The impact of smartphone use on learning effectiveness: A case study of primary school students

  • Published: 11 November 2022
  • Volume 28 , pages 6287–6320, ( 2023 )

Cite this article

thesis statement about cell phone use

  • Jen Chun Wang 1 ,
  • Chia-Yen Hsieh   ORCID: orcid.org/0000-0001-5476-2674 2 &
  • Shih-Hao Kung 1  

100k Accesses

6 Citations

2 Altmetric

Explore all metrics

This study investigated the effects of smartphone use on the perceived academic performance of elementary school students. Following the derivation of four hypotheses from the literature, descriptive analysis, t testing, one-way analysis of variance (ANOVA), Pearson correlation analysis, and one-way multivariate ANOVA (MANOVA) were performed to characterize the relationship between smartphone behavior and academic performance with regard to learning effectiveness. All coefficients were positive and significant, supporting all four hypotheses. We also used structural equation modeling (SEM) to determine whether smartphone behavior is a mediator of academic performance. The MANOVA results revealed that the students in the high smartphone use group academically outperformed those in the low smartphone use group. The results indicate that smartphone use constitutes a potential inequality in learning opportunities among elementary school students. Finally, in a discussion of whether smartphone behavior is a mediator of academic performance, it is proved that smartphone behavior is the mediating variable impacting academic performance. Fewer smartphone access opportunities may adversely affect learning effectiveness and academic performance. Elementary school teachers must be aware of this issue, especially during the ongoing COVID-19 pandemic. The findings serve as a reference for policymakers and educators on how smartphone use in learning activities affects academic performance.

Similar content being viewed by others

thesis statement about cell phone use

Smartphone Usage, Social Media Engagement, and Academic Performance: Mediating Effect of Digital Learning

thesis statement about cell phone use

Learning Hard or Hardly Learning: Smartphones in the University’s Classrooms

thesis statement about cell phone use

The smartphone in self-regulated learning and student success: clarifying relationships and testing an intervention

Avoid common mistakes on your manuscript.

1 Introduction

The advent of the Fourth Industrial Revolution has stimulated interest in educational reforms for the integration of information and communication technology (ICT) into instruction. Smartphones have become immensely popular ICT devices. In 2019, approximately 96.8% of the global population had access to mobile devices with the coverage rate reaching 100% in various developed countries (Sarker et al., 2019 ). Given their versatile functions, smartphones have been rapidly integrated into communication and learning, among other domains, and have become an inseparable part of daily life for many. Smartphones are perceived as convenient, easy-to-use tools that promote interaction and multitasking and facilitate both formal and informal learning (Looi et al., 2016 ; Yi et al., 2016 ). Studies have investigated the impacts of smartphones in education. For example, Anshari et al. ( 2017 ) asserted that the advantages of smartphones in educational contexts include rich content transferability and the facilitation of knowledge sharing and dynamic learning. Modern students expect to experience multiple interactive channels in their studies. These authors also suggested incorporating smartphones into the learning process as a means of addressing inappropriate use of smartphones in class (Anshari et al., 2017 ). For young children, there are differences in demand and attributes and some need for control depending upon the daily smartphone usage of the children (Cho & Lee, 2017 ). To avoid negative impacts, including interference with the learning process, teachers should establish appropriate rules and regulations. In a study by Bluestein and Kim ( 2017 ) on the use of technology in the classroom they examined three themes: acceptance of tablet technology, learning excitement and engagement, and the effects of teacher preparedness and technological proficiency. They suggested that teachers be trained in application selection and appropriate in-class device usage. Cheng et al. ( 2016 ) found that smartphone use facilitated English learning in university students. Some studies have provided empirical evidence of the positive effects of smartphone use, whereas others have questioned the integration of smartphone use into the academic environment. For example, Hawi and Samaha ( 2016 ) investigated whether high academic performance was possible for students at high risk of smartphone addiction. They provided strong evidence of the adverse effects of smartphone addiction on academic performance. Lee et al. ( 2015 ) found a negative correlation between smartphone addiction and learning in university students. There has been a lot of research on the effectiveness of online teaching, but the results are not consistent. Therefore, this study aims to further explore the effects of independent variables on smartphone use behavior and academic performance.

The COVID-19 pandemic has caused many countries to close schools and suspend in-person classes, enforcing the transition to online learning. Carrillo and Flores ( 2020 ) suggested that because of widespread school closures, teachers must learn to manage the online learning environment. Online courses have distinct impacts on students and their families, requiring adequate technological literacy and the formulation of new teaching or learning strategies (Sepulveda-Escobar & Morrison, 2020 ). Since 2020, numerous studies have been conducted on parents’ views regarding the relationship of online learning, using smartphones, computers, and other mobile devices, with learning effectiveness. Widely inconsistent findings have been reported. For instance, in a study by Hadad et al. ( 2020 ), two thirds of parents were opposed to the use of smartphones in school, with more than half expressing active opposition ( n  = 220). By contrast, parents in a study by Garbe et al. ( 2020 ) agreed to the school closure policy and allowed their children to use smartphones to attend online school. Given the differences in the results, further scholarly discourse on smartphone use in online learning is essential.

Questions remain on whether embracing smartphones in learning systems facilitates or undermines learning (i.e., through distraction). Only a few studies have been conducted on the impacts of smartphone use on academic performance in elementary school students (mostly investigating college or high school students). Thus, we investigated the effects of elementary school students’ smartphone use on their academic performance.

2 Literature review

Mobile technologies have driven a paradigm shift in learning; learning activities can now be performed anytime, anywhere, as long as the opportunity to obtain information is available (Martin & Ertzberger, 2013 ).

Kim et al. ( 2014 ) focused on identifying factors that influence smartphone adoption or use. Grant and Hsu ( 2014 ) centered their investigation on user behavior, examining the role of smartphones as learning devices and social interaction tools. Although the contribution of smartphones to learning is evident, few studies have focused on the connection between smartphones and learning, especially in elementary school students. The relationship between factors related to learning with smartphones among this student population is examined in the following sections.

2.1 Behavioral intentions of elementary school students toward smartphone use

Children experience rapid growth and development during elementary school and cultivate various aspects of the human experience, including social skills formed through positive peer interactions. All these experiences exert a substantial impact on the establishment of self-esteem and a positive view of self. Furthermore, students tend to maintain social relationships by interacting with others through various synchronous or asynchronous technologies, including smartphone use (Guo et al., 2011 ). Moreover, students favor communication through instant messaging, in which responses are delivered rapidly. However, for this type of interaction, students must acquire knowledge and develop skills related to smartphones or related technologies which has an impact on social relationships (Kang & Jung, 2014 ; Park & Lee, 2012 ).

Karikoski and Soikkeli ( 2013 ) averred that smartphone use promotes human-to-human interaction both through verbal conversation and through the transmission of textual and graphic information, and cn stimulate the creation and reinforcement of social networks. Park and Lee ( 2012 ) examined the relationship between smartphone use and motivation, social relationships, and mental health. The found smartphone use to be positively correlated with social intimacy. Regarding evidence supporting smartphone use in learning, Firmansyah et al. ( 2020 ) concluded that smartphones significantly benefit student-centered learning, and they can be used in various disciplines and at all stages of education. They also noted the existence of a myriad smartphone applications to fulfill various learning needs. Clayton and Murphy ( 2016 ) suggested that smartphones be used as a mainstay in classroom teaching, and that rather than allowing them to distract from learning, educators should help their students to understand how smartphones can aid learning and facilitate civic participation. In other words, when used properly, smartphones have some features that can lead to better educational performance. For example, their mobility can allow students access to the same (internet-based) services as computers, anytime, anywhere (Lepp et al., 2014 ). Easy accessibility to these functionalities offers students the chance to continuously search for study-related information. Thus, smartphones can provide a multi-media platform to facilitate learning which cannot be replaced by simply reading a textbook (Zhang et al., 2014 ). Furthermore, social networking sites and communication applications may also contribute to the sharing of relevant information. Faster communication between students and between students and faculty may also contribute to more efficient studying and collaboration (Chen et al., 2015 ). College students are more likely to have access to smartphones than elementary school students. The surge in smartphone ownership among college students has spurred interest in studying the impact of smartphone use on all aspects of their lives, especially academic performance. For example, Junco and Cotton ( 2012 ) found that spending a fair amount of time on smartphones while studying had a negative affect on the university student's Grade Point Average (GPA). In addition, multiple studies have found that mobile phone use is inversely related to academic performance (Judd, 2014 ; Karpinski et al., 2013 ). Most research on smartphone use and academic performance has focused on college students. There have few studies focused on elementary school students. Vanderloo ( 2014 ) argued that the excessive use of smartphones may cause numerous problems for the growth and development of children, including increased sedentary time and reduced physical activity. Furthermore, according to Sarwar and Soomro ( 2013 ), rapid and easy access to information and its transmission may hinder concentration and discourage critical thinking and is therefore not conducive to children’s cognitive development.

To sum up, the evidence on the use of smartphones by elementary school students is conflicting. Some studies have demonstrated that smartphone use can help elementary school students build social relationships and maintain their mental health, and have presented findings supporting elementary students’ use of smartphones in their studies. Others have opposed smartphone use in this student population, contending that it can impede growth and development. To take steps towards resolving this conflict, we investigated smartphone use among elementary school students.

In a study conducted in South Korea, Kim ( 2017 ) reported that 50% of their questionnaire respondents reported using smartphones for the first time between grades 4 and 6. Overall, 61.3% of adolescents reported that they had first used smartphones when they were in elementary school. Wang et al. ( 2017 ) obtained similar results in an investigation conducted in Taiwan. However, elementary school students are less likely to have access to smartphones than college students. Some elementary schools in Taiwan prohibit their students from using smartphones in the classroom (although they can use them after school). On the basis of these findings, the present study focused on fifth and sixth graders.

Jeong et al. ( 2016 ), based on a sample of 944 respondents recruited from 20 elementary schools, found that people who use smartphones for accessing Social Network Services (SNS), playing games, and for entertainment were more likely to be addicted to smartphones. Park ( 2020 ) found that games were the most commonly used type of mobile application among participants, comprised of 595 elementary school students. Greater smartphone dependence was associated with greater use of educational applications, videos, and television programs (Park, 2020 ). Three studies in Taiwan showed the same results, that elementary school students in Taiwan enjoy playing games on smartphones (Wang & Cheng, 2019 ; Wang et al., 2017 ). Based on the above, it is reasonable to infer that if elementary school students spend more time playing games on their smartphones, their academic performance will decline. However, several studies have found that using smartphones to help with learning can effectively improve academic performance. In this study we make effort to determine what the key influential factors that affect students' academic performance are.

Kim ( 2017 ) reported that, in Korea, smartphones are used most frequentlyfrom 9 pm to 12 am, which closely overlaps the corresponding period in Taiwan, from 8 to 11 pm In this study, we not only asked students how they obtained their smartphones, but when they most frequently used their smartphones, and who they contacted most frequently on their smartphones were, among other questions. There were a total of eight questions addressing smartphone behavior. Recent research on smartphones and academic performance draws on self-reported survey data on hours and/or minutes of daily use (e.g. Chen et al., 2015 ; Heo & Lee, 2021 ; Lepp et al., 2014 ; Troll et al., 2021 ). Therefore, this study also uses self-reporting to investigate how much time students spend using smartphones.

Various studies have indicated that parental attitudes affect elementary school students’ behavioral intentions toward smartphone use (Chen et al., 2020 ; Daems et al., 2019 ). Bae ( 2015 ) determined that a democratic parenting style (characterized by warmth, supervision, and rational explanation) was related to a lower likelihood of smartphone addiction in children. Park ( 2020 ) suggested that parents should closely monitor their children’s smartphone use patterns and provide consistent discipline to ensure appropriate smartphone use. In a study conducted in Taiwan, Chang et al. ( 2019 ) indicated that restrictive parental mediation reduced the risk of smartphone addiction among children. In essence, parental attitudes critically influence the behavioral intention of elementary school students toward smartphone use. The effect of parental control on smartphone use is also investigated in this study.

Another important question related to student smartphone use is self-control. Jeong et al. ( 2016 ) found that those who have lower self-control and greater stress were more likely to be addicted to smartphones. Self-control is here defined as the ability to control oneself in the absence of any external force, trying to observe appropriate behavior without seeking immediate gratification and thinking about the future (Lee et al., 2015 ). Those with greater self-control focus on long-term results when making decisions. People are able to control their behavior through the conscious revision of automatic actions which is an important factor in retaining self-control in the mobile and on-line environments. Self-control plays an important role in smartphone addiction and the prevention thereof. Previous studies have revealed that the lower one’s self-control, the higher the degree of smartphone dependency (Jeong et al., 2016 ; Lee et al., 2013 ). In other words, those with higher levels of self-control are likely to have lower levels of smartphone addiction. Clearly, self-control is an important factor affecting smartphone usage behavior.

Reviewing the literature related to self-control, we start with self-determination theory (SDT). The SDT (Deci & Ryan, 2008 ) theory of human motivation distinguishes between autonomous and controlled types of behavior. Ryan and Deci ( 2000 ) suggested that some users engage in smartphone communications in response to perceived social pressures, meaning their behavior is externally motivated. However, they may also be  intrinsically  motivated in the sense that they voluntarily use their smartphones because they feel that mobile communication meets their needs (Reinecke et al., 2017 ). The most autonomous form of motivation is referred to as intrinsic motivation. Being intrinsically motivated means engaging in an activity for its own sake, because it appears interesting and enjoyable (Ryan & Deci, 2000 ). Acting due to social pressure represents an externally regulated behavior, which SDT classifies as the most controlled form of motivation (Ryan & Deci, 2000 ). Individuals engage in such behavior not for the sake of the behavior itself, but to achieve a separable outcome, for example, to avoid punishment or to be accepted and liked by others (Ryan & Deci, 2006 ). SDT presumes that controlled and autonomous motivations are not complementary, but “work against each other” (Deci et al., 1999 , p. 628). According to the theory, external rewards alter the perceived cause of action: Individuals no longer voluntarily engage in an activity because it meets their needs, but because they feel controlled (Deci et al., 1999 ). For media users, the temptation to communicate through the smartphone is often irresistible (Meier, 2017 ). Researchers who have examined the reasons why users have difficulty controlling media use have focused on their desire to experience need gratification, which produces pleasurable experiences. The assumption here is that users often subconsciously prefer short-term pleasure gains from media use to the pursuit of long-term goals (Du et al., 2018 ). Accordingly, self-control is very important. Self-control here refers to the motivation and ability to resist temptations (Hofmann et al., 2009 ). Dispositional self-control is a key moderator of yielding to temptation (Hofmann et al., 2009 ). Ryan and Deci ( 2006 ) suggested that people sometimes perform externally controlled behaviors unconsciously, that is, without applying self-control.

Sklar et al. ( 2017 ) described two types of self-control processes: proactive and reactive. They suggested that deficiencies in the resources needed to inhibit temptation impulses lead to failure of self-control. Even when impossible to avoid a temptation entirely, self-control can still be made easier if one avoids attending to the tempting stimulus. For example, young children instructed to actively avoid paying attention to a gift and other attention-drawing temptations are better able to resist the temptation than children who are just asked to focus on their task. Therefore, this study more closely investigates students' self-control abilities in relation to smartphone use asking the questions, ‘How did you obtain your smartphone?’ (to investigate proactivity), and ‘How much time do you spend on your smartphone in a day?’ (to investigate the effects of self-control).

Thus, the following hypotheses are advanced.

Hypothesis 1: Smartphone behavior varies with parental control.

Hypothesis 2: Smartphone behavior varies based on students' self-control.

2.2 Parental control, students' self-control and their effects on learning effectiveness and academic performance

Based on Hypothesis 1 and 2, we believe that we need to focus on two factors, parental control and student self-control and their impact on academic achievement. In East Asia, Confucianism is one of the most prevalent and influential cultural values which affect parent–child relations and parenting practice (Lee et al., 2016 ). In Taiwan, Confucianism shapes another feature of parenting practice: the strong emphasis on academic achievement. The parents’ zeal for their children’s education is characteristic of Taiwan, even in comparison to academic emphasis in other East Asian countries. Hau and Ho ( 2010 ) noted that, in Eastern Asian (Chinese) cultures, academic achievement does not depend on the students’ interests. Chinese students typically do not regard intelligence as fixed, but trainable through learning, which enables them to take a persistent rather than a helpless approach to schoolwork, and subsequently perform well. In Chinese culture, academic achievement has been traditionally regarded as the passport to social success and reputation, and a way to enhance the family's social status (Hau & Ho, 2010 ). Therefore, parents dedicate a large part of their family resources to their children's education, a practice that is still prevalent in Taiwan today (Hsieh, 2020 ). Parental control aimed at better academic achievement is exerted within the behavioral and psychological domains. For instance, Taiwan parents tightly schedule and control their children’s time, planning private tutoring after school and on weekends. Parental control thus refers to “parental intrusiveness, pressure, or domination, with the inverse being parental support of autonomy” (Grolnick & Pomerantz, 2009 ). There are two types of parental control: behavioral and psychological. Behavioral control, which includes parental regulation and monitoring over what children do (Steinberg et al., 1992 ), predict positive psychosocial outcomes for children. Outcomes include low externalizing problems, high academic achievement (Stice & Barrera, 1995 ), and low depression. In contrast, psychological control, which is exerted over the children’s psychological world, is known to be problematic (Stolz et al., 2005 ). Psychological control involves strategies such as guilt induction and love withdrawal (Steinberg et al., 1992 ) and is related with disregard for children’s emotional autonomy and needs (Steinberg et al., 1992 ). Therefore, it is very important to discuss the type of parental control.

Troll et al. ( 2021 ) suggested that it is not the objective amount of smartphone use but the effective handling of smartphones that helps students with higher trait self-control to fare better academically. Heo and Lee ( 2021 ) discussed the mediating effect of self-control. They found that self-control was partially mediated by those who were not at risk for smartphone addiction. That is to say, smartphone addiction could be managed by strengthening self-control to promote healthy use. In an earlier study Hsieh and Lin ( 2021 ), we collected 41 international journal papers involving 136,491students across 15 countries, for meta-analysis. We found that the average and majority of the correlations were both negative. The short conclusion here was that smartphone addiction /reliance may have had a negative impact on learning performance. Clearly, it is very important to investigate the effect of self-control on learning effectiveness with regard to academic performance.

2.3 Smartphone use and its effects on learning effectiveness and academic performance

The impact of new technologies on learning or academic performance has been investigated in the literature. Kates et al. ( 2018 ) conducted a meta-analysis of 39 studies published over a 10-year period (2007–2018) to examine potential relationships between smartphone use and academic achievement. The effect of smartphone use on learning outcomes can be summarized as follows: r  =  − 0.16 with a 95% confidence interval of − 0.20 to − 0.13. In other words, smartphone use and academic achievement were negatively correlated. Amez and Beart ( 2020 ) systematically reviewed the literature on smartphone use and academic performance, observing the predominance of empirical findings supporting a negative correlation. However, they advised caution in interpreting this result because this negative correlation was less often observed in studies analyzing data collected through paper-and-pencil questionnaires than in studies on data collected through online surveys. Furthermore, this correlation was less often noted in studies in which the analyses were based on self-reported grade point averages than in studies in which actual grades were used. Salvation ( 2017 ) revealed that the type of smartphone applications and the method of use determined students’ level of knowledge and overall grades. However, this impact was mediated by the amount of time spent using such applications; that is, when more time is spent on educational smartphone applications, the likelihood of enhancement in knowledge and academic performance is higher. This is because smartphones in this context are used as tools to obtain the information necessary for assignments and tests or examinations. Lin et al. ( 2021 ) provided robust evidence that smartphones can promote improvements in academic performance if used appropriately.

In summary, the findings of empirical investigations into the effects of smartphone use have been inconsistent—positive, negative, or none. Thus, we explore the correlation between elementary school students’ smartphone use and learning effectiveness with regard to academic performance through the following hypotheses:

Hypothesis 3: Smartphone use is associated with learning effectiveness with regard to academic performance.

Hypothesis 4: Differences in smartphone use correspond to differences in learning effectiveness with regard to academic performance.

Hypotheses 1 to 4 are aimed at understanding the mediating effect of smartphone behavior; see Fig.  1 . It is assumed that smartphone behavior is the mediating variable, parental control and self-control are independent variables, and academic performance is the dependent variable. We want to understand the mediation effect of this model.

figure 1

Model 1: Model to test the impact of parental control and students’ self-control on academic performance

Thus, the following hypotheses are presented.

Hypothesis 5: Smartphone behaviors are the mediating variable to impact the academic performance.

2.4 Effects of the COVID-19 pandemic on smartphone use for online learning

According to 2020 statistics from the United Nations Educational, Scientific and Cultural Organization (UNESCO), since the start of the COVID-19 pandemic, full or partial school closures have affected approximately 800 million learners worldwide, more than half of the global student population. Schools worldwide have been closed for 14 to 22 weeks on average, equivalent to two thirds of an academic year (UNESCO, 2021 ). Because of the pandemic, instructors have been compelled to transition to online teaching (Carrillo & Flores, 2020 ). According to Tang et al. ( 2020 ), online learning is among the most effective responses to the COVID-19 pandemic. However, the effectiveness of online learning for young children is limited by their parents’ technological literacy in terms of their ability to navigate learning platforms and use the relevant resources. Parents’ time availability constitutes another constraint (Dong et al., 2020 ). Furthermore, a fast and stable Internet connection, as well as access to devices such as desktops, laptops, or tablet computers, definitively affects equity in online education. For example, in 2018, 14% of households in the United States lacked Internet access (Morgan, 2020 ). In addition, the availability and stability of network connections cannot be guaranteed in relatively remote areas, including some parts of Australia (Park et al., 2021 ). In Japan, more than 50% of 3-year-old children and 68% of 6-year-old children used the Internet in their studies, but only 21% of households in Thailand have computer equipment (Park et al., 2021 ).

In short, the COVID-19 pandemic has led to changes in educational practices. With advances in Internet technology and computer hardware, online education has become the norm amid. However, the process and effectiveness of learning in this context is affected by multiple factors. Aside from the parents’ financial ability, knowledge of educational concepts, and technological literacy, the availability of computer equipment and Internet connectivity also exert impacts. This is especially true for elementary school students, who rely on their parents in online learning more than do middle or high school students, because of their short attention spans and undeveloped computer skills. Therefore, this study focuses on the use of smartphones by elementary school students during the COVID-19 pandemic and its impact on learning effectiveness.

3.1 Participants

Participants were recruited through stratified random sampling. They comprised 499 Taiwanese elementary school students (in grades 5 and 6) who had used smartphones for at least 12 months. Specifically, the students advanced to grades 5 or 6 at the beginning of the 2018–2019 school year. Boys and girls accounted for 47.7% and 52.3% ( n  = 238 and 261, respectively) of the sample.

3.2 Data collection and measurement

In 2020, a questionnaire survey was conducted to collect relevant data. Of the 620 questionnaires distributed, 575 (92.7%) completed questionnaires were returned. After 64 participants were excluded because they had not used their smartphones continually over the past 12 months and 14 participants were excluded for providing invalid responses, 499 individuals remained. The questionnaire was developed by one of the authors on the basis of a literature review. The questionnaire content can be categorized as follows: (1) students’ demographic characteristics, (2) smartphone use, (3) smartphone behavior, and (4) learning effectiveness. The questionnaire was modified according to evaluation feedback provided by six experts. Exploratory and confirmatory factor analyses were conducted to test the structural validity of the questionnaire. Factor analysis was performed using principal component analysis and oblique rotation. From the exploratory factor analysis, 25 items (15 and 10 items on smartphone behavior and academic performance as constructs, respectively) were extracted and confirmed. According to the results of the exploratory factor analysis, smartphone behavior can be classified into three dimensions: interpersonal communication, leisure and entertainment, and searching for information. Interpersonal communication is defined as when students use smartphones to communicate with classmates or friends, such as in response to questions like ‘I often use my smartphone to call or text my friends’. Leisure and entertainment mean that students spend a lot of their time using their smartphones for leisure and entertainment, e.g. ‘I often use my smartphone to listen to music’ or ‘I often play media games with my smartphone’. Searching for information means that students spend a lot of their time using their smartphones to search for information that will help them learn, such as in response to questions like this ‘I often use my smartphone to search for information online, such as looking up words in a dictionary’ or ‘I will use my smartphone to read e-books and newspapers online’.

Academic performance can be classified into three dimensions: learning activities, learning applications, and learning attitudes. Learning activities are when students use their smartphones to help them with learning, such as in response to a question like ‘I often use some online resources from my smartphone to help with my coursework’. Learning applications are defined as when students apply smartphone software to help them with their learning activities, e.g. ‘With a smartphone, I am more accustomed to using multimedia software’. Learning attitudes define the students’ attitudes toward using the smartphone, with questions like ‘Since I have had a smartphone, I often find class boring; using a smartphone is more fun’ (This is a reverse coded item). The factor analysis results are shown in the appendix (Appendix Tables 10 , 11 , 12 , 13 and 14 ). It can be seen that the KMO value is higher than 0.75, and the Bartlett’s test is also significant. The total variance explained for smartphone behavior is 53.47% and for academic performance it is 59.81%. These results demonstrate the validity of the research tool.

In this study, students were defined as "proactive" if they had asked their parents to buy a smartphone for their own use and "reactive" if their parents gave them a smartphone unsolicited (i.e. they had not asked for it). According to Heo and Lee ( 2021 ), students who proactively asked their parents to buy them a smartphone gave the assurance that they could control themselves and not become addicted, but if they had been given a smartphone (without having to ask for it), they did not need to offer their parents any such guarantees. They defined user addiction (meaning low self-control) as more than four hours of smartphone use per day (Peng et al., 2022 ).

A cross-tabulation of self-control results is presented in Table 2 , with the columns representing “proactive” and “reactive”, and the rows showing “high self-control” and “low self-control”. There are four variables in this cross-tabulation, “Proactive high self-control” (students promised parents they would not become smartphone addicts and were successful), “Proactive low self-control” (assured their parents they would not become smartphone addicts, but were unsuccessful), “Reactive high self-control”, and “Reactive low self-control”.

Regarding internal consistency among the constructs, the Cronbach's α values ranged from 0.850 to 0.884. According to the guidelines established by George and Mallery ( 2010 ), these values were acceptable because they exceeded 0.7. The overall Cronbach's α for the constructs was 0.922. The Cronbach's α value of the smartphone behavior construct was 0.850, whereas that of the academic performance construct was 0.884.

3.3 Data analysis

The participants’ demographic characteristics and smartphone use (expressed as frequencies and percentages) were subjected to a descriptive analysis. To examine hypotheses 1 and 2, an independent samples t test (for gender and grade) and one-way analysis of variance (ANOVA) were performed to test the differences in smartphone use and learning effectiveness with respect to academic performance among elementary school students under various background variables. To test hypothesis 3, Pearson’s correlation analysis was conducted to analyze the association between smartphone behavior and academic performance. To test hypothesis 4, one-way multivariate ANOVA (MANOVA) was employed to examine differences in smartphone behavior and its impacts on learning effectiveness. To test Hypothesis 5, structural equation modeling (SEM) was used to test whether smartphone behavior is a mediator of academic performance.

4.1 Descriptive analysis

The descriptive analysis (Table 1 ) revealed that the parents of 71.1% of the participants ( n  = 499) conditionally controlled their smartphone use. Moreover, 42.5% of the participants noted that they started using smartphones in grade 3 or 4. Notably, 43.3% reported that they used their parents’ old smartphones; in other words, almost half of the students used secondhand smartphones. Overall, 79% of the participants indicated that they most frequently used their smartphones after school. Regarding smartphone use on weekends, 54.1% and 44.1% used their smartphones during the daytime and nighttime, respectively. Family members and classmates (45.1% and 43.3%, respectively) were the people that the participants communicated with the most on their smartphones. Regarding bringing their smartphones to school, 53.1% of the participants indicated that they were most concerned about losing their phones. As for smartphone use duration, 28.3% of the participants indicated that they used their smartphones for less than 1 h a day, whereas 24.4% reported using them for 1 to 2 h a day.

4.2 Smartphone behavior varies with parental control and based on students' self-control

We used the question ‘How did you obtain your smartphone?’ (to investigate proactivity), and ‘How much time do you spend on your smartphone in a day?’ (to investigate the effects of students' self-control). According to the Hsieh and Lin ( 2021 ), and Peng et al. ( 2022 ), addition is defined more than 4 h a day are defined as smartphone addiction (meaning that students have low self-control).

Table 2 gives the cross-tabulation results for self-control ability. Students who asked their parents to buy a smartphone, but use it for less than 4 h a day are defined as having ‘Proactive high self-control’; students using a smartphone for more than 4 h a day are defined as having ‘Proactive low self-control’. Students whose parents gave them a smartphone but use them for less than 4 h a day are defined as having ‘Reactive high self-control’; students given smart phones and using them for more than 4 h a day are defined as having ‘Reactive low self-control’; others, we define as having moderate levels of self-control.

Tables 3 – 5 present the results of the t test and analysis of covariance (ANCOVA) on differences in the smartphone behaviors based on parental control and students' self-control. As mentioned, smartphone behavior can be classified into three dimensions: interpersonal communication, leisure and entertainment, and information searches. Table 3 lists the significant independent variables in the first dimension of smartphone behavior based on parental control and students' self-control. Among the students using their smartphones for the purpose of communication, the proportion of parents enforcing no control over smartphone use was significantly higher than the proportions of parents enforcing strict or conditional control ( F  = 11.828, p  < 0.001). This indicates that the lack of parental control over smartphone use leads to the participants spending more time using their smartphones for interpersonal communication.

For the independent variable of self-control, regardless of whether students had proactive high self-control, proactive low self-control or reactive low self-control, significantly higher levels of interpersonal communication than reactive high self-control were reported ( F  = 18.88, p  < 0.001). This means that students effectively able to control themselves, who had not asked their parents to buy them smartphones, spent less time using their smartphones for interpersonal communication. However, students with high self-control but who had asked their parents to buy them smartphones, would spend more time on interpersonal communication (meaning that while they may not spend a lot of time on their smartphones each day, the time spent on interpersonal communication is no different than for the other groups). Those without effective self-control, regardless of whether they had actively asked their parents to buy them a smartphone or not, would spend more time using their smartphones for interpersonal communication.

Table 4 displays the independent variables (parental control and students' self-control) significant in the dimension of leisure and entertainment. Among the students using their smartphones for this purpose, the proportion of parents enforcing no control over smartphone use was significantly higher than the proportions of parents enforcing strict or conditional control ( F  = 8.539, p  < 0.001). This indicates that the lack of parental control over smartphone use leads to the participants spending more time using their smartphones for leisure and entertainment.

For the independent variable of self-control, students with proactive low self-control and reactive low self-control reported significantly higher use of smartphones for leisure and entertainment than did students with proactive high self-control and reactive high self-control ( F  = 8.77, p  < 0.001). This means that students who cannot control themselves, whether proactive or passive in terms of asking their parents to buy them a smartphone, will spend more time using their smartphones for leisure and entertainment.

Table 5 presents the significant independent variables in the dimension of information searching. Significant differences were observed only for gender, with a significantly higher proportion of girls using their smartphones to search for information ( t  =  − 3.979, p  < 0.001). Parental control and students' self-control had no significance in the dimension of information searching. This means that the parents' attitudes towards control did not affect the students' use of smartphones for information searches. This is conceivable, as Asian parents generally discourage their children from using their smartphones for non-study related activities (such as entertainment or making friends), but not for learning-related activities. It is also worth noting that student self-control was not significant in relation to searching for information. This means that it makes no difference whether or not students have self-control in their search for learning-related information.

Four notable results are presented as follows.

First, a significantly higher proportion of girls used their smartphones to search for information. Second, if smartphone use was not subject to parental control, the participants spent more time using their smartphones for interpersonal communication and for leisure and entertainment rather than for information searches. This means that if parents make the effort to control their children's smartphone use, this will reduce their children's use of smartphones for interpersonal communication and entertainment. Third, student self-control affects smartphone use behavior for interpersonal communication and entertainment (but not searching for information). This does not mean that they spend more time on their smartphones in their daily lives, it means that they spend the most time interacting with people while using their smartphones (For example, they may only spend 2–3 h a day using their smartphone. During those 2–3 h, they spend more than 90% of their time interacting with people and only 10% doing other things), which is the fourth result.

These results support hypotheses 1 and 2.

4.3 Pearson’s correlation analysis of smartphone behavior and academic performance

Table 6 presents the results of Pearson’s correlation analysis of smartphone behavior and academic performance. Except for information searches and learning attitudes, all variables exhibited significant and positively correlations. In short, there was a positive correlation between smartphone behavior and academic performance. Thus, hypothesis 3 is supported.

4.4 Analysis of differences in the academic performance of students with different smartphone behaviors

Differences in smartphone behavior and its impacts on learning effectiveness with regard to academic performance were examined through. In step 1, cluster analysis was conducted to convert continuous variables into discrete variables. In step 2, a one-way MANOVA was performed to analyze differences in the academic performance of students with varying smartphone behavior. Regarding the cluster analysis results (Table 7 ), the value of the change in the Bayesian information criterion in the second cluster was − 271.954, indicating that it would be appropriate to group the data. Specifically, we assigned the participants into either the high smartphone use group or the low smartphone use group, comprised of 230 and 269 participants (46.1% and 53.9%), respectively.

The MANOVA was preceded by the Levene test for the equality of variance, which revealed nonsignificant results, F (6, 167,784.219) = 1.285, p  > 0.05. Thus, we proceeded to use MANOVA to examine differences in the academic performance of students with differing smartphone behaviors (Table 8 ). Between-group differences in academic performance were significant, F (3, 495) = 44.083, p  < 0.001, Λ = 0.789, η 2  = 0.211, power = 0.999. Subsequently, because academic performance consists of three dimensions, we performed univariate tests and an a posteriori comparison.

Table 9 presents the results of the univariate tests. Between-group differences in learning activities were significant, ( F [1, 497] = 40.8, p  < 0.001, η 2  = 0.076, power = 0.999). Between-group differences in learning applications were also significant ( F [1, 497] = 117.98, p  < 0.001, η 2  = 0.192, power = 0.999). Finally, differences between the groups in learning attitudes were significant ( F [1, 497] = 23.22, p  < 0.001, η 2  = 0.045, power = 0.998). The a posteriori comparison demonstrated that the high smartphone use group significantly outperformed the low smartphone use group in all dependent variables with regard to academic performance. Thus, hypothesis 4 is supported.

4.5 Smartphone behavior as the mediating variable impacting academic performance

As suggested by Baron and Kenny ( 1986 ), smartphone behavior is a mediating variable affecting academic performance. We examined the impact through the following four-step process:

Step 1. The independent variable (parental control and students' self-control) must have a significant effect on the dependent variable (academic performance), as in model 1 (please see Fig.  1 ).

Step 2. The independent variable (parental control and students' self-control) must have a significant effect on the mediating variable (smartphone behaviors), as in model 2 (please see Fig.  2 ).

Step 3. When both the independent variable (parental control and student self-control) and the mediator (smartphone behavior) are used as predictors, the mediating variable (smartphone behavior) must have a significant effect on the dependent variable (academic performance), as in model 3 (please see Fig.  3 ).

Step 4. In model 3, the regression coefficient of the independent variables (parental control and student self-control) on the dependent variables must be less than in mode 1 or become insignificant.

figure 2

Model 2: Model to test the impact of parental control and students’ self-control on smartphone behavior

figure 3

Model 3: Both independent variables (parental control and student self-control) and mediators (smartphone behavior) were used as predictors to predict dependent variables

As can be seen in Fig.  1 , parental control and student self-control are observed variables, and smartphone behavior is a latent variable. "Strict" is set to 0, which means "Conditional", with "None" compared to "Strict". “Proactive high self-control” is also set to 0. From Fig.  1 we find that the independent variables have a significant effect on the dependent variable. The regression coefficient of parental control is 0.176, t = 3.45 ( p  < 0.01); the regression coefficient of students’ self-control is 0.218, t = 4.12 ( p  < 0.001), proving the fit of the model (Chi Square = 13.96**, df = 4, GFI = 0.989, AGFI = 0.959, CFI = 0.996, TLI = 0.915, RMSEA = 0.051, SRMR = 0.031). Therefore, the test results for Model 1 are in line with the recommendations of Baron and Kenny ( 1986 ).

As can be seen in Fig.  2 , the independent variables have a significant effect on smartphone behaviors. The regression coefficient of parental control is 0.166, t = 3.11 ( p  < 0.01); the regression coefficient of students’ self-control is 0.149, t = 2.85 ( p  < 0.01). The coefficients of the model fit are: Chi Square = 15.10**, df = 4, GFI = 0.988, AGFI = 0.954, CFI = 0.973, TLI = 0.932, RMSEA = 0.052, SRMR = 0.039. Therefore, the results of the test of Model 2 are in line with the recommendations of Baron and Kenny ( 1986 ).

As can be seen in Fig.  3 , smartphone behaviors have a significant effect on the dependent variable. The regression coefficient is 0.664, t = 10.2 ( p  < 0.001). The coefficients of the model fit are: Chi Square = 91.04**, df = 16, GFI = 0.958, AGFI = 0.905, CFI = 0.918, TLI = 0.900, RMSEA = 0.077, SRMR = 0.063. Therefore, the results of the test of Model 3 are in line with the recommendations of Baron and Kenny ( 1986 ).

As can be seen in Fig.  4 , the regression coefficient of the independent variables (parental control and student self-control) on the dependent variables is less than in model 1, and the parental control variable becomes insignificant. The regression coefficient of parental control is 0.013, t = 0.226 ( p  > 0.05); the path coefficient of students’ self-control is 0.155, t = 3.07 ( p  < 0.01).

figure 4

Model 4: Model three’s regression coefficient of the independent variables (parental control and student self-control) on the dependent variables

To sum up, we prove that smartphone behavior is the mediating variable to impact the academic performance. Thus, hypothesis 5 is supported.

5 Discussion

This study investigated differences in the smartphone behavior of fifth and sixth graders in Taiwan with different background variables (focus on parental control and students’ self-control) and their effects on academic performance. The correlation between smartphone behavior and academic performance was also examined. Although smartphones are being used in elementary school learning activities, relatively few studies have explored their effects on academic performance. In this study, the proportion of girls who used smartphones to search for information was significantly higher than that of boys. Past studies have been inconclusive about gender differences in smartphone use. Lee and Kim ( 2018 ) observed no gender differences in smartphone use, but did note that boys engaged in more smartphone use if their parents set fewer restrictions. Kim et al. ( 2019 ) found that boys exhibited higher levels of smartphone dependency than girls. By contrast, Kim ( 2017 ) reported that girls had higher levels of smartphone dependency than boys did. Most relevant studies have focused on smartphone dependency; comparatively little attention has been devoted to smartphone behavior. The present study contributes to the literature in this regard.

Notably, this study found that parental control affected smartphone use. If the participants’ parents imposed no restrictions, students spent more time on leisure and entertainment and on interpersonal communication rather than on information searches. This is conceivable, as Asian parents generally discourage their children from using their smartphones for non-study related activities (such as entertainment or making friends) but not for learning-related activities. If Asian parents believe that using a smartphone can improve their child's academic performance, they will encourage their child to use it. Parents in Taiwan attach great importance to their children's academic performance (Lee et al., 2016 ). A considerable amount of research has been conducted on parental attitudes or control in this context. Hwang and Jeong ( 2015 ) suggested that parental attitudes mediated their children’s smartphone use. Similarly, Chang et al. ( 2019 ) observed that parental attitudes mediated the smartphone use of children in Taiwan. Our results are consistent with extant evidence in this regard. Lee and Ogbolu ( 2018 ) demonstrated that the stronger children’s perception was of parental control over their smartphone use, the more frequently they used their smartphones. The study did not further explain the activities the children engaged in on their smartphones after they increased their frequency of use. In the present study, the participants spent more time on their smartphones for leisure and entertainment and for interpersonal communication than for information searches.

Notably, this study also found that students’ self-control affected smartphone use.

Regarding the Pearson’s correlation analysis of smartphone behavior and academic performance, except for information searches and learning attitudes, all the variables were significantly positively correlated. In other words, there was a positive correlation between smartphone behavior and academic performance. In their systematic review, Amez and Beart ( 2020 ) determined that most empirical results provided evidence of a negative correlation between smartphone behavior and academic performance, playing a more considerable role in that relationship than the theoretical mechanisms or empirical methods in the studies they examined. The discrepancy between our results and theirs can be explained by the between-study variations in the definitions of learning achievement or performance.

Regarding the present results on the differences in the academic performance of students with varying smartphone behaviors, we carried out a cluster analysis, dividing the participants into a high smartphone use group and a low smartphone use group. Subsequent MANOVA revealed that the high smartphone use group academically outperformed the low smartphone use group; significant differences were noted in the academic performance of students with different smartphone behaviors. Given the observed correlation between smartphone behavior and academic performance, this result is not unexpected. The findings on the relationship between smartphone behavior and academic performance can be applied to smartphone use in the context of education.

Finally, in a discussion of whether smartphone behavior is a mediator of academic performance, it is proved that smartphone behavior is the mediating variable impacting academic performance. Our findings show that parental control and students’ self-control can affect academic performance. However, the role of the mediating variable (smartphone use behavior) means that changes in parental control have no effect on academic achievement at all. This means that smartphone use behaviors have a full mediating effect on parental control. It is also found that students’ self-control has a partial mediating effect. Our findings suggest that parental attitudes towards the control of smartphone use and students' self-control do affect academic performance, but smartphone use behavior has a significant mediating effect on this. In other words, it is more important to understand the children's smartphone behavior than to control their smartphone usage. There have been many studies in the past exploring the mediator variables for smartphone use addiction and academic performance. For instance, Ahmed et al. ( 2020 ) found that the mediating variables of electronic word of mouth (eWOM) and attitude have a significant and positive influence in the relationship between smartphone functions. Cho and Lee ( 2017 ) found that parental attitude is the mediating variable for smartphone use addiction. Cho et al. ( 2017 ) indicated that stress had a significant influence on smartphone addiction, while self-control mediates that influence. In conclusion, the outcomes demonstrate that parental control and students’ self-control do influence student academic performance in primary school. Previous studies have offered mixed results as to whether smartphone usage has an adverse or affirmative influence on student academic performance. This study points out a new direction, thinking of smartphone use behavior as a mediator.

In brief, the participants spent more smartphone time on leisure and entertainment and interpersonal communication, but the academic performance of the high smartphone use group surpassed that of the low smartphone use group. This result may clarify the role of students’ communication skills in their smartphone use. As Kang and Jung ( 2014 ) noted, conventional communication methods have been largely replaced by mobile technologies. This suggests that students’ conventional communication skills are also shifting to accommodate smartphone use. Elementary students are relatively confident in communicating with others through smartphones; thus, they likely have greater self‐efficacy in this regard and in turn may be better able to improve their academic performance by leveraging mobile technologies. This premise requires verification through further research. Notably, high smartphone use suggests the greater availability of time and opportunity in this regard. Conversely, low smartphone use suggests the relative lack of such time and opportunity. The finding that the high smartphone use group academically outperformed the low smartphone use group also indicates that smartphone accessibility constitutes a potential inequality in the learning opportunities of elementary school students. Therefore, elementary school teachers must be aware of this issue, especially in view of the shift to online learning triggered by the COVID-19 pandemic, when many students are dependent on smartphones and computers for online learning.

6 Conclusions and implications

This study examined the relationship between smartphone behavior and academic performance for fifth and sixth graders in Taiwan. Various background variables (parental control and students’ self-control) were also considered. The findings provide new insights into student attitudes toward smartphone use and into the impacts of smartphone use on academic performance. Smartphone behavior and academic performance were correlated. The students in the high smartphone use group academically outperformed the low smartphone use group. This result indicates that smartphone use constitutes a potential inequality in elementary school students’ learning opportunities. This can be explained as follows: high smartphone use suggests that the participants had sufficient time and opportunity to access and use smartphones. Conversely, low smartphone use suggests that the participants did not have sufficient time and opportunity for this purpose. Students’ academic performance may be adversely affected by fewer opportunities for access. Disparities between their performance and that of their peers with ready access to smartphones may widen amid the prevalent class suspension and school closure during the ongoing COVID-19 pandemic.

This study has laid down the basic foundations for future studies concerning the influence of smartphones on student academic performance in primary school as the outcome variable. This model can be replicated and applied to other social science variables which can influence the academic performance of primary school students as the outcome variable. Moreover, the outcomes of this study can also provide guidelines to teachers, parents, and policymakers on how smartphones can be most effectively used to derive the maximum benefits in relation to academic performance in primary school as the outcome variable. Finally, the discussion of the mediating variable can also be used as the basis for the future projects.

7 Limitations and areas of future research

This research is significant in the field of smartphone functions and the student academic performance for primary school students. However, certain limitations remain. The small number of students sampled is the main problem in this study. For more generalized results, the sample data may be taken across countries within the region and increased in number (rather than limited to certain cities and countries). For more robust results, data might also be obtained from both rural and urban centers. In this study, only one mediating variable was incorporated, but in future studies, several other psychological and behavioral variables might be included for more comprehensive outcomes. We used the SEM-based multivariate approach which does not address the cause and effect between the variables, therefore, in future work, more robust models could be employed for cause-and-effect investigation amongst the variables.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon request.

Ahmed, R. R., Salman, F., Malik, S. A., Streimikiene, D., Soomro, R. H., & Pahi, M. H. (2020). Smartphone Use and Academic Performance of University Students: A Mediation and Moderation Analysis.  Sustainability, 12 (1), 439. MDPI AG. Retrieved from https://doi.org/10.3390/su12010439

Amez, S., & Beart, S. (2020). Smartphone use and academic performance: A literature review. International Journal of Educational Research, 103 , 101618. https://doi.org/10.1016/j.ijer.2020.101618

Article   Google Scholar  

Anshari, M., Almunawar, M. N., Shahrill, M., Wicaksono, D. K., & Huda, M. (2017). Smartphones usage in the classrooms: Learning aid or interference? Education and Information Technologies, 22 , 3063–3079. https://doi.org/10.1007/s10639-017-9572-7

Bae, S. M. (2015). The relationships between perceived parenting style, learning motivation, friendship satisfaction, and the addictive use of smartphones with elementary school students of South Korea: Using multivariate latent growth modeling. School Psychology International, 36 (5), 513–531. https://doi.org/10.1177/0143034315604017

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51 (6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173

Bluestein, S. A., & Kim, T. (2017). Expectations and fulfillment of course engagement, gained skills, and non-academic usage of college students utilizing tablets in an undergraduate skills course. Education and Information Technologies, 22 (4), 1757–1770. https://doi.org/10.1007/s10639-016-9515-8

Carrillo, C., & Flores, M. A. (2020). COVID-19 and teacher education: A literature review of online teaching and learning practices. European Journal of Teacher Education, 43 (4), 466–487. https://doi.org/10.1080/02619768.2020.1821184

Chang, F. C., Chiu, C. H., Chen, P. H., Chiang, J. T., Miao, N. F., Chuang, H. T., & Liu, S. (2019). Children’s use of mobile devices, smartphone addiction and parental mediation in Taiwan. Computers in Human Behavior, 93 , 25–32. https://doi.org/10.1016/j.chb.2018.11.048

Chen, R. S., & Ji, C. H. (2015). Investigating the relationship between thinking style and personal electronic device use and its implications for academic performance. Computers in Human Behavior, 52 , 177–183. https://doi.org/10.1016/j.chb.2015.05.042

Chen, C., Chen, S., Wen, P., & Snow, C. E. (2020). Are screen devices soothing children or soothing parents?Investigating the relationships among children’s exposure to different types of screen media, parental efficacy and home literacy practices. Computers in Human Behavior, 112 , 106462. https://doi.org/10.1016/j.chb.2020.106462

Cheng, Y. M., Kuo, S. H., Lou, S. J., & Shih, R. C. (2016). The development and implementation of u-msg for college students’ English learning. International Journal of Distance Education Technologies, 14 (2), 17–29. https://doi.org/10.4018/IJDET.2016040102

Cho, K. S., & Lee, J. M. (2017). Influence of smartphone addiction proneness of young children on problematic behaviors and emotional intelligence: Mediating self-assessment effects of parents using smartphones. Computers in Human Behavior, 66 , 303–311. https://doi.org/10.1016/j.chb.2016.09.063

Cho, H.-Y., Kim, K. J., & Park, J. W. (2017). Stress and adult smartphone addiction: Mediation by self-control, neuroticism, and extraversion. Stress and Heath, 33 , 624–630. https://doi.org/10.1002/smi.2749

Clayton, K., & Murphy, A. (2016). Smartphone apps in education: Students create videos to teach smartphone use as tool for learning. Journal of Media Literacy Education , 8 , 99–109. Retrieved October 13, 2021. Review from  https://files.eric.ed.gov/fulltext/EJ1125609.pdf

Daems, K., Pelsmacker, P. D., & Moons, I. (2019). The effect of ad integration and interactivity on young teenagers’ memory, brand attitude and personal data sharing. Computers in Human Behavior, 99 , 245–259. https://doi.org/10.1016/j.chb.2019.05.031

Deci, E. L., & Ryan, R. M. (2008). Facilitating optimal motivation and psychological well-being across life’s domains. Canadian Psychology, 49 (1), 14–23. https://doi.org/10.1037/0708-5591.49.1.14

Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125 , 627–668. https://doi.org/10.1037//0033-2909.125.6.627

Dong, C., Cao, S., & Li, H. (2020). Young children’s online learning during COVID-19 pandemic: Chinese parents’ beliefs and attitudes. Children and Youth Services Review, 118 , 105440. https://doi.org/10.1016/j.childyouth.2020.105440

Du, J., van Koningsbruggen, G. M., & Kerkhof, P. (2018). A brief measure of social media self-control failure. Computers in Human Behavior, 84 , 68–75. https://doi.org/10.1016/j.chb.2018.02.002

Firmansyah, R. O., Hamdani, R. A., & Kuswardhana, D. (2020). IOP conference series: Materials science and engineering. The use of smartphone on learning activities: Systematic review . In International Symposium on Materials and Electrical Engineering 2019 (ISMEE 2019), Bandung, Indonesia. https://doi.org/10.1088/1757-899X/850/1/012006

Garbe, A., Ogurlu, U., Logan, N., & Cook, P. (2020). COVID-19 and remote learning: Experiences of parents with children during the pandemic. American Journal of Qualitative Research, 4 (3), 45–65. https://doi.org/10.29333/ajqr/8471

George, D., & Mallery, P. (2010). SPSS for windows step by step: A simple guide and reference. 17.0 update (10th ed.). Pearson.

Google Scholar  

Grant, M., & Hsu, Y. C. (2014). Making personal and professional learning mobile: Blending mobile devices, social media, social networks, and mobile apps to support PLEs, PLNs, & ProLNs. Advances in Communications and Media Research Series, 10 , 27–46.

Grolnick, W. S., & Pomerantz, E. M. (2009). Issues and challenges in studying parental control: Toward a new conceptualization. Child Development Perspectives, 3 , 165–170. https://doi.org/10.1111/j.1750-8606.2009.00099.x

Guo, Z., Lu, X., Li, Y., & Li, Y. (2011). A framework of students’ reasons for using CMC media in learning contexts: A structural approach. Journal of the Association for Information Science and Technology, 62 (11), 2182–2200. https://doi.org/10.1002/asi.21631

Hadad, S., Meishar-Tal, H., & Blau, I. (2020). The parents’ tale: Why parents resist the educational use of smartphones at schools? Computers & Education, 157 , 103984. https://doi.org/10.1016/j.compedu.2020.103984

Hau, K.-T., & Ho, I. T. (2010). Chinese students’ motivation and achievement. In M. H. Bond (Ed.), Oxford handbook of Chinese psychology (pp. 187–204). Oxford University Press.

Hawi, N. S., & Samaha, M. (2016). To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Computers & Education, 98 , 81–89. https://doi.org/10.1016/j.compedu.2016.03.007

Heo, Y. J., & Lee, K. (2021). Smartphone addiction and school life adjustment among high school students: The mediating effect of self-control. Journal of Psychosocial Nursing and Mental Health Services, 56 (11), 28–36. https://doi.org/10.3928/02793695-20180503-06

Hofmann, W., Friese, M., & Strack, F. (2009). Impulse and self-control from a dual-systems perspective. Perspectives on Psychological Science, 4 (2), 162–176. https://doi.org/10.1111/j.1745-6924.2009.01116.x

Hsieh, C. Y. (2020). Predictive analysis of instruction in science to students’ declining interest in science-An analysis of gifted students of sixth - and seventh-grade in Taiwan. International Journal of Engineering Education, 2 (1), 33–51. https://doi.org/10.14710/ijee.2.1.33-51

Hsieh, C. Y., Lin, C. H. (2021). Other important issues. Meta-analysis: the relationship between smartphone addiction and college students’ academic performance . 2021 TERA International Conference on Education. IN National Sun Yat-sen University (NSYSU), Kaohsiung.

Hwang, Y., & Jeong, S. H. (2015). Predictors of parental mediation regarding children’s smartphone use. Cyberpsychology, Behavior, and Social Networking, 18 (12), 737–743. https://doi.org/10.1089/cyber.2015.0286

Jeong, S.-H., Kim, H. J., Yum, J.-Y., & Hwang, Y. (2016). What type of content are smartphone users addicted to? SNS vs. games. Computers in Human Behavior, 54 , 10–17. https://doi.org/10.1016/j.chb.2015.07.035

Judd, T. (2014). Making sense of multitasking: The role of facebook. Computers & Education, 70 , 194–202. https://doi.org/10.1016/j.compedu.2013.08.013

Junco, R., & Cotton, S. R. (2012). No A 4 U: The relationship between multitasking and academic performance. Computers & Education, 59 , 505–514. https://doi.org/10.1016/j.compedu.2011.12.023

Kang, S., & Jung, J. (2014). Mobile communication for human needs: A comparison of smartphone use between the US and Korea. Computers in Human Behavior, 35 , 376–387. https://doi.org/10.1016/j.chb.2014.03.024

Karikoski, J., & Soikkeli, T. (2013). Contextual usage patterns in smartphone communication services. Personal and Ubiquitous Computing, 17 (3), 491–502. https://doi.org/10.1007/s00779-011-0503-0

Karpinski, A. C., Kirschner, P. A., Ozer, I., Mellott, J. A., & Ochwo, P. (2013). An exploration of social networking site use, multitasking, and academic performance among United States and European university students. Computers in Human Behavior, 29 , 1182–1192. https://doi.org/10.1016/j.chb.2012.10.011

Kates, A. W., Wu, H., & Coryn, C. L. S. (2018). The effects of mobile phone use on academic performance: A meta-analysis. Computers & Education, 127 , 107–112. https://doi.org/10.1016/j.compedu.2018.08.012

Kim, K. (2017). Smartphone addiction and the current status of smartphone usage among Korean adolescents. Studies in Humanities and Social Sciences, 2017 (56), 115–142. https://doi.org/10.17939/hushss.2017.56.006

Kim, D., Chun, H., & Lee, H. (2014). Determining the factors that influence college students’ adoption of smartphones. Journal of the Association for Information Science and Technology, 65 (3), 578–588. https://doi.org/10.1002/asi.22987

Kim, B., Jahng, K. E., & Oh, H. (2019). The moderating effect of elementary school students’ perception of open communication with their parents in the relationship between smartphone dependency and school adjustment. Korean Journal of Childcare and Education, 15 (1), 54–73. https://doi.org/10.14698/jkcce.2019.15.01.057

Lee, J., & Cho, B. (2015). Effects of self-control and school adjustment on smartphone addiction among elementary school students. Korea Science, 11 (3), 1–6. https://doi.org/10.5392/IJoC.2015.11.3.001

Lee, E. J., & Kim, H. S. (2018). Gender differences in smartphone addiction behaviors associated with parent-child bonding, parent-child communication, and parental mediation among Korean elementary school students. Journal of Addictions Nursing, 29 (4), 244–254. https://doi.org/10.1097/JAN.0000000000000254

Lee, S. J., & Moon, H. J. (2013). Effects of self-Control, parent- adolescent communication, and school life satisfaction on smart-phone addiction for middle school students. Korean Journal of Human Ecology, 22 (6), 87–598. https://doi.org/10.5934/kjhe.2013.22.6.587

Lee, E. J., & Ogbolu, Y. (2018). Does parental control work with smartphone addiction? Journal of Addictions Nursing, 29 (2), 128–138. https://doi.org/10.1097/JAN.0000000000000222

Lee, J., Cho, B., Kim, Y., & Noh, J. (2015). Smartphone addiction in university students and its implication for learning. In G. Chen, V. K. Kinshuk, R. Huang, & S. C. Kong (Eds.), Emerging issues in smart learning (pp. 297–305). Springer.

Chapter   Google Scholar  

Lee, S., Lee, K., Yi, S. H., Park, H. J., Hong, Y. J., & Cho, H. (2016). Effects of Parental Psychological Control on Child’s School Life: Mobile Phone Dependency as Mediator. Journal of Child and Family Studies, 25 , 407–418. https://doi.org/10.1007/s10826-015-0251-2

Lepp, A., Barkley, J. E., & Karpinski, A. C. (2014). The relationship between cell phone use, academic performance, anxiety, and satisfaction with life in college students. Computers in Human Behavior, 31 , 343–350. https://doi.org/10.1016/j.chb.2013.10.049

Lin, Y. Q., Liu, Y., Fan, W. J., Tuunainen, V. K., & Deng, S. G. (2021). Revisiting the relationship between smartphone use and academic performance: A large-scale study. Computers in Human Behavior, 122 , 106835. https://doi.org/10.1016/j.chb.2021.106835

Looi, C. K., Lim, K. F., Pang, J., Koh, A. L. H., Seow, P., Sun, D., Boticki, I., Norris, C., & Soloway, E. (2016). Bridging formal and informal learning with the use of mobile technology. In C. S. Chai, C. P. Lim, & C. M. Tan (Eds.), Future learning in primary schools (pp. 79–96). Springer.

Martin, F., & Ertzberger, J. (2013). Here and now mobile learning: An experimental study on the use of mobile technology. Computers & Education, 68 , 76–85. https://doi.org/10.1016/j.compedu.2013.04.021

Meier, A. (2017). Neither pleasurable nor virtuous: Procrastination links smartphone habits and messenger checking behavior to decreased hedonic as well as eudaimonic well-being . Paper presented at the 67th Annual Conference of the International Communication Association (ICA), San Diego, CA.

Morgan, H. (2020). Best practices for implementing remote learning during a pandemic. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 93 (3), 135–141. https://doi.org/10.1080/00098655.2020.1751480

Park, J. H. (2020). Smartphone use patterns of smartphone-dependent children. Korean Academy of Child Health Nursing, 26 (1), 47–54. https://doi.org/10.4094/chnr.2020.26.1.47

Park, N., & Lee, H. (2012). Social implications of smartphone use: Korean college students’ smartphone use and psychological well-being. Cyberpsychology, Behavior, and Social Networking, 15 (9), 491–497. https://doi.org/10.1089/cyber.2011.0580

Park, E., Logan, H., Zhang, L., Kamigaichi, N., & Kulapichitr, U. (2021). Responses to coronavirus pandemic in early childhood services across five countries in the Asia-Pacific region: OMEP Policy Forum. International Journal of Early Childhood, 2021 , 1–18. https://doi.org/10.1007/s13158-020-00278-0

Peng, Y., Zhou, H., Zhang, B., Mao, H., Hu, R., & Jiang, H. (2022). Perceived stress and mobile phone addiction among college students during the 2019 coronavirus disease: The mediating roles of rumination and the moderating role of self-control. Personality and Individual Differences, 185 , 111222. https://doi.org/10.1016/j.paid.2021.111222

Reinecke, L., Aufenanger, S., Beutel, M. E., Dreier, M., Quiring, O., Stark, B., & Müller, K. W. (2017). Digital stress over the life span: The effects of communication load and Internet multitasking on perceived stress and psychological health impairments in a German probability sample. Media Psychology, 20 (1), 90–115. https://doi.org/10.1080/15213269.2015.1121832

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55 (1), 68–78. https://doi.org/10.1037//0003-066x.55.1.68

Ryan, R. M., & Deci, E. L. (2006). Self-regulation and the problem of human autonomy: Does psychology need choice, self-determination, and will? Journal of Personality, 74 , 1557–1585. https://doi.org/10.1111/j.1467-6494.2006.00420.x

Salvation, M. D. (2017). The relationship between smartphone applications usage and students’ academic performance. Computational Methods in Social Sciences , 5 (2), 26–39. Retrieved October 13, 2021. Review from http://cmss.univnt.ro/wp-content/uploads/vol/split/vol_V_issue_2/CMSS_vol_V_issue_2_art.003.pdf

Sarker, I. H., Kayes, A. S. M., & Watters, P. (2019). Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. Journal of Big Data, 6 , 57. https://doi.org/10.1186/s40537-019-0219-y

Sarwar, M., & Soomro, T. R. (2013). Impact of smartphone’s on society. European Journal of Scientific Research, 98 (2), 219–226.

Sepulveda-Escobar, P., & Morrison, A. (2020). Online teaching placement during the COVID-19 pandemic in Chile: Challenges and opportunities. European Journal of Teacher Education, 43 (4), 587–607. https://doi.org/10.1080/02619768.2020.1820981

Sklar, A., Rim, S. Y. & Fujita, K. (2017). Proactive and reactive self-control. In D., de Ridder, M., Adriaanse, & K. Fujita (Eds). The Routledge International Handbook of Self-Control in Health and Well-Being (p. 11). Routledge. https://doi.org/10.4324/9781315648576

Steinberg, L., Lamborn, S. D., Dornbusch, S. M., & Darling, N. (1992). Impact of parenting practices on adolescent achievement: Authoritative parenting, school involvement, and encouragement to succeed. Child Development, 63 , 1266–1281. https://doi.org/10.1111/j.1467-8624.1992.tb01694.x

Stice, E., & Barrera, M. (1995). A longitudinal examination of the reciprocal relations between perceived parenting and adolescents’ substance use and externalizing behaviors. Developmental Psychology, 31 , 322–334. https://doi.org/10.1037/0012-1649.31.2.322

Stolz, H. E., Barber, B. K., & Olsen, J. A. (2005). Toward disentangling fathering and mothering: An assessment of relative importance. Journal of Marriage and Family, 67 , 1076–1092. https://doi.org/10.1111/j.1741-3737.2005.00195.x

Tang, T., Abuhmaid, A. M., Olaimat, M., Oudat, D. M., Aldhaeebi, M., & Bamanger, E. (2020). Efficiency of flipped classroom with online-based teaching under COVID-19. Interactive Learning Environments . https://doi.org/10.1080/10494820.2020.1817761

Troll, E. S., Friese, M., & Loschelder, D. D. (2021). How students’ self-control and smartphone-use explain their academic performance. Computers in Human Behavior, 117 , 106624. https://doi.org/10.1016/j.chb.2020.106624

UNESCO. (2021). UNESCO figures show two thirds of an academic year lost on average worldwide due to Covid-19 school closures . Retrieved July 23, 2021. Retrieved, from  https://en.unesco.org/news/unesco-figures-show-two-thirds-academic-year-lost-average-worldwide-due-covid-19-school

Vanderloo, L. M. (2014). Screen-viewing among preschoolers in childcare: A systematic review. BMC Pediatric, 14 , 205. https://doi.org/10.1186/1471-2431-14-205

Wang, T. H., & Cheng, H. Y. (2019). Problematic Internet use among elementary school students: Prevalence and risk factors. Information, Communication & Society, 24 (2), 108–134. https://doi.org/10.1080/1369118X.2019.1645192

Wang, C. J., Chang, F. C., & Chiu, C. H. (2017). Smartphone addiction and related factors among elementary school students in New Taipei City. Research of Educational Communications and Technology, 117 , 67–87. https://doi.org/10.6137/RECT.201712_117.0005

Yi, Y. J., You, S., & Bae, B. J. (2016). The influence of smartphones on academic performance: The development of the technology-to-performance chain model. Library Hi Tech, 34 (3), 480–499. https://doi.org/10.1108/LHT-04-2016-0038

Zhang, M. W. B., Ho, C. S. H., & Ho, C. M. (2014). Methodology of development and students’ perceptions of a psychiatry educational smartphone application. Technology and Health Care, 22 , 847–855. https://doi.org/10.3233/THC-140861

Download references

Acknowledgements

The authors would like to express their gratitude to the school participants in the study.

The work done for this study was financially supported by the Ministry of Science and Technology of Taiwan under project No. MOST 109–2511-H-017–005.

Author information

Authors and affiliations.

Department of Industry Technology Education, National Kaohsiung Normal University, 62, Shenjhong Rd., Yanchao District, Kaohsiung, 82446, Taiwan

Jen Chun Wang & Shih-Hao Kung

Department of Early Childhood Education, National PingTung University, No.4-18, Minsheng Rd., Pingtung City, Pingtung County, 900391, Taiwan

Chia-Yen Hsieh

You can also search for this author in PubMed   Google Scholar

Contributions

Kung and Wang conceived of the presented idea. Kung, Wang and Hsieh developed the theory and performed the computations. Kung and Hsieh verified the analytical methods. Wang encouraged Kung and Hsieh to verify the numerical checklist and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Chia-Yen Hsieh .

Ethics declarations

Conflict of interest.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Factor analysis results

Rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Wang, J.C., Hsieh, CY. & Kung, SH. The impact of smartphone use on learning effectiveness: A case study of primary school students. Educ Inf Technol 28 , 6287–6320 (2023). https://doi.org/10.1007/s10639-022-11430-9

Download citation

Received : 21 February 2022

Accepted : 24 October 2022

Published : 11 November 2022

Issue Date : June 2023

DOI : https://doi.org/10.1007/s10639-022-11430-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Smartphone use
  • Learning effectiveness
  • Human–computer interface
  • Media in education
  • Elementary education
  • Find a journal
  • Publish with us
  • Track your research

Effects of Cell Phone on Society

Research on the negative effects of smartphones on students is often controversial. This essay reveals the pros and cons of cell phone use in society.

Impact of Mobile Phones on Society: Essay Introduction

Introduction of subject, statement of opinion, thesis statement about cell phones, reference list.

The telecommunication industry takes a considerable place in the modern life of society. The purpose of cell phone usage can vary in accordance with the needs and expectations of the users.

Different features of mobile phones enable marketers to position them according to the desired segments in the market, making their services helpful for everyday human needs. The invention of the mobile phone has revolutionized the social culture of individuals in the United States.

The analysis of mobile phones should be based on the examination of subject interference with society and popular culture. Mobile phones are considered to be electronic gadgets being used for communication; their portable system allows individuals to travel with them throughout the world.

They have become an integral part of modern communication means, allowing individuals to interact frequently and providing close interaction between people for private and business purposes.

Technological progress changes human values replacing them with our thirst for mobility and communicative satisfaction. Cell phones have a considerable effect on the modern social life of humanity, making it convenient and mobile.

Cell phones appear to be an integral part of social life, satisfying human needs through communication rate growth; using cell technologies simplifies our everyday activities.

Affection on Communication Frequency

Social culture in the United States has been revolutionized by the invention of the mobile phone. The frequency of communication between individuals has greatly increased (Bucy 2005, pg.39). In the United States, over 80% of the population owns a cell phone (U.S. and World Population Clocks, 2009. Para.4).

Over 50% use cell phones for communication with friends, giving an opportunity to raise the level of communication between individuals. Technologies replaced written forms of communication, making the communicative process more frequent and convenient for users.

A large number of people also use their mobile phones to access such social networks as Facebook and Twitter, in addition to sending out electronic mail (Goggin, 2006, p.14). It is unthinkable for two lovers in today’s world to go for consecutive days without communicating with each other, especially if they are miles apart. Mobile phones serve the purpose of private relationships, business cooperation, and talking with friends.

Cell Phones for Business Communication

The invention of the mobile phone has led to the introduction of new businesses as well as the promotion of new business communicative means.

Businessmen communicate with suppliers using mobile phones for the purpose of making orders and confirming deliveries; service providers, such as investors and stock brokers, communicate with their clients instantly. Some businesses use short message services to advertise their products (Belch & Belch, 2004, pg.23).

Any changes in products, the introduction of new products, and promotions are communicated to customers through text messages. Over 20% of companies communicate today with their clients using mobile phones (Winder, 2009, pg.228).

Mobile phones have led to the invention of new businesses, where some people have invested in selling the gadgets, and others deliver premium content, for example, ringtones, alerts, logos, and others. Some people have secured jobs with the companies that produce the gadgets. Mobile phones have made the work of business easier; they stimulated business development on the international level, introducing mobility and flexibility to our life.

Mobile Phones Characteristics

Modern cell phones are equipped with cameras, radio, TV, Internet, calendar, phonebook, alarm clock, and reminders; these conveniences integrated into cell technology make our everyday activities easier. It should be stressed that a phonebook allows an individual to store contacts of family members, friends, and other acquaintances. Memory cards have a massive memory that can be used to store all this information in the mobile phone.

Calendars in mobile phones are used to confirm dates, and one needs to have a manual calendar (Keith 2009. Para.5). Alarm clocks and reminders help individuals to be punctual and memorize important events, respectively.

Cell phones serve the method of internet access for 85% of users; this allows them to get access to important newspapers and news sites, for example, BBC. Mobile phones have led to the disposal of many gadgets that were used before their invention. In addition to the positive effects of mobile phones, the gadgets also have some negative effects on society.

They have been a cause of accidents, especially text messaging while driving. Young people have been addicted to text messaging, harming their studies. Nevertheless, human responsibility for personal work and education should help people to sponge the positive side of innovational technologies opportunities.

The technological era provided people with a new communicative means, the mobile phone, making our life easier and more convenient. This technology became an integral part of the business sphere, traveling, cultural interaction, and social activities.

It is necessary to stress that mobile phones provide people with unlimited opportunities simplifying our thirst for communication and information access. The service provided by mobile technologies stimulated communicative growth, providing positive effects on private and business life.

People enjoy the opportunities provided by mobile technologies, balancing their entertainment and business values and contribution to social life.

Belch, G., & Belch M. (2004) Advertising and Promotion: An Integrated Marketing Communications Perspective . New York: McGraw Hill.

Bucy, E. (2005). Living in the Information Age: A New Media Reader Second Edition. Canada: Wadsworth.

Goggin, G (2006). Cell Phone Culture: Mobile technology in everyday life . New York: Routledge.

Keith, K. (2009). The Importance of Mobile Phones in Modern Society .

U.S. and World Population Clocks (2009) POPClocks”. Census.gov.

Winder, D. (2009). 61 Percent of Global Populations now using Mobile Phones. The UN Journal of Statistics, 224-233.

Cite this paper

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2020, January 8). Effects of Cell Phone on Society. https://studycorgi.com/effects-of-cell-phone-on-society/

"Effects of Cell Phone on Society." StudyCorgi , 8 Jan. 2020, studycorgi.com/effects-of-cell-phone-on-society/.

StudyCorgi . (2020) 'Effects of Cell Phone on Society'. 8 January.

1. StudyCorgi . "Effects of Cell Phone on Society." January 8, 2020. https://studycorgi.com/effects-of-cell-phone-on-society/.

Bibliography

StudyCorgi . "Effects of Cell Phone on Society." January 8, 2020. https://studycorgi.com/effects-of-cell-phone-on-society/.

StudyCorgi . 2020. "Effects of Cell Phone on Society." January 8, 2020. https://studycorgi.com/effects-of-cell-phone-on-society/.

This paper, “Effects of Cell Phone on Society”, was written and voluntary submitted to our free essay database by a straight-A student. Please ensure you properly reference the paper if you're using it to write your assignment.

Before publication, the StudyCorgi editorial team proofread and checked the paper to make sure it meets the highest standards in terms of grammar, punctuation, style, fact accuracy, copyright issues, and inclusive language. Last updated: November 8, 2023 .

If you are the author of this paper and no longer wish to have it published on StudyCorgi, request the removal . Please use the “ Donate your paper ” form to submit an essay.

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

Bret Stephens.

Cease-fire will fail as long as Hamas exists, journalist says

Headshot of John Sullivan.

Imagining a different Russia

Sandra Susan Smith (from left), Gwen Carr, and Selwyn Jones speaking during the event.

Remember Eric Garner? George Floyd?

Do phones belong in schools.

iStock by Getty Images

Harvard Staff Writer

Bans may help protect classroom focus, but districts need to stay mindful of students’ sense of connection, experts say

Students around the world are being separated from their phones.

In 2020, the National Center for Education Statistics reported that 77 percent of U.S. schools had moved to prohibit cellphones for nonacademic purposes. In September 2018, French lawmakers outlawed cellphone use for schoolchildren under the age of 15. In China, phones were banned country-wide for schoolchildren last year.

Supporters of these initiatives have cited links between smartphone use and bullying and social isolation and the need to keep students focused on schoolwork.

77% Of U.S. schools moved to ban cellphones for nonacademic purposes as of 2020, according to the National Center for Education Statistics

But some Harvard experts say instructors and administrators should consider learning how to teach with tech instead of against it, in part because so many students are still coping with academic and social disruptions caused by the pandemic. At home, many young people were free to choose how and when to use their phones during learning hours. Now, they face a school environment seeking to take away their main source of connection.

“Returning back to in-person, I think it was hard to break the habit,” said Victor Pereira, a lecturer on education and co-chair of the Teaching and Teaching Leadership Program at the Graduate School of Education.

Through their students, he and others with experience both in the classroom and in clinical settings have seen interactions with technology blossom into important social connections that defy a one-size-fits-all mindset. “Schools have been coming back, trying to figure out, how do we readjust our expectations?” Pereira added.

It’s a hard question, especially in the face of research suggesting that the mere presence of a smartphone can undercut learning .

Michael Rich , an associate professor of pediatrics at Harvard Medical School and an associate professor of social and behavioral sciences at the Harvard T.H. Chan School of Public Health, says that phones and school don’t mix: Students can’t meaningfully absorb information while also texting, scrolling, or watching YouTube videos.

“The human brain is incapable of thinking more than one thing at a time,” he said. “And so what we think of as multitasking is actually rapid-switch-tasking. And the problem with that is that switch-tasking may cover a lot of ground in terms of different subjects, but it doesn’t go deeply into any of them.”

Pereira’s approach is to step back — and to ask whether a student who can’t resist the phone is a signal that the teacher needs to work harder on making a connection. “Two things I try to share with my new teachers are, one, why is that student on the phone? What’s triggering getting on your cell phone versus jumping into our class discussion, or whatever it may be? And then that leads to the second part, which is essentially classroom management.

“Design better learning activities, design learning activities where you consider how all of your students might want to engage and what their interests are,” he said. He added that allowing phones to be accessible can enrich lessons and provide opportunities to use technology for school-related purposes.

Mesfin Awoke Bekalu, a research scientist in the Lee Kum Sheung Center for Health and Happiness at the Chan School, argues that more flexible classroom policies can create opportunities for teaching tech-literacy and self-regulation.

“There is a huge, growing body of literature showing that social media platforms are particularly helpful for people who need resources or who need support of some kind, beyond their proximate environment,” he said. A study he co-authored by Rachel McCloud and Vish Viswanath for the Lee Kum Sheung Center for Health and Happiness shows that this is especially true for marginalized groups such as students of color and LGBTQ students. But the findings do not support a free-rein policy, Bekalu stressed.

In the end, Rich, who noted the particular challenges faced by his patients with attention-deficit disorders and other neurological conditions, favors a classroom-by-classroom strategy. “It can be managed in a very local way,” he said, adding: “It’s important for parents, teachers, and the kids to remember what they are doing at any point in time and focus on that. It’s really only in mono-tasking that we do very well at things.”

Share this article

You might like.

Times opinion writer Bret Stephens also weighs in on campus unrest in final Middle East Dialogues event

Headshot of John Sullivan.

Former ambassador sees two tragedies: Ukraine war and the damage Putin has inflicted on his own country

Sandra Susan Smith (from left), Gwen Carr, and Selwyn Jones speaking during the event.

Mother, uncle of two whose deaths at hands of police officers ignited movement talk about turning pain into activism, keeping hope alive

When math is the dream

Dora Woodruff was drawn to beauty of numbers as child. Next up: Ph.D. at MIT.

Seem like Lyme disease risk is getting worse? It is.

The risk of Lyme disease has increased due to climate change and warmer temperature. A rheumatologist offers advice on how to best avoid ticks while going outdoors.

How old is too old to run?

No such thing, specialist says — but when your body is trying to tell you something, listen

Environmental Effects of Cell Phones on Society Essay

Introduction, types of environmental pollution caused by cell phones, discussions, conclusions, works cited.

Cell phones or mobile phones, tablets, and other personal communication devices have become ubiquitous. During 2007-2016, more than seven billion cell phones have been sold. Depending on the user’s desire for changing products, and the amount of damage it can take, a cell phone has a life of 2.5-4 years, after which it is discarded (Statista). Some phones of premium brands such as Apple and Samsung are resold in the resale market, while other brands are scrapped, adding to the electronic or e-waste.

The amount of scrap salvaged, where workers manually extract copper, gold, and other metals from the motherboard and electrical circuit are, very low. The rest is discarded, melted, crushed, and disposed of in landfills. Discarded phones and the supply chain for cell phone parts manufacturing create substantial levels of pollution (Yin et al. 518).

About 41 million tons of e-waste is generated annually. A direct correlation between the GDP of a nation and the e-waste generated is established (Kumar et al. 39). This pollution in the form of hazardous waste, fumes of vehicles used for transportation, discarded plastic, dead lithium batteries, and other components, diffuse into the soil and water bodies. Cell phone towers generate harmful radiation, and toxins enter the food chain, and the environment causing long term harm (Logan). The thesis statement is excessive use of cell phones leads to health problems, and scrap metals, hazardous chemicals must be collected and recycled to yield profits, and for environment safety.

Electromagnetic Field Radiation

Electromagnetic Field Radiation (EMF) is generated by some electrical and electronic devices such as TVs, refrigerators, microwave ovens, transformers, cell phones, and cell phone towers. The amount of EMF generated, measured in watts per meter square (w/m²), by cell phones is in the range of 0.08- 4.439 w/m² for frequencies of 1800 MHz to 50 GHz. Cell towers that act as reception and transmission units radiate more than 100,000 w/m2. The safe level of exposure to EMF is 0.09 w/m², while higher doses of exposures are acceptable when speaking on the devices for a short duration (Gowd et al. 284).

The problem of EMF exposure is twofold. The first problem is the exposure caused by prolonged use of cell phones for more than an hour when people speak continuously on their devices. Danger also comes when users keep the phones in their shirt and pant pockets or keep them under the pillow when they sleep. Continuous exposure to EMF during sleep of 6-8 hours in the night is harmful. The second problem comes from cell towers erected in housing societies, in residential or office complexes.

Residents of buildings with cell towers are constantly exposed to severe EMF. The results of excessive EMF are headaches, memory loss, cardiovascular problems, low sperm counts and reduced sex drive, cancer of the brain and soft tissues, and birth defects of the fetus in the case of pregnant women. Household devices such as microwave ovens have sufficient lining and safety components that absorb EMF waves and minimal flux of waves is leaked to the environment. Cell phones are light and slim and the plastic casing does not absorb the waves. Cell towers are much more dangerous since they affect the health of many people in a large area (Gowd et al. 287).

Raw Materials used in Cell Phone Manufacturer

A major effect on the environment is the excess use of raw materials in cell phone manufacture. A cell phone has 40% of metal components, 40% plastics, about 20% trace metals, and ceramics. The raw materials used for these components are extracted from mines, processed, and then manufactured into sub-assemblies for the mobile phone. Power, water, and the fuel used in these items are high, considering the manufacture of a large number of mobile phones.

The mother-board or the circuit board has several embedded circuits made of metals such as lead, nickel, copper, beryllium, zinc, tantalum, and trace amounts of gold. The board is made of silica, crude oil is used for plastics, limestone and sand are used for fiberglass, and these materials are mined in large amounts causing damage to the environment. The Liquid Crystal Display or the touch-sensitive flat screen is made of materials such as silica, indium, mercury, glass, and plastic. The rechargeable battery is made of materials such as nickel-metal hydride, lithium-ion, nickel-cadmium, and these batteries contain lead, zinc, cadmium, metallic oxide, cobalt, nickel, and others.

These metals are mined as ores and then subjected to refining and processing, using large quantities of water and fuel. Plastic is made from crude oil derivatives and other chemicals. Many of these materials such as lead, nickel, mercury, and the chemicals are toxic. Cell phone factory workers are exposed directly to these materials, while discarded materials leach poisonous toxins in water bodies. These toxins are imbibed by fish, aquatic animals, insects, animals, and plants through the water-soil-plant pathway, and poison humans and animals (Kiddee et al. 1240).

Manufacturing of parts such as circuit boards, keypads, display screens, batteries, casing, and other components is energy and labor-intensive industry While many operations are automated, manufacturing is done with sophisticated machinery with a short life, high levels of power, and energy are used, and pollution in the form of water and airborne pollutants occurs. There is additional pollution and harm to the environment when coal is used to generate power. Coal plants produce toxic particulate matter that settles on plants, is suspended in the air and dissolves in water bodies. The toxins have a long-life and they continue to harm the environment even when dumped in landfills (Heacock et al. 559).

Transportation and Logistics

Many minerals used as raw materials are mined in Africa, China, and other regions. Extraction and refining plants of the minerals are located in India, China, Europe, and the US, while, manufacture of sub-assemblies and the complete product is done in China and India. Finished products are distributed across the world. Therefore, the logistics of the raw material from ore to final distribution centers cover the whole world.

The screen of mobile phones is a mixture of aluminum silica, indium, and tin. China exports 3000 tons of tin used for soldering. The battery is made of manganese, cobalt, and lithium. In 2014, Argentina, China, Australia, and Tibet produced 27,000 tons of Lithium. Electronic circuits of the cell phone and transmission of internal data are facilitated by silicon, antimony, gallium, indium, boron, phosphorous, and arsenic, all highly poisonous substances.

Congo exported 900,000 tons of copper in 2013. Micro-capacitors are made of palladium, platinum, niobium, tantalum, and Colton. Congo and Rwanda exported 2.4 million tons of these ores. Other products such as amplifiers, receivers, vibrators are powered by magnets made from gallium and arsenic, and South Africa is the highest exporters. China produced 80% of the global requirements of gallium and this metal is used in amplifiers, digital circuits, and in screens.

Tungsten is used in motors and China, Rwanda, Russia, Uganda, and Burundi, produced these metals, while East Africa produced 710 tons of this metal. China produces about 90% of the global requirement for neodymium, used in magnets, Cell phone casings are made from metals and plastics, with magnesium, and several petro-compounds used in the manufacture. Nations such as China, India, the US, and Brazil are the major exporters of magnesium. Underdeveloped economies such as Uganda, Rwanda, and others, derive their income from mineral exports (Olingo).

Low efficiency, high polluting, open-pit mines are constructed, and no thought is given to the number of toxic metals that are leached into the water bodies and soil, severely harming the environment. The cycle does not end here since the raw materials are shipped to China and India, where the ore is refined, and ingots of pure metals are produced. These items are then shipped to part manufacturers who process the parts to make components. The components are then shipped or airlifted to factories in China, India, the US, and South America, for further processing and assembly. The ready-to-market mobile phones are then airlifted to stores across the globe.

Therefore, a mobile phone has materials that traveled thousands of kilometers, damaging the environment along the supply chain (Ivanov et al. 54). The assessment is that large supply chains covering raw material, processing, manufacture, and shipping of finished components consume vast natural resources. The carbon footprint of the operations is substantial, causing damage to the environment.

Methods used for Collection, Processing, and Recycling of E-Waste

As noted in the introduction, e-waste generation is about 41.8 million tons in 2014, and by 2018, this figure is expected to reach 50 million tons. About 8% of this total weight is from cell phones. Advanced nations generate maximum waste. Old cell phones are reusable and they can be refurbished and reused. However, residents of advanced countries to replace their phones every 1-2 years, even though the old devices are operational.

Cell phone manufacturers create subassemblies that require replacement of the whole part costing a hundred dollars or more, even though a small resistor, costing a few dollars may be malfunctioning. It appears that these firms, parts dealers, and repair centers, make more profits when the whole sub-assembly is replaced. In some cases, for a mid-level phone, it costs slightly more to buy a new phone than to get the faulty device repaired, with no guarantees. In any case, the customer has to find a replacement phone until the device is repaired. Regulatory authorities appear powerless to stop these predatory tactics by device manufacturers, leading to increased e-waste generation (Tanskanen 1005).

E-waste provides opportunities for recyclers and salvagers. As noted in the previous sections, e-waste contains valuable metals that can be recovered and recycled for use in electronic products. An estimate shows that about $53.4 bn is present in discarded e-waste. Given the small number of precious metals present in each device, recyclers have to process more than 1000 tons to recover 100 grams of gold. The circuit board has metals such as steel, copper, aluminum, gold, silver, palladium, platinum, etc., with potential revenue of $23,500/ ton. However, these metals have different physical properties.

Extracting each metal requires different processes or equipment, adding to the costs (Sthiannopkao and Ming 1151). Besides, hazardous materials such as lead, arsenic, gallium, and other toxins are embedded in the parts, and any extraction process poses health risks to workers. Out of these metals, gold and palladium provide the maximum returns. Salvage and recycling can happen only when economies of scale can be applied to reduce costs. Plastic waste such as casings, covers, cannot be salvaged. Plastic parts can be shredded and used to make parts for domestic appliances and the automotive industry (Heacock et al. 556).

Salvaging and recycling materials can help to save the environment in many ways. The recovered metal can be used to make components and in the assembly of mobile phones. This will reduce the demand to a certain extent on mining and processing, since the recovered metal can be directly used, and wasteful mining activities will reduce. Power used in mining and processing will reduce, though some power will be needed to make the components that go into the cell phone. Recyclers and salvagers will make profits and scale up their operations to recycle more components. Overall, the environment will benefit from salvaging.

Some concerns are that melting and burning the circuit board and plastic insulations to recover the metal releases several toxins. These include antimony, cadmium, chromium, lead, mercury, phosphors, biphenyl ether, polychlorinated biphenyl, polybrominated hexavalent chromium, poly-brominated flame retardants in plastics, and ozone-depleting substances. Sufficient care must be taken to trap these chemicals and dispose of them safely, else, the negative impact on the environment will be severe (Kumar et al. 37).

Methods of collecting, segregating, and disposing of e-waste need some consideration and thought. People would not take excessive efforts to send discarded devices for disposal. Advanced nations such as Canada, Germany, the US, and others, have developed an easy and convenient method to collect e-waste. Some mobile phone manufacturers offer exchange offers, where old phones are taken in and new phones are sold at slightly lower prices.

Other methods are disposal in garbage areas, drop-off at stores, and designated spaces, where special bins are provided for users to drop their unwanted devices. Some people donate or resell, while others get their devices upgraded and repaired. Some countries have firms that offer recycling services for a small fee, while others take away old devices for free. These recycling agencies need to have licenses to practice, and they have to undergo audits.

Where e-waste is disposed of in landfills, a fee of up to $100/ ton may be charged. The recycled items are wrapped in plastic sheets and buried in the ground. This practice is not safe and it causes leaching of chemicals into the ground and water systems. Government policies are needed to encourage recycling and disposal in landfills or in garbage dumps that must be penalized (Kumar et al. 40).

The thesis statement proposed in the introduction section is discussed as follows. Cell phones and waste from cell phones cause some diseases and problems and damage the environment. Cell phones emit EMF and constant exposure can lead to diseases such as cancer, headaches, vision problems, weakening of cardiac muscles, and damage to soft tissues, and birth defects to the fetus. Cell phones have several toxic metals and chemicals such as arsenic, antimony, cadmium, chromium, lead, mercury, phosphorus, etc. Ingestion of these chemicals through the food cycle can lead to several ailments and diseases. Therefore, excessive use of cell phones, exposure to the cell tower, leads to a high dosage of EMF radiations that are harmful.

The safe collection, disposal, and recycling present several opportunities and challenges. Opportunities are seen in the form of recovered metals that can be reused to make components. Challenges are seen in developing viable business models to provide sufficient returns for investments made for scrap recovery operations. Users must be encouraged to dispose of their old devices at designated places, so that collection becomes easier. Unless economies of scale are applied and costs are reduced, recycling is not intensive, and the environment will suffer.

The paper researched the environmental problems caused by cell phones and their impact on society. With the widespread use of cell phones, the number of cell phones in the world is more than seven billion, with a large percentage disposed of. Cell phones and cell phone towers emit harmful EMF radiations and prolonged exposure to these emissions leads to problems such as headaches, cancer, reduced sperm count, loss of libido, cardiac problems, birth defects, and many other diseases.

Discarded cell phones are an environmental hazard since they leach harmful chemicals into water bodies and the ground. The supply chain used for mining, processing, manufacture of components and finished products, and their distribution, causes pollution. Many metals such as gold, silver, copper, arsenic, gallium, palladium, platinum, etc., and these can be recovered through the salvaging process.

However, recycling procedures emit dangerous gases with arsenic, lead, and gallium. Recycling will help to save the environment to some extent, provided the salvage operations are cost-effective, and economies of scale can be applied. Existing methods for the disposal of cell phones, their collection, recycling, and salvage must be more intensive. These procedures must be made more robust through government policies.

Gowd, Parandham, et al. “Determination of Invisible Environmental Pollution due to Cell Phones EMF Radiation and Projections for 2030.” Current World Environment , vol. 8, no. 2, 2013, pp. 283-290.

Heacock, Michelle, et al. “E-waste and Harm to Vulnerable Populations: A Growing Global Problem.” Environmental Health Perspectives , vol. 124, no. 5, 2016, pp. 550-561.

Ivanov, Dmitry, et al. Global Supply Chain and Operations Management: A Decision-Oriented Introduction to the Creation of Value . Springer, 2016.

Kiddee, Peeranart, et al. “Electronic Waste Management Approaches: An Overview.” Waste Management , vol. 33, no. 5, 2013, pp. 1237-1250.

Kumar, Amit, et al. “E-waste: An Overview on Generation, Collection, Legislation and Recycling Practices.” Resources, Conservation and Recycling , vol. 122, 2017, pp. 32-42.

Logan, Catalina. “ Effects of Cell Phones as an Environmental Hazard .” LiveStrong . 2015. Web.

Olingo, Allan. “ Minerals in your Mobile Phone. ” The East African . 2015. Web.

Statista. “ Number of Smartphones Sold to End Users Worldwide from 2007 to 2016 (in million units). ” Statista , 2017. Web.

Sthiannopkao, Suthipong, and Ming, Wong. “Handling E-Waste in Developed and Developing Countries: Initiatives, Practices, and Consequences.” Science of the Total Environment , vol. 463, no. 2013, 2013, pp. 1147-1153.

Tanskanen, Pia. “Management and Recycling of Electronic Waste.” Acta Materialia , vol. 61, no.3, 2013, pp. 1001-1011.

Yin, Jianfeng, et al. “Survey and Analysis of Consumers Behavior of Waste Mobile Phone Recycling in China.” Journal of Cleaner Production , vol. 65, no. 2014, 2014, pp. 517-525.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, April 26). Environmental Effects of Cell Phones on Society. https://ivypanda.com/essays/environmental-effects-of-cell-phones-on-society/

"Environmental Effects of Cell Phones on Society." IvyPanda , 26 Apr. 2024, ivypanda.com/essays/environmental-effects-of-cell-phones-on-society/.

IvyPanda . (2024) 'Environmental Effects of Cell Phones on Society'. 26 April.

IvyPanda . 2024. "Environmental Effects of Cell Phones on Society." April 26, 2024. https://ivypanda.com/essays/environmental-effects-of-cell-phones-on-society/.

1. IvyPanda . "Environmental Effects of Cell Phones on Society." April 26, 2024. https://ivypanda.com/essays/environmental-effects-of-cell-phones-on-society/.

Bibliography

IvyPanda . "Environmental Effects of Cell Phones on Society." April 26, 2024. https://ivypanda.com/essays/environmental-effects-of-cell-phones-on-society/.

  • Doping Characteristics of Gallium Nitride (GaN)
  • Agricultural Exposure to Arsenic
  • US Use of EMF Weapons Devices on humans
  • E-Waste Management: Reducing the Toxicity
  • E-Waste Disposal in US
  • E-Waste Management for the Local Environment
  • E-Waste Causes and Effects
  • Proper Recycling of E-Waste in the Southern New Jersey Community
  • E-Waste Management in the US: In Search of a Financial Model
  • Non-Silicon Transistors and Its Fabrication
  • Fifth Generation Mobile Networks Technology
  • Samsung Note 7 Failure Case Study
  • Apple Mobile Handset Improvement: Weather Resistance
  • Short Message Service (Center) Technologies
  • Outcomes of the Phone Usage While Driving
  • Share full article

Advertisement

Subscriber-only Newsletter

David Wallace-Wells

Are smartphones driving our teens to depression.

A person with glasses looks into a smartphone and sees his own reflection.

By David Wallace-Wells

Opinion Writer

Here is a story. In 2007, Apple released the iPhone, initiating the smartphone revolution that would quickly transform the world. In 2010, it added a front-facing camera, helping shift the social-media landscape toward images, especially selfies. Partly as a result, in the five years that followed, the nature of childhood and especially adolescence was fundamentally changed — a “great rewiring,” in the words of the social psychologist Jonathan Haidt — such that between 2010 and 2015 mental health and well-being plummeted and suffering and despair exploded, particularly among teenage girls.

For young women, rates of hospitalization for nonfatal self-harm in the United States, which had bottomed out in 2009, started to rise again, according to data reported to the C.D.C., taking a leap beginning in 2012 and another beginning in 2016, and producing , over about a decade, an alarming 48 percent increase in such emergency room visits among American girls ages 15 to 19 and a shocking 188 percent increase among girls ages 10 to14.

Here is another story. In 2011, as part of the rollout of the Affordable Care Act, the Department of Health and Human Services issued a new set of guidelines that recommended that teenage girls should be screened annually for depression by their primary care physicians and that same year required that insurance providers cover such screenings in full. In 2015, H.H.S. finally mandated a coding change, proposed by the World Health Organization almost two decades before, that required hospitals to record whether an injury was self-inflicted or accidental — and which seemingly overnight nearly doubled rates for self-harm across all demographic groups. Soon thereafter, the coding of suicidal ideation was also updated. The effect of these bureaucratic changes on hospitalization data presumably varied from place to place. But in one place where it has been studied systematically, New Jersey, where 90 percent of children had health coverage even before the A.C.A., researchers have found that the changes explain nearly all of the state’s apparent upward trend in suicide-related hospital visits, turning what were “essentially flat” trendlines into something that looked like a youth mental health “crisis.”

Could both of these stories be partially true? Of course: Emotional distress among teenagers may be genuinely growing while simultaneous bureaucratic and cultural changes — more focus on mental health, destigmatization, growing comfort with therapy and medication — exaggerate the underlying trends. (This is what Adriana Corredor-Waldron, a co-author of the New Jersey study, believes — that suicidal behavior is distressingly high among teenagers in the United States and that many of our conventional measures are not very reliable to assess changes in suicidal behavior over time.) But over the past several years, Americans worrying over the well-being of teenagers have heard much less about that second story, which emphasizes changes in the broader culture of mental illness, screening guidelines and treatment, than the first one, which suggests smartphones and social-media use explain a whole raft of concerns about the well-being of the country’s youth.

When the smartphone thesis first came to prominence more than six years ago, advanced by Haidt’s sometime collaborator Jean Twenge, there was a fair amount of skepticism from scientists and social scientists and other commentators: Were teenagers really suffering that much? they asked. How much in this messy world could you pin on one piece of technology anyway? But some things have changed since then, including the conventional liberal perspective on the virtues of Big Tech, and, in the past few years, as more data has rolled in and more red flags have been raised about American teenagers — about the culture of college campuses, about the political hopelessness or neuroticism or radicalism or fatalism of teenagers, about a growing political gender divide, about how often they socialize or drink or have sex — a two-part conventional wisdom has taken hold across the pundit class. First, that American teenagers are experiencing a mental health crisis; second, that it is the fault of phones.

“Smartphones and social media are destroying children’s mental health,” the Financial Times declared last spring. This spring, Haidt’s new book on the subject, The Anxious Generation: How the Great Rewiring of Childhood Is Causing an Epidemic of Mental Illness, debuted at the top of the New York Times best-seller list. In its review of the book, The Guardian described the smartphone as “a pocket full of poison,” and in an essay , The New Yorker accepted as a given that Gen Z was in the midst of a “mental health emergency” and that “social media is bad for young people.” “Parents could see their phone-obsessed children changing and succumbing to distress,” The Wall Street Journal reflected . “Now we know the true horror of what happened.”

But, well, do we? Over the past five years, “Is it the phones?” has become “It’s probably the phones,” particularly among an anxious older generation processing bleak-looking charts of teenage mental health on social media as they are scrolling on their own phones. But however much we may think we know about how corrosive screen time is to mental health, the data looks murkier and more ambiguous than the headlines suggest — or than our own private anxieties, as parents and smartphone addicts, seem to tell us.

What do we really know about the state of mental health among teenagers today? Suicide offers the most concrete measure of emotional distress, and rates among American teenagers ages 15 to 19 have indeed risen over the past decade or so, to about 11.8 deaths per 100,000 in 2021 from about 7.5 deaths per 100,000 in 2009. But the American suicide epidemic is not confined to teenagers. In 2022, the rate had increased roughly as much since 2000 for the country as a whole, suggesting a national story both broader and more complicated than one focused on the emotional vulnerabilities of teenagers to Instagram. And among the teenagers of other rich countries, there is essentially no sign of a similar pattern. As Max Roser of Our World in Data recently documented , suicide rates among older teenagers and young adults have held roughly steady or declined over the same time period in France, Spain, Italy, Austria, Germany, Greece, Poland, Norway and Belgium. In Sweden there were only very small increases.

Is there a stronger distress signal in the data for young women? Yes, somewhat. According to an international analysis by The Economist, suicide rates among young women in 17 wealthy countries have grown since 2003, by about 17 percent, to a 2020 rate of 3.5 suicides per 100,000 people. The rate among young women has always been low, compared with other groups, and among the countries in the Economist data set, the rate among male teenagers, which has hardly grown at all, remains almost twice as high. Among men in their 50s, the rate is more than seven times as high.

In some countries, we see concerning signs of convergence by gender and age, with suicide rates among young women growing closer to other demographic groups. But the pattern, across countries, is quite varied. In Denmark, where smartphone penetration was the highest in the world in 2017, rates of hospitalization for self-harm among 10- to 19-year-olds fell by more than 40 percent between 2008 and 2016. In Germany, there are today barely one-quarter as many suicides among women between 15 and 20 as there were in the early 1980s, and the number has been remarkably flat for more than two decades. In the United States, suicide rates for young men are still three and a half times as high as for young women, the recent increases have been larger in absolute terms among young men than among young women, and suicide rates for all teenagers have been gradually declining since 2018. In 2022, the latest year for which C.D.C. data is available, suicide declined by 18 percent for Americans ages 10 to 14 and 9 percent for those ages 15 to 24.

None of this is to say that everything is fine — that the kids are perfectly all right, that there is no sign at all of worsening mental health among teenagers, or that there isn’t something significant and even potentially damaging about smartphone use and social media. Phones have changed us, and are still changing us, as anyone using one or observing the world through them knows well. But are they generating an obvious mental health crisis?

The picture that emerges from the suicide data is mixed and complicated to parse. Suicide is the hardest-to-dispute measure of despair, but not the most capacious. But while rates of depression and anxiety have grown strikingly for teenagers in certain parts of the world, including the U.S., it’s tricky to disentangle those increases from growing mental-health awareness and destigmatization, and attempts to measure the phenomenon in different ways can yield very different results.

According to data Haidt uses, from the U.S. National Survey on Drug Use and Health, conducted by the Substance Abuse and Mental Health Services Administration, the percent of teenage girls reporting major depressive episodes in the last year grew by about 50 percent between 2005 and 2017, for instance, during which time the share of teenage boys reporting the same grew by roughly 75 percent from a lower level. But in a biannual C.D.C. survey of teenage mental health, the share of teenagers reporting that they had been persistently sad for a period of at least two weeks in the past year grew from only 28.5 percent in 2005 to 31.5 percent in 2017. Two different surveys tracked exactly the same period, and one showed an enormous increase in depression while the other showed almost no change at all.

And if the rise of mood disorders were a straightforward effect of the smartphone, you’d expect to see it everywhere smartphones were, and, as with suicide, you don’t. In Britain, the share of young people who reported “feeling down” or experiencing depression grew from 31 percent in 2012 to 38 percent on the eve of the pandemic and to 41 percent in 2021. That is significant, though by other measures British teenagers appear, if more depressed than they were in the 2000s, not much more depressed than they were in the 1990s.

Overall, when you dig into the country-by-country data, many places seem to be registering increases in depression among teenagers, particularly among the countries of Western Europe and North America. But the trends are hard to disentangle from changes in diagnostic patterns and the medicalization of sadness, as Lucy Foulkes has argued , and the picture varies considerably from country to country. In Canada , for instance, surveys of teenagers’ well-being show a significant decline between 2015 and 2021, particularly among young women; in South Korea rates of depressive episodes among teenagers fell by 35 percent between 2006 and 2018.

Because much of our sense of teenage well-being comes from self-reported surveys, when you ask questions in different ways, the answers vary enormously. Haidt likes to cite data collected as part of an international standardized test program called PISA, which adds a few questions about loneliness at school to its sections covering progress in math, science and reading, and has found a pattern of increasing loneliness over the past decade. But according to the World Happiness Report , life satisfaction among those ages 15 to 24 around the world has been improving pretty steadily since 2013, with more significant gains among women, as the smartphone completed its global takeover, with a slight dip during the first two years of the pandemic. An international review published in 2020, examining more than 900,000 adolescents in 36 countries, showed no change in life satisfaction between 2002 and 2018.

“It doesn’t look like there’s one big uniform thing happening to people’s mental health,” said Andrew Przybylski, a professor at Oxford. “In some particular places, there are some measures moving in the wrong direction. But if I had to describe the global trend over the last decade, I would say there is no uniform trend showing a global crisis, and, where things are getting worse for teenagers, no evidence that it is the result of the spread of technology.”

If Haidt is the public face of worry about teenagers and phones, Przybylski is probably the most prominent skeptic of the thesis. Others include Amy Orben, at the University of Cambridge, who in January told The Guardian, “I think the concern about phones as a singular entity are overblown”; Chris Ferguson, at Stetson University, who is about to publish a new meta-analysis showing no relationship between smartphone use and well-being; and Candice Odgers, of the University of California, Irvine, who published a much-debated review of Haidt in Nature, in which she declared “the book’s repeated suggestion that digital technologies are rewiring our children’s brains and causing an epidemic of mental illness is not supported by science.”

Does that overstate the case? In a technical sense, I think, no: There may be some concerning changes in the underlying incidence of certain mood disorders among American teenagers over the past couple of decades, but they are hard to separate from changing methods of measuring and addressing mental health and mental illness. There isn’t great data on international trends in teenage suicide — but in those places with good reporting, the rates are generally not worsening — and the trends around anxiety, depression and well-being are ambiguous elsewhere in the world. And the association of those local increases with the rise of the smartphone, while now almost conventional wisdom among people like me, is, among specialists, very much a contested claim. Indeed, even Haidt, who has also emphasized broader changes to the culture of childhood , estimated that social media use is responsible for only about 10 percent to 15 percent of the variation in teenage well-being — which would be a significant correlation, given the complexities of adolescent life and of social science, but is also a much more measured estimate than you tend to see in headlines trumpeting the connection. And many others have arrived at much smaller estimates still.

But this all also raises the complicated question of what exactly we mean by “science,” in the context of social phenomena like these, and what standard of evidence we should be applying when asking whether something qualifies as a “crisis” or “emergency” and what we know about what may have caused it. There is a reason we rarely reduce broad social changes to monocausal explanations, whether we’re talking about the rapid decline of teenage pregnancy in the 2000s, or the spike in youth suicide in the late ’80s and early 1990s, or the rise in crime that began in the 1960s: Lives are far too complex to easily reduce to the influence of single factors, whether the factor is a recession or political conditions or, for that matter, climate breakdown.

To me, the number of places where rates of depression among teenagers are markedly on the rise is a legitimate cause for concern. But it is also worth remembering that, for instance, between the mid-1990s and the mid-2000s, diagnoses of American youth for bipolar disorder grew about 40-fold , and it is hard to find anyone who believes that change was a true reflection of underlying incidence. And when we find ourselves panicking over charts showing rapid increases in, say, the number of British girls who say they’re often unhappy or feel they are a failure, it’s worth keeping in mind that the charts were probably zoomed in to emphasize the spike, and the increase is only from about 5 percent of teenagers to about 10 percent in the first case, or from about 15 percent to about 20 percent in the second. It may also be the case, as Orben has emphasized , that smartphones and social media may be problematic for some teenagers without doing emotional damage to a majority of them. That’s not to say that in taking in the full scope of the problem, there is nothing there. But overall it is probably less than meets the eye.

If you are having thoughts of suicide, call or text 988 to reach the 988 Suicide and Crisis Lifeline or go to SpeakingOfSuicide.com/resources for a list of additional resources.

Further reading (and listening):

On Jonathan Haidt’s After Babel Substack , a series of admirable responses to critics of “The Anxious Generation” and the smartphone thesis by Haidt, his lead researcher Zach Rausch, and his sometime collaborator Jean Twenge.

In Vox, Eric Levitz weighs the body of evidence for and against the thesis.

Tom Chivers and Stuart Ritchie deliver a useful overview of the evidence and its limitations on the Studies Show podcast.

Five experts review the evidence for the smartphone hypothesis in The Guardian.

A Substack survey of “diagnostic inflation” and teenage mental health.

IMAGES

  1. 🐈 Cell phones in school essay. Benefits of Bringing Cell Phones in

    thesis statement about cell phone use

  2. Impact of Mobile Phones

    thesis statement about cell phone use

  3. PPT

    thesis statement about cell phone use

  4. Analysis of the Impact of Cell Phones Free Essay Example

    thesis statement about cell phone use

  5. 😍 Cause and effect essay on smartphones. Causes And Effect Of Mobile

    thesis statement about cell phone use

  6. How Cell Phones Affect Our Lives Essay Example

    thesis statement about cell phone use

VIDEO

  1. How to Write a THESIS Statement

  2. How To Write A Thesis Statement

  3. Essay on Mobile phones 10 lines important Essay on mobile phone

  4. Essay On Benefits of Smartphone

  5. Thesis Statements

  6. Uses and Abuses of Mobile phone Essay in English with Quotations|Essay Writing in English

COMMENTS

  1. The Use and Effect of Smartphones in Students Learning Activities

    using their phones for playing games and other leisure activities more than for learning. According to the researchers own preliminary investigation, it was noted that despite the remarkable benefits of the smartphone in learning, students mostly use a smartphone on social media platforms such as Facebook, WhatsApp, Instagram, twitter, snapchat ...

  2. PDF Mobile phones in the classroom: Policies and potential pedagogy

    In contrast to current educators, 45% supported the use of mobile phones in the classroom (while 25% did not), compared to earlier research that found only one-fourth of the preservice teachers supported their use. More than half of the preservice teachers (58%) indicated that mobile phones support student learning, whereas far fewer (21% ...

  3. The impact of smartphone use on learning effectiveness: A ...

    This study investigated the effects of smartphone use on the perceived academic performance of elementary school students. Following the derivation of four hypotheses from the literature, descriptive analysis, t testing, one-way analysis of variance (ANOVA), Pearson correlation analysis, and one-way multivariate ANOVA (MANOVA) were performed to characterize the relationship between smartphone ...

  4. (PDF) A Qualitative Study of The Perceived Impact of Mobile Phone

    the result of campaigns to help educate and self-restrict the use of their phones while driving; as found in research conducted by Cismaru & Nimegeers (2016). 4.3.7 Isolating

  5. Mobile phones: Impacts, challenges, and predictions

    This statement is not hyperbole. There are more mobile phones in use today than there are people, but measuring quantity alone trivializes the importance of the mobile phone to those who rely on it. ... Since that cell phone sold for $4,000, the equivalent of about $10,000 today, chances of even encountering one were slim. In 1989, Motorola ...

  6. (PDF) (Academic Research Paper) The impact of mobile technology on

    An introduction to the literature will show the dramatic increase of cell phone ownership across the United States (Anderson, 2015). This dramatic increase can have numerous effects on all persons ...

  7. PDF Cell Phones, Student Rights, and School Safety: Finding the Right ...

    49. Cell Phones, Student Rights, and School Safety: Finding the Right Balance. William T. Smale¹, Ryan Hutcheson², & Charles J. Russo³. ¹Trent University, ²McMaster University, ³University of Dayton. Abstract. Despite the potential instructional benefits of integrating devices such as cell phones into schools and.

  8. Effect of Student Classroom Cell Phone Usage on Teachers

    The increase in student cell phone use in classrooms has led to a decrease in. academic performance and satisfaction with instruction (Dietz & Henrich, 2014). Currently, it is unknown as to whether student classroom cell phone usage has any effect. on the teacher. The purpose of this study was to determine student and teacher opinions.

  9. Perceptions of the Influence of Cell Phones and Social Media Usage On

    content on their cell phones; for instance, some students will cry or laugh after they read. a tweet, post, or text messages on their cell phones and it affects their emotional status. and academic performance during class. As a researcher, I will be exploring stakeholders' perception of cell phone and social.

  10. PDF Cell Phone Use and The Associated Health Risks Among Adults

    Section 2.1.2 explains the uses of cell phone generally and in health care settings. Section 2.1.3 explains health concerns over cell phone use and 2.1.4 gives a broader view of pos-sible cell phone risks on human health. 2.1 The evolution of cell phone and its expansion worldwide Cell phone is not the discovery of modernized age.

  11. What is a suitable thesis for a research paper about the history and

    In terms of writing a term paper on cell phones, the thesis would depend upon specifically what you plan to write about. In terms of your introduction and thesis statement:

  12. Impact of Mobile Phones on Society

    Mobile phones have led to the invention of new businesses, where some people have invested in selling the gadgets, and others deliver premium content, for example, ringtones, alerts, logos, and others. Some people have secured jobs with the companies that produce the gadgets. Mobile phones have made the work of business easier; they stimulated ...

  13. How to Write a Thesis Statement

    Step 2: Write your initial answer. After some initial research, you can formulate a tentative answer to this question. At this stage it can be simple, and it should guide the research process and writing process. The internet has had more of a positive than a negative effect on education.

  14. Experts see pros and cons to allowing cellphones in class

    Bans may help protect classroom focus, but districts need to stay mindful of students' sense of connection, experts say. Students around the world are being separated from their phones. In 2020, the National Center for Education Statistics reported that 77 percent of U.S. schools had moved to prohibit cellphones for nonacademic purposes.

  15. Environmental Effects of Cell Phones on Society Essay

    Cell phone towers generate harmful radiation, and toxins enter the food chain, and the environment causing long term harm (Logan). The thesis statement is excessive use of cell phones leads to health problems, and scrap metals, hazardous chemicals must be collected and recycled to yield profits, and for environment safety.

  16. (PDF) Cell phone use while driving: a literature review and

    this paper, the increased risk of collision when using a cell phone while driving was found to b e between. 1.3 and 5.59 times greater than no n-users. Real-world data, although scarce, has also ...

  17. The impact of smartphone use on learning effectiveness: A case study of

    This study investigated the effects of smartphone use on the perceived academic performance of elementary school students. Following the derivation of four hypotheses from the literature, descriptive analysis, t testing, one-way analysis of variance (ANOVA), Pearson correlation analysis, and one-way multivariate ANOVA (MANOVA) were performed to characterize the relationship between smartphone ...

  18. Thesis statement about being able to use cell phones in ...

    Cell Phones Thesis. researcher conceptualize the effects of cell phone use of students during classes. In addition to the related literature are local and foreign studies that helped the researcher in the analysis of the problems under study. It has provided an insight to enrich this investigation and understanding of the study's problem.

  19. Titles hooks theses for cell phone essays

    Titles and Hooks and Theses--Oh, MY! Instructions: Read these titles, hooks and thesis statements, and select the top five of each, ranked 1 through 5. Type your explanations for your ranking of each based SOLELY upon their applicability to the topic of this essay, which is NOT "cell phone addiction." That was the far end of the articles that ...

  20. Opinion

    Here is a story. In 2007, Apple released the iPhone, initiating the smartphone revolution that would quickly transform the world. In 2010, it added a front-facing camera, helping shift the social ...

  21. Cell Phone Use While Driving Essay

    Cell Phones While Driving Thesis. Thesis on Cell Phone Use Despite an effective way of communication, using cell phones during driving results in the distracted attention of driver increasing road safety concerns. ... The thesis statement of this persuasive essay is that cell phone usage while driving has a negative impact on the overall road ...

  22. Cell Phones While Driving Thesis

    Cell Phones While Driving Thesis. Decent Essays. 1228 Words. 5 Pages. Open Document. Thesis on Cell Phone Use. Despite an effective way of communication, using cell phones during driving results in the distracted attention of driver increasing road safety concerns. Nearly everyone is using cell phones in their day routine lives.

  23. Benefits of cell phones

    Thesis statement: Cell phones are a huge asset when used properly and for the right reason. Subtopic1: Cell phones can be very useful and most of us use them every day. Subtopic2: Cell phones can make life a lot easier for some of us and it is very convenient for most of us.