Mechanical Engineering Communication Lab

Thesis Proposal

Note: This article is partially based on the 2017-2018 MechE Graduate Student Guide (PDF) . Please check the latest guide for the most-up to date formatting requirements.

Criteria for Success

A strong thesis proposal…

  • Motivates your project and introduces your audience to the state-of-the-art for the problem you’re working on.
  • Explains the limitations in the current methods through literature review and/or original analysis. This should also explain why the limitations matter and why they’re the right ones to focus on.
  • Clearly explains your technical approach to make specific improvements to some part of the field.
  • Uses original analysis and literature to support the feasibility of the approach.
  • Describes what is original about your work.
  • Provides a practical outline for completing this research : a degree timeline laying out quantifiable hypotheses, experimental/numerical/theoretical techniques, and metrics for evaluation .

Structure Diagram

Meche-specific structure requirements.

Your thesis proposal should be limited to 6 pages including figures and references.

In addition, you need a cover page that (only) includes:

  • tentative title of the thesis
  • brief abstract
  • committee chair and/or advisor should be indicated
  • include their official titles, departmental affiliations, and email addresses

The purpose of your thesis proposal is to introduce your research plan to your thesis committee. You want the committee members to come away understanding what your research will accomplish, why it is needed ( motivation ), how you will do it ( feasibility & approach ), and most importantly, why it is worthy of a PhD ( significance ).

You intend to solve a real and important problem, and you are willing to dedicate years of your life to it, so use your proposal to get the committee excited about your research!

Analyze your audience

Unlike many of the papers and presentations you will write during graduate school, only a select few people will read your thesis proposal. This group will always include your PhD committee and your research advisor, and may include other interested MechE faculty or scientists and engineers at your funding source.

Therefore, you will typically have a good understanding of your audience before it is written. This can allow you to tailor your message to the technical level of your specific audience. If you aren’t sure what your audience could reasonably be expected to know, be conservative! Regardless, your audience is always looking to answer the questions: “ what is this research, how will you perform it, and why does it matter?”

While the small audience may make you less interested in committing time to your proposal, the exercise of motivating and justifying your work plan will be critical to your PhD.

Follow the standard structure for research proposals

While some variation is acceptable, don’t stray too far from the following structure. See also the Structure Diagram above.

  • Introduction . Provide only the necessary information to motivate your research, and show how it fits into the broader field. What is the problem you are trying to solve? By the end of the introduction, your audience should understand the basics of what you will do and why you will do it.
  • Background/Methodology . Describe the current state of the art and related research fields in sufficient technical detail. The goal is provide just enough detail to give the reader a sound understanding of the limitations and the need for new work. Do not go into detail that does not directly help in understanding your You are not trying to make your reader understand everything about the topic or demonstrate how much you know.
  • Objectives . Although not strictly necessary, this section lets you summarize concrete goals of your work, and can help to serve as a checklist for yourself as you move through the process. This is best for projects that tackle many interrelated problems. Think of this as a list of concrete (quantifiable) goals that you want to accomplish.
  • Proposed Work. Explain how your work will solve the problems that you have identified. How will you address the objectives above? Provide just enough technical specificity to leave the reader with a firm grasp of what you will do.
  • Provide a set of time-structured goals and deliverables. While this is not strictly necessary, your committee will want a timeline when you meet with them, so it can help to start planning now. You want to graduate, so make sure that you have a plan to do so!
  • This is a standard section listing references in an appropriate format (MLA, APA, etc.)

Consider the logical sequence of your sections. After the introduction, your audience should be intrigued by a key problem, and intrigued that you know how to solve it. Through the background, they learn that this problem is more difficult than they originally realized. Finally, in the proposed work they learn that your proposal addresses the additional complexity introduced in the background, and they have confidence that you can actually solve the problem.

Summarize the current research field

You need to have a strong grasp of the broader research community. How can you contribute, if you don’t know what is done and what needs to be done?

The point here is not to educate your audience, but rather to provide them with the tools needed to understand your proposal. A common mistake is to explain all of the research that you did to understand your topic and to demonstrate that you really know your field. This will bore your audience, who either already knows this information or does not see why they should care. It’s more important to show where current gaps are. Cut anything that doesn’t answer the what and why of what people are doing. Your depth of knowledge will come through in your thoughtful proposal.

Justify the significance of your work

Answer the question: “What happens if your work is successful?” Again, you are trying to convince your readers either to give you funding or to work with you for three (or more) years. Convince them that your project is worth it.

Your research doesn’t have to revolutionize your field, but you need to explain concretely how it will move your field forward. For example, “Successful development of the proposed model will enable high-fidelity simulation of boiling” is a specific and convincing motivation, compared to, “The field of boiling modeling must be transformed in order to advance research.”

Justify your research plan

Identify the steps needed to overcome your identified problem/limitation. Though your PhD will evolve over time, the tasks and timeline that you identify in your proposal will continue to help determine the trajectory of your research. A good plan now can save a lot of work a few years down the road.

A strong research plan answers three key questions:

  • g., “In order to engineer material properties using mesoscopic defects, it is necessary to characterize the defects, measure how they affect material response, and identify techniques to reproducibly create the defects at specific sites within a material.”
  • g., “In my PhD, I will focus on developing high-speed dynamic imaging techniques to characterize transient defect states in metallic nanowires. I will then use these techniques to measure the properties of nanowires fabricated with three different processes known to produce different defect structures.”
  • How will you evaluate success in each step? These metrics should be concrete and measurable! Putting the thought into metrics now will make it easier for your committee (and yourself) to check a box and say ‘you can graduate.’

Each of these questions should be supported by details that reflect the current state of the art. Technical justification is critical to establish credibility for your plan. Reference the material that you introduced in the background section. You should even use your research plan to tailor your background section so that your committee knows just enough to believe what you’re claiming in your plan.

Based on the tasks and metrics in your plan, establish specific reflection points when you’ll revisit the scope of your project and evaluate if changes are needed.

Include alternative approaches

You won’t be able to predict all of the challenges you will encounter, but planning alternative approaches early on for major methods or decision points will prepare you to make better game-time decisions when you come up against obstacles. e.g.,

I will develop multi-pulse, femtosecond illumination for high speed imaging following Someone et al. Based on the results they have shown, I expect to be able to observe defect dynamics with micron spatial resolution and microsecond temporal resolution. If these resolutions are not achievable in the nanowire systems, I will explore static measurement techniques based on the work of SomeoneElse et al.

Resources and Annotated Examples

Annotated example 1.

This is a recent MechE thesis proposal, written in the style of an IEEE paper. 1,022 KB

Visit the Health Advisories website for the latest vaccination and mask information and to Report a Case.

SJSU is Open and Operational

Campus will be open January 22–26. Visit our FAQ to learn more .

Mechanical Engineering

How to Write a Project Proposal

Contents of proposal.

A recommended template for an MS project or thesis proposal is provided at the following link, from which you can make a Google Docs copy or download a Microsoft Word file:

ME 295 and ME 299 Proposal Template

Proposal Approval Process

The project proposal must be written so that it provides a strong evidence of a student’s thorough understanding of the topic and the capabilities to carry out the work successfully. There are three levels of approvals and signatures required to ascertain that the student in fact has the understanding and capabilities to complete the project successfully. First, the proposal is reviewed, evaluated, and signed by the advisory committee. Next, the signed Proposal Evaluation Form  is attached to the proposal, along with the completed Proposal Cover Sheet and submitted to the ME office for approval and signatures of the Graduate Advisor and the Department Chair. Refer to the Projects and Thesis tab for proposal deadline.

See our detailed instructions [pdf] for submitting the project proposal in DocuSign to help guide you through the process. 

Proposal Deadline

The proposal must be approved by the advisory committee, the Graduate Advisor, and the Department Chair prior to the university deadline for adding a course, usually the second week of February for the Spring semester and the second week of September for the Fall semester. The add-code for the first term project is issued by the ME office only after the approved project proposal has been received. Failure to meet the deadlines can delay your graduation.

Sample Proposals

The following are some representative examples of project proposals. Your proposal may have additional requirements depending on your project committee chair.

  • Sample 1 (Bicycle brake)
  • Sample 2 (Collapsible cup)
  • Sample 3 (Object detection)
  • Sample 4 (Metamaterial)
  • Sample 5 (Battery)

George W. Woodruff School of Mechanical Engineering

Master's thesis process.

The Graduate Committee meets once a month to review and approve academic student matters; therefore, please plan accordingly. 

Process Initiation

Step 1. Identify an advisor, a thesis topic, and your thesis reading committee

  • You are encouraged to talk to various faculty members regarding possible thesis topics and to begin this process immediately upon embarking on a degree program. Composition of your reading committee should be decided in conjunction with your advisor.
  • The committee consists of at least three members . The advisor or one of the co-advisors must be a tenure-track (academic) Woodruff School faculty member, or a Woodruff School research faculty member with an earned doctorate. Two members of the M.S. Thesis Reading Committee must be tenure-track (academic faculty with primary or joint appointments in the Woodruff School). All committee members must have an earned doctorate or equivalent professional experience.

Step 2. Submit the Request for Approval of Master's Thesis Topic Form

  • Complete the Request for Approval of Master's Thesis Topic form in the ME Graduate Handbook. Please go to the following link and follow the online instructions:

         Request for Approval

  • Once the form is submitted, your faculty advisor will receive an automated email requesting a short justification for the composition of your reading committee. 

Please Note: If a proposed member is not a Georgia Tech faculty member, a CV of that proposed member must also accompany the request. Please email the CV to your Staff Academic Advisor in the Office of Student Services.

Step 3. Receive approval from the Woodruff School Graduate Committee and then obtain signatures of remaining committee members

  • After the Woodruff School Graduate Committee approves your master's thesis reading committee and your Request for Approval of Master's Thesis Topic, you will receive an email from the Office of Student Services.
  • Please log into eSignature.gatech.edu to create an account with DocuSign. Once logged into DocuSign, complete the Request for Approval of Master’s Thesis Topic electronic form.

Please be sure to list Dr. Andrei Fedorov as the School Chair and your Staff Academic Advisor as the Graduate Coordinator. An email will send automatically requesting the required signatures. Everyone will receive a final, signed copy of the form.

Change in Thesis Title or Abstract

If there are any changes in your Thesis Title or Abstract, please complete a revised Request for Approval of Master's Thesis Topic   form via DocuSign. Indicate on the form that this is only a change in title, abstract, or both. You and your advisor must sign the form. Changes to a master's thesis title or abstract are handled administratively and need not go to the Woodruff School Graduate Committee for approval.

Change in Thesis Reading Committee

If there are any changes to your Master's Thesis Reading Committee, it must be submitted to the Office of Student Services on a revised Request for Approval of Master's Thesis Topic form. Please follow the above instructions in steps 2 and 3 in order to have the new reading committee member(s) approved. If the person is not a Georgia Tech faculty member, please email the CV to your Staff Academic Advisor in the Office of Student Services. 

Writing the Master's Thesis

The purpose of the master's thesis is to further your educational development by requiring you to plan, conduct, and report an organized and systematic study of importance. In keeping with the Woodruff School’s policy of educating both practicing and research engineers, a thesis might range from a design project to a fundamental research investigation. Although you may propose a thesis topic and seek an advisor, the usual procedure is for you to work on a problem suggested by a faculty member. If you are employed on a sponsored research project, the thesis will usually be derived from this work.

Suggested Content of the Thesis

A master's thesis should present information in four steps:

  • Describe a problem or question
  • Motivate the problem or question
  • Provide a solution to that problem or an answer to the question
  • Discuss or validate the solution or answer.

The first two of these steps provide introductory information that generally fills one or two chapters of the final document. The information provided in the third and fourth steps is governed by the scope of the project and by the kind of documentation that is deemed appropriate to the project. An experimental project, for example, is likely to require different kinds of evidence than might a redesign project. Such differences in the standards for evidence will directly impact the length of the final thesis, and they will impact the kinds of illustrations that are selected for inclusion in the final document.

Next is a list of the most common format headings for a master's thesis. Under each heading, we list the kinds of information typically presented under that heading. These information listings are necessarily schematic. Since thesis documents will vary according to project scope and evidentiary standards, you should view the listings as a point of departure from which to begin your own work.

On one sheet of paper, list the problem(s) addressed by the project and the solutions that are reported in the thesis.

Introduction

Describe the need or question that is addressed in the project. Also, explain the benefits of addressing the need or answering the question, and explain briefly what solution you have developed.

Describe the background of the need or question, addressing some combination of the following:

  • A review of published literature
  • A survey of existing products or patents
  • A survey of industrial efforts to address the problem or need

Explain your strategy for addressing the problem, including theory and comparative benchmarks, as required. Describe the specific steps you have taken to address the problem, such as experimentation, computer modeling or simulation, and design and evaluation.

Results and Discussion

Present, explain, and evaluate the results obtained on each component of the project.

Summarize your conclusions and outline the questions raised or left open by your project.

Presentation

Step 1. Provide the completed written thesis to your committee members

  • Master's students who are preparing a thesis must give an oral presentation of their work. This presentation is not a formal defense. Rather, approval of the thesis is based upon the written document. The presentation may be scheduled only after the student’s thesis advisor has reviewed the completed written document and considers the thesis to be satisfactory.

Step 2. Schedule the M.S. Thesis Oral Presentation and submit the Thesis Presentation Announcement to the Office of Student Services

  • Poll the members of your reading committee to establish a date and time for the presentation. Reserve a room for your oral presentation.  Submit your announcement at the following link:

         Submit your announcement

  • This step must be completed at least two weeks (14 days) before the presentation. The announcement will be posted to the Woodruff School calendar.

Step 3. Submit Final Forms

  • The Thesis/Proposal/Dissertation Assessment form is now available in Qualtrics . Each committee member must complete the Qualtrics form at the conclusion of the presentation. The form will be routed to the Office of Student Services for further processing.
  • After your presentation, complete the Certificate of MS Thesis Approval form via DocuSign. Please list Dr. Andrei Fedorov as the Graduate Coordinator/Staff Administrator. Your committee will sign off on your form via the email request. Please email a copy of the completed signed form to your Staff Academic Advisor once you receive it back.
  • The committee chair will submit the forms to the Office of Student Services. 

IMPORTANT NOTICE

You must be registered during the semester in which the final presentation occurs, unless an Enrollment Waiver is requested and approved.

Enrollment Waiver

Submitting the Master's Thesis

Format Check

You are urged to have your thesis format checked before making the final copies for your committee. To make an appointment to have the format of your thesis checked, please call the Graduate Thesis Office (Savant Building, Room 318) at 404-894-3092, or e-mail [email protected] .

There are deadlines for the initial format check that is one week before the final submission deadline. There is a recommended deadline, but initial format checks will not be done in the week leading up to the thesis deadline; only final submissions will be checked that week.

  • The specific requirements for the format, publication, and distribution of the thesis are explained here:

         Theses & Dissertations Resources

Electronic Submission of Theses and Dissertations

Paper copies should be given to your advisor and the members of your reading committee, unless the members request a different format.

  • Please submit your theses electronically to the Graduate Studies office:

         Electronic Submission

Enter the requested information about yourself and your thesis/dissertation and upload your thesis or dissertation in PDF format. Once you submit the documents electronically, an e-mail notice will be sent to your committee members.

The Thesis Approval Page will be the second page in your thesis/dissertation, but it will not show any signatures. List the committee members who approved your thesis or dissertation, but remove the signature lines and be certain you type in the date, which is the date that the final draft of your thesis/dissertation was approved.

The Graduate Office will check your electronic document and let you know about any corrections you must make. Make the corrections and resubmit the corrected file. If the Graduate Office has all the related documents, your thesis/dissertation will be approved and they will notify the Registrar's Office that you are eligible to graduate. Once you have graduated, your thesis/dissertation will be released for electronic circulation.

  • < Back to MS Degree Program

Main navigation

  • Undergraduate Studies
  • Graduate Studies
  • Links & Services
  • Prospective Students and Admissions
  • Mechanical Engineering CEGEP Curricula
  • Mechanical Engineering Out of Province Curricula
  • Honours Mechanical Engineering Curricula
  • Complementary Studies
  • Complementary Technical Courses
  • Design Concentration
  • Aeronautical Concentration
  • Undergraduate Labs
  • Thesis Projects
  • Design Projects
  • Minors in Engineering
  • Courses Offered
  • Advising and Contact Information

Thesis Projects (last update November 24, 2023)

The Honours Thesis research projects listed below are available only to McGill Mechanical Engineering Undergraduate students in the Honours program and registered for MECH 403-404 courses .

If you are interested in one of the thesis projects, please send an expression of interest to the contact email provided. Although we do our best to keep this list up-to-date, some projects may no longer be available.

If you are a professor who would like to add or remove a thesis project, please complete the honours project posting form . 

Projects for Winter 2024 and Fall 2024:

Thesis project 2023-1.

Title: Development of a method for recycling fibreglass composite wind turbines Supervisor : Prof. Larry Lessard The term(s) to begin:  Fall 2023 or Winter 2024 Brief description: There is growing concern about recycling of end-of-life composite materials. Waste fiber and other materials cannot be put into landfills so recycling methods must be developed. Used wind turbine blades can be recycled to recover the fibers and these fibers can be re-used to make materials for 3D printing. So this project aims to solve two simultaneous problems: that of growing amounts of waste and the need for stronger/more high tech materials for the growing 3D printing industry. The project involves experimental manufacturing based on composite materials theory. Contact e-mail : larry.lessard [at] mcgill.ca

Updated: May 2, 2023

Thesis Project 2023-2

Title: Multi-robot collaborative state estimation Supervisor : Prof. James Richard Forbes The term(s) to begin : Fall 2023, Winter 2024 Brief description : Autonomous vehicles, such as autonomous cars, trucks, and trains, must fuse various forms of sensor data together in order to ascertain their position, attitude, velocity, and angular velocity. Typical sensor data includes inertial measurement unit (IMU) data and some sort of position data, such as GPS data, or range data, such as optical camera, radar, or LIDAR data. In multi-robot systems, an individual robot can also utilize information from its neighbors by having the robots communicate their state estimates. However, the estimates of different robots are often correlated, and without properly modelling these cross-correlations, the performance of the estimator might be very poor. This project will then focus on modelling those cross-correlations for collaborative state estimation in multi-robot systems. The main task will involve the development and coding of a sigma point Kalman filter to enable multi-robot navigation; however, based on the student’s interests and background, alternatives to the sigma point Kalman filter could be considered. Students best fit for this project are those interested in using mathematical tools, such as linear algebra, numerical methods, probability theory, and numerical optimization, to solve problems found in robotics. Experience with Matlab and/or C programming is desired. Contact e-mail : james.richard.forbes [at] mcgill.ca

Thesis Project 2023-3

Title:  Robot navigation Supervisor : Prof. James Richard Forbes The term(s) to begin : Fall 2023, Winter 2024 Brief description :  Autonomous vehicles, such as autonomous cars, trucks, and trains, must fuse various forms of sensor data together in order to ascertain their position, attitude, velocity, and angular velocity. Typical sensor data includes inertial measurement unit (IMU) data and some sort of position data, such as GPS data, or range data, such as optical camera, radar, or LIDAR data. This project will focus on sensor fusion for robot navigation. The first task will be the development and coding of a matrix Lie group integrator, in the spirit of a Runge-Kutta integrator, but tailor to matrix Lie groups. The second task will be the development and coding of a cascaded sigma point Kalman filter to enable multi-agent navigation (i.e., navigation of many robots). Students best fit for this project are those interested in using mathematical tools, such as linear algebra, numerical methods, probability theory, and numerical optimization, to solve problems found in robotics. Experience with python and/or C++ programming is desired. Contact e-mail : james.richard.forbes [at] mcgill.ca

Posted: May 2, 2023

Thesis Project 2023-4

Title : Reconfigurable metamaterials for soft robotics Supervisor : Prof. Damiano Pasini The term(s) to begin : Fall 2023, Winter 2024 Brief description: Mechanical metamaterials are manmade materials, usually fashioned from repeating units, which are engineered to achieve extreme mechanical properties, often beyond those found in most natural materials. In this project, the student will use the lens of mechanics of materials to generate material concepts for soft robotics. Additive manufacturing techniques will be employed to fabricate prototypes and their performance will be examined through mechanical testing. Contact e-mail : damiano.pasini [at] mcgill.ca

Updated: May 9, 2023

Thesis Project 2023-5

Title : Nonlinear dynamics/vibrations of architected materials for aerospace applications Supervisor : Prof. Damiano Pasini and Prof. Mathias Legrand The term(s) to begin : Fall 2023, Winter 2024 Brief description: When launched in space, satellites need to endure an explosive upright boost that generates extremely large vibrations throughout their bodies. If uncontrolled, these vibrations end up spoiling the performance of their components with the risk of making them nonfunctional. In this project we study the nonlinear vibrations of a satellite component made of ultralight weight architected materials of unprecedented performance. The goal is to model its dynamic behaviour and understand the geometric factors that control its highly nonlinear response at the onset of a launch in space. The work involves a combination of theoretical and computational analysis. Contact e-mail : damiano.pasini [at] mcgill.ca

Thesis Project 2023-6

Title: Can you hear the shape of a robot? Supervisor : Prof. Audrey Sedal The term(s) to begin : Fall 2023, Winter 2024 Brief description : Unlike traditional robots, soft robots can take a variety of unusual 3D shapes. However, it is challenging to estimate the shape of a soft robot while it operates, which makes precise control difficult. Inspired by Mark Kac’s question, “Can one hear the shape of a drum?” Short answer: not all the time, due to the existence of isospectral manifolds. This project investigates fusion of acoustic sensing with other modes (e.g., cameras) to estimate the 3D shape of soft robots as they operate. You will build a variety of soft robot prototypes, develop sensing frameworks, and evaluate their performance. This project will involve fabrication, hardware development, programming, and a little bit of geometry.

mechanical engineering thesis proposal

Contact e-mail : audrey.sedal [at] mcgill.ca

Updated: May 22, 2023

Thesis Project 2023-7

Title : Development of a Digital Twin of a Mill Yard Supervisor : Prof. Inna Sharf The term(s) to begin : Winter 2024, Fall 2024 Brief description: Digital twin is an emerging technology that goes hand in hand with increasing automation of machines,processes and advances in IofT. Professor Sharf’s industrial collaborator, FPInnovations, is working on increasing autonomy and intelligence of log loading machines and transport vehicles operating in the mill yards. This will ultimately be followed by moving the operators from the seats in the machines into an office, i.e., where they can no longer directly observe their environment. Furthermore, other processes,  such as, measuring the size of piles, are already executed remotely, for example, with drones, and will soon be executed autonomously, thus producing information on the state of assets in the mill yard. Ultimately, it will be important to have a digital twin of the mill yard, which will provide digital and visual information on the state of the mill yard, in particular, location and size of log piles, the location and status of machines operating in it, incoming and outgoing log trucks, the status (e.g., traversability) of roads and other information. Professor Sharf is interested in beginning the development of such a digital twin. This will require identifying a suitable platform to house the twin, laying out the roadmap for building the twin in a sequence of phases sand developing the phase 0 of the digital twin. Contact e-mail : inna.sharf [at] mcgill.ca

Updated: November 23, 2023

Projects for 2018-2019 school year: may or may not be still available - you may use contact e-mails to find out.

Thesis project 2018-11.

Title:  Dynamics of photon-driven lightsails for interstellar flight Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : The use of lasers to propel sails via direct photon pressure has the potential to achieve very high velocity spaceflight, greatly exceeding traditional chemical and electric propulsion sources, and enables the serious consideration of interstellar flight.  However, the dynamics and stability of thin sails (lightsails) under intense laser illumination is an outstanding problem.  This project will examine the dynamics of very thin membranes both theoretically and experimentally.  The response of a lightsail to perturbation will be analyzed both analytically and via computer simulation. Use of gasdynamic loading techniques (shock tube) will enable the same driving load to be applied in the laboratory, but without the use of megawatt-class lasers.  Experimental diagnostic techniques (photonic doppler velocimetry, 3-D digital image correlation) will be developed to study the lightsail dynamics that will eventually be applied to a laser-driven sail proof-of-concept facility. Personnel sought:  Student should have a strong interest in advanced space exploration concepts, with general background in physical optics, numerical simulation, and experimental techniques. Skills involved:  Experience with photography and high-speed data acquisition would be helpful.  Completion of Mech 321 (Mechanics of Deformable Solids) and Mech 430 (Fluids 2) is required for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Posted: September 12, 2018

Thesis Project 2018-12

Title:  Dynamic soaring on a shock wave Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : Dynamic soaring is a technique exploited by birds and sailplanes to increase their flight speed by exploiting differences in airspeed of different masses of air.  This project will explore this approach by examining dynamic soaring of a hypersonic glider on a shock wave.  In essence, the technique consists of “bouncing” back and forth from either side of a shock wave via a high lift-to-drag turn, increasing the net velocity of the glider.  The ability to “surf” on a very strong blast wave (such as resulting from a thermonuclear blast or asteroid impact) from ground all the way to space will be explored. The use of the technique on shock waves that occur in interplanetary space (coronal mass ejections, etc.) that might enable spacecraft to be accelerated to very high velocities “for free” will also be explored. Personnel sought:  Student should have a strong interest in advanced space exploration concepts and flight dynamics, with general background in numerical simulation. Skills involved:  Completion of Mech 430 (Fluids 2) is required for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Thesis Project 2018-13

Title:  Rapid transit within the solar system via directed energy: laser thermal vs. laser electric propulsion Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : Directed energy in the form of a ground or space-based laser providing power to a spacecraft is a disruptive technology that could enable a number of rapid-transit missions in the solar system and interstellar precursor missions.  This project will compare two different approaches for a spacecraft to utilize beamed laser power:  (1) laser thermal propulsion, wherein a laser is focused into a chamber to heat propellant that is expanded through a nozzle and (2) laser electric propulsion, wherein a laser  directed onto a photovoltaic array generates electricity to power electric propulsion (ion engine, etc.).  These two concepts will be compared for a number of missions of interest, as defined by NASA:  (1) Earth orbit to Mars orbit in no more than 45 days and (2) Traversing a distance of 125 AU in no more than ten years. Personnel sought:  Student should have a strong interest in advanced space exploration concepts, with general background in physical optics and numerical simulation. Skills involved:  Prior exposure to spacecraft mission design (e.g., experience with ‎Kerbal Space Program, etc.) would be helpful.  Completion of Mech 430 (Fluids 2) and Mech 346 (Heat Transfer) is required for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Thesis Project 2018-14

Title:  Impact of dust grain on lightsails for interstellar flight Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : Laser-driven lightsails are a promising technique for interstellar flight, however, sails will experience impacts of dust grains in the interplanetary and interstellar medium.  The impact of a sub-micron grain can deposit as much as 1 J of energy into the sail when travelling at speeds necessary for interstellar flight.  This project will examine the subsequent dynamics of the sail and the damage incurred.  This problem will be modelled both analytically and numerically, and experiments will be performed in the lab with gas gun-launched particles onto candidate thin-film materials. Personnel sought:  Student should have a strong interest in advanced space exploration concepts, with general background in materials and stress/strain, numerical simulation, and experimental techniques. Skills involved:  Experience with ANSYS would be very enabling for the project. Experience with photography and high-speed data acquisition would be helpful.  Completion of Mech 321 (Mechanics of Deformable Solids) is required for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Thesis Project 2018-15

Title:  Percolation model for detonation in a system of discrete energy sources Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : Detonation waves propagating in combustible gas mixtures exhibit very complex dynamics, with transverse and longitudinal shock waves that sweep across the front.  This project will attempt to model this process by treating detonation as an ensemble of interacting blast waves.  Approximate, analytic solutions of blast waves will be used to treat the problem.  Results will be interpreted with the assistance of percolation theory, a branch of statistical physics.  Results will also be compared to reactive Euler simulations using supercomputing resources. Skills required:  Strong coding skills (language of your choice) and awareness in advanced mathematics is of interest. Personnel sought:  Completion of Mech 430 (Fluids 2) is required for this project. Interest in nonlinear physics and pattern formation in nature would provide helpful motivation for this project. Exposure to concepts in statistical physics (Ad. Thermo) is also desirable. Contact e-mail : andrew.higgins [at] mcgill.ca

Thesis Project 2018-16

Title:  Pellet stream propulsion for interstellar flight Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : A promising approach to deep space propulsion that may enable interstellar flight is pellet stream propulsion, wherein high velocity pellets (with velocity exceeding that of the spacecraft) are used to impart momentum onto a spacecraft.  Such a pellet stream may be able to be collimated and focused over much greater distances than a laser beam, making it an attractive alternative to laser-driven directed energy.  This project will examine the ability of a charged particle to be steered and re-directed via a static magnetic field (e.g., quadrupole beam steering, etc.), both via computer simulation and experimental testing in the lab.  The ability to steer a small (mm to cm scale) pellet via magnetic field of rare earth magnets at speeds of ~1 km/s would be a significant validation of the concept. Personnel sought:  Student should have a strong interest in advanced space exploration concepts, with strong background in electromagnetism and physics. Interest in or familiarity with conventional, fundamental particle accelerators would be desirable. Skills involved:  Basic coding skills (language of your choice) and numerical simulation is required. Experience with basic electronics and microcontrollers (Arduino, etc.) and 3-D printing would be very helpful for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Department and University Information

Department of mechanical engineering.

  • Prospective Information & Curricula
  • Program Information and Curricula
  • Academic Advising Appointment
  • Courses offered
  • Faculty of Engineering
  • Computer Store
  • Program Information
  • Financial Information
  • Funding opportunities
  • Graduate Student Handbook
  • Graduate Supervisor
  • Research Areas
  • Career Planning Service
  • Counselling Services
  • Engineering career Centre
  • Harassment, Sexual Harassment and Discrimination
  • International Student Services
  • McGill Engineering Student Centre
  • McGill Engineering Undergraduate Society
  • McGill in Mind
  • Ombudsperson
  • Psychiatric Services
  • Service Point
  • Student Accounts
  • Student Aid
  • Student Health Services
  • Student Housing
  • Student Services

  [email protected]

  WhatsApp (messaging): +447402321788

  • Login    Forgot Password

image

  • Lab Reports
  • 2D/3D Modelling
  • Engineering Analysis (CFD/FEA)
  • Engineering Thesis
  • Programming assignment help
  • Industrial Attachment Report/practicum report
  • Mathematics assignment help

Mechanical Engineering Thesis

  • 1 Introduction to mechanical engineering thesis
  • 2 Sample mechanical engineering thesis topics and files
  • 3 What are the Learning Outcomes for a Mechanical Engineering Thesis?
  • 4.1.1 Design, Build and Test or Experimental Mechanical Engineering Thesis
  • 4.1.2 Modelling Of an Engineering Process
  • 4.1.3 Detailed Design of An Engineering System
  • 4.1.4 Preparation And Testing of Computer Software
  • 4.2 Theoretical or Research Oriented Mechanical Engineering Final Year Projects
  • 5.1 Mechanical Engineering Thesis from The Published List of Project Topics Provided by The Members of Academic Staff
  • 5.2 Mechanical Engineering Thesis Topic from A Student’s Own Idea
  • 5.3 Mechanical Engineering Thesis Topic from A Sponsoring Company
  • 6.1.1 Risk Assessment for An Engineering Thesis Proposal
  • 6.1.2 Project Timeline/Plan for A Mechanical Engineering Thesis
  • 6.1.3 Ethics Assessment for A Mechanical Engineering Thesis
  • 6.2 Mechanical Engineering Thesis Interim Report or Progression Report
  • 6.3 Mechanical Engineering Dissertation Final Report
  • 6.4 PowerPoint Presentation (Slides or Poster)
  • 6.5 Oral Presentation/Examination (Viva) of Your Mechanical Engineering Thesis
  • 7 Structure Or Format of The Mechanical Engineering Thesis Final Report
  • 8 Why choose topengineeringsolutions.com for your mechanical engineering thesis?
  • 9 Conclusion

Introduction to mechanical engineering thesis

order mechanical engineering homework help now from topengineeringsolutions.com

For urgent inquiry, send a WhatsApp message to: +44 7402 321788

Sample mechanical engineering thesis topics and files

In this section you, will find a list of mechanical engineering thesis topics you can select from. Some of the topics have a sample report and all the relevant files (report, 3D CAD files, simulation files, codes etc). Follow the link provided on the topic to access the materials. The sample report and project files will make your work very easy when working on your mechanical engineering thesis. You can still request a custom/new mechanical engineering thesis report for your selected topic. If you are interested in a topic that does not have a sample report and all the project materials, place an order for a custom report and we will be glad to help. We can also help you identify a mechanical engineering thesis title in your area of interest or advise you on the suitability of your selected mechanical engineering final year project title.

What are the Learning Outcomes for a Mechanical Engineering Thesis?

The engineering final year project is an opportunity for students to demonstrate their ability to independently carry out a substantial project from specification through to completion. It helps the student develop and practice many of the attributes required of a modern

professional engineer including project planning, project management and presentation of

progress and results. A mechanical engineering thesis is meant to help you demonstrate the ability to do the following:

  • Plan a substantial project
  • Carry out preliminary study
  • Organise the acquisition of necessary equipment and components
  • Liaise with staff and other students
  • Set a number of targets
  • Work independently to attain the targets
  • Communicate progress with a supervisor
  • Reorganise plan to accommodate unforeseen problems
  • Complete the work in time
  • Present an oral and written report of the work

Types of mechanical engineering dissertation/thesis

Mechanical engineering final year projects can be classified into various categories depending on how you obtain your research data. The two main categories of mechanical engineering final year projects are practical mechanical engineering final year projects and theoretical mechanical engineering final year projects.

Practical mechanical engineering thesis

In a practical mechanical engineering dissertation, the student relies on primary research, that is, you obtain the data yourself. A practical mechanical engineering final year project can further be classified as “Design, build and test or experimental ” projects, modelling of an engineering process, Detailed design of an engineering system and preparation and testing of computer software.

Design, Build and Test or Experimental Mechanical Engineering Thesis

This type of mechanical engineering final year project involves designing a physical engineering component, building a prototype and thereafter testing it. This is the most intensive and time-consuming type of mechanical engineering final year project. It requires excellent time management skills and discipline in order to complete it successfully. You need to start early to avoid late submission or submitting incomplete work. Before you decide on this type of engineering thesis, ascertain the availability and accessibility of experimental equipment and work space.  

Although experimental mechanical engineering final year projects are intensive, they will impart you with lots of engineering technical skills which include assessing project requirements and creating product design specifications, using computer-aided design/modelling software, using various engineering equipment to manufacture an engineering product, liaising with suppliers to source for materials, producing and implementing designs and test procedures, testing, evaluating, modifying and re-testing products, analysing and interpreting data; writing reports and documentation among others. Sample experimental mechanical engineering final year projects are given here .

Modelling Of an Engineering Process

Mechanical engineering thesis types that involve modelling of an engineering process are mainly focused on improving and optimising manufacturing processes by applying numerical simulation tools hence achieving better products with regard to process selection, material selection, geometry among others. Typical manufacturing processes that can be modelled include 3D printing (additive manufacturing), casting and composites manufacturing etc. An example of such a mechanical engineering dissertation could be application of lean manufacturing concepts to a specific engineering process in order to build quality in the manufactured product while at the same time eliminating wastes. This mechanical engineering final year project type is interdisciplinary as it applies multiple concepts such as process technology, fluid mechanics, solid mechanics, materials science and thermodynamics etc.

Detailed Design of An Engineering System

Mechanical engineering final year projects involving design of an engineering system aim at applying mechanical engineering principles to design complex engineering systems that are reliable, cost-effective, efficient and with minimum environmental impacts. For example, the project may entail applying principles of thermodynamics and heat transfer in the design of advanced energy conversion systems for power generation or designing an optimised heat exchanger for a certain application. This mechanical engineering thesis type requires the student to clearly state the function of the system (what the system can fulfil e.g., system to harness both thermal and electrical energy from solar (solar PVT), provide system specifications and have a clear evaluation criterion. Evaluation criteria are the design objectives meant to minimise limitations of the engineering system while at the same time increasing the system benefits.

Preparation And Testing of Computer Software

This type of mechanical engineering dissertation entails developing and testing a custom computer software which can be used as a teaching aid, for simulation and engineering analysis or for computer aided design. It may also involve creating Machine Learning (ML) algorithms for predicting engineering processes and behaviour. Examples of mechanical engineering thesis that involve preparation and testing of computer software are given in this article.

Theoretical or Research Oriented Mechanical Engineering Final Year Projects

A theoretical mechanical engineering dissertation focuses on secondary research or literature review. In this case, you review relevant published scholarly sources such as peer reviewed journal articles, previous mechanical engineering dissertations and use the findings in those sources to make a conclusion about a specific engineering issue. You can decide to compare and contrast research by other authors in order to establish gaps for future study or apply their findings to a practical situation.

How to select a mechanical engineering thesis topic

Selecting your mechanical engineering dissertation topic is an important task that you must undertake before working on your final year project. As discussed above, a mechanical engineering thesis may be practical, theoretical or a combination of both. In all cases, before selecting the thesis topic, careful consideration should be given crucial factors like relevance of the topic to mechanical engineering course coverage, complexity of the problem to be undertaken, your interests and career aspirations, and the availability of a willing supervisor. It is worth noting that although proper final year project selection may not guarantee high marks, it certainly increases the probability of success in your project. If you need help in selecting your mechanical engineering thesis topic, you can check sample projects here or contact us. Mechanical engineering final year project selection may be in one of the following ways:

Mechanical Engineering Thesis from The Published List of Project Topics Provided by The Members of Academic Staff

In most institutions, university academic staff propose projects to reflect their consultancy, research, teaching or laboratory development interest. The project titles are compiled and published for students to choose from. Each topic on the list usually has a brief summary of what the project entails and the contact details of the supervisor who suggested the topic. If you are interested in any of the suggested thesis topics, it is upon you to contact the supervisor and get more information about it. The biggest advantage with this type of thesis topic selection is that in most cases, the other students will have worked on the same project in previous years. Thus, you will be able to identify challenges that they encountered and how they tackled them.   

Mechanical Engineering Thesis Topic from A Student’s Own Idea

You may propose a final year project based on your own specific interest or inventive talents. The issue problem you intend to tackle should be selected with great care. Whilst ideas for the engineering thesis may come in a flash of inspiration, it is more likely that you will already have a rough idea of what you want to do, based perhaps on your working experience (if any) or your daily activities. The easiest way to select a suitable engineering thesis topic that will guarantee success is to view a list of sample mechanical engineering dissertations that have been done in the past. A website like https://www.engineeringfinalprojects.com has a list of mechanical engineering final year projects that you can choose from. In addition, it gives you access to the sample final engineering thesis report for the selected topic as well as the relevant simulation files, 3D CAD models and codes that were used when completing the project. Having access to the final report and simulation files can make your work really simple and guarantee success in your project.

Mechanical Engineering Thesis Topic from A Sponsoring Company

Mechanical engineering thesis topics may also be provided by external companies and this is highly encouraged to increase industry relevance of the module. However, industry-generated projects may have some problems such as commercial security, difficulties of assessment and satisfactory liaison with the company among others. Nonetheless, if the project is carefully chosen and there is full commitment from both the company and the university, the problems are easily overcome.

Mechanical Engineering Final Year Project Deliverables

In order to ascertain the extent to which you have met the learning outcomes of the final year project module, you are assessed against various deliverables. There may be a slight variation between universities but the main deliverables are as outlined below:

Mechanical Engineering Project Proposal & Risk and Ethics Assessment/Plan Report/Scope

After submitting and obtaining approval for your project idea, you will be required to submit a project proposal. The name of this deliverable varies from one university to the other but the content is almost the same. In some cases, it is referred to a scope report, project plan report or simply proposal report. When submitting your mechanical engineering project proposal, you may also be required to submit a risk and ethics assessment form. A project proposal has an abstract which provide a clear and concise summary of the project proposal for a busy reader; an introduction chapter which includes motivation for undertaking the project, objectives of the project and significance of the project; the proposed approach (methodology); timeline or project plan; risk and ethics assessment; conclusion and references. Detailed explanation of what these chapters entail will be discussed in the project format section . However, risk assessment, project plan/timeline and ethics assessment are unique to this section and will be discussed here.

Risk Assessment for An Engineering Thesis Proposal

It is usually recommended and, in some cases, mandatory to provide a thorough assessment of the likely risks associated with the project. The risk assessment includes both risk for access to resource, general risks affecting the delivery of the project and health and safety. In this case, State the plausibility of each risk. Provide risk management strategies to eliminate or mitigate the risks discussed. Also, determine whether or not the proposed risk management strategies are plausible and reasonable. The general risk assessment procedure is as follows:

Step 1 – Identify the hazards and associated risks Divide the project into specific tasks. For each task, identify the hazards and associated risks. Step 2 – Identify the current risk treatments

Risk treatment is a process of implementing measures to reduce the risks associated with a hazard. In this step, you should identify the existing risk treatments that are in place to mitigate the identified risks.

Step 3 – Analyse and calculate the risk

In this step you are supposed to first consider the consequences of the identified risk, then consider the likelihood of the risk and finally calculate the risk.

Step 4 – Additional risk treatments and risk acceptance In this step, any additional risk treatments should be identified that will reduce the overall level of risk. The remaining level of risk (residual risk) should be of such a nature that the resulting level of likelihood and consequence are acceptable for the risk owner. A risk calculator or risk assessment template is provided here . You can download and use it for conducting risk assessment for your engineering thesis. Please note that risk assessment varies with the type of mechanical engineering final year project . A sample risk assessment for an experimental engineering thesis is given here. Also, a sample risk assessment for a theoretical or design-based mechanical engineering final year project is provided here. You can download and use them as guides. Please note that The Activity Overall Risk Rating must be LOW . Activities with an Overall Risk Rating of MODERATE or above must be accompanied by a Risk Management Plan. However, the risks must be reduced to As Low As Reasonably Practicable and the Risk Assessment must been reviewed and approved by the project supervisor.

Project Timeline/Plan for A Mechanical Engineering Thesis

When creating your engineering thesis timeline or plan, provide a clear description of a well thought out project timeline. The use of a Gantt chart is highly recommended. Determine whether or not the proposed timeline is realistic. Identify and discuss all items on the critical path. Note that this timeline covers the entire project in both semesters. A sample Gantt chart for a mechanical engineering thesis is attached. The most common tools for creating a professional engineering thesis Gantt chart include Microsoft Projects and Ganttproject . Ganttproject is free of charge, easy to use and is small in size.

Ethics Assessment for A Mechanical Engineering Thesis

You should address any ethic issues arising from your project work (this is required in all project reports). For students in UK universities, the engineering ethics are guided by four fundamental principles based on the Royal Academy of Engineering’s document “ Statement of Ethical Principles “. The principles are:

  • Accuracy and Rigour
  • Honesty and Integrity
  • Respect for Life, Law and the Public Good
  • Responsible Leadership: Listening and Informing

When carrying out ethics assessment, you should concentrate on the potential impact of your work , rather than your own honesty etc. Unless your project requires specific ethic approval, a typical ethics assessment is simply a general discussion relating to the project topic. Concentrate on the most relevant issues, rather than trying to find something to fit every possible point

Mechanical Engineering Thesis Interim Report or Progression Report

A mechanical engineering interim report which can also be known as mechanical engineering progress report is aimed at monitoring your project through the thesis. It is usually about 15 to 30 pages depending on your institution. The appropriate length of the report may also depend on the type of mechanical engineering thesis that you have selected. If you have any doubts or questions about the length please discuss this with your supervisor. Your progress report gives evidence of research and technical progress towards objectives as well as monitoring of the project plan and management of any adjustments to the project direction. By evaluating the interim report, the supervisor can keep track of what work you have completed and what is still to be completed, and identifying any weaknesses where further development may be needed. Your mechanical engineering thesis interim report is an early opportunity for your supervisor to assess your progress and to provide feedback. By the time you submit the interim report, you should, by now, have a clear idea in terms of what you are doing, why you are doing it, and how you are doing it. You should also bear in mind when writing your mechanical engineering thesis progress report that its purpose is to report the results obtained so far, and to show whether:

  •  The stated project objectives are being met
  • The project is proceeding on schedule
  • You are managing the project in the best possible way
  • There are any previously unforeseen problems that require attention.

In order to achieve the learning outcomes of the progress report, your report should state how far you have progressed with each of the activities that you planned, whether you are on schedule, and discuss any problems which you have encountered or can see in the future. Typical chapters of your mechanical engineering thesis progress report include abstract, Table of Contents, Introduction chapters (aim and objectives, motivation, and significance of the project), Background or Literature Review chapter, Proposed Approach chapter (methodology), Preliminary Results and Discussions, Conclusion, References and appendices (if any). By using the above chapters, the supervisor is able to verify what has been completed. It is also advisable to include a Gantt chart showing what work has been completed. If you have not completed activities scheduled to have been done you should say why not, and explain how you will fit the activity into your future work.

Mechanical Engineering Dissertation Final Report

The final thesis report is the single most important deliverable which must be submitted. Since the final report is relatively long, you should ensure that you start writing the report several weeks before the deadline. The exact structure of the report will vary according to the nature of your project but it must comply with the project handbook or guide which usually varies from one university to the other. Nonetheless, the main chapters of an engineering thesis final report are nearly the same. Before submitting the final copy of your engineering dissertation final report, you should check the following:

  • Does the report have proper tenses, grammar, spelling, and punctuation?
  • Are the project objectives clearly stated? Have they been fulfilled?
  • Is the referencing well done and consistent throughout the report?
  • Does the abstract give a clear idea of what has is in the Final Report?
  • Is the literature review sufficient and relevant to the project? Does it indicate the current state-of-the-art?
  • Is your methodology appropriate for the task? Is there any evidence in support of the methodology?
  • Are any limitations of the study clearly presented?
  • Are the results clearly presented?
  • Are conclusions based on evidence? Have any claims been made which cannot be substantiated?

The appropriate length of the report is not straightforward. However, you project handbook/guide will have information on the expected length. Nonetheless, the length of an engineering thesis report depends to some extent on nature of the work. The report must be fit for purpose and optimised to be as effective as possible in the doing task for which it was created. In this case the task is to convey to the reader (marker) the work done on the project, placing it clearly in the context of the topic background, motivation and requirements. From the assessment point of view the aim is show to the marker the academic and technical competence of the student, demonstrating the project was conducted in a professional manner. The report should be written so that it can be read and absorbed by an engineer having a basic knowledge of the subject. An engineering thesis report will be regarded to be too short if it does not convey the learning outcomes for example, significant details on how the project was implemented were left out, or there was insufficient background to place the work in its proper context. On the other hand, an engineering dissertation report can be regarded as excessively large if it has too much detail, so that the reader is overburdened with unnecessary information or it contains irrelevant details. An excessively large final report may be penalised. Stick to the project handbook guidelines. If necessary, ask for advice from your supervisor on what details / level of detail to include in different areas.

PowerPoint Presentation (Slides or Poster)

Presentation which can be in the form of slides or poster gives students experience in preparing and presenting a concise oral description of their work with visual aids. Most universities provide the standard presentation template which must be used by all students. A well-prepared engineering final year project presentation provides a concise overview of your project. It should precisely deliver the essential elements of the project and should be laid out to make comprehension of the essential elements of the project straightforward. It should be attractive in the sense that it draws an audience to it and invites further questions. Try to make the poster as visually appealing and engaging as possible such that you grab the viewer’s interest. Ensure you include plenty of diagrams and figures/images and do not clutter your poster with too much text. It should demonstrate excellent content and technical achievement. The poster should be logically constructed and present content at the appropriate level. You will need to demonstrate that you have an in‐depth knowledge and understanding of your project. Also, do not presume that the majority of viewers will be specialists in your field, so try to provide sufficient background and explanation for them to follow your poster.

Your project presentation slides or poster should be typed in a clear bold print that can be easily read from distances of around 1 – 2 metres with the title displayed in a large font at the top of the poster. The chapter titles like Introduction or Background , Objectives , Methodology , Results and Conclusion(s) etc should be in bold and distinguishable. The size of the title and normal text will depend on poster size as stipulated in the Guidelines on Poster Presentation which are usually provided together with the project handbook. Use your own judgement. Do not use too large or too small font size. Avoid too much text. If you cannot fit everything you wish in, you need to assess the risks of using smaller font size. You may be able to put more information in it but will it aid your presentation? It advisable to use no more than 4 different colours, and try to match the main colour theme. In addition to the main content, you must include your project title, your name, student ID and name of your supervisor.

Oral Presentation/Examination (Viva) of Your Mechanical Engineering Thesis

In the oral presentation/examination (Viva) you will be asked questions by your assessor, supervisor and panel members. You will be assessed on the responses which you give to questions and the understanding which you demonstrate regarding your project and its content. When presenting, ensure that you appear confident and enthusiastic and speak clearly with good use of gestures and eye contact. Try not to read your presentation from prepared notes. Do not forget to engage with your audience. You will need to demonstrate that you have the ability to generate interest and also to interpret and answer questions in a way that provides useful additional insights into your work.

Structure Or Format of The Mechanical Engineering Thesis Final Report

A typical example of the general format of your engineering thesis report is shown below:

  • Title page or Cover Page

Most universities provide a title page template for engineering thesis. You should closely follow the template without changing the format or layout. Typical contents of a title page include:

  • Unit Code and Title
  • Project Title
  • Student Name and Student Number
  • Name of your Degree and Specialisation
  • Name of the University and the School
  • Date of Submission
  • Supervisor Name at the bottom of the page
  • Disclaimer or Author Declaration

The wordings are usually provided in the project handbook.

It should provide a clear and concise summary of the project for a busy reader. Abstract should be self‐contained. It should enable a reader to quickly assess the subject matter of the report, to learn the essentials of the work carried out and the principal conclusions. It is used to give a clear picture of the aims and methods, and to summarise briefly the principal conclusions. It is intended to provide a frame of reference that will allow the nature of the project to be appreciated quickly. It is quite difficult to illustrate in a few words what your project set out to do. You may need several attempts before you achieve a sufficiently brief, informative Abstract. It is recommended that you write this section last, to ensure that it accurately reflects what is in the main body of the Engineering Thesis Final Report. You should not include figures, tables, or references in Abstract.

  • Table of Contents

This section helps the reader to follow your structure and easily navigate to different section of your report. Check this YouTube video on How to Create Table of Contents in your report.

  • List of Figures and Tables

All figures, graphs and tables in your engineering thesis report must be numbered, given a title/caption, identified sequentially and referred to in the text. Check this YouTube video on How to Create List of Figures or How to Create List of Tables in your report.

  • List of appendices

List the appendices here if available in the report.

  • Acknowledgements

This is an acknowledgement by the author of help given or work carried out by any other person or organisation

Chapter 1: Introduction

The introduction of a mechanical engineering dissertation should provide the reader with a clear idea of the issue under investigation and its importance, and such information as when and where it was carried out if that is not already obvious. This section should be as brief as possible, but should provide the reader with the necessary background information to give the setting of the investigation. Bear in mind your readers and how familiar they may or may not be with the situation. The introduction sets out the background to the project, states the problem investigated, notes the central focus of the investigation and mentions the proposed contribution to practical or theoretical issues. Therefore, the main subsections of the introduction chapter are:

This provides the reason for undertaking this engineering final year project and explains why the project is important. In this subsection, it is important to give sufficient background information and describe the current state of the art.

Under this subsection, define the objectives of the engineering dissertation. Identify the scope and the assumption. State the requirements (e.g., customer requirements, product requirements, system requirements, algorithm requirements, etc.)

  • Significance

The significance subsection of the engineering thesis introduction chapter gives the expected benefits of this project. Explain how the objectives will advance the current state of the art.

Chapter 2: Background/ Literature Review

Literature review is an important chapter in engineering dissertation as it explains the context and background of the study. Theoretical or research oriented mechanical engineering thesis require a more detailed review of previous work compared to practical mechanical engineering thesis. In your literature review, it is important to set the scene and place the work in context so as to prepare the reader for what is to follow. If the project is one which has been done by other students in previous years it would usually be expected that this work will be critically reviewed to help define the starting point for the new project. Literature review also enables you to identify the gaps on the topic. Literature review findings also provide a means for verification and validation of your project results. Please note that the material to be reviewed must be selected such that only books and journal articles which relate directly to the topic are included. Remember to provide a summary of the literature review in a paragraph or two, clearly mentioning the main findings from the review.

Chapter 3:  Methodology

Depending on the type of your mechanical engineering thesis, this section may involve design of a product, model, test program, computer simulation, manufacture and development of a product etc. When writing the methodology chapter for your mechanical engineering dissertation, divide the project into a set of specific tasks and identify the appropriate and innovative approach to carry out each of these tasks. These tasks will vary depending on the type of engineering thesis . For theoretical or research orientated mechanical engineering final year projects, the methodology should identify the databases and bodies of literature that will drive the review and the approach that will be developed. For modelling and design-based engineering final year projects, identify the computing resources that will be used, or the platform for the development of any new software as well as the tools that will be required. For the experimental engineering dissertations, describe the equipment and specific techniques that have been employed. When proposing your methodology, you must first ascertain the availability and accessibility of experimental equipment, computing resources, work space, and so on

Chapter 4: Results

This is the heart of the Mechanical Engineering Thesis Final Report and will consist of text, graphs, tables and figures, depending on the type of the project. Raw data generated or obtained during project implementation should be given in this section and if voluminous should be placed in an appendix. Derived results appearing in the main text should then refer to the raw data. The way results are presented is important. Tables, charts, graphs and other figures should illustrate and illuminate the text. The text derived from the results should not duplicate information in the tables and figures. It should highlight the significant aspects of the findings, so that all relevant facts are presented in a way that draws the reader’s attention to what is most important.

Chapter 5: Discussion of Results

This section begins by first restating the problem that your mechanical engineering thesis addresses before discussing how the results affect existing knowledge of the subject. The following are some of the guidelines when writing your discussion:

  • Try to present the principles, relationships and generalisation shown by the results.
  • Point out any exceptions or lack of correlation; define unsettled points.
  • Show how your results and interpretations agree or contrast with findings from the review of previous work.
  • Discuss the engineering issues of the work, as well as any practical applications.

Chapter 6: Conclusions

Before writing the conclusions chapter of your engineering dissertation, read through the whole report and take note of the main points.  Only conclusions that can be justifiably drawn from the results should be made, and avoid including an opinion for which no evidence is provided in the report. Readers who want a quick idea of what the project is about will look at the abstract, possibly the introduction and almost certainly at the conclusions. Therefore, this section should be clearly expressed to enable readers to readily understand what work has been done and the conclusions that have been drawn from the results. Should state clearly what you have achieved and, in particular, whether you have fulfilled the aims and objectives of the project. If not, you should summarise why not.

Chapter 7:  Suggestions for Further Work or Recommendations

This section includes the main aspects of the project that require further development. Each aspect has to be covered in sufficient depth and be supported by argument. Many projects are continued by other students the following year, so this section should provide them with good guidance on what the next steps should be. This is an important section as the examiners often use this information to see how much you have learnt during the project.

Adequate and relevant references (scholarly and of good quality) should be provided with complete details and in a consistent and correct format. Ensure all references are cited properly in text. All references must have a corresponding in‐text citation. All facts that are not either common knowledge to engineers, or statements of your actions, findings or assumptions must be referenced. Use the referencing style recommended in your project handbook. Please consult your supervisor when in doubt.

Appendices should include items which are required for reference purposes, but which would clutter the main body of the engineering thesis final report. Appendices should contain material that may disturb the smooth reading of the report. Other documents like catalogues and technical data sheets should not be included unless they are likely to be unavailable to the reader (e.g., from online sources etc.)  – provide a reference(s) instead.

Why choose topengineeringsolutions.com for your mechanical engineering thesis?

Topengineeringsolutions.com has been providing engineering assignment help service to thousands of students for over a decade now. This includes engineering thesis help, mechanical engineering assignment help and other engineering assignment help services. Our tutors are also well versed with most engineering software packages including SolidWorks , ANSYS, MATLAB , Siemens NX, CATIA, SOLIDCAM, ABAQUS and many more. Thus, our mechanical engineering tutors are able to handle mechanical engineering final year projects that involve Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA), Fluid Structure Interaction (FSI), 3D modelling, Acoustic analysis, Thermal Analysis, Combustion analysis and many more. We are also willing to help you select the most suitable mechanical engineering thesis topic to guarantee success. We incorporate the services of qualified, experienced, and professional staff to ensure students receive the best work that suits their needs. Our services are available 24/7 to ensure that we cater for both emergency and last-minute thesis projects. Our customer support staff is trained to engage students in a friendly yet professional manner to guarantee them high levels of satisfaction. Our qualified staffs pride themselves in numerous years of experience and knowledge gained from engaging students from all walks of life, and helping mechanical engineering final year student achieve his goals. Our services are reasonably priced to ensure that students from all backgrounds are able to access them.

We utilize high level plagiarism and error detective tools. Students are, therefore, guaranteed plagiarism, spelling and grammatically error free work. We also refer you to websites where you can obtain sample mechanical engineering thesis reports and simulation files to make your work much easier.

Order mechanical engineering thesis help service now.

What services does topengineeringsolutions.com provide for students?

  • Engineering Final Year Project Proposal
  • 3D CAD Modelling
  • Engineering Coursework
  • Engineering Industrial Attachment Report/practicum report 
  • Engineering Lab Reports
  • Engineering Dissertation/Thesis/Final Year project
  • Finite Element analysis (FEA) and Computational fluid dynamics (CFD)
  • Engineering Essay
  • Engineering Term Paper
  • Mathematics with special reference to algebra, statistics, pde, and calculus

At topengineeringsolutions.com, we are the best mechanical engineering thesis service providers. We understand the concepts and requirements of this industry. Our team of qualified, experienced, and professional staff works in collaboration with the students. This ensures they submit accurate, original, and error free work to fit the supervisor’s expectations. We endeavour to help students gain extensive knowledge as well as improve their grades. Mechanical engineering is a broad subject which can propel a graduate’s career prospects to greater levels. Get in touch with us and together we shall work towards giving you satisfaction depending on your needs and budget.

Order engineering assignment help

  • Mechanical engineering homework help
  • Essay Writing Service Singapore
  • Mechanical Engineering Assignment Help
  • Civil Engineering Homework Help

Our Services

Engineering.

  •   Mechanical Engineering Assignment Help
  •   Mechanical Engineering Homework Help
  •   Civil Engineering Homework Help
  •   Essay Writing Service Singapore
  •   Practicum Report Assignment Help
  •   Thermodynamics Assignment Help
  •   Electrical Engineering Assignment Help
  •   Assignment Help Singapore
  •   Civil Engineering Assignment Help
  •   Electrical Engineering Homework Help
  •   LabVIEW Assignment Help
  •   Matlab Assignment Help
  •   Matlab homework help
  •   Chemical Engineering Assignment Help
  •   Chemical Engineering Homework Help

PROGRAMMING

  •   PHP Assignment Help
  •   Programming Assignment Help
  •   Visual Basic Assignment help
  •   HTML Assignment Help
  •   Python Programming Assignment Help
  •   Database Assignment Help
  •   C Sharp Assignment Help
  •   C Programming Assignment Help
  •   Computer Science Assignment Help
  •   Android Assignment Help
  •   Assignment Help Canada
  •   Java Assignment Help
  •   Assignment Help Brisbane
  •   Assignment Help Adelaide
  •   Australia Assignment Help 2

CAD/FEA/CFD

  •   Solidworks Assignment Help
  •   AutoCAD Assignment Help
  •   Architecture Assignment Help
  •   Calculus Homework Help
  •   Assignment Help Australia
  •   Biology Assignment Help
  •   Psycology Assignment Help
  •   Chemistry Assignment Help
  •   History Assignment Help
  •   Math Assignment Help
  •   Science Assignment Help
  •   Geography Assignment Help
  •   Essay Writing
  •   Hospitality Management
  •   Assignment Help

BASIC SUBJECTS

  •   Mechanical Engineering Thesis
  •   Electrical Engineering Thesis
  •   Civil Engineering Thesis
  •   Chemical Engineering Thesis
  •   Assignment Help USA
  •   Assignment Help UK
  •   Assignment Help Sydney
  •   Assignment Help Queensland
  •   Assignment Help Perth
  •   Assignment Help New Zealand
  •   Assignment Help Malaysia
  •   Assignment Help in Melbourne
  •   Assignment Help Darwin
  •   Assignment Help Canberra

Digital Commons @ University of South Florida

  • USF Research
  • USF Libraries

Digital Commons @ USF > College of Engineering > Mechanical Engineering > Theses and Dissertations

Mechanical Engineering Theses and Dissertations

Theses/dissertations from 2023 2023.

Metachronal Locomotion: Swimming, Scaling, and Schooling , Kuvvat Garayev

A Human-in-the-Loop Robot Grasping System with Grasp Quality Refinement , Tian Tan

Theses/Dissertations from 2022 2022

Health Effects of Oil Spills and Dispersal of Oil Droplets and Zooplankton by Langmuir Cells , Sanjib Gurung

Estimating the As-Placed Grout Volume of Auger Cast Piles , Tristen Mee

Hybrid RANS-LES Hemolytic Power Law Modeling of the FDA Blood Pump , Joseph Tarriela

Theses/Dissertations from 2021 2021

Dynamic Loading Directed Neural Stem Cell Differentiation , Abdullah Revaha Akdemir

An Investigation of Cross-links on Crystallization and Degradation in a Novel, PhotoCross-linkable Poly (Lactic Acid) System , Nicholas Baksh

A Framework to Aid Decision Making for Smart Manufacturing Technologies in Small-and Medium-Sized Enterprises , Purvee Bhatia

Formation of Gas Jets and Vortex Rings from Bursting Bubbles: Visualization, Kinematics, and Fluid Dynamics , Ali A. Dasouqi

Development of Carbon and Silicon Carbide Based Microelectrode Implantable Neural Interfaces , Chenyin Feng

Sulfate Optimization in the Cement-Slag Blended System Based on Calorimetry and Strength Studies , Mustafa Fincan

Interrelation of Thermal Stimulation with Haptic Perception, Emotion, and Memory , Mehdi Hojatmadani

Modeling the Ambient Conditions of a Manufacturing Environment Using Computational Fluid Dynamics (CFD) , Yang Liu

Flow Visualization and Aerosol Characterization of Respiratory Jets Exhaled from a Mannequin Simulator , Sindhu Reddy Mutra

A Constitutive-Based Deep Learning Model for the Identification of Active Contraction Parameters of the Left Ventricular Myocardium , Igor Augusto Paschoalotte Nobrega

Sensible/Latent Hybrid Thermal Energy Storage for the Supercritical Carbon Dioxide Brayton Cycle , Kelly Osterman

Evaluating the Performance of Devices Engineering to Quantify the FARS Test , Harsh Patel

Event-Triggered Control Architectures for Scheduling Information Exchange in Uncertain and Multiagent Systems , Stefan Ristevski

Theses/Dissertations from 2020 2020

Experimental Investigation of Liquid Height Estimation and Simulation Verification of Bolt Tension Quantification Using Surface Acoustic Waves , Hani Alhazmi

Investigation of Navigation Systems for Size, Cost, and Mass Constrained Satellites , Omar Awad

Simulation and Verification of Phase Change Materials for Thermal Energy Storage , Marwan Mosubah Belaed

Control of a Human Arm Robotic Unit Using Augmented Reality and Optimized Kinematics , Carlo Canezo

Manipulation and Patterning of Mammalian Cells Using Vibrations and Acoustic Forces , Joel Cooper

Stable Adaptive Control Systems in the Presence of Unmodeled and Actuator Dynamics , Kadriye Merve Dogan

The Design and Development of a Wrist-Hand Orthosis , Amber Gatto

ROBOAT - Rescue Operations Bot Operating in All Terrains , Akshay Gulhane

Mitigation of Electromigration in Metal Interconnects Passivated by Ångstrom-Thin 2D Materials , Yunjo Jeong

Swimming of Pelagic Snails: Kinematics and Fluid Dynamics , Ferhat Karakas

Functional Gait Asymmetries Achieved Through Modeling and Understanding the Interaction of Multiple Gait Modulations , Fatemeh Rasouli

Distributed Control of Multiagent Systems under Heterogeneity , Selahattin Burak Sarsilmaz

Design and Implementation of Intuitive Human-robot Teleoperation Interfaces , Lei Wu

Laser Micropatterning Effects on Corrosion Resistance of Pure Magnesium Surfaces , Yahya Efe Yayoglu

Theses/Dissertations from 2019 2019

Synthesis and Characterization of Molybdenum Disulfide/Conducting Polymer Nanocomposite Materials for Supercapacitor Applications , Turki S. Alamro

Design of Shape-Morphing Structures Consisting of Bistable Compliant Mechanisms , Rami Alfattani

Low Temperature Multi Effects Desalination-Mechanical Vapor Compression Powered by Supercritical Organic Rankine Cycle , Eydhah Almatrafi

Experimental Results of a Model Reference Adaptive Control Approach on an Interconnected Uncertain Dynamical System , Kemberly Cespedes

Modeling of Buildings with Electrochromic Windows and Thermochromic Roofs , Hua-Ting Kao

Design and Testing of Experimental Langmuir Turbulence Facilities , Zongze Li

Solar Thermal Geothermal Hybrid System With a Bottoming Supercritical Organic Rankine Cycle , Francesca Moloney

Design and Testing of a Reciprocating Wind Harvester , Ahmet Topcuoglu

Distributed Spatiotemporal Control and Dynamic Information Fusion for Multiagent Systems , Dzung Minh Duc Tran

Controlled Wetting Using Ultrasonic Vibration , Matthew A. Trapuzzano

On Distributed Control of Multiagent Systems under Adverse Conditions , Emre Yildirim

Theses/Dissertations from 2018 2018

Synthesis and Characterization of Alpha-Hematite Nanomaterials for Water-Splitting Applications , Hussein Alrobei

Control of Uncertain Dynamical Systems with Spatial and Temporal Constraints , Ehsan Arabi

Simulation and Optimization of a Sheathless Size-Based Acoustic Particle Separator , Shivaraman Asoda

Simulation of Radiation Flux from Thermal Fluid in Origami Tubes , Robert R. Bebeau

Toward Verifiable Adaptive Control Systems: High-Performance and Robust Architectures , Benjamin Charles Gruenwald

Developing Motion Platform Dynamics for Studying Biomechanical Responses During Exercise for Human Spaceflight Applications , Kaitlin Lostroscio

Design and Testing of a Linear Compliant Mechanism with Adjustable Force Output , William Niemeier

Investigation of Thermal History in Large Area Projection Sintering, an Additive Manufacturing Technology , Justin Nussbaum

Acoustic Source Localization with a VTOL sUAV Deployable Module , Kory Olney

Defect Detection in Additive Manufacturing Utilizing Long Pulse Thermography , James Pierce

Design and Testing of a Passive Prosthetic Ankle Foot Optimized to Mimic an Able-Bodied Gait , Millicent Schlafly

Simulation of Turbulent Air Jet Impingement for Commercial Cooking Applications , Shantanu S. Shevade

Materials and Methods to Fabricate Porous Structures Using Additive Manufacturing Techniques , Mohsen Ziaee

Theses/Dissertations from 2017 2017

Large Area Sintering Test Platform Design and Preliminary Study on Cross Sectional Resolution , Christopher J. Gardiner

Enhanced Visible Light Photocatalytic Remediation of Organics in Water Using Zinc Oxide and Titanium Oxide Nanostructures , Srikanth Gunti

Heat Flux Modeling of Asymmetrically Heated and Cooled Thermal Stimuli , Matthew Hardy

Simulation of Hemiparetic Function Using a Knee Orthosis with Variable Impedance and a Proprioception Interference Apparatus , Christina-Anne Kathleen Lahiff

Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials , Michael S. McCrory

Effects of Microstructure and Alloy Concentration on the Corrosion and Tribocorrosion Resistance of Al-Mn and WE43 Mg Alloys , Hesham Y. Saleh Mraied

Novel Transducer Calibration and Simulation Verification of Polydimethylsiloxane (PDMS) Channels on Acoustic Microfluidic Devices , Scott T. Padilla

Force Compensation and Recreation Accuracy in Humans , Benjamin Rigsby

Experimental Evaluation of Cooling Effectiveness and Water Conservation in a Poultry House Using Flow Blurring ® Atomizers , Rafael M. Rodriguez

Media Velocity Considerations in Pleated Air Filtration , Frederik Carl Schousboe

Orthoplanar Spring Based Compliant Force/Torque Sensor for Robot Force Control , Jerry West

Experimental Study of High-Temperature Range Latent Heat Thermal Energy Storage , Chatura Wickramaratne

Theses/Dissertations from 2016 2016

Al/Ti Nanostructured Multilayers: from Mechanical, Tribological, to Corrosion Properties , Sina Izadi

Molybdenum Disulfide-Conducting Polymer Composite Structures for Electrochemical Biosensor Applications , Hongxiang Jia

Waterproofing Shape-Changing Mechanisms Using Origami Engineering; Also a Mechanical Property Evaluation Approach for Rapid Prototyping , Andrew Jason Katz

Hydrogen Effects on X80 Steel Mechanical Properties Measured by Tensile and Impact Testing , Xuan Li

Application and Analysis of Asymmetrical Hot and Cold Stimuli , Ahmad Manasrah

Droplet-based Mechanical Actuator Utilizing Electrowetting Effect , Qi Ni

Experimental and Computational Study on Fracture Mechanics of Multilayered Structures , Hai Thanh Tran

Designing the Haptic Interface for Morse Code , Michael Walker

Optimization and Characterization of Integrated Microfluidic Surface Acoustic Wave Sensors and Transducers , Tao Wang

Corrosion Characteristics of Magnesium under Varying Surface Roughness Conditions , Yahya Efe Yayoglu

Theses/Dissertations from 2015 2015

Carbon Dioxide (CO 2 ) Emissions, Human Energy, and Cultural Perceptions Associated with Traditional and Improved Methods of Shea Butter Processing in Ghana, West Africa , Emily Adams

Experimental Investigation of Encapsulated Phase Change Materials for Thermal Energy Storage , Tanvir E. Alam

Design Of Shape Morphing Structures Using Bistable Elements , Ahmad Alqasimi

Heat Transfer Analysis of Slot Jet Impingement onto Roughened Surfaces , Rashid Ali Alshatti

Systems Approach to Producing Electrospun Polyvinylidene Difluoride Fiber Webs with Controlled Fiber Structure and Functionality , Brian D. Bell

Self-Assembly Kinetics of Microscale Components: A Parametric Evaluation , Jose Miguel Carballo

Measuring Polydimethylsiloxane (PDMS) Mechanical Properties Using Flat Punch Nanoindentation Focusing on Obtaining Full Contact , Federico De Paoli

A Numerical and Experimental Investigation of Flow Induced Noise In Hydraulic Counterbalance Valves , Mutasim Mohamed Elsheikh

An Experimental Study on Passive Dynamic Walking , Philip Andrew Hatzitheodorou

Use of Anaerobic Adhesive for Prevailing Torque Locking Feature on Threaded Product , Alan Hernandez

Viability of Bismuth as a Green Substitute for Lead in Jacketed .357 Magnum Revolver Bullets , Joel A. Jenkins

A Planar Pseudo-Rigid-Body Model for Cantilevers Experiencing Combined Endpoint Forces and Uniformly Distributed Loads Acting in Parallel , Philip James Logan

Kinematic Control of Redundant Mobile Manipulators , Mustafa Mashali

Passive Symmetry in Dynamic Systems and Walking , Haris Muratagic

Mechanical Properties of Laser-Sintered-Nylon Diamond Lattices , Clayton Neff

Design, Fabrication and Analysis of a Paver Machine Push Bar Mechanism , Mahendra Palnati

Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films , Soukaina Rami

A Technical and Economic Comparative Analysis of Sensible and Latent Heat Packed Bed Storage Systems for Concentrating Solar Thermal Power Plants , Jamie Trahan

Use of FDM Components for Ion Beam and Vacuum Applications , Eric Miguel Tridas

The Development of an Adaptive Driving Simulator , Sarah Marie Tudor

Dual 7-Degree-of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices , Yu-Cheng Wang

Ductility and Use of Titanium Alloy and Stainless Steel Aerospace Fasteners , Jarrod Talbott Whittaker

Advanced Search

  • Email Notifications and RSS
  • All Collections
  • USF Faculty Publications
  • Open Access Journals
  • Conferences and Events
  • Theses and Dissertations
  • Textbooks Collection

Useful Links

  • Rights Information
  • SelectedWorks
  • Submit Research

Home | About | Help | My Account | Accessibility Statement | Language and Diversity Statements

Privacy Copyright

  • How it works

Useful Links

How much will your dissertation cost?

Have an expert academic write your dissertation paper!

Dissertation Services

Dissertation Services

Get unlimited topic ideas and a dissertation plan for just £45.00

Order topics and plan

Order topics and plan

Get 1 free topic in your area of study with aim and justification

Yes I want the free topic

Yes I want the free topic

The Best Mechanical Engineering Dissertation Topics and Titles

Published by Carmen Troy at January 5th, 2023 , Revised On August 18, 2023

Introduction 

Engineering is a vast subject that encompasses different branches for a student to choose from. Mechanical engineering is one of these branches. Writing a mechanical engineering dissertation from scratch is a difficult task due to the complexities involved, but the job is still not impossible.

Are you looking to select the best mechanical engineering dissertation topic for your dissertation? To help you get started with brainstorming for mechanical engineering dissertation topics, we have developed a list of the latest topics that can be used for writing your mechanical engineering dissertation.

These topics have been developed by PhD qualified  writers of our team , so you can trust to use these topics for drafting your own dissertation.

You may also want to start your dissertation by requesting  a brief research proposal  from our writers on any of these topics, which includes an  introduction  to the topic,  research question , aim and objectives,  literature review , along with the proposed  methodology  of research to be conducted.  Let us know  if you need any help in getting started.

Check our  dissertation example to get an idea of  how to structure your dissertation .

Review step by step guide on how to write your own dissertation  here.

2022 Mechanical Engineering Research Topics

Topic 1: an investigation into the applications of iot in autonomous and connected vehicles.

Research Aim: The research aims to investigate the applications of IoT in autonomous and connected vehicles

Objectives:

  • To analyse the applications of IoT in mechanical engineering
  • To evaluate the communication technologies in autonomous and connected vehicles.
  • To investigate how IoT facilitates the interaction of smart devices in autonomous and connected vehicles

Topic 2: Evaluation of the impact of combustion of alternative liquid fuels on the internal combustion engines of automobiles

Research Aim: The research aims to evaluate the impact of the combustion of alternative liquid fuels on the internal combustion engines of automobiles

  • To analyse the types of alternative liquid fuels for vehicles and their implications
  • To investigate the benchmarking of alternative liquid fuels based on the principles of combustion performance.
  • To evaluate the impact of combustion of alternative liquid fuels on the internal combustion engines of automobiles with conventional engines

Topic 3: An evaluation of the design and control effectiveness of production engineering on rapid prototyping and intelligent manufacturing

Research Aim: The research aims to evaluate the design and control effectiveness of production engineering on rapid prototyping and intelligent manufacturing

  • To analyse the principles of design and control effectiveness of production engineering.
  • To determine the principles of rapid prototyping and intelligent manufacturing for ensuring quality and performance effectiveness
  • To evaluate the impact of production engineering on the design and control effectiveness of rapid prototyping and intelligent manufacturing.

Topic 4: Investigating the impact of industrial quality control on the quality, reliability and maintenance in industrial manufacturing

Research Aim: The research aims to investigate the impact of industrial quality control on the quality, reliability and maintenance in industrial manufacturing

  • To analyse the concept and international standards associated with industrial quality control.
  • To determine the strategies of maintaining quality, reliability and maintenance in manufacturing.
  • To investigate the impact of industrial quality control on the quality, reliability and maintenance in industrial manufacturing.

Topic 5: Analysis of the impact of AI on intelligent control and precision of mechanical manufacturing

Research Aim: The research aims to analyse the impact of AI on intelligent control and precision of mechanical manufacturing

  • To analyse the applications of AI on mechanical manufacturing
  • To evaluate the methods of intelligent control and precision of the manufacturing
  • To investigate the impact of AI on intelligent control and precision of mechanical manufacturing for ensuring quality and reliability

Covid-19 Mechanical Engineering Research Topics

Investigate the impacts of coronavirus on mechanical engineering and mechanical engineers..

Research Aim: This research will focus on identifying the impacts of Coronavirus on mechanical engineering and mechanical engineers, along with its possible solutions.

Research to study the contribution of mechanical engineers to combat a COVID-19 pandemic

Research Aim: This study will identify the contributions of mechanical engineers to combat the COVID-19 pandemic highlighting the challenges faced by them and their outcomes. How far did their contributions help combat the Coronavirus pandemic?

Research to know about the transformation of industries after the pandemic.

Research Aim: The study aims to investigate the transformation of industries after the pandemic. The study will answer questions such as, how manufacturing industries will transform after COVID-19? Discuss the advantages and disadvantages.

Damage caused by Coronavirus to supply chain of manufacturing industries

Research Aim: The focus of the study will be on identifying the damage caused to the supply chain of manufacturing industries due to the COVID-19 pandemic. What measures are taken to recover the loss and to ensure the continuity of business?

Research to identify the contribution of mechanical engineers in running the business through remote working.

Research Aim: This study will identify whether remote working is an effective way to recover the loss caused by the COVID-19 pandemic? What are its advantages and disadvantages? What steps should be taken to overcome the challenges faced by remote workers?

Mechanical Dissertation Topics of 2021

Topic 1: mini powdered metal design and fabrication for mini development of waste aluminium cannes and fabrication.

Research Aim: The research will focus on producing and manufacturing copula furnaces and aluminium atomizers with available materials to manufacture aluminium powder metal.0.4 kg of refined coke will be chosen to measure content and energy balance and calculate the design values used to produce the drawings.

Topic 2: Interaction between the Fluid, Acoustic, and vibrations

Research Aim: This research aims to focus on the interaction between the Fluid, Acoustic, and vibrations

Topic 3: Combustion and Energy Systems.

Research Aim: This research aims to identify the relationship between Combustion and Energy Systems

Topic 4: Study on the Design and Manufacturing

Research Aim: This research will focus on the importance of design and manufacturing

Topic 5: Revolution in the Design Engineering

Research Aim: This research aims to highlight the advances in design engineering

Best Mechanical Dissertation Topics of 2021

Topic 1: an overview of the different research trends in the field of mechanical engineering..

Research Aim: This research aims to analyse the main topics of mechanical engineering explored by other researchers in the last decade and the research methods. The data used is accumulated from the years 2009 to 2019. The data used for this research is used from the “Applied Mechanics Review” magazine.

Topic 2: The Engineering Applications of Mechanical Metamaterials.

Research Aim: This research aims to analyse the different properties of various mechanical metamaterials and how they can be used in mechanical engineering. This research will also discuss the potential uses of these materials in other industries and future developments in this field.

Topic 3: The Mechanical Behaviour of Materials.

Research Aim: This research will look into the properties of selected materials for the formation of a product. The study will take the results of tests that have already been carried out on the materials. The materials will be categorised into two classes from the already prepared results, namely destructive and non-destructive. The further uses of the non-destructive materials will be discussed briefly.

Topic 4: Evaluating and Assessment of the Flammable and Mechanical Properties of Magnesium Oxide as a Material for SLS Process.

Research Aim: The research will evaluate the different properties of magnesium oxide (MgO) and its potential use as a raw material for the SLS (Selective Laser Sintering) process. The flammability and other mechanical properties will be analysed.

Topic 5: Analysing the Mechanical Characteristics of 3-D Printed Composites.

Research Aim: This research will study the various materials used in 3-D printing and their composition. This research will discuss the properties of different printing materials and compare the harms and benefits of using each material.

Topic 6: Evaluation of a Master Cylinder and Its Use.

Research Aim: This research will take an in-depth analysis of a master cylinder. The material used to create the cylinder, along with its properties, will be discussed. The use of the master cylinder in mechanical engineering will also be explained.

Topic 7: Manufacturing Pearlitic Rail Steel After Re-Modelling Its Mechanical Properties.

Research Aim: This research will look into the use of modified Pearlitic rail steel in railway transportation. Modifications of tensile strength, the supported weight, and impact toughness will be analysed. Results of previously applied tests will be used.

How Can ResearchProspect Help?

ResearchProspect writers can send several custom topic ideas to your email address. Once you have chosen a topic that suits your needs and interests, you can order for our dissertation outline service , which will include a brief introduction to the topic, research questions , literature review , methodology , expected results , and conclusion . The dissertation outline will enable you to review the quality of our work before placing the order for our full dissertation writing service !

Electro-Mechanical Dissertation Topics

Topic 8: studying the electro-mechanical properties of multi-functional glass fibre/epoxy reinforced composites..

Research Aim: This research will study the properties of epoxy reinforced glass fibres and their use in modern times. Features such as tensile strength and tensile resistance will be analysed under different current strengths. Results from previous tests already carried out will be used to explain their properties.

Topic 9: Comparing The Elastic Modules of Different Materials at Different Strain Rates and Temperatures.

Research Aim: This research will compare and contrast a selected group of materials and look into their elastic modules. The modules used are the results taken from previously carried out experiments. This will explain why a particular material is used for a specific purpose.

Topic 10: Analysing The Change in The Porosity and Mechanical Properties of Concrete When Mixed With Coconut Sawdust.

Research Aim: This research will analyse the properties of concrete that are altered when mixed with coconut sawdust. Porosity and other mechanical properties will be evaluated using the results of previous experiments. The use of this type of concrete in the construction industry will also be discussed.

Topic 11: Evaluation of The Thermal Resistance of Select Materials in Mechanical Contact at Sub-Ambient Temperatures.

Research Aim: In this research, a close evaluation of the difference in thermal resistance of certain materials when they come in contact with a surface at sub-ambient temperature. The properties of the materials at the temperature will be noted. Results from previously carried out experiments will be used. The use of these materials will be discussed and explained, as well.

Topic 12: Analysing The Mechanical Properties of a Composite Sandwich by Using The Bending Test.

Research Aim: In this research, we will analyse the mechanical properties of the components of a composite sandwich through the use of the bending test. The results of the tests previously carried out will be used. The research will take an in-depth evaluation of the mechanical properties of the sandwich and explain the means that it is used in modern industries.

Mechanical Properities Dissertation Topics

Topic 13: studying the mechanical and durability property of magnesium silicate hydrate binders in concrete..

Research Aim: In this research, we will evaluate the difference in durability and mechanical properties between regular concrete binders and magnesium silicate hydrate binders. The difference between the properties of both binders will indicate which binder is better for concrete. Features such as tensile strength and weight it can support are compared.

Topic 14: The Use of Submersible Pumping Systems.

Research Aim: This research will aim to analyse the use of a submersible pumping system in machine systems. The materials used to make the system, as well as the mechanical properties it possesses, will be discussed.

Topic 15: The Function of a Breather Device for Internal combustion Engines.

Research Aim: In this research, the primary function of a breather device for an internal combustion engine is discussed. The placement of this device in the system, along with its importance, is explained. The effects on the internal combustion engine if the breather device is removed will also be observed.

Topic 16: To Study The Compression and Tension Behaviour of Hollow Polyester Monofilaments.

Research Aim: This research will focus on the study of selected mechanical properties of hollow polyester monofilaments. In this case, the compression and tension behaviour of the filaments is studied. These properties are considered in order to explore the future use of these filaments in the textile industry and other related industries.

Topic 17: Evaluating the Mechanical Properties of Carbon-Nanotube-Reinforced Cementous Materials.

Research Aim: This research will focus on selecting the proper carbon nanotube type, which will be able to improve the mechanical properties of cementitious materials. Changes in the length, diameter, and weight-based concentration of the nanotubes will be noted when analysing the difference in the mechanical properties. One character of the nanotubes will be of optimal value while the other two will be altered. Results of previous experiments will be used.

Topic 18: To Evaluate the Process of Parallel Compression in LNG Plants Using a Positive Displacement Compressor

Research Aim: This research aims to evaluate a system and method in which the capacity and efficiency of the process of liquefaction of natural gas can avoid bottlenecking in its refrigerant compressing system. Advantages of the parallel compression system in the oil and gas industry will be discussed.

Topic 19: Applying Particulate Palm Kernel Shell Reinforced Epoxy Composites for Automobiles.

Research Aim: In this research, the differences made in applying palm kernel shell particulate to reinforced epoxy composites for the manufacturing of automobile parts will be examined. Properties such as impact toughness, wear resistance, flexural, tensile, and water resistance will be analysed carefully. The results of the previous tests will be used. The potential use of this material will also be discussed.

Topic 20: Changes Observed in The Mechanical Properties of Kevlar KM2-600 Due to Abrasions.

Research Aim: This research will focus on observing the changes in the mechanical properties of Kevlar KM2-600 in comparison to two different types of S glass tows (AGY S2 and Owens Corning Shield Strand S). The surface damage, along with fiber breakage, will be noted among all three fibers. The effects of the abrasions on all three fibers will be emphasised. The use of Kevlar KM2 and the other S glass tows will also be discussed along with other potential applications.

Order a Proposal

Worried about your dissertation proposal? Not sure where to start?

  • Choose any deadline
  • Plagiarism free
  • Unlimited free amendments
  • Free anti-plagiarism report
  • Completed to match exact requirements

Order a Proposal

Industrial Application of Mechanical Engineering Dissertation Topics

Topic 1: the function of a fuel injector device..

Research Aim: This research focuses on the function of a fuel injector device and why this component is necessary for the system of an internal combustion engine. The importance of this device will be explained. The adverse effects on the entire system if the equipment is either faulty or completely removed will also be discussed.

Topic 2: To Solve Optimization Problems in a Mechanical Design by The Principles of Uncertainty.

Research Aim: This research will aim to formulate an optimization in a mechanical design under the influence of uncertainty. This will create an efficient tool that is based on the conditions of each optimization under the risk. This will save time and allow the designer to obtain new information in regards to the stability of the performance of his design under the uncertainties.

Topic 3: Analysing The Applications of Recycled Polycarbonate Particle Materials and Their Mechanical Properties.

Research Aim: This research will evaluate the mechanical properties of different polycarbonate materials and their potential to be recycled. The materials with the ability to be recycled are then further examined for potential use as a 3-dimensional printing material. The temperature of the printer’s nozzle along with the nozzle velocity matrix from previous experiments is used to evaluate the tensile strengths of the printed material. Other potential uses of these materials are also discussed.

Topic 4: The Process of Locating a Lightning Strike on a Wind Turbine.

Research Aim: This research will provide a detailed explanation of the process of detecting a lightning strike on a wind turbine. The measurement of the magnitude of the lightning strike, along with recognising the affected area will be explained. The proper method employed to rectify the damage that occurred by the strike will also be discussed.

Topic 5: Importance of a Heat Recovery Component in an Internal Combustion Engine for an Exhaust Gas System.

Research Aim: The research will take an in-depth evaluation of the different mechanics of a heat recovery component in an exhaust gas system. The functions of the different parts of the heat recovery component will be explained along with the importance of the entire element itself. The adverse effect of a faulty defected heat recovery component will also be explained.

“Feel free to contact us if you require custom dissertation topics and titles for your dissertation. ResearchProspect Ltd is a UK registered academic writing company which can provide you with highly qualified writers to assist you in the process of the formation of your dissertation. For more information about the type of services we offer.“

Related: Civil Engineering Dissertation

Important Notes:

As a student of mechanical engineering looking to get good grades, it is essential to develop new ideas and experiment on existing mechanical engineering theories – i.e., to add value and interest in the topic of your research.

The field of mechanical engineering is vast and interrelated to so many other academic disciplines like  civil engineering ,  construction ,  law , and even  healthcare . That is why it is imperative to create a mechanical engineering dissertation topic that is articular, sound, and actually solves a practical problem that may be rampant in the field.

We can’t stress how important it is to develop a logical research topic; it is the basis of your entire research. There are several significant downfalls to getting your topic wrong; your supervisor may not be interested in working on it, the topic has no academic creditability, the research may not make logical sense, there is a possibility that the study is not viable.

This impacts your time and efforts in  writing your dissertation  as you may end up in the cycle of rejection at the very initial stage of the dissertation. That is why we recommend reviewing existing research to develop a topic, taking advice from your supervisor, and even asking for help in this particular stage of your dissertation.

Keeping our advice in mind while developing a research topic will allow you to pick one of the best mechanical engineering dissertation topics that not only fulfill your requirement of writing a research paper but also adds to the body of knowledge.

Therefore, it is recommended that when finalizing your dissertation topic, you read recently published literature in order to identify gaps in the research that you may help fill.

Remember- dissertation topics need to be unique, solve an identified problem, be logical, and can also be practically implemented. Take a look at some of our sample mechanical engineering dissertation topics to get an idea for your own dissertation.

How to Structure your Mechanical Engineering Dissertation

A well-structured   dissertation can help students   to achieve a high overall academic grade.

  • A Title Page
  • Acknowledgments
  • Declaration
  • Abstract: A summary of the research completed
  • Table of Contents
  • Introduction : This chapter includes the project rationale, research background, key research aims and objectives, and the research problems to be addressed. An outline of the structure of a dissertation can also be added to this chapter.
  • Literature Review :  This chapter presents relevant theories and frameworks by analysing published and unpublished literature available on the chosen research topic, in light of  research questions to be addressed. The purpose is to highlight and discuss the relative weaknesses and strengths of the selected research area whilst identifying any research gaps. Break down of the topic, and key terms can have a positive impact on your dissertation and your tutor.
  • Methodology: The  data collection  and  analysis  methods and techniques employed by the researcher are presented in the Methodology chapter which usually includes  research design, research philosophy, research limitations, code of conduct, ethical consideration, data collection methods, and  data analysis strategy .
  • Findings and Analysis: Findings of the research are analysed in detail under the Findings and Analysis chapter. All key findings/results are outlined in this chapter without interpreting the data or drawing any conclusions. It can be useful to include  graphs , charts, and   tables in this chapter to identify meaningful trends and relationships.
  • Discussion and  Conclusion: The researcher presents his interpretation of results in this chapter, and states whether the research hypothesis has been verified or not. An essential aspect of this section of the paper is to draw a linkage between the results and evidence from the literature. Recommendations with regards to implications of the findings and directions for the future may also be provided. Finally, a summary of the overall research, along with final judgments, opinions, and comments, must be included in the form of suggestions for improvement.
  • References:  This should be completed in accordance with your University’s requirements
  • Bibliography
  • Appendices: Any additional information, diagrams, graphs that were used to  complete the  dissertation  but not part of the dissertation should be included in the Appendices chapter. Essentially, the purpose is to expand the information/data.

About ResearchProspect Ltd

ResearchProspect is a  UK based academic writing service that provides help with  Dissertation Proposal  Writing,  PhD proposal writing ,  Dissertation Writing ,  Dissertation Editing, and Improvement .

Our team of writers is highly qualified. They are experts in their respective fields. They have been working in the industry for a long, thus are aware of the issues as well as the trends of the industry they are working in.

Need more Topics.?

Free Dissertation Topic

Phone Number

Academic Level Select Academic Level Undergraduate Graduate PHD

Academic Subject

Area of Research

Review Our Best Dissertation Topics 2021 complete list.

Frequently Asked Questions

How to find dissertation topics about mechanical engineering.

To discover mechanical engineering dissertation topics:

  • Research recent advancements.
  • Explore industry challenges.
  • Consider sustainability or automation.
  • Review academic journals.
  • Consult with professors.
  • Opt for a niche aligning with your passion and career aims.

You May Also Like

It is often said that commercial law covers a broad study area since it cannot be studied exclusively in one legal jurisdiction. However, England and Wales are preferred as commercial centers.

Need interesting and manageable International Relations dissertation topics? Here are the trending International Relations dissertation titles so you can choose the most suitable one.

Are you looking for some interesting PE research topics? Here’s a comprehensive list of physical education dissertation topics for you.

USEFUL LINKS

LEARNING RESOURCES

secure connection

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

MIT Libraries home DSpace@MIT

  • DSpace@MIT Home
  • MIT Libraries

This collection of MIT Theses in DSpace contains selected theses and dissertations from all MIT departments. Please note that this is NOT a complete collection of MIT theses. To search all MIT theses, use MIT Libraries' catalog .

MIT's DSpace contains more than 58,000 theses completed at MIT dating as far back as the mid 1800's. Theses in this collection have been scanned by the MIT Libraries or submitted in electronic format by thesis authors. Since 2004 all new Masters and Ph.D. theses are scanned and added to this collection after degrees are awarded.

MIT Theses are openly available to all readers. Please share how this access affects or benefits you. Your story matters.

If you have questions about MIT theses in DSpace, [email protected] . See also Access & Availability Questions or About MIT Theses in DSpace .

If you are a recent MIT graduate, your thesis will be added to DSpace within 3-6 months after your graduation date. Please email [email protected] with any questions.

Permissions

MIT Theses may be protected by copyright. Please refer to the MIT Libraries Permissions Policy for permission information. Note that the copyright holder for most MIT theses is identified on the title page of the thesis.

Theses by Department

  • Comparative Media Studies
  • Computation for Design and Optimization
  • Computational and Systems Biology
  • Department of Aeronautics and Astronautics
  • Department of Architecture
  • Department of Biological Engineering
  • Department of Biology
  • Department of Brain and Cognitive Sciences
  • Department of Chemical Engineering
  • Department of Chemistry
  • Department of Civil and Environmental Engineering
  • Department of Earth, Atmospheric, and Planetary Sciences
  • Department of Economics
  • Department of Electrical Engineering and Computer Sciences
  • Department of Humanities
  • Department of Linguistics and Philosophy
  • Department of Materials Science and Engineering
  • Department of Mathematics
  • Department of Mechanical Engineering
  • Department of Nuclear Science and Engineering
  • Department of Ocean Engineering
  • Department of Physics
  • Department of Political Science
  • Department of Urban Studies and Planning
  • Engineering Systems Division
  • Harvard-MIT Program of Health Sciences and Technology
  • Institute for Data, Systems, and Society
  • Media Arts & Sciences
  • Operations Research Center
  • Program in Real Estate Development
  • Program in Writing and Humanistic Studies
  • Science, Technology & Society
  • Science Writing
  • Sloan School of Management
  • Supply Chain Management
  • System Design & Management
  • Technology and Policy Program

Collections in this community

Doctoral theses, graduate theses, undergraduate theses, recent submissions.

Thumbnail

Peptide-Functionalized Layer-by-Layer Nanoparticles Demonstrate Improved Blood Brain Barrier Permeability for Glioblastoma Treatment 

Thumbnail

Nanoparticle Superlattice Processing: Monodispersed Building-Blocks & Single Crystal Films 

Thumbnail

Machine Learning Methods for Discovering Metabolite Structures from Mass Spectra 

feed

Naval Postgraduate School

Mechanical and Aerospace Engineering

Thesis - mechanical and aerospace engineering, student thesis overview.

This overview will describe the thesis, why it is very important to your graduate study, what are the steps that you will need to do and when they should or must be done, how to find an advisor, and the resources that are available to help you along the way. In the following section, questions and answers are provided for some common questions.

A thesis is a "position or proposition that a person (as a candidate for scholastic honors) advances and offers to maintain by argument." and a document containing results of original research and especially supporting a specific view.

What is a Thesis?

The thesis is the most important part of your graduate education. While the course work lays the foundation by providing analytical methods and tools, it is the thesis that provides to you the opportunity to use this knowledge in a new, original and creative manner. During your thesis research you will be able to consolidate what you have already learned, and possibly extend this by further self-study, and to use this body of knowledge to attack a new problem. The thesis will hopefully be your crowning achievement of your graduate study, and will be your introduction to the community of scholars.

Choosing Your Topic and Advisor

The first step in the thesis process is choosing an advisor and a topic. While your formal thesis slots may be in the last 2 or 3 quarters at NPS, it is very important that you have a thesis advisor and topic chosen well before this, preferably a year or so before you plan to graduate. During the time between choosing an advisor/topic and the start of your thesis slots, you should meet regularly with your advisor and spend a few hours a week reading background material and thinking about the problem.

The method for choosing your topic and advisor is completely up to you. However, you are strongly advised to talk to every faculty member in all the areas that you have any interest before making decisions. There are several questions you might want to ask yourself, before talking to the faculty. What type of work do you most enjoy? Generally, thesis research may be categorized as analytical (e.g. using a pencil and paper for mathematical modeling and derivation of solutions), computational (e.g. using finite element technique or computational fluid mechanics to find solutions), experimental (e.g. designing, building, or modifying an existing set-up to obtain new data) or some combination of the three. It is generally advisable that you take a course from a professor before you make a commitment to work for him or her. The Mechanical Engineering Faculty periodically schedule thesis opportunity presentations, where they will discuss their current research interests and the available topics. In addition, there is a ME website which contains short written descriptions for current thesis topics of ME faculty. You may talk to fellow students, who are close to graduating to discuss what they have done and how they enjoyed their experience. However, they probably will not be as good a source of what the available research topics are as the faculty members, themselves. Finally, you may wish to review previous thesis, as well as conference and journal publications from the various faculty members.  After you find an advisor and agree on the topic, you are required to fill out a thesis approval form, which must be signed by the thesis advisor, the Academic Associate and the Chairman of the Mechanical Engineering Department.

Common Pitfalls and Advice

While your advisor will help you along the way and provide broad guidance and feedback, it is the responsibility of the student to be self-motivated and to initiate all of the steps. Do not expect your advisor to provide a detailed, step-by-step, road map for you. You should be independent and think through problems first, before asking your advisor. However, that does not in any way mean you should avoid meeting with your advisor. You should meet regularly with your advisor to discuss what you have done, what issues have arisen, how you plan to solve them, and what your next steps should be.

One common problem faced by researchers, is the failure to sufficiently limit the scope of their work. Being overly broad can lead to a lack of focus and prevent any contribution from being made. It may seem to you that your advisor has asked you to solve a problem that you consider trivial and your may be inclined to broaden the scope. Stay focused on the immediate problem. If you solve the problem then by all mean go on to a larger problem. But initially, stay focus on a narrow and well-defined problem.

Thesis Proposals

One way that you can help yourself is to write a short Thesis Proposal. It can be useful in helping to consolidate your understanding and focusing your future work. This may be written after you have been working on the problem for several months, have read dozens of articles and it may contain the following elements:

  • Introduction to the problem. This describes the problem and why it is important.
  • State of the art. Literature review and what is not known.
  • Objectives. Your goals for the work. What would be the desired outcome(s). Be specific. Do not say "to better understand something".
  • Proposed work. Very limited and specific.

For you to make an original contribution, it generally requires that you have an understanding of what is already known, by experts in your field. Therefore, one of the primary resources on which you will depend is the NPS library and the reference staff. While the world-wide-web is becoming an increasing source of information, and you should make use of it, there are many primary sources, such as books and journals, which are not available on the web. Most of the information on the web is not archival in nature - that is, it might not exist if a certain site is closed. One of the most valuable skills you should learn during your thesis is how to obtain and process information and how to synthesize new results from that original information.

After your research is complete you will be required to write and submit a thesis document. For many of you it will be the longest document that you have written. There are several sources available to help you in writing the document, including "How to Write a Thesis" by the Mechanical Engineering Department and several guidelines and templates available on the NPS web site.

Finally you are required to make an oral presentation of your thesis research to the faculty and students of the Mechanical Engineering Department. The presentation is approximately fifteen minutes with about a 5-minute question and answer period. A document on how to prepare and deliver this presentation is available from the Mechanical Engineering Department.

Common Questions and Answers

Please visit our Thesis Q&A page  to view common questions and answers regarding your Thesis.

ScholarWorks@UMass Amherst

Home > Engineering > MIE > MIE_DISS

Mechanical and Industrial Engineering

Mechanical & Industrial Engineering Dissertations Collection

Dissertations from 2024 2024.

Soft Magnetic Sensing on a Compliant Surface and Contact Mechanics Approximations at the Interface , Julio Aparicio, Mechanical Engineering

COMPUTATIONAL FLUID DYNAMICS SIMULATIONS AND REDUCED ORDER MODELING OF MULTI-PHYSICS BIOLOGICAL SYSTEMS , Suyue Han, Mechanical Engineering

Continuous Future Joint Kinematics Prediction Based on Surface Electromyography Using Neural Networks and Hybrid Approaches for Reduced-Latency Control , Soumitra Sitole and Soumitra Sitole, Mechanical Engineering

Dissertations from 2023 2023

EXPERIMENTAL INVESTIGATION OF THE VORTEX-INDUCED VIBRATION RESPONSE OF A FLEXIBLY-MOUNTED RIGID CYLINDER IN THE SHEAR-THINNING AND INERTIAL-VISCOELASTIC FLOW REGIMES , Pieter Boersma, Mechanical Engineering

MICRO AND NANO R2R EMBOSSING OF EXTRUDED POLYMERS , Raymond S. Frenkel, Mechanical Engineering

Surface Engineering and Microfabrication of PDMS-Based Devices for Women’s Health Applications , Jamar Hawkins, Mechanical Engineering

ULTRA-HIGH STRAIN RATE MECHANICAL STUDY OF METALS IN THE COLD-SPRAY PROCESS THROUGH LASER-INDUCED PROJECTILE IMPACT TEST , Swetaparna Mohanty, Mechanical Engineering

Additive Manufacturing of Multicomponent Metal Alloys , Shahryar Mooraj, Mechanical Engineering

ADDITIVE MANUFACTURING OF HIGH-PERFORMANCE NANOLAMELLAR EUTECTIC HIGH-ENTROPY ALLOYS , Jie Ren, Mechanical Engineering

HEAT TRANSFER CHARACTERISTICS OF LATENT HEAT THERMAL ENERGY STORAGE , Kedar Prashant Shete, Mechanical Engineering

Engineering Mechanical and Biochemical Gradients to Control Cell Behaviors , Feiyu Yang, Mechanical Engineering

MONITORING AND CONTROL OF THE ROLL-TO-ROLL MICROCONTACT PRINTING PROCESS THROUGH NEURAL NETWORK AND REAL-TIME SENSING , Jingyang Yan, Mechanical Engineering

Dissertations from 2022 2022

SOLIDIFICATION EXPERIMENTS AND MAGNETOHYDRODYNAMIC MODELS IN ELECTROMAGNETIC LEVITATION , Gwendolyn Bracker, Mechanical Engineering

Moving Polygon Methods for Incompressible Fluid Dynamics , Chris Chartrand, Mechanical Engineering

The Influence of Flow Mechanotransduction on Endothelial Cells in the Lymphatic Valve Sinus , Joshua Daniel Hall, Mechanical Engineering

Characterizing Mechanical Regulation of Bone Metastatic Breast Cancer Cells , Boyuan Liu, Mechanical Engineering

COMPUTATIONAL STUDY OF INTERNAL FLOW, NEAR NOZZLE AND EXTERNAL SPRAY OF A GDI INJECTOR UNDER FLASH-BOILING CONDITIONS , Chinmoy krushna Mohapatra, Mechanical Engineering

Biomechanical Regulation of Cell Rearrangement and Fate Patterning Under Geometrical Confinement , Tianfa Xie, Mechanical Engineering

Dissertations from 2021 2021

SURFACE ENHANCED RAMAN SPECTROSCOPY (SERS) AS AN APPROACH FOR THE EMERGING LIQUID BIOPSY DIAGNOSTICS , Nariman Banaei, Mechanical Engineering

The Modeling and Control of Highly Flexible Continuous Structures Interacting with Fluids , Todd Currier, Mechanical Engineering

Design and Biomechanical Evaluation of a Clutch-Based Energy Storage and Release Assistive Knee Brace , Ericber Jimenez Francisco, Mechanical Engineering

Simulating the Effects of Floating Platforms, Tilted Rotors, and Breaking Waves for Offshore Wind Turbines , Hannah Johlas, Mechanical Engineering

NUMERICAL MODELING OF ADVANCED PROPULSION SYSTEMS , Peetak P. Mitra, Mechanical Engineering

A Generalized Method for Predictive Simulation-Based Lower Limb Prosthesis Design , Mark Price, Mechanical Engineering

Dissertations from 2020 2020

ROUGH AIRFOIL SIMULATION FOR WIND TURBINE APPLICATIONS , Nathaniel B. deVelder, Mechanical Engineering

Experimental Study of Viscoelastic Fluid-Structure Interactions , Anita Anup Dey, Mechanical Engineering

Considerations for the Design Optimization of Floating Offshore Wind Turbine Blades , Evan M. Gaertner, Mechanical Engineering

NONLINEAR MODELS FOR SYNTHETIC MOORING LINES UNDER EXTREME OCEAN CONDITIONS: AN AQUACULTURE CASE STUDY , Nhu Nguyen, Mechanical Engineering

Surface Driven Flows : Liquid Bridges, Drops and Marangoni Propulsion , Samrat Sur, Mechanical Engineering

THE EFFECT OF OXYGEN ON PROPERTIES OF ZIRCONIUM METAL , Jie ZHAO, Mechanical Engineering

RESISTIVE SWITCHING CHARACTERISTICS OF NANOSTRUCTURED AND SOLUTION-PROCESSED COMPLEX OXIDE ASSEMBLIES , Zimu Zhou, Mechanical Engineering

Dissertations from 2019 2019

Flow-induced oscillations in floating offshore wind turbines , Daniel Carlson, Mechanical Engineering

Cold Spray Deposition of Polymers – Characterization and Optimization , Zahra Khalkhali, Mechanical Engineering

THERMODYNAMIC AND ECONOMIC ANALYSIS OF SEVERAL HYBRID MULTIGENERATION CYCLES AND WASTE HEAT RECOVERY SYSTEMS DRIVEN BY CONCENTRATED SOLAR TOWER , Kasra Mohammadi, Mechanical Engineering

PREDICTIVE SIMULATION OF HUMAN MOVEMENT AND APPLICATIONS TO ASSISTIVE DEVICE DESIGN AND CONTROL , Vinh Nguyen, Mechanical Engineering

STRUCTURAL CONTROL OF OFFSHORE WIND TURBINES USING PASSIVE AND SEMI-ACTIVE CONTROL , Semyung Park, Mechanical Engineering

A Study on Homogeneous Sheared Stably Stratified Turbulence , Gavin Portwood, Mechanical Engineering

Residual Stress Models for Large Eddy Simulation of Stratified Turbulent Flows , Felipe Augusto Ventura de Bragança Alves, Mechanical Engineering

QUANTITATIVE PROBING OF VACANCIES AND IONS DYNAMICS IN ELECTROACTIVE OXIDE MATERIALS , Jiaxin Zhu, Mechanical Engineering

Dissertations from 2018 2018

SUPPORTING ENGINEERING DESIGN OF ADDITIVELY MANUFACTURED MEDICAL DEVICES WITH KNOWLEDGE MANAGEMENT THROUGH ONTOLOGIES , Thomas Hagedorn, Mechanical Engineering

Turbulent mixers for protein folding experiments , Venkatesh Inguva, Mechanical Engineering

AEROELASTIC SIMULATION OF WIND TURBINES USING FREE VORTEX METHODS AND STRATEGIES FOR ACCELERATING THE COMPUTATION , Shujian Liu, Mechanical Engineering

Performance and economic analysis of hybrid microhydro systems , Ram Poudel, Mechanical Engineering

Computational Exploration of Flash-Boiling Internal Flow and Near-Nozzle Spray , Sampath K. Rachakonda, Mechanical Engineering

PROBING LOCAL VACANCY-DRIVEN RESISTIVE SWITCHING IN METAL OXIDE NANOSTRUCTURES , Jiaying Wang, Mechanical Engineering

MODEL-BASED PREDICTIVE ANALYTICS FOR ADDITIVE AND SMART MANUFACTURING , Zhuo Yang, Mechanical Engineering

Dissertations from 2017 2017

The rheology and roll-to-roll processing of shear-thickening particle dispersions , Sunilkumar Khandavalli, Mechanical Engineering

Bio-based Wind Turbine Blades: Renewable Energy Meets Sustainable Materials for Clean, Green Power , Rachel Koh, Mechanical Engineering

Dissertations from 2016 2016

Eulerian CFD Modeling of Multiphase Internal Injector Flow and External Sprays , Eli T. Baldwin, Mechanical Engineering

Simulating the Hydrodynamics of Offshore Floating Wind Turbine Platforms in a Finite Volume Framework , Maija Benitz, Mechanical Engineering

Reduced order fluid-structure interaction models for thin shells with non-zero Gaussian curvatures to understand the response of aneurysms to flow , Gary Han Chang, Mechanical Engineering

Wind Farm Wake Modeling and Analysis of Wake Impacts in a Wind Farm , Yujia Hao, Mechanical Engineering

Multi-Classifier Fusion Strategy for Activity and Intent Recognition of Torso Movements , Abhijit Kadrolkar, Mechanical Engineering

Dynamic Wetting and Drag Reduction on Superhydrophobic and Liquid-Infused Surfaces , Jeong-Hyun Kim, Mechanical Engineering

Automatic Development and Adaptation of Concise Nonlinear Models for System Identification , William G. La Cava, Mechanical Engineering

A Lower Limb Prosthesis with Active Alignment for Reduced Limb Loading , Andrew LaPre, Mechanical Engineering

A Computational Study of Non-Newtonian Droplet Dynamics , Kyle G. Mooney, Mechanical Engineering

Theoretical Modeling, Experimental Observation, and Reliability Analysis of Flow-induced Oscillations in Offshore Wind Turbine Blades , Pariya Pourazarm, Mechanical Engineering

Design Load Analysis of Two Floating Offshore Wind Turbine Concepts , Gordon M. Stewart, Mechanical Engineering

Dissertations from 2015 2015

Wind Power Capacity Value Metrics and Variability: A Study in New England , Frederick W. Letson, Mechanical Engineering

Vortex-Induced Vibration of Structures with Broken Symmetry , Banafsheh Seyedaghazadeh, Mechanical Engineering

A COMPUTATIONAL STUDY ON EXTENSION OF NON-CONTACT MODULATION CALORIMETRY , Xiao Ye, Mechanical Engineering

Dissertations from 2014 2014

Sustainability-Based Product Design in a Decision Support Semantic Framework , Douglas Eddy, Mechanical Engineering

Structural, Electronic and Catalytic Properties of Graphene-supported Platinum Nanoclusters , Ioanna Fampiou, Mechanical Engineering

OPERATIONAL PLANNING IN COMBINED HEAT AND POWER SYSTEMS , Hariharan Gopalakrishnan, Mechanical Engineering

Methods of Engine Degradation Assessment in the Time-Scale Domain , Jeffrey Charles Simmons, Mechanical Engineering

Lightweight, High-Temperature Radiator for In-Space Nuclear-Electric Power and Propulsion , Briana N. Tomboulian, Mechanical Engineering

SIMULATION AND MODELING OF THE DECAY OF ANISOTROPIC TURBULENCE , Christopher J. Zusi, Mechanical Engineering

Dissertations from 2013 2013

Effect of Total Awake Time on Drivers' Performance and Evaluation of Training Intervention to Mitigate Effects of Total Awake Time on Drivers' Performance , Abd Malek Abdul Hamid, Mechanical Engineering

Tooth Cusp Radius of Curvature as a Dietary Correlate in Primates , Michael Anthony Berthaume, Mechanical Engineering

Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind , Eric R. Morgan, Mechanical Engineering

Multiphase Flows with Digital and Traditional Microfluidics , Michael Andrew Nilsson, Mechanical Engineering

Dissertations from 2012 2012

A Study on Small Scale Intermittency Using Direct Numerical Simulation of Turbulence , Saba Almalkie, Mechanical Engineering

Acceleration of CFD and Data Analysis Using Graphics Processors , Ali Khajeh Saeed, Mechanical Engineering

The oriented-eddy collision model , Michael B. Martell

The Oriented-Eddy Collision Model , Michael Bernard Martell Jr., Mechanical Engineering

Morphology and Development of Droplet Deformation Under Flow Within Microfluidic Devices , Molly Katlin Mulligan, Mechanical Engineering

The Aerodynamics and Near Wake of an Offshore Floating Horizontal Axis Wind Turbine , Thomas Sebastian, Mechanical Engineering

Modeling the life span of red blood cells , Rajiv Prakash Shrestha

Modeling and planning distributed energy systems online , Kai Wu

Dissertations from 2011 2011

The Parameter Signature Isolation Method and Applications , James Richard McCusker, Mechanical Engineering

A Numerical Study of Droplet Formation and Behavior using Interface Tracking Methods , Sandeep Menon, Mechanical Engineering

Modeling of Flash Boiling Flows in Injectors with Gasoline-Ethanol Fuel Blends , Kshitij Deepak Neroorkar, Mechanical Engineering

Engineering Modeling, Analysis and Optimal Design of Custom Foot Orthotic , Lieselle Enid Trinidad, Mechanical Engineering

Understanding combat related pyschological difficulties in veterans: The role of context based morality , Ramila Usoof

Dissertations from 2010 2010

A comprehensive study of the extensional rheology of complex fluids , Manojkumar Chellamuthu

Modeling of Thermal Non-Equilibrium in Superheated Injector Flows , Shivasubramanian Gopalakrishnan, Mechanical Engineering

Dissertations from 2009 2009

A Pressure-Temperature Dual Sensing Methodology For Injection Molding Monitoring , Zhaoyan Fan, Mechanical Engineering

A pressure-temperature dual sensing methodology for injection molding monitoring , Zhaoyan Fan

An integrated multidisciplinary approach to the design of therapeutic devices for people with mental illness and pervasive developmental disorders , Brian A Mullen

Unsteady dynamics of wind turbine wake, oscillating bubble and falling card , Kapil Varshney

Semantic Methods for Intelligent Distributed Design Environments , Paul W. Witherell, Mechanical Engineering

Dissertations from 2008 2008

Numerical analysis of mixing in variable density turbulent flows , Adel E Alshayji

Self-diagnostic thermal protection systems for future spacecraft , Alaina B Hanlon

Hybrid elastic network model for macromolecular dynamics , Yunho Jang

The streamlined site assessment methodology: A new approach for wind energy site assessment , Matthew A Lackner

Laminar flow control with ultrahydrophobic surfaces , Jia Ou

Multi-Time Scale Modeling strategy for bearing life prognosis , Shuangwen Sheng

Dissertations from 2007 2007

Managing multi-agent risk and system uncertainty using options-based decision policies , Daniel R Ball

Offshore wind farm layout optimization , Christopher Neil Elkinton

Advanced Search

  • Notify me via email or RSS
  • Collections
  • Disciplines

Author Corner

  • Login for Faculty Authors
  • Faculty Author Gallery
  • Expert Gallery
  • University Libraries
  • Mechanical and Industrial Engineering Webpage
  • UMass Amherst

This page is sponsored by the University Libraries.

© 2009 University of Massachusetts Amherst • Site Policies

Privacy Copyright

Universitat Politècnica de Catalunya

Thesis Proposal

Registration, deadlines and process documentation to initiate defense, committee and defense process.

Home

Search form

  • Academic Advising & Support
  • Academic Planning & Resources
  • Environmental Changemakers Certificate
  • Academic Opportunities & Research
  • Financial Support
  • Online Forms & Resources
  • Calendar & Deadlines
  • Career Resources
  • Clubs and Organizations
  • Frequently Asked Questions
  • Advisors & Coordinators
  • Graduate Studies Committee
  • Curricular Practical Training
  • New Graduate Students
  • Ph.D. Milestones
  • Policies & Procedures
  • Teaching Assistant FAQs
  • Career Development Resources
  • Engineering Student Study/Meeting Space
  • Free Software
  • Message From Chair
  • Facts & Figures
  • Undergraduate
  • Faculty & Staff
  • Academic Employment
  • Dept Events
  • Discovery News
  • Student Testimonials
  • Give to BME
  • Seminar Series
  • E-Newsletter
  • Message from Chair
  • CEE Affiliates
  • Give to CEE
  • International Center Form
  • MSE Business & Forms
  • MSE 298 Seminars
  • MSE Diversity & Inclusion
  • Support MSE@UCI
  • MAE Seminars
  • Corporate Affiliates
  • Interdisciplinary Graduate Programs
  • All faculty & staff
  • Dean's Office
  • Development and External Relations
  • Student Affairs
  • Engineering Research Management
  • UC Irvine Directory
  • Proposal Text and Resources
  • Early Career Opportunities
  • Purchasing Requests
  • Reimbursements
  • Purchasing & Reimbursement Mission Statement
  • Business Meetings/ Entertainment Guidelines
  • Service Agreements
  • Travel Guidelines
  • Travel Tips
  • UC Policies & Procedures
  • Dean's Executive Office
  • Chief Administrative Officers
  • Personnel Unit
  • Finance Unit
  • Purchasing Unit
  • Computing Unit
  • Facilities Unit
  • Curriculum, Analytical Studies, & Accreditation (CASA)
  • Communications Office
  • Development and External Relations Office
  • Outreach Unit
  • Office of Information Technology
  • Faculty Websites
  • Computer Labs & Laptops
  • Engineering Facilities Request Form
  • Safety Procedures
  • Campus Evacuation Zones
  • Environmental Health & Safety
  • UCI Police Department
  • Helpful Links
  • At Your Service
  • Zot! Portal
  • FAQs for Engineering Instructors
  • Spring Awards
  • Process Improvement
  • Alumni Spotlight
  • Hall of Fame
  • #ANTEATERENGINEER
  • Ways to Give
  • UCI Engineering Alumni Society
  • UC Irvine Alumni Association
  • Dean's Message
  • Strategic Plan
  • Facts and Figures
  • Henry Samueli
  • School Leadership
  • Engineering Leadership Council
  • Accreditation
  • Orange County
  • Got Questions?
  • Enrollment and Degrees Awarded
  • How to Apply
  • Prospective Students
  • Newly Admitted
  • Majors and Minors Offered
  • Programs and Concentrations
  • Accelerated Status Program
  • International Fellowships
  • Meet Us on the Road
  • Anteater Voices
  • Ph.D. and Master's Inquiry Form
  • Message from the Associate Dean
  • UCI Engineering-LANL Graduate Fellowships
  • Research Thrusts
  • Research by Department
  • Research Centers, Institutes and Facilities
  • Undergraduate Research
  • Interdisciplinary Science and Engineering Building (ISEB)
  • Contracts & Grants / ERM
  • Research and Proposal Development
  • Annual Membership Levels
  • Connect with Students
  • Prototyping Services
  • Sponsored Research
  • External Relations Office
  • Community College
  • International
  • IDEA - Inclusion, Diversity, Equity, Access
  • Stacey Nicholas Office of Access and Inclusion
  • Inclusion in Engineering Education
  • Samueli Shoutouts
  • Media Watch
  • Dean's Report
  • Social Media
  • Style Guide

MRSEC/MSE Special Seminar: Designing New Electronic Phases Intransition-Metal Oxide Thin Films

mechanical engineering thesis proposal

Abstract:  The discovery of new quantum matters stays at the forefront of materials science and condensed matter physics, which offers the most promising way to solve the global energy and information issues. Thanks to the rapid development of epitaxial techniques, the synthesis of quantum materials can be precisely controlled at the atomic scale, opening new avenues for tailoring the device geometry and manipulating the functional properties. Although many external stimuli have been implemented to explore the exotic states in atomically thin films, the lack of microscopic understanding of the electronic structure at such extreme length scale has prevented us from fully unleashing the potential of epitaxial technology to engineer novel quantum materials. In this talk, I will show how to establish the connection between the macroscopic property and the microscopic structure in transition-metal oxides. By leveraging the power of thin film synthesis and advanced spectroscopy measurements, I explored the differentiated roles of Lifshitz transition on the thermodynamic and superconducting properties of La2-xSrxCuO4, as well as the underlying mechanism of metal-to-insulator transition in perovskite nickelate NdNiO3. This property-structure relationship will provide guiding rules for designing new electronic phases in transition-metal oxide films.    

Bio:  Zhong was born and raised in China. He completed his undergraduate degree at Nanjing University in 2012, and received his doctorate degree in physics from Tsinghua University in 2019. In his Ph.D. study, he combined molecular beam epitaxy and scanning tunneling microscopy techniques to investigate the exotic properties of topological materials and unconventional superconductors. Now he is a postdoctoral fellow at Stanford University. His current research uses synchrotron-based spectroscopic tools to elucidate the electronic structure of strongly correlated materials, particularly high-temperature cuprate superconductors and functional oxides. 

Related Content

Upcoming events.

  • 8 Apr MRSEC/MSE Special Seminar: Designing New Electronic Phases Intransition-Metal Oxide Thin Films
  • 9 Apr MRSEC/MSE Special Seminar: Low-Dimensional Quantum Materials Design Through Atomically Precise Film Synthesis
  • 11 Apr MSE 298 Seminar: Adaptive Materials Through Bioinspired Design and Additive Manufacturing
  • 12 Apr EECS Seminar: Physical Layer Security for Dual-function Radar-Communication Systems
  • 18 Apr MSE 298 Seminar: Catalyst Design For Clean Energy Technologies

News & Events

Utah State University

Search Utah State University:

Faculty promotions 2024.

Join the College of Engineering in congratulating our five newly promoted faculty members.

Prof. Austin Ball (CEE) Promoted to Associate Professor of Practice

Austin Ball joined the Civil and Environmental Engineering Department in 2018 as an assistant professor of practice after 15 years in the industry, working as a professional engineer for the state of Colorado, Idaho and Utah. He received a master’s in civil and environmental engineering from Utah State University with an emphasis in structures in 2005. Ball’s thesis focused on the modal analysis of a multi-span reverse curve steel girder bridge using computer modeling.

As a professor of practice, Ball teaches career practicality and provides valuable real-world insights into the engineering field. His primary goal is to provide guidance and assistance to students as they navigate their individual paths toward fulfilling and successful careers

Austin Ball

Dr. Matt Harris (MAE) Promoted to Associate Professor with Tenure

Matt Harris joined USU’s Mechanical and Aerospace Engineering Department in 2019. He holds a Ph.D. and a master’s in aerospace engineering from the University of Texas at Austin and Texas A&M respectively.

Harris is an accomplished researcher and engineer. He has published more than fifty 50 journal publications and conference proceedings, as well as a book in 2023 titled “Optimal Spacecraft Guidance.” Harris also holds three patents and is funded by numerous organizations including the United States Office of Naval Research, NASA and the U.S. Air Force Research Laboratory. To date, he has earned over $2 million in research funding as both PI and Co-PI.

Dr. Jeffery Horsburgh (CEE) Promoted to Full Professor

Jeff Horsburgh is an Associate Professor in Civil and Environmental Engineering and at the Utah Water Research Laboratory at Utah State University specializing in watershed hydrology, surface water quality and human dimensions of water use. He joined the CEE faculty in 2009. Horsburgh holds a Ph.D. and a master’s in civil and environmental engineering and a bachelor’s degree in environmental engineering, all from USU.

Horsburgh has published research since 2005 and has published more than 50 peer-reviewed publications. He has earned funding from organizations such as the National Science Foundation and states including Utah, Idaho, Washington and Delaware.

Dr. Jeffery Horsburgh (CEE) Promoted to Full Professor

Dr. Hailei Wang (MAE) Promoted to Associate Professor with Tenure

Prior to joining USU in August 2018, Hailei Wang worked at Oregon State University as a research faculty for ten years. He has broad research expertise in various thermal energy systems. Before going back to graduate school, Wang worked eight years in a natural gas research institute as a mechanical and process engineer.

Wang received his Ph.D. in mechanical engineering from Oregon State University in 2006 and his master’s from Texas Tech University in 2002. He holds an undergraduate degree in mechanical engineering from Southwestern Petroleum University in China. He currently runs the Energy Technology & Innovation lab, specializing in developing clean and efficient energy systems and novel thermal transport processes in energy conversion and storage.

Dr. Zhen Zhang (ECE) Promoted to Associate Professor with Tenure

Zhen Zhang joined the USU Electrical and Computer Engineering Department in 2017. His research focuses on the modeling and verification of concurrent and stochastic systems, ranging from distributed protocols and asynchronous circuits to cyber-physical and synthetic biological systems. Zhang has a wide variety of experience with topics including principles of cyber-physical systems, formal methods, stochastic verification and much more.

Zhang graduated with a Ph.D. in computer engineering from the University of Utah in 2016 and a master’s in computer science from the University of Manchester in 2010. He also received his undergraduate degree in electronic and electrical engineering from the Dublin Institute of Technology. To date, he has published nearly 30 papers and has created several formal models for fault-tolerant links routing protocol for a two-by-two Network-on-Chip mesh in the process-algebraic language LNT .

Dr. Zhen Zhang (ECE) Promoted to Associate Professor with Tenure

IMAGES

  1. Sample Research Proposal For Mechanical Engineering! 12+ Engineering

    mechanical engineering thesis proposal

  2. (PDF) Research proposal for PHD in Mechanical Engineering

    mechanical engineering thesis proposal

  3. FREE 11+ Engineering Project Proposal Samples in PDF

    mechanical engineering thesis proposal

  4. Mechanical Engineering Thesis Ideas

    mechanical engineering thesis proposal

  5. Engineering Project Proposal Examples

    mechanical engineering thesis proposal

  6. Engineering Proposal Template

    mechanical engineering thesis proposal

VIDEO

  1. Snowy Mountains Scheme, Australia

  2. Top 10 Mechanical Engineering Projects Final Year Mechanical Engineering Projects

  3. Two Level SVM inverter Simulink

  4. How to do Matlab Simulink Modeling of PMSM synchronous motor simulation #phdresearch #electrical

  5. MODEL PREDICTIVE CONTROL Inverter based Microgrid with #MPC #microgrid #matlab #simulink #electrical

  6. #SVPWM modulation three phase two level inverter #Matlab #Simulink

COMMENTS

  1. Thesis Proposal : Mechanical Engineering Communication Lab

    Purpose. The purpose of your thesis proposal is to introduce your research plan to your thesis committee. You want the committee members to come away understanding what your research will accomplish, why it is needed ( motivation ), how you will do it ( feasibility & approach ), and most importantly, why it is worthy of a PhD ( significance ).

  2. How to Write a Project Proposal

    First, the proposal is reviewed, evaluated, and signed by the advisory committee. Next, the signed Proposal Evaluation Form is attached to the proposal, along with the completed Proposal Cover Sheet and submitted to the ME office for approval and signatures of the Graduate Advisor and the Department Chair. Refer to the Projects and Thesis tab ...

  3. Mechanical Engineering Masters Theses Collection

    Theses from 2021 PDF. Design and Testing of a Foundation Raised Oscillating Surge Wave Energy Converter, Jacob R. Davis, Mechanical Engineering. PDF. Wind Turbine Power Production Estimation for Better Financial Agreements, Shanon Fan, Mechanical Engineering. PDF

  4. PDF Mechanical Engineering MS Thesis Proposal Form

    Department of Mechanical Engineering 110 Cummington Mall Boston, Massachusetts 02215 T 617-353-2814 F 617-353-5866 NAME SIGNATURE NAME SIGNATURE ... Please attach your thesis proposal, which should include: 1. Relevant background 2. Any work already completed 3. A plan of research with sufficient technical details to evaluate the scope and ...

  5. Master's Thesis Process

    Step 3. Receive approval from the Woodruff School Graduate Committee and then obtain signatures of remaining committee members. After the Woodruff School Graduate Committee approves your master's thesis reading committee and your Request for Approval of Master's Thesis Topic, you will receive an email from the Office of Student Services.

  6. Doctoral Research Proposal

    Doctoral students will write a research proposal document, which is limited to 30 pages (with 12 point font, single spacing, 1 inch margins all around) and should contain sections describing. the problem and its background, the innovative claims of the proposed work and its relation to existing work, a description of at least one initial result ...

  7. Thesis Projects (last update November 24, 2023)

    The Honours Thesis research projects listed below are available only to McGill Mechanical Engineering Undergraduate students in the Honours program and registered for MECH 403-404 courses. If you are interested in one of the thesis projects, please send an expression of interest to the contact email provided. Although we do our best to keep this list up-to-date, some projects may no longer be ...

  8. Mechanical Engineering Undergraduate Honors Theses

    The Analysis of Mechanical Exfoliation of Graphene for Various Fabrication and Automation Techniques, Lance Yarbrough. Theses from 2023 PDF. A Systematic Study into the Design and Utilization of Burn Wire as a means of Tensioning and Releasing Spacecraft Mechanisms through Applied Joule Heating, Chandler Dye. PDF

  9. PDF MECHANICAL PROJECT PROPOSAL

    Existing Mechanical System Summary. The total cost, given by the project manager, of the MEP system was $5,271,200. The total area of the building was 103,000 ft2, yielding a cost of $51.17/ft2. This does not include approximate costs of $100,000 for commissioning and $69,100 for air balancing, hydronic balancing and commissioning support.

  10. A Guide to Writing a Senior Thesis in Engineering

    If you are unsure if your research project will fulfill a thesis in your area of engineering please reach out early (sophomore or junior year) to your DUS or ADUS in engineering. Biomedical Engineering ADUS: Linsey Moyer, PhD . [email protected]. Electrical Engineering and Mechanical Engineering ADUS: Chris Lombardo . lombardo@seas ...

  11. Mechanical Engineering Thesis

    4 Types of mechanical engineering dissertation/thesis. 4.1 Practical mechanical engineering thesis. 4.1.1 Design, Build and Test or Experimental Mechanical Engineering Thesis. 4.1.2 Modelling Of an Engineering Process. 4.1.3 Detailed Design of An Engineering System. 4.1.4 Preparation And Testing of Computer Software.

  12. Mechanical Engineering Theses and Dissertations

    Waterproofing Shape-Changing Mechanisms Using Origami Engineering; Also a Mechanical Property Evaluation Approach for Rapid Prototyping, Andrew Jason Katz. PDF. Hydrogen Effects on X80 Steel Mechanical Properties Measured by Tensile and Impact Testing, Xuan Li. PDF. Application and Analysis of Asymmetrical Hot and Cold Stimuli, Ahmad Manasrah. PDF

  13. The Best Mechanical Engineering Dissertation Topics and Titles

    Mechanical Dissertation Topics of 2021. Topic 1: Mini powdered metal design and fabrication for mini development of waste aluminium Cannes and fabrication. Topic 2: Interaction between the Fluid, Acoustic, and vibrations. Topic 3: Combustion and Energy Systems. Topic 4: Study on the Design and Manufacturing.

  14. Mechanical Engineering Thesis Proposal Example

    Mechanical Engineering Thesis Proposal Example - Free download as PDF File (.pdf), Text File (.txt) or read online for free. Scribd is the world's largest social reading and publishing site.

  15. PDF Mechanical Engineering THESIS PROPOSAL REVIEW RUBRIC

    Graduate Student Name : Proposed Thesis Topic: Faculty Thesis Advisor: Proposal Review Date: Reviewer Name: Attribute. Unsatisfactory. Needs Improvement. Satisfactory. Very Good. Outstanding. Command of ME subject matter appropriate for entry to an MS program. Remedial BS course work required Command of ME subject matter not at entry-level MS.

  16. MIT Theses

    MIT's DSpace contains more than 58,000 theses completed at MIT dating as far back as the mid 1800's. Theses in this collection have been scanned by the MIT Libraries or submitted in electronic format by thesis authors. Since 2004 all new Masters and Ph.D. theses are scanned and added to this collection after degrees are awarded.

  17. Thesis

    The Mechanical Engineering Faculty periodically schedule thesis opportunity presentations, where they will discuss their current research interests and the available topics. In addition, there is a ME website which contains short written descriptions for current thesis topics of ME faculty. ... Thesis Proposals. One way that you can help ...

  18. Mechanical & Industrial Engineering Dissertations Collection

    Dissertations from 2016 PDF. Eulerian CFD Modeling of Multiphase Internal Injector Flow and External Sprays, Eli T. Baldwin, Mechanical Engineering. PDF. Simulating the Hydrodynamics of Offshore Floating Wind Turbine Platforms in a Finite Volume Framework, Maija Benitz, Mechanical Engineering. PDF

  19. Thesis Proposal

    The beginning of the process of preparing the thesis proposal requires the enrollment for doctoral thesis proposal and having an advisor who will direct the Phd thesis. For this, the doctoral student must contact the faculty in the doctoral program who works with the subject in which the student would like to work.

  20. Thesis Proposal For Mechanical Engineering Students

    Thesis Proposal for Mechanical Engineering Students - Free download as PDF File (.pdf), Text File (.txt) or read online for free. Scribd is the world's largest social reading and publishing site.

  21. Ph.D. Dissertation Proposal Defense in Plastics Engineering: Saeed

    04/05/2024. By Danielle Fretwell. The Francis College of Engineering, Department of Plastics Engineering, invites you to attend a Doctoral Dissertation Proposal defense by Saeed Alanazi on: Effects of Organic Nucleating Agents on Thermal and Shear-Induced Crystallization Kinetics and Mechanical Performance of PLA. Candidate Name: Saeed Alanazi.

  22. MRSEC/MSE Special Seminar: Designing New Electronic Phases Intransition

    Abstract: The discovery of new quantum matters stays at the forefront of materials science and condensed matter physics, which offers the most promising way to solve the global energy and information issues.Thanks to the rapid development of epitaxial techniques, the synthesis of quantum materials can be precisely controlled at the atomic scale, opening new avenues for tailoring the device ...

  23. Faculty Promotions 2024

    Jeff Horsburgh is an Associate Professor in Civil and Environmental Engineering and at the Utah Water Research Laboratory at Utah State University specializing in watershed hydrology, surface water quality and human dimensions of water use. He joined the CEE faculty in 2009. Horsburgh holds a Ph.D. and a master's in civil and environmental ...