• - Google Chrome

Intended for healthcare professionals

  • Access provided by Google Indexer
  • My email alerts
  • BMA member login
  • Username * Password * Forgot your log in details? Need to activate BMA Member Log In Log in via OpenAthens Log in via your institution

Home

Search form

  • Advanced search
  • Search responses
  • Search blogs
  • News & Views
  • Critical thinking in...

Critical thinking in healthcare and education

  • Related content
  • Peer review
  • Jonathan M Sharples , professor 1 ,
  • Andrew D Oxman , research director 2 ,
  • Kamal R Mahtani , clinical lecturer 3 ,
  • Iain Chalmers , coordinator 4 ,
  • Sandy Oliver , professor 1 ,
  • Kevan Collins , chief executive 5 ,
  • Astrid Austvoll-Dahlgren , senior researcher 2 ,
  • Tammy Hoffmann , professor 6
  • 1 EPPI-Centre, UCL Department of Social Science, London, UK
  • 2 Global Health Unit, Norwegian Institute of Public Health, Oslo, Norway
  • 3 Centre for Evidence-Based Medicine, Oxford University, Oxford, UK
  • 4 James Lind Initiative, Oxford, UK
  • 5 Education Endowment Foundation, London, UK
  • 6 Centre for Research in Evidence-Based Practice, Bond University, Gold Coast, Australia
  • Correspondence to: J M Sharples Jonathan.Sharples{at}eefoundation.org.uk

Critical thinking is just one skill crucial to evidence based practice in healthcare and education, write Jonathan Sharples and colleagues , who see exciting opportunities for cross sector collaboration

Imagine you are a primary care doctor. A patient comes into your office with acute, atypical chest pain. Immediately you consider the patient’s sex and age, and you begin to think about what questions to ask and what diagnoses and diagnostic tests to consider. You will also need to think about what treatments to consider and how to communicate with the patient and potentially with the patient’s family and other healthcare providers. Some of what you do will be done reflexively, with little explicit thought, but caring for most patients also requires you to think critically about what you are going to do.

Critical thinking, the ability to think clearly and rationally about what to do or what to believe, is essential for the practice of medicine. Few doctors are likely to argue with this. Yet, until recently, the UK regulator the General Medical Council and similar bodies in North America did not mention “critical thinking” anywhere in their standards for licensing and accreditation, 1 and critical thinking is not explicitly taught or assessed in most education programmes for health professionals. 2

Moreover, although more than 2800 articles indexed by PubMed have “critical thinking” in the title or abstract, most are about nursing. We argue that it is important for clinicians and patients to learn to think critically and that the teaching and learning of these skills should be considered explicitly. Given the shared interest in critical thinking with broader education, we also highlight why healthcare and education professionals and researchers need to work together to enable people to think critically about the health choices they make throughout life.

Essential skills for doctors and patients

Critical thinking is not a new concept in education: at the beginning of the last century the US educational reformer John Dewey identified the need to help students “to think well.” 3 Critical thinking encompasses a broad set of skills and dispositions, including cognitive skills (such as analysis, inference, and self regulation); approaches to specific questions or problems (orderliness, diligence, and reasonableness); and approaches to life in general (inquisitiveness, concern with being well informed, and open mindedness). 4

An increasing body of evidence highlights that developing critical thinking skills can benefit academic outcomes as well as wider reasoning and problem solving capabilities. 5 For example, the Thinking, Doing, Talking Science programme trains teachers in a repertoire of strategies that encourage pupils to use critical thinking skills in primary school science lessons. An independently conducted randomised trial of this approach found that it had a positive impact on pupils’ science attainment, with signs that it was particularly beneficial for pupils from poorer families. 6

In medicine, increasing attention has been paid to “critical appraisal” in the past 40 years. Critical appraisal is a subset of critical thinking that focuses on how to use research evidence to inform health decisions. 7 8 9 The need for critical appraisal in medicine was recognised at least 75 years ago, 10 and critical appraisal has been recognised for some decades as an essential competency for healthcare professionals. 11 The General Medical Council’s Good Medical Practice guidance includes the need for doctors to be able to “provide effective treatments based on the best available evidence.” 12

If patients and the public are to make well informed health choices, they must also be able to assess the reliability of health claims and information. This is something that most people struggle to do, and it is becoming increasingly important because patients are taking on a bigger role in managing their health and making healthcare decisions, 13 while needing to cope with more and more health information, much of which is not reliable. 14 15 16 17

Teaching critical thinking

Although critical thinking skills are given limited explicit attention in standards for medical education, they are included as a key competency in most frameworks for national curriculums for primary and secondary schools in many countries. 18 Nonetheless, much health and science education, and education generally, still tends towards rote learning rather than the promotion of critical thinking. 19 20 This matters because the ability to think critically is an essential life skill relevant to decision making in many circumstances. The capacity to think critically is, like a lot of learning, developed in school and the home: parental influence creates advantage for pupils who live in homes where they are encouraged to think and talk about what they are doing. This, importantly, goes beyond simply completing tasks to creating deeper understanding of learning processes. As such, the “critical thinking gap” between children from disadvantaged communities and their more advantaged peers requires attention as early as possible.

Although it is possible to teach critical thinking to adults, it is likely to be more productive if the grounds for this have been laid down in an educational environment early in life, starting in primary school. Erroneous beliefs, attitudes, and behaviours developed during childhood may be difficult to change later. 21 22 This also applies to medical education and to health professionals. It becomes increasingly difficult to teach these skills without a foundation to build on and adequate time to learn them.

Strategies for teaching students to think critically have been evaluated in health and medical education; in science, technology, engineering, and maths; and in other subjects. 23 These studies suggest that critical thinking skills can be taught and that in the absence of explicit teaching of critical thinking, important deficiencies emerge in the abilities of students to make sound judgments. In healthcare studies, many medical students score poorly on tests that measure the ability to think critically , and the ability to think critically is correlated with academic success. 24 25

Evaluations of strategies for teaching critical thinking in medicine have focused primarily on critical appraisal skills as part of evidence based healthcare. An overview of systematic reviews of these studies suggests that improving evidence based healthcare competencies is likely to require multifaceted, clinically integrated approaches that include assessment. 26

Cross sector collaboration

Informed Health Choices, an international project aiming to improve decision making, shows the opportunities and benefits of cross sector collaboration between education and health. 27 This project has brought together people working in education and healthcare to develop a curriculum and learning resources for critical thinking about any action that is claimed to improve health. It aims to develop, identify, and promote the use of effective learning resources, beginning at primary school, to help people to make well informed choices as patients and health professionals, and well informed decisions as citizens and policy makers.

The project has drawn on several approaches used in education, including the development of a “spiral curriculum,” measurement tools, and the design of learning resources. A spiral curriculum begins with determining what people should know and be able to do, and outlines where they should begin and how they should progress to reach these goals. The basic ideas are revisited repeatedly, building on them until the student has grasped a deep understanding of the concepts. 28 29 The project has also drawn on educational research and methods to develop reliable and valid tools for measuring the extent to which those goals have been achieved. 30 31 32 The development of learning resources to teach these skills has been informed by educational research, including educational psychology, motivational psychology, and research and methods for developing learning games. 33 34 35 It has also built on the traditions of clinical epidemiology and evidence based medicine to identify the key concepts required to assess health claims. 29

It is difficult to teach critical thinking abstractly, so focusing on health may have advantages beyond the public health benefits of increasing health literacy. 36 Nearly everyone is interested in health, including children, making it easy to engage learners. It is also immediately relevant to students. As reported by one 10 year old in a school that piloted primary school resources, this is about “things we might actually use instead of things we might use when we are all grown up and by then we’ll forget.” Although the current evaluation of the project is focusing on outcomes relating to appraisal of treatment claims, if the intervention shows promise the next step could be to explore how these skills translate to wider educational contexts and outcomes.

Beyond critical thinking

Exciting opportunities for cross sector collaboration are emerging between healthcare and education. Although critical thinking is a useful example of this, other themes cross the education and healthcare domains, including nutrition, exercise, educational neuroscience, learning disabilities and special education needs, and mental health.

In addition to shared topics, several common methodological and conceptual issues also provide opportunities for sharing ideas and innovations and learning from mistakes and successes. For example, the Education Endowment Foundation is the UK government’s What Works Centre for education, aiming to improve evidence based decision making. Discussions hosted by the foundation are exploring how methods to develop guidelines in healthcare can be adapted and applied in education and other sectors.

Similarly, the foundation’s universal use of independent evaluation for teaching and learning interventions is an approach that should be explored, adapted, and applied in healthcare. Since the development and evaluation of educational interventions are separated, evaluators have no vested interested in the results of the assessment, all results are published, and bias and spin in how results are analysed and presented are reduced. By contrast, industry sponsorship of drug and device studies consistently produces results that favour the manufacturer. 37

Another example of joint working between educators and health is the Best Evidence Medical Education Collaboration, an international collaboration focused on improving education of health professionals. 38 And in the UK, the Centre for Evidence Based Medicine coordinates Evidence in School Teaching (Einstein), a project that supports introducing evidence based medicine as part of wider science activities in schools. 39 It aims to engage students, teachers, and the public in evidence based medicine and develop critical thinking to assess health claims and make better choices.

Collaboration has also been important in the development of the Critical Thinking and Appraisal Resource Library (CARL), 40 a set of resources designed to help people understand fair comparisons of treatments. An important aim of CARL is to promote evaluation of these critical thinking resources and interventions, some of which are currently under way at the Education Endowment Foundation. On 22 May 2017, the foundation is also cohosting an event with the Royal College of Paediatrics and Child Health that will focus on their shared interest in critical thinking and appraisal skills.

Education and healthcare have overlapping interests. Doctors, teachers, researchers, patients, learners, and the public can all benefit from working together to help people to think critically about the choices they make. Events such as the global evidence summit in September 2017 ( https://globalevidencesummit.org ) can help bring people together and build on current international experience.

Contributors and sources: This article reflects conclusions from discussions during 2016 among education and health service researchers exploring opportunities for cross sector collaboration and learning. This group includes people with a longstanding interest in evidence informed policy and practice, with expertise in evaluation design, reviewing methodology, knowledge mobilisation, and critical thinking and appraisal.

Competing interests: We have read and understood BMJ policy on declaration of interests and declare that we have no competing interests.

Provenance and peer review: Not commissioned; externally peer reviewed.

  • ↵ Krupat E, Sprague JM, Wolpaw D, Haidet P, Hatem D, O’Brien B. Thinking critically about critical thinking: ability, disposition or both? Med Educ 2011 ; 357 : 625 - 35 . doi:10.1111/j.1365-2923.2010.03910.x   pmid:21564200 . OpenUrl
  • ↵ Huang GC, Newman LR, Schwartzstein RM. Critical thinking in health professions education: summary and consensus statements of the millennium conference 2011. Teach Learn Med 2014 ; 357 : 95 - 102 . doi:10.1080/10401334.2013.857335   pmid:24405353 . OpenUrl
  • ↵ Dewey J. How we think. D C Heath, 1910 . https://archive.org/details/howwethink000838mbp doi:10.1037/10903-000 .
  • ↵ Facione PA. Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. American Philosophical Association, 1990 , http://files.eric.ed.gov/fulltext/ED315423.pdf .
  • ↵ Higgins S, Katsipataki M, Coleman R, et al. The Sutton Trust-Education Endowment Foundation Teaching and Learning Toolkit. Education Endowment Foundation, 2015 .
  • ↵ Hanley P, Slavin RE, Elliot L. Thinking, doing, talking science. Evaluation report and executive summary. Education Endowment Foundation, 2015 , https://v1.educationendowmentfoundation.org.uk/uploads/pdf/Oxford_Science.pdf .
  • ↵ Sackett DL. How to read clinical journals: I. why to read them and how to start reading them critically . Can Med Assoc J 1981 ; 357 : 555 - 8 . pmid:7471000 . OpenUrl
  • ↵ Guyatt G, Cairns J, Churchill D, et al. Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine . JAMA 1992 ; 357 : 2420 - 5 . doi:10.1001/jama.1992.03490170092032   pmid:1404801 . OpenUrl
  • ↵ Oxman AD, Sackett DL, Guyatt GH. The Evidence-Based Medicine Working Group. Users’ guides to the medical literature. I. How to get started . JAMA 1993 ; 357 : 2093 - 5 . doi:10.1001/jama.1993.03510170083036   pmid:8411577 . OpenUrl
  • ↵ Rynearson EH. Endocrinology: a critical appraisal . Cal West Med 1940 ; 357 : 257 - 9 . pmid:18745588 . OpenUrl
  • ↵ General Medical Council. Tomorrow's doctors. General Medical Council, 1993. http://www.gmc-uk.org/10a_annex_a.pdf_25398162.pdf
  • ↵ General Medical Council. Good medical practice. General Medical Council, 2013. http://www.gmc-uk.org/static/documents/content/GMP_.pdf
  • ↵ Edwards A, Elwyn G. Shared decision-making in health care: achieving evidence-based patient choice. 2nd ed . Oxford University Press, 2009 .
  • ↵ Sumner P, Vivian-Griffiths S, Boivin J, et al. Exaggerations and caveats in press releases and health-related science news. PLoS One 2016 ; 357 : e0168217 . doi:10.1371/journal.pone.0168217   pmid:27978540 . OpenUrl
  • ↵ Schwartz LM, Woloshin S, Andrews A, Stukel TA. Influence of medical journal press releases on the quality of associated newspaper coverage: retrospective cohort study. BMJ 2012 ; 357 : d8164 . doi:10.1136/bmj.d8164 .  pmid:22286507 . OpenUrl
  • ↵ Glenton C, Paulsen EJ, Oxman AD. Portals to Wonderland: health portals lead to confusing information about the effects of health care. BMC Med Inform Decis Mak 2005 ; 357 : 7 . doi:10.1186/1472-6947-5-7   pmid:15769291 . OpenUrl
  • ↵ Moynihan R, Bero L, Ross-Degnan D, et al. Coverage by the news media of the benefits and risks of medications . N Engl J Med 2000 ; 357 : 1645 - 50 . doi:10.1056/NEJM200006013422206   pmid:10833211 . OpenUrl
  • ↵ Voogt J, Roblin NP. A comparative analysis of international frameworks for 21st century competences: implications for national curriculum policies. J Curric Stud 2012 ; 357 : 299 - 321 doi:10.1080/00220272.2012.668938 . OpenUrl
  • ↵  National Research Council. Taking science to school: learning and teaching science in grades K-8. National Academies Press, 2007 .
  • ↵ Nordheim L, Pettersen KS, Flottorp S, Hjälmhult E. Critical appraisal of health claims: science teachers’ perceptions and practices . Health Educ J 2016 ; 357 : 449 - 66 doi:10.1108/HE-04-2015-0016 . OpenUrl
  • ↵  Committee on Science Learning. Kindergarten through eighth grade. How children learn science. In: Duschl RA, Schweingruber A, Shouse AW, eds. Taking science to school: learning and teaching science in grades K-8. National Academies Press, 2007 .
  • ↵ Vosniadou S. International handbook of research on conceptual change. 2nd ed . Routledge, 2013 .
  • ↵ Abrami PC, Bernard RM, Borokhovski E, Waddington DI, Wade CA, Persson T. Strategies for teaching students to think critically a meta-analysis. Rev Educ Res 2015 ; 357 : 275 - 314 . OpenUrl
  • ↵ Ross D, Schipper S, Westbury C, et al. Examining critical thinking skills in family medicine residents . Fam Med 2016 ; 357 : 121 - 6 . pmid:26950783 . OpenUrl
  • ↵ Ross D, Loeffler K, Schipper S, Vandermeer B, Allan GM. Do scores on three commonly used measures of critical thinking correlate with academic success of health professions trainees? A systematic review and meta-analysis. Acad Med 2013 ; 357 : 724 - 34 . doi:10.1097/ACM.0b013e31828b0823   pmid:23524925 . OpenUrl
  • ↵ Young T, Rohwer A, Volmink J, Clarke M. What are the effects of teaching evidence-based health care (EBHC)? Overview of systematic reviews. PLoS One 2014 ; 357 : e86706 . doi:10.1371/journal.pone.0086706   pmid:24489771 . OpenUrl
  • ↵ Informed Health Choices Group. Informed health choices. www.informedhealthchoices.org
  • ↵ Harden RM, Stamper N. What is a spiral curriculum? Med Teach 1999 ; 357 : 141 - 3 . doi:10.1080/01421599979752   pmid:21275727 . OpenUrl
  • ↵ Austvoll-Dahlgren A, Oxman AD, Chalmers I, et al. Key concepts that people need to understand to assess claims about treatment effects. J Evid Based Med 2015 ; 357 : 112 - 25 . doi:10.1111/jebm.12160   pmid:26107552 . OpenUrl
  • ↵ Austvoll-Dahlgren A, Nsangi A, Semakula D. Interventions and assessment tools addressing key concepts people need to know to appraise claims about treatment effects: a systematic mapping review. Syst Rev 2016 ; 357 : 215 . doi:10.1186/s13643-016-0389-z   pmid:28034307 . OpenUrl
  • ↵ Austvoll-Dahlgren A, Semakula D, Nsangi A, et al. The development of the “claim evaluation tools”: assessing critical thinking about effects. BMJ Open forthcoming .
  • ↵ Austvoll-Dahlgren A, Guttersrud Ø, Semakula D, Nsangi A, Oxman AD. Measuring ability to assess claims about treatment effects: a latent trait analysis of the claim evaluation tools using Rasch modelling. BMJ Open [ forthcoming ].
  • ↵ Sandoval WA, Sodian B, Koerber S, Wong J. Developing children’s early competencies to engage with science . Educ Psychol 2014 ; 357 : 139 - 52 doi:10.1080/00461520.2014.917589 . OpenUrl
  • ↵ Pintrich PR. A motivational science perspective on the role of student motivation in learning and teaching contexts . J Educ Psychol 2003 ; 357 : 667 - 86 doi:10.1037/0022-0663.95.4.667 . OpenUrl
  • ↵ Clark DB, Tanner-Smith EE, Killingsworth SS. Digital games, design, and learning: a systematic review and meta-analysis . Rev Educ Res 2016 ; 357 : 79 - 122 . doi:10.3102/0034654315582065   pmid:26937054 . OpenUrl
  • ↵ Berkman ND, Sheridan SL, Donahue KE, Halpern DJ, Crotty K. Low health literacy and health outcomes: an updated systematic review . Ann Intern Med 2011 ; 357 : 97 - 107 . doi:10.7326/0003-4819-155-2-201107190-00005   pmid:21768583 . OpenUrl
  • ↵ Lundh A, Sismondo S, Lexchin J, Busuioc OA, Bero L. Industry sponsorship and research outcome. Cochrane Database Syst Rev 2012 ; 357 : MR000033 . pmid:23235689 . OpenUrl
  • ↵ Thistlethwaite J, Hammick M, The Best Evidence Medical Education (BEME) Collaboration: into the next decade. Med Teach 2010 ; 357 : 880 - 2 . doi:10.3109/0142159X.2010.519068   pmid:21039096 . OpenUrl
  • ↵ Centre for Evidence Based Medicine. Einstein—taking EBM to schools. http://www.cebm.net/taking-ebm-schools
  • ↵ Castle JC, Chalmers I, Atkinson P, et al. Establishing a library of resources to help people understand key concepts in assessing treatment claims—the Critical Thinking and Appraisal Resource Library (CARL). PLoS One forthcoming .

critical thinking health care

The Value of Critical Thinking in Nursing

Gayle Morris, BSN, MSN

  • How Nurses Use Critical Thinking
  • How to Improve Critical Thinking
  • Common Mistakes

Male nurse checking on a patient

Some experts describe a person’s ability to question belief systems, test previously held assumptions, and recognize ambiguity as evidence of critical thinking. Others identify specific skills that demonstrate critical thinking, such as the ability to identify problems and biases, infer and draw conclusions, and determine the relevance of information to a situation.

Nicholas McGowan, BSN, RN, CCRN, has been a critical care nurse for 10 years in neurological trauma nursing and cardiovascular and surgical intensive care. He defines critical thinking as “necessary for problem-solving and decision-making by healthcare providers. It is a process where people use a logical process to gather information and take purposeful action based on their evaluation.”

“This cognitive process is vital for excellent patient outcomes because it requires that nurses make clinical decisions utilizing a variety of different lenses, such as fairness, ethics, and evidence-based practice,” he says.

How Do Nurses Use Critical Thinking?

Successful nurses think beyond their assigned tasks to deliver excellent care for their patients. For example, a nurse might be tasked with changing a wound dressing, delivering medications, and monitoring vital signs during a shift. However, it requires critical thinking skills to understand how a difference in the wound may affect blood pressure and temperature and when those changes may require immediate medical intervention.

Nurses care for many patients during their shifts. Strong critical thinking skills are crucial when juggling various tasks so patient safety and care are not compromised.

Jenna Liphart Rhoads, Ph.D., RN, is a nurse educator with a clinical background in surgical-trauma adult critical care, where critical thinking and action were essential to the safety of her patients. She talks about examples of critical thinking in a healthcare environment, saying:

“Nurses must also critically think to determine which patient to see first, which medications to pass first, and the order in which to organize their day caring for patients. Patient conditions and environments are continually in flux, therefore nurses must constantly be evaluating and re-evaluating information they gather (assess) to keep their patients safe.”

The COVID-19 pandemic created hospital care situations where critical thinking was essential. It was expected of the nurses on the general floor and in intensive care units. Crystal Slaughter is an advanced practice nurse in the intensive care unit (ICU) and a nurse educator. She observed critical thinking throughout the pandemic as she watched intensive care nurses test the boundaries of previously held beliefs and master providing excellent care while preserving resources.

“Nurses are at the patient’s bedside and are often the first ones to detect issues. Then, the nurse needs to gather the appropriate subjective and objective data from the patient in order to frame a concise problem statement or question for the physician or advanced practice provider,” she explains.

Top 5 Ways Nurses Can Improve Critical Thinking Skills

We asked our experts for the top five strategies nurses can use to purposefully improve their critical thinking skills.

Case-Based Approach

Slaughter is a fan of the case-based approach to learning critical thinking skills.

In much the same way a detective would approach a mystery, she mentors her students to ask questions about the situation that help determine the information they have and the information they need. “What is going on? What information am I missing? Can I get that information? What does that information mean for the patient? How quickly do I need to act?”

Consider forming a group and working with a mentor who can guide you through case studies. This provides you with a learner-centered environment in which you can analyze data to reach conclusions and develop communication, analytical, and collaborative skills with your colleagues.

Practice Self-Reflection

Rhoads is an advocate for self-reflection. “Nurses should reflect upon what went well or did not go well in their workday and identify areas of improvement or situations in which they should have reached out for help.” Self-reflection is a form of personal analysis to observe and evaluate situations and how you responded.

This gives you the opportunity to discover mistakes you may have made and to establish new behavior patterns that may help you make better decisions. You likely already do this. For example, after a disagreement or contentious meeting, you may go over the conversation in your head and think about ways you could have responded.

It’s important to go through the decisions you made during your day and determine if you should have gotten more information before acting or if you could have asked better questions.

During self-reflection, you may try thinking about the problem in reverse. This may not give you an immediate answer, but can help you see the situation with fresh eyes and a new perspective. How would the outcome of the day be different if you planned the dressing change in reverse with the assumption you would find a wound infection? How does this information change your plan for the next dressing change?

Develop a Questioning Mind

McGowan has learned that “critical thinking is a self-driven process. It isn’t something that can simply be taught. Rather, it is something that you practice and cultivate with experience. To develop critical thinking skills, you have to be curious and inquisitive.”

To gain critical thinking skills, you must undergo a purposeful process of learning strategies and using them consistently so they become a habit. One of those strategies is developing a questioning mind. Meaningful questions lead to useful answers and are at the core of critical thinking .

However, learning to ask insightful questions is a skill you must develop. Faced with staff and nursing shortages , declining patient conditions, and a rising number of tasks to be completed, it may be difficult to do more than finish the task in front of you. Yet, questions drive active learning and train your brain to see the world differently and take nothing for granted.

It is easier to practice questioning in a non-stressful, quiet environment until it becomes a habit. Then, in the moment when your patient’s care depends on your ability to ask the right questions, you can be ready to rise to the occasion.

Practice Self-Awareness in the Moment

Critical thinking in nursing requires self-awareness and being present in the moment. During a hectic shift, it is easy to lose focus as you struggle to finish every task needed for your patients. Passing medication, changing dressings, and hanging intravenous lines all while trying to assess your patient’s mental and emotional status can affect your focus and how you manage stress as a nurse .

Staying present helps you to be proactive in your thinking and anticipate what might happen, such as bringing extra lubricant for a catheterization or extra gloves for a dressing change.

By staying present, you are also better able to practice active listening. This raises your assessment skills and gives you more information as a basis for your interventions and decisions.

Use a Process

As you are developing critical thinking skills, it can be helpful to use a process. For example:

  • Ask questions.
  • Gather information.
  • Implement a strategy.
  • Evaluate the results.
  • Consider another point of view.

These are the fundamental steps of the nursing process (assess, diagnose, plan, implement, evaluate). The last step will help you overcome one of the common problems of critical thinking in nursing — personal bias.

Common Critical Thinking Pitfalls in Nursing

Your brain uses a set of processes to make inferences about what’s happening around you. In some cases, your unreliable biases can lead you down the wrong path. McGowan places personal biases at the top of his list of common pitfalls to critical thinking in nursing.

“We all form biases based on our own experiences. However, nurses have to learn to separate their own biases from each patient encounter to avoid making false assumptions that may interfere with their care,” he says. Successful critical thinkers accept they have personal biases and learn to look out for them. Awareness of your biases is the first step to understanding if your personal bias is contributing to the wrong decision.

New nurses may be overwhelmed by the transition from academics to clinical practice, leading to a task-oriented mindset and a common new nurse mistake ; this conflicts with critical thinking skills.

“Consider a patient whose blood pressure is low but who also needs to take a blood pressure medication at a scheduled time. A task-oriented nurse may provide the medication without regard for the patient’s blood pressure because medication administration is a task that must be completed,” Slaughter says. “A nurse employing critical thinking skills would address the low blood pressure, review the patient’s blood pressure history and trends, and potentially call the physician to discuss whether medication should be withheld.”

Fear and pride may also stand in the way of developing critical thinking skills. Your belief system and worldview provide comfort and guidance, but this can impede your judgment when you are faced with an individual whose belief system or cultural practices are not the same as yours. Fear or pride may prevent you from pursuing a line of questioning that would benefit the patient. Nurses with strong critical thinking skills exhibit:

  • Learn from their mistakes and the mistakes of other nurses
  • Look forward to integrating changes that improve patient care
  • Treat each patient interaction as a part of a whole
  • Evaluate new events based on past knowledge and adjust decision-making as needed
  • Solve problems with their colleagues
  • Are self-confident
  • Acknowledge biases and seek to ensure these do not impact patient care

An Essential Skill for All Nurses

Critical thinking in nursing protects patient health and contributes to professional development and career advancement. Administrative and clinical nursing leaders are required to have strong critical thinking skills to be successful in their positions.

By using the strategies in this guide during your daily life and in your nursing role, you can intentionally improve your critical thinking abilities and be rewarded with better patient outcomes and potential career advancement.

Frequently Asked Questions About Critical Thinking in Nursing

How are critical thinking skills utilized in nursing practice.

Nursing practice utilizes critical thinking skills to provide the best care for patients. Often, the patient’s cause of pain or health issue is not immediately clear. Nursing professionals need to use their knowledge to determine what might be causing distress, collect vital information, and make quick decisions on how best to handle the situation.

How does nursing school develop critical thinking skills?

Nursing school gives students the knowledge professional nurses use to make important healthcare decisions for their patients. Students learn about diseases, anatomy, and physiology, and how to improve the patient’s overall well-being. Learners also participate in supervised clinical experiences, where they practice using their critical thinking skills to make decisions in professional settings.

Do only nurse managers use critical thinking?

Nurse managers certainly use critical thinking skills in their daily duties. But when working in a health setting, anyone giving care to patients uses their critical thinking skills. Everyone — including licensed practical nurses, registered nurses, and advanced nurse practitioners —needs to flex their critical thinking skills to make potentially life-saving decisions.

Meet Our Contributors

Portrait of Crystal Slaughter, DNP, APRN, ACNS-BC, CNE

Crystal Slaughter, DNP, APRN, ACNS-BC, CNE

Crystal Slaughter is a core faculty member in Walden University’s RN-to-BSN program. She has worked as an advanced practice registered nurse with an intensivist/pulmonary service to provide care to hospitalized ICU patients and in inpatient palliative care. Slaughter’s clinical interests lie in nursing education and evidence-based practice initiatives to promote improving patient care.

Portrait of Jenna Liphart Rhoads, Ph.D., RN

Jenna Liphart Rhoads, Ph.D., RN

Jenna Liphart Rhoads is a nurse educator and freelance author and editor. She earned a BSN from Saint Francis Medical Center College of Nursing and an MS in nursing education from Northern Illinois University. Rhoads earned a Ph.D. in education with a concentration in nursing education from Capella University where she researched the moderation effects of emotional intelligence on the relationship of stress and GPA in military veteran nursing students. Her clinical background includes surgical-trauma adult critical care, interventional radiology procedures, and conscious sedation in adult and pediatric populations.

Portrait of Nicholas McGowan, BSN, RN, CCRN

Nicholas McGowan, BSN, RN, CCRN

Nicholas McGowan is a critical care nurse with 10 years of experience in cardiovascular, surgical intensive care, and neurological trauma nursing. McGowan also has a background in education, leadership, and public speaking. He is an online learner who builds on his foundation of critical care nursing, which he uses directly at the bedside where he still practices. In addition, McGowan hosts an online course at Critical Care Academy where he helps nurses achieve critical care (CCRN) certification.

U.S. flag

An official website of the Department of Health & Human Services

  • Search All AHRQ Sites
  • Email Updates

Patient Safety Network

1. Use quotes to search for an exact match of a phrase.

2. Put a minus sign just before words you don't want.

3. Enter any important keywords in any order to find entries where all these terms appear.

  • The PSNet Collection
  • All Content
  • Perspectives
  • Current Weekly Issue
  • Past Weekly Issues
  • Curated Libraries
  • Clinical Areas
  • Patient Safety 101
  • The Fundamentals
  • Training and Education
  • Continuing Education
  • WebM&M: Case Studies
  • Training Catalog
  • Submit a Case
  • Improvement Resources
  • Innovations
  • Submit an Innovation
  • About PSNet
  • Editorial Team
  • Technical Expert Panel

Developing critical thinking skills for delivering optimal care

Scott IA, Hubbard RE, Crock C, et al. Developing critical thinking skills for delivering optimal care. Intern Med J. 2021;51(4):488-493. doi: 10.1111/imj.15272

Sound critical thinking skills can help clinicians avoid cognitive biases and diagnostic errors. This article describes three critical thinking skills essential to effective clinical care – clinical reasoning, evidence-informed decision-making, and systems thinking – and approaches to develop these skills during clinician training.

Medication use and cognitive impairment among residents of aged care facilities. June 23, 2021

COVID-19 pandemic and the tension between the need to act and the need to know. October 14, 2020

Countering cognitive biases in minimising low value care. June 7, 2017

Scoping review of studies evaluating frailty and its association with medication harm. June 22, 2022

Choosing wisely in clinical practice: embracing critical thinking, striving for safer care. April 6, 2022

An act of performance: exploring residents' decision-making processes to seek help. April 14, 2021

'More than words' - interpersonal communication, cognitive bias and diagnostic errors. August 11, 2021

Decreased incidence of cesarean surgical site infection rate with hospital-wide perioperative bundle. September 29, 2021

Patient harm from cardiovascular medications. August 25, 2021

Analysis of lawsuits related to diagnostic errors from point-of-care ultrasound in internal medicine, paediatrics, family medicine and critical care in the USA. June 24, 2020

Pharmacists reducing medication risk in medical outpatient clinics: a retrospective study of 18 clinics. March 8, 2023

Estimating the economic cost of nurse sensitive adverse events amongst patients in medical and surgical settings. June 16, 2021

Changes in unprofessional behaviour, teamwork, and co-operation among hospital staff during the COVID-19 pandemic. September 28, 2022

Nursing surveillance: a concept analysis May 18, 2022

Delays in diagnosis, treatment, and surgery: root causes, actions taken, and recommendations for healthcare improvement. June 1, 2022

Nurse's Achilles Heel: using big data to determine workload factors that impact near misses. April 14, 2021

Multiple meanings of resilience: health professionals' experiences of a dual element training intervention designed to help them prepare for coping with error. March 31, 2021

Exploring the impact of employee engagement and patient safety. September 14, 2022

Differential diagnosis checklists reduce diagnostic error differentially: a randomised experiment. January 26, 2022

Think twice: effects on diagnostic accuracy of returning to the case to reflect upon the initial diagnosis. September 23, 2020

Associations between healthcare environment design and adverse events in intensive care unit. May 26, 2021

Barriers to accessing nighttime supervisors: a national survey of internal medicine residents. March 17, 2021

Predicting avoidable hospital events in Maryland. December 1, 2021

Pediatric transport safety collaborative: adverse events with parental presence during pediatric critical care transport. November 10, 2021

An observational study of postoperative handoff standardization failures. June 23, 2021

A partially structured postoperative handoff protocol improves communication in 2 mixed surgical intensive care units: findings from the Handoffs and Transitions in Critical Care (HATRICC) prospective cohort study. February 6, 2019

Effect of the surgical safety checklist on provider and patient outcomes: a systematic review. April 27, 2022

Toward the development of the perfect medical team: critical components for adaptation. March 17, 2021

The gaps in specialists' diagnoses. April 11, 2018

Doctors charged with manslaughter in the course of medical practice, 1795-2005: a literature review. July 19, 2006

Transforming the medication regimen review process using telemedicine to prevent adverse events. December 16, 2020

Evaluating the relationship between health information technology and safer-prescribing in the long-term care setting: a systematic review. March 17, 2021

Strategies to prevent missed nursing care: an international qualitative study based upon a positive deviance approach. May 12, 2021

Filling a gap in safety metrics: development of a patient-centred framework to identify and categorise patient-reported breakdowns related to the diagnostic process in ambulatory care. October 27, 2021

The association between nurse staffing and omissions in nursing care: a systematic review. July 11, 2018

Developing a patient safety culture in primary dental care. June 16, 2021

Impact of unacceptable behaviour between healthcare workers on clinical performance and patient outcomes: a systematic review. February 16, 2022

Standardized assessment of medication reconciliation in post-acute care. April 27, 2022

Cognitive biases in surgery: systematic review. March 1, 2023

Reducing failure to rescue rates in a paediatric in-patient setting: a 9-year quality improvement study. November 24, 2021

Diagnostic errors in hospitalized adults who died or were transferred to intensive care. January 17, 2024

Interprofessional and intraprofessional communication about older people's medications across transitions of care. May 26, 2021

Missed nursing care during the COVID-19 pandemic: a comparative observational study. July 21, 2021

Impact of interoperability of smart infusion pumps and an electronic medical record in critical care. September 23, 2020

Evaluation of a second victim peer support program on perceptions of second victim experiences and supportive resources in pediatric clinical specialties using the second victim experience and support tool (SVEST). November 3, 2021

Understanding the second victim experience among multidisciplinary providers in obstetrics and gynecology. May 19, 2021

Association between limiting the number of open records in a tele-critical care setting and retract-reorder errors. July 21, 2021

Care coordination strategies and barriers during medication safety incidents: a qualitative, cognitive task analysis. March 10, 2021

Optimising the delivery of remediation programmes for doctors: a realist review. June 2, 2021

Safety competency: exploring the impact of environmental and personal factors on the nurse's ability to deliver safe care. October 19, 2022

Risk assessment of the acute stroke diagnostic process using failure modes, effects, and criticality analysis. March 1, 2023

Encouraging patients to speak up about problems in cancer care. January 12, 2022

Treatment patterns and clinical outcomes after the introduction of the Medicare Sepsis Performance Measure (SEP-1). May 5, 2021

Patient perceptions of safety in primary care: a qualitative study to inform care. October 13, 2021

Staffing, teamwork and scope of practice: analysis of the association with patient safety in the context of rehabilitation. December 15, 2021

Use of heuristics during the clinical decision process from family care physicians in real conditions. October 6, 2021

Clinical and economic impacts of explicit tools detecting prescribing errors: a systematic review. May 26, 2021

Diagnostic errors in pediatric critical care: a systematic review. April 28, 2021

Emergency departments are higher-risk locations for wrong blood in tube errors. September 29, 2021

TRIAD IX: can a patient testimonial safely help ensure prehospital appropriate critical versus end-of-life care? September 15, 2021

Survey of nurses' experiences applying The Joint Commission's medication management titration standards. November 3, 2021

Clinical predictors for unsafe direct discharge home patients from intensive care units. October 21, 2020

A diagnostic time-out to improve differential diagnosis in pediatric abdominal pain. July 14, 2021

How providers can optimize effective and safe scribe use: a qualitative study. February 1, 2023

Estimation of breast cancer overdiagnosis in a U.S. breast screening cohort. March 16, 2022

Second victim experiences of nurses in obstetrics and gynaecology: a Second Victim Experience and Support Tool Survey December 23, 2020

Improving patient safety in intensive care units in Michigan. June 25, 2008

Perceived patient safety culture in a critical care transport program. July 31, 2013

The impact of health information management professionals on patient safety: a systematic review. December 22, 2021

Developing and aligning a safety event taxonomy for inpatient psychiatry. July 13, 2022

Opioids and falls risk in older adults: a narrative review. May 25, 2022

COVID-19: patient safety and quality improvement skills to deploy during the surge. June 24, 2020

Scoping review of patients' attitudes about their role and behaviours to ensure safe care at the direct care level. August 26, 2020

Mitigating imperfect data validity in administrative data PSIs: a method for estimating true adverse event rates. March 3, 2021

Can patients contribute to enhancing the safety and effectiveness of test-result follow-up? Qualitative outcomes from a health consumer workshop. June 2, 2021

Specificity of computerized physician order entry has a significant effect on the efficiency of workflow for critically ill patients. April 21, 2005

Improving patient care. The cognitive psychology of missed diagnoses. April 21, 2005

Quality of life after maternal near miss: a systematic review. June 2, 2021

Missed nursing care in the critical care unit, before and during the COVID-19 pandemic: a comparative cross-sectional study. June 22, 2022

Accuracy of practitioner estimates of probability of diagnosis before and after testing. May 5, 2021

The July Effect in podiatric medicine and surgery residency. July 14, 2021

Medication reconciliation at hospital discharge: a qualitative exploration of acute care nurses' perceptions of their roles and responsibilities. March 23, 2022

"Good catch, Kiddo"--enhancing patient safety in the pediatric emergency department through simulation. December 9, 2020

How can never event data be used to reflect or improve hospital safety performance? May 19, 2021

Healthcare professionals' encounters with ethnic minority patients: the critical incident approach. June 16, 2021

Medication errors' causes analysis in home care setting: a systematic review. February 9, 2022

Development of a core drug list towards improving prescribing education and reducing errors in the UK. March 2, 2011

What does safety in mental healthcare transitions mean for service users and other stakeholder groups: an open-ended questionnaire study. March 3, 2021

'Doing the best we can': Registered nurses' experiences and perceptions of patient safety in intensive care during COVID-19. September 7, 2022

The critical role of health information technology in the safe integration of behavioral health and primary care to improve patient care. November 10, 2021

The influence of COVID-19 visitation restrictions on patient experience and safety outcomes: a critical role for subjective advocates. July 14, 2021

Development of a multicomponent intervention to decrease racial bias among healthcare staff. July 27, 2022

Prescribing decision making by medical residents on night shifts: a qualitative study. November 9, 2022

Pharmacist-led program to improve transitions from acute care to skilled nursing facility care. July 8, 2020

Perceptions of providing safe care for frail older people at home: a qualitative study based on focus group interviews with home care staff. November 10, 2021

Peer support by interprofessional health care providers in aftermath of patient safety incidents: a cross-sectional study. June 9, 2021

The safety of inpatient health care. January 25, 2023

Provider-patient communication and hospital ratings: perceived gaps and forward thinking about the effects of COVID-19. December 16, 2020

Characteristics of critical incident reporting systems in primary care: an international survey. January 19, 2022

The MedSafer study-electronic decision support for deprescribing in hospitalized older adults: a cluster randomized clinical trial. February 2, 2022

All in Her Head. The Truth and Lies Early Medicine Taught Us About Women's Bodies and Why It Matters Today. March 20, 2024

The racial disparities in maternal mortality and impact of structural racism and implicit racial bias on pregnant Black women: a review of the literature. December 6, 2023

A scoping review exploring the confidence of healthcare professionals in assessing all skin tones. October 4, 2023

Patient safety in palliative care at the end of life from the perspective of complex thinking. August 16, 2023

Only 1 in 5 people with opioid addiction get the medications to treat it, study finds. August 16, 2023

Factors influencing in-hospital prescribing errors: a systematic review. July 19, 2023

Introducing second-year medical students to diagnostic reasoning concepts and skills via a virtual curriculum. June 28, 2023

Context matters: toward a multilevel perspective on context in clinical reasoning and error. June 21, 2023

The good, the bad, and the ugly: operative staff perspectives of surgeon coping with intraoperative errors. June 14, 2023

Explicitly addressing implicit bias on inpatient rounds: student and faculty reflections. June 7, 2023

The time is now: addressing implicit bias in obstetrics and gynecology education. May 17, 2023

Listen to the whispers before they become screams: addressing Black maternal morbidity and mortality in the United States. May 3, 2023

Annual Perspective

Formalizing the hidden curriculum of performance enhancing errors. March 22, 2023

Implicit racial bias, health care provider attitudes, and perceptions of health care quality among African American college students in Georgia, USA. January 18, 2023

Structural racism and impact on sickle cell disease: sickle cell lives matter. January 11, 2023

The REPAIR Project: a prospectus for change toward racial justice in medical education and health sciences research: REPAIR project steering committee. January 11, 2023

Using the Assessment of Reasoning Tool to facilitate feedback about diagnostic reasoning. January 11, 2023

Exploring the intersection of structural racism and ageism in healthcare. December 7, 2022

Calibrate Dx: A Resource to Improve Diagnostic Decisions. October 19, 2022

Improved Diagnostic Accuracy Through Probability-Based Diagnosis. September 28, 2022

Medical malpractice lawsuits involving trainees in obstetrics and gynecology in the USA. September 21, 2022

Skin cancer is a risk no matter the skin tone. But it may be overlooked in people with dark skin. August 17, 2022

Narrowing the mindware gap in medicine. July 20, 2022

From principles to practice: embedding clinical reasoning as a longitudinal curriculum theme in a medical school programme. June 15, 2022

A call to action: next steps to advance diagnosis education in the health professions. June 8, 2022

Does a suggested diagnosis in a general practitioners' referral question impact diagnostic reasoning: an experimental study. April 27, 2022

WebM&M Cases

Analysis of the interprofessional clinical learning environment for quality improvement and patient safety from perspectives of interprofessional teams. March 16, 2022

Patient Safety Network

Connect With Us

LinkedIn

Sign up for Email Updates

To sign up for updates or to access your subscriber preferences, please enter your email address below.

Agency for Healthcare Research and Quality

5600 Fishers Lane Rockville, MD 20857 Telephone: (301) 427-1364

  • Accessibility
  • Disclaimers
  • Electronic Policies
  • HHS Digital Strategy
  • HHS Nondiscrimination Notice
  • Inspector General
  • Plain Writing Act
  • Privacy Policy
  • Viewers & Players
  • U.S. Department of Health & Human Services
  • The White House
  • Don't have an account? Sign up to PSNet

Submit Your Innovations

Please select your preferred way to submit an innovation.

Continue as a Guest

Track and save your innovation

in My Innovations

Edit your innovation as a draft

Continue Logged In

Please select your preferred way to submit an innovation. Note that even if you have an account, you can still choose to submit an innovation as a guest.

Continue logged in

New users to the psnet site.

Access to quizzes and start earning

CME, CEU, or Trainee Certification.

Get email alerts when new content

matching your topics of interest

in My Innovations.

You are using an outdated browser

Unfortunately Ausmed.com does not support your browser. Please upgrade your browser to continue.

Cultivating Critical Thinking in Healthcare

Published: 06 January 2019

critical thinking health care

Critical thinking skills have been linked to improved patient outcomes, better quality patient care and improved safety outcomes in healthcare (Jacob et al. 2017).

Given this, it's necessary for educators in healthcare to stimulate and lead further dialogue about how these skills are taught , assessed and integrated into the design and development of staff and nurse education and training programs (Papp et al. 2014).

So, what exactly is critical thinking and how can healthcare educators cultivate it amongst their staff?

What is Critical Thinking?

In general terms, ‘ critical thinking ’ is often used, and perhaps confused, with problem-solving and clinical decision-making skills .

In practice, however, problem-solving tends to focus on the identification and resolution of a problem, whilst critical thinking goes beyond this to incorporate asking skilled questions and critiquing solutions .

Several formal definitions of critical thinking can be found in literature, but in the view of Kahlke and Eva (2018), most of these definitions have limitations. That said, Papp et al. (2014) offer a useful starting point, suggesting that critical thinking is:

‘The ability to apply higher order cognitive skills and the disposition to be deliberate about thinking that leads to action that is logical and appropriate.’

The Foundation for Critical Thinking (2017) expands on this and suggests that:

‘Critical thinking is that mode of thinking, about any subject, content, or problem, in which the thinker improves the quality of his or her thinking by skillfully analysing, assessing, and reconstructing it.’

They go on to suggest that critical thinking is:

  • Self-directed
  • Self-disciplined
  • Self-monitored
  • Self-corrective.

Critical Thinking in Healthcare nurses having discussion

Key Qualities and Characteristics of a Critical Thinker

Given that critical thinking is a process that encompasses conceptualisation , application , analysis , synthesis , evaluation and reflection , what qualities should be expected from a critical thinker?

In answering this question, Fortepiani (2018) suggests that critical thinkers should be able to:

  • Formulate clear and precise questions
  • Gather, assess and interpret relevant information
  • Reach relevant well-reasoned conclusions and solutions
  • Think open-mindedly, recognising their own assumptions
  • Communicate effectively with others on solutions to complex problems.

All of these qualities are important, however, good communication skills are generally considered to be the bedrock of critical thinking. Why? Because they help to create a dialogue that invites questions, reflections and an open-minded approach, as well as generating a positive learning environment needed to support all forms of communication.

Lippincott Solutions (2018) outlines a broad spectrum of characteristics attributed to strong critical thinkers. They include:

  • Inquisitiveness with regard to a wide range of issues
  • A concern to become and remain well-informed
  • Alertness to opportunities to use critical thinking
  • Self-confidence in one’s own abilities to reason
  • Open mindedness regarding divergent world views
  • Flexibility in considering alternatives and opinions
  • Understanding the opinions of other people
  • Fair-mindedness in appraising reasoning
  • Honesty in facing one’s own biases, prejudices, stereotypes or egocentric tendencies
  • A willingness to reconsider and revise views where honest reflection suggests that change is warranted.

Papp et al. (2014) also helpfully suggest that the following five milestones can be used as a guide to help develop competency in critical thinking:

Stage 1: Unreflective Thinker

At this stage, the unreflective thinker can’t examine their own actions and cognitive processes and is unaware of different approaches to thinking.

Stage 2: Beginning Critical Thinker

Here, the learner begins to think critically and starts to recognise cognitive differences in other people. However, external motivation  is needed to sustain reflection on the learners’ own thought processes.

Stage 3: Practicing Critical Thinker

By now, the learner is familiar with their own thinking processes and makes a conscious effort to practice critical thinking.

Stage 4: Advanced Critical Thinker

As an advanced critical thinker, the learner is able to identify different cognitive processes and consciously uses critical thinking skills.

Stage 5: Accomplished Critical Thinker

At this stage, the skilled critical thinker can take charge of their thinking and habitually monitors, revises and rethinks approaches for continual improvement of their cognitive strategies.

Facilitating Critical Thinking in Healthcare

A common challenge for many educators and facilitators in healthcare is encouraging students to move away from passive learning towards active learning situations that require critical thinking skills.

Just as there are similarities among the definitions of critical thinking across subject areas and levels, there are also several generally recognised hallmarks of teaching for critical thinking . These include:

  • Promoting interaction among students as they learn
  • Asking open ended questions that do not assume one right answer
  • Allowing sufficient time to reflect on the questions asked or problems posed
  • Teaching for transfer - helping learners to see how a newly acquired skill can apply to other situations and experiences.

(Lippincott Solutions 2018)

Snyder and Snyder (2008) also make the point that it’s helpful for educators and facilitators to be aware of any initial resistance that learners may have and try to guide them through the process. They should aim to create a learning environment where learners can feel comfortable thinking through an answer rather than simply having an answer given to them.

Examples include using peer coaching techniques , mentoring or preceptorship to engage students in active learning and critical thinking skills, or integrating project-based learning activities that require students to apply their knowledge in a realistic healthcare environment.

Carvalhoa et al. (2017) also advocate problem-based learning as a widely used and successful way of stimulating critical thinking skills in the learner. This view is echoed by Tsui-Mei (2015), who notes that critical thinking, systematic analysis and curiosity significantly improve after practice-based learning .

Integrating Critical Thinking Skills Into Curriculum Design

Most educators agree that critical thinking can’t easily be developed if the program curriculum is not designed to support it. This means that a deep understanding of the nature and value of critical thinking skills needs to be present from the outset of the curriculum design process , and not just bolted on as an afterthought.

In the view of Fortepiani (2018), critical thinking skills can be summarised by the statement that 'thinking is driven by questions', which means that teaching materials need to be designed in such a way as to encourage students to expand their learning by asking questions that generate further questions and stimulate the thinking process. Ideal questions are those that:

  • Embrace complexity
  • Challenge assumptions and points of view
  • Question the source of information
  • Explore variable interpretations and potential implications of information.

To put it another way, asking questions with limiting, thought-stopping answers inhibits the development of critical thinking. This means that educators must ideally be critical thinkers themselves .

Drawing these threads together, The Foundation for Critical Thinking (2017) offers us a simple reminder that even though it’s human nature to be ‘thinking’ most of the time, most thoughts, if not guided and structured, tend to be biased, distorted, partial, uninformed or even prejudiced.

They also note that the quality of work depends precisely on the quality of the practitioners’ thought processes. Given that practitioners are being asked to meet the challenge of ever more complex care, the importance of cultivating critical thinking skills, alongside advanced problem-solving skills , seems to be taking on new importance.

Additional Resources

  • The Emotionally Intelligent Nurse | Ausmed Article
  • Refining Competency-Based Assessment | Ausmed Article
  • Socratic Questioning in Healthcare | Ausmed Article
  • Carvalhoa, D P S R P et al. 2017, 'Strategies Used for the Promotion of Critical Thinking in Nursing Undergraduate Education: A Systematic Review', Nurse Education Today , vol. 57, pp. 103-10, viewed 7 December 2018, https://www.sciencedirect.com/science/article/abs/pii/S0260691717301715
  • Fortepiani, L A 2017, 'Critical Thinking or Traditional Teaching For Health Professionals', PECOP Blog , 16 January, viewed 7 December 2018, https://blog.lifescitrc.org/pecop/2017/01/16/critical-thinking-or-traditional-teaching-for-health-professions/
  • Jacob, E, Duffield, C & Jacob, D 2017, 'A Protocol For the Development of a Critical Thinking Assessment Tool for Nurses Using a Delphi Technique', Journal of Advanced Nursing, vol. 73, no. 8, pp. 1982-1988, viewed 7 December 2018, https://onlinelibrary.wiley.com/doi/10.1111/jan.13306
  • Kahlke, R & Eva, K 2018, 'Constructing Critical Thinking in Health Professional Education', Perspectives on Medical Education , vol. 7, no. 3, pp. 156-165, viewed 7 December 2018, https://link.springer.com/article/10.1007/s40037-018-0415-z
  • Lippincott Solutions 2018, 'Turning New Nurses Into Critical Thinkers', Lippincott Solutions , viewed 10 December 2018, https://www.wolterskluwer.com/en/expert-insights/turning-new-nurses-into-critical-thinkers
  • Papp, K K 2014, 'Milestones of Critical Thinking: A Developmental Model for Medicine and Nursing', Academic Medicine , vol. 89, no. 5, pp. 715-720, https://journals.lww.com/academicmedicine/Fulltext/2014/05000/Milestones_of_Critical_Thinking___A_Developmental.14.aspx
  • Snyder, L G & Snyder, M J 2008, 'Teaching Critical Thinking and Problem Solving Skills', The Delta Pi Epsilon Journal , vol. L, no. 2, pp. 90-99, viewed 7 December 2018, https://dme.childrenshospital.org/wp-content/uploads/2019/02/Optional-_Teaching-Critical-Thinking-and-Problem-Solving-Skills.pdf
  • The Foundation for Critical Thinking 2017, Defining Critical Thinking , The Foundation for Critical Thinking, viewed 7 December 2018, https://www.criticalthinking.org/pages/our-conception-of-critical-thinking/411
  • Tsui-Mei, H, Lee-Chun, H & Chen-Ju MSN, K 2015, 'How Mental Health Nurses Improve Their Critical Thinking Through Problem-Based Learning', Journal for Nurses in Professional Development , vol. 31, no. 3, pp. 170-175, viewed 7 December 2018, https://journals.lww.com/jnsdonline/Abstract/2015/05000/How_Mental_Health_Nurses_Improve_Their_Critical.8.aspx

educator profile image

Anne Watkins View profile

Help and feedback, publications.

Ausmed Education is a Trusted Information Partner of Healthdirect Australia. Verify here .

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Nursing and Health Care

An introduction to critical thinking concepts and tools.

critical thinking health care

  • Critical Thinking and Nursing
  • Becoming a Critic Of Your Thinking
  • Learning the Elements and Standards of Critical Thinking
  • Glossary of Critical Thinking Terms
  • Universal Intellectual Standards
  • Distinguishing Between Inferences and Assumptions
  • Using Intellectual Standards to Assess Student Reasoning
  • Valuable Intellectual Traits
  • Thinking With Concepts
  • Critical Thinking in Every Domain of Knowledge and Belief
  • Critical Thinking Development: A Stage Theory
  • Critical Thinking: Identifying the Targets
  • The Analysis & Assessment of Thinking
  • The Role of Questions in Teaching, Thinking and Learning
  • Distinguishing Between Inert Information, Activated Ignorance, Activated Knowledge

Stop COVID Cohort: An Observational Study of 3480 Patients Admitted to the Sechenov University Hospital Network in Moscow City for Suspected Coronavirus Disease 2019 (COVID-19) Infection

Collaborators.

  • Sechenov StopCOVID Research Team : Anna Berbenyuk ,  Polina Bobkova ,  Semyon Bordyugov ,  Aleksandra Borisenko ,  Ekaterina Bugaiskaya ,  Olesya Druzhkova ,  Dmitry Eliseev ,  Yasmin El-Taravi ,  Natalia Gorbova ,  Elizaveta Gribaleva ,  Rina Grigoryan ,  Shabnam Ibragimova ,  Khadizhat Kabieva ,  Alena Khrapkova ,  Natalia Kogut ,  Karina Kovygina ,  Margaret Kvaratskheliya ,  Maria Lobova ,  Anna Lunicheva ,  Anastasia Maystrenko ,  Daria Nikolaeva ,  Anna Pavlenko ,  Olga Perekosova ,  Olga Romanova ,  Olga Sokova ,  Veronika Solovieva ,  Olga Spasskaya ,  Ekaterina Spiridonova ,  Olga Sukhodolskaya ,  Shakir Suleimanov ,  Nailya Urmantaeva ,  Olga Usalka ,  Margarita Zaikina ,  Anastasia Zorina ,  Nadezhda Khitrina

Affiliations

  • 1 Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
  • 2 Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.
  • 3 Soloviev Research and Clinical Center for Neuropsychiatry, Moscow, Russia.
  • 4 School of Physics, Astronomy, and Mathematics, University of Hertfordshire, Hatfield, United Kingdom.
  • 5 Biobank, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
  • 6 Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
  • 7 Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
  • 8 Department of Polymers and Composites, N. N. Semenov Institute of Chemical Physics, Moscow, Russia.
  • 9 Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy.
  • 10 Institute of Social Medicine and Health Systems Research, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
  • 11 Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
  • 12 Department of Intensive Care, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
  • 13 Clinic of Pulmonology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
  • 14 Department of Internal Medicine No. 1, Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
  • 15 Department of Forensic Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
  • 16 Department of Statistics, University of Oxford, Oxford, United Kingdom.
  • 17 Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
  • 18 Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
  • 19 Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.
  • 20 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
  • PMID: 33035307
  • PMCID: PMC7665333
  • DOI: 10.1093/cid/ciaa1535

Background: The epidemiology, clinical course, and outcomes of patients with coronavirus disease 2019 (COVID-19) in the Russian population are unknown. Information on the differences between laboratory-confirmed and clinically diagnosed COVID-19 in real-life settings is lacking.

Methods: We extracted data from the medical records of adult patients who were consecutively admitted for suspected COVID-19 infection in Moscow between 8 April and 28 May 2020.

Results: Of the 4261 patients hospitalized for suspected COVID-19, outcomes were available for 3480 patients (median age, 56 years; interquartile range, 45-66). The most common comorbidities were hypertension, obesity, chronic cardiovascular disease, and diabetes. Half of the patients (n = 1728) had a positive reverse transcriptase-polymerase chain reaction (RT-PCR), while 1748 had a negative RT-PCR but had clinical symptoms and characteristic computed tomography signs suggestive of COVID-19. No significant differences in frequency of symptoms, laboratory test results, and risk factors for in-hospital mortality were found between those exclusively clinically diagnosed or with positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR. In a multivariable logistic regression model the following were associated with in-hospital mortality: older age (per 1-year increase; odds ratio, 1.05; 95% confidence interval, 1.03-1.06), male sex (1.71; 1.24-2.37), chronic kidney disease (2.99; 1.89-4.64), diabetes (2.1; 1.46-2.99), chronic cardiovascular disease (1.78; 1.24-2.57), and dementia (2.73; 1.34-5.47).

Conclusions: Age, male sex, and chronic comorbidities were risk factors for in-hospital mortality. The combination of clinical features was sufficient to diagnose COVID-19 infection, indicating that laboratory testing is not critical in real-life clinical practice.

Keywords: COVID-19; Russia; SARS-CoV-2; cohort; mortality risk factors.

© The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: [email protected].

Publication types

  • Observational Study
  • Research Support, Non-U.S. Gov't
  • Hospitalization
  • Middle Aged

Grants and funding

  • 20-04-60063/Russian Foundation for Basic Research

FREE SHIPPING on ALL Training Supplies! Use Coupon Code SHIP0124 at checkout! Shop Now >

New 2024 Lifeguarding Program Materials are Here! Buy More, Save More with quantity discounts available! Shop Now >

The 2024 Red Cross Lifeguarding Program updates are here! Learn more >

Please Expect Shipping Delays this Holiday Season Learn More >

American Red Cross Training Services

  • 0 Your Cart is Empty < Continue Shopping

Your browser's Javascript functionality is turned off. Please turn it on so that you can experience the full capabilities of this site.

Advanced Life Support Review r.21

The Advanced Life Support (ALS) provides healthcare providers the knowledge and skills necessary to assess recognize and care for adult patients experiencing life threatening medical emergencies. Consistent with the American Red Cross Focused Updates and Guidelines 2020 the ALS course emphasizes providing high-quality care and integrating psychomotor skills with critical thinking and problem solving to achieve the best possible patient outcomes. This is an attenuated review course.

Equipment Terms & Conditions

Local classes held at convenient locations and times Participate in hands-on training Provides full certification Learn from experienced instructors

Class Online

Classroom / Skills Check

  • Local in-person training
  • Learn from experienced instructors
  • Convenient locations and times for instructor-led skills check
  • Satisfies OSHA workplace safety certification requirements

Certification

Red Cross courses offer Digital Certification, an online version of a Red Cross certificate, which provides anytime, anywhere access to student training history and course certificates. Digital certificates can be viewed, printed or shared online and can be accessed anytime through your Red Cross Account. Each certificate includes a unique ID and a QR code which meets employment requirements and allows employers to easily confirm your certificate is valid. There is no need to carry your printed certificate around anymore!

Once training has been successfully completed, students may also request healthcare continuing education credit. The American Red Cross is an accredited provider of continuing education by the Commission on Accreditation for Prehospital Continuing Education. For additional information on receiving continuing education credit go to www.redcross.org/CAPCE .

It is incumbent upon the healthcare professional to verify that the accredited continuing education credit provided by the American Red Cross meets the requirements of specific professional and licensing bodies.

CAPCE logo

The content of these reviews regarding the quality and value of this course is based on data collected across all American Red Cross classes with this title and does not reflect ratings of any specific instructor or provider.

critical thinking health care

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Med Sci Monit
  • v.17(1); 2011

Logo of medscimon

Evidence and its uses in health care and research: The role of critical thinking

Milos jenicek.

1 Department of Clinical Epidemiology & Biostatistics, Michael G. de Groote School of Medicine, McMaster University, Hamilton, Ontario, Canada

Pat Croskerry

2 Department of Emergency Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada

David L. Hitchcock

3 David L. Hitchcock, Department of Philosophy, Faculty of Humanities, McMaster University, Hamilton, Ontario, Canada

Obtaining and critically appraising evidence is clearly not enough to make better decisions in clinical care. The evidence should be linked to the clinician’s expertise, the patient’s individual circumstances (including values and preferences), and clinical context and settings. We propose critical thinking and decision-making as the tools for making that link.

Critical thinking is also called for in medical research and medical writing, especially where pre-canned methodologies are not enough. It is also involved in our exchanges of ideas at floor rounds, grand rounds and case discussions; our communications with patients and lay stakeholders in health care; and our writing of research papers, grant applications and grant reviews.

Critical thinking is a learned process which benefits from teaching and guided practice like any discipline in health sciences. Training in critical thinking should be a part or a pre-requisite of the medical curriculum.

Sackett et al. originally defined evidence based medicine (EBM) as ‘… the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients’, and its integration with individual clinical expertise [ 1 ].’ In the nearly two decades that have intervened, there has been significant uptake of the idea that clinical care should be based upon sound, systematically researched evidence. There has been less emphasis on how clinical expertise itself might be improved, perhaps because the concept is more amorphous and difficult to define.

Clinical expertise is an amalgam of several things: there must be a solid knowledge base, some considerable clinical experience, and an ability to think, reason, and decide in a competent and well-calibrated fashion. Our focus here is on this last component: the faculties of thinking, reasoning and decision making. Clinicians must be able to integrate the best available critically appraised evidence with insights into their patients, the clinical context, and themselves [ 2 ]. To accomplish this integration, physicians need to develop their critical thinking skills. Yet historically this need has not received explicit attention in medical training. We believe that it should.

As an illustration of the use of critical thinking in clinical care, consider the following clinical scenario from emergency medicine : A 52-year-old male presents to the emergency department of a community centre with a complaint of constipation and is triaged with a low level acuity score to a ‘minors’ area. The department is extremely busy and several hours elapse before he is seen by the emergency physician. His principal complaint is constipation; he hasn’t had a bowel movement for 4 days. His abdomen is soft and non-tender. A large amount of firm stool is evident on rectal examination. He recalls a minor back strain a few days earlier. The physician orders a soapsuds enema and continues seeing other patients. After about 30 minutes he finds the nurse who administered the enema; she reports that it was ineffective. He orders a fleet enema which again proves ineffective. The nurse expresses her opinion that the patient is taking up too much time and suggests he be given an oral laxative and another fleet enema to take home with him. She is clearly unwilling to continue investing her effort in a patient with a trivial complaint. Nevertheless, the physician decides to administer a third enema himself. The third enema is only marginally effective and he then decides to disimpact the patient. The physician notes poor rectal tone and enquires further about the patient’s urination. He says he has been unable to urinate that day. On catheterisation he is found to have 1200cc. Neurological findings are equivocal: reflexes are present in both legs and there is some subjective diminished sensation.

A diagnosis of cauda equina syndrome is made and the emergency physician calls the neurosurgery service at a tertiary care hospital. It is now late in the evening. The neurosurgeon is reluctant to accept the working diagnosis. He suggests that the loss of sphincter tone might be due to the disimpaction, and argues that there was no significant history of back injury or convincing neurological findings. When the ED physician persists, the neurosurgeon suggests transferring the patient to the tertiary hospital ED for further evaluation and asks for a CT investigation of the patient’s lower spine before seeing him. The CT reveals only some minor abnormalities and the patient is kept overnight. An MRI is done in the morning. It shows extensive disc herniation with compression of nerve roots. The patient subsequently undergoes prolonged back surgery.

This case had a good outcome, although things might have been dramatically different. The patient might have suffered permanent neurological injury requiring lifelong catheterisation for urination.

Our scenario illustrates some key points about clinical decision making. At the outset, the patient presents with an apparently benign condition – constipation. The impression of a benign condition is incorporated at triage and results in a low-level acuity score and prolonged wait. The patient’s nurse also incorporates this diagnosis and exerts coercive pressure on the physician to discharge the patient. The neurosurgeon is dismissive of a physician’s assessment in a community centre ED, creating considerable inertia against referral. Thus the ED physician faces a variety of obstacles to ensure optimal patient care. These have little to do with EBM. He must resist and overcome a variety of cognitive, affective and systemic biases, his own as well as others’, and various contextual constraints. He must continue to think critically and persist in a course that has become increasingly challenging.

Our scenario also illustrates some key points about critical thinking. The initial impression of a benign condition of constipation is not the only diagnosis compatible with the patient’s symptoms. A health care professional reaching a preliminary diagnosis must be aware of the danger of fixing prematurely on this diagnosis and ignoring (or failing to look for) subsequent evidence that tells against it, as the nurse in our scenario was inclined to do. Observational and textual studies both indicate that the most common source of errors in reasoning is to close prematurely on a favoured conclusion and then ignore evidence that argues against that conclusion [ 3 ]. It is also important to keep in mind that a patient’s signs or symptoms may have more than one cause. Data that may confirm one of the causes does not necessarily rule out all the others. Attentive listening to the patient and careful looking in the data-gathering stage are essential to good medical practice, as Groopman has recently pointed out [ 4 ]. From a logical point of view, the physician’s diagnostic task is to gather data that will determine which one (or ones) of the possible causes is (or are) responsible for the patient’s problem. This goal will guide the selection of data and of additional tests. ‘Parallel’ or ‘lateral’ thinking [ 5 ] will help with the differential diagnosis.

Critical Thinking

Dewey’s original conceptualization [ 6 ] of what he called “reflective thinking” has spawned in the intervening century a variety of definitions of critical thinking, most notably that of Ennis as “ reasonable reflective thinking that is focused on deciding what to believe or what to do” [ 7 ] . Scriven and Paul have elaborated this definition as “… the intellectually disciplined process of actively and skilfully conceptualizing, applying, synthesizing or evaluating information gathered from, or generated by observation, experience, reflection, reasoning, or communication as a guide to belief or action ” [ 8 ].

The consensus of 48 specialists in critical thinking from the fields of education, philosophy and psychology was that it should be defined as ‘ purposeful self-regulatory judgment which results in interpretation, analysis, evaluation and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations upon which that judgement is based ’ [ 9 ]. The list of additional definitions remains impressive [ 10 , 11 ].

Even more useful than these definitions are various lists of dispositions and skills characteristic of a “critical thinker” [ 7 , 9 , 12 ]. More useful still are criteria and standards for measuring possession of those skills and dispositions [ 13 ], criteria that have been used to develop standardized tests of critical thinking skills and dispositions [ 14 – 17 ] including some with specific reference to health sciences [ 18 ].

The elements of critical thinking subsume what has variously been described as clinical judgment [ 19 ] , logic of medicine [ 20 , 21 ] , logic in medicine [ 22 ] , philosophy of medicine [ 23 ] , causal inference [ 24 ] , medical decision making [ 25 ], clinical decision making [ 26 ], clinical decision analysis [ 27 ], and clinical reasoning [ 28 ]. An increasing number of monographs on logic and critical thinking in general have appeared [ 29 – 34 ] and their content is being adapted for medicine [ 35 – 37 ].

Everyday medical practice, whether in physicians’ offices or emergency departments or hospital wards, clearly involves “ reasonable reflective thinking that is focused on deciding what to believe (meaning the understanding of the problem) and/or what to do (i.e. deciding what to do to solve the problem)” [ 7 , 38 ]. Table 1 lists specific abilities underlying critical thinking in medical practice.

Specific abilities underlying critical thinking in medical practice.

Critical thinking is also called for in medical research and medical writing. Editors of leading medical journals have called for it. Edward Huth [ 39 , 40 ], former editor of Annals of Internal Medicine, has urged that medical articles reflect better and more organized ways of reasoning. Richard Horton [ 41 , 42 ], former editor of The Lancet , has proposed the use in medical writing of a contemporary approach to argument along the lines used by the philosopher Toulmin [ 40 , 41 ]. Subsequently, two of us have developed this approach in detail for medicine [ 43 , 44 ]. Dickinson [ 45 ] has called for an argumentative approach in medical problem solving and brought it to the attention to the world of medical informatics and beyond.

Dual Process Theory

An important component of critical thinking is being aware of one’s own thinking processes. In recent years, two general modes of thinking have been described under an approach described as dual process theory. The model is universal and has been directly applied to medicine [ 46 – 48 ] and nursing [ 49 ]. One mode is fast, reflexive, autonomous, and generally referred to as intuitive or System 1 thinking. The other is slow, deliberate, rule-based, and referred to as analytical or System 2 thinking. The mechanisms that underlie System 1 thinking are based on associative learning and innate dispositions: the latter are hard-wired, as a result of the evolutionary history of our species, to respond reflexively to certain cues in the environment. We have discrete, functionally-specialized mental programs that were selected when the brain was undergoing significant development especially spanning the last 6 million years of hominid evolution [ 50 ]. Although these programs may have served us well in our ancestral past, they may not be appropriate in some aspects of modern living. Some of this System 1 substrate also underlies various heuristics and biases in our thinking – the tendency to take mental short-cuts, or demonstrate reflexive responses in certain situations, often on the basis of past experience. Not surprisingly, most error occurs in System 1 thinking.

Contemplative , or fully reflective thinking, is System 2 thinking. It suits any practice of medicine or medical research activity where there is time to utilise the best critically appraised evidence in a step-by-step process of reasoning and argument. Contemplative, fully reflective thinking is appropriate, for example, in internal medicine, psychiatry, public health, and other specialties, in etiological research and clinical trials, and in writing up the results of such research [ 35 ].

In contrast, a shortcut or heuristic approach [ 51 ] with somehow truncated thinking is often dictated by the realities of emergency medicine, surgery, obstetrics or any situation where there is incomplete information, bounded rationality, and insufficient time to be fully reflective. The extant findings and the decision maker’s experience are all that is available. The quintessential challenge for well-calibrated decision making is to optimise performance in System 1. Hogarth [ 52 ] sees this challenge as educating our intuitive processes and has delineated a variety of strategies through which this might be accomplished.

No responsible physician would engage in reflective thinking on every occasion when a decision has to be made. Such acute emergencies as sudden complications of labour and delivery, ruptured aneurysms, multiple trauma victims and other immediately life-threatening situations generally leave no time for fully reflective thinking. A shortcut or heuristic approach is required [ 51 ], involving pattern recognition, steepest ascent reasoning, or algorithmic paths [ 21 , 53 ]. There is of course a place for reflective thinking before and after such time-constrained emergency decisions. More generally, reflective thinking is called for in any aspect of medical practice where there is time and reason for it.

The distinction should be made between the involuntary autonomous nature of System 1 thinking and a deliberate decision to use a shortcut for expediency, which is System 2 thinking. There is normally an override function of System 2 over System 1 but this may be deliberately lifted under extreme conditions.

Future Direction

Critical thinking is a learned process which benefits from teaching and guided practice like any other discipline in health sciences. It was already proposed as part of an early medical curriculum [ 54 ]. If we are to train future generations of health professionals as critical thinkers, we should do so in the spirit of critical thinking as it stands today. Clinical teachers should know how to run a Socratic discourse, and in which situations it is appropriate. They should be aware of contemporary models of argument. Clinical teachers should be trained and experienced in engaging with their interns and residents in meaningful discourse while presenting and discussing morning reports, at floor and other rounds, in morbidity and mortality conferences, or at less informal ‘hallway’, ‘elevator’ or ‘coffee-maker/drinking fountain’ teaching sites for busy clinicians. Such discourse is better than so-called “pimping”, i.e. quizzing of juniors with objectives ranging from knowledge acquisition to embarrassment and humiliation [ 37 , 55 ].

Also, somebody should point out to trainees the relevance to the health context of some basics of informal logic, critical thinking and argumentation, if those basics have been acquired as the result of studying for their first undergraduate degree.

Unquestionably, the appropriate critically appraised best evidence should be used as a foundation for reasoning and argument about how to care for patients. But, if we want to link the best available evidence to a patient’s biology, the patient’s values and preferences, the clinical or community setting, and other circumstances, we should take all these factors into account in using the best available evidence to get to the beliefs and decisions that have the best possible support.

Such a reflective integration cannot be mastered by mere exposure. A learning experience is required. Trainees in medicine need to learn how to think critically [ 56 ], just as they need to learn contemporary approaches to ‘rational’ medical decision making: how to use Bayes’ theorem in the diagnostic process, how to determine the sample size in a clinical trial, how to analyze survival curves in prognosis and outcomes studies, and how to calculate odds ratios in case control research. To understand each other, the teacher and the learner should both know the fundamentals of reasoning and argument in medicine. To achieve this understanding, we can either offer separate and distinct courses on critical thinking and decision making in medicine; or spread learning, practice and experience in critical thinking and decision making across various specialties; or do both. Only the future will show which of the alternatives is better. The integrated approach seems more promising, but harder to implement. Given the limitations on the current medical undergraduate curriculum, we might be hard-pressed to persuade a curriculum committee that precious space and time should be allocated to such concepts. The overriding rationale, however, should be that the knowledge of critical and reflective thinking is declarative knowledge (knowing how) and not simply an addition of procedural knowledge (know-how) or explicit knowledge. The old adage about it being preferable to teach someone how to fish rather than giving them fish applies. Any new additions will need to be streamlined and practical. A teaching module on critical thinking might for example include attention to how we reason and make decisions, factors that may impair decision making, the concept of critical thinking, situations where critical thinking is appropriate, some basic principles of logic and some logical fallacies. However the teaching, learning and practice of critical thinking is incorporated in the medical curriculum, it will need to include not only the contemplative, fully reflective thinking on hospital floors and in clinics but also the shortcut thinking [ 57 ] in such heuristic environments as operating theatres or emergency departments [ 46 , 48 , 58 – 60 ].

Similar education is required as a basis for framing grant applications and research reports as reasoned arguments, especially in the discussion section [ 61 , 62 ]. We may see a day when most medical journals are what Paton [ 63 ] terms “reflective journals”. If an application for a research grant, a research proposal, or a group of research findings (systematically reviewed or not) presented in a medical article are all exercises in argumentation and critical thinking, their authors, readers, and editors should find a common language for all these types of scientific and professional communication.

Almost four decades ago Feinstein [ 64 ] asked what kind of basic science clinical medicine needs. At that time, he had mostly clinical biostatistics and epidemiology in mind. Recently, Redelmeier et al. [ 65 ] proposed to add cognitive psychology as one more basic science. It is time, we think, to add critical thinking to that list.

Competing interests

None declared.

Source of support: None. Departmental support to produce the manuscript is acknowledged and appreciated

IMAGES

  1. Critical Thinking

    critical thinking health care

  2. The Importance of Critical Thinking in Nursing

    critical thinking health care

  3. Critical Thinking for Health Care Professionals Interactive Classroom

    critical thinking health care

  4. 5 Steps to Improve Critical Thinking in Nursing

    critical thinking health care

  5. Critical Thinking in Health Care

    critical thinking health care

  6. 15 Examples of Critical Thinking in Health Care Delivery / Client

    critical thinking health care

VIDEO

  1. हमें कभी झूठ नहीं बोलना चाहिए ( PART 2 )

  2. Mental health quotes that'll help wake your awareness

  3. हमें कभी झूठ नहीं बोलना चाहिए- Positive Thinking, Health, Success, Self Love

  4. Design Thinking for Health: Empathy

  5. रोगो को ठीक करने का आसान तरिका || Mind Power || Faster Effect In Treatment

  6. Unleashing Critical Thinking in Healthcare: The Power of Reflective Journaling

COMMENTS

  1. Critical thinking in healthcare and education

    Critical thinking is just one skill crucial to evidence based practice in healthcare and education, write Jonathan Sharples and colleagues , who see exciting opportunities for cross sector collaboration Imagine you are a primary care doctor. A patient comes into your office with acute, atypical chest pain. Immediately you consider the patient's sex and age, and you begin to think about what ...

  2. Constructing critical thinking in health professional education

    Introduction. Even though the term critical thinking is ubiquitous in educational settings, there is significant disagreement about what it means to 'think critically' [].Predominantly, authors have attempted to develop consensus definitions of critical thinking that would finally put these disagreements to rest (e. g. [2-5]).They define critical thinking variously, but tend to focus on ...

  3. Critical Thinking in Nursing: Developing Effective Skills

    Critical thinking in nursing is invaluable for safe, effective, patient-centered care. You can successfully navigate challenges in the ever-changing health care environment by continually developing and applying these skills. Images sourced from Getty Images. Critical thinking in nursing is essential to providing high-quality patient care.

  4. Critical Thinking in Critical Care: Five Strategies to Improve Teaching

    We believe these five strategies provide practical approaches for teaching critical thinking in the intensive care unit. ... Critical thinking in health professions education: summary and consensus statements of the Millennium Conference 2011. Teach Learn Med. 2014; 26:95-102. [Google Scholar] 3 . Croskerry P. From mindless to mindful ...

  5. Critical Thinking: The Development of an Essential Skill for Nursing

    Critical thinking is applied by nurses in the process of solving problems of patients and decision-making process with creativity to enhance the effect. It is an essential process for a safe, efficient and skillful nursing intervention. Critical thinking according to Scriven and Paul is the mental active process and subtle perception, analysis ...

  6. The Value of Critical Thinking in Nursing

    Nicholas McGowan, BSN, RN, CCRN, has been a critical care nurse for 10 years in neurological trauma nursing and cardiovascular and surgical intensive care. He defines critical thinking as "necessary for problem-solving and decision-making by healthcare providers.

  7. Developing critical thinking skills for delivering optimal care

    This article describes three critical thinking skills essential to effective clinical care - clinical reasoning, evidence-informed decision-making, and systems thinking - and approaches to develop these skills during clinician training. ... Implicit racial bias, health care provider attitudes, and perceptions of health care quality among ...

  8. Critical Thinking in Critical Care: Five Strategies to Improve Teaching

    Critical thinking, the capacity to be deliberate about thinking, is increasingly the focus of undergraduate medical education, but is not commonly addressed in graduate medical education. ... Critical Thinking in Critical Care: Five Strategies to Improve Teaching and Learning in the Intensive Care Unit ... National Institutes of Health ...

  9. Developing critical thinking skills for delivering optimal care

    Healthcare systems across the world are challenged with problems of misdiagnosis, non-beneficial care, unwarranted practice variation and inefficient or unsafe practice. In countering these shortcomings, clinicians must be able to think critically, interpret and assimilate new knowledge, deal with uncertainty and change behaviour in response to ...

  10. Cultivating Critical Thinking in Healthcare

    Critical thinking skills have been linked to improved patient outcomes, better quality patient care and improved safety outcomes in healthcare (Jacob et al. 2017).. Given this, it's necessary for educators in healthcare to stimulate and lead further dialogue about how these skills are taught, assessed and integrated into the design and development of staff and nurse education and training ...

  11. PDF Understanding Critical Thinking to Create Better Doctors

    Steps in critical thinking Health professionals use critical thinking skills when they reflect on knowledge derived from other interdisciplinary subject areas in order to provide a holistic health care to their patients.[13] It is believed that a critical thinker goes through a series of cognitive steps: [14]

  12. Critical Thinking Skills in Health Care Professional Student ...

    Health care professional curricula need to facilitate the development of critical-thinking skills in students. This systematic review shows that there are mixed results with respect to the acquisition of critical-thinking skills in health care professional students as measured by the CCTST and the WGCTA. There are a limited number of moderate ...

  13. Teaching Critical Thinking and Problem-Solving Skills to Healthcare

    Critical thinking/problem-solving skills should emphasize self-examination. It should teach an individual to accomplish this using a series of steps that progress in a logical fashion, stressing that critical thinking is a progression of logical thought, not an unguided process. Pedagogy.

  14. Promoting Critical Thinking in Your Intensive Care Unit Team

    Effective and efficient critical thinking skills are necessary to engage in accurate clinical reasoning and to make appropriate clinical decisions. Teaching and promoting critical thinking skills in the intensive care unit is challenging because of the volume of data and the constant distractions of competing obligations. Understanding and acknowledging cognitive biases and their impact on ...

  15. Critical Thinking Skills For Nurses In The Age Of Healthcare ...

    Critical Thinking Skills For Nurses In The Age Of Healthcare Technology. April 2, 2024. By Laís Junqueira, Tim Morris. Technology has revolutionised nursing practice and healthcare systems. Whether it's the increased delivery of virtual care, the connectivity of patient records, or the implementation of personalised treatment plans, these ...

  16. The Indispensable Role Of Critical Thinking In Healthcare ...

    Critical thinking is a fundamental competency for healthcare leaders. It enables them to effectively navigate complexity, drive innovation and promote excellence in patient care.

  17. Nursing and Health Care

    We believe that skilled nursing depends upon a well-reasoned philosophy of nursing rooted in a deep and rich conception of critical thinking. Intuitive nursing practice (which is still the norm in nursing), when performed automatically, without care, vigilance, and routine critique, can result in many significant negative implications. The ...

  18. Stop COVID Cohort: An Observational Study of 3480 Patients ...

    Affiliations 1 Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.; 2 Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.

  19. Critical Thinking in Critical Care: Five Strategies to Improve Teaching

    In light of these data and the Institute of Medicine's 2015 recommendation to "enhance health care professional education and training in the diagnostic process ," we present this framework as a practical approach to teaching critical thinking skills in the intensive care unit (ICU).

  20. Advanced Life Support Review r.21 Hollywood, FL

    The Advanced Life Support (ALS) provides healthcare providers the knowledge and skills necessary to assess recognize and care for adult patients experiencing life threatening medical emergencies. Consistent with the American Red Cross Focused Updates and Guidelines 2020 the ALS course emphasizes providing high-quality care and integrating psychomotor skills with critical thinking and problem ...

  21. Clinical Reasoning, Decisionmaking, and Action: Thinking Critically and

    Learning to provide safe and quality health care requires technical expertise, the ability to think critically, experience, and clinical judgment. ... Critical Thinking. Nursing education has emphasized critical thinking as an essential nursing skill for more than 50 years. 1 The definitions of critical thinking have evolved over the years ...

  22. The Academy of Regenerative Medicine

    Hospitals and Health Care Moscow, Moscow City American Academy of Integrative Cell Therapy Alternative Medicine ... Education, Critical Thinking, Coaching

  23. Homelessness and hardship in Moscow

    According to Moscow's Social- Economic Studies Research Institution around 100 000 of Moscow's 12 million population are homeless. One in ten people seen in MSF's programme are asked about the ...

  24. Factors associated with the critical thinking ability of professional

    1. INTRODUCTION. Critical thinking is defined as the cognitive process of reasoning that involves trying to minimize errors and to maximize positive outcomes while attempting to make a decision during patient care (Zuriguel‐Pérez et al., 2015).The importance of critical thinking in nursing practice has been identified in the literature (Chang et al., 2011; Ludin, 2018; Mahmoud & Mohamed ...

  25. Alexandra Troitskaya

    In progress: PHYSPHRM 9551 Communication and Critical Thinking (1.0 credit); Animal Care and Use Training Teaching Assistant (TA): PHYSPHRM 3000E Physiology and Pharmacology… Show more Funding MSc Year 1: Graduate Opportunity Scholarship (CAD 15,000)

  26. Evidence and its uses in health care and research: The role of critical

    Critical thinking is also called for in medical research and medical writing. Editors of leading medical journals have called for it. Edward Huth [39,40], former editor of Annals of Internal Medicine, has urged that medical articles reflect better and more organized ways of reasoning.Richard Horton [41,42], former editor of The Lancet, has proposed the use in medical writing of a contemporary ...