Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Systematic Review | Definition, Examples & Guide

Systematic Review | Definition, Examples & Guide

Published on 15 June 2022 by Shaun Turney . Revised on 17 October 2022.

A systematic review is a type of review that uses repeatable methods to find, select, and synthesise all available evidence. It answers a clearly formulated research question and explicitly states the methods used to arrive at the answer.

They answered the question ‘What is the effectiveness of probiotics in reducing eczema symptoms and improving quality of life in patients with eczema?’

In this context, a probiotic is a health product that contains live microorganisms and is taken by mouth. Eczema is a common skin condition that causes red, itchy skin.

Table of contents

What is a systematic review, systematic review vs meta-analysis, systematic review vs literature review, systematic review vs scoping review, when to conduct a systematic review, pros and cons of systematic reviews, step-by-step example of a systematic review, frequently asked questions about systematic reviews.

A review is an overview of the research that’s already been completed on a topic.

What makes a systematic review different from other types of reviews is that the research methods are designed to reduce research bias . The methods are repeatable , and the approach is formal and systematic:

  • Formulate a research question
  • Develop a protocol
  • Search for all relevant studies
  • Apply the selection criteria
  • Extract the data
  • Synthesise the data
  • Write and publish a report

Although multiple sets of guidelines exist, the Cochrane Handbook for Systematic Reviews is among the most widely used. It provides detailed guidelines on how to complete each step of the systematic review process.

Systematic reviews are most commonly used in medical and public health research, but they can also be found in other disciplines.

Systematic reviews typically answer their research question by synthesising all available evidence and evaluating the quality of the evidence. Synthesising means bringing together different information to tell a single, cohesive story. The synthesis can be narrative ( qualitative ), quantitative , or both.

Prevent plagiarism, run a free check.

Systematic reviews often quantitatively synthesise the evidence using a meta-analysis . A meta-analysis is a statistical analysis, not a type of review.

A meta-analysis is a technique to synthesise results from multiple studies. It’s a statistical analysis that combines the results of two or more studies, usually to estimate an effect size .

A literature review is a type of review that uses a less systematic and formal approach than a systematic review. Typically, an expert in a topic will qualitatively summarise and evaluate previous work, without using a formal, explicit method.

Although literature reviews are often less time-consuming and can be insightful or helpful, they have a higher risk of bias and are less transparent than systematic reviews.

Similar to a systematic review, a scoping review is a type of review that tries to minimise bias by using transparent and repeatable methods.

However, a scoping review isn’t a type of systematic review. The most important difference is the goal: rather than answering a specific question, a scoping review explores a topic. The researcher tries to identify the main concepts, theories, and evidence, as well as gaps in the current research.

Sometimes scoping reviews are an exploratory preparation step for a systematic review, and sometimes they are a standalone project.

A systematic review is a good choice of review if you want to answer a question about the effectiveness of an intervention , such as a medical treatment.

To conduct a systematic review, you’ll need the following:

  • A precise question , usually about the effectiveness of an intervention. The question needs to be about a topic that’s previously been studied by multiple researchers. If there’s no previous research, there’s nothing to review.
  • If you’re doing a systematic review on your own (e.g., for a research paper or thesis), you should take appropriate measures to ensure the validity and reliability of your research.
  • Access to databases and journal archives. Often, your educational institution provides you with access.
  • Time. A professional systematic review is a time-consuming process: it will take the lead author about six months of full-time work. If you’re a student, you should narrow the scope of your systematic review and stick to a tight schedule.
  • Bibliographic, word-processing, spreadsheet, and statistical software . For example, you could use EndNote, Microsoft Word, Excel, and SPSS.

A systematic review has many pros .

  • They minimise research b ias by considering all available evidence and evaluating each study for bias.
  • Their methods are transparent , so they can be scrutinised by others.
  • They’re thorough : they summarise all available evidence.
  • They can be replicated and updated by others.

Systematic reviews also have a few cons .

  • They’re time-consuming .
  • They’re narrow in scope : they only answer the precise research question.

The 7 steps for conducting a systematic review are explained with an example.

Step 1: Formulate a research question

Formulating the research question is probably the most important step of a systematic review. A clear research question will:

  • Allow you to more effectively communicate your research to other researchers and practitioners
  • Guide your decisions as you plan and conduct your systematic review

A good research question for a systematic review has four components, which you can remember with the acronym PICO :

  • Population(s) or problem(s)
  • Intervention(s)
  • Comparison(s)

You can rearrange these four components to write your research question:

  • What is the effectiveness of I versus C for O in P ?

Sometimes, you may want to include a fourth component, the type of study design . In this case, the acronym is PICOT .

  • Type of study design(s)
  • The population of patients with eczema
  • The intervention of probiotics
  • In comparison to no treatment, placebo , or non-probiotic treatment
  • The outcome of changes in participant-, parent-, and doctor-rated symptoms of eczema and quality of life
  • Randomised control trials, a type of study design

Their research question was:

  • What is the effectiveness of probiotics versus no treatment, a placebo, or a non-probiotic treatment for reducing eczema symptoms and improving quality of life in patients with eczema?

Step 2: Develop a protocol

A protocol is a document that contains your research plan for the systematic review. This is an important step because having a plan allows you to work more efficiently and reduces bias.

Your protocol should include the following components:

  • Background information : Provide the context of the research question, including why it’s important.
  • Research objective(s) : Rephrase your research question as an objective.
  • Selection criteria: State how you’ll decide which studies to include or exclude from your review.
  • Search strategy: Discuss your plan for finding studies.
  • Analysis: Explain what information you’ll collect from the studies and how you’ll synthesise the data.

If you’re a professional seeking to publish your review, it’s a good idea to bring together an advisory committee . This is a group of about six people who have experience in the topic you’re researching. They can help you make decisions about your protocol.

It’s highly recommended to register your protocol. Registering your protocol means submitting it to a database such as PROSPERO or ClinicalTrials.gov .

Step 3: Search for all relevant studies

Searching for relevant studies is the most time-consuming step of a systematic review.

To reduce bias, it’s important to search for relevant studies very thoroughly. Your strategy will depend on your field and your research question, but sources generally fall into these four categories:

  • Databases: Search multiple databases of peer-reviewed literature, such as PubMed or Scopus . Think carefully about how to phrase your search terms and include multiple synonyms of each word. Use Boolean operators if relevant.
  • Handsearching: In addition to searching the primary sources using databases, you’ll also need to search manually. One strategy is to scan relevant journals or conference proceedings. Another strategy is to scan the reference lists of relevant studies.
  • Grey literature: Grey literature includes documents produced by governments, universities, and other institutions that aren’t published by traditional publishers. Graduate student theses are an important type of grey literature, which you can search using the Networked Digital Library of Theses and Dissertations (NDLTD) . In medicine, clinical trial registries are another important type of grey literature.
  • Experts: Contact experts in the field to ask if they have unpublished studies that should be included in your review.

At this stage of your review, you won’t read the articles yet. Simply save any potentially relevant citations using bibliographic software, such as Scribbr’s APA or MLA Generator .

  • Databases: EMBASE, PsycINFO, AMED, LILACS, and ISI Web of Science
  • Handsearch: Conference proceedings and reference lists of articles
  • Grey literature: The Cochrane Library, the metaRegister of Controlled Trials, and the Ongoing Skin Trials Register
  • Experts: Authors of unpublished registered trials, pharmaceutical companies, and manufacturers of probiotics

Step 4: Apply the selection criteria

Applying the selection criteria is a three-person job. Two of you will independently read the studies and decide which to include in your review based on the selection criteria you established in your protocol . The third person’s job is to break any ties.

To increase inter-rater reliability , ensure that everyone thoroughly understands the selection criteria before you begin.

If you’re writing a systematic review as a student for an assignment, you might not have a team. In this case, you’ll have to apply the selection criteria on your own; you can mention this as a limitation in your paper’s discussion.

You should apply the selection criteria in two phases:

  • Based on the titles and abstracts : Decide whether each article potentially meets the selection criteria based on the information provided in the abstracts.
  • Based on the full texts: Download the articles that weren’t excluded during the first phase. If an article isn’t available online or through your library, you may need to contact the authors to ask for a copy. Read the articles and decide which articles meet the selection criteria.

It’s very important to keep a meticulous record of why you included or excluded each article. When the selection process is complete, you can summarise what you did using a PRISMA flow diagram .

Next, Boyle and colleagues found the full texts for each of the remaining studies. Boyle and Tang read through the articles to decide if any more studies needed to be excluded based on the selection criteria.

When Boyle and Tang disagreed about whether a study should be excluded, they discussed it with Varigos until the three researchers came to an agreement.

Step 5: Extract the data

Extracting the data means collecting information from the selected studies in a systematic way. There are two types of information you need to collect from each study:

  • Information about the study’s methods and results . The exact information will depend on your research question, but it might include the year, study design , sample size, context, research findings , and conclusions. If any data are missing, you’ll need to contact the study’s authors.
  • Your judgement of the quality of the evidence, including risk of bias .

You should collect this information using forms. You can find sample forms in The Registry of Methods and Tools for Evidence-Informed Decision Making and the Grading of Recommendations, Assessment, Development and Evaluations Working Group .

Extracting the data is also a three-person job. Two people should do this step independently, and the third person will resolve any disagreements.

They also collected data about possible sources of bias, such as how the study participants were randomised into the control and treatment groups.

Step 6: Synthesise the data

Synthesising the data means bringing together the information you collected into a single, cohesive story. There are two main approaches to synthesising the data:

  • Narrative ( qualitative ): Summarise the information in words. You’ll need to discuss the studies and assess their overall quality.
  • Quantitative : Use statistical methods to summarise and compare data from different studies. The most common quantitative approach is a meta-analysis , which allows you to combine results from multiple studies into a summary result.

Generally, you should use both approaches together whenever possible. If you don’t have enough data, or the data from different studies aren’t comparable, then you can take just a narrative approach. However, you should justify why a quantitative approach wasn’t possible.

Boyle and colleagues also divided the studies into subgroups, such as studies about babies, children, and adults, and analysed the effect sizes within each group.

Step 7: Write and publish a report

The purpose of writing a systematic review article is to share the answer to your research question and explain how you arrived at this answer.

Your article should include the following sections:

  • Abstract : A summary of the review
  • Introduction : Including the rationale and objectives
  • Methods : Including the selection criteria, search method, data extraction method, and synthesis method
  • Results : Including results of the search and selection process, study characteristics, risk of bias in the studies, and synthesis results
  • Discussion : Including interpretation of the results and limitations of the review
  • Conclusion : The answer to your research question and implications for practice, policy, or research

To verify that your report includes everything it needs, you can use the PRISMA checklist .

Once your report is written, you can publish it in a systematic review database, such as the Cochrane Database of Systematic Reviews , and/or in a peer-reviewed journal.

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

A literature review is a survey of scholarly sources (such as books, journal articles, and theses) related to a specific topic or research question .

It is often written as part of a dissertation , thesis, research paper , or proposal .

There are several reasons to conduct a literature review at the beginning of a research project:

  • To familiarise yourself with the current state of knowledge on your topic
  • To ensure that you’re not just repeating what others have already done
  • To identify gaps in knowledge and unresolved problems that your research can address
  • To develop your theoretical framework and methodology
  • To provide an overview of the key findings and debates on the topic

Writing the literature review shows your reader how your work relates to existing research and what new insights it will contribute.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Turney, S. (2022, October 17). Systematic Review | Definition, Examples & Guide. Scribbr. Retrieved 22 April 2024, from https://www.scribbr.co.uk/research-methods/systematic-reviews/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, what is a literature review | guide, template, & examples, exploratory research | definition, guide, & examples, what is peer review | types & examples.

Conducting a Systematic Review: A Practical Guide

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

a systematic review research

  • Freya MacMillan 2 ,
  • Kate A. McBride 3 ,
  • Emma S. George 4 &
  • Genevieve Z. Steiner 5  

2292 Accesses

2 Citations

It can be challenging to conduct a systematic review with limited experience and skills in undertaking such a task. This chapter provides a practical guide to undertaking a systematic review, providing step-by-step instructions to guide the individual through the process from start to finish. The chapter begins with defining what a systematic review is, reviewing its various components, turning a research question into a search strategy, developing a systematic review protocol, followed by searching for relevant literature and managing citations. Next, the chapter focuses on documenting the characteristics of included studies and summarizing findings, extracting data, methods for assessing risk of bias and considering heterogeneity, and undertaking meta-analyses. Last, the chapter explores creating a narrative and interpreting findings. Practical tips and examples from existing literature are utilized throughout the chapter to assist readers in their learning. By the end of this chapter, the reader will have the knowledge to conduct their own systematic review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Barbour RS. Checklists for improving rigour in qualitative research: a case of the tail wagging the dog? BMJ. 2001;322(7294):1115–7.

Article   Google Scholar  

Butler A, Hall H, Copnell B. A guide to writing a qualitative systematic review protocol to enhance evidence-based practice in nursing and health care. Worldviews Evid-Based Nurs. 2016;13(3):241–9.

Cook DJ, Mulrow CD, Haynes RB. Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med. 1997;126(5):376–80.

Dixon-Woods M, Bonas S, Booth A, Jones DR, Miller T, Sutton AJ, … Young B. How can systematic reviews incorporate qualitative research? A critical perspective. Qual Res. 2006;6(1):27–44. https://doi.org/10.1177/1468794106058867 .

Greenhalgh T. How to read a paper: the basics of evidence-based medicine. 4th ed. Chichester/Hoboken: Wiley-Blackwell; 2010.

Google Scholar  

Hannes K, Lockwood C, Pearson A. A comparative analysis of three online appraisal instruments’ ability to assess validity in qualitative research. Qual Health Res. 2010;20(12):1736–43. https://doi.org/10.1177/1049732310378656 .

Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions (Version 5.1.0 [updated March 2011]). The Cochrane Collaboration; 2011.  http://handbook-5-1.cochrane.org/

Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, … Sterne JAC. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343. https://doi.org/10.1136/bmj.d5928 .

Hillier S, Grimmer-Somers K, Merlin T, Middleton P, Salisbury J, Tooher R, Weston A. FORM: an Australian method for formulating and grading recommendations in evidence-based clinical guidelines. BMC Med Res Methodol. 2011;11:23. https://doi.org/10.1186/1471-2288-11-23 .

Humphreys DK, Panter J, Ogilvie D. Questioning the application of risk of bias tools in appraising evidence from natural experimental studies: critical reflections on Benton et al., IJBNPA 2016. Int J Behav Nutr Phys Act. 2017; 14 (1):49. https://doi.org/10.1186/s12966-017-0500-4 .

King R, Hooper B, Wood W. Using bibliographic software to appraise and code data in educational systematic review research. Med Teach. 2011;33(9):719–23. https://doi.org/10.3109/0142159x.2011.558138 .

Koelemay MJ, Vermeulen H. Quick guide to systematic reviews and meta-analysis. Eur J Vasc Endovasc Surg. 2016;51(2):309. https://doi.org/10.1016/j.ejvs.2015.11.010 .

Lucas PJ, Baird J, Arai L, Law C, Roberts HM. Worked examples of alternative methods for the synthesis of qualitative and quantitative research in systematic reviews. BMC Med Res Methodol. 2007;7:4–4. https://doi.org/10.1186/1471-2288-7-4 .

MacMillan F, Kirk A, Mutrie N, Matthews L, Robertson K, Saunders DH. A systematic review of physical activity and sedentary behavior intervention studies in youth with type 1 diabetes: study characteristics, intervention design, and efficacy. Pediatr Diabetes. 2014;15(3):175–89. https://doi.org/10.1111/pedi.12060 .

MacMillan F, Karamacoska D, El Masri A, McBride KA, Steiner GZ, Cook A, … George ES. A systematic review of health promotion intervention studies in the police force: study characteristics, intervention design and impacts on health. Occup Environ Med. 2017. https://doi.org/10.1136/oemed-2017-104430 .

Matthews L, Kirk A, MacMillan F, Mutrie N. Can physical activity interventions for adults with type 2 diabetes be translated into practice settings? A systematic review using the RE-AIM framework. Transl Behav Med. 2014;4(1):60–78. https://doi.org/10.1007/s13142-013-0235-y .

Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med Res Methodol. 2001;1:2. https://doi.org/10.1186/1471-2288-1-2 .

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 .

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. https://doi.org/10.1186/2046-4053-4-1 .

Mulrow CD, Cook DJ, Davidoff F. Systematic reviews: critical links in the great chain of evidence. Ann Intern Med. 1997;126(5):389–91.

Peters MDJ. Managing and coding references for systematic reviews and scoping reviews in EndNote. Med Ref Serv Q. 2017;36(1):19–31. https://doi.org/10.1080/02763869.2017.1259891 .

Steiner GZ, Mathersul DC, MacMillan F, Camfield DA, Klupp NL, Seto SW, … Chang DH. A systematic review of intervention studies examining nutritional and herbal therapies for mild cognitive impairment and dementia using neuroimaging methods: study characteristics and intervention efficacy. Evid Based Complement Alternat Med. 2017;2017:21. https://doi.org/10.1155/2017/6083629 .

Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, … Higgins JP. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355. https://doi.org/10.1136/bmj.i4919 .

Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19(6):349–57. https://doi.org/10.1093/intqhc/mzm042 .

Tong A, Palmer S, Craig JC, Strippoli GFM. A guide to reading and using systematic reviews of qualitative research. Nephrol Dial Transplant. 2016;31(6):897–903. https://doi.org/10.1093/ndt/gfu354 .

Uman LS. Systematic reviews and meta-analyses. J Can Acad Child Adolesc Psychiatry. 2011;20(1):57–9.

Download references

Author information

Authors and affiliations.

School of Science and Health and Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia

Freya MacMillan

School of Medicine and Translational Health Research Institute, Western Sydney University, Sydney, NSW, Australia

Kate A. McBride

School of Science and Health, Western Sydney University, Sydney, NSW, Australia

Emma S. George

NICM and Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia

Genevieve Z. Steiner

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Freya MacMillan .

Editor information

Editors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

MacMillan, F., McBride, K.A., George, E.S., Steiner, G.Z. (2019). Conducting a Systematic Review: A Practical Guide. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_113

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_113

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Systematic Reviews

  • What is a Systematic Review?

A systematic review is an evidence synthesis that uses explicit, reproducible methods to perform a comprehensive literature search and critical appraisal of individual studies and that uses appropriate statistical techniques to combine these valid studies.

Key Characteristics of a Systematic Review:

Generally, systematic reviews must have:

  • a clearly stated set of objectives with pre-defined eligibility criteria for studies
  • an explicit, reproducible methodology
  • a systematic search that attempts to identify all studies that would meet the eligibility criteria
  • an assessment of the validity of the findings of the included studies, for example through the assessment of the risk of bias
  • a systematic presentation, and synthesis, of the characteristics and findings of the included studies.

A meta-analysis is a systematic review that uses quantitative methods to synthesize and summarize the pooled data from included studies.

Additional Information

  • How-to Books
  • Beyond Health Sciences

Cover Art

  • Cochrane Handbook For Systematic Reviews of Interventions Provides guidance to authors for the preparation of Cochrane Intervention reviews. Chapter 6 covers searching for reviews.
  • Systematic Reviews: CRD’s Guidance for Undertaking Reviews in Health Care From The University of York Centre for Reviews and Dissemination: Provides practical guidance for undertaking evidence synthesis based on a thorough understanding of systematic review methodology. It presents the core principles of systematic reviewing, and in complementary chapters, highlights issues that are specific to reviews of clinical tests, public health interventions, adverse effects, and economic evaluations.
  • Cornell, Sytematic Reviews and Evidence Synthesis Beyond the Health Sciences Video series geared for librarians but very informative about searching outside medicine.
  • << Previous: Getting Started
  • Next: Levels of Evidence >>
  • Getting Started
  • Levels of Evidence
  • Locating Systematic Reviews
  • Searching Systematically
  • Developing Answerable Questions
  • Identifying Synonyms & Related Terms
  • Using Truncation and Wildcards
  • Identifying Search Limits/Exclusion Criteria
  • Keyword vs. Subject Searching
  • Where to Search
  • Search Filters
  • Sensitivity vs. Precision
  • Core Databases
  • Other Databases
  • Clinical Trial Registries
  • Conference Presentations
  • Databases Indexing Grey Literature
  • Web Searching
  • Handsearching
  • Citation Indexes
  • Documenting the Search Process
  • Managing your Review

Research Support

  • Last Updated: Apr 8, 2024 3:33 PM
  • URL: https://guides.library.ucdavis.edu/systematic-reviews

Jump to navigation

  • Bahasa Malaysia

Home

What are systematic reviews?

Watch this video from   Cochrane Consumers and Communication to learn what systematic reviews are, how researchers prepare them, and why they’re an important part of making informed decisions about health - for everyone. 

Cochrane evidence, including our systematic reviews, provides a powerful tool to enhance your healthcare knowledge and decision making. This video from Cochrane Sweden explains a bit about how we create health evidence and what Cochrane does. 

  • Search our Plain Language Summaries of health evidence
  • Learn more about Cochrane and our work

University of Maryland Libraries Logo

Systematic Review

  • Library Help
  • What is a Systematic Review (SR)?
  • Steps of a Systematic Review
  • Framing a Research Question
  • Developing a Search Strategy
  • Searching the Literature
  • Managing the Process
  • Meta-analysis
  • Publishing your Systematic Review

Introduction to Systematic Review

  • Introduction
  • Types of literature reviews
  • Other Libguides
  • Systematic review as part of a dissertation
  • Tutorials & Guidelines & Examples from non-Medical Disciplines

Depending on your learning style, please explore the resources in various formats on the tabs above.

For additional tutorials, visit the SR Workshop Videos  from UNC at Chapel Hill outlining each stage of the systematic review process.

Know the difference! Systematic review vs. literature review

a systematic review research

Types of literature reviews along with associated methodologies

JBI Manual for Evidence Synthesis .  Find definitions and methodological guidance.

- Systematic Reviews - Chapters 1-7

- Mixed Methods Systematic Reviews -  Chapter 8

- Diagnostic Test Accuracy Systematic Reviews -  Chapter 9

- Umbrella Reviews -  Chapter 10

- Scoping Reviews -  Chapter 11

- Systematic Reviews of Measurement Properties -  Chapter 12

Systematic reviews vs scoping reviews - 

Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information and Libraries Journal , 26 (2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x

Gough, D., Thomas, J., & Oliver, S. (2012). Clarifying differences between review designs and methods. Systematic Reviews, 1 (28). htt p s://doi.org/ 10.1186/2046-4053-1-28

Munn, Z., Peters, M., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018).  Systematic review or  scoping review ?  Guidance for authors when choosing between a systematic or scoping review approach.  BMC medical research methodology, 18 (1), 143. https://doi.org/10.1186/s12874-018-0611-x. Also, check out the  Libguide from Weill Cornell Medicine  for the  differences between a systematic review and a scoping review  and when to embark on either one of them.

Sutton, A., Clowes, M., Preston, L., & Booth, A. (2019). Meeting the review family: Exploring review types and associated information retrieval requirements . Health Information & Libraries Journal , 36 (3), 202–222. https://doi.org/10.1111/hir.12276

Temple University. Review Types . - This guide provides useful descriptions of some of the types of reviews listed in the above article.

UMD Health Sciences and Human Services Library.  Review Types . - Guide describing Literature Reviews, Scoping Reviews, and Rapid Reviews.

Whittemore, R., Chao, A., Jang, M., Minges, K. E., & Park, C. (2014). Methods for knowledge synthesis: An overview. Heart & Lung: The Journal of Acute and Critical Care, 43 (5), 453–461. https://doi.org/10.1016/j.hrtlng.2014.05.014

Differences between a systematic review and other types of reviews

Armstrong, R., Hall, B. J., Doyle, J., & Waters, E. (2011). ‘ Scoping the scope ’ of a cochrane review. Journal of Public Health , 33 (1), 147–150. https://doi.org/10.1093/pubmed/fdr015

Kowalczyk, N., & Truluck, C. (2013). Literature reviews and systematic reviews: What is the difference? Radiologic Technology , 85 (2), 219–222.

White, H., Albers, B., Gaarder, M., Kornør, H., Littell, J., Marshall, Z., Matthew, C., Pigott, T., Snilstveit, B., Waddington, H., & Welch, V. (2020). Guidance for producing a Campbell evidence and gap map . Campbell Systematic Reviews, 16 (4), e1125. https://doi.org/10.1002/cl2.1125. Check also this comparison between evidence and gaps maps and systematic reviews.

Rapid Reviews Tutorials

Rapid Review Guidebook  by the National Collaborating Centre of Methods and Tools (NCCMT)

Hamel, C., Michaud, A., Thuku, M., Skidmore, B., Stevens, A., Nussbaumer-Streit, B., & Garritty, C. (2021). Defining Rapid Reviews: a systematic scoping review and thematic analysis of definitions and defining characteristics of rapid reviews.  Journal of clinical epidemiology ,  129 , 74–85. https://doi.org/10.1016/j.jclinepi.2020.09.041

  • Müller, C., Lautenschläger, S., Meyer, G., & Stephan, A. (2017). Interventions to support people with dementia and their caregivers during the transition from home care to nursing home care: A systematic review . International Journal of Nursing Studies, 71 , 139–152. https://doi.org/10.1016/j.ijnurstu.2017.03.013
  • Bhui, K. S., Aslam, R. W., Palinski, A., McCabe, R., Johnson, M. R. D., Weich, S., … Szczepura, A. (2015). Interventions to improve therapeutic communications between Black and minority ethnic patients and professionals in psychiatric services: Systematic review . The British Journal of Psychiatry, 207 (2), 95–103. https://doi.org/10.1192/bjp.bp.114.158899
  • Rosen, L. J., Noach, M. B., Winickoff, J. P., & Hovell, M. F. (2012). Parental smoking cessation to protect young children: A systematic review and meta-analysis . Pediatrics, 129 (1), 141–152. https://doi.org/10.1542/peds.2010-3209

Scoping Review

  • Hyshka, E., Karekezi, K., Tan, B., Slater, L. G., Jahrig, J., & Wild, T. C. (2017). The role of consumer perspectives in estimating population need for substance use services: A scoping review . BMC Health Services Research, 171-14.  https://doi.org/10.1186/s12913-017-2153-z
  • Olson, K., Hewit, J., Slater, L.G., Chambers, T., Hicks, D., Farmer, A., & ... Kolb, B. (2016). Assessing cognitive function in adults during or following chemotherapy: A scoping review . Supportive Care In Cancer, 24 (7), 3223-3234. https://doi.org/10.1007/s00520-016-3215-1
  • Pham, M. T., Rajić, A., Greig, J. D., Sargeant, J. M., Papadopoulos, A., & McEwen, S. A. (2014). A scoping review of scoping reviews: Advancing the approach and enhancing the consistency . Research Synthesis Methods, 5 (4), 371–385. https://doi.org/10.1002/jrsm.1123
  • Scoping Review Tutorial from UNC at Chapel Hill

Qualitative Systematic Review/Meta-Synthesis

  • Lee, H., Tamminen, K. A., Clark, A. M., Slater, L., Spence, J. C., & Holt, N. L. (2015). A meta-study of qualitative research examining determinants of children's independent active free play . International Journal Of Behavioral Nutrition & Physical Activity, 12 (5), 121-12. https://doi.org/10.1186/s12966-015-0165-9

Videos on systematic reviews

Systematic Reviews: What are they? Are they right for my research? - 47 min. video recording with a closed caption option.

More training videos  on systematic reviews:   

Books on Systematic Reviews

Cover Art

Books on Meta-analysis

a systematic review research

  • University of Toronto Libraries  - very detailed with good tips on the sensitivity and specificity of searches.
  • Monash University  - includes an interactive case study tutorial. 
  • Dalhousie University Libraries - a comprehensive How-To Guide on conducting a systematic review.

Guidelines for a systematic review as part of the dissertation

  • Guidelines for Systematic Reviews in the Context of Doctoral Education Background  by University of Victoria (PDF)
  • Can I conduct a Systematic Review as my Master’s dissertation or PhD thesis? Yes, It Depends!  by Farhad (blog)
  • What is a Systematic Review Dissertation Like? by the University of Edinburgh (50 min video) 

Further readings on experiences of PhD students and doctoral programs with systematic reviews

Puljak, L., & Sapunar, D. (2017). Acceptance of a systematic review as a thesis: Survey of biomedical doctoral programs in Europe . Systematic Reviews , 6 (1), 253. https://doi.org/10.1186/s13643-017-0653-x

Perry, A., & Hammond, N. (2002). Systematic reviews: The experiences of a PhD Student . Psychology Learning & Teaching , 2 (1), 32–35. https://doi.org/10.2304/plat.2002.2.1.32

Daigneault, P.-M., Jacob, S., & Ouimet, M. (2014). Using systematic review methods within a Ph.D. dissertation in political science: Challenges and lessons learned from practice . International Journal of Social Research Methodology , 17 (3), 267–283. https://doi.org/10.1080/13645579.2012.730704

UMD Doctor of Philosophy Degree Policies

Before you embark on a systematic review research project, check the UMD PhD Policies to make sure you are on the right path. Systematic reviews require a team of at least two reviewers and an information specialist or a librarian. Discuss with your advisor the authorship roles of the involved team members. Keep in mind that the  UMD Doctor of Philosophy Degree Policies (scroll down to the section, Inclusion of one's own previously published materials in a dissertation ) outline such cases, specifically the following: 

" It is recognized that a graduate student may co-author work with faculty members and colleagues that should be included in a dissertation . In such an event, a letter should be sent to the Dean of the Graduate School certifying that the student's examining committee has determined that the student made a substantial contribution to that work. This letter should also note that the inclusion of the work has the approval of the dissertation advisor and the program chair or Graduate Director. The letter should be included with the dissertation at the time of submission.  The format of such inclusions must conform to the standard dissertation format. A foreword to the dissertation, as approved by the Dissertation Committee, must state that the student made substantial contributions to the relevant aspects of the jointly authored work included in the dissertation."

  • Cochrane Handbook for Systematic Reviews of Interventions - See Part 2: General methods for Cochrane reviews
  • Systematic Searches - Yale library video tutorial series 
  • Using PubMed's Clinical Queries to Find Systematic Reviews  - From the U.S. National Library of Medicine
  • Systematic reviews and meta-analyses: A step-by-step guide - From the University of Edinsburgh, Centre for Cognitive Ageing and Cognitive Epidemiology

Bioinformatics

  • Mariano, D. C., Leite, C., Santos, L. H., Rocha, R. E., & de Melo-Minardi, R. C. (2017). A guide to performing systematic literature reviews in bioinformatics .  arXiv preprint arXiv:1707.05813.

Environmental Sciences

Collaboration for Environmental Evidence. 2018.  Guidelines and Standards for Evidence synthesis in Environmental Management. Version 5.0 (AS Pullin, GK Frampton, B Livoreil & G Petrokofsky, Eds) www.environmentalevidence.org/information-for-authors .

Pullin, A. S., & Stewart, G. B. (2006). Guidelines for systematic review in conservation and environmental management. Conservation Biology, 20 (6), 1647–1656. https://doi.org/10.1111/j.1523-1739.2006.00485.x

Engineering Education

  • Borrego, M., Foster, M. J., & Froyd, J. E. (2014). Systematic literature reviews in engineering education and other developing interdisciplinary fields. Journal of Engineering Education, 103 (1), 45–76. https://doi.org/10.1002/jee.20038

Public Health

  • Hannes, K., & Claes, L. (2007). Learn to read and write systematic reviews: The Belgian Campbell Group . Research on Social Work Practice, 17 (6), 748–753. https://doi.org/10.1177/1049731507303106
  • McLeroy, K. R., Northridge, M. E., Balcazar, H., Greenberg, M. R., & Landers, S. J. (2012). Reporting guidelines and the American Journal of Public Health’s adoption of preferred reporting items for systematic reviews and meta-analyses . American Journal of Public Health, 102 (5), 780–784. https://doi.org/10.2105/AJPH.2011.300630
  • Pollock, A., & Berge, E. (2018). How to do a systematic review.   International Journal of Stroke, 13 (2), 138–156. https://doi.org/10.1177/1747493017743796
  • Institute of Medicine. (2011). Finding what works in health care: Standards for systematic reviews . https://doi.org/10.17226/13059
  • Wanden-Berghe, C., & Sanz-Valero, J. (2012). Systematic reviews in nutrition: Standardized methodology . The British Journal of Nutrition, 107 Suppl 2, S3-7. https://doi.org/10.1017/S0007114512001432

Social Sciences

  • Bronson, D., & Davis, T. (2012).  Finding and evaluating evidence: Systematic reviews and evidence-based practice (Pocket guides to social work research methods). Oxford: Oxford University Press.
  • Petticrew, M., & Roberts, H. (2006).  Systematic reviews in the social sciences: A practical guide . Malden, MA: Blackwell Pub.
  • Cornell University Library Guide -  Systematic literature reviews in engineering: Example: Software Engineering
  • Biolchini, J., Mian, P. G., Natali, A. C. C., & Travassos, G. H. (2005). Systematic review in software engineering .  System Engineering and Computer Science Department COPPE/UFRJ, Technical Report ES, 679 (05), 45.
  • Biolchini, J. C., Mian, P. G., Natali, A. C. C., Conte, T. U., & Travassos, G. H. (2007). Scientific research ontology to support systematic review in software engineering . Advanced Engineering Informatics, 21 (2), 133–151.
  • Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software engineering . [Technical Report]. Keele, UK, Keele University, 33(2004), 1-26.
  • Weidt, F., & Silva, R. (2016). Systematic literature review in computer science: A practical guide .  Relatórios Técnicos do DCC/UFJF ,  1 .
  • Academic Phrasebank - Get some inspiration and find some terms and phrases for writing your research paper
  • Oxford English Dictionary  - Use to locate word variants and proper spelling
  • << Previous: Library Help
  • Next: Steps of a Systematic Review >>
  • Last Updated: Apr 19, 2024 12:47 PM
  • URL: https://lib.guides.umd.edu/SR
  • Systematic Review
  • Open access
  • Published: 26 April 2024

Systematic review on the frequency and quality of reporting patient and public involvement in patient safety research

  • Sahar Hammoud   ORCID: orcid.org/0000-0003-4682-9001 1 ,
  • Laith Alsabek 1 , 2 ,
  • Lisa Rogers 1 &
  • Eilish McAuliffe 1  

BMC Health Services Research volume  24 , Article number:  532 ( 2024 ) Cite this article

Metrics details

In recent years, patient and public involvement (PPI) in research has significantly increased; however, the reporting of PPI remains poor. The Guidance for Reporting Involvement of Patients and the Public (GRIPP2) was developed to enhance the quality and consistency of PPI reporting. The objective of this systematic review is to identify the frequency and quality of PPI reporting in patient safety (PS) research using the GRIPP2 checklist.

Searches were performed in Ovid MEDLINE, EMBASE, PsycINFO, and CINAHL from 2018 to December, 2023. Studies on PPI in PS research were included. We included empirical qualitative, quantitative, mixed methods, and case studies. Only articles published in peer-reviewed journals in English were included. The quality of PPI reporting was assessed using the short form of the (GRIPP2-SF) checklist.

A total of 8561 studies were retrieved from database searches, updates, and reference checks, of which 82 met the eligibility criteria and were included in this review. Major PS topics were related to medication safety, general PS, and fall prevention. Patient representatives, advocates, patient advisory groups, patients, service users, and health consumers were the most involved. The main involvement across the studies was in commenting on or developing research materials. Only 6.1% ( n  = 5) of the studies reported PPI as per the GRIPP2 checklist. Regarding the quality of reporting following the GRIPP2-SF criteria, our findings show sub-optimal reporting mainly due to failures in: critically reflecting on PPI in the study; reporting the aim of PPI in the study; and reporting the extent to which PPI influenced the study overall.

Conclusions

Our review shows a low frequency of PPI reporting in PS research using the GRIPP2 checklist. Furthermore, it reveals a sub-optimal quality in PPI reporting following GRIPP2-SF items. Researchers, funders, publishers, and journals need to promote consistent and transparent PPI reporting following internationally developed reporting guidelines such as the GRIPP2. Evidence-based guidelines for reporting PPI should be encouraged and supported as it helps future researchers to plan and report PPI more effectively.

Trial registration

The review protocol is registered with PROSPERO (CRD42023450715).

Peer Review reports

Patient safety (PS) is defined as “the absence of preventable harm to a patient and reduction of risk of unnecessary harm associated with healthcare to an acceptable minimum” [ 1 ]. It is estimated that one in 10 patients are harmed in healthcare settings due to unsafe care, resulting in over three million deaths annually [ 2 ]. More than 50% of adverse events are preventable, and half of these events are related to medications [ 3 , 4 ]. There are various types of adverse events that patients can experience such as medication errors, patient falls, healthcare-associated infections, diagnostic errors, pressure ulcers, unsafe surgical procedures, patient misidentification, and others [ 1 ].

Over the last few decades, the approach of PS management has shifted toward actively involving patients and their families in managing PS. This innovative approach has surpassed the traditional model where healthcare providers were the sole managers of PS [ 5 ]. Recent research has shown that patients have a vital role in promoting their safety and decreasing the occurrence of adverse events [ 6 ]. Hence, there is a growing recognition of patient and family involvement as a promising method to enhance PS [ 7 ]. This approach includes involving patients in PS policy development, research, and shared decision making [ 1 ].

In the last decade, research involving patients and the public has significantly increased. In the United Kingdom (U.K), the National Institute for Health Research (NIHR) has played a critical role in providing strategic and infrastructure support to integrate Public and Patient Involvement (PPI) throughout publicly funded research [ 8 ]. This has established a context where PPI is recognised as an essential element in research [ 9 ]. In Ireland, the national government agency responsible for the management and delivery of all public health and social services; the National Health Service Executive (HSE) emphasise the importance of PPI in research and provide guidance for researchers on how to involve patients and public in all parts of the research cycle and knowledge translation process [ 10 ]. Similar initiatives are also developing among other European countries, North America, and Australia. However, despite this significant expansion of PPI research, the reporting of PPI in research articles continues to be sub-optimal, inconsistent, and lacks essential information on the context, process, and impact of PPI [ 9 ]. To address this problem, the Guidance for Reporting Involvement of Patients and the Public (GRIPP) was developed in 2011 following the EQUATOR methodology to enhance the quality, consistency, and transparency of PPI reporting. Additionally, to provide guidance for researchers, patients, and the public to advance the quality of the international PPI evidence-base [ 11 ]. The first GRIPP checklist was a significant start in producing higher-quality PPI reporting; however, it was developed following a systematic review, and did not include any input from the international PPI research community. Given the importance of reaching consensus in generating current reporting guidelines, a second version of the GRIPP checklist (GRIPP2) was developed to tackle this problem by involving the international PPI community in its development [ 9 ]. There are two versions of the GRIPP2 checklist, a long form (GRIPP2-LF) for studies with PPI as the primary focus, and a short form (GRIPP2-SF) for studies with PPI as secondary or tertiary focus.

Since the publication of the GRIPP2 checklist, several systematic reviews have been conducted to assess the quality of PPI reporting on various topics. For instance, Bergin et al. in their review to investigate the nature and impact of PPI in cancer research, reported a sub-optimal quality of PPI reporting using the GRIPP2-SF, mainly due to failure to address PPI challenges [ 12 ]. Similarly, Owyang et al. in their systematic review to assess the prevalence, extent, and quality of PPI in orthopaedic practice, described a poor PPI reporting following the GRIPP2-SF checklist criteria [ 13 ]. While a few systematic reviews have been conducted to assess theories, strategies, types of interventions, and barriers and enablers of PPI in PS [ 5 , 14 , 15 , 16 ], no previous review has assessed the quality of PPI reporting in PS research. Thus, our systematic review aims to address this knowledge gap. The objective of this review is to identify the frequency PPI reporting in PS research using the GRIPP2 checklist from 2018 (the year after GRIPP2 was published) and the quality of reporting following the GRIPP2-SF. The GRIPP2 checklist was chosen as the benchmark as it is the first international, evidence-based, community consensus informed guideline for the reporting of PPI in research and more specifically in health and social care research [ 9 ]. Additionally, it is the most recent report-focused framework and the most recommended by several leading journals [ 17 ].

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to plan and report this review [ 18 ]. The review protocol was published on PROSPERO the International Database of Prospectively Registered Systematic Reviews in August 2023 (CRD42023450715).

Search strategy

For this review, we used the PICo framework to define the key elements in our research. These included articles on patients and public (P-Population) involvement (I- phenomenon of Interest) in PS (C-context). Details are presented in Table  1 . Four databases were searched including Ovid MEDLINE, EMBASE, PsycINFO, and CINAHL to identify papers on PPI in PS research. A systematic search strategy was initially developed using MEDLINE. MeSH terms and keywords relevant to specific categories (e.g., patient safety) were combined using the “OR” Boolean term (i.e. patient safety OR adverse event OR medical error OR surgical error) and categories were then combined using the “AND” Boolean term. (i.e. “patient and public involvement” AND “patient safety”). The search strategy was adapted for the other three databases. Full search strategies are provided in Supplementary file 1 . The search was conducted on July 27th, 2023, and was limited to papers published from 2018. As the GRIPP2 tool was published in 2017, this limit ensured the retrieval of relevant studies. An alert system was set on the four databases to receive all new published studies until December 2023, prior to the final analysis. The search was conducted without restrictions on study type, research design, and language. To reduce selection bias, hand searching was carried out on the reference lists of all the eligible articles in the later stages of the review. This was done by the first author. The search strategy was developed by the first author and confirmed by the research team and a Librarian. The database search was conducted by the first author.

Inclusion and exclusion criteria

Studies on PPI in PS research with a focus on health/healthcare were included in this review. We defined PPI as active involvement which is in line with the NIHR INVOLVE definition as “research being carried out ‘with’ or ‘by’ members of the public rather than ‘to’, ‘about’ or ‘for’ them” [ 19 ]. This includes any PPI including, being a co-applicant on a research project or grant application, identifying research priorities, being a member of an advisory or steering group, participating in developing research materials or giving feedback on them, conducting interviews with study participants, participating in recruitment, data collection, data analysis, drafting manuscripts and/or dissemination of results. Accordingly, we excluded studies where patients or the public were only involved as research participants.

We defined patients and public to include patients, relatives, carers, caregivers and community, which is also in line with the NIHR PPI involvement in National Health Service [ 19 ].

Patient safety included topics on medication safety, adverse events, communication, safety culture, diagnostic errors, and others. A full list of the used terms for PPI and PS is provided in Supplementary file 1 . Regarding the research type and design, we included empirical qualitative, quantitative, mixed methods, and case studies. Only articles published in peer-reviewed journals and in English were included.

Any article that did not meet the inclusion criteria was excluded. Studies not reporting outcomes were excluded. Furthermore, review papers, conference abstracts, letters to editor, commentary, viewpoints, and short communications were excluded. Finally, papers published prior to 2018 were excluded.

Study selection

The selection of eligible studies was done by the first and the second authors independently, starting with title and abstracts screening to eliminate papers that failed to meet our inclusion criteria. Then, full text screening was conducted to decide on the final included papers in this review. Covidence, an online data management system supported the review process, ensuring reviewers were blinded to each other’s decisions. Disagreements between reviewers were discussed first, in cases where the disagreement was not resolved, the fourth author was consulted.

Data extraction and analysis

A data extraction sheet was developed using excel then piloted, discussed with the research team and modified as appropriate. The following data were extracted: citation and year of publication, objective of the study, country, PS topic, design, setting, PPI participants, PPI stages (identifying research priorities, being a member of an advisory or steering group, etc.…), frequency of PPI reporting as per the GRIPP2 checklist, and the availability of a plain language summary. Additionally, data against the five items of GRIPP2-SF (aim of PPI in the study, methods used for PPI, outcomes of PPI including the results and the extent to which PPI influenced the study overall, and reflections on PPI) were extracted. To avoid multiple publication bias and missing outcomes, data extraction was done by the first and the second authors independently and then compared. Disagreements between reviewers were first discussed, and then resolved by the third and fourth authors if needed.

Quality assessment

The quality of PPI reporting was assessed using GRIPP2-SF developed by Staniszewska et al. [ 9 ] as it is developed to improve the quality, consistency, and reporting of PPI in social and healthcare research. Additionally the GRIPP2-SF is suitable for all studies regardless of whether PPI is the primary, secondary, or tertiary focus, whereas the GRIPP2-LF is not suitable for studies where PPI serves as a secondary or tertiary focus. The checklist includes five items (mentioned above) that authors should include in their studies. It is important to mention that Staniszewska et al. noted that “while GRIPP2-SF aims to guide consistent reporting, it is not possible to be prescriptive about the exact content of each item, as the current evidence-base is not advanced enough to make this possible” ([ 9 ] p5). For that reason, we had to develop criteria for scoring the five reporting items. We used three scoring as Yes, No, and partial for each of the five items of the GRIPP2-SF. Yes, was given when authors presented PPI information on the item clearly in the paper. No, when no information was provided, and partial when the information partially met the item requirement. For example, as per GRIPP2-SF authors should provide a clear description of the methods used for PPI in the study. In the example given by Staniszewska et al., information on patient/public partners and how many of them were provided, as well as the stages of the study they were involved in (i.e. refining the focus of the research questions, developing the search strategy, interpreting results). Thus, in our evaluation of the included studies, we gave a yes if information on PPI participants (i.e. patient partners, community partners, or family members etc..) and how many of them were involved was provided, and information on the stages or actions of their involvement in the study was provided. However, we gave a “partial” if information was not fully provided (i.e. information on patient/public partners and how many were involved in the study without describing in what stages or actions they were involved, and vice versa), and a “No” if no information was presented at all.

The quality of PPI reporting was done by the first and the second authors independently and then compared. Disagreements between reviewers were first discussed, and then resolved by the third and fourth author when needed.

Assessing the quality or risk of bias of the included studies was omitted, as the focus in this review was on appraising the quality of PPI reporting rather than assessing the quality of each research article.

Data synthesis

After data extraction, a table summarising the included studies was developed. Studies were compared according to the main outcomes of the review; frequency of PPI reporting following the GRIPP2 checklist and the quality of reporting as per GRIPP2-SF five items, and the availability of a plain language summary.

Search results and study selection

The database searches yielded a total of 8491 studies. First, 2496 were removed as duplicates. Then, after title and abstract screening, 5785 articles were excluded leaving 210 articles eligible for the full text review. After a careful examination, 68 of these studies were included in this review. A further 38 studies were identified from the alert system that was set on the four databases and 32 studies from the reference check of the included studies. Of these 70 articles, 56 were further excluded and 14 were added to the previous 68 included studies. Thus, 82 studies met the inclusion criteria and were included in this review. A summary of the database search results and the study selection process are presented in Fig.  1 .

figure 1

PRISMA flow diagram of the study selection process. The PRISMA flow diagram details the review search results and selection process

Overview of included studies

Details of the study characteristics including first author and year of publication, objective, country, study design, setting, PS topic, PPI participants and involvement stages are presented in Supplementary file 2 . The majority of the studies were conducted in the U.K ( n  = 24) and the United States of America ( n  = 18), with the remaining 39 conducted in other high income countries, the exception being one study in Haiti. A range of study designs were identified, the most common being qualitative ( n  = 31), mixed methods ( n  = 13), interventional ( n  = 5), and quality improvement projects ( n  = 4). Most PS topics concerned medication safety ( n  = 17), PS in general (e.g., developing a PS survey or PS management application) ( n  = 14), fall prevention ( n  = 13), communication ( n  = 11), and adverse events ( n  = 10), with the remaining PS topics listed in Supplementary file 2 .

Patient representatives, advocates, and patient advisory groups ( n  = 33) and patients, service users, and health consumers ( n  = 32) were the main groups involved. The remaining, included community members/ organisations. Concerning PPI stages, the main involvement across the studies was in commenting on or developing research materials ( n  = 74) including, patient leaflets, interventional tools, mobile applications, and survey instruments. Following this stage, involvement in data analysis, drafting manuscripts, and disseminating results ( n  = 30), and being a member of a project advisory or steering group ( n  = 18) were the most common PPI evident in included studies. Whereas the least involvement was in identifying research priorities ( n  = 5), and being a co-applicant on a research project or grant application ( n  = 6).

Regarding plain language summary, only one out of the 82 studies (1.22%) provided a plain language summary in their paper [ 20 ].

Frequency and quality of PPI reporting

The frequency of PPI reporting following the GRIPP2 checklist was 6.1%, where only five of the 82 included studies reported PPI in their papers following the GRIPP2 checklist. The quality of PPI reporting in those studies is presented in Table  2 . Of these five studies, one study (20%) did not report the aim of PPI in the study and one (20%) did not comment on the extent to which PPI influenced the study overall.

The quality of PPI reporting of the remaining 77 studies is presented in Table  3 . The aim of PPI in the study was reported in 62.3% of articles ( n  = 48), while 3.9% ( n  = 3) partially reported this. A clear description of the methods used for PPI in the study was reported in 79.2% of papers ( n  = 61) and partially in 20.8% ( n  = 16). Concerning the outcomes, 81.8% of papers ( n  = 63) reported the results of PPI in the study, while 10.4% ( n  = 8) partially did. Of the 77 studies, 68.8% ( n  = 53) reported the extent to which PPI influenced the study overall and 3.9% ( n  = 3) partially reported this. Finally, 57.1% ( n  = 44) of papers critically reflected on the things that went well and those that did not and 2.6% ( n  = 2) partially reflected on this.

Summary of main findings

This systematic review assessed the frequency of reporting PPI in PS research using the GRIPP2 checklist and quality of reporting using the GRIPP2-SF. In total, 82 studies were included in this review. Major PS topics were related to medication safety, general PS, and fall prevention. Patient representatives, advocates, patient advisory groups, patients, service users, and health consumers were the most involved. The main involvement across the studies was in commenting on or developing research materials such as educational and interventional tools, survey instruments, and applications while the least was in identifying research priorities and being a co-applicant on a research project or grant application. Thus, significant effort is still needed to involve patients and the public in the earlier stages of the research process given the fundamental impact of PS on their lives.

Overall completeness and applicability of evidence

A low frequency of reporting PPI in PS research following the GRIPP2 guidelines was revealed in this review, where only five of the 82 studies included mentioned that PPI was reported as per the GRIPP2 checklist. This is despite it being the most recent report-focused framework and the most recommended by several leading journals [ 17 ]. This was not surprising as similar results were reported in recent reviews in other healthcare topics. For instance, Musbahi et al. in their systematic review on PPI reporting in bariatric research reported that none of the 90 papers identified in their review mentioned or utilised the GRIPP2 checklist [ 102 ]. Similarly, a study on PPI in orthodontic research found that none of the 363 included articles reported PPI against the GRIPP2 checklist [ 103 ].

In relation to the quality of reporting following the GRIPP2-SF criteria, our findings show sub-optimal reporting within the 77 studies that did not use GRIPP2 as a guide/checklist to report their PPI. Similarly, Bergin et al. in their systematic review to investigate the nature and impact of PPI in cancer research concluded that substandard reporting was evident [ 12 ]. In our review, this was mainly due to failure to meet three criteria. First, the lowest percentage of reporting (57.1%, n  = 44) was related to critical reflection on PPI in the study (i.e., what went well and what did not). In total, 31 studies (42.9%) did not provide any information on this, and two studies were scored as partial. The first study mentioned that only involving one patient was a limitation [ 27 ] and the other stated that including three patients in the design of the tool was a strength [ 83 ]. Both studies did not critically comment or reflect on these points so that future researchers are able to avoid such problems and enhance PPI opportunities. For instance, providing the reasons/challenges behind the exclusive inclusion of a single patient and explaining how this limits the study findings and conclusion would help future researchers to address these challenges. Likewise, commenting on why incorporating three patients in the design of the study tool could be seen as a strength would have been beneficial. This could be, fostering diverse perspectives and generating novel ideas for developing the tool. Similar to our findings, Bergin et al. in their systematic review reported that 40% of the studies failed to meet this criterion [ 12 ].

Second, only 48 out of 77 articles (62.3%) reported the aim of PPI in their study, which is unlike the results of Bergin et al. where most of the studies (93.1%) in their review met this criterion [ 12 ]. Of the 29 studies which did not meet this criterion in our review, few mentioned in their objective developing a consensus-based instrument [ 41 ], reaching a consensus on the patient-reported outcomes [ 32 ], obtaining international consensus on a set of core outcome measures [ 98 ], and facilitating a multi-stakeholder dialogue [ 71 ] yet, without indicating anything in relation to patients, patient representatives, community members, or any other PPI participants. Thus, the lack of reporting the aim of PPI was clearly evident in this review. Reporting the aim of PPI in the study is crucial for promoting transparency, methodological rigor, reproducibility, and impact assessment of the PPI.

Third, 68.8% ( n  = 53) of the studies reported the extent to which PPI influenced the study overall including positive and negative effects if any. This was again similar to the findings of Bergin et al., where 38% of the studies did not meet this criterion mainly due to a failure to address PPI challenges in their respective studies [ 12 ]. Additionally, Owyang et al. in their review on the extent, and quality of PPI in orthopaedic practice, also described a poor reporting of PPI impact on research [ 13 ]. As per the GRIPP2 guidelines, both positive and negative effects of PPI on the study should be reported when applicable. Providing such information is essential as it enhances future research on PPI in terms of both practice and reporting.

Reporting a clear description of the methods used for PPI in the study was acceptable, with 79.2% of the papers meeting this criterion. Most studies provided information in the methods section of their papers on the PPI participants, their number, stages of their involvement and how they were involved. Providing clear information on the methods used for PPI is vital to give the reader a clear understanding of the steps taken to involve patients, and for other researchers to replicate these methods in future research. Additionally, reporting the results of PPI in the study was also acceptable with 81.8% of the papers reporting the outcomes of PPI in the results section. Reporting the results of PPI is important for enhancing methodological transparency, providing a more accurate interpretation for the study findings, contributing to the overall accountability and credibility of the research, and informing decision making.

Out of the 82 studies included in this review, only one study provided a plain language summary. We understand that PS research or health and medical research in general is difficult for patients and the public to understand given their diverse health literacy and educational backgrounds. However, if we expect patients and the public to be involved in research then, it is crucial to translate this research that has a huge impact on their lives into an easily accessible format. Failing to translate the benefits that such research may have on patient and public lives may result in them underestimating the value of this research and losing interest in being involved in the planning or implementation of future research [ 103 ]. Thus, providing a plain language summary for research is one way to tackle this problem. To our knowledge, only a few health and social care journals (i.e. Cochrane and BMC Research Involvement and Engagement) necessitate a plain language summary as a submission requirement. Having this as a requirement for submission is crucial in bringing the importance of this issue to researchers’ attention.

Research from recent years suggests that poor PPI reporting in articles relates to a lack of submission requirements for PPI reporting in journals and difficulties with word limits for submitted manuscripts [ 13 ]. Price et al. assessed the frequency of PPI reporting in published papers before and after the introduction of PPI reporting obligations by the British Medical Journal (BMJ) [ 104 ]. The authors identified an increase in PPI reporting in papers published by BMJ from 0.5% to 11% between the periods of 2013–2014 and 2015–2016. The study findings demonstrate the impact of journal guidelines in shaping higher quality research outputs [ 13 ]. In our review, we found a low frequency of PPI reporting in PS research using the GRIPP2 checklist, alongside sub-optimal quality of reporting following GRIPP2-SF. This could potentially be attributed to the absence of submission requirements for PPI reporting in journals following the GRIPP2 checklist, as well as challenges posed by word limits.

Strengths and limitations

This systematic review presents an overview on the frequency of PPI reporting in PS research using the GRIPP2 checklist, as well as an evaluation of the quality of reporting following the GRIPP2-SF. As the first review to focus on PS research, it provides useful knowledge on the status of PPI reporting in this field, and the extent to which researchers are adopting and adhering to PPI reporting guidelines. Despite these strengths, our review has some limitations that should be mentioned. First, only English language papers were included in this review due to being the main language of the researchers. Thus, there is a possibility that relevant articles on PPI in PS research may have been omitted. Another limitation is related to our search which was limited to papers published starting 2018 as the GRIPP2 guidelines were published in 2017. Thus it is probable that the protocols of some of these studies were developed earlier than the publication of the GRIPP2 checklist, meaning that PPI reporting following GRIPP2 was not common practice and thus not adopted by these studies. This might limit the conclusions we can draw from this review. Finally, the use of GRIPP2 to assess the quality of PPI reporting might be a limitation as usability testing has not yet been conducted to understand how the checklist works in practice with various types of research designs. However, the GRIPP2 is the first international, evidence-based, community consensus informed guideline for the reporting of PPI in health and social care research. Reflections and comments from researchers using the GRIPP2 will help improve its use in future studies.

Implications for research and practice

Lack of PPI reporting not only affects the quality of research but also implies that others cannot learn from previous research experience. Additionally, without consistent and transparent reporting it is difficult to evaluate the impact of various PPI in research [ 9 ]: “if it is not reported it cannot be assessed” ([ 105 ] p19). Enhanced PPI reporting will result in a wider range and richer high-quality evidence-based PPI research, leading to a better understanding of PPI use and effectiveness [ 103 ]. GRIPP2 reporting guidelines were developed to provide guidance for researchers, patients, and the public to enhance the quality of PPI reporting and improve the quality of the international PPI evidence-base. The guidance can be used prospectively to plan PPI or retrospectively to guide the structure or PPI reporting in research [ 9 ]. To enhance PPI reporting, we recommend the following;

Publishers and journals

First, we encourage publishers and journals to require researchers to report PPI following the GRIPP2 checklist. Utilising the short or the long version should depend on the primary focus of the study (i.e., if PPI is within the primary focus of the research then the GRIPP2-LF is recommended). Second, we recommend that journals and editorial members advise reviewers to evaluate PPI reporting within research articles following the GRIPP2 tool and make suggestions accordingly. Finally, we encourage journals to add a plain language summary as a submission requirement to increase research dissemination and improve the accessibility of research for patients and the public.

Researchers

Though there is greater evidence of PPI in research, it is still primarily the researchers that are setting the research agenda and deciding on the research questions to be addressed. Thus, significant effort is still needed to involve patients and the public in the earlier stages of the research process given the fundamental impact of PS on their lives. To enhance future PPI reporting, perhaps adding a criterion following the GRIPP2 tool to existing EQUATOR checklists for reporting research papers such as STROBE, PRISMA, CONSORT, may support higher quality research. Additionally, currently, there is no detailed explanation paper for the GRIPP2 where each criterion is explained in detail with examples. Addressing this gap would be of great benefit to guide the structure of PPI reporting and to explore the applicability of each criterion in relation to different stages of PPI in research. For instance, having a detailed explanation for each criterion across different research studies having various PPI stages would be of high value to improve future PPI reporting given the growing interest in PPI research in recent years and the relatively small PPI evidence base in health and medical research.

Funding bodies can also enhance PPI reporting by adding a requirement for researchers to report PPI following the GRIPP2 checklist. In Ireland, the National HSE has already initiated this by requiring all PPI in HSE research in Ireland to be reported following the GRIPP2 guidelines [ 10 ].

This study represents the first systematic review on the frequency and quality of PPI reporting in PS research using the GRIPP2 checklist. Most PS topics were related to medication safety, general PS, and fall prevention. The main involvement across the studies was in commenting on or developing research materials. Thus, efforts are still needed to involve patients and the public across all aspects of the research process, especially earlier stages of the research cycle. The frequency of PPI reporting following the GRIPP2 guidelines was low, and the quality of reporting following the GRIPP2-SF criteria was sub-optimal. The lowest percentages of reporting were on critically reflecting on PPI in the study so future research can learn from this experience and work to improve it, reporting the aim of the PPI in the study, and reporting the extent to which PPI influenced the study overall including positive and negative effects. Researchers, funders, publishers, journals, editorial members and reviewers have a responsibility to promote consistent and transparent PPI reporting following internationally developed reporting guidelines such as the GRIPP2. Evidence-based guidelines for reporting PPI should be supported to help future researchers plan and report PPI more effectively, which may ultimately improve the quality and relevance of research.

Availability of data and materials

All data generated or analysed during this study are included in this published article and its Supplementary information files.

Abbreviations

  • Patient safety

United Kingdom

National Institute for Health Research

Public and Patient Involvement

Health Service Executive

Guidance for Reporting Involvement of Patients and the Public

Second version of the GRIPP checklist

Long form of GRIPP2

Short form of GRIPP2

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

The International Database of Prospectively Registered Systematic Reviews

British Medical Journal

Patient saftey: World Health Organisation. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/patient-safety . Updated 11 Sept 2023.

Slawomirski L, Klazinga N. The economics of patient safety: from analysis to action. Paris: Organisation for Economic Co-operation and Development; 2020.

Google Scholar  

Panagioti M, Khan K, Keers RN, Abuzour A, Phipps D, Kontopantelis E, et al. Prevalence, severity, and nature of preventable patient harm across medical care settings: systematic review and meta-analysis. Bmj-Brit Med J. 2019;366:l4185.

Article   Google Scholar  

Hodkinson A, Tyler N, Ashcroft DM, Keers RN, Khan K, Phipps D, et al. Preventable medication harm across health care settings: a systematic review and meta-analysis. Bmc Medicine. 2020;18(1):313.

Article   PubMed   PubMed Central   Google Scholar  

Park M, Giap TTT. Patient and family engagement as a potential approach for improving patient safety: A systematic review. J Adv Nurs. 2020;76(1):62–80.

Article   PubMed   Google Scholar  

Chegini Z, Janati A, Bababie J, Pouraghaei M. The role of patients in the delivery of safe care in hospital: Study protocol. J Adv Nurs. 2019;75(9):2015–23.

Chegini Z, Arab-Zozani M, Islam SMS, Tobiano G, Rahimi SA. Barriers and facilitators to patient engagement in patient safety from patients and healthcare professionals’ perspectives: A systematic review and meta-synthesis. Nurs Forum. 2021;56(4):938–49.

Going the extra mile: improving the nation’s health and wellbeing through public involvement in research. London: National Institute for Health; 2015.

Staniszewska S, Brett J, Simera I, Seers K, Mockford C, Goodlad S, et al. GRIPP2 reporting checklists: tools to improve reporting of patient and public involvement in research. Bmj-Brit Med J. 2017;358:j3453.

Article   CAS   Google Scholar  

Minogue V. Knowledge translation, dissemination, and impact: a practical guide for researchers. Guide No 8: patient and public involvement in HSE research. Ireland: Health Service Executive Research and Development; 2021.

Staniszewska S, Brett J, Mockford C, Barber R. The GRIPP checklist: Strengthening the quality of patient and public involvement reporting in research. Int J Technol Assess Health Care. 2011;27(4):391–9.

Bergin RJ, Short CE, Davis N, Marker J, Dawson MT, Milton S, et al. The nature and impact of patient and public involvement in cancer prevention, screening and early detection research: A systematic review. Prev Med. 2023;167:107412.

Owyang D, Bakhsh A, Brewer D, Boughton OR, Cobb JP. Patient and public involvement within orthopaedic research a systematic review. J Bone Joint Surg Am. 2021;103(13):e51.

Busch IM, Saxena A, Wu AW. Putting the patient in patient safety investigations: barriers and strategies for involvement. J Patient Saf. 2021;17(5):358–62.

Lee M, Lee NJ, Seo HJ, Jang H, Kim SM. Interventions to engage patients and families in patient safety: a systematic review. West J Nurs Res. 2021;43(10):972–83.

Ocloo J, Garfield S, Franklin BD, Dawson S. Exploring the theory, barriers and enablers for patient and public involvement across health, social care and patient safety: a systematic review of reviews. Health Res Policy Syst. 2021;19(1):8.

Greenhalgh T, Hinton L, Finlay T, Macfarlane A, Fahy N, Clyde B, et al. Frameworks for supporting patient and public involvement in research: Systematic review and co-design pilot. Health Expect. 2019;22(4):785–801.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Plos Medicine. 2021;18(3):372.

INVOLVE. What is public involvement in research? NIHR; 2019. Available from: https://www.invo.org.uk/find-out-more/what-is-public-involvement-in-research-2/ .

Shahid A, Sept B, Kupsch S, Brundin-Mather R, Piskulic D, Soo A, et al. Development and pilot implementation of a patient-oriented discharge summary for critically Ill patients. World J Crit Care Med. 2022;11(4):255–68.

Bisset CN, Dames N, Oliphant R, Alasadi A, Anderson D, Parson S, et al. Exploring shared surgical decision-making from the patient’s perspective: is the personality of the surgeon important? Colorectal Dis. 2020;22(12):2214–21.

Article   CAS   PubMed   Google Scholar  

Morris RL, Ruddock A, Gallacher K, Rolfe C, Giles S, Campbell S. Developing a patient safety guide for primary care: A co-design approach involving patients, carers and clinicians. Health Expect. 2021;24(1):42–52.

Tobiano G, Marshall AP, Gardiner T, Jenkinson K, Shapiro M, Ireland M. Development and psychometric testing of the patient participation in bedside handover survey. Health Expect. 2022;25(5):2492–502.

Francis-Coad J, Farlie MK, Haines T, Black L, Weselman T, Cummings P, et al. Revising and evaluating falls prevention education for older adults in hospital. Health Educ J. 2023;82(8):878–91.

Troya MI, Chew-Graham CA, Babatunde O, Bartlam B, Higginbottom A, Dikomitis L. Patient and public involvement and engagement in a doctoral research project exploring self-harm in older adults. Health Expect. 2019;22(4):617–31.

Aharaz A, Kejser CL, Poulsen MW, Jeftic S, Ulstrup-Hansen AI, Jorgensen LM, et al. Optimization of the Danish National Electronic Prescribing System to improve patient safety: Development of a user-friendly prototype of the digital platform shared medication record. Pharmacy (Basel, Switzerland). 2023;11(2):41.

PubMed   Google Scholar  

Aho-Glele U, Bouabida K, Kooijman A, Popescu IC, Pomey MP, Hawthornthwaite L, et al. Developing the first pan-Canadian survey on patient engagement in patient safety. BMC Health Serv Res. 2021;21(1):1099.

Albutt A, O’Hara J, Conner M, Lawton R. Involving patients in recognising clinical deterioration in hospital using the patient wellness questionnaire: A mixed-methods study. J Res Nurs. 2020;25(1):68–86.

Bell SK, Bourgeois F, DesRoches CM, Dong J, Harcourt K, Liu SK, et al. Filling a gap in safety metrics: development of a patient-centred framework to identify and categorise patient-reported breakdowns related to the diagnostic process in ambulatory care. BMJ Qual Saf. 2022;31(7):526–40.

Boet S, Etherington N, Lam S, Lê M, Proulx L, Britton M, et al. Implementation of the Operating Room Black Box research program at the Ottawa Hospital through patient, clinical, and organizational engagement: Case study. J Med Internet Res. 2021;23(3):e15443.

Carter J, Tribe RM, Shennan AH, Sandall J. Threatened preterm labour: Women’s experiences of risk and care management: A qualitative study. Midwifery. 2018;64:85–92.

Da Silva Lopes AM, Colomer-Lahiguera S, Mederos Alfonso N, Aedo-Lopez V, Spurrier-Bernard G, Tolstrup LK, et al. Patient-reported outcomes for monitoring symptomatic toxicities in cancer patients treated with immune-checkpoint inhibitors: A Delphi study. Eur J Cancer. 2021;157:225–37.

de Jong LD, Lavender AP, Wortham C, Skelton DA, Haines TP, Hill AM. Exploring purpose-designed audio-visual falls prevention messages on older people’s capability and motivation to prevent falls. Health Soc Care Community. 2019;27(4):e471–82.

Doucette L, Kiely BT, Gierisch JM, Marion E, Nadler L, Heflin MT, et al. Participatory research to improve medication reconciliation for older adults in the community. J Am Geriatr Soc. 2023;71(2):620–31.

Elrod CS, Pappa ST, Heyn PC, Wong RA. Using an academic-community partnership model to deliver evidence-based falls prevention programs in a metropolitan setting: A community case study. Front Public Health. 2023;11:1073520.

Feldman E, Pos FJ, Smeenk RJ, van der Poel H, van Leeuwen P, de Feijter JM, et al. Selecting a PRO-CTCAE-based subset for patient-reported symptom monitoring in prostate cancer patients: a modified Delphi procedure. ESMO Open. 2023;8(1):100775.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Francis-Coad J, Watts T, Bulsara C, Hill A-M. Designing and evaluating falls prevention education with residents and staff in aged care homes: a feasibility study. Health Educ (0965-4283). 2022;122(5):546–63.

Fuller TE, Pong DD, Piniella N, Pardo M, Bessa N, Yoon C, et al. Interactive digital health tools to engage patients and caregivers in discharge preparation: implementation study. J Med Internet Res. 2020;22(4):e15573.

Gibson B, Butler J, Schnock K, Bates D, Classen D. Design of a safety dashboard for patients. Patient Educ Couns. 2020;103(4):741–7.

Giles SJ, Lewis PJ, Phipps DL, Mann F, Avery AJ, Ashcroft DM. Capturing patients’ perspectives on medication safety: the development of a patient-centered medication safety framework. J Patient Saf. 2020;16(4):e324–39.

Gnagi R, Zuniga F, Brunkert T, Meyer-Massetti C. Development of a medication literacy assessment instrument (MELIA) for older people receiving home care. J Adv Nurs. 2022;78(12):4210–20.

Goodsmith N, Zhang L, Ong MK, Ngo VK, Miranda J, Hirsch S, et al. Implementation of a community-partnered research suicide-risk management protocol: case study from community partners in care. Psychiatr Serv (Washington, DC). 2021;72(3):281–7.

Gorman LS, Littlewood DL, Quinlivan L, Monaghan E, Smith J, Barlow S, et al. Family involvement, patient safety and suicide prevention in mental healthcare: ethnographic study. BJPsych open. 2023;9(2):e54.

Green MM, Meyer C, Hutchinson AM, Sutherland F, Lowthian JA. Co‐designing being your best program—a holistic approach to frailty in older community dwelling australians. Health Soc Care Community. 2021;30(5):e2022–32.

Guo X, Wang Y, Wang L, Yang X, Yang W, Lu Z, et al. Effect of a fall prevention strategy for the older patients: A quasi-experimental study. Nurs Open. 2023;10(2):1116–24.

Hahn-Goldberg S, Chaput A, Rosenberg-Yunger Z, Lunsky Y, Okrainec K, Guilcher S, et al. Tool development to improve medication information transfer to patients during transitions of care: A participatory action research and design thinking methodology approach. Res Social Adm Pharm. 2022;18(1):2170–7.

Harrington A, Darke H, Ennis G, Sundram S. Evaluation of an alternative model for the management of clinical risk in an adult acute psychiatric inpatient unit. Int J Ment Health Nurs. 2019;28(5):1099–109.

Harris K, Softeland E, Moi AL, Harthug S, Ravnoy M, Storesund A, et al. Development and validation of patients’ surgical safety checklist. BMC Health Serv Res. 2022;22(1):259.

Hawley-Hague H, Tacconi C, Mellone S, Martinez E, Ford C, Chiari L, et al. Smartphone apps to support falls rehabilitation exercise: app development and usability and acceptability study. JMIR Mhealth Uhealth. 2020;8(9):e15460.

Holmqvist M, Ros A, Lindenfalk B, Thor J, Johansson L. How older persons and health care professionals co-designed a medication plan prototype remotely to promote patient safety: case study. JMIR aging. 2023;6:e41950.

Jayesinghe R, Moriarty F, Khatter A, Durbaba S, Ashworth M, Redmond P. Cost outcomes of potentially inappropriate prescribing in middle-aged adults: A Delphi consensus and cross-sectional study. Br J Clin Pharmacol. 2022;88(7):3404–20.

Johannessen T, Ree E, Stromme T, Aase I, Bal R, Wiig S. Designing and pilot testing of a leadership intervention to improve quality and safety in nursing homes and home care (the SAFE-LEAD intervention). BMJ Open. 2019;9(6):e027790.

Joseph K, Newman B, Manias E, Walpola R, Seale H, Walton M, et al. Engaging with ethnic minority consumers to improve safety in cancer services: A national stakeholder analysis. Patient Educ Couns. 2022;105(8):2778–84.

Khan A, Spector ND, Baird JD, Ashland M, Starmer AJ, Rosenbluth G, et al. Patient safety after implementation of a coproduced family centered communication programme: multicenter before and after intervention study. BMJ. 2018;363:k4764.

Khazen M, Mirica M, Carlile N, Groisser A, Schiff GD. Developing a framework and electronic tool for communicating diagnostic uncertainty in primary care: a qualitative study. JAMA Network Open. 2023;6(3):e232218-e.

Knight SW, Trinkle J, Tschannen D. Hospital-to-homecare videoconference handoff: improved communication, coordination of care, and patient/family engagement. Home Healthc Now. 2019;37(4):198–207.

Lawrence V, Kimona K, Howard RJ, Serfaty MA, Wetherell JL, Livingston G, et al. Optimising the acceptability and feasibility of acceptance and commitment therapy for treatment-resistant generalised anxiety disorder in older adults. Age Ageing. 2019;48(5):741–50.

Louch G, Reynolds C, Moore S, Marsh C, Heyhoe J, Albutt A, et al. Validation of revised patient measures of safety: PMOS-30 and PMOS-10. BMJ Open. 2019;9(11):e031355.

MacDonald T, Jackson S, Charles M-C, Periel M, Jean-Baptiste M-V, Salomon A, et al. The fourth delay and community-driven solutions to reduce maternal mortality in rural Haiti: a community-based action research study. BMC Pregnancy Childbirth. 2018;18(1):254.

Mackintosh N, Sandall J, Collison C, Carter W, Harris J. Employing the arts for knowledge production and translation: Visualizing new possibilities for women speaking up about safety concerns in maternity. Health Expect. 2018;21(3):647–58.

Marchand K, Turuba R, Katan C, Brasset C, Fogarty O, Tallon C, et al. Becoming our young people’s case managers: caregivers’ experiences, needs, and ideas for improving opioid use treatments for young people using opioids. Subst Abuse Treat Prev Policy. 2022;17(1):1–15.

Mazuz K, Biswas S. Co-designing technology and aging in a service setting: Developing an interpretive framework of how to interact with older age users. Gerontechnology. 2022;21(1):1–13.

McCahon D, Duncan P, Payne R, Horwood J. Patient perceptions and experiences of medication review: qualitative study in general practice. BMC Prim Care. 2022;23(1):293.

McMullen S, Panagioti M, Planner C, Giles S, Angelakis I, Keers RN, et al. Supporting carers to improve patient safety and maintain their well-being in transitions from mental health hospitals to the community: A prioritisation nominal group technique. Health Expect. 2023;26(5):2064–74.

Morris RL, Giles S, Campbell S. Involving patients and carers in patient safety in primary care: A qualitative study of a co-designed patient safety guide. Health Expect. 2023;26(2):630–9.

Morris RL, Stocks SJ, Alam R, Taylor S, Rolfe C, Glover SW, et al. Identifying primary care patient safety research priorities in the UK: a James Lind Alliance Priority Setting Partnership. BMJ Open. 2018;8(2):e020870.

Nether KG, Thomas EJ, Khan A, Ottosen MJ, Yager L. Implementing a robust process improvement program in the neonatal intensive care unit to reduce harm. J Healthc Qual. 2022;44(1):23–30.

Powell C, Ismail H, Cleverley R, Taylor A, Breen L, Fylan B, et al. Patients as qualitative data analysts: Developing a method for a process evaluation of the “Improving the Safety and Continuity of Medicines management at care Transitions” (ISCOMAT) cluster randomised control trial. Health Expect. 2021;24(4):1254–62.

Article   PubMed Central   Google Scholar  

Powell C, Ismail H, Davis M, Taylor A, Breen L, Fylan B, et al. Experiences of patients with heart failure with medicines at transition intervention: Findings from the process evaluation of the Improving the Safety and Continuity of Medicines management at Transitions of care (ISCOMAT) programme. Health Expect. 2022;25(5):2503–14.

Radecki B, Keen A, Miller J, McClure JK, Kara A. Innovating fall safety: engaging patients as experts. J Nurs Care Qual. 2020;35(3):220–6.

Rosgen BK, Plotnikoff KM, Krewulak KD, Shahid A, Hernandez L, Sept BG, et al. Co-development of a transitions in care bundle for patient transitions from the intensive care unit: a mixed-methods analysis of a stakeholder consensus meeting. BMC Health Serv Res. 2022;22(1):10.

Schenk EC, Bryant RA, Van Son CR, Odom-Maryon T. Developing an intervention to reduce harm in hospitalized patients: patients and families in research. J Nurs Care Qual. 2019;34(3):273–8.

Spazzapan M, Vijayakumar B, Stewart CE. A bit about me: Bedside boards to create a culture of patient-centered care in pediatric intensive care units (PICUs). J Healthc Risk Manag. 2020;39(3):11–9.

Stoll JA, Ranahan M, Richbart MT, Brennan-Taylor MK, Taylor JS, Brady L, et al. Development of video animations to encourage patient-driven deprescribing: A team alice study. Patient Educ Couns. 2021;104(11):2716–23.

Subbe CP, Tomos H, Jones GM, Barach P. Express check-in: developing a personal health record for patients admitted to hospital with medical emergencies: a mixed-method feasibility study. Int J Qual Health Care. 2021;33(3):121.

Tai D, Li E, Liu-Ambrose T, Bansback N, Sadatsafavi M, Davis JC. Patient-Reported Outcome Measures (PROMs) to support adherence to falls prevention clinic recommendations: a qualitative study. Patient Prefer Adherence. 2020;14:2105–21.

Thakur T, Chewning B, Zetes N, Lee JTY. Involving caregivers in design and assessment of opioid risk and safety communication intervention in children. Patient Educ Couns. 2021;104(10):2432–6.

Thomas J, Dahm MR, Li J, Georgiou A. Can patients contribute to enhancing the safety and effectiveness of test-result follow-up? Qualitative outcomes from a health consumer workshop. Health Expect. 2021;24(2):222–33.

Tremblay MC, Bradette-Laplante M, Witteman HO, Dogba MJ, Breault P, Paquette JS, et al. Providing culturally safe care to indigenous people living with diabetes: Identifying barriers and enablers from different perspectives. Health Expect. 2021;24(2):296–306.

Troya MI, Dikomitis L, Babatunde OO, Bartlam B, Chew-Graham CA. Understanding self-harm in older adults: A qualitative study. EClinicalMedicine. 2019;12:52–61.

Tyler N, Giles S, Daker-White G, McManus BC, Panagioti M. A patient and public involvement workshop using visual art and priority setting to provide patients with a voice to describe quality and safety concerns: Vitamin B12 deficiency and pernicious anaemia. Health Expect. 2021;24(1):87–94.

Tyler N, Planner C, Shears B, Hernan A, Panagioti M, Giles S. Developing the Resident Measure of Safety in Care Homes (RMOS): A Delphi and think aloud study. Health Expect. 2023;26(3):1149–58.

Van den Bulck SA, Vankrunkelsven P, Goderis G, Van Pottelbergh G, Swerts J, Panis K, et al. Developing quality indicators for Chronic Kidney Disease in primary care, extractable from the Electronic Medical Record. A Rand-modified Delphi method. BMC Nephrol. 2020;21(1):161.

Van Strien-Knippenberg IS, Boshuizen MCS, Determann D, de Boer JH, Damman OC. Cocreation with Dutch patients of decision-relevant information to support shared decision-making about adjuvant treatment in breast cancer care. Health Expect. 2022;25(4):1664–77.

Wilson NA, Reich AJ, Graham J, Bhatt DL, Nguyen LL, Weissman JS. Patient perspectives on the need for implanted device information: Implications for a post-procedural communication framework. Health Expect. 2021;24(4):1391–402.

Winterberg AV, Lane B, Hill LM, Varughese AM. Optimizing Pediatric Induction Experiences Using Human-centered Design. J Perianesth Nurs. 2022;37(1):48–52.

Yang R, Donaldson GW, Edelman LS, Cloyes KG, Sanders NA, Pepper GA. Fear of older adult falling questionnaire for caregivers (FOAFQ-CG): Evidence from content validity and item-response theory graded-response modelling. J Adv Nurs. 2020;76(10):2768–80.

Young A, Menon D, Street J, Al-Hertani W, Stafinski T. A checklist for managed access programmes for reimbursement co-designed by Canadian patients and caregivers. Health Expect. 2018;21(6):973–80.

Yuen EYN, Street M, Abdelrazek M, Blencowe P, Etienne G, Liskaser R, et al. Evaluating the efficacy of a digital App to enhance patient-centred nursing handover: A simulation study. J Clin Nurs. 2023;32(19–20):7626–37.

Jo S, Nabatchi T. Coproducing healthcare: individual-level impacts of engaging citizens to develop recommendations for reducing diagnostic error. Public Manag Rev. 2019;21(3):354–75.

O’Hara JK, Reynolds C, Moore S, Armitage G, Sheard L, Marsh C, et al. What can patients tell us about the quality and safety of hospital care? Findings from a UK multicentre survey study. BMJ Qual Saf. 2018;27(9):673–82.

de Jong LD, Francis-Coad J, Wortham C, Haines TP, Skelton DA, Weselman T, et al. Evaluating audio-visual falls prevention messages with community-dwelling older people using a World Cafe forum approach. BMC Geriatrics. 2019;19(1):345.

O’Donnell D, Shé ÉN, McCarthy M, Thornton S, Doran T, Smith F, et al. Enabling public, patient and practitioner involvement in co-designing frailty pathways in the acute care setting. BMC Health Serv Res. 2019;19(1):797.

Russ S, Latif Z, Hazell A, Ogunmuyiwa H, Tapper J, Wachuku-King S, et al. A Smartphone app designed to empower patients to contribute toward safer surgical care: community-based evaluation using a participatory approach. Jmir Mhealth Uhealth. 2020;8(1):e12859.

Mazuz K, Biswas S, Lindner U. Developing self-management application of fall prevention among older adults: a content and usability evaluation. Front Digital Health. 2020;2:11.

Hjelmfors L, Strömberg A, Friedrichsen M, Sandgren A, Mårtensson J, Jaarsma T. Using co-design to develop an intervention to improve communication about the heart failure trajectory and end-of-life care. Bmc Palliat Care. 2018;17:17.

Horgan S, Hegarty J, Andrews E, Hooton C, Drennan J. Impact of a quality improvement intervention on the incidence of surgical site infection in patients undergoing colorectal surgery: Pre-test-post-test design. J Clin Nurs. 2023;32(15–16):4932–46.

Tyler N, Wright N, Grundy A, Waring J. Developing a core outcome set for interventions to improve discharge from mental health inpatient services: a survey, Delphi and consensus meeting with key stakeholder groups. BMJ Open. 2020;10(5):e034215.

Ward ME, De Brún A, Beirne D, Conway C, Cunningham U, English A, et al. Using Co-Design to Develop a Collective Leadership Intervention for Healthcare Teams to Improve Safety Culture. Int J Environ Res Public Health. 2018;15(6):1182.

Berthelsen DB, Simon LS, Ioannidis JPA, Voshaar M, Richards P, Goel N, et al. Stakeholder endorsement advancing the implementation of a patient-reported domain for harms in rheumatology clinical trials: outcome of the OMERACT safety working group. Semin Arthritis Rheum. 2023;63:152288.

Okkenhaug A, Tritter JQ, Landstad BJ. Developing a research tool to detect iatrogenic adverse events in psychiatric health care by involving service users and health professionals. J Psychiatr Ment Health Nurs. 2023;00:1–12.

Musbahi A, Clyde D, Small P, Courtney M, Mahawar K, Lamb PJ, et al. A systematic review of patient and public involvement (PPI) in bariatric research trials: the need for more work. Obes Surg. 2022;32(11):3740–51.

Patel VA, Shelswell J, Hillyard N, Pavitt S, Barber SK. A study of the reporting of patient and public involvement and engagement (PPIE) in orthodontic research. J Orthod. 2021;48(1):42–51.

Price A, Schroter S, Snow R, Hicks M, Harmston R, Staniszewska S, et al. Frequency of reporting on patient and public involvement (PPI) in research studies published in a general medical journal: a descriptive study. BMJ Open. 2018;8:e020452.

Amadea T, Anne-Marie B, Louise L. A researcher’s guide to patient and public involvement. 2017.

Download references

Acknowledgements

This research is funded as part of the Collective Leadership and Safety Cultures (Co-Lead) research programme which is funded by the Irish Health Research Board, grant reference number RL-2015–1588 and the Health Service Executive. The funders had no role in the study conceptualisation, design, data collection, analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and affiliations.

UCD Centre for Interdisciplinary Research, Education and Innovation in Health Systems (UCD IRIS), School of Nursing, Midwifery and Health Systems, Health Sciences Centre, University College Dublin, Dublin, Ireland

Sahar Hammoud, Laith Alsabek, Lisa Rogers & Eilish McAuliffe

Department of Oral and Maxillofacial Surgery, University Hospital Galway, Galway, Ireland

Laith Alsabek

You can also search for this author in PubMed   Google Scholar

Contributions

S.H and E.M.A designed the study. S.H developed the search strategies with feedback from L.A, L.R, and E.M.A. S.H conducted all searches. S.H and L.A screened the studies, extracted the data, and assessed the quality of PPI reporting. S.H analysed the data with feedback from E.M.A. S.H drafted the manuscript. All authors revised and approved the submitted manuscript. All authors agreed to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Authors’ information

Corresponding author.

Correspondence to Sahar Hammoud .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1., supplementary material 2., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Hammoud, S., Alsabek, L., Rogers, L. et al. Systematic review on the frequency and quality of reporting patient and public involvement in patient safety research. BMC Health Serv Res 24 , 532 (2024). https://doi.org/10.1186/s12913-024-11021-z

Download citation

Received : 10 January 2024

Accepted : 21 April 2024

Published : 26 April 2024

DOI : https://doi.org/10.1186/s12913-024-11021-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Patient and public involvement
  • Patient participation
  • Research reporting
  • Research involvement

BMC Health Services Research

ISSN: 1472-6963

a systematic review research

  • Download PDF
  • Share X Facebook Email LinkedIn
  • Permissions

Prevalence of Mental Health Disorders Among Individuals Experiencing Homelessness : A Systematic Review and Meta-Analysis

  • 1 Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
  • 2 Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
  • 3 Faculty of Social Work, University of Calgary, Calgary, Alberta, Canada
  • 4 Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
  • 5 Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
  • 6 Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
  • 7 Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

Question   What is the prevalence of mental health disorders among people experiencing homelessness?

Findings   In this systematic review and meta-analysis, the prevalence of current and lifetime mental health disorders among people experiencing homelessness was high, with male individuals exhibiting a significantly higher lifetime prevalence of any mental health disorder compared to female individuals.

Meaning   These findings demonstrate that most people experiencing homelessness have mental health disorders, with current and lifetime prevalence generally much greater than that observed in general community samples.

Importance   Several factors may place people with mental health disorders, including substance use disorders, at increased risk of experiencing homelessness and experiencing homelessness may also increase the risk of developing mental health disorders. Meta-analyses examining the prevalence of mental health disorders among people experiencing homelessness globally are lacking.

Objective   To determine the current and lifetime prevalence of mental health disorders among people experiencing homelessness and identify associated factors.

Data Sources   A systematic search of electronic databases (PubMed, MEDLINE, PsycInfo, Embase, Cochrane, CINAHL, and AMED) was conducted from inception to May 1, 2021.

Study Selection   Studies investigating the prevalence of mental health disorders among people experiencing homelessness aged 18 years and older were included.

Data Extraction and Synthesis   Data extraction was completed using standardized forms in Covidence. All extracted data were reviewed for accuracy by consensus between 2 independent reviewers. Random-effects meta-analysis was used to estimate the prevalence (with 95% CIs) of mental health disorders in people experiencing homelessness. Subgroup analyses were performed by sex, study year, age group, region, risk of bias, and measurement method. Meta-regression was conducted to examine the association between mental health disorders and age, risk of bias, and study year.

Main Outcomes and Measures   Current and lifetime prevalence of mental health disorders among people experiencing homelessness.

Results   A total of 7729 citations were retrieved, with 291 undergoing full-text review and 85 included in the final review (N = 48 414 participants, 11 154 [23%] female and 37 260 [77%] male). The current prevalence of mental health disorders among people experiencing homelessness was 67% (95% CI, 55-77), and the lifetime prevalence was 77% (95% CI, 61-88). Male individuals exhibited a significantly higher lifetime prevalence of mental health disorders (86%; 95% CI, 74-92) compared to female individuals (69%; 95% CI, 48-84). The prevalence of several specific disorders were estimated, including any substance use disorder (44%), antisocial personality disorder (26%), major depression (19%), schizophrenia (7%), and bipolar disorder (8%).

Conclusions and Relevance   The findings demonstrate that most people experiencing homelessness have mental health disorders, with higher prevalences than those observed in general community samples. Specific interventions are needed to support the mental health needs of this population, including close coordination of mental health, social, and housing services and policies to support people experiencing homelessness with mental disorders.

Read More About

Barry R , Anderson J , Tran L, et al. Prevalence of Mental Health Disorders Among Individuals Experiencing Homelessness : A Systematic Review and Meta-Analysis . JAMA Psychiatry. Published online April 17, 2024. doi:10.1001/jamapsychiatry.2024.0426

Manage citations:

© 2024

Artificial Intelligence Resource Center

Psychiatry in JAMA : Read the Latest

Browse and subscribe to JAMA Network podcasts!

Others Also Liked

Select your interests.

Customize your JAMA Network experience by selecting one or more topics from the list below.

  • Academic Medicine
  • Acid Base, Electrolytes, Fluids
  • Allergy and Clinical Immunology
  • American Indian or Alaska Natives
  • Anesthesiology
  • Anticoagulation
  • Art and Images in Psychiatry
  • Artificial Intelligence
  • Assisted Reproduction
  • Bleeding and Transfusion
  • Caring for the Critically Ill Patient
  • Challenges in Clinical Electrocardiography
  • Climate and Health
  • Climate Change
  • Clinical Challenge
  • Clinical Decision Support
  • Clinical Implications of Basic Neuroscience
  • Clinical Pharmacy and Pharmacology
  • Complementary and Alternative Medicine
  • Consensus Statements
  • Coronavirus (COVID-19)
  • Critical Care Medicine
  • Cultural Competency
  • Dental Medicine
  • Dermatology
  • Diabetes and Endocrinology
  • Diagnostic Test Interpretation
  • Drug Development
  • Electronic Health Records
  • Emergency Medicine
  • End of Life, Hospice, Palliative Care
  • Environmental Health
  • Equity, Diversity, and Inclusion
  • Facial Plastic Surgery
  • Gastroenterology and Hepatology
  • Genetics and Genomics
  • Genomics and Precision Health
  • Global Health
  • Guide to Statistics and Methods
  • Hair Disorders
  • Health Care Delivery Models
  • Health Care Economics, Insurance, Payment
  • Health Care Quality
  • Health Care Reform
  • Health Care Safety
  • Health Care Workforce
  • Health Disparities
  • Health Inequities
  • Health Policy
  • Health Systems Science
  • History of Medicine
  • Hypertension
  • Images in Neurology
  • Implementation Science
  • Infectious Diseases
  • Innovations in Health Care Delivery
  • JAMA Infographic
  • Law and Medicine
  • Leading Change
  • Less is More
  • LGBTQIA Medicine
  • Lifestyle Behaviors
  • Medical Coding
  • Medical Devices and Equipment
  • Medical Education
  • Medical Education and Training
  • Medical Journals and Publishing
  • Mobile Health and Telemedicine
  • Narrative Medicine
  • Neuroscience and Psychiatry
  • Notable Notes
  • Nutrition, Obesity, Exercise
  • Obstetrics and Gynecology
  • Occupational Health
  • Ophthalmology
  • Orthopedics
  • Otolaryngology
  • Pain Medicine
  • Palliative Care
  • Pathology and Laboratory Medicine
  • Patient Care
  • Patient Information
  • Performance Improvement
  • Performance Measures
  • Perioperative Care and Consultation
  • Pharmacoeconomics
  • Pharmacoepidemiology
  • Pharmacogenetics
  • Pharmacy and Clinical Pharmacology
  • Physical Medicine and Rehabilitation
  • Physical Therapy
  • Physician Leadership
  • Population Health
  • Primary Care
  • Professional Well-being
  • Professionalism
  • Psychiatry and Behavioral Health
  • Public Health
  • Pulmonary Medicine
  • Regulatory Agencies
  • Reproductive Health
  • Research, Methods, Statistics
  • Resuscitation
  • Rheumatology
  • Risk Management
  • Scientific Discovery and the Future of Medicine
  • Shared Decision Making and Communication
  • Sleep Medicine
  • Sports Medicine
  • Stem Cell Transplantation
  • Substance Use and Addiction Medicine
  • Surgical Innovation
  • Surgical Pearls
  • Teachable Moment
  • Technology and Finance
  • The Art of JAMA
  • The Arts and Medicine
  • The Rational Clinical Examination
  • Tobacco and e-Cigarettes
  • Translational Medicine
  • Trauma and Injury
  • Treatment Adherence
  • Ultrasonography
  • Users' Guide to the Medical Literature
  • Vaccination
  • Venous Thromboembolism
  • Veterans Health
  • Women's Health
  • Workflow and Process
  • Wound Care, Infection, Healing
  • Register for email alerts with links to free full-text articles
  • Access PDFs of free articles
  • Manage your interests
  • Save searches and receive search alerts

The experience of nurses participating in peer group supervision: A qualitative systematic review

Affiliations.

  • 1 School of Nursing and Midwifery, University of Southern Queensland, 11 Salisbury Rd, Ipswich, Australia. Electronic address: [email protected].
  • 2 School of Psychology and Wellbeing, University of Southern Queensland, 11 Salisbury Rd, Ipswich, Australia.
  • 3 School of Nursing and Midwifery, University of Southern Queensland, 11 Salisbury Rd, Ipswich, Australia.
  • PMID: 36989698
  • DOI: 10.1016/j.nepr.2023.103606

Aim: This systematic review will identify, appraise, and synthesise the best available qualitative studies exploring nurses' experiences of peer group supervision. The review purpose draws from the synthesised evidence recommendations to enhance policy and implementation of peer group supervision in practice.

Background: Clinical Supervision is increasing in acceptance as a means of professional and best practice support in nursing. Peer group supervision is a non-hierarchical, leaderless model of clinical supervision delivery and is an option for implementation by nursing management when prioritising staff support with limited resources. This systematic review will provide a synthesis of the qualitative literature regarding the nursing peer group supervision experience. Understanding the experience of peer group supervision from those participating may provide constructive insights regarding implementation of this practice to benefit both nurse and patient driven outcomes.

Design: Included are peer reviewed journals focused on nurses' experiences of participating in peer group supervision. Participants are registered nurses of any designation. Qualitative articles, written in English and relating to any area of nursing practice and/or speciality are included. The standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement were used to guide the review. Two investigators independently screened titles, abstracts and selected full text studies describing the experience of peer group supervision. Pre-designed data extraction tools were utilised, and the review followed the Joanna Briggs Institute qualitative meta-aggregation approach with a hermeneutic interpretive analysis.

Results: Results identified seven studies that met the inclusion criteria. A total of 52 findings that described the experiences of nursing peer group supervision are synthesised into eight categories. Four overarching synthesised findings resulted: 1. facilitating professional growth 2. trusting the group 3. professional learning experience and 4. shared experiences. Benefits such as sharing of experiences whilst receiving feedback and support were identified. Challenges identified related to group processes.

Conclusions: The paucity of international research into nursing peer group supervision poses challenges for nurse decision makers. Significantly, this review provides insight into the value of peer group supervision for nurses regardless of clinical context and setting. The ability to share and reflect with nursing peers enhances both personal and professional aspects of practice. The worth of the peer group supervision model varied across studies however the outcomes provided important insights into facilitating professional growth, enabling a space to share experiences and reflect, and to build teams where trust and respect develops in groups.

Keywords: Clinical supervision; Experiences; Nurses; Peer group supervision; Qualitative; Systematic review.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Publication types

  • Systematic Review
  • Hermeneutics
  • Nurse's Role
  • Nursing Care*
  • Qualitative Research

REVIEW article

This article is part of the research topic.

Vol II: Person-Centred Rehabilitation – Theory, Practice and Research

Hope as experienced by people with acquired brain injury in a rehabilitationor recovery process: A qualitative systematic review and thematic synthesis Provisionally Accepted

  • 1 Aalborg University, Denmark
  • 2 Municipality of Copenhagen, Denmark

The final, formatted version of the article will be published soon.

Background: There has been an increasing interest in the concept of hope within the field of brain injury rehabilitation. Existing reviews have nevertheless focused on stroke, leaving out the broad populationgroup of people with acquired brain injury (ABI). Furthermore a just as majority of the included studies in those reviews excluded the subgroup of people with communication difficulties, thus primarily giving voice to a select group of people with ABI. Methods: A qualitative systematic review was conducted with the purpose of systematically reviewing and thematically synthesise findings about hope as experienced by adultspeople with ABI in a rehabilitation or recovery process. The search strategy included peer-reviewed qualitative studies published after 2000 in English or Scandinavian languages. Searches of EBSCO databases incorporating CINAHL, MEDLINE, and PsycINFO were conducted together with SocINDEX, Social Work Abstracts, Eric and Web of Science. Ten qualitative studies were included, and the Critical Appraisal Skills Program (CASP) was used for assessing the quality and relevance of the ten studies. Qualitative findings were synthesized using Thomas and Harden's methodology. data were analysed based on methods for thematic synthesis by Thomas and Harden. Results: Through a thematic synthesis eleven subthemes were identifiedemerged relating to experiences of hope. These were grouped into four analytical themes: (1) Hope a two folded phenomenon; (2) Time and temporality; (3) Progress, goals and visibility and (4) The alliance. Conclusion: This review has shown that even though hope has both a positive and negative side to it, it is necessary as a driving force for people with ABI in terms of supporting them to keep going and not give up. Rehabilitation professionals are advised to embrace the ambiguity of hope, customizing the support of hope to each person with ABI. Attention is needed on how to make progress visible for persons with ABI during their rehabilitation process just as rehabilitation professionals should acknowledge the alliance with the person with ABI as a core component of rehabilitation. This requires a focus on professionals' communication skills if hope promoting relationships between professionals and persons with ABI are to be achieved.

Keywords: hope, acquired brain injury, Rehabilitation, Recovery, literature review, qualitative studies, thematic synthesis

Received: 26 Jan 2024; Accepted: 26 Apr 2024.

Copyright: © 2024 Højgaard Nejst and Glintborg. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: PhD. Camilla Højgaard Nejst, Aalborg University, Aalborg, Denmark

People also looked at

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Perspect Clin Res
  • v.11(2); Apr-Jun 2020

Study designs: Part 7 – Systematic reviews

Priya ranganathan.

Department of Anaesthesiology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India

Rakesh Aggarwal

1 Director, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India

In this series on research study designs, we have so far looked at different types of primary research designs which attempt to answer a specific question. In this segment, we discuss systematic review, which is a study design used to summarize the results of several primary research studies. Systematic reviews often also use meta-analysis, which is a statistical tool to mathematically collate the results of various research studies to obtain a pooled estimate of treatment effect; this will be discussed in the next article.

In the previous six articles in this series on study designs, we have looked at different types of primary research study designs which are used to answer research questions. In this article, we describe the systematic review, a type of secondary research design that is used to summarize the results of prior primary research studies. Systematic reviews are considered the highest level of evidence for a particular research question.[ 1 ]

SYSTEMATIC REVIEWS

As defined in the Cochrane Handbook for Systematic Reviews of Interventions , “Systematic reviews seek to collate evidence that fits pre-specified eligibility criteria in order to answer a specific research question. They aim to minimize bias by using explicit, systematic methods documented in advance with a protocol.”[ 2 ]

NARRATIVE VERSUS SYSTEMATIC REVIEWS

Review of available data has been done since times immemorial. However, the traditional narrative reviews (“expert reviews”) do not involve a systematic search of the literature. Instead, the author of the review, usually an expert on the subject, used informal methods to identify (what he or she thinks are) the key studies on the topic. The final review thus is a summary of these “selected” studies. Since studies are chosen at will (haphazardly!) and without clearly defined criteria, such reviews preferentially include those studies that favor the author's views, leading to a potential for subjectivity or selection bias.

In contrast, systematic reviews involve a formal prespecified protocol with explicit, transparent criteria for the inclusion and exclusion of studies, thereby ensuring completeness of coverage of the available evidence, and providing a more objective, replicable, and comprehensive overview it.

META-ANALYSIS

Many systematic reviews use an additional tool, known as meta-analysis, which is a statistical technique for combining the results of multiple studies in a systematic review in a mathematically appropriate way, to create a single (pooled) and more precise estimate of treatment effect. The feasibility of performing a meta-analysis in a systematic review depends on the number of studies included in the final review and the degree of heterogeneity in the inclusion criteria as well as the results between the included studies. Meta-analysis will be discussed in detail in the next article in this series.

THE PROCESS OF A SYSTEMATIC REVIEW

The conduct of a systematic review involves several sequential key steps.[ 3 , 4 ] As in other research study designs, a clearly stated research question and a well-written research protocol are essential before commencing a systematic review.

Step 1: Stating the review question

Systematic reviews can be carried out in any field of medical research, e.g. efficacy or safety of interventions, diagnostics, screening or health economics. In this article, we focus on systematic reviews of studies looking at the efficacy of interventions. As for the other study designs, for a systematic review too, the question is best framed using the Population, Intervention, Comparator, and Outcome (PICO) format.

For example, Safi et al . carried out a systematic review on the effect of beta-blockers on the outcomes of patients with myocardial infarction.[ 5 ] In this review, the Population was patients with suspected or confirmed myocardial infarction, the Intervention was beta-blocker therapy, the Comparator was either placebo or no intervention, and the Outcomes were all-cause mortality and major adverse cardiovascular events. The review question was “ In patients with suspected or confirmed myocardial infarction, does the use of beta-blockers affect mortality or major adverse cardiovascular outcomes? ”

Step 2: Listing the eligibility criteria for studies to be included

It is essential to explicitly define a priori the criteria for selection of studies which will be included in the review. Besides the PICO components, some additional criteria used frequently for this purpose include language of publication (English versus non-English), publication status (published as full paper versus unpublished), study design (randomized versus quasi-experimental), age group (adults versus children), and publication year (e.g. in the last 5 years, or since a particular date). The PICO criteria used may not be very specific, e.g. it is possible to include studies that use one or the other drug belonging to the same group. For instance, the systematic review by Safi et al . included all randomized clinical trials, irrespective of setting, blinding, publication status, publication year, or language, and reported outcomes, that had used any beta-blocker and in a broad range of doses.[ 5 ]

Step 3: Comprehensive search for studies that meet the eligibility criteria

A thorough literature search is essential to identify all articles related to the research question and to ensure that no relevant article is left out. The search may include one or more electronic databases and trial registries; in addition, it is common to hand-search the cross-references in the articles identified through such searches. One could also plan to reach out to experts in the field to identify unpublished data, and to search the grey literature non-peer-reviewednon-peer-reviewed. This last option is particularly helpful non-pharmacologic (theses, conference abstracts, and non-peer-reviewed journals). These sources are particularly helpful when the intervention is relatively new, since data on these may not yet have been published as full papers and hence are unlikely to be found in literature databases. In the review by Safi et al ., the search strategy included not only several electronic databases (Cochrane, MEDLINE, EMBASE, LILACS, etc.) but also other resources (e.g. Google Scholar, WHO International Clinical Trial Registry Platform, and reference lists of identified studies).[ 5 ] It is not essential to include all the above databases in one's search. However, it is mandatory to define in advance which of these will be searched.

Step 4: Identifying and selecting relevant studies

Once the search strategy defined in the previous step has been run to identify potentially relevant studies, a two-step process is followed. First, the titles and abstracts of the identified studies are processed to exclude any duplicates and to discard obviously irrelevant studies. In the next step, full-text papers of the remaining articles are retrieved and closely reviewed to identify studies that meet the eligibility criteria. To minimize bias, these selection steps are usually performed independently by at least two reviewers, who also assign a reason for non-selection to each discarded study. Any discrepancies are then resolved either by an independent reviewer or by mutual consensus of the original reviewers. In the Cochrane review on beta-blockers referred to above, two review authors independently screened the titles for inclusion, and then, four review authors independently reviewed the screen-positive studies to identify the trials to be included in the final review.[ 5 ] Disagreements were resolved by discussion or by taking the opinion of a separate reviewer. A summary of this selection process, showing the degree of agreement between reviewers, and a flow diagram that depicts the numbers of screened, included and excluded (with reason for exclusion) studies are often included in the final review.

Step 5: Data extraction

In this step, from each selected study, relevant data are extracted. This should be done by at least two reviewers independently, and the data then compared to identify any errors in extraction. Standard data extraction forms help in objective data extraction. The data extracted usually contain the name of the author, the year of publication, details of intervention and control treatments, and the number of participants and outcome data in each group. In the review by Safi et al ., four review authors independently extracted data and resolved any differences by discussion.[ 5 ]

Handling missing data

Some of the studies included in the review may not report outcomes in accordance with the review methodology. Such missing data can be handled in two ways – by contacting authors of the original study to obtain the necessary data and by using data imputation techniques. Safi et al . used both these approaches – they tried to get data from the trial authors; however, where that failed, they analyzed the primary outcome (mortality) using the best case (i.e. presuming that all the participants in the experimental arm with missing data had survived and those in the control arm with missing mortality data had died – representing the maximum beneficial effect of the intervention) and the worst case (all the participants with missing data in the experimental arm assumed to have died and those in the control arm to have survived – representing the least beneficial effect of the intervention) scenarios.

Evaluating the quality (or risk of bias) in the included studies

The overall quality of a systematic review depends on the quality of each of the included studies. Quality of a study is inversely proportional to the potential for bias in its design. In our previous articles on interventional study design in this series, we discussed various methods to reduce bias – such as randomization, allocation concealment, participant and assessor blinding, using objective endpoints, minimizing missing data, the use of intention-to-treat analysis, and complete reporting of all outcomes.[ 6 , 7 ] These features form the basis of the Cochrane Risk of Bias Tool (RoB 2), which is a commonly used instrument to assess the risk of bias in the studies included in a systematic review.[ 8 ] Based on this tool, one can classify each study in a review as having low risk of bias, having some concerns regarding bias, or at high risk of bias. Safi et al . used this tool to classify the included studies as having low or high risk of bias and presented these data in both tabular and graphical formats.[ 5 ]

In some reviews, the authors decide to summarize only studies with a low risk of bias and to exclude those with a high risk of bias. Alternatively, some authors undertake a separate analysis of studies with low risk of bias, besides an analysis of all the studies taken together. The conclusions from such analyses of only high-quality studies may be more robust.

Step 6: Synthesis of results

The data extracted from various studies are pooled quantitatively (known as a meta-analysis) or qualitatively (if pooling of results is not considered feasible). For qualitative reviews, data are usually presented in the tabular format, showing the characteristics of each included study, to allow for easier interpretation.

Sensitivity analyses

Sensitivity analyses are used to test the robustness of the results of a systematic review by examining the impact of excluding or including studies with certain characteristics. As referred to above, this can be based on the risk of bias (methodological quality), studies with a specific study design, studies with a certain dosage or schedule, or sample size. If results of these different analyses are more-or-less the same, one can be more certain of the validity of the findings of the review. Furthermore, such analyses can help identify whether the effect of the intervention could vary across different levels of another factor. In the beta-blocker review, sensitivity analysis was performed depending on the risk of bias of included studies.[ 5 ]

IMPORTANT RESOURCES FOR CARRYING OUT SYSTEMATIC REVIEWS AND META-ANALYSES

Cochrane is an organization that works to produce good-quality, updated systematic reviews related to human healthcare and policy, which are accessible to people across the world.[ 9 ] There are more than 7000 Cochrane reviews on various topics. One of its main resources is the Cochrane Library (available at https://www.cochranelibrary.com/ ), which incorporates several databases with different types of high-quality evidence to inform healthcare decisions, including the Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials (CENTRAL), and Cochrane Clinical Answers.

The Cochrane Handbook for Systematic Reviews of Interventions

The Cochrane handbook is an official guide, prepared by the Cochrane Collaboration, to the process of preparing and maintaining Cochrane systematic reviews.[ 10 ]

Review Manager software

Review Manager (RevMan) is a software developed by Cochrane to support the preparation and maintenance of systematic reviews, including tools for performing meta-analysis.[ 11 ] It is freely available in both online (RevMan Web) and offline (RevMan 5.3) versions.

Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement is an evidence-based minimum set of items for reporting of systematic reviews and meta-analyses of randomized trials.[ 12 ] It can be used both by authors of such studies to improve the completeness of reporting and by reviewers and readers to critically appraise a systematic review. There are several extensions to the PRISMA statement for specific types of reviews. An update is currently underway.

Meta-analysis of Observational Studies in Epidemiology statement

The Meta-analysis of Observational Studies in Epidemiology statement summarizes the recommendations for reporting of meta-analyses in epidemiology.[ 13 ]

PROSPERO is an international database for prospective registration of protocols for systematic reviews in healthcare.[ 14 ] It aims to avoid duplication of and to improve transparency in reporting of results of such reviews.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

IMAGES

  1. The Systematic Review Process

    a systematic review research

  2. Systematic reviews

    a systematic review research

  3. A Step by Step Guide for Conducting a Systematic Review

    a systematic review research

  4. Before you begin

    a systematic review research

  5. 4 components of a systematic review

    a systematic review research

  6. What is a Systematic Review

    a systematic review research

VIDEO

  1. Developing a Systematic Review Topic and Research Questions

  2. Statistical Procedure in Meta-Essentials

  3. 23. Sensitivity Analysis

  4. Introduction to Systematic Review of Research

  5. RG Meta-Analysis Study (Example)

  6. Systematic Literature Review (SLR)

COMMENTS

  1. Systematic Review

    A systematic review is a type of review that uses repeatable methods to find, select, and synthesize all available evidence. It answers a clearly formulated research question and explicitly states the methods used to arrive at the answer. Example: Systematic review. In 2008, Dr. Robert Boyle and his colleagues published a systematic review in ...

  2. How to Do a Systematic Review: A Best Practice Guide for ...

    Systematic reviews are characterized by a methodical and replicable methodology and presentation. They involve a comprehensive search to locate all relevant published and unpublished work on a subject; a systematic integration of search results; and a critique of the extent, nature, and quality of evidence in relation to a particular research question.

  3. Introduction to systematic review and meta-analysis

    It is easy to confuse systematic reviews and meta-analyses. A systematic review is an objective, reproducible method to find answers to a certain research question, by collecting all available studies related to that question and reviewing and analyzing their results. A meta-analysis differs from a systematic review in that it uses statistical ...

  4. Systematic reviews: Structure, form and content

    Topic selection and planning. In recent years, there has been an explosion in the number of systematic reviews conducted and published (Chalmers & Fox 2016, Fontelo & Liu 2018, Page et al 2015) - although a systematic review may be an inappropriate or unnecessary research methodology for answering many research questions.Systematic reviews can be inadvisable for a variety of reasons.

  5. Systematic Review

    A systematic review is a type of review that uses repeatable methods to find, select, and synthesise all available evidence. It answers a clearly formulated research question and explicitly states the methods used to arrive at the answer. Example: Systematic review. In 2008, Dr Robert Boyle and his colleagues published a systematic review in ...

  6. Systematic review

    A systematic review is a scholarly synthesis of the evidence on a clearly presented topic using critical methods to identify, define and assess research on the topic. [1] A systematic review extracts and interprets data from published studies on the topic (in the scientific literature ), then analyzes, describes, critically appraises and ...

  7. Systematic reviews: Structure, form and content

    In recent years, there has been an explosion in the number of systematic reviews conducted and published (Chalmers & Fox 2016, Fontelo & Liu 2018, Page et al 2015) - although a systematic review may be an inappropriate or unnecessary research methodology for answering many research questions.Systematic reviews can be inadvisable for a variety of reasons.

  8. Introduction to Systematic Reviews

    A systematic review identifies and synthesizes all relevant studies that fit prespecified criteria to answer a research question (Lasserson et al. 2019; IOM 2011).What sets a systematic review apart from a narrative review is that it follows consistent, rigorous, and transparent methods established in a protocol in order to minimize bias and errors.

  9. How to Write a Systematic Review: A Narrative Review

    Background. A systematic review, as its name suggests, is a systematic way of collecting, evaluating, integrating, and presenting findings from several studies on a specific question or topic.[] A systematic review is a research that, by identifying and combining evidence, is tailored to and answers the research question, based on an assessment of all relevant studies.[2,3] To identify assess ...

  10. How to do a systematic review

    A systematic review aims to bring evidence together to answer a pre-defined research question. This involves the identification of all primary research relevant to the defined review question, the critical appraisal of this research, and the synthesis of the findings.13. Systematic reviews may combine data from different.

  11. Conducting a Systematic Review: A Practical Guide

    Abstract. It can be challenging to conduct a systematic review with limited experience and skills in undertaking such a task. This chapter provides a practical guide to undertaking a systematic review, providing step-by-step instructions to guide the individual through the process from start to finish. The chapter begins with defining what a ...

  12. How to Do a Systematic Review: A Best Practice Guide ...

    Systematic reviews are characterized by a methodical and replicable methodology and presentation. They involve a comprehensive search to locate all relevant published and unpublished work on a subject; a systematic integration of search results; and a critique of the extent, nature, and quality of evidence in relation to a particular research question. The best reviews synthesize studies to ...

  13. Steps of a Systematic Review

    Image: https://pixabay.com Steps to conducting a systematic review: PIECES. P: Planning - the methods of the systematic review are generally decided before conducting it. I: Identifying - searching for studies which match the preset criteria in a systematic manner E: Evaluating - sort all retrieved articles (included or excluded) and assess the risk of bias for each included study

  14. What is a Systematic Review?

    an explicit, reproducible methodology. a systematic search that attempts to identify all studies that would meet the eligibility criteria. an assessment of the validity of the findings of the included studies, for example through the assessment of the risk of bias. a systematic presentation, and synthesis, of the characteristics and findings of ...

  15. Easy guide to conducting a systematic review

    A systematic review is a type of study that synthesises research that has been conducted on a particular topic. Systematic reviews are considered to provide the highest level of evidence on the hierarchy of evidence pyramid. Systematic reviews are conducted following rigorous research methodology. To minimise bias, systematic reviews utilise a ...

  16. What are systematic reviews?

    What are systematic reviews? Watch on. Cochrane evidence, including our systematic reviews, provides a powerful tool to enhance your healthcare knowledge and decision making. This video from Cochrane Sweden explains a bit about how we create health evidence and what Cochrane does. About Cochrane.

  17. How-to conduct a systematic literature review: A quick guide for

    Method details Overview. A Systematic Literature Review (SLR) is a research methodology to collect, identify, and critically analyze the available research studies (e.g., articles, conference proceedings, books, dissertations) through a systematic procedure [12].An SLR updates the reader with current literature about a subject [6].The goal is to review critical points of current knowledge on a ...

  18. What is a systematic review?

    A high-quality systematic review is described as the most reliable source of evidence to guide clinical practice. The purpose of a systematic review is to deliver a meticulous summary of all the available primary research in response to a research question. A systematic review uses all the existing research and is sometime called 'secondary research' (research on research). They are often ...

  19. An overview of methodological approaches in systematic reviews

    1. INTRODUCTION. Evidence synthesis is a prerequisite for knowledge translation. 1 A well conducted systematic review (SR), often in conjunction with meta‐analyses (MA) when appropriate, is considered the "gold standard" of methods for synthesizing evidence related to a topic of interest. 2 The central strength of an SR is the transparency of the methods used to systematically search ...

  20. What is a Systematic Review (SR)?

    Systematic Reviews in the Social Sciences by Roberts, H., & Petticrew, M. Such diverse thinkers as Lao-Tze, Confucius, and U.S. Defense Secretary Donald Rumsfeld have all pointed out that we need to be able to tell the difference between real and assumed knowledge. The systematic review is a scientific tool that can help with this difficult task.

  21. Guidance on Conducting a Systematic Literature Review

    Ideally, a systematic review should be conducted before empirical research, and a subset of the literature from the systematic review that is closely related to the empirical work can be used as background review. In that sense, good stand-alone reviews could help improve the quality of background reviews.

  22. Full article: Organizational culture: a systematic review

    The systematic review revealed a comprehensive overview of the research landscape on organizational culture. Notably, the majority of the studies (87%) employed empirical methods, with quantitative (37%) and qualitative (33%) research being predominant.

  23. Systematic review on the frequency and quality of reporting patient and

    In recent years, patient and public involvement (PPI) in research has significantly increased; however, the reporting of PPI remains poor. The Guidance for Reporting Involvement of Patients and the Public (GRIPP2) was developed to enhance the quality and consistency of PPI reporting. The objective of this systematic review is to identify the frequency and quality of PPI reporting in patient ...

  24. Prevalence of Mental Health Disorders Among Individuals Experiencing

    Key Points. Question What is the prevalence of mental health disorders among people experiencing homelessness?. Findings In this systematic review and meta-analysis, the prevalence of current and lifetime mental health disorders among people experiencing homelessness was high, with male individuals exhibiting a significantly higher lifetime prevalence of any mental health disorder compared to ...

  25. Big data security and privacy in healthcare: A systematic review and

    The systematic review explores the issues and challenges associated with big data security and privacy in healthcare. Through reference to resource-based view theory, this paper seeks to examine the present state of research in this area, identify gaps in the existing literature, and propose strategies for future research.

  26. Systematic Reviews and Meta-analysis: Understanding the Best Evidence

    Systematic reviews can also demonstrate where knowledge is lacking. This can then be used to guide future research. Systematic reviews are usually carried out in the areas of clinical tests (diagnostic, screening, and prognostic), public health interventions, adverse (harm) effects, economic (cost) evaluations, and how and why interventions work.

  27. The experience of nurses participating in peer group supervision: A

    The paucity of international research into nursing peer group supervision poses challenges for nurse decision makers. Significantly, this review provides insight into the value of peer group supervision for nurses regardless of clinical context and setting. ... Aim: This systematic review will identify, appraise, and synthesise the best ...

  28. REVIEW article

    Methods: A qualitative systematic review was conducted with the purpose of systematically reviewing and thematically synthesise findings about hope as experienced by adultspeople with ABI in a rehabilitation or recovery process. The search strategy included peer-reviewed qualitative studies published after 2000 in English or Scandinavian languages.

  29. Study designs: Part 7

    Study designs: Part 7 - Systematic reviews. In this series on research study designs, we have so far looked at different types of primary research designs which attempt to answer a specific question. In this segment, we discuss systematic review, which is a study design used to summarize the results of several primary research studies.

  30. Examining the Challenges for Circular Economy Implementation in ...

    This paper systematically analyzes 54 research articles, published in the past decade within major peer-reviewed English-language scholarly publications in the form of a systematic research review. In doing so, it aims to identify and classify the challenges that prevent improved CDW management by assimilating previous research results in ...