Going Right

April 29, 2016

Renewable Energy Persuasive Essay

Robert Caba

Dr. Freymiller

12 April 2016

Out with the Old, In with the Re(new)able

The United States has been operating as a country using limited fossil fuels, but what happens when it all runs out? Would it not be more beneficial to never find out? Renewable energy, energy that is not depleted after its use, is limitless and more sustainable than any other source in energy history. To initiate the clean energy movement is expensive, but there are countless benefits ranging from individual to global impacts in going completely renewable. The first recorded use of renewable energy was harnessing wind power to drive ships over water about 7000 years ago (Darling). However, renewable energy has been around as long as Earth has existed: wind, sun, geothermal, biomass and many more. Clean energy sources can be harnessed to produce electricity, process heat, fuel and other chemicals with significantly less impact on the environment. In 2014, renewable energy sources accounted for fourteen percent of America’s total electricity use (“Renewable Energy Sources”), a four percent incline from the prior year. Completely diverting from fossil fuels to renewable energy clearly is not a new concept for a select few of innovative countries. A few countries, for example, are Costa Rica, Norway and Iceland, all of whom have ran on renewable energy for the entire 2015 calendar year, diving deep into their own land’s resources and utilizing volcanic presence to produce energy (Rosecrance & Thompson 7). Following in the footsteps of Costa Rica and a few other third world countries, major economic powerhouses and biggest users of fossil fuels like the United States should convert to clean energy as a way to benefit the economy, environment and overall health of the country.

As a consumer, one is worried about how abandoning a safe form of energy and transitioning to something new can help or hurt their wallet. Not only can renewable energy help save money, it can also help make money. A 150 billion dollar investment into this new industry would result in 1.7 million job opportunities, reducing the unemployment rate in America by an entire percentage (Pollin & Heintz). The reason for the potential high employment rate is because the industry is labor intensive in the means of installation and maintenance, requiring a lot of manpower for ultimate success. However, the more we wait the more future benefits we are currently losing. In an American Solar Energy Association (ASES) report in 2009, they stated “the 2008 predictions for renewable energy industry in 2030 are significantly lower than the 2007 predictions (National Research Council 169).” Unlike fossil fuels, which are subject to volatile pricing fluctuating over time depending on the market, renewable energy is relatively “free” after installation, using natural resources. The process of transportation and maintenance is minimized allowing prices to stay constant throughout the years. The only way price can head is down; for instance, clean energy is more affordable than 25 years ago. In particular, wind energy, the fastest growing source of power, prices have declined from forty cents per kilowatt per hour to less than five cents per kilowatt per hour (“The Energy Story”), a remarkable change and a huge upside in favor of the conversion. As time continues, technology should continue its progression resulting in cheaper mediums to acquire the energy. Despite of this, the conversion should take place now so results are maximized for the future. All in all, clean energy can both save Americans money while help them make money, the perfect win-win for producers and consumers alike.

Abstaining from burning countless, yet limited fossil fuels every day and polluting the environment is the single biggest benefactor for moving towards a cleaner approach. Not only would greenhouse gas emissions, as well as other pollutants that cause smog and acid rain, reach minimal levels, but also the country is consequently assisting in the reduction of the global warming speed and effects. Unlike fossil fuels, which are unable to be replenished easily, renewable energy is limitless, feeding from natural resources. With the global and national population expected to continue rising, the demand for energy will follow. There is a multitude of different approaches to acquire renewable energy including the most used types: solar and wind power. Specifically, solar energy is the epitome of sustainability and efficiency, calculated through production and prices. Despite the massive amounts of energy used yearly nationwide, “the sunlight falling on the United States in one day contains more than twice the energy we consume in an entire year ( The Energy Story ).” As for wind power, “California [alone] has enough wind gusts to produce 11 percent of the world’s wind electricity ( The Energy Story).” Wind turbines take up a lot of space but still allow the area around it, usually farms, to be used regularly. In the United Kingdom, for comparison, the government set a target for renewable energy to make up 15 percent of their total energy expense by 2020. This motive results in a 34 percent cut in the country’s carbon emission in the same time span (National Research Council 180). Needless to say, renewable energy will make landmark strides in the progression towards a cleaner, better environment. The most important thing on this Earth is this Earth, and it’s society’s job to maintain it.

As well as helping the environment and wallets, renewable energy can help with everyone’s health. By cutting the emission of greenhouse gasses and fossil fuels, air pollution decreases. Air pollution, primarily those contributed through coal burning power plants emitting fine-particulate pollutants, is most associated with causing health problems, chiefly lung cancer. The Environment Protection Agency (EPA) predicts that conversion, or even standards, will prevent at least 100,000 heart attacks and asthma attacks per year. Additionally, EPA also estimates a projected 1,100 billion dollar income in health benefits due to avoiding illnesses and deaths (U.S. EPA). As a form of partnership, the health industry could invest a portion of this money into the clean air movement due to its beneficial health impacts and help make installation cheaper. A majority of these pollutants are associated with dangerous levels of climate change, this century’s biggest threat to human health. Climate change, a change in global climate patterns, “will increasingly jeopardize the fundamental requirements for health, including clean urban air, safe and sufficient drinking-water, a secure and nutritious food supply, and adequate shelter (World Health Organization).” Climate change is the main contributor and accelerator towards global warming. Global warming increases the risk of two deadly diseases: Plague and Ebola, to name a few. For Plague, changes in temperature and rainfall will affect rodent populations as well as the infected fleas they carry. Additionally, Ebola outbreaks tend to follow serious downpours or droughts, a likely result of climate change (Biello). The movement would not only lower the pollution rate and risk of infection, but also save countless lives across the globe during the process.

America, along with most other countries, needs to initiate their plans towards a more sustainable, cleaner form of energy. Renewable energy helps increase the production of the economy through the addition of million of jobs. Simultaneously, energy prices would be lower, also helping the consumer save money. However, it is vital to start now. The longer the wait, the less benefits are reaped. Likewise, the clean air movement will mark the beginning of recovery for the environment. Greenhouse gases and other emission will reach all time lows, possibly zero. This deduction is important to slow the rate of climate change and global warming. Stopping climate change and gas emissions in its tracks would also lead to more health benefits. There are dozens of deadly diseases and carriers that spawn from the irregular climate patterns. Also, climate change could affect physiological needs by lessening safe drinking water, food supply and shelter. The United States has a reputation of being an innovator, a leader for many countries. Why has it been so lackadaisical with something so important to everything in today’s society? It has a history of being scared of change; people are too comfortable with life as it is, but it could be better. With the United States recently moving in the right direction, it will be better.

Works Cited

Biello, David. “Diseases Due to Climate Change.” Scientific American . N.p., 8 Oct. 2008. Web. 9 Apr. 2016.

Darling, David. “Wind Energy.” Encyclopedia of Alternative Energy . N.p., n.d. Web. 11 Apr. 2016.

National Research Council, and Chinese Academy of Sciences. The Power of Renewables: Opportunities and Challenges for China and the United States . Washington, D.C.: National Academies, 2010. Print.

Pollin, Robert, and James Heintz. “The Economic Benefits of Investing in Clean Energy.” Center for American Progress . N.p., 18 June 2009. Web. 06 Apr. 2016.

“Renewable Energy Sources – Energy Explained, Your Guide To Understanding Energy – Energy Information Administration.” EIA . US Energy Information Administration, 17 Mar. 2015. Web. 11 Apr. 2016.

Rosecrance, Richard, and Peter Thompson. “Global Trends in Sustainable Energy Investment.” Annual Review of Political Science 6.1 (2003): 7. UNEP . United Nations Environment Programme, 13 Oct. 2014. Web. 10 Apr. 2016.

“The Energy Story – Chapter 17: Renewable Energy vs. Fossil Fuels.” The Energy Story . California Energy Commission, n.d. Web. 11 Apr. 2016.

U.S. EPA. “Cleaning Up Toxic Air Pollution.” Benefits and Costs of Cleaning up Toxic Air Pollution (n.d.): n. pag. EPA . Environment Protection Agency. Web. 10 Apr. 2016.

World Health Organization. Renewable Energy (n.d.): 7. WHO . World Health Organization, 2012. Web. 10 Apr. 2016.

Leave a Reply

You must be logged in to post a comment.

essay on renewable energy sources

This Is the Future: Essay on Renewable Energy

essay on renewable energy sources

Today the world population depends on nonrenewable energy resources. With the constantly growing demand for energy, natural gas, coal, and oil get used up and cannot replenish themselves. 

Aside from limited supply, heavy reliance on fossil fuels causes planetary-scale damage. Sea levels are rising. Heat-trapping carbon dioxide increased the warming effect by 45% from 1990 to 2019. The only way to tackle the crisis is to start the transition to renewable energy now. 

What is renewable energy? It is energy that comes from replenishable natural resources like sunlight, wind, thermal energy, moving water, and organic materials. Renewable resources do not run out. They are cost-efficient and renew faster than they are consumed. How does renewable energy save money? It creates new jobs, supports economic growth, and decreases inequitable fossil fuel subsidies. 

At the current rates of production, some fossil fuels will not even last another century. This is why the future depends on reliable and eco-friendly resources. This renewable energy essay examines the types and benefits of renewable energy and its role in creating a sustainable future.

Top 5 Types of Renewable Energy: The Apollo Alliance Rankings

There are many natural resources that can provide people with clean energy. To make a list of the five most booming types of renewable energy on the market today, this energy essay uses data gathered by the Apollo Alliance. It is a project that aims to revolutionize the energy sector of the US with a focus on clean energy. 

The Apollo Alliance unites businesses, community leaders, and environmental experts to support the transition to more sustainable and efficient living. Their expert opinion helped to compile information about the most common and cost-competitive sources of renewable energy. However, if you want to get some more in-depth research, you can entrust it to an essay writer . Here’s a quick overview of renewable energy resources that have a huge potential to substitute fossil fuels. 

Solar Renewable Energy

The most abundant and practically endless resource is solar energy. It can be turned into electricity by photovoltaic systems that convert radiant energy captured from sunlight. Solar farms could generate enough energy for thousands of homes.

An endless supply is the main benefit of solar energy. The rate at which the Earth receives it is 10,000 times greater than people can consume it, as a paper writer points out based on their analysis of research findings. It can substitute fossil fuels and deliver people electricity, hot water, cooling, heat, etc. 

The upfront investment in solar systems is rather expensive. This is one of the primary limitations that prevent businesses and households from switching to this energy source at once. However, the conclusion of solar energy is still favorable. In the long run, it can significantly decrease energy costs. Besides, solar panels are gradually becoming more affordable to manufacture and adopt, even at an individual level. 

Wind Renewable Energy

Another clean energy source is wind. Wind farms use the kinetic energy of wind flow to convert it into electricity. The Appolo Alliance notes that, unlike solar farms, they can’t be placed in any location. To stay cost-competitive, wind farms should operate in windy areas. Although not all countries have the right conditions to use them on a large scale, wind farms might be introduced for some energy diversity. The technical potential for it is still tremendous. 

Wind energy is clean and safe for the environment. It does not pollute the atmosphere with any harmful products compared to nonrenewable energy resources. 

The investment in wind energy is also economically wise. If you examine the cost of this energy resource in an essay on renewable resources, you’ll see that wind farms can deliver electricity at a price lower than nonrenewable resources. Besides, since wind isn’t limited, its cost won’t be influenced by the imbalance of supply and demand.

Geothermal Renewable Energy

Natural renewable resources are all around us, even beneath the ground. Geothermal energy can be produced from the thermal energy from the Earth’s interior. Sometimes heat reaches the surface naturally, for example, in the form of geysers. But it can also be used by geothermal power plants. The Earth’s heat gets captured and converted to steam that turns a turbine. As a result, we get geothermal energy.

This source provides a significant energy supply while having low emissions and no significant footprint on land. A factsheet and essay on renewable resources state that geothermal plants will increase electricity production from 17 billion kWh in 2020 to 49.8 billion kWh in 2050.

However, this method is not without limitations. While writing a renewable resources essay, consider that geothermal energy can be accessed only in certain regions. Geological hotspots are off-limits as they are vulnerable to earthquakes. Yet, the quantity of geothermal resources is likely to grow as technology advances. 

Ocean Renewable Energy

The kinetic and thermal energy of the ocean is a robust resource. Ocean power systems rely on:

  • Changes in sea level;
  • Wave energy;
  • Water surface temperatures;
  • The energy released from seawater and freshwater mixing.

Ocean energy is more predictable compared to other resources. As estimated by EPRI, it has the potential to produce 2640 TWh/yr. However, an important point to consider in a renewable energy essay is that the kinetic energy of the ocean varies. Yet, since it is ruled by the moon’s gravity, the resource is plentiful and continues to be attractive for the energy industry. 

Wave energy systems are still developing. The Apollo energy corporation explores many prototypes. It is looking for the most reliable and robust solution that can function in the harsh ocean environment. 

Another limitation of ocean renewable energy is that it may cause disruptions to marine life. Although its emissions are minimal, the system requires large equipment to be installed in the ocean. 

Biomass Renewable Energy

Organic materials like wood and charcoal have been used for heating and lighting for centuries. There are a lot more types of biomass: from trees, cereal straws, and grass to processed waste. All of them can produce bioenergy. 

Biomass can be converted into energy through burning or using methane produced during the natural process of decomposition. In an essay on renewable sources of energy, the opponents of the method point out that biomass energy is associated with carbon dioxide emissions. Yet, the amount of released greenhouse gases is much lower compared to nonrenewable energy use. 

While biomass is a reliable source of energy, it is only suitable for limited applications. If used too extensively, it might lead to disruptions in biodiversity, a negative impact on land use, and deforestation. Still, Apollo energy includes biomass resources that become waste and decompose quickly anyway. These are organic materials like sawdust, chips from sawmills, stems, nut shells, etc. 

What Is the Apollo Alliance?

The Apollo Alliance is a coalition of business leaders, environmental organizations, labor unions, and foundations. They all unite their efforts in a single project to harness clean energy in new, innovative ways. 

Why Apollo? Similarly to President John F. Kennedy’s Apollo Project, Apollo energy is a strong visionary initiative. It is a dare, a challenge. The alliance calls for the integrity of science, research, technology, and the public to revolutionize the energy industry.

The project has a profound message. Apollo energy solutions are not only about the environment or energy. They are about building a new economy. The alliance gives hope to building a secure future for Americans. 

What is the mission of the Apollo Alliance? 

  • Achieve energy independence with efficient and limitless resources of renewable energy.
  • Pioneer innovation in the energy sector.
  • Build education campaigns and communication to inspire new perceptions of energy. 
  • Create new jobs.
  • Reduce dependence on imported fossil fuels. 
  • Build healthier and happier communities. 

The transformation of the industry will lead to planet-scale changes. The Apollo energy corporation can respond to the global environmental crisis and prevent climate change. 

Apollo renewable energy also has the potential to become a catalyst for social change. With more affordable energy and new jobs in the industry, people can bridge the inequality divide and build stronger communities. 

Why Renewable Energy Is Important for the Future

Renewable energy resources have an enormous potential to cover people’s energy needs on a global scale. Unlike fossil fuels, they are available in abundance and generate minimal to no emissions. 

The burning of fossil fuels caused a lot of environmental problems—from carbon dioxide emissions to ocean acidification. Research this issue in more detail with academic assistance from essay writer online . You can use it to write an essay on renewable sources of energy to explain the importance of change and its global impact. 

Despite all the damage people caused to the planet, there’s still hope to mitigate further repercussions. Every renewable energy essay adds to the existing body of knowledge we have today and advances research in the field. Here are the key advantages and disadvantages of alternative energy resources people should keep in mind. 

Advantage of Green Energy

The use of renewable energy resources has a number of benefits for the climate, human well-being, and economy:

  • Renewable energy resources have little to no greenhouse gas emissions. Even if we take into account the manufacturing and recycling of the technologies involved, their impact on the environment is significantly lower compared to fossil fuels. 
  • Renewable energy promotes self-sufficiency and reduces a country’s dependence on foreign fuel. According to a study, a 1% increase in the use of renewable energy increases economic growth by 0.21%. This gives socio-economic stability.
  • Due to a lack of supply of fossil fuels and quick depletion of natural resources, prices for nonrenewable energy keep increasing. In contrast, green energy is limitless and can be produced locally. In the long run, this allows decreasing the cost of energy. 
  • Unlike fossil fuels, renewable energy doesn’t emit air pollutants. This positively influences health and quality of life. 
  • The emergence of green energy plants creates new jobs. Thus, Apollo energy solutions support the growth of local communities. By 2030, the transition to renewable energy is expected to generate 10.3 million new jobs. 
  • Renewable energy allows decentralization of the industry. Communities get their independent sources of energy that are more flexible in terms of distribution. 
  • Renewable energy supports equality. It has the potential to make energy more affordable to low-income countries and expand access to energy even in remote and less fortunate neighborhoods. 

Disadvantages of Non-Conventional Energy Sources

No technology is perfect. Renewable energy resources have certain drawbacks too: 

  • The production of renewable energy depends on weather conditions. For example, wind farms could be effective only in certain locations where the weather conditions allow it. The weather also makes it so that renewable energy cannot be generated around the clock. 
  • The initial cost of renewable energy technology is expensive. Both manufacturing and installation require significant investment. This is another disadvantage of renewable resources. It makes them unaffordable to a lot of businesses and unavailable for widespread individual use. In addition, the return on investment might not be immediate.
  • Renewable energy technology takes up a lot of space. It may affect life in the communities where these clean energy farms are installed. They may also cause disruptions to wildlife in the areas. 
  • One more limitation a renewable resources essay should consider is the current state of technology. While the potential of renewable energy resources is tremendous, the technology is still in its development phase. Therefore, renewable energy might not substitute fossil fuels overnight. There’s a need for more research, investment, and time to transition to renewable energy completely. Yet, some diversity of energy resources should be introduced as soon as possible. 
  • Renewable energy resources have limited emissions, but they are not entirely pollution-free. The manufacturing process of equipment is associated with greenhouse gas emissions while, for example, the lifespan of a wind turbine is only 20 years. 

For high school seniors eyeing a future rich with innovative endeavors in renewable energy or other fields, it's crucial to seek financial support early on. Explore the top 10 scholarships for high school seniors to find the right fit that can propel you into a future where you can contribute to the renewable energy movement and beyond. Through such financial support, the road to making meaningful contributions to a sustainable future becomes a tangible reality.

Renewable energy unlocks the potential for humanity to have clean energy that is available in abundance. It leads us to economic growth, independence, and stability. With green energy, we can also reduce the impact of human activity on the environment and stop climate change before it’s too late. 

So what’s the conclusion of renewable energy? Transitioning to renewable energy resources might be challenging and expensive. However, most experts agree that the advantages of green energy outweigh any drawbacks. Besides, since technology is continuously evolving, we’ll be able to overcome most limitations in no time.

essay on renewable energy sources

Frequently asked questions

She was flawless! first time using a website like this, I've ordered article review and i totally adored it! grammar punctuation, content - everything was on point

This writer is my go to, because whenever I need someone who I can trust my task to - I hire Joy. She wrote almost every paper for me for the last 2 years

Term paper done up to a highest standard, no revisions, perfect communication. 10s across the board!!!!!!!

I send him instructions and that's it. my paper was done 10 hours later, no stupid questions, he nailed it.

Sometimes I wonder if Michael is secretly a professor because he literally knows everything. HE DID SO WELL THAT MY PROF SHOWED MY PAPER AS AN EXAMPLE. unbelievable, many thanks

You Might Also Like

Math Homework

New Posts to Your Inbox!

Stay in touch

  • ENVIRONMENT

Renewable energy, explained

Solar, wind, hydroelectric, biomass, and geothermal power can provide energy without the planet-warming effects of fossil fuels.

In any discussion about climate change , renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources such as solar and wind don't emit carbon dioxide and other greenhouse gases that contribute to global warming .

Clean energy has far more to recommend it than just being "green." The growing sector creates jobs , makes electric grids more resilient, expands energy access in developing countries, and helps lower energy bills. All of those factors have contributed to a renewable energy renaissance in recent years, with wind and solar setting new records for electricity generation .

For the past 150 years or so, humans have relied heavily on coal, oil, and other fossil fuels to power everything from light bulbs to cars to factories. Fossil fuels are embedded in nearly everything we do, and as a result, the greenhouse gases released from the burning of those fuels have reached historically high levels .

As greenhouse gases trap heat in the atmosphere that would otherwise escape into space, average temperatures on the surface are rising . Global warming is one symptom of climate change, the term scientists now prefer to describe the complex shifts affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and habitats, rising seas , and a range of other impacts .

Of course, renewables—like any source of energy—have their own trade-offs and associated debates. One of them centers on the definition of renewable energy. Strictly speaking, renewable energy is just what you might think: perpetually available, or as the U.S. Energy Information Administration puts it, " virtually inexhaustible ." But "renewable" doesn't necessarily mean sustainable, as opponents of corn-based ethanol or large hydropower dams often argue. It also doesn't encompass other low- or zero-emissions resources that have their own advocates, including energy efficiency and nuclear power.

Types of renewable energy sources

Hydropower: For centuries, people have harnessed the energy of river currents, using dams to control water flow. Hydropower is the world's biggest source of renewable energy by far, with China, Brazil, Canada, the U.S., and Russia the leading hydropower producers . While hydropower is theoretically a clean energy source replenished by rain and snow, it also has several drawbacks.

LIMITED TIME OFFER

Receive up to 2 bonus issues, with any paid gift subscription!

Large dams can disrupt river ecosystems and surrounding communities , harming wildlife and displacing residents. Hydropower generation is vulnerable to silt buildup, which can compromise capacity and harm equipment. Drought can also cause problems. In the western U.S., carbon dioxide emissions over a 15-year period were 100 megatons higher than they normally would have been, according to a 2018 study , as utilities turned to coal and gas to replace hydropower lost to drought. Even hydropower at full capacity bears its own emissions problems, as decaying organic material in reservoirs releases methane.

Dams aren't the only way to use water for power: Tidal and wave energy projects around the world aim to capture the ocean's natural rhythms. Marine energy projects currently generate an estimated 500 megawatts of power —less than one percent of all renewables—but the potential is far greater. Programs like Scotland’s Saltire Prize have encouraged innovation in this area.

Wind: Harnessing the wind as a source of energy started more than 7,000 years ago . Now, electricity-generating wind turbines are proliferating around the globe, and China, the U.S., and Germany are the leading wind energy producers. From 2001 to 2017 , cumulative wind capacity around the world increased to more than 539,000 megawatts from 23,900 mw—more than 22 fold.

You May Also Like

essay on renewable energy sources

Can energy harnessed from Earth’s interior help power the world?

essay on renewable energy sources

How the historic climate bill will dramatically reduce U.S. emissions

essay on renewable energy sources

5 environmental victories from 2021 that offer hope

Some people may object to how wind turbines look on the horizon and to how they sound, but wind energy, whose prices are declining , is proving too valuable a resource to deny. While most wind power comes from onshore turbines, offshore projects are appearing too, with the most in the U.K. and Germany. The first U.S. offshore wind farm opened in 2016 in Rhode Island, and other offshore projects are gaining momentum . Another problem with wind turbines is that they’re a danger for birds and bats, killing hundreds of thousands annually , not as many as from glass collisions and other threats like habitat loss and invasive species, but enough that engineers are working on solutions to make them safer for flying wildlife.

Solar: From home rooftops to utility-scale farms, solar power is reshaping energy markets around the world. In the decade from 2007 and 2017 the world's total installed energy capacity from photovoltaic panels increased a whopping 4,300 percent .

In addition to solar panels, which convert the sun's light to electricity, concentrating solar power (CSP) plants use mirrors to concentrate the sun's heat, deriving thermal energy instead. China, Japan, and the U.S. are leading the solar transformation, but solar still has a long way to go, accounting for around two percent of the total electricity generated in the U.S. in 2017. Solar thermal energy is also being used worldwide for hot water, heating, and cooling.

Biomass: Biomass energy includes biofuels such as ethanol and biodiesel , wood and wood waste, biogas from landfills, and municipal solid waste. Like solar power, biomass is a flexible energy source, able to fuel vehicles, heat buildings, and produce electricity. But biomass can raise thorny issues.

Critics of corn-based ethanol , for example, say it competes with the food market for corn and supports the same harmful agricultural practices that have led to toxic algae blooms and other environmental hazards. Similarly, debates have erupted over whether it's a good idea to ship wood pellets from U.S. forests over to Europe so that it can be burned for electricity. Meanwhile, scientists and companies are working on ways to more efficiently convert corn stover , wastewater sludge , and other biomass sources into energy, aiming to extract value from material that would otherwise go to waste.

Geothermal: Used for thousands of years in some countries for cooking and heating, geothermal energy is derived from the Earth’s internal heat . On a large scale, underground reservoirs of steam and hot water can be tapped through wells that can go a mile deep or more to generate electricity. On a smaller scale, some buildings have geothermal heat pumps that use temperature differences several feet below ground for heating and cooling. Unlike solar and wind energy, geothermal energy is always available, but it has side effects that need to be managed, such as the rotten egg smell that can accompany released hydrogen sulfide.

Ways to boost renewable energy

Cities, states, and federal governments around the world are instituting policies aimed at increasing renewable energy. At least 29 U.S. states have set renewable portfolio standards —policies that mandate a certain percentage of energy from renewable sources, More than 100 cities worldwide now boast at least 70 percent renewable energy, and still others are making commitments to reach 100 percent . Other policies that could encourage renewable energy growth include carbon pricing, fuel economy standards, and building efficiency standards. Corporations are making a difference too, purchasing record amounts of renewable power in 2018.

Wonder whether your state could ever be powered by 100 percent renewables? No matter where you live, scientist Mark Jacobson believes it's possible. That vision is laid out here , and while his analysis is not without critics , it punctuates a reality with which the world must now reckon. Even without climate change, fossil fuels are a finite resource, and if we want our lease on the planet to be renewed, our energy will have to be renewable.

Related Topics

  • SUSTAINABILITY
  • RENEWABLE ENERGY
  • GEOTHERMAL ENERGY
  • SOLAR POWER
  • HYDROELECTRIC POWER
  • CLIMATE CHANGE

essay on renewable energy sources

Activists fear a new threat to biodiversity—renewable energy

essay on renewable energy sources

How the Ukraine war is accelerating Germany's renewable energy transition

essay on renewable energy sources

What’s at stake at COP26—the crucial global climate summit

essay on renewable energy sources

We took the Great American Road Trip—in electric cars

essay on renewable energy sources

Climate change goals and oil production are clashing in the U.S.

  • History & Culture
  • Photography
  • Environment
  • Paid Content

History & Culture

  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

What is renewable energy?

Renewable energy is energy derived from natural sources that are replenished at a higher rate than they are consumed. Sunlight and wind, for example, are such sources that are constantly being replenished. Renewable energy sources are plentiful and all around us.

Fossil fuels - coal, oil and gas - on the other hand, are non-renewable resources that take hundreds of millions of years to form. Fossil fuels, when burned to produce energy, cause harmful greenhouse gas emissions, such as carbon dioxide.

Generating renewable energy creates far lower emissions than burning fossil fuels. Transitioning from fossil fuels, which currently account for the lion’s share of emissions, to renewable energy is key to addressing the climate crisis.

Renewables are now cheaper in most countries, and generate three times more jobs than fossil fuels.

Here are a few common sources of renewable energy:

x

SOLAR ENERGY

Solar energy is the most abundant of all energy resources and can even be harnessed in cloudy weather. The rate at which solar energy is intercepted by the Earth is about 10,000 times greater than the rate at which humankind consumes energy.

Solar technologies can deliver heat, cooling, natural lighting, electricity, and fuels for a host of applications. Solar technologies convert sunlight into electrical energy either through photovoltaic panels or through mirrors that concentrate solar radiation.

Although not all countries are equally endowed with solar energy, a significant contribution to the energy mix from direct solar energy is possible for every country.

The cost of manufacturing solar panels has plummeted dramatically in the last decade, making them not only affordable but often the cheapest form of electricity. Solar panels have a lifespan of roughly 30 years , and come in variety of shades depending on the type of material used in manufacturing.

x

WIND ENERGY

Wind energy harnesses the kinetic energy of moving air by using large wind turbines located on land (onshore) or in sea- or freshwater (offshore). Wind energy has been used for millennia, but onshore and offshore wind energy technologies have evolved over the last few years to maximize the electricity produced - with taller turbines and larger rotor diameters.

Though average wind speeds vary considerably by location, the world’s technical potential for wind energy exceeds global electricity production, and ample potential exists in most regions of the world to enable significant wind energy deployment.

Many parts of the world have strong wind speeds, but the best locations for generating wind power are sometimes remote ones. Offshore wind power offers t remendous potential .

x

GEOTHERMAL ENERGY

Geothermal energy utilizes the accessible thermal energy from the Earth’s interior. Heat is extracted from geothermal reservoirs using wells or other means.

Reservoirs that are naturally sufficiently hot and permeable are called hydrothermal reservoirs, whereas reservoirs that are sufficiently hot but that are improved with hydraulic stimulation are called enhanced geothermal systems.

Once at the surface, fluids of various temperatures can be used to generate electricity. The technology for electricity generation from hydrothermal reservoirs is mature and reliable, and has been operating for more than 100 years .

x

Hydropower harnesses the energy of water moving from higher to lower elevations. It can be generated from reservoirs and rivers. Reservoir hydropower plants rely on stored water in a reservoir, while run-of-river hydropower plants harness energy from the available flow of the river.

Hydropower reservoirs often have multiple uses - providing drinking water, water for irrigation, flood and drought control, navigation services, as well as energy supply.

Hydropower currently is the largest source of renewable energy in the electricity sector. It relies on generally stable rainfall patterns, and can be negatively impacted by climate-induced droughts or changes to ecosystems which impact rainfall patterns.

The infrastructure needed to create hydropower can also impact on ecosystems in adverse ways. For this reason, many consider small-scale hydro a more environmentally-friendly option , and especially suitable for communities in remote locations.

x

OCEAN ENERGY

Ocean energy derives from technologies that use the kinetic and thermal energy of seawater - waves or currents for instance -  to produce electricity or heat.

Ocean energy systems are still at an early stage of development, with a number of prototype wave and tidal current devices being explored. The theoretical potential for ocean energy easily exceeds present human energy requirements.

x

Bioenergy is produced from a variety of organic materials, called biomass, such as wood, charcoal, dung and other manures for heat and power production, and agricultural crops for liquid biofuels. Most biomass is used in rural areas for cooking, lighting and space heating, generally by poorer populations in developing countries.

Modern biomass systems include dedicated crops or trees, residues from agriculture and forestry, and various organic waste streams.

Energy created by burning biomass creates greenhouse gas emissions, but at lower levels than burning fossil fuels like coal, oil or gas. However, bioenergy should only be used in limited applications, given potential negative environmental impacts related to large-scale increases in forest and bioenergy plantations, and resulting deforestation and land-use change.

For more information on renewable sources of energy, please check out the following websites:

International Renewable Energy Agency | Renewables

International Energy Agency | Renewables

Intergovernmental Panel on Climate Change | Renewable Sources of Energy

UN Environment Programme | Roadmap to a Carbon-Free Future

Sustainable Energy for All | Renewable Energy

essay on renewable energy sources

Renewable energy – powering a safer future

What is renewable energy and why does it matter? Learn more about why the shift to renewables is our only hope for a brighter and safer world.

essay on renewable energy sources

Five ways to jump-start the renewable energy transition now

UN Secretary-General outlines five critical actions the world needs to prioritize now to speed up the global shift to renewable energy.

essay on renewable energy sources

Climate issues

Learn more about how climate change impacts are felt across different sectors and ecosystems, and why we must nurture rather than exploit nature’s resources to advance climate action.

Facts and figures

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

Renewable Energy Explained

Solar, wind, hydroelectric, biomass, and geothermal power can provide energy without the planet-warming effects of fossil fuels.

Chemistry, Conservation, Earth Science, Engineering

Braes of Doune Wind Farm

As of 2017, wind turbines, like the Braes of Doune wind farm near Stirling, Scotland, are now producing 539,000 megawatts of power around the world—22 times more than 16 years before. Unfortunately, this renewable, clean energy generator isn't perfect.

Photograph by Jim Richardson

As of 2017, wind turbines, like the Braes of Doune wind farm near Stirling, Scotland, are now producing 539,000 megawatts of power around the world—22 times more than 16 years before. Unfortunately, this renewable, clean energy generator isn't perfect.

In any discussion about climate change , renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources, such as solar and wind, don't emit carbon dioxide and other greenhouse gases that contribute to global warming. Clean energy has far more to recommend it than just being "green." The growing sector creates jobs, makes electric grids more resilient, expands energy access in developing countries, and helps lower energy bills. All of those factors have contributed to a renewable energy renaissance in recent years, with wind and solar setting new records for electricity generation. For the past 150 years or so, humans have relied heavily on coal, oil, and other fossil fuels to power everything from light bulbs to cars to factories. Fossil fuels are embedded in nearly everything we do, and as a result, the greenhouse gases released from the burning of those fuels have reached historically high levels. As greenhouse gases trap heat in the atmosphere that would otherwise escape into space, average temperatures on the surface are rising. Global warming is one symptom of climate change, the term scientists now prefer to describe the complex shifts affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and habitats, rising seas, and a range of other impacts. Of course, renewables—like any source of energy—have their own trade-offs and associated debates. One of them centers on the definition of renewable energy. Strictly speaking, renewable energy is just what you might think: perpetually available, or as the United States Energy Information Administration puts it, "virtually inexhaustible." But "renewable" doesn't necessarily mean sustainable, as opponents of corn-based ethanol or large hydropower dams often argue. It also doesn't encompass other low- or zero-emissions resources that have their own advocates, including energy efficiency and nuclear power. Types of Renewable Energy Sources Hydropower: For centuries, people have harnessed the energy of river currents, using dams to control water flow. Hydropower is the world's biggest source of renewable energy by far, with China, Brazil, Canada, the U.S., and Russia being the leading hydropower producers. While hydropower is theoretically a clean energy source replenished by rain and snow, it also has several drawbacks. Large dams can disrupt river ecosystems and surrounding communities, harming wildlife, and displacing residents. Hydropower generation is vulnerable to silt buildup, which can compromise capacity and harm equipment. Drought can also cause problems. In the western U.S., carbon dioxide emissions over a 15-year period were 100 megatons higher than they would have been with normal precipitation levels, according to a 2018 study, as utilities turned to coal and gas to replace hydropower lost to drought. Even hydropower at full capacity bears its own emissions problems, as decaying organic material in reservoirs releases methane. Dams aren't the only way to use water for power: Tidal and wave energy projects around the world aim to capture the ocean's natural rhythms. Marine energy projects currently generate an estimated 500 megawatts of power—less than one percent of all renewables—but the potential is far greater. Programs like Scotland’s Saltire Prize have encouraged innovation in this area. Wind: Harnessing the wind as a source of energy started more than 7,000 years ago. Now, electricity-generating wind turbines are proliferating around the globe, and China, the U.S., and Germany are the world's leading wind-energy producers. From 2001 to 2017, cumulative wind capacity around the world increased to more than 539,000 megawatts from 23,900 megawatts—more than 22 fold. Some people may object to how wind turbines look on the horizon and to how they sound, but wind energy, whose prices are declining, is proving too valuable a resource to deny. While most wind power comes from onshore turbines, offshore projects are appearing too, with the most in the United Kingdom and Germany. The first U.S. offshore wind farm opened in 2016 in Rhode Island, and other offshore projects are gaining momentum. Another problem with wind turbines is that they’re a danger for birds and bats, killing hundreds of thousands annually, not as many as from glass collisions and other threats like habitat loss and invasive species, but enough that engineers are working on solutions to make them safer for flying wildlife. Solar: From home rooftops to utility-scale farms, solar power is reshaping energy markets around the world. In the decade from 2007 and 2017 the world's total installed energy capacity from photovoltaic panels increased a whopping 4,300 percent. In addition to solar panels, which convert the sun's light to electricity, concentrating solar power (CSP) plants use mirrors to concentrate the sun's heat, deriving thermal energy instead. China, Japan, and the U.S. are leading the solar transformation, but solar still has a long way to go, accounting for around just two percent of the total electricity generated in the U.S. in 2017. Solar thermal energy is also being used worldwide for hot water, heating, and cooling. Biomass: Biomass energy includes biofuels, such as ethanol and biodiesel, wood, wood waste, biogas from landfills, and municipal solid waste. Like solar power, biomass is a flexible energy source, able to fuel vehicles, heat buildings, and produce electricity. But biomass can raise thorny issues. Critics of corn-based ethanol, for example, say it competes with the food market for corn and supports the same harmful agricultural practices that have led to toxic algae blooms and other environmental hazards. Similarly, debates have erupted over whether it's a good idea to ship wood pellets from U.S. forests over to Europe so that it can be burned for electricity. Meanwhile, scientists and companies are working on ways to more efficiently convert corn stover, wastewater sludge, and other biomass sources into energy, aiming to extract value from material that would otherwise go to waste. Geothermal: Used for thousands of years in some countries for cooking and heating, geothermal energy is derived from Earth’s internal heat. On a large scale, underground reservoirs of steam and hot water can be tapped through wells that can go a two kilometers deep or more to generate electricity. On a smaller scale, some buildings have geothermal heat pumps that use temperature differences several meters below ground for heating and cooling. Unlike solar and wind energy, geothermal energy is always available, but it has side effects that need to be managed, such as the rotten-egg smell that can accompany released hydrogen sulfide. Ways To Boost Renewable Energy Cities, states, and federal governments around the world are instituting policies aimed at increasing renewable energy. At least 29 U.S. states have set renewable portfolio standards—policies that mandate a certain percentage of energy from renewable sources. More than 100 cities worldwide now boast receiving at least 70 percent of their energy from renewable sources, and still others are making commitments to reach 100 percent. Other policies that could encourage renewable energy growth include carbon pricing, fuel economy standards, and building efficiency standards. Corporations are making a difference too, purchasing record amounts of renewable power in 2018. Wonder whether your state could ever be powered by 100 percent renewables? No matter where you live, scientist Mark Jacobson believes it's possible. That vision is laid out here , and while his analysis is not without critics , it punctuates a reality with which the world must now reckon. Even without climate change, fossil fuels are a finite resource, and if we want our lease on the planet to be renewed, our energy will have to be renewable.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

January 22, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Read our research on: Abortion | Podcasts | Election 2024

Regions & Countries

2. public opinion on renewables and other energy sources.

Americans’ concerns about climate change have put energy production of fossil fuels and the carbon gases these fuels emit at the center of public discussions about climate and the environment. Those debates coupled with long-standing economic pressures to decrease reliance on other countries for energy needs have raised attention to renewable forms of energy including solar and wind power.

Public opinion about energy issues is widely supportive of expanding both solar and wind power but more closely divided when it comes to expanding fossil fuel energies such as coal mining, offshore oil and gas drilling, and hydraulic fracturing for oil and natural gas. While there are substantial party and ideological divides over increasing fossil fuel and nuclear energy sources, strong majorities of all party and ideology groups support more solar and wind production.

Most Americans know the U.S. is producing more energy today

essay on renewable energy sources

Majorities across demographic, educational and political groups say the U.S. is producing more energy today. Awareness of this trend is especially high among those with postgraduate degrees (86% compared with 64% among those with high school degrees or less). Men are more inclined to say the U.S. is producing more energy than women (79% vs. 66%), while Democrats are modestly more likely than Republicans to say this (79% vs. 65%).

Strong public support for more wind and solar, closer divides over nuclear and fossil fuels

essay on renewable energy sources

Fully 89% of Americans favor more solar panel farms, just 9% oppose. A similarly large share supports more wind turbine farms (83% favor, 14% oppose).

By comparison, the public is more divided over expanding the production of nuclear and fossil fuel energy sources. Specifically, 45% favor more offshore oil and gas drilling, while 52% oppose. Similar shares support and oppose expanding hydraulic fracturing or “fracking” for oil and gas (42% favor and 53% oppose). Some 41% favor more coal mining, while a 57% majority opposes this.

And, 43% of Americans support building more nuclear power plants, while 54% oppose. Past Pew Research Center surveys on energy issues, using somewhat different question wording and survey methodology, found opinion broadly in keeping with this new survey. For example, the balance of opinion in a 2014 Pew Research Center survey about building more nuclear power plants was similar (45% favor, 51% oppose), and some 52% of Americans favored and 44% opposed allowing more offshore oil and gas drilling in that survey.

Most Republicans and Democrats favor expanding renewables; there are strong divides over expanding fossil fuels

Across the political spectrum, large majorities support expansion of solar panel and wind turbine farms. Some 83% of conservative Republicans favor more solar panel farms; so, too, do virtually all liberal Democrats (97%). Similarly, there is widespread agreement across party and ideological groups in favor of expanding wind energy.

essay on renewable energy sources

The political divide over expanding nuclear energy is smaller. Some 57% of conservative Republicans, and 51% of all Republicans, favor more nuclear power plants. Democrats lean in the opposite direction with 59% opposed and 38% in favor of more nuclear power plants.

As also found in past Pew Research Center surveys , women are less supportive of expanding nuclear power than men, even after controlling for politics and education. Some 34% of women favor and 62% oppose more nuclear plants. Men are more closely divided on this issue: 52% favor and 46% oppose. Men and women hold more similar views on other energy issues.

Many Americans are giving serious thought to having solar panels at home

essay on renewable energy sources

These figures are similar among homeowners. Some 44% of homeowners have already installed (4%) or have given serious thought to installing (40%) solar panels at home.

essay on renewable energy sources

  • Pew Research Center in 2014 asked a related question – whether the amount of energy produced in the United States had been increasing, decreasing or staying the same in recent years. In that survey, 54% of Americans said the amount of energy produced had been increasing, while 27% said it had been staying the same and 10% said it had been decreasing. ↩

Sign up for our Internet, Science and Tech newsletter

New findings, delivered monthly

Report Materials

essay on renewable energy sources

Table of Contents

How americans view electric vehicles, fast facts about international views of climate change as biden attends un cop26 conference, 67% of americans perceive a rise in extreme weather, but partisans differ over government efforts to address it, most u.s. latinos say global climate change and other environmental issues impact their local communities, on climate change, republicans are open to some policy approaches, even as they assign the issue low priority, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

Caltech

What Is the Future of Wind Energy?

This article was reviewed by a member of Caltech's Faculty .

Humans have used windmills to capture the force of the wind as mechanical energy for more than 1,300 years . Unlike early windmills, however, modern wind turbines use generators and other components to convert energy from the spinning blades into a smooth flow of AC electricity.

In the video below, Resnick Sustainability Institute researcher John Dabiri discusses the future of wind energy technology.

How much of global electricity demand is met by wind energy?

Wind energy is a small but fast-growing fraction of electricity production. It accounts for 5 percent of global electricity production and 8 percent of the U.S. electricity supply.

Globally, wind energy capacity surpasses 743 gigawatts , which is more than is available from grid-connected solar energy and about half as much as hydropower can provide. Nearly three-quarters of that 651 gigawatts comes from wind farms in five countries: China, the U.S., Germany, India, and Spain. Wind energy capacity in the Americas has tripled over the past decade.

In the U.S., wind is now a dominant renewable energy source , with enough wind turbines to generate more than 100 million watts, or megawatts, of electricity, equivalent to the consumption of about 29 million average homes.

The cost of wind energy has plummeted over the past decade. In the U.S., it is cost-competitive with natural gas and solar power.

Wind energy and solar energy complement each other, because wind is often strongest after the sun has heated the ground for a time. Warm air rises from the most heated areas, leaving a void where other air can rush in, which produces horizontal wind currents . We can draw on solar energy during the earlier parts of the day and turn to wind energy in the evening and night. Wind energy has added value in areas that are too cloudy or dark for strong solar energy production, especially at higher latitudes.

How big are wind turbines and how much electricity can they generate?

Typical utility-scale land-based wind turbines are about 250 feet tall and have an average capacity of 2.55 megawatts, each producing enough electricity for hundreds of homes. While land-based wind farms may be remote, most are easy to access and connect to existing power grids.

Smaller turbines, often used in distributed systems that generate power for local use rather than for sale, average about 100 feet tall and produce between 5 and 100 kilowatts.

One type of offshore wind turbine currently in development stands 853 feet tall, four-fifths the height of the Eiffel Tower, and can produce 13 megawatts of power. Adjusted for variations in wind, that is enough to consistently power thousands of homes. While tall offshore turbines lack some of the advantages of land-based wind farms, use of them is burgeoning because they can capture the energy of powerful, reliable winds high in the air near coastlines, where most of the largest cities in the world are located.

What are some potential future wind technologies other than turbines?

Engineers are in the early stages of creating airborne wind turbines , in which the components are either floated by a gas like helium or use their own aerodynamics to stay high in the air, where wind is stronger. These systems are being considered for offshore use, where it is expensive and difficult to install conventional wind turbines on tall towers.

Trees, which can withstand gale forces and yet move in response to breezes from any direction, also are inspiring new ideas for wind energy technology. Engineers speculate about making artificial wind-harvesting trees . That would require new materials and devices that could convert energy from a tree's complex movements into the steady rotation that traditional generators need. The prize is wind energy harvested closer to the ground with smaller, less obtrusive technologies and in places with complex airflows, such as cities.

What are the challenges of using wind energy?

Extreme winds challenge turbine designers. Engineers have to create systems that will start generating energy at relatively low wind speeds and also can survive extremely strong winds. A strong gale contains 1,000 times more power than a light breeze, and engineers don't yet know how to design electrical generators or turbine blades that can efficiently capture such a broad range of input wind power. To be safe, turbines may be overbuilt to withstand winds they will not experience at many sites, driving up costs and material use. One potential solution is the use of long-term weather forecasting and AI to better predict the wind resources at individual locations and inform designs for turbines that suit those sites.

Climate change will bring more incidents of unusual weather, including potential changes in wind patterns . Wind farms may help mitigate some of the harmful effects of climate change. For example, turbines in cold regions are routinely winterized to keep working in icy weather when other systems may fail, and studies have demonstrated that offshore wind farms may reduce the damage caused by hurricanes . A more challenging situation will arise if wind patterns shift significantly. The financing for wind energy projects depends critically on the ability to predict wind resources at specific sites decades into the future. One potential way to mitigate unexpected, climate-change-related losses or gains of wind is to flexibly add and remove groups of smaller turbines, such as vertical-axis wind turbines , within existing large-scale wind farms.

Wind farms do have environmental impacts . The most well-known is harm to wildlife, including birds and bats . Studies are informing wind farm siting and management practices that minimize harm to wildlife , and Audubon, a bird conservation group, now supports well-planned wind farms. The construction and maintenance of wind farms involves energy-intensive activities such as trucking, road-building, concrete production, and steel construction. Also, while towers can be recycled, turbine blades are not easily recyclable. In hopes of developing low-to-zero-waste wind farms, scientists aim to design new reuse and disposal strategies , and recyclable plastic turbine blades. Studies show that wind energy's carbon footprint is quickly offset by the electricity it generates and is among the lowest of any energy source .

Dive Deeper

Windmills

Wind Vision: A New Era for Wind Power in the United States

illustration of people working together to create light from plants, wind turbines, gears, and recyclable material

Caltech Energy 10 to Develop the Roadmap for 50% Reduction in Emissions by 2030

wind farm turbines

Tweaking Turbine Angles Squeezes More Power Out of Wind Farms

  • News & Updates

The Future of Sustainable Energy

26 June, 2021

Share this on social media:

solar panels (sustainable energy)

Building a sustainable energy future calls for leaps forward in both technology and policy leadership. State governments, major corporations and nations around the world have pledged to address the worsening climate crisis by transitioning to 100% renewable energy over the next few decades. Turning those statements of intention into a reality means undertaking unprecedented efforts and collaboration between disciplines ranging from environmental science to economics.

There are highly promising opportunities for green initiatives that could deliver a better future. However, making a lasting difference will require both new technology and experts who can help governments and organizations transition to more sustainable practices. These leaders will be needed to source renewables efficiently and create environmentally friendly policies, as well as educate consumers and policymakers. To maximize their impact, they must make decisions informed by the most advanced research in clean energy technology, economics, and finance.

Current Trends in Sustainability

The imperative to adopt renewable power solutions on a worldwide scale continues to grow even more urgent as the global average surface temperature hits historic highs and amplifies the danger from extreme weather events . In many regions, the average temperature has already increased by 1.5 degrees , and experts predict that additional warming could drive further heatwaves, droughts, severe hurricanes, wildfires, sea level rises, and even mass extinctions.

In addition, physicians warn that failure to respond to this dire situation could unleash novel diseases : Dr. Rexford Ahima and Dr. Arturo Casadevall of the Johns Hopkins University School of Medicine contributed to an article in the Journal of Clinical Investigation that explained how climate change could affect the human body’s ability to regulate its own temperature while bringing about infectious microbes that adapt to the warmer conditions.

World leaders have accepted that greenhouse gas emissions are a serious problem that must be addressed. Since the Paris Agreement was first adopted in December 2015, 197 nations have signed on to its framework for combating climate change and preventing the global temperature increase from reaching 2 degrees Celsius over preindustrial levels.

Corporate giants made their own commitments to become carbon neutral by funding offsets to reduce greenhouse gases and gradually transitioning into using 100% renewable energy. Google declared its operations carbon neutral in 2017 and has promised that all data centers and campuses will be carbon-free by 2030. Facebook stated that it would eliminate its carbon footprint in 2020 and expand that commitment to all the organization’s suppliers within 10 years. Amazon ordered 100,000 electric delivery vehicles and has promised that its sprawling logistics operations will arrive at net-zero emissions by 2040.

Despite these promising developments, many experts say that nations and businesses are still not changing fast enough. While carbon neutrality pledges are a step in the right direction, they don’t mean that organizations have actually stopped using fossil fuels . And despite the intentions expressed by Paris Agreement signatories, total annual carbon dioxide emissions reached a record high of 33.5 gigatons in 2018, led by China, the U.S., and India.

“The problem is that what we need to achieve is so daunting and taxes our resources so much that we end up with a situation that’s much, much worse than if we had focused our efforts,” Ferraro said.

Recent Breakthroughs in Renewable Power

An environmentally sustainable infrastructure requires innovations in transportation, industry, and utilities. Fortunately, researchers in the private and public sectors are laying the groundwork for an energy transformation that could make the renewable energy of the future more widely accessible and efficient.

Some of the most promising areas that have seen major developments in recent years include:

Driving Electric Vehicles Forward

The technical capabilities of electric cars are taking great strides, and the popularity of these vehicles is also growing among consumers. At Tesla’s September 22, 2020 Battery Day event, Elon Musk announced the company’s plans for new batteries that can be manufactured at a lower cost while offering greater range and increased power output .

The electric car market has seen continuing expansion in Europe even during the COVID-19 pandemic, thanks in large part to generous government subsidies. Market experts once predicted that it would take until 2025 for electric car prices to reach parity with gasoline-powered vehicles. However, growing sales and new battery technology could greatly speed up that timetable .

Cost-Effective Storage For Renewable Power

One of the biggest hurdles in the way of embracing 100% renewable energy has been the need to adjust supply based on demand. Utilities providers need efficient, cost-effective ways of storing solar and wind power so that electricity is available regardless of weather conditions. Most electricity storage currently takes place in pumped-storage hydropower plants, but these facilities require multiple reservoirs at different elevations.

Pumped thermal electricity storage is an inexpensive solution to get around both the geographic limitations of hydropower and high costs of batteries. This approach, which is currently being tested , uses a pump to convert electricity into heat so it can be stored in a material like gravel, water, or molten salts and kept in an insulated tank. A heat engine converts the heat back into electricity as necessary to meet demand.

Unlocking the Potential of Microgrids

Microgrids are another area of research that could prove invaluable to the future of power. These systems can operate autonomously from a traditional electrical grid, delivering electricity to homes and business even when there’s an outage. By using this approach with power sources like solar, wind, or biomass, microgrids can make renewable energy transmission more efficient.

Researchers in public policy and engineering are exploring how microgrids could serve to bring clean electricity to remote, rural areas . One early effort in the Netherlands found that communities could become 90% energy self-sufficient , and solar-powered microgrids have now also been employed in Indian villages. This technology has enormous potential to change the way we access electricity, but lowering costs is an essential step to bring about wider adoption and encourage residents to use the power for purposes beyond basic lighting and cooling.

Advancing the Future of Sustainable Energy

There’s still monumental work to be done in developing the next generation of renewable energy solutions as well as the policy framework to eliminate greenhouse gases from our atmosphere. An analysis from the International Energy Agency found that the technologies currently on the market can only get the world halfway to the reductions needed for net-zero emissions by 2050.

To make it the rest of the way, researchers and policymakers must still explore possibilities such as:

  • Devise and implement large-scale carbon capture systems that store and use carbon dioxide without polluting the atmosphere
  • Establish low-carbon electricity as the primary power source for everyday applications like powering vehicles and heat in buildings
  • Grow the use of bioenergy harnessed from plants and algae for electricity, heat, transportation, and manufacturing
  • Implement zero-emission hydrogen fuel cells as a way to power transportation and utilities

However, even revolutionary technology will not do the job alone. Ambitious goals for renewable energy solutions and long-term cuts in emissions also demand enhanced international cooperation, especially among the biggest polluters. That’s why Jonas Nahm of the Johns Hopkins School of Advanced International Studies has focused much of his research on China’s sustainable energy efforts. He has also argued that the international community should recognize China’s pivotal role in any long-term plans for fighting climate change.

As both the leading emitter of carbon dioxide and the No. 1 producer of wind and solar energy, China is uniquely positioned to determine the future of sustainability initiatives. According to Nahm, the key to making collaboration with China work is understanding the complexities of the Chinese political and economic dynamics. Because of conflicting interests on the national and local levels, the world’s most populous nation continues to power its industries with coal even while President Xi Jinping advocates for fully embracing green alternatives.

China’s fraught position demonstrates that economics and diplomacy could prove to be just as important as technical ingenuity in creating a better future. International cooperation must guide a wide-ranging economic transformation that involves countries and organizations increasing their capacity for producing and storing renewable energy.

It will take strategic thinking and massive investment to realize a vision of a world where utilities produce 100% renewable power while rows of fully electric cars travel on smart highways. To meet the challenge of our generation, it’s more crucial than ever to develop leaders who understand how to apply the latest research to inform policy and who can take charge of globe-spanning sustainable energy initiatives .

About the MA in Sustainable Energy (online) Program at Johns Hopkins SAIS

Created by Johns Hopkins University School of Advanced International Studies faculty with input from industry experts and employers, the Master of Arts in Sustainable Energy (online) program is tailored for the demands of a rapidly evolving sector. As a top-11 global university, Johns Hopkins is uniquely positioned to equip graduates with the skills they need to confront global challenges in the transition to renewable energy.

The MA in Sustainable Energy curriculum is designed to build expertise in finance, economics, and policy. Courses from our faculty of highly experienced researchers and practitioners prepare graduates to excel in professional environments including government agencies, utility companies, energy trade organizations, global energy governance organizations, and more. Students in the Johns Hopkins SAIS benefit from industry connections, an engaged network of more than 230,000 alumni, and high-touch career services.

Request Information

To learn more about the MA in Sustainable Energy (online) and download a brochure , fill out the fields below, or call +1 410-648-2495 or toll-free at +1 888-513-5303 to talk with one of our admissions counselors.

Johns Hopkins University has engaged AllCampus to help support your educational journey. AllCampus will contact you shortly in response to your request for information. About AllCampus . Privacy Policy . You may opt out of receiving communications at any time.

* All Fields are Required. Your Privacy is Protected.

Connect with us

  • Email: [email protected]
  • Local Phone: +1 410-648-2495 (Local)
  • Toll-Free Phone: +1 888-513-5303 (Toll-Free)

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Renewable energy articles from across Nature Portfolio

Renewable energy is energy that comes from sources that are readily replenishable on short-timescales. Examples of these are solar radiation, wind, and biomass.

essay on renewable energy sources

Breaking the reaction chain

Wide band gap perovskite solar cells suffer from halide segregation, which hampers their use in tandem solar cells. Now, researchers develop an additive with redox and defect passivating capabilities to suppress halide migration, enabling perovskite–organic tandems with over 25% efficiency.

  • Aleksandra B. Djurišić

essay on renewable energy sources

An organic approach

Copper catalysts hold promise for producing multi-carbon chemicals through electrochemical CO 2 reduction, but improving performance is challenging due to the limited tunability of the copper surface. Now, research uses organic functionalization to modify the surface oxidation state of copper, yielding improved energy efficiency for ethylene production.

  • Yun Jeong Hwang

Related Subjects

  • Geothermal energy
  • Hydroelectricity
  • Hydrogen energy
  • Solar energy
  • Wind energy

Latest Research and Reviews

essay on renewable energy sources

Optimal blade pitch control for enhanced vertical-axis wind turbine performance

Vertical-axis wind turbines offer untapped opportunities for energy generation but suffer from dynamic stall in strong winds. Here, authors implement individual blade pitch control to benefit from stall vortices instead of suppressing them, tripling the power coefficient and reducing load transients by 70%.

  • Sébastien Le Fouest
  • Karen Mulleners

essay on renewable energy sources

Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency

Wide-bandgap perovskite solar cells suffer from phase segregation. Zhang et al. show that thiocyanate ions overcome the issue by occupying iodide vacancies while regulating crystallization, enabling perovskite/organic tandem cells with 25.06% efficiency.

  • Zhichao Zhang
  • Weijie Chen
  • Yongfang Li

essay on renewable energy sources

Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices

The large organic cations in low-dimensional perovskite often introduces carrier mobility anisotropy and impedes charge transport. Here, authors report perovskite heterojunction with strong aromatic conjugated perovskites, realizing certified efficiency of over 25% in stable perovskite solar cells.

  • Zonglong Zhu

essay on renewable energy sources

Exploring the potential of non-residential solar to tackle energy injustice

A new study from Moritz Wussow and colleagues assesses solar deployment equity across residential and non-residential sectors and discusses pathways for policy action to promote non-residential solar in disadvantaged communities.

  • Moritz Wussow
  • Chad Zanocco
  • Ram Rajagopal

essay on renewable energy sources

Experimental investigation on utilization of Sesbania grandiflora residues through thermochemical conversion process for the production of value added chemicals and biofuels

  • Kedri Janardhana
  • C. Sowmya Dhanalakshmi
  • Melvin Victor De Poures

essay on renewable energy sources

Photocatalysts for steering charge transfer and radical reactions in biorefineries

Synthesis of fuels and chemicals from renewable biomass is an important way to achieve sustainable development. This Review summarizes catalyst design for steering interfacial charge transfer and radical intermediate reactions in photocatalytic biorefineries.

Advertisement

News and Comment

essay on renewable energy sources

How climate change is affecting global timekeeping

Melting polar ice could delay major time adjustment, and the strange connection between brain inflammation and memory.

  • Elizabeth Gibney
  • Nick Petrić Howe

Delivery of CO

  • James Gallagher

Tolerance testing

  • Giulia Tregnago

essay on renewable energy sources

A view of wind turbines drives down home values — but only briefly

House prices drop by 1% if wind turbines are close and visible, but they rebound quickly.

essay on renewable energy sources

Sensing fugitive hydrogen emissions

For the transition to a sustainable energy sector, massive hydrogen production and use is crucial. There is growing awareness of a connection between an indirect global warming potential and the production of hydrogen, so its fugitive emissions must be addressed. This Comment emphasizes the need for affordable hydrogen-sensing methods to benefit safety, energy efficiency and the climate.

  • Sudipta Chatterjee
  • Kuo-Wei Huang

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

essay on renewable energy sources

Modeling Approach for Hybrid Integration of Renewable Energy Sources with Vehicle-to-Grid Technology 14-13-02-0013

This also appears in sae international journal of electrified vehicles-v133-14ej.

This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink ® 2021a is employed to simulate the system’s performance over one day. This research addresses a critical research gap in comprehensively evaluating the synergy between hybrid RES and V2G technology within a microgrid context. The study contributes by demonstrating the potential of EVs as dynamic energy storage units, effectively mitigating the intermittency of renewable energy (RE) and supporting grid stability. This is achieved by injecting or absorbing energy to address frequency deviation events and improve power flow based on demand needs and generated power from the source. The results highlight the capability of the V2G system to optimize energy flow, regulate grid frequency, and alleviate power imbalances. Main findings underscore the significant role of V2G in enhancing grid resilience and flexibility, especially during RE fluctuations and unexpected events. Moreover, the study underscores the feasibility of achieving sustainable energy goals through the coordinated operation of hybrid RES and V2G systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

IMAGES

  1. Renewable Energy Types

    essay on renewable energy sources

  2. ≫ Renewable Energy Development Free Essay Sample on Samploon.com

    essay on renewable energy sources

  3. What Are the Five Major Types of Renewable Energy?

    essay on renewable energy sources

  4. Wind and water provide most renewable electricity

    essay on renewable energy sources

  5. ≫ My Interest to Renewable Energy Free Essay Sample on Samploon.com

    essay on renewable energy sources

  6. Resources

    essay on renewable energy sources

VIDEO

  1. Renewable Energy Revitalized By New Project

  2. 10 Lines on Renewable Energy in English || Essay on Renewable Energy || Learning Path ||

  3. Renewable energy sources

  4. Renewable Energy Revolution Powering a Sustainable Future #renewableenergy #climatechange

  5. essay on alternative sources of energy || Alternative Energy Essay writing in English ||#cleanenergy

  6. Renewable energy sources

COMMENTS

  1. Essay on Renewable Energy

    Even if just one multi-billion dollar company transitioned to renewable energy as their main source of energy, that would make a massive difference in the carbon emissions released. Any argument made against this topic should be immediately dismissed because this is the only solution. ... Essay on Renewable Energy. (2022, December 27 ...

  2. Renewable Energy Persuasive Essay

    The first recorded use of renewable energy was harnessing wind power to drive ships over water about 7000 years ago (Darling). However, renewable energy has been around as long as Earth has existed: wind, sun, geothermal, biomass and many more. Clean energy sources can be harnessed to produce electricity, process heat, fuel and other chemicals ...

  3. Renewable Energy

    The wind, the sun, and Earth are sources of renewable energy . These energy sources naturally renew, or replenish themselves. Wind, sunlight, and the planet have energy that transforms in ways we can see and feel. We can see and feel evidence of the transfer of energy from the sun to Earth in the sunlight shining on the ground and the warmth we ...

  4. Essay on Renewable Energy: Gateway to a Sustainable Future

    By continuing to innovate, invest, and collaborate, humanity can unlock the full potential of renewable sources, ensuring a resilient and environmentally responsible energy paradigm for generations to come. Embracing renewable energy is vital for a sustainable future, mitigating climate change, fostering economic growth, and ensuring resilience.

  5. Renewable energy

    In contrast, renewable energy sources accounted for nearly 20 percent of global energy consumption at the beginning of the 21st century, largely from traditional uses of biomass such as wood for heating and cooking.By 2015 about 16 percent of the world's total electricity came from large hydroelectric power plants, whereas other types of renewable energy (such as solar, wind, and geothermal ...

  6. This Is the Future: Essay on Renewable Energy

    According to a study, a 1% increase in the use of renewable energy increases economic growth by 0.21%. This gives socio-economic stability. Due to a lack of supply of fossil fuels and quick depletion of natural resources, prices for nonrenewable energy keep increasing. In contrast, green energy is limitless and can be produced locally.

  7. Renewable energy

    But investments in renewable energy will pay off. The reduction of pollution and climate impacts alone could save the world up to $4.2 trillion per year by 2030. Moreover, efficient, reliable ...

  8. Renewable energy, facts and information

    Hydropower: For centuries, people have harnessed the energy of river currents, using dams to control water flow. Hydropower is the world's biggest source of renewable energy by far, with China ...

  9. What is renewable energy?

    Renewable energy is energy derived from natural sources that are replenished at a higher rate than they are consumed. Sunlight and wind, for example, are such sources that are constantly ...

  10. Renewable Energy Explained

    Background Info. Vocabulary. In any discussion about climate change, renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources, such as solar and wind, don't emit carbon dioxide and other greenhouse gases that contribute to global warming.

  11. PDF Renewable Energy: An Overview. Energy Efficiency and Renewable Energy

    There are many ways to use renewable energy. Most of us already use renewable energy in our daily lives. Hydropower Hydropower is our most mature and largest source of renewable power, pro-ducing about 10 percent of the nation's electricity. Existing hydropower capacity is about 77,000 megawatts (MW). Hydro-power plants convert the energy in ...

  12. Renewable and nonrenewable energy sources

    Renewable energy sources include solar, wind, hydroelectric, and geothermal energy. They also include biomass and hydrogen fuels. These energy sources are sustainable and generate fewer greenhouse gas emissions than fossil fuels. Renewable and nonrenewable energy sources. Clockwise from top left: a solar power station, a wind farm, a ...

  13. Climate change impacts on renewable energy supply

    The increase in renewable energy use leads to a decline in fossil fuel and nuclear energy use in most of the regions, resulting in a 1-2% reduction in cumulative CO 2 emissions (2015-2100). In ...

  14. Towards Sustainable Energy: A Systematic Review of Renewable Energy

    The use of renewable energy resources, such as solar, wind, and biomass will not diminish their availability. Sunlight being a constant source of energy is used to meet the ever-increasing energy need. This review discusses the world's energy needs, renewable energy technologies for domestic use, and highlights public opinions on renewable energy. A systematic review of the literature was ...

  15. 2. Public opinion on renewables and other energy sources

    The United States is producing more energy from fossil fuels and has ticked up production of renewable sources such as wind and solar. A large majority of Americans (72%) say the United States is producing more energy than it did 20 years ago. Far smaller shares say the U.S. is producing the same level (17%) or less energy (10%) than it did 20 ...

  16. Wind energy facts, advantages, and disadvantages

    In the U.S., wind is now a dominant renewable energy source, with enough wind turbines to generate more than 100 million watts, or megawatts, of electricity, equivalent to the consumption of about 29 million average homes. The cost of wind energy has plummeted over the past decade. In the U.S., it is cost-competitive with natural gas and solar ...

  17. Renewable Energy Essay

    This essay is focused on the main three renewable energies, wind, sunlight, and water. Renewable resources are well on the way to out rule the fossil fuel industry because of the diminishing amount of fossil fuels left in the world and increase of renewable resource use, the damage fossil fuels do to the environment, and the various. 1944 Words.

  18. Benefits of Renewable Energy Use

    In contrast, most renewable energy sources produce little to no global warming emissions. Even when including "life cycle" emissions of clean energy (ie, the emissions from each stage of a technology's life—manufacturing, installation, operation, decommissioning), the global warming emissions associated with renewable energy are minimal [].

  19. The Future of Sustainable Energy

    Request Information. To learn more about the MA in Sustainable Energy (online) and download a brochure, fill out the fields below, or call +1 410-648-2495 or toll-free at +1 888-513-5303 to talk with one of our admissions counselors. Johns Hopkins University has engaged AllCampus to help support your educational journey.

  20. Renewable energy

    Renewable energy is energy that comes from sources that are readily replenishable on short-timescales. Examples of these are solar radiation, wind, and biomass. Wide band gap perovskite solar ...

  21. Renewable On Energy Sources Free Essay Example

    Essay, Pages 4 (779 words) Views. 219. To fulfill the ever-growing demand for energy, renewable energy resources play a main role in today's energy crisis. On the way towards achieving the demand and maintaining higher power quality, en route for the disadvantages of conventional energy sources such as high pollution, (carbon dioxide, carbon ...

  22. Modeling Approach for Hybrid Integration of Renewable Energy Sources

    The study contributes by demonstrating the potential of EVs as dynamic energy storage units, effectively mitigating the intermittency of renewable energy (RE) and supporting grid stability. This is achieved by injecting or absorbing energy to address frequency deviation events and improve power flow based on demand needs and generated power ...

  23. Optimal design of hybrid renewable energy sources with battery storage

    HRPS combine renewable and conventional energy sources, or multiple sustainable energy sources, to ensure a consistent electricity supply to loads. Numerous studies have been conducted to improve the economic and technical indicators of HRPS, with a focus on determining the maximum capacity of system components.

  24. Renewable energy sources integration via machine learning modelling: A

    The use of renewable energy sources (RESs) at the distribution level has become increasingly appealing in terms of costs and technology, expecting a massive diffusion in the near future and placing several challenges to the power grid. Since RESs depend on stochastic energy sources -solar radiation, temperature and wind speed, among others- they introduce a high level of uncertainty to the ...