What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

  • Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Null Hypothesis Definition and Examples
  • Definition of a Hypothesis
  • What Are the Elements of a Good Hypothesis?
  • Six Steps of the Scientific Method
  • Independent Variable Definition and Examples
  • What Are Examples of a Hypothesis?
  • Understanding Simple vs Controlled Experiments
  • Scientific Method Flow Chart
  • Scientific Method Vocabulary Terms
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • What 'Fail to Reject' Means in a Hypothesis Test
  • How To Design a Science Fair Experiment
  • What Is an Experiment? Definition and Design
  • Hypothesis Test for the Difference of Two Population Proportions
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

scientific method disprove hypothesis

Understanding Science

How science REALLY works...

  • Understanding Science 101
  • Misconceptions
  • Testing ideas with evidence is at the heart of the process of science.
  • Scientific testing involves figuring out what we would  expect  to observe if an idea were correct and comparing that expectation to what we  actually  observe.

Misconception:  Science proves ideas.

Misconception:  Science can only disprove ideas.

Correction:  Science neither proves nor disproves. It accepts or rejects ideas based on supporting and refuting evidence, but may revise those conclusions if warranted by new evidence or perspectives.  Read more about it.

Testing scientific ideas

Testing ideas about childbed fever.

As a simple example of how scientific testing works, consider the case of Ignaz Semmelweis, who worked as a doctor on a maternity ward in the 1800s. In his ward, an unusually high percentage of new mothers died of what was then called childbed fever. Semmelweis considered many possible explanations for this high death rate. Two of the many ideas that he considered were (1) that the fever was caused by mothers giving birth lying on their backs (as opposed to on their sides) and (2) that the fever was caused by doctors’ unclean hands (the doctors often performed autopsies immediately before examining women in labor). He tested these ideas by considering what expectations each idea generated. If it were true that childbed fever were caused by giving birth on one’s back, then changing procedures so that women labored on their sides should lead to lower rates of childbed fever. Semmelweis tried changing the position of labor, but the incidence of fever did not decrease; the actual observations did not match the expected results. If, however, childbed fever were caused by doctors’ unclean hands, having doctors wash their hands thoroughly with a strong disinfecting agent before attending to women in labor should lead to lower rates of childbed fever. When Semmelweis tried this, rates of fever plummeted; the actual observations matched the expected results, supporting the second explanation.

Testing in the tropics

Let’s take a look at another, very different, example of scientific testing: investigating the origins of coral atolls in the tropics. Consider the atoll Eniwetok (Anewetak) in the Marshall Islands — an oceanic ring of exposed coral surrounding a central lagoon. From the 1800s up until today, scientists have been trying to learn what supports atoll structures beneath the water’s surface and exactly how atolls form. Coral only grows near the surface of the ocean where light penetrates, so Eniwetok could have formed in several ways:

Hypothesis 2: The coral that makes up Eniwetok might have grown in a ring atop an underwater mountain already near the surface. The key to this hypothesis is the idea that underwater mountains don’t sink; instead the remains of dead sea animals (shells, etc.) accumulate on underwater mountains, potentially assisted by tectonic uplifting. Eventually, the top of the mountain/debris pile would reach the depth at which coral grow, and the atoll would form.

Which is a better explanation for Eniwetok? Did the atoll grow atop a sinking volcano, forming an underwater coral tower, or was the mountain instead built up until it neared the surface where coral were eventually able to grow? Which of these explanations is best supported by the evidence? We can’t perform an experiment to find out. Instead, we must figure out what expectations each hypothesis generates, and then collect data from the world to see whether our observations are a better match with one of the two ideas.

If Eniwetok grew atop an underwater mountain, then we would expect the atoll to be made up of a relatively thin layer of coral on top of limestone or basalt. But if it grew upwards around a subsiding island, then we would expect the atoll to be made up of many hundreds of feet of coral on top of volcanic rock. When geologists drilled into Eniwetok in 1951 as part of a survey preparing for nuclear weapons tests, the drill bored through more than 4000 feet (1219 meters) of coral before hitting volcanic basalt! The actual observation contradicted the underwater mountain explanation and matched the subsiding island explanation, supporting that idea. Of course, many other lines of evidence also shed light on the origins of coral atolls, but the surprising depth of coral on Eniwetok was particularly convincing to many geologists.

  • Take a sidetrip

Visit the NOAA website to see an animation of coral atoll formation according to Hypothesis 1.

  • Teaching resources

Scientists test hypotheses and theories. They are both scientific explanations for what we observe in the natural world, but theories deal with a much wider range of phenomena than do hypotheses. To learn more about the differences between hypotheses and theories, jump ahead to  Science at multiple levels .

  • Use our  web interactive  to help students document and reflect on the process of science.
  • Learn strategies for building lessons and activities around the Science Flowchart: Grades 3-5 Grades 6-8 Grades 9-12 Grades 13-16
  • Find lesson plans for introducing the Science Flowchart to your students in: Grades 3-5 Grades 6-8 Grades 9-16
  • Get  graphics and pdfs of the Science Flowchart  to use in your classroom. Translations are available in Spanish, French, Japanese, and Swahili.

Observation beyond our eyes

The logic of scientific arguments

Subscribe to our newsletter

  • The science flowchart
  • Science stories
  • Grade-level teaching guides
  • Teaching resource database
  • Journaling tool

Reset password New user? Sign up

Existing user? Log in

Scientific Method

Already have an account? Log in here.

The scientific method is the process by which scientists of all fields attempt to explain the phenomena in the world. It is how science is conducted--through experimentation. Generally, the scientific method refers to a set of steps whereby a scientist can form a conjecture (the hypothesis) for why something functions the way it does and then test their hypothesis. It is an empirical process; it uses real world data to prove the hypothesis. There is no exact set of \(x\) number of steps to conduct scientific experiments, or even some exact \(y\) number of experiments, but the general process involves making an observation, forming an hypothesis, forming a prediction from that hypothesis, and then experimental testing. The scientific method isn't limited to the physical or biological sciences, but also the social sciences, mathematics, computing and other fields where experimentation can be used to prove beliefs.

We could observe that whenever a fire is smothered, it goes out. For instance a small fire that is covered with a blanket is extinguished. We could hypothesize that the reason for this is that fire requires some gas in our air to form and remain a flame. We could then use a vacuum chamber to test this theory. We would predict that outside of a vacuum, a fire could be lit but inside of a vacuum, with no air, that the fire would not ignite. If we were to test this theory, perhaps in multiple vacuums with multiple forms of tinder/fuel (wood, paper, petrol, etc.) and multiple means of ignition, we would notice that the fire never ignites. If we wished, we could further refine our hypothesis, suggesting that fire can only ignite if there is sufficient oxygen in the air. This we'd also test in the vacuum chamber, by pulling out all the air, then adding in different gases. We would notice that the fire would only ignite in the presence of oxygen or an oxidizing agent . It is possible that other, incorrect hypothesis could have been initially formed--such as smothering decreases the surface area the fire has, and could try making different sized fires--and been proven incorrect. Also, it is important to note that this single set of experiments is not enough to turn this hypothesis into a theorem. More experimentation and discovery would be necessary.

The scientific method also refers to the fact that science is ongoing . In some cases scientists continue to collect data to prove and disprove old theories. Or in other cases, scientists have hypothesis for why the universe behaves the way it does but are unable to gather sufficient data to prove their hypothesis. For instance, until recent discoveries at LIGO scientists could not confirm what happened when two black holes collided, although they believed (and it was confirmed in February 2016) that colliding black holes produced gravitational waves .

Steps of the Scientific Method

Falsifiability and why "theory" doesn't mean "untrue", avoiding bias, history and philosophy of science.

The scientific method is often presented as a set of steps, but not always with the same number or type of steps. However, philosophers of science generally agree that any presentation of the scientific method should have the following four steps:

  • Observe - Sometimes referred to as characterizing, defining, or measuring, experimenters first witness some aspect of the universe, for instance, an apple falling. These observations then form a question, such as "Why do objects fall to the earth?"
  • Hypothesize - Scientists then come up with a theory as to why this happens, for instance, the mass of the earth attracts the apple from the air to the ground.
  • Predict - Using the hypothesis, a scientist calculates what measurable data points they believe will result in a given experiment, for instance an apple at a height of \(9.8\) meters should fall to the ground in \(\sqrt{2}\) seconds, or should be at a velocity of \(9.8\sqrt{2}\) m/s the moment before it hits the ground.
  • Experiment - A test is run to determine if the prediction was correct.

With the notion that repeating these steps is also important. If a prediction is proven to be incorrect then alternative predictions and tests are conducted. Maybe even a new hypothesis could be formulated. Even if the hypothesis and prediction are correct, additional predictions and tests need to be run to best support any theory.

While this process can be explained or categorized differently than this, all formulations of the scientific method have empirical observations, a testable hypothesis, and testing data to prove or disprove that hypothesis. Crucial to this, is that an experimenter searches for experiments that produce the most unlikely results and experiments that are least likely to be coincidental . Hypotheses that produce highly unlikely predictions, in situations where little else could explain the result, are more likely to be true. Bayes' theorem can be used to show which predictions are more or less unlikely given some evidence, i.e. which proven predictions are "stronger" than others. For instance, the theory of evolution has been supported by the consistency of DNA across species whose phenomenology are significantly different. Despite the diversity of plant and animal species on Earth, the majority of our DNA is the same, and only 20 amino acids are the building blocks for every known living organism. It would be highly unlikely that vastly different forms of life have the same building blocks after millions, if not billions, of years of external manipulation, if not for some common origin.

The word "theory" can lead to confusion about how true some scientific principle is. Under the scientific method scientists use the word "theory" even for key principles (like gravity) that have been rigorously proven by modern science. This is because the scientific community believes it is important that hypothesis be falsifiable . Falsifiability refers to the fact that theories have been tested in experiments where they could have failed but did not. So when scientists refer to a principle as a theory, for instance Einstein's theory of relativity , they're actually referring to a hypothesis that has undergone the scientific method, i.e. that has been tested and proven true.

For instance, scientists sometimes refer to evolution as the "theory of evolution," which has contributed to the erroneous belief that the modern scientific theory of evolution is false. Really what the "theory of evolution" refers to is the ample research, testing, and empirical evidence that all consistently prove evolution to be true.

That isn't to say that theories can't be later disproven. Part of the advantage to the scientific method is that no theory is ever considered an unbreakable rule. Some theories seem correct given experiments that are run at the time they're created, but are proven wrong as new methods of experimentation are conducted. For instance, Einstein himself believed that the universe was static, not growing or contracting. That was later proven to be false and replaced with a theory that the universe was expanding (the Friedmann-LeMaitre model of an expanding universe , which Einstein himself accepted), but that its rate of expansion was slowing down. This was, in turn, also proven incorrect. The rate of the universe's expansion is speeding up. [1] Generally though, theories are modified over time, they are shown to be true under certain conditions, or partly true, and the strength of a theory may also be related to how long it has held up, without modification, to scrutiny.

Peer review: In modern science, experimenters present both their findings and their methodology for review by their peers, other talented scientists and experimenters. This is done before a work is published, but also publication itself is considered a way of inviting peer review. By sharing and disseminating work widely, the greatest number of others can review the work and offer criticism as needed.

Reproducibility: Related to peer review, is the notion that the results from experiments should be possible to reproduce. If one scientist conducts some experiment, others should be able to conduct the same experiment on their own and achieve the same results. Reproducible experiments strengthen theories.

Double-Blind Testing: Primarily used in medical , psychological , and behavioral economic testing, double-blind testing refers to having a test and control group, and running the experiment such that the person conducting the experiment does not know which is which. For instance, in testing the efficacy of a new drug, a pharmaceutical company may have a medical practitioner administer the new drug to one third of the test population, an existing known drug to another third, and a placebo, meaning something that isn't a drug but seems like it, to the remaining third of the test population, but without the nurse knowing which drug is which. The practitioner would then, still blind, track the progress of the entire testing population, gathering data about each test subject.

Double-blind studies are done to avoid biases that manipulate data, like controlling for the placebo effect where just giving a patient a drug that they perceive will be a cure can be causally linked to a decrease in symptoms. This positive causal effect occurs even with the drug that shouldn't affect the patient in anyway, when it is a sugar pill, or water, so long as the patient believes they are receiving a cure. Also double-blind studies help prevent observation bias, where the administrator of the drug may expect the population who received the new drug to outperform others, and so many inadvertently rate their progress better than other test groups.

A pharmaceutical company has a new drug they want to test to determine its efficacy. They have a hypothesis that this drug is super effective at curing a disease. Which of the following experiments/results best reflects the principles of the scientific method? Which is most scientific?

A) They gave 100 patients with the disease the drug and 100 patients a placebo from a population of 100,000 with the disease, they strictly controlled these patient's diet, limited other medication, and 77 of the subjects reported that their happiness improved significantly.

B) They found a remote island with an indigenous population that's genetically different from other populations and where 200 patients have the disease. They gave 100 patients on the island the drug and 100 a placebo. They strictly controlled these patient's diet, limited other medication, and found that 84 of the test patients had higher red and white blood cell count than the control group, and lower incidents of mortality from the disease than non-island populations.

C) They gave 100 patients with the disease the drug and 100 patients a placebo from a population of 100,000 with the disease, they strictly controlled these patient's diet, limited other medication, and found that only 5 of the test patients had higher red and white blood cell count than the control group, with no other changes in health.

D) They gave 100 patients with the disease the drug and 100 patients a placebo from a population of 100,000 with the disease, allowed both patients to consume and medicate in whatever way those patients desired, and found that 68 of the test patients had higher red and white blood cell count than the control group, with faster speed-to-recovery.

The theory of the scientific method has evolved over time, with modern historians pointing to Aristotle as an originator, and many looking to Thomas Kuhn's seminal work "The Structure of Scientific Revolutions" as a key influence on current conceptions of the method.

Aristotle classified reasoning into three types:

  • Abductive - Also known as guessing, abductive reasoning supposes that the most likely inference is correct. While this isn't rigorous, a well-informed individual is likely to make good guesses, and many significant theories of science have developed first from a guess.
  • Deductive - Deductive reasoning uses premises to reach conclusions. One of the most famous examples being "All men are mortal. Socrates is a man. Therefore, Socrates is mortal."
  • Inductive - Inductive reasoning is the one preferred by scientists, and can be considered an early version of the scientific method. Namely, inductive reasoning uses empirical observations to make inferences, and accounts for probability in those inferences. A theory reached by induction is said to be more or less likely to be true, stronger or weaker.

The philosophy of science refers to the logic and thinking behind the scientific method. It questions what makes something scientifically valid. For instance, the scientific method assumes that reality is objective, and that explanations exist for all phenomena humans can observe.

Thomas Kuhn's book is foundational to the philosophy of science and the way sociologists and historians look at science through the ages. In it, he popularized the term "paradigm shift" and promoted a historical understanding of scientific discovery not as a linear accumulation of understanding, but as a set of scientific revolutions that "shift" humanity's understanding. Further, paradigm shifts open up whole fields (for instance quantum mechanics , behavioral economics or genetics ) with new approaches to understand the universe. Also what scientists consider true is not purely objective, but based on the consensus of the scientific community.

  • Nobelprize.org, . The Nobel Prize in Physics 2011 Saul Perlmutter, Brian P. Schmidt, Adam G. Riess . Retrieved October 24th 2016, from http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/

Problem Loading...

Note Loading...

Set Loading...

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

scientific method disprove hypothesis

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

scientific method disprove hypothesis

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Pfeiffer Library

The Scientific Method

What is the scientific method, research starters, observation, analyze results, draw conclusions.

  • Scientific Method Resources

According to Kosso (2011), the scientific method is a specific step-by-step method that aims to answer a question or prove a hypothesis.  It is the process used among all scientific disciplines and is used to conduct both small and large experiments.  It has been used for centuries to solve scientific problems and identify solutions.  While the terminology can be different across disciplines, the scientific method follows these six steps (Larson, 2015):

  • Analyze results
  • Draw conclusions

Click on each link to learn more about each step in the scientific method, or watch the video below for an introduction to each step.

Research Starters  is a feature available when searching  DragonQuest . You may notice when you enter a generic search term into DragonQuest that a research starter is your first result.

If available, research starters appear at the top of you search results in DragonQuest.

Research Starter  entries are similar to a Wikipedia entry of the topic, but  Research Starters  are pulled from quality sources such as Salem Press, Encyclopedia Britannica, and American National Biography.  Research Starters  can be a great place to begin your research, if you're not yet sure about your topic details.  There are several Research Starters related to the steps of the scientific method:

  • Scientific method
  • Research methodology
  • Research methods

Using Research Starters

To use  Research Starters,  click on the title just as you would for any other  DragonQuest  entry. You will then find a broad overview of the topic. This entry is great for finding

  • Subtopics that can narrow your searching
  • Background information to support your claims
  • Sources you can use and cite in your research

We do not recommend that you use  Research Starters  as a source itself though, because of the difficulties in citation.

Citing Research Starters

Using  Research Starters  as an actual source is not recommended.

Just as we do not recommend using Wikipedia as a source,  Research Starters  is the same. Use  Research Starters  as a starting point to get ideas about how to narrow your search and to use its bibliography to find sources you can cite.

We recommend this because citing  Research Starters  can be tricky as sometimes it will have insufficient bibliographic data to create your reference page.

To begin the scientific method, you have to observe something and identify a problem.  You can observe basically anything, such as a person, place, object, situation, or environment.  Examples of an observation include:

  • "My cotton shirt gets more wet in the rain than my friend's silk shirt."
  • "I feel more tired after eating a cookie than I do after eating a salad."

Once you have made an observation, it will lead to creating a scientific question (Larson, 2015).  The question focuses on a specific part of your observation:

  • Why does a cotton shirt get more wet in the rain than a silk shirt?
  • Why do I more tired after eating a cookie than if I ate a salad?

Scientific questions lead to research and crafting a hypothesis, which are the next steps in the scientific method.  Watch the video below for more information on observations.

Once you identify a topic and question from your observations, it is time to conduct some preliminary research.  It is meant to locate a potential answer to your research question or give you ideas on how to draft your hypothesis.  In some cases, it can also help you design an experiment once you determine your hypothesis.  It is a good idea to research your topic or problem using the library and/or the Internet.  It is also recommended to check out different source types for information, such as:

  • Academic journals
  • News reports
  • Audiovisual media (radio, podcasts, etc.)

Background Information

It is important to gather lots of background information on your topic or problem so you understand the topic thoroughly.  It is also critical to find and understand what others have already written about your research question.  This prevents you from experimenting on an issue that already has a definitive answer.

If you need assistance in conducting preliminary research, view our guide on locating background information at the bottom of this box.

If you are unsure where you should start researching, you can view our list of science databases through our  A-Z database list  by selecting "Science" from the subjects dropdown menu.  We also have several research guides that cover topics in the sciences, which can be viewed on our Help page.

Not sure where to begin your research?  Try searching a database in our A-Z list or using one of our  EBSCOhost databases !

  • Finding Background Information by Pfeiffer Library Last Updated May 22, 2023 46 views this year

When you have gathered enough information on your research question and determined that your question has not already been answered, you can form a hypothesis.  A hypothesis is an educated guess or possible explanation meant to answer your research question.  It often follows the "if, then..." sentence structure because it explains a cause/effect relationship between two variables.  A hypothesis is supposed to form a relationship between the two variables.

  • Example hypothesis: "If I soak a penny in lemon juice, then it will look cleaner than if I soak it in soap."

In this example, it is explaining a relationship between a penny and different cleaning agents.  While crafting your hypothesis, it is important to make sure that your "then" statement is something that can be measured, either quantitatively or qualitatively.  In the above example, an experiment for the hypothesis would be measuring the cleanliness of the penny after being exposed to either soap or lemon juice.

For more information on hypotheses, view DragonQuest's Research Starter on hypotheses here .  Alternatively, you can watch the video below for more details on crafting hypotheses.

The fourth step in the scientific method is the experiment stage.  This is where you craft an experiment to test your hypothesis.  The point of an experiment is to find out how changing one thing impacts another (Larson, 2015).  To test a hypothesis, you must implement and change different variables in your experiment.

Anything that you modify in an experiment is considered a variable.  There are two types of variables:

  • Independent variable:  The variable that is modified in an experiment so that is has a direct impact on the dependent variable.  It is the variable that you control in the experiment (Larson, 2015).
  • Dependent variable:  The variable that is being tested in an experiment, whose measure is directly related to the change of the independent variable (the dependent variable is dependent on the independent variable).  This is what you measure to prove or disprove your hypothesis.

Every experiment must also have a control group , which is a variable that remains unchanged for the duration of the experiment (Larson, 2015).  It is used to compare the results of the dependent variable.  In the case of the sample hypothesis above, a control variable would be a penny that does not receive any cleaning agent.

Research Methods

There are several ways to conduct an experiment.  The approach you take is dependent on your own strengths and weaknesses, the nature of your topic/hypothesis, and the resources you have available to conduct the experiment.  If you are unsure as to what research method you would like to use for your experiment, you can view our research methodologies guide below.  DragonQuest also has a Research Starter on research methods, located  here .

  • Research Methodologies by Pfeiffer Library Last Updated Aug 2, 2022 26965 views this year

When designing your experiment:

  • Make a list of materials that you will need to conduct your experiment.  If you will need to purchase additional materials, create a budget.
  • Consider the best locations for your experiment, especially if outside factors (weather, etc.) may effect the results.
  • If you need additional funding for an experiment, it is recommended to consider writing a research proposal for the entity from which you want to receive funding.  You can view our guide on writing research proposals below.

You can also watch the video below to learn more about designing experiments.  Or, you can view DragonQuest's Research Starter on experiments here .

  • Writing a Research Proposal by Pfeiffer Library Last Updated May 22, 2023 14551 views this year

When conducting your experiment:

  • Record or write down your experimental procedure so that each variable it tested equally.  It is likely that you will conduct your experiment more than once, so it is important that it is conducted exactly the same each time (Larson, 2015).
  • Be aware of outside factors that could impact your experiment and results.  Outside factors could include weather patterns, time of day, location, and temperature.
  • Wear protective equipment to keep yourself safe during the experiment.
  • Record your results on a transferrable platform (Google Spreadsheets, Microsoft Excel, etc.), especially if you plan on running statistical analyses on your data using a computer program.  You should also back your data up electronically so you do not lose it!
  • Use a table or chart to record data by hand.  The x-axis (row) of a chart should represent the independent variable, while the y-axis (column) should represent the dependent variable (Riverside Local Schools, n.d.).
  • Be prepared for unexpected results.  Some experiments can unexpectedly "go wrong" resulting in different data than planned.  Do not feel defeated if this happens in your experiment!  Once the tests are completed, you can analyze and determine why the experiment went differently.

Before arriving at a conclusion, you must look at all your evidence and analyze it.  Data analysis is "the process of interpreting the meaning of the data we have collected, organized, and displayed in the form of a chart or graph" (Riverside Local Schools, p. 1.).  If you did not create a graph or chart while recording your data, you may choose to create one to analyze your results.  Or, you may choose to create a more elaborate chart from the one you used in the experiment.  Graphs and charts organize data so that you can easily identify trends or patterns.  Patterns are similarities, differences, and relationships that tell you the "big picture" of an experiment (Riverside Local Schools, n.d.).

Questions to Consider

There are several things to consider when analyzing your data:

  • What exactly am I trying to discover from this data?
  • How does my data relate to my hypothesis?
  • Are there any noticeable patterns or trends in the data?  If so, what do these patterns mean?
  • Is my data good quality?  Was my data skewed in any way?
  • Were there any limitations to retrieving this data during the experiment?

Once you have identified patterns or trends and considered the above questions, you can summarize your findings to draw your final conclusions.

Drawing conclusions is the final step in the scientific method.  It gives you the opportunity to combine your findings and communicate them to your audience.  A conclusion is "a summary of what you have learned from the experiment" (Riverside Local Schools, p. 1).  To draw a conclusion, you will compare your data analysis to your hypothesis and make a statement based on the comparison.  Your conclusion should answer the following questions:

  • Was your hypothesis correct?
  • Does my data support my hypothesis?
  • If your hypothesis was incorrect, what did you learn from the experiment?
  • Do you need to change a variable if the experiment is repeated?
  • Is your data coherent and easy to understand?
  • If the experiment failed, what did you learn?

A strong conclusion should also (American Psychological Association, 2021):

  • Be justifiable by the data you collected.
  • Provide generalizations that are limited to the sample you studied.
  • Relate your preliminary research (background information) to your experiment and state how your conclusion is relevant.
  • Be logical and address any potential discrepancies (American Psychological Association, 2021).

Reporting Your Results

Once you have drawn your conclusions, you will communicate your results to others.  This can be in the form of a formal research paper, presentation, or assignment that you submit to an instructor for a grade.  If you are looking to submit an original work to an academic journal, it will require approval and undergo peer-review before being published.  However, it is important to be aware of predatory publishers.  You can view our guide on predatory publishing below.

  • Predatory Publishing by Pfeiffer Library Last Updated Aug 2, 2023 391 views this year
  • << Previous: Welcome
  • Next: Scientific Method Resources >>
  • Last Updated: Mar 30, 2023 2:24 PM
  • URL: https://library.tiffin.edu/thescientificmethod

David Wm. Reed Department of Horticultural Sciences Texas A&M University

Empirical  Research, and Inductive and Deductive Reasoning The scientific method has its basis in empirical research. Empirical research generates knowledge derived from observation or experimentation as opposed to theory.Empirical research uses  inductive reasoning to draw conclusions about the experimentation and observations.  Inductive reasoning is where specific observations or measurements are made in order to develop broader conclusions, generalizations and theories.For example, scientists conduct experiments and collect data to help answer scientific questions and solve problems. Deductive reasoning is where one starts thinking about generalizations, then proceeds toward the specifics of how to prove or implement the generalizations.For example, deductive reasoning is how a landscape architect approaches a project, e.g. they start with a design concept, and then proceed to the specifics needed to implement the project.Of course many researchers use both inductive and deductive reasoning in approaching a problem.

The  scientific method conducts empirical research in such a way that it is without bias, is repeatable, and withstands the scrutiny of the scientific community. The opposite of the scientific method would be knowledge gained by testimonials. A  testimonial would be where observations are made under non-controlled conditions. For example, a person may state that when they started using fertilizer X they produced the “best” garden ever, hence fertilizer X is the best fertilizer to use. The problem with this approach is that there may be many fertilizers that would produce excellent results if they were used properly, or the results may not be due to the fertilizer at all, but rather it may simply have been a very favorable year for gardens.

Types of Research Used in the Scientific Method

There are two basic types of research associated with the scientific method.

1)   Quantitative Research

Quantitative research is based on collecting facts and figures. This type research is common in biology.

2)   Qualitative Research

Qualitative research is based on collecting opinions and attitudes. This type research is common in the social sciences.

Steps in the Scientific Method

1)   Identify a Problem or Question

Identify a problem to be solved or a question to be answered. For example, we know that plants require nitrogen fertilizer. If a crop is not growing very well, we might wonder if the lack of growth is due to inadequate nitrogen. Or, the crop may be growing, but we might wonder if we can stimulate the crop to growth even better if we try a new type of nitrogen fertilizer.

2)   Review Literature and Gather Information

Determine as much information about the topic as possible. Are there published studies that have investigated the same or similar topic? You do not want to conduct a research project that has already been done. You want to add to the current body of knowledge. The best approach is to conduct an exhaustive review of the scientific literature.

3)   Formulate Hypothesis, Null Hypothesis or Research Objective

Develop a hypothesis to be tested. A  hypothesis is a statement that the experiment will attempt to prove. An example of a hypothesis would be: “Increasing the level of nitrogen fertilizer will increase plant growth.” The purpose of the experimentation would be to prove the hypothesis.

Sometimes one develops a null hypothesis. A  null hypothesis is a statement that the experiment will attempt to disprove. Sometimes one can never “prove a hypothesis”, so one attempts to “disprove all possible null hypotheses”. An example of a null hypothesis would be: “Nitrogen fertilizer does not effect plant growth.”

More often that not, researchers in biology develop a  research objective , such as : “To determine the effect of increasing nitrogen fertilizer on plant growth.”

4)   Design Experiment

An experiment is designed to test the hypothesis, null hypothesis or satisfy the research objective. This is the critical component of the scientific method. The design of the experiment is what separates the scientific method from testimonials, general observations and assumptions. The scientific method uses the following characteristics to assure creditability.

a)   Unbiased

The experiment must be designed and conducted without bias. The experiment is designed such that one treatment is  not favored over another. Sometimes the treatments are  blind , and the researcher does not know which experimental units received which treatments. This is very common in human medical research. In addition, the treatments must be  random . For example, the experimental units are randomly selected to receive the various treatments, and the treatments are randomly arranged in the area where the experiment is to be conducted. Finally, the experimental units, for example the plants, must be as  uniform as possible.

b)   Control group

There must always be a control. A  control is a group of experimental units that do not receive the treatment. For example, in a nitrogen fertilizer study, the control group would receive no nitrogen. Sometimes the control must be a  standard or  normal condition . For example, if plants are growing in the soil where there is natural nitrogen present, then the control group would be the plants grown with the standard or normal amount of nitrogen present in the soil.

c)  Replicates

Each of the treatments is applied to a group of experimental units, for example a group of plants. Single experimental units are never used. Usually, a minimum of 5 uniform experimental units receive each treatment. However, sometimes many more experimental units must be used to collect reliable data. The data collected on the individual experimental units are averaged in step 6) Organize and Analyze data.

d)   Repeat experiment

The experiment must always be repeated to make sure the same, or very similar results, are obtained.

5)   Collect data

The experimental units must be measured in order to determine the effect of the treatments. For plants, measurements may be of growth rate, size, color, flowering, yield, internal physiological factors or constituents, or what ever is needed to determine the response to the treatments.

6)   Organize and Analyze data

The data must be organized and analyzed. The data is averaged and organized into lists, tables, figures and/or graphs.

7)   Interpret data

a)   Identify trend(s)

The data is studied to identify trends, to determine which treatments caused what types of responses, to determine which treatments are better or worse than others, etc.

b)  Determine significant differences

Statistical analysis is used to determine which treatments are different from the others. Oddly enough, in research you can never make a statement that two treatments are “equal”, only that they are “not significantly different”!

c)   Draw conclusions

Finally, conclusions are drawn to support or not support the hypothesis, null hypothesis or research objective.

8)  Communicate results

This is the most important part of the research. The research has no value if the results are not communicated with the scientific community, one’s colleagues, students and/or the public. The research becomes creditable only if it is reviewed by and accepted by one’s scientific peers in the form of a refereed publication. A  refereed publication is a scientific article that is submitted for publication in a  refereed scientific journal . The article is sent to several scientists (the referees) for an anonymous review, and they recommend whether or not the article should be published in the refereed journal. If accepted for publication, the results and conclusions from the study have withstood the highest level of scientific scrutiny and are deemed acceptable by the scientific community. After the results are published in the refereed journal, then it is desirable to publish the findings in popular articles, industry journal, etc.

Structure of a Refereed Publication

The title should be descriptive and succinct

The author’s names and affiliation are given.

Additional index words

A list of key words is given. The key words are used by literature search engines.

The abstract is a brief synopsis or the article. It may start with a sentence that introduces, justifies or gives the objectives of the research. It presents a very brief outline of the materials and methods, including the plant names, treatments imposed, and procedures followed. Then the major conclusions from the study are summarized.

Introduction

The literature related to the area of study is reviewed. The introduction summarizes the results of previously published studies on the topic, and justifies how this study will add to the body of scientific knowledge. At the end of the introduction, a list of  Research Objectives usually is given.

Material and Methods

This section described exactly how the experiment was conducted in enough detail such that the study could be replicated by others. The types of information presented would be: scientific plant names, source and size of plants used, experimental design, treatments imposed, timing of treatments, environmental conditions, physical set-up of the study, the type of data collected and the protocol of measurements made to collect the data, instruments and chemicals used, and statistical analysis used.

The data are presented in tables, lists, figures, graphs and photographs. All of the data is accompanied by the appropriate statistics. For each experiment, the trends in the data are pointed out in order to highlight how the experimental units responded to the treatments. Basically, the Results explain to the reader what the experiment discovered.

The results are discussed relative to findings previously published on other scientific research. When a previously published study is discussed, the author and date are cited in the text. Similarities and differences with previous studies are pointed out. Conclusions are drawn as to the scientific meaning and application of the findings. At the end of the discussion, a  summary of the major  conclusions of the study is presented. Sometimes, the Summary or Conclusions appear as a final section.

Results and Discussion

Sometimes the Results and Discussion are combined into one section. Each experiment is presented then discussed immediately.

Literature Cited

The publications cited in the text are listed.

Chapter 2: Psychological Research

The scientific method.

photograph of the word "research" from a dictionary with a pen pointing at the word.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives. In this section, you’ll see how psychologists use the scientific method to study and understand behavior.

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession (Figure 1). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

Figure 1 . Some of our ancestors, believed that trephination—the practice of making a hole in the skull—allowed evil spirits to leave the body, thus curing mental illness.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This module explores how scientific knowledge is generated, and how important that knowledge is in informing decisions in our personal lives and in the public domain.

The Process of Scientific Research

Flowchart of the scientific method. It begins with make an observation, then ask a question, form a hypothesis that answers the question, make a prediction based on the hypothesis, do an experiment to test the prediction, analyze the results, prove the hypothesis correct or incorrect, then report the results.

Figure 2 . The scientific method is a process for gathering data and processing information. It provides well-defined steps to standardize how scientific knowledge is gathered through a logical, rational problem-solving method.

Scientific knowledge is advanced through a process known as the scientific method. Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on.

The basic steps in the scientific method are:

  • Observe a natural phenomenon and define a question about it
  • Make a hypothesis, or potential solution to the question
  • Test the hypothesis
  • If the hypothesis is true, find more evidence or find counter-evidence
  • If the hypothesis is false, create a new hypothesis or try again
  • Draw conclusions and repeat–the scientific method is never-ending, and no result is ever considered perfect

In order to ask an important question that may improve our understanding of the world, a researcher must first observe natural phenomena. By making observations, a researcher can define a useful question. After finding a question to answer, the researcher can then make a prediction (a hypothesis) about what he or she thinks the answer will be. This prediction is usually a statement about the relationship between two or more variables. After making a hypothesis, the researcher will then design an experiment to test his or her hypothesis and evaluate the data gathered. These data will either support or refute the hypothesis. Based on the conclusions drawn from the data, the researcher will then find more evidence to support the hypothesis, look for counter-evidence to further strengthen the hypothesis, revise the hypothesis and create a new experiment, or continue to incorporate the information gathered to answer the research question.

Video 1.  The Scientific Method explains the basic steps taken for most scientific inquiry.

The Basic Principles of the Scientific Method

Two key concepts in the scientific approach are theory and hypothesis. A theory is a well-developed set of ideas that propose an explanation for observed phenomena that can be used to make predictions about future observations. A hypothesis is a testable prediction that is arrived at logically from a theory. It is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests (Figure 3).

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

Figure 3 . The scientific method of research includes proposing hypotheses, conducting research, and creating or modifying theories based on results.

Other key components in following the scientific method include verifiability, predictability, falsifiability, and fairness. Verifiability means that an experiment must be replicable by another researcher. To achieve verifiability, researchers must make sure to document their methods and clearly explain how their experiment is structured and why it produces certain results.

Predictability in a scientific theory implies that the theory should enable us to make predictions about future events. The precision of these predictions is a measure of the strength of the theory.

Falsifiability refers to whether a hypothesis can be disproved. For a hypothesis to be falsifiable, it must be logically possible to make an observation or do a physical experiment that would show that there is no support for the hypothesis. Even when a hypothesis cannot be shown to be false, that does not necessarily mean it is not valid. Future testing may disprove the hypothesis. This does not mean that a hypothesis has to be shown to be false, just that it can be tested.

To determine whether a hypothesis is supported or not supported, psychological researchers must conduct hypothesis testing using statistics. Hypothesis testing is a type of statistics that determines the probability of a hypothesis being true or false. If hypothesis testing reveals that results were “statistically significant,” this means that there was support for the hypothesis and that the researchers can be reasonably confident that their result was not due to random chance. If the results are not statistically significant, this means that the researchers’ hypothesis was not supported.

Fairness implies that all data must be considered when evaluating a hypothesis. A researcher cannot pick and choose what data to keep and what to discard or focus specifically on data that support or do not support a particular hypothesis. All data must be accounted for, even if they invalidate the hypothesis.

Applying the Scientific Method

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later module, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race, and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

Remember that a good scientific hypothesis is falsifiable, or capable of being shown to be incorrect. Recall from the introductory module that Sigmund Freud had lots of interesting ideas to explain various human behaviors (Figure 4). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

Figure 4 . Many of the specifics of (a) Freud’s theories, such as (b) his division of the mind into id, ego, and superego, have fallen out of favor in recent decades because they are not falsifiable. In broader strokes, his views set the stage for much of psychological thinking today, such as the unconscious nature of the majority of psychological processes.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Link to Learning

Want to participate in a study? Visit this Psychological Research on the Net website and click on a link that sounds interesting to you in order to participate in online research.

Why the Scientific Method Is Important for Psychology

The use of the scientific method is one of the main features that separates modern psychology from earlier philosophical inquiries about the mind. Compared to chemistry, physics, and other “natural sciences,” psychology has long been considered one of the “social sciences” because of the subjective nature of the things it seeks to study. Many of the concepts that psychologists are interested in—such as aspects of the human mind, behavior, and emotions—are subjective and cannot be directly measured. Psychologists often rely instead on behavioral observations and self-reported data, which are considered by some to be illegitimate or lacking in methodological rigor. Applying the scientific method to psychology, therefore, helps to standardize the approach to understanding its very different types of information.

The scientific method allows psychological data to be replicated and confirmed in many instances, under different circumstances, and by a variety of researchers. Through replication of experiments, new generations of psychologists can reduce errors and broaden the applicability of theories. It also allows theories to be tested and validated instead of simply being conjectures that could never be verified or falsified. All of this allows psychologists to gain a stronger understanding of how the human mind works.

Scientific articles published in journals and psychology papers written in the style of the American Psychological Association (i.e., in “APA style”) are structured around the scientific method. These papers include an Introduction, which introduces the background information and outlines the hypotheses; a Methods section, which outlines the specifics of how the experiment was conducted to test the hypothesis; a Results section, which includes the statistics that tested the hypothesis and state whether it was supported or not supported, and a Discussion and Conclusion, which state the implications of finding support for, or no support for, the hypothesis. Writing articles and papers that adhere to the scientific method makes it easy for future researchers to repeat the study and attempt to replicate the results.

Today, scientists agree that good research is ethical in nature and is guided by a basic respect for human dignity and safety. However, as you will read in the Tuskegee Syphilis Study, this has not always been the case. Modern researchers must demonstrate that the research they perform is ethically sound. This section presents how ethical considerations affect the design and implementation of research conducted today.

Research Involving Human Participants

Any experiment involving the participation of human subjects is governed by extensive, strict guidelines designed to ensure that the experiment does not result in harm. Any research institution that receives federal support for research involving human participants must have access to an institutional review board (IRB) . The IRB is a committee of individuals often made up of members of the institution’s administration, scientists, and community members (Figure 1). The purpose of the IRB is to review proposals for research that involves human participants. The IRB reviews these proposals with the principles mentioned above in mind, and generally, approval from the IRB is required in order for the experiment to proceed.

A photograph shows a group of people seated around tables in a meeting room.

Figure 5 . An institution’s IRB meets regularly to review experimental proposals that involve human participants. (credit: modification of work by Lowndes Area Knowledge Exchange (LAKE)/Flickr)

An institution’s IRB requires several components in any experiment it approves. For one, each participant must sign an informed consent form before they can participate in the experiment. An informed consent form provides a written description of what participants can expect during the experiment, including potential risks and implications of the research. It also lets participants know that their involvement is completely voluntary and can be discontinued without penalty at any time. Furthermore, informed consent guarantees that any data collected in the experiment will remain completely confidential. In cases where research participants are under the age of 18, the parents or legal guardians are required to sign the informed consent form.

While the informed consent form should be as honest as possible in describing exactly what participants will be doing, sometimes deception is necessary to prevent participants’ knowledge of the exact research question from affecting the results of the study. Deception involves purposely misleading experiment participants in order to maintain the integrity of the experiment, but not to the point where the deception could be considered harmful. For example, if we are interested in how our opinion of someone is affected by their attire, we might use deception in describing the experiment to prevent that knowledge from affecting participants’ responses. In cases where deception is involved, participants must receive a full debriefing upon conclusion of the study—complete, honest information about the purpose of the experiment, how the data collected will be used, the reasons why deception was necessary, and information about how to obtain additional information about the study.

Dig Deeper: Ethics and the Tuskegee Syphilis Study

Unfortunately, the ethical guidelines that exist for research today were not always applied in the past. In 1932, poor, rural, black, male sharecroppers from Tuskegee, Alabama, were recruited to participate in an experiment conducted by the U.S. Public Health Service, with the aim of studying syphilis in black men (Figure 6). In exchange for free medical care, meals, and burial insurance, 600 men agreed to participate in the study. A little more than half of the men tested positive for syphilis, and they served as the experimental group (given that the researchers could not randomly assign participants to groups, this represents a quasi-experiment). The remaining syphilis-free individuals served as the control group. However, those individuals that tested positive for syphilis were never informed that they had the disease.

While there was no treatment for syphilis when the study began, by 1947 penicillin was recognized as an effective treatment for the disease. Despite this, no penicillin was administered to the participants in this study, and the participants were not allowed to seek treatment at any other facilities if they continued in the study. Over the course of 40 years, many of the participants unknowingly spread syphilis to their wives (and subsequently their children born from their wives) and eventually died because they never received treatment for the disease. This study was discontinued in 1972 when the experiment was discovered by the national press (Tuskegee University, n.d.). The resulting outrage over the experiment led directly to the National Research Act of 1974 and the strict ethical guidelines for research on humans described in this chapter. Why is this study unethical? How were the men who participated and their families harmed as a function of this research?

A photograph shows a person administering an injection.

Figure 6 . A participant in the Tuskegee Syphilis Study receives an injection.

Visit this CDC website to learn more about the Tuskegee Syphilis Study.

Research Involving Animal Subjects

A photograph shows a rat.

Figure 7 . Rats, like the one shown here, often serve as the subjects of animal research.

This does not mean that animal researchers are immune to ethical concerns. Indeed, the humane and ethical treatment of animal research subjects is a critical aspect of this type of research. Researchers must design their experiments to minimize any pain or distress experienced by animals serving as research subjects.

Whereas IRBs review research proposals that involve human participants, animal experimental proposals are reviewed by an Institutional Animal Care and Use Committee (IACUC) . An IACUC consists of institutional administrators, scientists, veterinarians, and community members. This committee is charged with ensuring that all experimental proposals require the humane treatment of animal research subjects. It also conducts semi-annual inspections of all animal facilities to ensure that the research protocols are being followed. No animal research project can proceed without the committee’s approval.

  • Modification and adaptation. Provided by : Lumen Learning. License : CC BY-SA: Attribution-ShareAlike
  • Psychology and the Scientific Method: From Theory to Conclusion, content on the scientific method principles. Provided by : Boundless. Located at : https://courses.lumenlearning.com/boundless-psychology/ . License : CC BY-SA: Attribution-ShareAlike
  • Introduction to Psychological Research, Why is Research Important?, Ethics. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:Hp5zMFYB@9/Why-Is-Research-Important . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Research picture. Authored by : Mediterranean Center of Medical Sciences. Provided by : Flickr. Located at : https://www.flickr.com/photos/mcmscience/17664002728 . License : CC BY: Attribution

Footer Logo Lumen Candela

Privacy Policy

extension logo for printing

The Scientific Method

Introduction.

There are many scientific disciplines that address topics from medicine and astrophysics to agriculture and zoology. In each discipline, modern scientists use a process called the "Scientific Method" to advance their knowledge and understanding. This publication describes the method scientists use to conduct research and describe and explain nature, ultimately trying prove or disprove theories.

Scientists all over the world conduct research using the Scientific Method. The University of Nevada Cooperative Extension exists to provide unbiased, research-based information on topics important and relevant to society. The scientific research efforts, analyses, and subsequent information disseminated by Cooperative Extension is driven by careful review and synthesis of relevant scientific research. Cooperative Extension presents useful information based on the best science available, and today that science is based on knowledge obtained by application of the Scientific Method.

The Scientific Method – What it’s Not

The Scientific Method is a process for explaining the world we see. It is:

  • Not a formula

The Scientific Method – What is it?

The Scientific Method is a process used to validate observations while minimizing observer bias. Its goal is for research to be conducted in a fair, unbiased and repeatable manner.

Long ago, people viewed the workings of nature and believed that the events and phenomena they observed were associated with the intrinsic nature of the beings or things being observed (Ackoff 1962, Wilson 1937). Today we view events and phenomena as having been caused , and science has evolved as a process to ask how and why things and events happen. Scientists seek to understand the relationships and intricacies between cause and effect in order to predict outcomes of future or similar events. To answer these questions and to help predict future happenings, scientists use the Scientific Method - a series of steps that lead to answers that accurately describe the things we observe, or at least improve our understanding of them.

The Scientific Method is not the only way, but is the best-known way to discover how and why the world works, without our knowledge being tainted by religious, political, or philosophical values. This method provides a means to formulate questions about general observations and devise theories of explanation. The approach lends itself to answering questions in fair and unbiased statements, as long as questions are posed correctly, in a hypothetical form that can be tested.

Definitions

It is important to understand three important terms before describing the Scientific Method.

This is a statement made by a researcher that is a working assumption to be tested and proven. It is something "considered true for the purpose of investigation" (Webster’s Dictionary 1995). An example might be “The earth is round.”

general principles drawn from facts that explain observations and can be used to predict new events. An example would be Newton’s theory of gravitation or Einstein’s theory of relativity. Each is based on falsifiable hypotheses of phenomenon we observe.

Falsifiable/ Null Hypothesis

to prove to be false (Webster’s Dictionary 1995). The hypothesis that is generated must be able to be tested, and either accepted or rejected. Scientists make hypotheses that they want to disprove in order that they may prove the working assumption describing the observed phenomena. This is done by declaring the statement or hypothesis as falsifiable . So, we would state the above hypothesis as “the earth is not round,” or “the earth is square” making it a working statement to be disproved.

The Scientific Method is not a formula, but rather a process with a number of sequential steps designed to create an explainable outcome that increases our knowledge base. This process is as follows:

STEP 1. Make an OBSERVATION

gather and assimilate information about an event, phenomenon, process, or an exception to a previous observation, etc.

STEP 2. Define the PROBLEM

ask questions about the observation that are relevant and testable. Define the null hypothesis to provide unbiased results.

STEP 3: Form the HYPOTHESIS

create an explanation, or educated guess, for the observation that is testable and falsifiable.

STEP 4: Conduct the EXPERIMENT

devise and perform an experiment to test the hypothesis.

STEP 5: Derive a THEORY

create a statement based in the outcome of the experiment that explains the observation(s) and predicts the likelihood of future observations.

Replication

Using the Scientific Method to answer questions about events or phenomena we observe can be repeated to fine-tune our theories. For example, if we conduct research using the Scientific Method and think we have answered a question, but different results occur the next time we make an observation, we may have to ask new questions and formulate new hypotheses that are tested by another experiment. Sometimes scientists must perform many experiments over many years or even decades using the Scientific Method to prove or disprove theories that are generated from one initial question. Numerous studies are often necessary to fully test the broad range of results that occur in order that scientists can formulate theories that truly account for the variation we see in our natural environment.

The Scientific Method – Is it worth all the effort?

Scientific knowledge can only advance when all scientists systematically use the same process to discover and disseminate new information. The advantage of all scientific research using the Scientific Method is that the experiments are repeatable by anyone, anywhere. When similar results occur in each experiment, these facts make the case for the theory stronger. If the same experiment is performed many times in many different locations, under a broad range of conditions, then the theory derived from these experiments is considered strong and widely applicable. If the questions are posed as testable hypotheses that rely on inductive reasoning and empiricism – that is, observations and data collection – then experiments can be devised to generate logical theories that explain the things we see. If we understand why the observed results occur, then we can accurately apply concepts derived from the experiment to other situations.

What do we need to consider when using the Scientific Method?

The Scientific Method requires that we ask questions and perform experiments to prove or disprove questions in ways that will lead to unbiased answers. Experiments must be well designed to provide accurate and repeatable (precise) results. If we test hypotheses correctly, then we can prove the cause of a phenomenon and determine the likelihood (probability) of the events to happen again. This provides predictive power. The Scientific Method enables us to test a hypothesis and distinguish between the correlation of two or more things happening in association with each other and the actual cause of the phenomenon we observe.

Correlation of two variables cannot explain the cause and effect of their relationship. Scientists design experiments using a number of methods to ensure the results reveal the likelihood of the observation happening (probability). Controlled experiments are used to analyze these relationships and develop cause and effect relationships. Statistical analysis is used to determine whether differences between treatments can be attributed to the treatment applied, if they are artifacts of the experimental design, or of natural variation.

In summary, the Scientific Method produces answers to questions posed in the form of a working hypothesis that enables us to derive theories about what we observe in the world around us. Its power lies in its ability to be repeated, providing unbiased answers to questions to derive theories. This information is powerful and offers opportunity to predict future events and phenomena.

Bibliography

  • Ackoff, R. 1962. Scientific Method, Optimizing Applied Research Decisions. Wiley and Sons, New York, NY.
  • Wilson, F. 1937. The Logic and Methodology of Science in Early Modern Thought. University of Toronto Press. Buffalo, NY.
  • Committee on Science, Engineering, and Public Policy. Experimental Error. 1995. From: On Being a Scientist: Responsible Conduct in Research. Second Edition.
  • The Gale Group. The Scientific Method. 2001. Gale Encyclopedia of Psychology. Second Edition.

Learn more about the author(s)

Angela O'Callaghan

Also of Interest:

An EEO/AA Institution. Copyright © 2024 , University of Nevada Cooperative Extension. A partnership of Nevada counties; University of Nevada, Reno; and the U.S. Department of Agriculture

IMAGES

  1. Scientific Method Flow Chart

    scientific method disprove hypothesis

  2. Scientific hypothesis

    scientific method disprove hypothesis

  3. Formula for Using the Scientific Method

    scientific method disprove hypothesis

  4. Scientific Method Worksheet & Example for Kids

    scientific method disprove hypothesis

  5. Steps of the Scientific Method (2024)

    scientific method disprove hypothesis

  6. Explaining the scientific method thought process formula

    scientific method disprove hypothesis

VIDEO

  1. Proportion Hypothesis Testing, example 2

  2. Lab 3. Introduction to the Scientific Method

  3. Karl Popper's Philosophy of Science and Falsifiability #philosophy #quote

  4. Scientific Methods of psychology @beautifulmindias

  5. What is the Role of Hypotheses in Scientific Investigations?

  6. Scientific Method Vocab: Hypothesis Example

COMMENTS

  1. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  2. When scientific hypotheses don't pan out

    How a hypothesis is formed. Technically speaking, a hypothesis is only a hypothesis if it can be tested. Otherwise, it's just an idea to discuss at the water cooler. Researchers are always prepared for the possibility that those tests could disprove their hypotheses — that's part of the reason they do the studies.

  3. The Scientific Method: A Need for Something Better?

    The scientific method is better thought of as a set of "methods" or different techniques used to prove or disprove 1 or more hypotheses. A hypothesis is a proposed explanation for observed phenomena. These phenomena are, in general, empirical—that is, they are gathered by observation and/or experimentation. "Hypothesis" is a term ...

  4. A hypothesis can't be right unless it can be proven wrong

    A hypothesis is considered scientific only if there is the possibility to disprove the hypothesis. The proof lies in being able to disprove. A hypothesis or model is called falsifiable if it is possible to conceive of an experimental observation that disproves the idea in question.

  5. Perspective: Dimensions of the scientific method

    The traditional scientific method: Hypothesis-driven deduction. ... philosopher of science Sir Karl Popper argued that a scientific hypothesis can never be verified but that it can be disproved by a single counterexample. He therefore demanded that scientific hypotheses had to be falsifiable, because otherwise, testing would be moot ...

  6. Scientific hypothesis

    Scientific hypothesis, idea that proposes an explanation for an observed phenomenon or narrow set of phenomena. ... The formulation and testing of a hypothesis is part of the scientific method, ... a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi, and later in 1859, ...

  7. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  8. Testing scientific ideas

    Understanding Science 101. Testing ideas with evidence is at the heart of the process of science. Scientific testing involves figuring out what we would expect to observe if an idea were correct and comparing that expectation to what we actually observe. Misconception: Science proves ideas. Misconception: Science can only disprove ideas.

  9. Scientific Method

    The scientific method is the process by which scientists of all fields attempt to explain the phenomena in the world. It is how science is conducted--through experimentation. Generally, the scientific method refers to a set of steps whereby a scientist can form a conjecture (the hypothesis) for why something functions the way it does and then test their hypothesis. It is an empirical process ...

  10. Steps of the Scientific Method

    Diagram of the scientific method. The Scientific Method starts with aquestion, and background research is conducted to try to answer that question. If you want to find evidence for an answer or an answer itself then you construct a hypothesis and test that hypothesis in an experiment. If the experiment works and the data is analyzed you can ...

  11. Formulating Hypotheses for Different Study Designs

    Formulating Hypotheses for Different Study Designs. Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate ...

  12. Scientific method

    The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century. The scientific method involves careful observation coupled with rigorous scepticism, because cognitive assumptions can distort the interpretation of the observation.Scientific inquiry includes creating a hypothesis through inductive reasoning ...

  13. Hypothesis: Definition, Examples, and Types

    The Hypothesis in the Scientific Method . In the scientific method, whether it involves research in psychology, biology, ... After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

  14. Learn More About the Scientific Method

    The most influential approach is that of Karl Popper (1902 - 1994) who wrote about his ideas on the scientific method between 1938 and 1963. This may seem like a long time ago but remember that folks were doing good science long before the birth of Christ. Popper's idea about doing science is that you formulate a hypothesis, try to prove it ...

  15. The scientific method (article)

    The scientific method. At the core of physics and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  16. What is the scientific method?

    According to Kosso (2011), the scientific method is a specific step-by-step method that aims to answer a question or prove a hypothesis. It is the process used among all scientific disciplines and is used to conduct both small and large experiments. It has been used for centuries to solve scientific problems and identify solutions.

  17. The Scientific Method

    A null hypothesis is a statement that the experiment will attempt to disprove. Sometimes one can never "prove a hypothesis", so one attempts to "disprove all possible null hypotheses". An example of a null hypothesis would be: "Nitrogen fertilizer does not effect plant growth."

  18. Scientific Method: Definition, Steps, Examples, Uses

    The scientific method is a combined method, which consists of theoretical knowledge and practical experimentation by using scientific instruments, analysis and comparisons of results, and then peer reviews. ... Experiments are the process of investigations to prove or disprove the hypothesis.

  19. What Are The Steps Of The Scientific Method?

    The scientific method is a process that includes several steps: First, an observation or question arises about a phenomenon. Then a hypothesis is formulated to explain the phenomenon, which is used to make predictions about other related occurrences or to predict the results of new observations quantitatively. Finally, these predictions are put to the test through experiments or further ...

  20. The Scientific Method

    Video 1. The Scientific Method explains the basic steps taken for most scientific inquiry. The Basic Principles of the Scientific Method. Two key concepts in the scientific approach are theory and hypothesis. A theory is a well-developed set of ideas that propose an explanation for observed phenomena that can be used to make predictions about future observations.

  21. The Scientific Method

    This publication describes the method scientists use to conduct research and describe and explain nature, ultimately trying prove or disprove theories. Scientists all over the world conduct research using the Scientific Method. The University of Nevada Cooperative Extension exists to provide unbiased, research-based information on topics ...

  22. What Is The Null Hypothesis & When To Reject It

    Hypothesis testing is a critical part of the scientific method as it helps decide whether the results of a research study support a particular theory about a given population. Hypothesis testing is a systematic way of backing up researchers' predictions with statistical analysis. ... The primary purpose of the null hypothesis is to disprove ...

  23. The Scientific Method

    The scientific method is a sequences of steps designed to lead to the development of theories, tested explanations, of the phenomenon that we have observed around us. A hypothesis that can not be disproved becomes a theory; a scientifically acceptable general principle offered to explain phenomina; the analysis of a set of facts in their ideal ...