdam: Royal Netherlands Academy.

Stenning, K., & van Lambalgen, M. (2008). Human reasoning and cognitive science . Cambridge: MIT Press.

Teig, N., & Scherer, R. (2016). Bringing formal and informal reasoning together—A new era of assessment? Frontiers in Psychology, 7 , 1097.

Toulmin, S. (1958). The uses of argument . Cambridge: University Press.

Van Eemeren, F. H., Garssen, B., Krabbe, E. C. W., Henkemans, A. F. S., Verheij, B., & Wagemans, J. H. M. (2014). Informal logic. In F. H. van Eemeren, B. Garssen, E. C. W. Krabbe, A. F. S. Henkemans, B. Verheij, J. H. M. Wagemans (Eds.),  Handbook of argumentation theory (pp. 373–423). Dordrecht, Springer Netherlands.

Van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud method: A practical guide to modelling cognitive processes . London: Academic Press.

Voss, J. F., Perkins, D. N., & Segal, J. W. (Eds.). (1991). Informal reasoning and education . Hillsdale: Erlbaum.

Walton, D. N. (1996). Argumentation schemes for presumptive reasoning . Mahwah: Erlbaum.

Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes . Cambridge: Cambridge University Press.

Yackel, E., & Hanna, G. (2003). Reasoning and proof. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics  (pp. 227-236). Reston, VA: National Council of Teachers of Mathematics.

Zalta, E. N. (2016). Gottlob Frege. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 ed.). http://plato.stanford.edu/archives/win2016/entries/frege/ . Accessed 21 Nov 2016

Zohar, A., & Dori, Y. J. (2003). Higher order thinking skills and low-achieving students: Are they mutually exclusive? Journal of the Learning Sciences, 12 (2), 145–181. Accessed 21 Nov 2016.

Download references

Acknowledgements

This work is part of the research programme Doctoral Grant for Teachers with project number 023.007.043, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and affiliations.

Institute for Science Education and Communication, Faculty of Science and Engineering, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands

Hugo Bronkhorst & Martin Goedhart

Teacher Education, Faculty of Behavioural and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands

Gerrit Roorda & Cor Suhre

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hugo Bronkhorst .

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Bronkhorst, H., Roorda, G., Suhre, C. et al. Logical Reasoning in Formal and Everyday Reasoning Tasks. Int J of Sci and Math Educ 18 , 1673–1694 (2020). https://doi.org/10.1007/s10763-019-10039-8

Download citation

Received : 07 February 2019

Accepted : 01 December 2019

Published : 26 December 2019

Issue Date : December 2020

DOI : https://doi.org/10.1007/s10763-019-10039-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Twenty-first century skills
  • Critical thinking
  • Formal and everyday reasoning tasks
  • Logical reasoning
  • Secondary mathematics education
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Problem solving strategy: logical reasoning

    logical reasoning strategy problem solving

  2. Problem Solving Strategy of Logical Reasoning 8th

    logical reasoning strategy problem solving

  3. 5-4 Problem-Solving Strategy Use Logical Reasoning

    logical reasoning strategy problem solving

  4. Problem-Solving Strategy: Use Logical Reasoning Worksheet for 3rd

    logical reasoning strategy problem solving

  5. Problem-Solving Strategy: Use Logical Reasoning Worksheet for 4th

    logical reasoning strategy problem solving

  6. Problem-Solving Strategy: Use Logical Reasoning Practice 13.4 3rd

    logical reasoning strategy problem solving

VIDEO

  1. 5-4 Problem-Solving Strategy Use Logical Reasoning

  2. Logical Reasoning

  3. Mathematics Sequence Reasoning Problem|Logical Reasoning Problem #youtubeshorts #ssc #viral

  4. Can You Solve This Basic Logical Reasoning Problem‼️

  5. Paper 1

  6. Can You Solve This Basic Logical Reasoning Problem‼️

COMMENTS

  1. Logical Reasoning

    Learn what logical reasoning is and its types, and understand how to use logic to solve a problem. Explore logical problem-solving strategies, and see examples. Updated: 11/21/2023

  2. PDF A Logical Problem Solving Strategy

    The general strategy can be summarized in terms of five steps.: (1) Comprehend the problem. (2) Represent the problem in formal terms. (3) Plan a solution. (4) Execute the plan. (5) Interpret and evaluate the solution. The strategy begins with the qualitative aspects of a problem and progresses toward the quantitative aspects of a problem.

  3. Logical Reasoning

    Chapter 1: Logical Reasoning. It must seem rather redundant to have a chapter entirely devoted to a strategy referred to as logical reasoning. Regardless of the strategy being used to solve a problem, it would seem that some logical thinking must permeate the use of all the strategies. After all, to many people, problem solving is almost ...

  4. Module 1: Problem Solving Strategies

    Problem Solving Strategy 3 (Using a variable to find the sum of a sequence.) Gauss's strategy for sequences. last term = fixed number (n-1) + first term. The fix number is the the amount each term is increasing or decreasing by. "n" is the number of terms you have. You can use this formula to find the last term in the sequence or the number of ...

  5. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    These strategies are called problem solving heuristics. Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem.

  6. Logical Reasoning: Problem Solving Strategy 1

    Consider a six-sided die. From your angle, you are able to see only three faces with the numbers 14, 18, and 35 on them. The sides that you cannot see are al...

  7. Getting started with Logical Reasoning (article)

    A Logical Reasoning question is made up of these parts: Passage/stimulus: This text is where we'll find the argument or the information that forms the basis for answering the question. Sometimes there will be two arguments, if two people are presented as speakers. Question/task: This text, found beneath the stimulus, poses a question.

  8. CHAPTER 3. PROBLEM SOLVING AND LOGICAL REASONING.

    46 CHAPTER 3. PROBLEM SOLVING AND LOGICAL REASONING. Problem Solving Strategies. Here are some things which will help you solve unfamiliar problems. See also sections 17.4 and 17.11. (1) Read the question several times to make sure you really understand what is being asked. Make sure you take note of all the information you are given.

  9. Logical Puzzles

    A logical puzzle is a problem that can be solved through deductive reasoning. This page gives a summary of the types of logical puzzles one might come across and the problem-solving techniques used to solve them. One of the simplest types of logical puzzles is a syllogism. In this type of puzzle, you are given a set of statements, and you are required to determine some truth from those statements.

  10. Reasoning and Problem Solving

    This chapter provides a revised review of the psychological literature on reasoning and problem solving. Four classes of deductive reasoning are presented, including rule (mental logic) theories, semantic (mental model) theories, evolutionary theories, and heuristic theories. Major developments in the study of reasoning are also presented such ...

  11. Fluency, Reasoning & Problem Solving: What They REALLY Are

    Reasoning in math is the process of applying logical thinking to a situation to derive the correct problem solving strategy for a given question, and using this method to develop and describe a solution. ... But we should not consider rushing them on to problem solving or logical reasoning in the early stages of this new content as it has not ...

  12. PDF Problem Solving: Logical Reasoning

    Logical Reasoning means making an educated guess, and the important word there is educated! When you use Logical. Reasoning, you base your conclusion on careful observation and consideration of the rules and patterns you already understand. Try out the role of a detective trying to solve a mystery, and the solution you present is your educated ...

  13. Problem-Solving Strategies

    Logical reasoning. Logical reasoning is the process of using logical, systemic steps to arrive at a conclusion based on given facts and mathematic principles. Read and understand the problem. Then find the information that helps you start solving the problem. Continue with each piece of information and write possible answers. Example

  14. Logic for Problem Solving, Revisited

    This seminal book of Computer Science is the most cited reference on the subject of programming in logic. Originally published in 1979, this now classic text was the first comprehensive attempt to define the scope of logic for problem solving. In this extended edition, Robert Kowalski revisits his classic text in the light of subsequent developments in a substantial commentary of fifty pages.

  15. Logical Reasoning

    Clinical Geropsychology. Boo Johansson, Åke Wahlin, in Comprehensive Clinical Psychology, 1998 (iv) Problem solving and executive functions A complex domain of cognitive functioning involves problem solving and logical reasoning, including inductive as well as deductive components.Problem solving encompasses all behaviors executed when facing old problems that we have learned how to solve, as ...

  16. How to learn logical reasoning for coding and beyond

    How programmers use logical reasoning. Logical reasoning plays an important role in programming. Let's discuss some of the ways that programmers use logic in their work. Problem-solving. Programmers use logical reasoning for problem-solving. Before you start coding a program, you'll have to wrestle with questions about what the program is ...

  17. 7.3 Problem-Solving

    Additional Problem Solving Strategies:. Abstraction - refers to solving the problem within a model of the situation before applying it to reality.; Analogy - is using a solution that solves a similar problem.; Brainstorming - refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal ...

  18. Developing Logical Thinking: A Guide to Boosting Your Problem-Solving

    By approaching problems in a systematic and organized manner, you'll develop a clearer understanding of the issue at hand and improve your ability to find logical solutions. 2. Solve puzzles ...

  19. Logical Reasoning in Formal and Everyday Reasoning Tasks

    Logical reasoning is of great societal importance and, as stressed by the twenty-first century skills framework, also seen as a key aspect for the development of critical thinking. This study aims at exploring secondary school students' logical reasoning strategies in formal reasoning and everyday reasoning tasks. With task-based interviews among 4 16- and 17-year-old pre-university students ...

  20. PDF Rethinking Logical Reasoning Skills Strategy Perspective

    Rethinking Logical Reasoning Skills from a Strategy Perspective ... given the range of problem types, task demands, and experience and cognitive resources of reasoners, that there may be more than one way for solving an entire class of reasoning problem. Morris & Schunn Logical Reasoning Skills 3 Consider the case of deduction. This involves a ...

  21. How to Improve Your Logical Reasoning for Strategic Problem-Solving

    3 Ask questions. Asking questions is a powerful way to improve your logical reasoning skills and your strategic problem-solving. Questions help you clarify the problem, define the criteria ...

  22. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  23. Boost Logical Reasoning in Customer Service

    To address a lack of logical reasoning skills in your team, take a structured approach: 1. Introduce exercises that promote critical thinking, such as logic puzzles and problem-solving activities.

  24. Language Models as Compilers: Simulating Pseudocode ...

    Algorithmic reasoning refers to the ability to understand the complex patterns behind the problem and decompose them into a sequence of reasoning steps towards the solution. Such nature of algorithmic reasoning makes it a challenge for large language models (LLMs), even though they have demonstrated promising performance in other reasoning tasks. Within this context, some recent studies use ...