Banner

Research Basics: an open academic research skills course

  • Lesson 1: Using Library Tools
  • Lesson 2: Smart searching
  • Lesson 3: Managing information overload
  • Assessment - Module 1
  • Lesson 1: The ABCs of scholarly sources
  • Lesson 2: Additional ways of identifying scholarly sources
  • Lesson 3: Verifying online sources
  • Assessment - Module 2
  • Lesson 1: Creating citations
  • Lesson 2: Citing and paraphrasing
  • Lesson 3: Works cited, bibliographies, and notes
  • Assessment - Module 3
  • - For Librarians and Teachers -
  • Acknowledgements
  • Other free resources from JSTOR

JSTOR is a digital library for scholars, researchers, and students.

Learn more about JSTOR

Get Help with JSTOR

JSTOR Website & Technical Support

 Email:  [email protected]  Text:  (734)-887-7001  Call Toll Free in the U.S.:  (888)-388-3574  Call Local and International:  (734)-887-7001

Hours of operation:  Mon - Fri, 8:30 a.m. - 5:00 p.m. EDT (GMT -4:00)

Welcome to the ever-expanding universe of scholarly research!

There's a lot of digital content out there, and we want to help you get a handle on it. Where do you start? What do you do? How do you use it? Don’t worry, this course has you covered.

This introductory program was created by  JSTOR  to help you get familiar with basic research concepts needed for success in school. The course contains three modules, each made up of three short lessons and three sets of practice quizzes. The topics covered are subjects that will help you prepare for college-level research. Each module ends with an assessment to test your knowledge.

The JSTOR librarians who helped create the course hope you learn from the experience and feel ready to research when you’ve finished this program.  Select Module 1: Effective Searching to begin the course. Good luck!

  • Next: Module 1: Effective searching >>
  • Last Updated: Apr 5, 2024 2:28 PM
  • URL: https://guides.jstor.org/researchbasics

JSTOR is part of ITHAKA , a not-for-profit organization helping the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways.

©2000-2024 ITHAKA. All Rights Reserved. JSTOR®, the JSTOR logo, JPASS®, Artstor® and ITHAKA® are registered trademarks of ITHAKA.

JSTOR.org Terms and Conditions   Privacy Policy Cookie Policy Cookie settings Accessibility

How to write a research plan: Step-by-step guide

Last updated

30 January 2024

Reviewed by

Today’s businesses and institutions rely on data and analytics to inform their product and service decisions. These metrics influence how organizations stay competitive and inspire innovation. However, gathering data and insights requires carefully constructed research, and every research project needs a roadmap. This is where a research plan comes into play.

There’s general research planning; then there’s an official, well-executed research plan. Whatever data-driven research project you’re gearing up for, the research plan will be your framework for execution. The plan should also be detailed and thorough, with a diligent set of criteria to formulate your research efforts. Not including these key elements in your plan can be just as harmful as having no plan at all.

Read this step-by-step guide for writing a detailed research plan that can apply to any project, whether it’s scientific, educational, or business-related.

  • What is a research plan?

A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project’s goals and mission, creating layers of steps to achieve those goals within a specified timeline.

Without a research plan, you and your team are flying blind, potentially wasting time and resources to pursue research without structured guidance.

The principal investigator, or PI, is responsible for facilitating the research oversight. They will create the research plan and inform team members and stakeholders of every detail relating to the project. The PI will also use the research plan to inform decision-making throughout the project.

  • Why do you need a research plan?

Create a research plan before starting any official research to maximize every effort in pursuing and collecting the research data. Crucially, the plan will model the activities needed at each phase of the research project.

Like any roadmap, a research plan serves as a valuable tool providing direction for those involved in the project—both internally and externally. It will keep you and your immediate team organized and task-focused while also providing necessary definitions and timelines so you can execute your project initiatives with full understanding and transparency.

External stakeholders appreciate a working research plan because it’s a great communication tool, documenting progress and changing dynamics as they arise. Any participants of your planned research sessions will be informed about the purpose of your study, while the exercises will be based on the key messaging outlined in the official plan.

Here are some of the benefits of creating a research plan document for every project:

Project organization and structure

Well-informed participants

All stakeholders and teams align in support of the project

Clearly defined project definitions and purposes

Distractions are eliminated, prioritizing task focus

Timely management of individual task schedules and roles

Costly reworks are avoided

  • What should a research plan include?

The different aspects of your research plan will depend on the nature of the project. However, most official research plan documents will include the core elements below. Each aims to define the problem statement, devising an official plan for seeking a solution.

Specific project goals and individual objectives

Ideal strategies or methods for reaching those goals

Required resources

Descriptions of the target audience, sample sizes, demographics, and scopes

Key performance indicators (KPIs)

Project background

Research and testing support

Preliminary studies and progress reporting mechanisms

Cost estimates and change order processes

Depending on the research project’s size and scope, your research plan could be brief—perhaps only a few pages of documented plans. Alternatively, it could be a fully comprehensive report. Either way, it’s an essential first step in dictating your project’s facilitation in the most efficient and effective way.

  • How to write a research plan for your project

When you start writing your research plan, aim to be detailed about each step, requirement, and idea. The more time you spend curating your research plan, the more precise your research execution efforts will be.

Account for every potential scenario, and be sure to address each and every aspect of the research.

Consider following this flow to develop a great research plan for your project:

Define your project’s purpose

Start by defining your project’s purpose. Identify what your project aims to accomplish and what you are researching. Remember to use clear language.

Thinking about the project’s purpose will help you set realistic goals and inform how you divide tasks and assign responsibilities. These individual tasks will be your stepping stones to reach your overarching goal.

Additionally, you’ll want to identify the specific problem, the usability metrics needed, and the intended solutions.

Know the following three things about your project’s purpose before you outline anything else:

What you’re doing

Why you’re doing it

What you expect from it

Identify individual objectives

With your overarching project objectives in place, you can identify any individual goals or steps needed to reach those objectives. Break them down into phases or steps. You can work backward from the project goal and identify every process required to facilitate it.

Be mindful to identify each unique task so that you can assign responsibilities to various team members. At this point in your research plan development, you’ll also want to assign priority to those smaller, more manageable steps and phases that require more immediate or dedicated attention.

Select research methods

Research methods might include any of the following:

User interviews: this is a qualitative research method where researchers engage with participants in one-on-one or group conversations. The aim is to gather insights into their experiences, preferences, and opinions to uncover patterns, trends, and data.

Field studies: this approach allows for a contextual understanding of behaviors, interactions, and processes in real-world settings. It involves the researcher immersing themselves in the field, conducting observations, interviews, or experiments to gather in-depth insights.

Card sorting: participants categorize information by sorting content cards into groups based on their perceived similarities. You might use this process to gain insights into participants’ mental models and preferences when navigating or organizing information on websites, apps, or other systems.

Focus groups: use organized discussions among select groups of participants to provide relevant views and experiences about a particular topic.

Diary studies: ask participants to record their experiences, thoughts, and activities in a diary over a specified period. This method provides a deeper understanding of user experiences, uncovers patterns, and identifies areas for improvement.

Five-second testing: participants are shown a design, such as a web page or interface, for just five seconds. They then answer questions about their initial impressions and recall, allowing you to evaluate the design’s effectiveness.

Surveys: get feedback from participant groups with structured surveys. You can use online forms, telephone interviews, or paper questionnaires to reveal trends, patterns, and correlations.

Tree testing: tree testing involves researching web assets through the lens of findability and navigability. Participants are given a textual representation of the site’s hierarchy (the “tree”) and asked to locate specific information or complete tasks by selecting paths.

Usability testing: ask participants to interact with a product, website, or application to evaluate its ease of use. This method enables you to uncover areas for improvement in digital key feature functionality by observing participants using the product.

Live website testing: research and collect analytics that outlines the design, usability, and performance efficiencies of a website in real time.

There are no limits to the number of research methods you could use within your project. Just make sure your research methods help you determine the following:

What do you plan to do with the research findings?

What decisions will this research inform? How can your stakeholders leverage the research data and results?

Recruit participants and allocate tasks

Next, identify the participants needed to complete the research and the resources required to complete the tasks. Different people will be proficient at different tasks, and having a task allocation plan will allow everything to run smoothly.

Prepare a thorough project summary

Every well-designed research plan will feature a project summary. This official summary will guide your research alongside its communications or messaging. You’ll use the summary while recruiting participants and during stakeholder meetings. It can also be useful when conducting field studies.

Ensure this summary includes all the elements of your research project. Separate the steps into an easily explainable piece of text that includes the following:

An introduction: the message you’ll deliver to participants about the interview, pre-planned questioning, and testing tasks.

Interview questions: prepare questions you intend to ask participants as part of your research study, guiding the sessions from start to finish.

An exit message: draft messaging your teams will use to conclude testing or survey sessions. These should include the next steps and express gratitude for the participant’s time.

Create a realistic timeline

While your project might already have a deadline or a results timeline in place, you’ll need to consider the time needed to execute it effectively.

Realistically outline the time needed to properly execute each supporting phase of research and implementation. And, as you evaluate the necessary schedules, be sure to include additional time for achieving each milestone in case any changes or unexpected delays arise.

For this part of your research plan, you might find it helpful to create visuals to ensure your research team and stakeholders fully understand the information.

Determine how to present your results

A research plan must also describe how you intend to present your results. Depending on the nature of your project and its goals, you might dedicate one team member (the PI) or assume responsibility for communicating the findings yourself.

In this part of the research plan, you’ll articulate how you’ll share the results. Detail any materials you’ll use, such as:

Presentations and slides

A project report booklet

A project findings pamphlet

Documents with key takeaways and statistics

Graphic visuals to support your findings

  • Format your research plan

As you create your research plan, you can enjoy a little creative freedom. A plan can assume many forms, so format it how you see fit. Determine the best layout based on your specific project, intended communications, and the preferences of your teams and stakeholders.

Find format inspiration among the following layouts:

Written outlines

Narrative storytelling

Visual mapping

Graphic timelines

Remember, the research plan format you choose will be subject to change and adaptation as your research and findings unfold. However, your final format should ideally outline questions, problems, opportunities, and expectations.

  • Research plan example

Imagine you’ve been tasked with finding out how to get more customers to order takeout from an online food delivery platform. The goal is to improve satisfaction and retain existing customers. You set out to discover why more people aren’t ordering and what it is they do want to order or experience. 

You identify the need for a research project that helps you understand what drives customer loyalty. But before you jump in and start calling past customers, you need to develop a research plan—the roadmap that provides focus, clarity, and realistic details to the project.

Here’s an example outline of a research plan you might put together:

Project title

Project members involved in the research plan

Purpose of the project (provide a summary of the research plan’s intent)

Objective 1 (provide a short description for each objective)

Objective 2

Objective 3

Proposed timeline

Audience (detail the group you want to research, such as customers or non-customers)

Budget (how much you think it might cost to do the research)

Risk factors/contingencies (any potential risk factors that may impact the project’s success)

Remember, your research plan doesn’t have to reinvent the wheel—it just needs to fit your project’s unique needs and aims.

Customizing a research plan template

Some companies offer research plan templates to help get you started. However, it may make more sense to develop your own customized plan template. Be sure to include the core elements of a great research plan with your template layout, including the following:

Introductions to participants and stakeholders

Background problems and needs statement

Significance, ethics, and purpose

Research methods, questions, and designs

Preliminary beliefs and expectations

Implications and intended outcomes

Realistic timelines for each phase

Conclusion and presentations

How many pages should a research plan be?

Generally, a research plan can vary in length between 500 to 1,500 words. This is roughly three pages of content. More substantial projects will be 2,000 to 3,500 words, taking up four to seven pages of planning documents.

What is the difference between a research plan and a research proposal?

A research plan is a roadmap to success for research teams. A research proposal, on the other hand, is a dissertation aimed at convincing or earning the support of others. Both are relevant in creating a guide to follow to complete a project goal.

What are the seven steps to developing a research plan?

While each research project is different, it’s best to follow these seven general steps to create your research plan:

Defining the problem

Identifying goals

Choosing research methods

Recruiting participants

Preparing the brief or summary

Establishing task timelines

Defining how you will present the findings

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 5 March 2024

Last updated: 25 November 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

How to Conduct Responsible Research: A Guide for Graduate Students

Alison l. antes.

1 Department of Medicine, Division of General Medical Sciences, Washington University School of Medicine, St. Louis, Missouri, 314-362-6006

Leonard B. Maggi, Jr.

2 Department of Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, 314-362-4102

Researchers must conduct research responsibly for it to have an impact and to safeguard trust in science. Essential responsibilities of researchers include using rigorous, reproducible research methods, reporting findings in a trustworthy manner, and giving the researchers who contributed appropriate authorship credit. This “how-to” guide covers strategies and practices for doing reproducible research and being a responsible author. The article also covers how to utilize decision-making strategies when uncertain about the best way to proceed in a challenging situation. The advice focuses especially on graduate students but is appropriate for undergraduates and experienced researchers. The article begins with an overview of the responsible conduct of research, research misconduct, and ethical behavior in the scientific workplace. The takeaway message is that responsible conduct of research requires a thoughtful approach to doing research to ensure trustworthy results and conclusions and that researchers receive fair credit.

INTRODUCTION

Doing research is stimulating and fulfilling work. Scientists make discoveries to build knowledge and solve problems, and they work with other dedicated researchers. Research is a highly complex activity, so it takes years for beginning researchers to learn everything they need to know to do science well. Part of this large body of knowledge is learning how to do research responsibly. Our purpose in this article is to provide graduate students a guide for how to perform responsible research. Our advice is also relevant to undergraduate researchers and for principal investigators (PIs), postdocs, or other researchers who mentor beginning researchers and wish to share our advice.

We begin by introducing some fundamentals about the responsible conduct of research (RCR), research misconduct, and ethical behavior. We focus on how to do reproducible science and be a responsible author. We provide practical advice for these topics and present scenarios to practice thinking through challenges in research. Our article concludes with decision-making strategies for addressing complex problems.

What is the responsible conduct of research?

To be committed to RCR means upholding the highest standards of honesty, accuracy, efficiency, and objectivity ( Steneck, 2007 ). Each day, RCR requires engaging in research in a conscientious, intentional fashion that yields the best science possible ( “Research Integrity is Much More Than Misconduct,” 2019 ). We adopt a practical, “how-to” approach, discussing the behaviors and habits that yield responsible research. However, some background knowledge about RCR is helpful to frame our discussion.

The scientific community uses many terms to refer to ethical and responsible behavior in research: responsible conduct of research, research integrity, scientific integrity, and research ethics ( National Academies of Science, 2009 ; National Academies of Sciences Engineering and Medicine, 2017 ; Steneck, 2007 ). A helpful way to think about these concepts is “doing good science in a good manner” ( DuBois & Antes, 2018 ). This means that the way researchers do their work, from experimental procedures to data analysis and interpretation, research reporting, and so on, leads to trustworthy research findings and conclusions. It also includes respectful interactions among researchers both within research teams (e.g., between peers, mentors and trainees, and collaborators) and with researchers external to the team (e.g., peer reviewers). We expand on trainee-mentor relationships and interpersonal dynamics with labmates in a companion article ( Antes & Maggi, 2021 ). When research involves human or animal research subjects, RCR includes protecting the well-being of research subjects.

We do not cover all potential RCR topics but focus on what we consider fundamentals for graduate students. Common topics covered in texts and courses on RCR include the following: authorship and publication; collaboration; conflicts of interest; data management, sharing, and ownership; intellectual property; mentor and trainee responsibilities; peer review; protecting human subjects; protecting animal subjects; research misconduct; the role of researchers in society; and laboratory safety. A number of topics prominently discussed among the scientific community in recent years are also relevant to RCR. These include the reproducibility of research ( Baker, 2016 ; Barba, 2016 ; Winchester, 2018 ), diversity and inclusion in science ( Asplund & Welle, 2018 ; Hofstra et al., 2020 ; Meyers, Brown, Moneta-Koehler, & Chalkley, 2018 ; National Academies of Sciences Engineering and Medicine, 2018a ; Roper, 2019 ), harassment and bullying ( Else, 2018 ; National Academies of Sciences Engineering and Medicine, 2018b ; “ No Place for Bullies in Science,” 2018 ), healthy research work environments ( Norris, Dirnagl, Zigmond, Thompson-Peer, & Chow, 2018 ; “ Research Institutions Must Put the Health of Labs First,” 2018 ), and the mental health of graduate students ( Evans, Bira, Gastelum, Weiss, & Vanderford, 2018 ).

The National Institutes of Health (NIH) ( National Institutes of Health, 2009 ) and the National Science Foundation ( National Science Foundation, 2017 ) have formal policies indicating research trainees must receive education in RCR. Researchers are accountable to these funding agencies and the public which supports research through billions in tax dollars annually. The public stands to benefit from, or be harmed by, research. For example, the public may be harmed if medical treatments or social policies are based on untrustworthy research findings. Funding for research, participation in research, and utilization of the fruits of research all rely on public trust ( Resnik, 2011 ). Trustworthy findings are also essential for good stewardship of scarce resources ( Emanuel, Wendler, & Grady, 2000 ). Researchers are further accountable to their peers, colleagues, and scientists more broadly. Trust in the work of other researchers is essential for science to advance. Finally, researchers are accountable for complying with the rules and policies of their universities or research institutions, such as rules about laboratory safety, bullying and harassment, and the treatment of animal research subjects.

What is research misconduct?

When researchers intentionally misrepresent or manipulate their results, these cases of scientific fraud often make the news headlines ( Chappell, 2019 ; O’Connor, 2018 ; Park, 2012 ), and they can seriously undermine public trust in research. These cases also harm trust within the scientific community.

The U.S. defines research misconduct as fabrication, falsification, and plagiarism (FFP) ( Department of Health and Human Services, 2005 ). FFP violate the fundamental ethical principle of honesty. Fabrication is making up data, and falsification is manipulating or changing data or results so they are no longer truthful. Plagiarism is a form of dishonesty because it includes using someone’s words or ideas and portraying them as your own. When brought to light, misconduct involves lengthy investigations and serious consequences, such as ineligibility to receive federal research funding, loss of employment, paper retractions, and, for students, withdrawal of graduate degrees.

One aspect of responsible behavior includes addressing misconduct if you observe it. We suggest a guide titled “Responding to Research Wrongdoing: A User-Friendly Guide” that provides advice for thinking about your options if you think you have observed misconduct ( Keith-Spiegel, Sieber, & Koocher, 2010 ). Your university will have written policies and procedures for investigating allegations of misconduct. Making an allegation is very serious. As Keith-Spiegel et al.’s guide indicates, it is important to know the evidence that supports your claim, and what to expect in the process. We encourage, if possible, talking to the persons involved first. For example, one of us knew of a graduate student who reported to a journal editor their suspicion of falsified data in a manuscript. It turned out that the student was incorrect. Going above the PI directly to the editor ultimately led to the PI leaving the university, and the student had a difficult time finding a new lab to complete their degree. If the student had first spoken to the PI and lab members, they could have learned that their assumptions about the data in the paper were wrong. In turn, they could have avoided accusing the PI of a serious form of scientific misconduct—making up data—and harming everyone’s scientific career.

What shapes ethical behavior in the scientific workplace?

Responsible conduct of research and research misconduct are two sides of a continuum of behavior—RCR upholds the ideals of research and research misconduct violates them. Problematic practices that fall in the middle but are not defined formally as research misconduct have been labeled as detrimental research practices ( National Academies of Sciences Engineering and Medicine, 2017 ). Researchers conducting misleading statistical analyses or PIs providing inadequate supervision are examples of the latter. Research suggests that characteristics of individual researchers and research environments explain (un)ethical behavior in the scientific workplace ( Antes et al., 2007 ; Antes, English, Baldwin, & DuBois, 2018 ; Davis, Riske-Morris, & Diaz, 2007 ; DuBois et al., 2013 ).

These two influences on ethical behavior are helpful to keep in mind when thinking about your behavior. When people think about their ethical behavior, they think about their personal values and integrity and tend to overlook the influence of their environment. While “being a good person” and having the right intentions are essential to ethical behavior, the environment also has an influence. In addition, knowledge of standards for ethical research is important for ethical behavior, and graduate students new to research do not yet know everything they need to. They also have not fully refined their ethical decision-making skills for solving professional problems. We discuss strategies for ethical decision-making in the final section of this article ( McIntosh, Antes, & DuBois, 2020 ).

The research environment influences ethical behavior in a number of ways. For example, if a research group explicitly discusses high standards for research, people will be more likely to prioritize these ideals in their behavior ( Plemmons et al., 2020 ). A mentor who sets a good example is another important factor ( Anderson et al., 2007 ). Research labs must also provide individuals with adequate training, supervision and feedback, opportunities to discuss data, and the psychological safety to feel comfortable communicating about problems, including mistakes ( Antes, Kuykendall, & DuBois, 2019a , 2019b ). On the other hand, unfair research environments, inadequate supervision, poor communication, and severe stress and anxiety may undermine ethical decision-making and behavior; particularly when many of these factors exist together. Thus, (un)ethical behavior is a complex interplay of individual factors (e.g., personality, stress, decision-making skills) and the environment.

For graduate students, it is important to attend to what you are learning and how the environment around you might influence your behavior. You do not know what you do not know, and you necessarily rely on others to teach you responsible practices. So, it is important to be aware. Ultimately, you are accountable for your behavior. You cannot just say “I didn’t know.” Rather, just like you are curious about your scientific questions, maintain a curiosity about responsible behavior as a researcher. If you feel uncomfortable with something, pay attention to that feeling, speak to someone you trust, and seek out information about how to handle the situation. In what follows, we cover key tips for responsible behavior in the areas of reproducibility and authorship that we hope will help you as you begin.

HOW TO DO REPRODUCIBLE SCIENCE

The foremost responsibility of scientists is to ensure they conduct research in such a manner that the findings are trustworthy. Reproducibility is the ability to duplicate results ( Goodman, Fanelli, & Ioannidis, 2016 ). The scientific community has called for greater openness, transparency, and rigor as key remedies for lack of reproducibility ( Munafò et al., 2017 ). As a graduate student, essential to fostering reproducibility is the rigor of your approach to doing experiments and handling data. We discuss how to utilize research protocols, document experiments in a lab notebook, and handle data responsibly.

Utilize research protocols

1. learn and utilize the lab’s protocols.

Research protocols describe the step-by-step procedures for doing an experiment. They are critical for the quality and reproducibility of experiments. Lab members must learn and follow the lab’s protocols with the understanding that they may need to make adjustments based on the requirements of a specific experiment.

Also, it is important to distinguish between the experiment you are performing and analyzing the data from that experiment. For example, the experiment you want to perform might be to determine if loss of a gene blocks cell growth. Several protocols, each with pros and cons, will allow you to examine “cell growth.” Using the wrong experimental protocol can produce data that leads to muddled conclusions. In this example, the gene does block cell growth, but the experiment used to produce the data that you analyze to understand cell growth is wrong, thus giving a result that is a false negative.

When first joining a lab, it is essential to commit to learning the protocols necessary for your assigned research project. Researchers must ensure they are proficient in executing a protocol and can perform their experiments reliably. If you do not feel confident with a protocol, you should do practice runs if possible. Repetition is the best way to work through difficulties with protocols. Often it takes several attempts to work through the steps of a protocol before you will be comfortable performing it. Asking to watch another lab member perform the protocol is also helpful. Be sure to watch closely how steps are performed, as often there are minor steps taken that are not written down. Also, experienced lab members may do things as second nature and not think to explicitly mention them when working through the protocol. Ask questions of other lab members so that you can improve your knowledge and gain confidence with a protocol. It is better to ask a question than potentially ruin a valuable or hard-to-get sample.

Be cautious of differences in the standing protocols in the lab and how you actually perform the experiment. Even the most minor deviations can seriously impact the results and reproducibility of an experiment. As mentioned above, often there are minor things that are done that might not be listed in the protocol. Paying attention and asking questions are the best ways to learn, in addition to adding notes to the protocol if you find minor details are missing.

2. Develop your own protocols

Often you will find that a project requires a protocol that has not been performed in the lab. If performing a new experiment in the lab and no protocol exists, find a protocol and try it. Protocols can be obtained from many different sources. A great source is other labs on campus, as you can speak directly to the person who performs the experiment. There are many journal sources as well, such as Current Protocols, Nature Protocols, Nature Methods, and Cell STAR Methods . These methods journals provide the most detailed protocols for experiments often with troubleshooting tips. Scientific papers are the most common source of protocols. However, keep in mind that due to the common brevity of methods sections, they often omit crucial details or reference other papers that may not contain a complete description of the protocol.

3. Handle mistakes or problems promptly

At some point, everyone encounters problems with a protocol, or realizes they made a mistake. You should be prepared to handle this situation by being able to detail exactly how you performed the experiment. Did you skip a step? Shorten or lengthen a time point? Did you have to make a new buffer or borrow a labmate’s buffer? There are too many ways an experiment can go wrong to list here but being able to recount all the steps you performed in detail will help you work through the problem. Keep in mind that often the best way to understand how to perform an experiment is learning from when something goes wrong. This situation requires you to critically think through what was done and understand the steps taken. When everything works perfectly, it is easy to pay less attention to the details, which can lead to problems down the line.

It is up to you to be attentive and meticulous in the lab. Paying attention to the details may feel like a pain at first, or even seem overwhelming. Practice and repetition will help this focus on details become a natural part of your lab work. Ultimately, this skill will be essential to being a responsible scientist.

Document experiments in a lab notebook

1. recognize the importance of a lab notebook.

Maintaining detailed documentation in a lab notebook allows researchers to keep track of their experiments and generation of data. This detailed documentation helps you communicate about your research with others in the lab, and serves as a basis for preparing publications. It also provides a lasting record for the lab that exists beyond your time in the lab. After graduate students leave the lab, sometimes it is necessary to go back to the results of older experiments. A complete and detailed notebook is essential, or all of the time, effort, and resources are lost.

2. Learn the note-keeping practices in your lab

When you enter a new lab, it is important to understand how the lab keeps notebooks and the expectations for documentation. Being conscientious about documentation will make you a better scientist. In some labs, the PI might routinely examine your notebook, while in other labs you may be expected to maintain a notebook, but it may not be regularly viewed by others. It is tempting to become relaxed in documentation if you think your notebook may not be reviewed. Avoid this temptation; documentation of your ideas and process will improve your ability to think critically about research. Further, even if the PI or lab members do not physically view your notebook, you will need to communicate with them about your experiments. This documentation is necessary to communicate effectively about your work.

3. Organize your lab notebook

Different labs use different formats; some use electronic notebooks while others handwritten notebooks. The contents of a good notebook include the purpose of the experiment, the details of the experimental procedure, the data, and thoughts about the results. To effectively document your experiment, there are 5 critical questions that the information you record should be able to answer.

  • Why I am doing this experiment? (purpose)
  • What did I do to perform the experiment? (protocol)
  • What are the results of what I did? (data, graphs)
  • What do I think about the results?
  • What do I think are the next steps?

We also recommend a table of contents. It will make the information more useful to you and the lab in the future. The table of contents should list the title of the experiment, the date(s) it was performed, and the page numbers on which it is recorded. Also, make sure that you write clearly and provide a legend or explanation of any shorthand or non-standard abbreviation you use. Often labs will have a combination of written lab notebooks and electronic data. It is important to reference where electronic data are located that go with each experiment. The idea is to make it as easy as possible to understand what you did and where to find all the data (electronic and hard copy) that accompanies your experiment.

Keeping a lab notebook becomes easier with practice. It can be thought of almost like journaling about your experiment. Sometimes people think of it as just a place to paste their protocol and a graph or data. We strongly encourage you to include your thoughts about why you made the decisions you made when conducting the experiment and to document your thoughts about next steps.

4. Commit to doing it the right way

A common reason to become lax in documentation is feeling rushed for time. Although documentation takes time, it saves time in the long-run and fosters good science. Without good notes, you will waste time trying to recall precisely what you did, reproduce your findings, and remember what you thought would be important next steps. The lab notebook helps you think about your research critically and keep your thoughts together. It can also save you time later when writing up results for publication. Further, well-documented data will help you draft a cogent and rigorous dissertation.

Handle data responsibly

1. keep all data.

Data are the product of research. Data include raw data, processed data, analyzed data, figures, and tables. Many data today are electronic, but not all. Generating data requires a lot of time and resources and researchers must treat data with care. The first essential tip is to keep all data. Do not discard data just because the experiment did not turn out as expected. A lot of experiments do not turn out to yield publishable data, but the results are still important for informing next steps.

Always keep the original, raw data. That is, as you process and analyze data, always maintain an unprocessed version of the original data.

Universities and funding agencies have data retention policies. These policies specify the number of years beyond a grant that data must be kept. Some policies also indicate researchers need to retain original data that served as the basis for a publication for a certain number of years. Therefore, your data will be important well beyond your time in graduate school. Most labs require you to keep samples for reanalysis until a paper is published, then the analyzed data are enough. If you leave a lab before a paper is accepted for publication, you are responsible for ensuring your data and original samples are well documented for others to find and use.

2. Document all data

In addition to keeping all data, data must be well-organized and documented. This means that no matter the way you keep your data (e.g., electronic or in written lab notebooks), there is a clear guide—in your lab notebook, a binder, or on a lab hard drive—to finding the data for a particular experiment. For example, it must be clear which data produced a particular graph. Version control of data is also critical. Your documentation should include “metadata” (data about your data) that tracks versions of the data. For example, as you edit data for a table, you should save separate versions of the tables, name the files sequentially, and note the changes that were made to each version.

3. Backup your data

You should backup electronic data regularly. Ideally, your lab has a shared server or cloud storage to backup data. If you are supposed to put your data there, make sure you do it! When you leave the lab, it must be possible to find your data.

4. Perform data analysis honestly and competently

Inappropriate use of statistics is a major concern in the scientific community, as the results and conclusions will be misleading if done incorrectly ( DeMets, 1999 ). Some practices are clearly an abuse of statistics, while other inappropriate practices stem from lack of knowledge. For example, a practice called “p-hacking” describes when researchers “collect or select data or statistical analyses until nonsignificant results become significant” ( Head, Holman, Lanfear, Kahn, & Jennions, 2015 ). In addition to avoiding such misbehavior, it is essential to be proficient with statistics to ensure you do statistical procedures appropriately. Learning statistical procedures and analyzing data takes many years of practice, and your statistics courses may only cover the basics. You will need to know when to consult others for help. In addition to consulting members in your lab or your PI, your university may have statistical experts who can provide consultations.

5. Master pressure to obtain favored results

When you conduct an experiment, the results are the results. As a beginning researcher, it is important to be prepared to manage the frustration of experiments not turning out as expected. It is also important to manage the real or perceived pressure to produce favored results. Investigators can become wedded to a hypothesis, and they can have a difficult time accepting the results. Sometimes you may feel this pressure coming from yourself; for example, if you want to please your PI, or if you want to get results for a certain publication. It is important to always follow the data no matter where it leads.

If you do feel pressure, this situation can be uncomfortable and stressful. If you have been meticulous and followed the above recommendations, this can be one great safeguard. You will be better able to confidently communicate your results to the PI because of your detailed documentation, and you will be more confident in your procedures if the possibility of error is suggested. Typically, with enough evidence that the unexpected results are real, the PI will concede. We recommend seeking the support of friends or colleagues to vent and cope with stress. In the rare case that the PI does not relent, you could turn to an advisor outside the lab if you need advice about how to proceed. They can help you look at the data objectively and also help you think about the interpersonal aspects of navigating this situation.

6. Communicate about your data in the lab

A critical element of reproducible research is communication in the lab. Ideally, there are weekly or bi-weekly meetings to discuss data. You need to develop your communication skills for writing and speaking about data. Often you and your labmates will discuss experimental issues and results informally during the course of daily work. This is an excellent way to hone critical thinking and communication skills about data.

Scenario 1 – The Protocol is Not Working

At the beginning of a rotation during their first year, a graduate student is handed a lab notebook and a pen and is told to keep track of their work. There does not appear to be a specific format to follow. There are standard lab protocols that everyone follows, but minor tweaks to the protocols do not seem to be tracked from experiment to experiment in the standard lab protocol nor in other lab notebooks. After two weeks of trying to follow one of the standard lab protocols, the student still cannot get the experiment to work. The student has included the appropriate positive and negative controls which are failing, making the experiment uninterpretable. After asking others in the lab for help, the graduate student learns that no one currently in the lab has performed this particular experiment. The former lab member who had performed the experiment only lists the standard protocol in their lab notebook.

How should the graduate student start to solve the problem?

Speaking to the PI would be the next logical step. As a first-year student in a lab rotation, the PI should expect this type of situation and provide additional troubleshooting guidance. It is possible that the PI may want to see how the new graduate student thinks critically and handles adversity in the lab. Rather than giving an answer, the PI might ask the student to work through the problem. The PI should give guidance, but it may not be an immediate fix for the problem. If the PI’s suggestions fail to correct the problem, asking a labmate or the PI for the contact information of the former lab member who most recently performed the experiment would be a reasonable next step. The graduate student’s conversations with the PI and labmates in this situation will help them learn a lot about how the people in the lab interact.

Most of the answers for these types of problems will require you as a graduate student to take the initiative to answer. They will require your effort and ingenuity to talk to other lab members, other labs at the university, and even scour the literature for alternatives. While labs have standard protocols, there are multiple ways to do many experiments, and working out an alternative will teach you more than when everything works. Having to troubleshoot problems will result in better standard protocols in the lab and better science.

HOW TO BE A RESPONSIBLE AUTHOR

Researchers communicate their findings via peer-reviewed publications, and publications are important for advancing in a research career. Many graduate students will first author or co-author publications in graduate school. For good advice on how to write a research manuscript, consult the Current Protocols article “How to write a research manuscript” ( Frank, 2018 ). We focus on the issues of assigning authors and reporting your findings responsibly. First, we describe some important basics: journal impact factors, predatory journals, and peer review.

What are journal impact factors?

It is helpful to understand journal impact factors. There is criticism about an overemphasis on impact factors for evaluating the quality or importance of researchers’ work ( DePellegrin & Johnston, 2015 ), but they remain common for this purpose. Journal impact factors reflect the average number of times articles in a journal were cited in the last two years. Higher impact factors place journals at a higher rank. Approximately 2% of journals have an impact factor of 10 or higher. For example, Cell, Science, and Nature have impact factors of approximately 39, 42, and 43, respectively. Journals can be great journals but have lower impact factors; often this is because they focus on a smaller specialty field. For example, Journal of Immunology and Oncogene are respected journals, but their impact factors are about 4 and 7, respectively.

Research trainees often want to publish in journals with the highest possible impact factor because they expect this to be viewed favorably when applying to future positions. We encourage you to bear in mind that many different journals publish excellent science and focus on publishing where your work will reach the desired audience. Also, keep in mind that while a high impact factor can direct you to respectable, high-impact science, it does not guarantee that the science in the paper is good or even correct. You must critically evaluate all papers you read no matter the impact factor.

What are predatory journals?

Predatory journals have flourished over the past few years as publishing science has moved online. An international panel defined predatory journals as follows ( Grudniewicz et al., 2019 ):

Predatory journals and publishers are entities that prioritize self-interest at the expense of scholarship and are characterized by false or misleading information, deviation from best editorial and publication practices, a lack of transparency, and/or the use of aggressive and indiscriminate solicitation practices. (p. 211)

Often young researchers receive emails soliciting them to submit their work to a journal. There are typically small fees (around $99 US) requested but these fees will be much lower than open access fees of reputable journals (often around $2000 US). A warning sign of a predatory journal is outlandish promises, such as 24-hour peer review or immediate publication. You can find a list of predatory journals created by a postdoc in Europe at BeallsList.net ( “Beall’s List of Potential Predatory Journals and Publishers,” 2020 ).

What is peer review?

Peer reviewers are other scientists who have the expertise to evaluate a manuscript. Typically 2 or 3 reviewers evaluate a manuscript. First, an editor performs an initial screen of the manuscript to ensure its appropriateness for the journal and that it meets basic quality standards. At this stage, an editor can decide to reject the manuscript and not send it to review. Not sending a paper for peer review is common in the highest impact journals that receive more submissions per year than can be reviewed and published. For average-impact journals and specialty journals, typically your paper will be sent for peer review.

In general, peer review focuses on three aspects of a manuscript: research design and methods, validity of the data and conclusions, and significance. Peer reviewers assess the merit and rigor of the research design and methodology, and they evaluate the overall validity of the results, interpretations, and conclusions. Essentially, reviewers want to ensure that the data support the claims. Additionally, reviewers evaluate the overall significance, or contribution, of the findings, which involves the novelty of the research and the likelihood that the findings will advance the field. Significance standards vary between journals. Some journals are open to publishing findings that are incremental advancements in a field, while others want to publish only what they deem as major advancements. This feature can distinguish the highest impact journals which seek the most significant advancements and other journals that tend to consider a broader range of work as long as it is scientifically sound. It is important to keep in mind that determining at the stage of review and publication whether a paper is “high impact” is quite subjective. In reality, this can only really be determined in retrospect.

The key ethical issues in peer review are fairness, objectivity, and confidentiality ( Shamoo & Resnik, 2015 ). Peer reviewers are to evaluate the manuscript on its merits and not based on biases related to the authors or the science itself. If reviewers have a conflict of interest, this should be disclosed to the editor. Confidentiality of peer review means that the reviewers should keep private the information; they should not share the information with others or use it to their benefit. Reviewers can ultimately recommend that the manuscript is rejected, revised, and resubmitted (major or minor revisions), or accepted. The editor evaluates the reviewers’ feedback and makes a judgment about rejecting, accepting, or requesting a revision. Sometimes PIs will ask experienced graduate students to assist with peer reviewing a manuscript. This is a good learning opportunity. The PI should disclose to the editor that they included a trainee in preparing the review.

Assign authorship fairly

Authorship gives credit to the people who contributed to the research. This includes thinking of the ideas, designing and performing experiments, interpreting the results, and writing the paper. Two key questions regarding authorship include: 1 - Who will be an author? 2 - What will be the order in which authors are listed? These seem simple on the surface but can get quite complex.

1. Know authorship guidelines

Authorship guidelines published by journals, professional societies, and universities communicate key principles of authorship and standards for earning authorship. The core ethical principle of assigning authorship is fairness in who receives credit for the work. The people who contributed to the work should get credit for it. This seems simply enough, but determining authorship can (and often does) create conflict.

Many universities have authorship guidelines, and you should know the policies at your university. The International Committee of Medical Journal Editors (ICMJE) provides four criteria for determining who should be an author ( International Committee of Medical Journal Editors, 2020 ). These criteria indicate that an author should do all of the following: 1) make “substantial contributions” to the development of the idea or research design, or to acquiring, analyzing, or interpreting the data, 2) write the manuscript or revise it a substantive way, 3) give approval of the final manuscript (i.e., before it is submitted for review, and after it is revised, if necessary), and 4) agree to be responsible for any questions about the accuracy or integrity of the research.

Several types of authorship violate these guidelines and should be avoided. Guest authorship is when respected researchers are added out of appreciation, or to have the manuscript be perceived more favorably to get it published or increase its impact. Gift authorship is giving authorship to reward an individual, or as a favor. Ghost authorship is when someone made significant contributions to the paper but is not listed as an author. To increase transparency, some journals require authors to indicate how each individual contributed to the research and manuscript.

2. Apply the guidelines

Conflicts often arise from disagreements about how much people contributed to the research and whether those contributions merit authorship. The best approach is an open, honest, and ongoing discussion about authorship, which we discuss in #3 below. To have effective, informed conversations about authorship, you must understand how to apply the guidelines to your specific situation. The following is a simple rule of thumb that indicates there are three components of authorship. We do not list giving final approval of the manuscript and agreeing to be accountable, but we do consider these essentials of authorship.

  • Thinking – this means contributing to the ideas leading to the hypothesis of the work, designing experiments to address the hypothesis, and/or analyzing the results in the larger context of the literature in the field.
  • Doing – this means performing and analyzing the experiments.
  • Writing – this means editing a draft, or writing the entire paper. The first author often writes the entire first draft.

In our experience, a first author would typically do all three. They also usually coordinate the writing and editing process. Co-authors are typically very involved in at least two of the three, and are somewhat involved in the other. The PI, who oversees and contributes to all three, is often the last, or “senior author.” The “senior author” is typically the “corresponding author”—the person listed as the individual to contact about the paper. The other co-authors are listed between the first and senior author either alphabetically, or more commonly, in order from the largest to smallest contribution.

Problems in assigning authorship typically arise due to people’s interpretations of #1 (thinking) and #2 (doing)—what and how much each individual contributed to a project’s design, execution, and analysis. Different fields or PIs may have their own slight variations on these guidelines. The potential conflicts associated with assigning authorship lead to the most common recommendation for responsibly assigning authorship: discuss authorship expectations early and revisit them during the project.

3. Discuss authorship with your collaborators

Publications are important for career advancement, so you can see why people might be worried about fairness in assigning authorship. If the problem arises from a lack of a shared understanding about contributions to the research, the only way to clarify this is an open discussion. This discussion should ideally take place very early at the beginning of a project, and should be ongoing. Hopefully you work in a laboratory that makes these discussions a natural part of the research process; this makes it much easier to understand the expectations upfront.

We encourage you to speak up about your interest in making a contribution that would merit authorship, especially if you want to earn first authorship. Sometimes norms about authoring papers in a lab make it clear you are expected to first and co-author publications, but it is best to communicate your interest in earning authorship. If the project is not yours, but you wish to collaborate, you can inquire what you may be able to contribute that would merit authorship.

If it is not a norm in your lab to discuss authorship throughout the life of projects, then as a graduate student you may feel reluctant to speak up. You could initiate a conversation with a more senior graduate student, a postdoc, or your PI, depending on the dynamics in the group. You could ask generally about how the lab approaches assignment of authorship, but discussing a specific project and paper may be best. It may feel awkward to ask, but asking early is less uncomfortable than waiting until the end of the project. If the group is already drafting a manuscript and you are told that your contribution is insufficient for authorship, this situation is much more discouraging than if you had asked earlier about what is expected to earn authorship.

How to report findings responsibly

The most significant responsibility of authors is to present their research accurately and honestly. Deliberately presenting misleading information is clearly unethical, but there are significant judgment calls about how to present your research findings. For example, an author can mislead by overstating the conclusions given what the data support.

1. Commit to presenting your findings honestly

Any good scientific manuscript writer will tell you that you need to “tell a good story.” This means that your paper is organized and framed to draw the reader into the research and convince them of the importance of the findings. But, this story must be sound and justified by the data. Other authors are presenting their findings in the best, most “publishable” light, so it is a balancing act to be persuasive but also responsible in presenting your findings in a trustworthy manner. To present your findings honestly, you must be conscious of how you interpret your data and present your conclusions so that they are accurate and not overstated.

One misbehavior known as “HARKing,” Hypothesis After the Results are Known, occurs when hypotheses are created after seeing the results of an experiment, but they are presented as if they were defined prior to collecting the data ( Munafò et al., 2017 ). This practice should be avoided. HARKing may be driven, in part, by a concern in scientific publishing known as publication bias. This bias is a preference that reviewers, editors, and researchers have for papers describing positive findings instead of negative findings ( Carroll, Toumpakari, Johnson, & Betts, 2017 ). This preference can lead to manipulating one’s practices, such as by HARKing, so that positive findings can be reported.

It is important to note that in addition to avoiding misbehaviors such as HARKing, all researchers are susceptible to a number of more subtle traps in judgment. Even the most well-intentioned researcher may jump to conclusions, discount alternative explanations, or accept results that seem correct without further scrutiny ( Nuzzo, 2015 ). Therefore, researchers must not only commit to presenting their findings honestly but consider how they can counteract such traps by slowing down and increasing their skepticism towards their findings.

2. Provide an appropriate amount of detail

Providing enough detail in a manuscript can be a challenge with the word limits imposed by most journals. Therefore, you will need to determine what details to include and which to exclude, or potentially include in the supplemental materials. Methods sections can be long and are often the first to be shortened, but complete methods are important for others to evaluate the research and to repeat the methods in other studies. Even more significant is making decisions about what experimental data to include and potentially exclude from the manuscript. Researchers must determine what data is required to create a complete scientific story that supports the central hypothesis of the paper. On the other hand, it is not necessary or helpful to include so much data in the manuscript, or in supplemental material, that the central point of the paper is difficult to discern. It is a tricky balance.

3. Follow proper citation practices

Of course, responsible authorship requires avoiding plagiarism. Many researchers think that plagiarism is not a concern for them because they assume it is always done intentionally by “copying and pasting” someone else’s words and claiming them as your own. Sometimes poor writing practices, such as taking notes from references without distinguishing between direct quotes and paraphrased material, can lead to including material that is not quoted properly. More broadly, proper citation practices include accurately and completely referencing prior studies to provide appropriate context for your manuscript.

4. Attend to the other important details

The journal will require several pieces of additional information, such as disclosure of sources of funding and potential conflicts of interest. Typically, graduate students do not have relationships that constitute conflicts of interest, but a PI who is a co-author may. In submitting a manuscript, also make sure to acknowledge individuals not listed as authors but who contributed to the work.

5. Share data and promote transparency

Data sharing is a key facet of promoting transparency in science ( Nosek et al., 2015 ). It will be important to know the expectations of the journals in which you wish to publish. Many top journals now require data sharing; for example, sharing your data files in an online repository so others have access to the data for secondary use. Funding agencies like NIH also increasingly require data sharing. To further foster transparency and public trust in research, researchers must deposit their final peer-reviewed manuscripts that report on research funded by NIH to PubMed Central. PubMed makes biomedical and life science research publicly accessible in a free, online database.

Scenario 2 – Authors In Conflict

To prepare a manuscript for publication, a postdoc’s data is added to a graduate student’s thesis project. After working together to combine the data and write the paper, the postdoc requests co-first authorship on the paper. The graduate student balks at this request on the basis that it is their thesis project. In a weekly meeting with the lab’s PI to discuss the status of the paper, the graduate student states that they should divide the data between the authors as a way to prove that the graduate student should be the sole first author. The PI agrees to this attempt to quantify how much data each person contributed to the manuscript. All parties agree the writing and thinking were equally shared between them. After this assessment, the graduate student sees that the postdoc actually contributed more than half of the data presented in the paper. The graduate student and a second graduate student contributed the remaining data; this means the graduate student contributed much less than half of the data in the paper. However, the graduate student is still adamant that they must be the sole first author of the paper because it is their thesis project.

Is the graduate student correct in insisting that it is their project, so they are entitled to be the sole first author?

Co-first authorship became popular about 10 years ago as a way to acknowledge shared contributions to a paper in which authors worked together and contributed equally. If the postdoc contributed half of the data and worked with the graduate student to combine their interpretations and write the first draft of the paper, then the postdoc did make a substantial contribution. If the graduate student wrote much of the first draft of the paper, contributed significantly to the second half of data, and played a major role in the thesis concept and design, this is also a major contribution. We summarized authorship requirements as contributing to thinking, doing, and writing, and we noted that a first author usually contributes to all of these. The graduate student has met all 3 elements to claim first authorship. However, it appears that the postdoc has also met these 3 requirements. Thus, it is at least reasonable for the postdoc to ask about co-first authorship.

The best way to move forward is to discuss their perspectives openly. Both the graduate student and postdoc want first authorship on papers to advance their careers. The postdoc feels they contributed more to the overall concept and design than the graduate student is recognizing, and the postdoc did contribute half of the data. This is likely frustrating and upsetting for the postdoc. On the other hand, perhaps the postdoc is forgetting how much a thesis becomes like “your baby,” so to speak. The work is the graduate student’s thesis, so it is easy to see why the graduate student would feel a sense of ownership of it. Given this fact, it may be hard for the graduate student to accept the idea that they would share first-author recognition for the work. Yet, the graduate student should consider that the manuscript would not be possible without the postdoc’s contribution. Further, if the postdoc was truly being unreasonable, then the postdoc could make the case for sole first authorship based on contributing the most data to the paper, in addition to contributing ideas and writing the paper. The graduate student should consider that the postdoc may be suggesting co-first authorship in good faith.

As with any interpersonal conflict, clear communication is key. While it might be temporarily uncomfortable to voice their views and address this disagreement, it is critical to avoiding permanent damage to their working relationship. The pair should consider each other’s perspectives and potential alternatives. For example, if the graduate student is first author and the postdoc second, at a minimum they could include an author note in the manuscript that describes the contribution of each author. This would make it clear the scope of the postdoc’s contribution, if they decided not to go with co-first authorship. Also, the graduate student should consider their assumptions about co-first authorship. Maybe they assume it makes it appear they contributed less, but instead, perhaps co-first authorship highlights their collaborative approach to science. Collaboration is a desirable quality many (although arguably not all) research organizations look for when they are hiring.

They will also need to speak with others for advice. The pair should definitely speak with the PI who could provide input about how these cases have been handled in the past. Ultimately, if they cannot reach an agreement, the PI, who is likely to be the last or “senior” author, may make the final decision. They should also speak to the other graduate student who is an author.

If either individual is upset with the situation, they will want to discuss it when they have had time to cool down. This might mean taking a day before discussing, or speaking with someone outside of the lab for support. Ideally, all authors on this paper would have initiated this conversation earlier, and the standards in the lab for first authorship would be discussed routinely. Clear communication may have avoided the conflict.

HOW TO USE DECISION-MAKING STRATEGIES TO NAVIGATE CHALLENGES

We have provided advice on some specific challenges you might encounter in research. This final section covers our overarching recommendation that you adopt a set of ethical decision-making strategies. These strategies help researchers address challenges by helping them think through a problem and possible alternatives ( McIntosh et al., 2020 ). The strategies encourage you to gather information, examine possible outcomes, consider your assumptions, and address emotional reactions before acting. They are especially helpful when you are uncertain how to proceed, face a new problem, or when the consequences of a decision could negatively impact you or others. The strategies also help people be honest with themselves, such as when they are discounting important factors or have competing goals, by encouraging them to identify outside perspectives and test their motivations. You can remember the strategies using the acronym SMART .

1. S eek Help

Obtain input from others who can be objective and that you trust. They can assist you with assessing the situation, predicting possible outcomes, and identifying potential options. They can also provide you with support. Individuals to consult may be peers, other faculty, or people in your personal life. It is important that you trust the people you talk with, but it is also good when they challenge your perspective, or encourage you to think in a new way about a problem. Keep in mind that people such as program directors and university ombudsmen are often available for confidential, objective advice.

2. M anage Emotions

Consider your emotional reaction to the situation and how it might influence your assessment of the situation, and your potential decisions and actions. In particular, identify negative emotions, like frustration, anxiety, fear, and anger, as they particularly tend to diminish decision-making and the quality of interactions with others. Take time to address these emotions before acting, for example, by exercising, listening to music, or simply taking a day before responding.

3. A nticipate Consequences

Think about how the situation could turn out. This includes for you, for the research team, and anyone else involved. Consider the short, middle-term, and longer-term impacts of the problem and your potential approach to addressing the situation. Ideally, it is possible to identify win-win outcomes. Often, however, in tough professional situations, you may need to select the best option from among several that are not ideal.

4. R ecognize Rules and Context

Determine if any ethical principles, professional policies, or rules apply that might help guide your choices. For instance, if the problem involves an authorship dispute, consider the authorship guidelines that apply. Recognizing the context means considering the situational factors that could impact your options and how you proceed. For example, factors such as the reality that ultimately the PI may have the final decision about authorship.

5. T est Assumptions and Motives

Examine your beliefs about the situation and whether any of your thoughts may not be justified. This includes critically examining the personal motivations and goals that are driving your interpretation of the problem and thoughts about how to resolve it.

These strategies do not have to be engaged in order, and they are interrelated. For example, seeking help can help you manage emotions, test assumptions, and anticipate consequences. Go back to the scenarios and our advice throughout this article, and you will see many of our suggestions align with these strategies. Practice applying SMART strategies when you encounter a problem and they will become more natural.

Learning practices for responsible research will be the foundation for your success in graduate school and your career. We encourage you to be reflective and intentional as you learn and hope that our advice helps you along the way.

ACKNOWLEDGEMENTS

This work was supported by the National Human Genome Research Institute (Antes, K01HG008990) and the National Center for Advancing Translational Sciences (UL1 TR002345).

LITERATURE CITED

  • Anderson MS, Horn AS, Risbey KR, Ronning EA, De Vries R, & Martinson BC (2007). What Do Mentoring and Training in the Responsible Conduct of Research Have To Do with Scientists’ Misbehavior? Findings from a National Survey of NIH-Funded Scientists . Academic Medicine , 82 ( 9 ), 853–860. doi: 10.1097/ACM.0b013e31812f764c [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, Brown RP, Murphy ST, Waples EP, Mumford MD, Connelly S, & Devenport LD (2007). Personality and Ethical Decision-Making in Research: The Role of Perceptions of Self and Others . Journal of Empirical Research on Human Research Ethics , 2 ( 4 ), 15–34. doi: 10.1525/jer.2007.2.4.15 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, English T, Baldwin KA, & DuBois JM (2018). The Role of Culture and Acculturation in Researchers’ Perceptions of Rules in Science . Science and Engineering Ethics , 24 ( 2 ), 361–391. doi: 10.1007/s11948-017-9876-4 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, Kuykendall A, & DuBois JM (2019a). The Lab Management Practices of “Research Exemplars” that Foster Research Rigor and Regulatory Compliance: A Qualitative Study of Successful Principal Investigators . PloS One , 14 ( 4 ), e0214595. doi: 10.1371/journal.pone.0214595 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, Kuykendall A, & DuBois JM (2019b). Leading for Research Excellence and Integrity: A Qualitative Investigation of the Relationship-Building Practices of Exemplary Principal Investigators . Accountability in Research , 26 ( 3 ), 198–226. doi: 10.1080/08989621.2019.1611429 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, & Maggi LB Jr. (2021). How to Navigate Trainee-Mentor Relationships and Interpersonal Dynamics in the Lab . Current Protocols Essential Laboratory Techniques. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Asplund M, & Welle CG (2018). Advancing Science: How Bias Holds Us Back . Neuron , 99 ( 4 ), 635–639. doi: 10.1016/j.neuron.2018.07.045 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Baker M (2016). Is There a Reproducibility Crisis? Nature , 533 , 452–454. doi: 10.1038/533452a [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barba LA (2016). The Hard Road to Reproducibility . Science , 354 ( 6308 ), 142. doi: 10.1126/science.354.6308.142 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beall’s List of Potential Predatory Journals and Publishers . (2020). Retrieved from https://beallslist.net/#update [ Google Scholar ]
  • Carroll HA, Toumpakari Z, Johnson L, & Betts JA (2017). The Perceived Feasibility of Methods to Reduce Publication Bias . PloS One , 12 ( 10 ), e0186472–e0186472. doi: 10.1371/journal.pone.0186472 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chappell B (2019). Duke Whistleblower Gets More Than $33 Million in Research Fraud Settlement . NPR. Retrieved from https://www.npr.org/2019/03/25/706604033/duke-whistleblower-gets-more-than-33-million-in-research-fraud-settlement [ Google Scholar ]
  • Davis MS, Riske-Morris M, & Diaz SR (2007). Causal Factors Implicated in Research Misconduct: Evidence from ORI Case Files . Science and Engineering Ethics , 13 ( 4 ), 395–414. doi: 10.1007/s11948-007-9045-2 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • DeMets DL (1999). Statistics and Ethics in Medical Research . Science and Engineering Ethics , 5 ( 1 ), 97–117. doi: 10.1007/s11948-999-0059-9 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Department of Health and Human Services. (2005). 42 CFR Parts 50 and 93 Public Health Service Policies on Research Misconduct; Final Rule. Retrieved from https://ori.hhs.gov/sites/default/files/42_cfr_parts_50_and_93_2005.pdf [ Google Scholar ]
  • DePellegrin TA, & Johnston M (2015). An Arbitrary Line in the Sand: Rising Scientists Confront the Impact Factor . Genetics , 201 ( 3 ), 811–813. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • DuBois JM, Anderson EE, Chibnall J, Carroll K, Gibb T, Ogbuka C, & Rubbelke T (2013). Understanding Research Misconduct: A Comparative Analysis of 120 Cases of Professional Wrongdoing . Account Res , 20 ( 5–6 ), 320–338. doi: 10.1080/08989621.2013.822248 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • DuBois JM, & Antes AL (2018). Five Dimensions of Research Ethics: A Stakeholder Framework for Creating a Climate of Research Integrity . Academic Medicine , 93 ( 4 ), 550–555. doi: 10.1097/ACM.0000000000001966 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Else H (2018). Does Science have a Bullying Problem? Nature , 563 , 616–618. doi: 10.1038/d41586-018-07532-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Emanuel EJ, Wendler D, & Grady C (2000). What Makes Clinical Research Ethical ? Journal of the American Medical Association , 283 ( 20 ), 2701–2711. doi:jsc90374 [pii] [ PubMed ] [ Google Scholar ]
  • Evans TM, Bira L, Gastelum JB, Weiss LT, & Vanderford NL (2018). Evidence for a Mental Health Crisis in Graduate Education . Nature Biotechnology , 36 ( 3 ), 282–284. doi: 10.1038/nbt.4089 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Frank DJ (2018). How to Write a Research Manuscript . Current Protocols Essential Laboratory Techniques , 16 ( 1 ), e20. doi: 10.1002/cpet.20 [ CrossRef ] [ Google Scholar ]
  • Goodman SN, Fanelli D, & Ioannidis JPA (2016). What Does Research Reproducibility Mean? Science Translational Medicine , 8 ( 341 ), 341ps312. doi: 10.1126/scitranslmed.aaf5027 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grudniewicz A, Moher D, Cobey KD, Bryson GL, Cukier S, Allen K, … Lalu MM (2019). Predatory journals: no definition, no defence . Nature , 576 ( 7786 ), 210–212. doi: 10.1038/d41586-019-03759-y [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Head ML, Holman L, Lanfear R, Kahn AT, & Jennions MD (2015). The Extent and Consequences of P-Hacking in Science . PLoS Biology , 13 ( 3 ), e1002106. doi: 10.1371/journal.pbio.1002106 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hofstra B, Kulkarni VV, Munoz-Najar Galvez S, He B, Jurafsky D, & McFarland DA (2020). The Diversity–Innovation Paradox in Science . Proceedings of the National Academy of Sciences , 117 ( 17 ), 9284. doi: 10.1073/pnas.1915378117 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • International Committee of Medical Journal Editors. (2020). Defining the Role of Authors and Contributors . Retrieved from http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
  • Keith-Spiegel P, Sieber J, & Koocher GP (2010). Responding to Research Wrongdoing: A User-Friendly Guide . Retrieved from http://users.neo.registeredsite.com/1/4/0/20883041/assets/RRW_11-10.pdf
  • McIntosh T, Antes AL, & DuBois JM (2020). Navigating Complex, Ethical Problems in Professional Life: A Guide to Teaching SMART Strategies for Decision-Making . Journal of Academic Ethics . doi: 10.1007/s10805-020-09369-y [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Meyers LC, Brown AM, Moneta-Koehler L, & Chalkley R (2018). Survey of Checkpoints along the Pathway to Diverse Biomedical Research Faculty . PloS One , 13 ( 1 ), e0190606–e0190606. doi: 10.1371/journal.pone.0190606 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Munafò MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie du Sert N, … Ioannidis JPA (2017). A manifesto for reproducible science . Nature Human Behaviour , 1 ( 1 ), 0021. doi: 10.1038/s41562-016-0021 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • National Academies of Science. (2009). On Being a Scientist: A Guide to Responsible Conduct in Research . Washington DC: National Academics Press. [ PubMed ] [ Google Scholar ]
  • National Academies of Sciences Engineering and Medicine. (2017). Fostering Integrity in Research . Washington, DC: The National Academies Press [ PubMed ] [ Google Scholar ]
  • National Academies of Sciences Engineering and Medicine. (2018a). An American Crisis: The Growing Absence of Black Men in Medicine and Science: Proceedings of a Joint Workshop . Washington, DC: The National Academies Press. [ PubMed ] [ Google Scholar ]
  • National Academies of Sciences Engineering and Medicine. (2018b). Sexual harassment of women: climate, culture, and consequences in academic sciences, engineering, and medicine : National Academies Press. [ PubMed ] [ Google Scholar ]
  • National Institutes of Health. (2009). Update on the Requirement for Instruction in the Responsible Conduct of Research . NOT-OD-10-019 . Retrieved from https://grants.nih.gov/grants/guide/notice-files/NOT-OD-10-019.html
  • National Science Foundation. (2017). Important Notice No. 140 Training in Responsible Conduct of Research – A Reminder of the NSF Requirement . Retrieved from https://www.nsf.gov/pubs/issuances/in140.jsp
  • No Place for Bullies in Science. (2018). Nature , 559 ( 7713 ), 151. doi: 10.1038/d41586-018-05683-z [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Norris D, Dirnagl U, Zigmond MJ, Thompson-Peer K, & Chow TT (2018). Health Tips for Research Groups . Nature , 557 , 302–304. doi: 10.1038/d41586-018-05146-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, … Yarkoni T (2015). Scientific Standards . Promoting an Open Research Culture. Science , 348 ( 6242 ), 1422–1425. doi: 10.1126/science.aab2374 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Nuzzo R (2015). How Scientists Fool Themselves - and How They Can Stop . Nature , 526 , 182–185. [ PubMed ] [ Google Scholar ]
  • O’Connor A (2018). More Evidence that Nutrition Studies Don’t Always Add Up . The New York Times. Retrieved from https://www.nytimes.com/2018/09/29/sunday-review/cornell-food-scientist-wansink-misconduct.html [ Google Scholar ]
  • Park A (2012). Great Science Frauds . Time. Retrieved from https://healthland.time.com/2012/01/13/great-science-frauds/slide/the-baltimore-case/ [ Google Scholar ]
  • Plemmons DK, Baranski EN, Harp K, Lo DD, Soderberg CK, Errington TM, … Esterling KM (2020). A Randomized Trial of a Lab-embedded Discourse Intervention to Improve Research Ethics . Proceedings of the National Academy of Sciences , 117 ( 3 ), 1389. doi: 10.1073/pnas.1917848117 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Research Institutions Must Put the Health of Labs First. (2018). Nature , 557 ( 7705 ), 279–280. doi: 10.1038/d41586-018-05159-0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Research Integrity is Much More Than Misconduct . (2019). ( 570 ). doi: 10.1038/d41586-019-01727-0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Resnik DB (2011). Scientific Research and the Public Trust . Science and Engineering Ethics , 17 ( 3 ), 399–409. doi: 10.1007/s11948-010-9210-x [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Roper RL (2019). Does Gender Bias Still Affect Women in Science? Microbiology and Molecular Biology Reviews , 83 ( 3 ), e00018–00019. doi: 10.1128/MMBR.00018-19 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shamoo AE, & Resnik DB (2015). Responsible Conduct of Research (3rd ed.). New York: Oxford University Press. [ Google Scholar ]
  • Steneck NH (2007). ORI Introduction to the Responsible Conduct of Research (Updated ed.). Washington, D.C.: U.S. Government Printing Office. [ Google Scholar ]
  • Winchester C (2018). Give Every Paper a Read for Reproducibility . Nature , 557 , 281. doi: 10.1038/d41586-018-05140-x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Corrections

Search Help

Get the most out of Google Scholar with some helpful tips on searches, email alerts, citation export, and more.

Finding recent papers

Your search results are normally sorted by relevance, not by date. To find newer articles, try the following options in the left sidebar:

  • click "Since Year" to show only recently published papers, sorted by relevance;
  • click "Sort by date" to show just the new additions, sorted by date;
  • click the envelope icon to have new results periodically delivered by email.

Locating the full text of an article

Abstracts are freely available for most of the articles. Alas, reading the entire article may require a subscription. Here're a few things to try:

  • click a library link, e.g., "FindIt@Harvard", to the right of the search result;
  • click a link labeled [PDF] to the right of the search result;
  • click "All versions" under the search result and check out the alternative sources;
  • click "Related articles" or "Cited by" under the search result to explore similar articles.

If you're affiliated with a university, but don't see links such as "FindIt@Harvard", please check with your local library about the best way to access their online subscriptions. You may need to do search from a computer on campus, or to configure your browser to use a library proxy.

Getting better answers

If you're new to the subject, it may be helpful to pick up the terminology from secondary sources. E.g., a Wikipedia article for "overweight" might suggest a Scholar search for "pediatric hyperalimentation".

If the search results are too specific for your needs, check out what they're citing in their "References" sections. Referenced works are often more general in nature.

Similarly, if the search results are too basic for you, click "Cited by" to see newer papers that referenced them. These newer papers will often be more specific.

Explore! There's rarely a single answer to a research question. Click "Related articles" or "Cited by" to see closely related work, or search for author's name and see what else they have written.

Searching Google Scholar

Use the "author:" operator, e.g., author:"d knuth" or author:"donald e knuth".

Put the paper's title in quotations: "A History of the China Sea".

You'll often get better results if you search only recent articles, but still sort them by relevance, not by date. E.g., click "Since 2018" in the left sidebar of the search results page.

To see the absolutely newest articles first, click "Sort by date" in the sidebar. If you use this feature a lot, you may also find it useful to setup email alerts to have new results automatically sent to you.

Note: On smaller screens that don't show the sidebar, these options are available in the dropdown menu labelled "Year" right below the search button.

Select the "Case law" option on the homepage or in the side drawer on the search results page.

It finds documents similar to the given search result.

It's in the side drawer. The advanced search window lets you search in the author, title, and publication fields, as well as limit your search results by date.

Select the "Case law" option and do a keyword search over all jurisdictions. Then, click the "Select courts" link in the left sidebar on the search results page.

Tip: To quickly search a frequently used selection of courts, bookmark a search results page with the desired selection.

Access to articles

For each Scholar search result, we try to find a version of the article that you can read. These access links are labelled [PDF] or [HTML] and appear to the right of the search result. For example:

A paper that you need to read

Access links cover a wide variety of ways in which articles may be available to you - articles that your library subscribes to, open access articles, free-to-read articles from publishers, preprints, articles in repositories, etc.

When you are on a campus network, access links automatically include your library subscriptions and direct you to subscribed versions of articles. On-campus access links cover subscriptions from primary publishers as well as aggregators.

Off-campus access

Off-campus access links let you take your library subscriptions with you when you are at home or traveling. You can read subscribed articles when you are off-campus just as easily as when you are on-campus. Off-campus access links work by recording your subscriptions when you visit Scholar while on-campus, and looking up the recorded subscriptions later when you are off-campus.

We use the recorded subscriptions to provide you with the same subscribed access links as you see on campus. We also indicate your subscription access to participating publishers so that they can allow you to read the full-text of these articles without logging in or using a proxy. The recorded subscription information expires after 30 days and is automatically deleted.

In addition to Google Scholar search results, off-campus access links can also appear on articles from publishers participating in the off-campus subscription access program. Look for links labeled [PDF] or [HTML] on the right hand side of article pages.

Anne Author , John Doe , Jane Smith , Someone Else

In this fascinating paper, we investigate various topics that would be of interest to you. We also describe new methods relevant to your project, and attempt to address several questions which you would also like to know the answer to. Lastly, we analyze …

You can disable off-campus access links on the Scholar settings page . Disabling off-campus access links will turn off recording of your library subscriptions. It will also turn off indicating subscription access to participating publishers. Once off-campus access links are disabled, you may need to identify and configure an alternate mechanism (e.g., an institutional proxy or VPN) to access your library subscriptions while off-campus.

Email Alerts

Do a search for the topic of interest, e.g., "M Theory"; click the envelope icon in the sidebar of the search results page; enter your email address, and click "Create alert". We'll then periodically email you newly published papers that match your search criteria.

No, you can enter any email address of your choice. If the email address isn't a Google account or doesn't match your Google account, then we'll email you a verification link, which you'll need to click to start receiving alerts.

This works best if you create a public profile , which is free and quick to do. Once you get to the homepage with your photo, click "Follow" next to your name, select "New citations to my articles", and click "Done". We will then email you when we find new articles that cite yours.

Search for the title of your paper, e.g., "Anti de Sitter space and holography"; click on the "Cited by" link at the bottom of the search result; and then click on the envelope icon in the left sidebar of the search results page.

First, do a search for your colleague's name, and see if they have a Scholar profile. If they do, click on it, click the "Follow" button next to their name, select "New articles by this author", and click "Done".

If they don't have a profile, do a search by author, e.g., [author:s-hawking], and click on the mighty envelope in the left sidebar of the search results page. If you find that several different people share the same name, you may need to add co-author names or topical keywords to limit results to the author you wish to follow.

We send the alerts right after we add new papers to Google Scholar. This usually happens several times a week, except that our search robots meticulously observe holidays.

There's a link to cancel the alert at the bottom of every notification email.

If you created alerts using a Google account, you can manage them all here . If you're not using a Google account, you'll need to unsubscribe from the individual alerts and subscribe to the new ones.

Google Scholar library

Google Scholar library is your personal collection of articles. You can save articles right off the search page, organize them by adding labels, and use the power of Scholar search to quickly find just the one you want - at any time and from anywhere. You decide what goes into your library, and we’ll keep the links up to date.

You get all the goodies that come with Scholar search results - links to PDF and to your university's subscriptions, formatted citations, citing articles, and more!

Library help

Find the article you want to add in Google Scholar and click the “Save” button under the search result.

Click “My library” at the top of the page or in the side drawer to view all articles in your library. To search the full text of these articles, enter your query as usual in the search box.

Find the article you want to remove, and then click the “Delete” button under it.

  • To add a label to an article, find the article in your library, click the “Label” button under it, select the label you want to apply, and click “Done”.
  • To view all the articles with a specific label, click the label name in the left sidebar of your library page.
  • To remove a label from an article, click the “Label” button under it, deselect the label you want to remove, and click “Done”.
  • To add, edit, or delete labels, click “Manage labels” in the left column of your library page.

Only you can see the articles in your library. If you create a Scholar profile and make it public, then the articles in your public profile (and only those articles) will be visible to everyone.

Your profile contains all the articles you have written yourself. It’s a way to present your work to others, as well as to keep track of citations to it. Your library is a way to organize the articles that you’d like to read or cite, not necessarily the ones you’ve written.

Citation Export

Click the "Cite" button under the search result and then select your bibliography manager at the bottom of the popup. We currently support BibTeX, EndNote, RefMan, and RefWorks.

Err, no, please respect our robots.txt when you access Google Scholar using automated software. As the wearers of crawler's shoes and webmaster's hat, we cannot recommend adherence to web standards highly enough.

Sorry, we're unable to provide bulk access. You'll need to make an arrangement directly with the source of the data you're interested in. Keep in mind that a lot of the records in Google Scholar come from commercial subscription services.

Sorry, we can only show up to 1,000 results for any particular search query. Try a different query to get more results.

Content Coverage

Google Scholar includes journal and conference papers, theses and dissertations, academic books, pre-prints, abstracts, technical reports and other scholarly literature from all broad areas of research. You'll find works from a wide variety of academic publishers, professional societies and university repositories, as well as scholarly articles available anywhere across the web. Google Scholar also includes court opinions and patents.

We index research articles and abstracts from most major academic publishers and repositories worldwide, including both free and subscription sources. To check current coverage of a specific source in Google Scholar, search for a sample of their article titles in quotes.

While we try to be comprehensive, it isn't possible to guarantee uninterrupted coverage of any particular source. We index articles from sources all over the web and link to these websites in our search results. If one of these websites becomes unavailable to our search robots or to a large number of web users, we have to remove it from Google Scholar until it becomes available again.

Our meticulous search robots generally try to index every paper from every website they visit, including most major sources and also many lesser known ones.

That said, Google Scholar is primarily a search of academic papers. Shorter articles, such as book reviews, news sections, editorials, announcements and letters, may or may not be included. Untitled documents and documents without authors are usually not included. Website URLs that aren't available to our search robots or to the majority of web users are, obviously, not included either. Nor do we include websites that require you to sign up for an account, install a browser plugin, watch four colorful ads, and turn around three times and say coo-coo before you can read the listing of titles scanned at 10 DPI... You get the idea, we cover academic papers from sensible websites.

That's usually because we index many of these papers from other websites, such as the websites of their primary publishers. The "site:" operator currently only searches the primary version of each paper.

It could also be that the papers are located on examplejournals.gov, not on example.gov. Please make sure you're searching for the "right" website.

That said, the best way to check coverage of a specific source is to search for a sample of their papers using the title of the paper.

Ahem, we index papers, not journals. You should also ask about our coverage of universities, research groups, proteins, seminal breakthroughs, and other dimensions that are of interest to users. All such questions are best answered by searching for a statistical sample of papers that has the property of interest - journal, author, protein, etc. Many coverage comparisons are available if you search for [allintitle:"google scholar"], but some of them are more statistically valid than others.

Currently, Google Scholar allows you to search and read published opinions of US state appellate and supreme court cases since 1950, US federal district, appellate, tax and bankruptcy courts since 1923 and US Supreme Court cases since 1791. In addition, it includes citations for cases cited by indexed opinions or journal articles which allows you to find influential cases (usually older or international) which are not yet online or publicly available.

Legal opinions in Google Scholar are provided for informational purposes only and should not be relied on as a substitute for legal advice from a licensed lawyer. Google does not warrant that the information is complete or accurate.

We normally add new papers several times a week. However, updates to existing records take 6-9 months to a year or longer, because in order to update our records, we need to first recrawl them from the source website. For many larger websites, the speed at which we can update their records is limited by the crawl rate that they allow.

Inclusion and Corrections

We apologize, and we assure you the error was unintentional. Automated extraction of information from articles in diverse fields can be tricky, so an error sometimes sneaks through.

Please write to the owner of the website where the erroneous search result is coming from, and encourage them to provide correct bibliographic data to us, as described in the technical guidelines . Once the data is corrected on their website, it usually takes 6-9 months to a year or longer for it to be updated in Google Scholar. We appreciate your help and your patience.

If you can't find your papers when you search for them by title and by author, please refer your publisher to our technical guidelines .

You can also deposit your papers into your institutional repository or put their PDF versions on your personal website, but please follow your publisher's requirements when you do so. See our technical guidelines for more details on the inclusion process.

We normally add new papers several times a week; however, it might take us some time to crawl larger websites, and corrections to already included papers can take 6-9 months to a year or longer.

Google Scholar generally reflects the state of the web as it is currently visible to our search robots and to the majority of users. When you're searching for relevant papers to read, you wouldn't want it any other way!

If your citation counts have gone down, chances are that either your paper or papers that cite it have either disappeared from the web entirely, or have become unavailable to our search robots, or, perhaps, have been reformatted in a way that made it difficult for our automated software to identify their bibliographic data and references. If you wish to correct this, you'll need to identify the specific documents with indexing problems and ask your publisher to fix them. Please refer to the technical guidelines .

Please do let us know . Please include the URL for the opinion, the corrected information and a source where we can verify the correction.

We're only able to make corrections to court opinions that are hosted on our own website. For corrections to academic papers, books, dissertations and other third-party material, click on the search result in question and contact the owner of the website where the document came from. For corrections to books from Google Book Search, click on the book's title and locate the link to provide feedback at the bottom of the book's page.

General Questions

These are articles which other scholarly articles have referred to, but which we haven't found online. To exclude them from your search results, uncheck the "include citations" box on the left sidebar.

First, click on links labeled [PDF] or [HTML] to the right of the search result's title. Also, check out the "All versions" link at the bottom of the search result.

Second, if you're affiliated with a university, using a computer on campus will often let you access your library's online subscriptions. Look for links labeled with your library's name to the right of the search result's title. Also, see if there's a link to the full text on the publisher's page with the abstract.

Keep in mind that final published versions are often only available to subscribers, and that some articles are not available online at all. Good luck!

Technically, your web browser remembers your settings in a "cookie" on your computer's disk, and sends this cookie to our website along with every search. Check that your browser isn't configured to discard our cookies. Also, check if disabling various proxies or overly helpful privacy settings does the trick. Either way, your settings are stored on your computer, not on our servers, so a long hard look at your browser's preferences or internet options should help cure the machine's forgetfulness.

Not even close. That phrase is our acknowledgement that much of scholarly research involves building on what others have already discovered. It's taken from Sir Isaac Newton's famous quote, "If I have seen further, it is by standing on the shoulders of giants."

  • Privacy & Terms

Quetext

What Are Research Skills, and How You Can Improve Them

  • Posted on March 9, 2022

Original research is an arduous task, no matter how you slice it. Conducting extensive research and collecting relevant information for an original idea is complicated. It involves much more than just reading several recently published papers.

Good research will help you develop a data collection that provides accurate and relevant information to your topic. So, is research a skill that you can develop and improve? What are research skills?

Research skills are the abilities and techniques needed to conduct research. This includes finding and assessing information and properly citing all research. Research skills are fundamental to academic success, and the more you practice, the better you will become.

Research Skills vs. Research Methods

Some people use the terms research skills and research methods interchangeably. Although they relate closely, they are different.

Research skills are a part of the process, but they also take a lot of time to master. Research methods are what you use during the research stages.

For example, one research method may be a literature review. Research skills would involve learning how to conduct the best possible literature review.

You can practice research skills and improve your speed, accuracy, and reliability. Critical thinking, project management, effective note-taking, and time management are great examples of research skills.

How To Improve Your Research Skills

Conducting high-quality research requires mastering several skills. Some of the best skills for good academic research come with practice and experience. You can improve your research skills by using outlines, sources and practicing.

Use Outlines to Your Advantage

An outline is a great way to keep yourself organized and on topic. By paying close attention to the outline you craft, you set yourself up to conduct good research that lends itself to a well-written paper. After all, an outline makes it easier to write your first draft, and a structured approach will improve your writing.

Before you even begin your research, outline what you need to do to complete your paper on time. Start with an introduction, add your first point and then supporting evidence, a second point with its supporting evidence, and then a third, fourth, or fifth, depending on how in-depth your paper will be. The last step will be your conclusion or a summary of your content.

Often outlining will give you ideas for research methods that you may not have considered before. Data collection can be challenging, but devising an outline can make the process much easier.

Because an outline allows you to think about all the topics you need to cover in your paper, you’ll be better prepared when you begin researching.

Dig Into Your Sources

It’s daunting to determine relevant information, especially if it’s a topic that you’re not knowledgeable about. It’s important to know when your sources are reliable for academic research . It’s also imperative to use different sources when finding relevant information, or you may display a bias. This also helps you avoid plagiarism by relying on multiple points of reference.

For example, you should know that an article published in a peer-reviewed journal will be more reliable than an article found on Wikipedia. Wikipedia, though often sourced, is open to be edited by anyone. The sources supplied themselves are not always credible, as the organization largely relies on unpaid editors to donate time to review articles.

A peer-reviewed journal will be fact-checked multiple times, demonstrate a history of credibility, and use reputable sources to support any arguments or claims.

Your sources should also answer the question that you are trying to ask. You should perform a light critical analysis of your source materials to determine their value. This requires investigative thinking and research itself. You need to discover:

  • Who wrote the source?
  • What was their agenda?
  • Who sponsored the publication, if anyone?
  • What was the agenda of the publisher?
  • Does the publisher have a notable bias?
  • Does the author have a notable bias?
  • What year was the material published, and has it become outdated?

Try Advanced Search Techniques

Google and other search engines aren’t the only way to find information for your research paper. Library resources offer a wealth of services and tools, such as full-text journals and databases. Your local university library is another excellent place to start.

Often, librarians will be able to assist you with your research and can help you utilize advanced research methods you may not have thought of. They can direct you to the correct database and demonstrate how to best use it to find information about your subject. They may know of specific journals or other literature that could be a good starting point to get your footing.

During your research process, seek a different point of view and new ways to find reliable sources for your paper. When you rely on a single viewpoint or only one credible source, you not only develop a bias by showing just one side of your topic, but you run the risk of plagiarism. Where will your source’s argument end and yours begin? It may appear that you’re simply copying someone else’s hard work.

Practice Makes Perfect

Research isn’t a skill that people learn overnight. But you’d be surprised how fast these skills develop every time you conduct research. Once you get used to collecting data from reliable sources, you can become a master at it by learning from your own research paper mistakes.

One of the most overlooked aspects of research is a person’s time management skills. Those who wait until the last minute to start research run the risk of not finding adequate sources and producing a sub-par product. By giving yourself extra time, especially as you develop your research skills, you allow yourself to thoroughly investigate your sources, find appropriate support for your arguments, and develop a conclusion based on research, rather than trying to scramble to find research to support a specific conclusion.

6 Steps for Conducting Research

Conducting research isn’t easy, and many people find it frustrating. It can be like solving a puzzle to uncover the best information about the topic you’re researching. Here are 5 steps to help with your research strategy.

  • Clearly define your research question. Precisely formulate your question so you know exactly which information sources are relevant to your research. This will save you lots of time.
  • Draft a solid outline. Put your research question at the top of the document, then write out each of your supporting points or arguments. Include a few thoughts that go with each of those points.
  • Determine the research methods you’ll use. Depending on the type of research paper you’re writing, you may need primary or secondary research. Your research will likely be either qualitative, quantitative, descriptive, or experimental.
  • Find data from reliable sources. Make sure your resources are reliable by looking for things like the date of publication, author credentials, and publisher.
  • Focus on your note-taking. Take detailed notes in whatever format you’re most comfortable with, whether that’s on your computer, tablet, or by hand in your notebook or on index cards.
  • Draft your research paper. Combine your notes with a solid outline, and put it all together. Don’t forget to cite all of your sources . Give your paper a final review, then you’re done!

Final Thoughts

Conducting research can be a frustrating assignment. Here is the good news: the above steps and tools will make research report writing more effective.

By clearly defining your research question, determining the type of research methods you’ll use, and finding data from reliable sources, you’ll be on your way to conducting successful research.

Your last steps should be using a plagiarism detector and a citation generator, to double-check your work. Quetext is an online plagiarism checker with a built citation generator, so you can easily cite everything that you read.

Sign Up for Quetext Today!

Click below to find a pricing plan that fits your needs.

research help needed

You May Also Like

research help needed

Mastering End-of-Sentence Punctuation: Periods, Question Marks, Exclamation Points, and More

  • Posted on April 12, 2024

research help needed

Mastering the Basics: Understanding the 4 Types of Sentences

  • Posted on April 5, 2024

research help needed

Can You Go to Jail for Plagiarism?

  • Posted on March 22, 2024 March 22, 2024

research help needed

Empowering Educators: How AI Detection Enhances Teachers’ Workload

  • Posted on March 14, 2024

research help needed

The Ethical Dimension | Navigating the Challenges of AI Detection in Education

  • Posted on March 8, 2024

research help needed

How to Write a Thesis Statement & Essay Outline

  • Posted on February 29, 2024 February 29, 2024

research help needed

The Crucial Role of Grammar and Spell Check in Student Assignments

  • Posted on February 23, 2024 February 23, 2024

research help needed

Revolutionizing Education: The Role of AI Detection in Academic Integrity

  • Posted on February 15, 2024

Input your search keywords and press Enter.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research help needed

Home Market Research Research Tools and Apps

Research Skills: What they are and Benefits

research skills

Research skills play a vital role in the success of any research project, enabling individuals to navigate the vast sea of information, analyze data critically, and draw meaningful conclusions. Whether conducting academic research, professional investigations, or personal inquiries, strong research skills are essential for obtaining accurate and reliable results.

LEARN ABOUT:   Research Process Steps

By understanding and developing these skills, individuals can embark on their research endeavors with confidence, integrity, and the capability to make meaningful contributions in their chosen fields. This article will explore the importance of research skills and discuss critical competencies necessary for conducting a research project effectively.

Content Index

What are Research Skills?

Important research skills for research project, benefits of research skills.

  • Improving your Research Skills

Talk to Experts to Improve Skills

Research skills are the capability a person carries to create new concepts and understand the use of data collection. These skills include techniques, documentation, and interpretation of the collected data. Research is conducted to evaluate hypotheses and share the findings most appropriately. Research skills improve as we gain experience.

To conduct efficient research, specific research skills are essential. These skills are necessary for companies to develop new products and services or enhance existing products. To develop good research skills is important for both the individual as well as the company.

When undertaking a research project, one must possess specific important skills to ensure the project’s success and accuracy. Here are some essential research skills that are crucial for conducting a project effectively:

Time Management Skills:

Time management is an essential research skill; it helps you break down your project into parts and enables you to manage it easier. One can create a dead-line oriented plan for the research project and assign time for each task. Time management skills include setting goals for the project, planning and organizing functions as per their priority, and efficiently delegating these tasks.

Communication Skills:

These skills help you understand and receive important information and also allow you to share your findings with others in an effective manner. Active listening and speaking are critical skills for solid communication. A researcher must have good communication skills.

Problem-Solving:  

The ability to handle complex situations and business challenges and come up with solutions for them is termed problem-solving. To problem-solve, you should be able to fully understand the extent of the problem and then break it down into smaller parts. Once segregated into smaller chunks, you can start thinking about each element and analyze it to find a solution.

Information gathering and attention to detail:

Relevant information is the key to good research design . Searching for credible resources and collecting information from there will help you strengthen your research proposal and drive you to solutions faster. Once you have access to information, paying close attention to all the details and drawing conclusions based on the findings is essential.

Research Design and Methodology :

Understanding research design and methodology is essential for planning and conducting a project. Depending on the research question and objectives, researchers must select appropriate research methods, such as surveys, experiments, interviews, or case studies. Proficiency in designing research protocols, data collection instruments, and sampling strategies is crucial for obtaining reliable and valid results.

Data Collection and Analysis :

Researchers should be skilled in collecting and analyzing data accurately. It involves designing data collection instruments, collecting data through various methods, such as surveys or observations, and organizing and analyzing the collected data using appropriate statistical or qualitative analysis techniques. Proficiency in using software tools like SPSS, Excel, or qualitative analysis software can be beneficial.

By developing and strengthening these research skills, researchers can enhance the quality and impact of their research process, contributing to good research skills in their respective fields.

Research skills are invaluable assets that can benefit individuals in various aspects of their lives. Here are some key benefits of developing and honing research skills:

Boosts Curiosity :

Curiosity is a strong desire to know things and a powerful learning driver. Curious researchers will naturally ask questions that demand answers and will stop in the search for answers. Interested people are better listeners and are open to listening to other people’s ideas and perspectives, not just their own.

Cultivates Self-awareness :

As well as being aware of other people’s subjective opinions, one must develop the importance of research skills and be mindful of the benefits of awareness research; we are exposed to many things while researching. Once we start doing research, the benefit from it reflects on the beliefs and attitudes and encourages them to open their minds to other perspectives and ways of looking at things.

Effective Communication:

Research skills contribute to practical communication skills by enhancing one’s ability to articulate ideas, opinions, and findings clearly and coherently. Through research, individuals learn to organize their thoughts, present evidence-based arguments, and effectively convey complex information to different audiences. These skills are crucial in academic research settings, professional environments, and personal interactions.

Personal and Professional Growth :

Developing research skills fosters personal and professional growth by instilling a sense of curiosity, intellectual independence, and a lifelong learning mindset. Research encourages individuals to seek knowledge, challenge assumptions, and embrace intellectual growth. These skills also enhance adaptability as individuals become adept at navigating and assimilating new information, staying updated with the latest developments, and adjusting their perspectives and strategies accordingly.

Academic Success:

Research skills are essential for academic research success. They enable students to conduct thorough literature reviews, gather evidence to support their arguments, and critically evaluate existing research. By honing their research skills, students can produce well-structured, evidence-based essays, projects, and dissertations demonstrating high academic research rigor and analytical thinking.

Professional Advancement:

Research skills are highly valued in the professional world. They are crucial for conducting market research, analyzing trends, identifying opportunities, and making data-driven decisions. Employers appreciate individuals who can effectively gather and analyze information, solve complex problems, and provide evidence-based recommendations. Research skills also enable professionals to stay updated with advancements in their field, positioning themselves as knowledgeable and competent experts.

Developing and nurturing research skills can significantly benefit individuals in numerous aspects of their lives, enabling them to thrive in an increasingly information-driven world.

Improving Your Research Skills

There are many things you can do to improve your research skills and utilize them in your research or day job. Here are some examples:

  • Develop Information Literacy: Strengthening your information literacy skills is crucial for conducting thorough research. It involves identifying reliable sources, evaluating the credibility of information, and navigating different research databases.
  • Enhance Critical Thinking: Critical thinking is an essential skill for effective research. It involves analyzing information, questioning assumptions, and evaluating arguments. Practice critical analysis by analyzing thoughtfully, identifying biases, and considering alternative perspectives.
  • Master Research Methodologies: Familiarize yourself with different research methodologies relevant to your field. Whether it’s qualitative, quantitative, or mixed methods research, realizing the strengths and limitations of each approach is crucial.
  • Practice Effective Time Management: Research requires dedicated time and effort. Develop good time management skills to ensure that you allocate sufficient time for each stage of the research process, including planning, data collection, analysis, and writing.
  • Embrace Collaboration: Collaborating with peers and colleagues can provide a fresh perspective and enrich your research experience. Engage in discussions, share ideas, and seek feedback from others. Collaborative projects allow for exchanging knowledge and skills.
  • Continuously Update Your Knowledge: Stay informed about your field’s latest developments and advancements. Regularly read scholarly articles, attend conferences, and follow reputable sources of information to stay up to date with current research trends.

There is plenty of information available on the internet about every topic; hence, learning skills to know which information is relevant and credible is very important. Today most search engines have the feature of advanced search, and you can customize the search as per your preference. Once you learn this skill, it will help you find information. 

Experts possess a wealth of knowledge, experience, and insights that can significantly enhance your understanding and abilities in conducting research. Experts have often encountered numerous challenges and hurdles throughout their research journey and have developed effective problem-solving techniques. Engaging with experts is a highly effective approach to improving research skills.

Moreover, experts can provide valuable feedback and constructive criticism on your research work. They can offer fresh perspectives, identify areas for improvement, and help you refine your research questions, methodology, and analysis.

At QuestionPro, we can help you with the necessary tools to carry out your projects, and we have created the following free resources to help you in your professional growth:

  • Survey Templates

Research skills are invaluable assets that empower individuals to navigate the ever-expanding realm of information, make informed decisions, and contribute to advancing knowledge. With advanced research tools and technologies like QuestionPro Survey Software, researchers have potent resources to conduct comprehensive surveys, gather data, and analyze results efficiently.

Where data-driven decision-making is crucial, research skills supported by advanced tools like QuestionPro are essential for researchers to stay ahead and make impactful contributions to their fields. By embracing these research skills and leveraging the capabilities of powerful survey software, researchers can unlock new possibilities, gain deeper insights, and pave the way for meaningful discoveries.

Authors : Gargi Ghamandi & Sandeep Kokane

FREE TRIAL         LEARN MORE

MORE LIKE THIS

Government Customer Experience

Government Customer Experience: Impact on Government Service

Apr 11, 2024

Employee Engagement App

Employee Engagement App: Top 11 For Workforce Improvement 

Apr 10, 2024

employee evaluation software

Top 15 Employee Evaluation Software to Enhance Performance

event feedback software

Event Feedback Software: Top 11 Best in 2024

Apr 9, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence
  • U.S. Locations
  • UMGC Europe
  • Learn Online
  • Find Answers
  • 855-655-8682
  • Current Students

Online Guide to Writing and Research

The research process, explore more of umgc.

  • Online Guide to Writing

Research Resources

What are research resources.

Research resources are usually thought of as primary sources and secondary sources. Click on the tabs to learn more about both.

Primary sources  can be firsthand accounts of actual events written by an eyewitness or original literary or artistic works. They may be letters, official records, interviews, survey results, or unanalyzed statistical data. These sources contain raw data and information, such as the original work of art or immediate impressions. 

Secondary sources , on the other hand, are usually discussions, evaluations, syntheses, and analyses of primary and secondary source information.  

You will no doubt use both primary and secondary sources throughout your academic career. When you use them, and in what combination, usually depends on what you are researching and the discipline for which you are writing. If you are unclear about which sources to use, ask your professor for guidance.

Types of Research

Your research question and the kind of research you do will guide the types of resources you will need to complete your research. Students’ access to information is greater than ever before. To be a good researcher, you must be able to locate, organize, evaluate, and communicate information.

Common Places to Find Research

Research resources are found in various places, both within and outside the traditional library. Your research resources can come from your personal experiences; print media such as books, brochures, journals, magazines, and newspapers; and electronic sources found on the Internet. They may also come from interviews and surveys you or someone else conduct. 

Your Library

Libraries are a main resource for conducting academic research. Learning how to use them and their resources effectively is important to understanding the research process.  Libraries provide access to information through online research databases and library catalogs, ebooks and ejournals, and Internet resources, as well as traditional print resources. Understanding how to select and use the appropriate resources for specific information needs is the key to successful research. To become adept at locating and using information for research, you must know about the many different resources that are available to you.

The following links provide information about the resources available to you as a UMGC student through the UMGC library:

  About the Library

  Ask a Librarian

  Library Resources

Key Takeaways

Primary sources include firsthand accounts, raw data, and other original material.

Secondary sources include material that interprets and analyzes primary sources.

Mailing Address: 3501 University Blvd. East, Adelphi, MD 20783 This work is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License . © 2022 UMGC. All links to external sites were verified at the time of publication. UMGC is not responsible for the validity or integrity of information located at external sites.

Table of Contents: Online Guide to Writing

Chapter 1: College Writing

How Does College Writing Differ from Workplace Writing?

What Is College Writing?

Why So Much Emphasis on Writing?

Chapter 2: The Writing Process

Doing Exploratory Research

Getting from Notes to Your Draft

Introduction

Prewriting - Techniques to Get Started - Mining Your Intuition

Prewriting: Targeting Your Audience

Prewriting: Techniques to Get Started

Prewriting: Understanding Your Assignment

Rewriting: Being Your Own Critic

Rewriting: Creating a Revision Strategy

Rewriting: Getting Feedback

Rewriting: The Final Draft

Techniques to Get Started - Outlining

Techniques to Get Started - Using Systematic Techniques

Thesis Statement and Controlling Idea

Writing: Getting from Notes to Your Draft - Freewriting

Writing: Getting from Notes to Your Draft - Summarizing Your Ideas

Writing: Outlining What You Will Write

Chapter 3: Thinking Strategies

A Word About Style, Voice, and Tone

A Word About Style, Voice, and Tone: Style Through Vocabulary and Diction

Critical Strategies and Writing

Critical Strategies and Writing: Analysis

Critical Strategies and Writing: Evaluation

Critical Strategies and Writing: Persuasion

Critical Strategies and Writing: Synthesis

Developing a Paper Using Strategies

Kinds of Assignments You Will Write

Patterns for Presenting Information

Patterns for Presenting Information: Critiques

Patterns for Presenting Information: Discussing Raw Data

Patterns for Presenting Information: General-to-Specific Pattern

Patterns for Presenting Information: Problem-Cause-Solution Pattern

Patterns for Presenting Information: Specific-to-General Pattern

Patterns for Presenting Information: Summaries and Abstracts

Supporting with Research and Examples

Writing Essay Examinations

Writing Essay Examinations: Make Your Answer Relevant and Complete

Writing Essay Examinations: Organize Thinking Before Writing

Writing Essay Examinations: Read and Understand the Question

Chapter 4: The Research Process

Planning and Writing a Research Paper

Planning and Writing a Research Paper: Ask a Research Question

Planning and Writing a Research Paper: Cite Sources

Planning and Writing a Research Paper: Collect Evidence

Planning and Writing a Research Paper: Decide Your Point of View, or Role, for Your Research

Planning and Writing a Research Paper: Draw Conclusions

Planning and Writing a Research Paper: Find a Topic and Get an Overview

Planning and Writing a Research Paper: Manage Your Resources

Planning and Writing a Research Paper: Outline

Planning and Writing a Research Paper: Survey the Literature

Planning and Writing a Research Paper: Work Your Sources into Your Research Writing

Research Resources: Where Are Research Resources Found? - Human Resources

Research Resources: What Are Research Resources?

Research Resources: Where Are Research Resources Found?

Research Resources: Where Are Research Resources Found? - Electronic Resources

Research Resources: Where Are Research Resources Found? - Print Resources

Structuring the Research Paper: Formal Research Structure

Structuring the Research Paper: Informal Research Structure

The Nature of Research

The Research Assignment: How Should Research Sources Be Evaluated?

The Research Assignment: When Is Research Needed?

The Research Assignment: Why Perform Research?

Chapter 5: Academic Integrity

Academic Integrity

Giving Credit to Sources

Giving Credit to Sources: Copyright Laws

Giving Credit to Sources: Documentation

Giving Credit to Sources: Style Guides

Integrating Sources

Practicing Academic Integrity

Practicing Academic Integrity: Keeping Accurate Records

Practicing Academic Integrity: Managing Source Material

Practicing Academic Integrity: Managing Source Material - Paraphrasing Your Source

Practicing Academic Integrity: Managing Source Material - Quoting Your Source

Practicing Academic Integrity: Managing Source Material - Summarizing Your Sources

Types of Documentation

Types of Documentation: Bibliographies and Source Lists

Types of Documentation: Citing World Wide Web Sources

Types of Documentation: In-Text or Parenthetical Citations

Types of Documentation: In-Text or Parenthetical Citations - APA Style

Types of Documentation: In-Text or Parenthetical Citations - CSE/CBE Style

Types of Documentation: In-Text or Parenthetical Citations - Chicago Style

Types of Documentation: In-Text or Parenthetical Citations - MLA Style

Types of Documentation: Note Citations

Chapter 6: Using Library Resources

Finding Library Resources

Chapter 7: Assessing Your Writing

How Is Writing Graded?

How Is Writing Graded?: A General Assessment Tool

The Draft Stage

The Draft Stage: The First Draft

The Draft Stage: The Revision Process and the Final Draft

The Draft Stage: Using Feedback

The Research Stage

Using Assessment to Improve Your Writing

Chapter 8: Other Frequently Assigned Papers

Reviews and Reaction Papers: Article and Book Reviews

Reviews and Reaction Papers: Reaction Papers

Writing Arguments

Writing Arguments: Adapting the Argument Structure

Writing Arguments: Purposes of Argument

Writing Arguments: References to Consult for Writing Arguments

Writing Arguments: Steps to Writing an Argument - Anticipate Active Opposition

Writing Arguments: Steps to Writing an Argument - Determine Your Organization

Writing Arguments: Steps to Writing an Argument - Develop Your Argument

Writing Arguments: Steps to Writing an Argument - Introduce Your Argument

Writing Arguments: Steps to Writing an Argument - State Your Thesis or Proposition

Writing Arguments: Steps to Writing an Argument - Write Your Conclusion

Writing Arguments: Types of Argument

Appendix A: Books to Help Improve Your Writing

Dictionaries

General Style Manuals

Researching on the Internet

Special Style Manuals

Writing Handbooks

Appendix B: Collaborative Writing and Peer Reviewing

Collaborative Writing: Assignments to Accompany the Group Project

Collaborative Writing: Informal Progress Report

Collaborative Writing: Issues to Resolve

Collaborative Writing: Methodology

Collaborative Writing: Peer Evaluation

Collaborative Writing: Tasks of Collaborative Writing Group Members

Collaborative Writing: Writing Plan

General Introduction

Peer Reviewing

Appendix C: Developing an Improvement Plan

Working with Your Instructor’s Comments and Grades

Appendix D: Writing Plan and Project Schedule

Devising a Writing Project Plan and Schedule

Reviewing Your Plan with Others

By using our website you agree to our use of cookies. Learn more about how we use cookies by reading our  Privacy Policy .

Library Homepage

Today's Hours

  • AUP Library
  • Library Tutorials

Research Help

How to organize research.

  • Tutorials and Basic Research Self Help
  • How to Evaluate and Search
  • Accessibility by Database Platform

Research Quick Tips  Tutorials by  Credo Reference

research help needed

How to begin:

Start by keeping two things in mind at all times - BACKUPS, BACKUPS, BACKUPS and  Plagiarism

1. Before choosing a topic, THINK about your assignment.   What is the final product?  A 10 page paper?  A group presentation?  A portfolio?  This should help you think how MUCH material you need. (one book? 5? 3 articles? 15?) Think about the assignment itself. Are you gathering opinions about a recent event? You'll want web sites, newspaper articles and possibly interviews. Interpretation of literature? Critical articles and books are needed. Your interpretation of a painting or statue? You need yourself! Think about what TYPE of material you need.

 2. Choose a topic   (one that INTERESTS you for a better result)

Look for sources on the AUP library webpage, in the library and on the web. Part of your job is critical thinking. You have to examine, choose, and evaluate your sources as well as the topic you are writing about!

Normally you should start at the library or library homepage for scholarly material. You have resources available to you that most of the world does NOT. Most of the databases and full text journals, books and articles available to you from the library homepage are NOT AVAILABLE FOR FREE over the internet. 

3. Find resources (check these links):

Journals/ejournals/Articles ( Databases ,  Browse a list of Journals )  How to find and evaluate an article .

Local Books/ebooks  ( AUP catalog ,  Background/Reference ,  Free Books online ) How to find and evaluate a book .

Books in other Paris libraries and Document delivery  ( Other Paris Libraries  -  Catalogue Collectif de France(CCFr)  -  Système universitaire de documentation (Sudoc)  -  WorldCat )

Request an item in Interlibrary Loan .

4. Organize Research - notes/research log (Word file)/citation info

MLA format and Bibliography  Citation/Annotation Help  (What is a citation? How do I create one?)  (Is there any easy way to organize citations??) 

  • Research Log

5. Draft - revise - draft - final paper

Backups - backups - backups

  • << Previous: How to Evaluate and Search
  • Next: Accessibility >>

As an information literate person, you should be able to:

  • Determine the extent of information needed
  • Access the needed information effectively and efficiently
  • Evaluate information and its sources critically
  • Incorporate selected information into one's knowledge base
  • Use information effectively to accomplish a specific purpose
  • Understand the economic, legal, and social issues surrounding the use of information, and access and use information ethically and legally*

These are necessary skills to write a good research paper, choose what website to order books from, and know what information to trust in all circumstances!

*"ACRL | Information Literacy Competency Standards for Higher Education." ALA | Home - American Library Association. 02 July 2009 < https://alair.ala.org/handle/11213/7668#stan >

  • Last Updated: Mar 20, 2024 2:59 PM
  • URL: https://library.aup.edu/research_help

National Geographic content straight to your inbox—sign up for our popular newsletters here

Young women taking images of a turtle hatchling

  • PLANET POSSIBLE

Ever wanted to volunteer for a scientific expedition? Here’s how.

From missing spacecraft to eerie auroras, volunteer scientists are making some amazing discoveries.

Tashi Hackett paddles his kayak on the Snake River, south of Jackson Hole, Wyoming , and pauses near the shore. All around him is the majestic beauty of the Bridger-Teton National Forest , a haven for wildlife watchers, hikers, and campers, located within the greater Yellowstone ecosystem. But Hackett isn’t here for the view; he’s here to help protect the river.

Hackett is one of many volunteers working with Adventure Scientists , a Bozeman, Montana -based nonprofit that harnesses the skills of experienced outdoor recreationists—from mountain climbers to kayakers—to help scientists collect much-needed data on projects ranging from surveying coral reefs to collecting vegetation samples.

Organizations like Adventure Scientists play an important role in research. Professional scientists are constrained by funding, time, and location, which can limit their ability to conduct their work. Laypeople can fill in the gaps, while helping people engage with science.

Three young people knee deep in watre study a river specimen

Survey the Snake River

The Snake River originates in a watershed known as the Snake River headwaters in northwestern Wyoming. From there, it continues west 1,078 miles through Idaho and into Washington State , where it joins the Columbia River. Sections of the headwaters and the Snake are part of the National Wild and Scenic Rivers System , a federal designation that preserves sections and entire lengths of 226 rivers across the United States .

Like other nationally designated waterways, the Snake has important ecological characteristics. In southern Idaho, it feeds the Snake River Aquifer , one of the country’s most productive sources of groundwater . The headwaters alone are one of the few remaining intact riparian ecosystems (areas where land and water meet, such as flood plains) in the contiguous U.S.

Yet Wild and Scenic Rivers are historically under surveyed, and the water quality of nearly 40 percent of them is categorized as either unknown or unassessed, says Adventure Scientists founder and executive director Gregg Treinish, who was named a National Geographic Emerging Explorer in 2013 .

Adventure Scientists is partnering with a variety of agencies, including the National Park Service , U.S. Forest Service , and Bureau of Land Management , on a five-year endeavor to enlist volunteers like Hackett to gather data on the Snake River. Participants for all projects receive training before going out into the field. Currently, there are 99 teams with more than 500 people on a waitlist.

“By doing this comprehensive effort and by doing it with a ‘citizen science’ model, we’re able to provide the managers with a resource that they desperately need to properly manage these waterways,” he says.

Landscape view of lush greenery and a spiraling river

( Parisians want to recover a legendary river, now buried under concrete .)

In the field

Now in its 10th year, Adventure Scientists has enlisted volunteers to collect data for projects around the globe. One project amassed the largest known microplastics data set ever recorded , illustrating the global reach of microplastics pollution. Another gathered scat samples from around the world to help Harvard Medical School researchers study antibiotic resistance .

The current timber tracking project creates libraries of chemical and genetic data about trees in the U.S. to help combat timber poaching around the world. Recently, DNA evidence from that project helped convict two men charged with selling maple trees illegally harvested from Washington’s Olympic National Forest .

“All of our projects are filtered through this lens of ‘is there a tangible pathway to impact?’” explains Treinish.

( Here’s how volunteers are helping scientists during the pandemic . )

On a recent day, Hackett’s schedule begins before 8 a.m. and goes late into the afternoon, with 10 sampling sites on his agenda. By 9 a.m. Hackett is surveying another section of the Snake in Grand Teton National Park . A bald eagle soars overhead as a group of rafters descend on the Deadmans Bar boat ramp nearby. Hackett passes the boaters to a spot about a hundred feet upstream.

There, he wades out into the shallow water, calibrates a probe, and begins to collect measurements. He records information like pH and dissolved oxygen on an app, while also assessing the habitat, including trees, shrubs, and grasses on the bank and at the water’s edge. He adds notes about canopy cover, erosion, and the popularity of the site among commercial outfitters, before taking photos.

Although Hackett is a research scientist by profession, volunteering on the Snake River on his own time, anyone can volunteer. Teams go into the field in pairs for safety. Sometimes the weather is perfect; other times it’s far from ideal. One trip had Hackett wading through a bog and thick brush during a snowstorm.

Tall man in red standing next to a cactus

Another time, in late fall, he donned a dry suit and life jacket to attempt sampling. But ice made it difficult to reach the river and the freezing temperature prevented his equipment from operating correctly. Despite the occasional weather challenges, the lifelong whitewater enthusiast says he enjoys the opportunity to give back.

“It’s been an incredible opportunity to help establish a baseline, more or less, for data that’s going to be used for a long time, to know what the health of the river shed of the place that I love is,” Hackett says. “That feels very impactful and hopefully will be of benefit.”

( Rivers and lakes are the most degraded ecosystems in the world. Can we save them? )

Making an impact

The data Hackett and other volunteers gather is analyzed by scientists and used to advance knowledge. One of the organization’s most heralded projects in 2011 involved twin brother mountain climbing guides Damian and Willie Benegas. Together, they ascended 22,300 feet on Mount Everest to collect samples of the highest-known plant life on Earth.

These plants had fungi living within their roots, resulting in a symbiotic relationship known to allow plants to thrive in harsh conditions. The samples helped researchers develop new methods to grow more climate resilient crops . Damian Benegas says the experience helped fulfill “our childhood dream of trying to understand our surroundings.”

( One way to get kids interested in science? Let them volunteer .)

The Benegas brothers have participated in other scientific endeavors, including a study to see if altitude influences gene expression. That project was modeled after a famous NASA study analyzing how time in space affected twin astronauts Scott and Mark Kelly.

More than 1.5 million volunteers have participated in NASA’s citizen science projects , which range from analyzing air quality and soundscapes to recording sightings of fireballs and asteroids in the sky.

Two people on a boat standing behind a large satellite

Sometimes volunteers make extraordinary discoveries. In 2020, volunteers on the Aurorasaurus team, led by Elizabeth MacDonald, a space scientist who works for NASA’s Greenbelt, Maryland-based Goddard Space Flight Center , compiled observations of a purple ribbon of light in the sky. Some scientists believe this light may be a new kind of aurora. Later dubbed STEVE (Strong Thermal Emission Velocity Enhancement), the rare phenomenon is still being studied .

Not every volunteer scientist is working on a formally organized project. Scott Tilley, an amateur astronomer in British Columbia , located a missing spacecraft in 2018. One night, while looking for the Zuma satellite , he detected a signal he hadn’t cataloged before. It didn’t have the right characteristics to be Zuma.

Upon closer inspection, he realized it was NASA spacecraft 26113, which he soon learned belonged to a mission called IMAGE. The spacecraft launched in 2000, but NASA lost contact with it in 2005. Tilley even found a mission failure report. But the spacecraft he found had a strong, healthy radio signal.

Tilley’s wife encouraged him to reach out to the scientists involved with the project, so he sent an email before going to bed. He says he “woke up the next morning to an inbox that had just exploded… My phone had gone nuts. All these people from NASA were trying to reach out to me and find more information,” he says.

After confirming Tilley’s discovery, a team was able to collect data from the spacecraft before they lost contact again. Thirteen years after NASA lost contact with the satellite, Tilley says his discovery “allowed them to kind of close the book on that mission.”

How You Can Help the Planet

There are many ways to get your hands dirty in the name of science. The National Park Service and other federal agencies have volunteer projects ranging from air quality monitoring to marine ecosystem work on CitizenScience.gov . NASA provides a robust lineup of volunteer astronomy endeavors. National Geographic Society and iNaturalist’s BioBlitz has families, teachers, and scientists cataloguing the biodiversity of neighborhoods and even backyards. SciStarter links people with a wide variety of projects, from a slug survey to community mapping to working with medieval manuscripts. Many activities can be done from home.

Kristen Pope is a freelance writer covering science, conservation, wildlife, and climate change.

Related Topics

  • ENVIRONMENT AND CONSERVATION
  • WATER CONSERVATION
  • CITIZEN SCIENCE
  • VOLUNTEERING
  • VOLUNTOURISM
  • NATIONAL PARKS

You May Also Like

research help needed

10 best things to do in North Carolina

research help needed

Visiting Texas? Here’s what the locals love.

Free bonus issue.

research help needed

This tiny island is the best place to dive in the Caribbean

research help needed

Go wild: these are the best U.S. national parks to suit every taste

research help needed

How a wild river became a national park—and sparked a movement

research help needed

Can tourism help recovery after a disaster?

research help needed

Saving our shores: coastal conservation projects making positive change

  • Environment
  • Paid Content

History & Culture

  • History & Culture
  • History Magazine
  • Gory Details
  • 2023 in Review
  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

A smart network connecting serious researchers with eager participants

Want to join studies.

  • Earn cash or other incentives
  • Studies match your specific profile
  • Absolutely NO SPAM

Are You a Researcher?

  • No hassle participant recruitment
  • 1000s of pre-screened participants
  • 10+ demographic filters

FindParticipants.com is the resource for academic researchers enabling immediate access to thousands of interested research participants, and a platform for research participants to participate in research studies worldwide.

We make research simple, quick, and effective for research studies of any size, for any academic researcher, anywhere in the world!

The FindParticipants.com Platform

Participants in 135 countries, researchers from 1,723 universities, studies across 1,483 disciplines.

  • View More Statistics

Current Studies

Twitter users wanted, university of westminster.

We are inviting people to take part in a project where we explore ways to link people's questionnaire responses with material they have shared on social media. To take part, you must have an activ... Read More...

Twitter users wanted.

Twitter users wanted, $10 reward. We are inviting people to take part in a project where we explore ways to link people's questionnaire responses with material they have shared on social media. T... Read More...

Caregiving for a loved one 65 years or older? Join a study

Brandeis university.

Are you a caregiver interested in increasing your physical activity and using a fitness app? We are seeking family caregivers to join a fitness app study that can better promote your health and w... Read More...

Android smartphone study of food pictures

University of essex.

I am a researcher from the University of Essex and I am running a research study that involves photographing food that you eat and throw away for 8 days. We need 25 more participants who have Andro... Read More...

Supervision experiences of home-based counselors

Capella university.

For study investigating the supervision experiences of new professional counselors while completing home-based counseling Dates and times for participating are flexible, and will include a... Read More...

Android smartphone-based study of food pictures

I am a researcher from the University of Essex and I am running a research study that involves photographing food that you eat and throw away for 8 days. We need participants who have Android phon... Read More...

  • Show More Studies

English Essay Writing Help

Language skills are not only about authentic speaking. Usually students receive a written task like an essay or a letter and so on to prove their knowledge of English in writing. let's say everything is fine with your speech but there are some difficulties with paper — what should you do? Our service is going to solve your problem! Visit the website to receive help with the texts that are necessary for your graduation and employment, etc.

Paper Writing Help — Real Opportunities to Receive Assistance

Sometimes it is not enough to find a native English speaker, because, in addition to his consent to do the work for you, it is necessary that he has the special erudition on the topic about which the text will be written. Obviously, not every person from the USA or Great Britain is able to write, for example, a nursing essay in accordance with the high requirements for undergraduates and graduate students. It is great that our service’s authors are professionals in their fields.

Surely, you can find a lot of identical websites on the Internet but the main question is: How competent are their authors? Before using the services of copywriters and translators, you need to make sure of the quality of their work.

Professional Paper Writing at an Affordable Price

It's hard to imagine a psychology essay without an abundance of specific terminology, isn't it? It means that translation requires a special treatment. And there are plenty of such cases when the help of specialists is needed. Our service is ready to help you write a high-quality article that meets the strict requirements of the university. How to make paragraphs in English correctly? What is the best way to prioritize the text? — relax and leave all these questions to professionals in writing such materials. You must admit that it's way better than losing a lot of time constantly redoing your business essay or something else because you have incorrectly drawn up the doc.

The quality of the final result depends on how well your helper understands the topic, how well he is knowledgeable about all the subtleties of writing the text. If he is like a duck to water in this path, then you can hope that you will get excellent material. Nowadays all scientific researches, regardless of large or small volume, become a part of specialized publishing and translation in English is mandatory. Essay writing help timing could not have been better.

Who Are the Authors Who Will Take My Paper for Writing?

The authors of our service are thoroughly selected specialists in particular fields meaning that your essay in history will be written by a historian. It is a pretty usual task to write a scientific paper for our authors marked with a degree and experienced copywriters. However, there is another difficulty to manage with — the uniqueness of the article.

The market of paper writing is completely about intense competition and bad service won't last long here, that’s why our excellent artists always achieve the max uniqueness and make well designed articles meeting all the international standards. Thus, do not neglect calling for assistance in paper writing, especially when it’s so easy today.

Each submitted material is necessarily checked for plagiarism, however, you can always order the urgent translation and essay in the particular segment of the site. If you want to bring some changes to the article or have several remarks, feel free to report them because our professionals will be happy to make the necessary edits to reach perfection. There are no obstacles on your way to receive support in English paper writing, all you have to do it’s to give it to pure masters.

  • Office of the Vice President for Research
  • Location Location
  • Contact Contact
  • Offices and Divisions
  • News & Publications
  • Research News

Weekly Research Update: Thursday, April 11, 2024

Banner Image

Discover USC 2024 is a week from tomorrow!

Get ready with us as we prepare for an incredible day of research scholarship on Friday, April 19!

  • Plan your day at Discover USC 2024
  • Download the Guidebook app to prepare for and navigate your Discover USC experience with ease

The 2024-2025 Propel program is now accepting applications

The Office of the Vice President for Research will begin accepting 2024-2025 Propel applications on Tuesday, April 9. Complete application packages are due by Monday, July 1, 2024. The Propel Research Mentorship Program is designed to support faculty members who are new to the federal grants application process or have had success in securing relatively small grant awards, and are ready to apply for an R01 grant from the National Institutes of Health (NIH) or a relatively large grant from the National Science Foundation (NSF).

Program activities for the 2024-2025 Propel class will run from August 23, 2024 through May 2, 2025, and participants will submit their proposals no later than June 2025. 

Click here to read more and apply for Propel .

New open access agreement lets USC Columbia authors publish in Springer Nature journals at no cost

An agreement between the Carolina Consortium and Springer Nature gives USC Columbia corresponding authors the opportunity to publish articles in eligible Springer Nature journals free of charge. It’s one of a growing number of open access agreements made available by University Libraries. Open access publication is not only more affordable, it also allows scholars to make their work more discoverable and accessible to the global community. With more than 3,000 journals across a wide range of disciplines, Springer Nature is a leading publisher of academic research. Read more about this resource here . 

Need help with your data?

The University Libraries’ Research Data Analysis and Statistics Support Service is free and here to help you with: exploratory data analysis, statistical tests, SAS, SPSS, and NVivo. In-person and virtual appointments are available. Walk-ins are also welcome, although an appointment guarantees someone will be available to help you. To learn more and schedule an appointment, visit our service webpage . 

Research trainings 

The Office of the Vice President for Research is excited to offer a growing slate of training for USC faculty, staff and students, focusing on topics related to research and research administration. Each week, we will share our current offerings here, and provide complete information through our website . Please sign up at least 24 hours in advance of the session to ensure a spot.

Current Offerings (April 2024):

Federal Portal Series: NSF Research.gov Training Session

  • April 16, 2024, 2:00-3:30 p.m. via Microsoft Teams (Online)
  • Register here

Federal Portal Series: NIH ASSIST Training Session

  • April 18, 2024, 2:00-3:30 p.m. via Microsoft Teams (Online)

11 April 2024

Challenge the conventional. Create the exceptional. No Limits.

This paper is in the following e-collection/theme issue:

Published on 11.4.2024 in Vol 26 (2024)

Evaluating the Digital Health Experience for Patients in Primary Care: Mixed Methods Study

Authors of this article:

Author Orcid Image

Original Paper

  • Melinda Ada Choy 1, 2 , BMed, MMed, DCH, MD   ; 
  • Kathleen O'Brien 1 , BSc, GDipStats, MBBS, DCH   ; 
  • Katelyn Barnes 1, 2 , BAPSC, MND, PhD   ; 
  • Elizabeth Ann Sturgiss 3 , BMed, MPH, MForensMed, PhD   ; 
  • Elizabeth Rieger 1 , BA, MClinPsych, PhD   ; 
  • Kirsty Douglas 1, 2 , MBBS, DipRACOG, Grad Cert HE, MD  

1 School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, Australia

2 Academic Unit of General Practice, Office of Professional Leadership and Education, ACT Health Directorate, Canberra, Australia

3 School of Primary and Allied Health Care, Monash University, Melbourne, Australia

Corresponding Author:

Melinda Ada Choy, BMed, MMed, DCH, MD

School of Medicine and Psychology

College of Health and Medicine

The Australian National University

Phone: 61 51244947

Email: [email protected]

Background: The digital health divide for socioeconomic disadvantage describes a pattern in which patients considered socioeconomically disadvantaged, who are already marginalized through reduced access to face-to-face health care, are additionally hindered through less access to patient-initiated digital health. A comprehensive understanding of how patients with socioeconomic disadvantage access and experience digital health is essential for improving the digital health divide. Primary care patients, especially those with chronic disease, have experience of the stages of initial help seeking and self-management of their health, which renders them a key demographic for research on patient-initiated digital health access.

Objective: This study aims to provide comprehensive primary mixed methods data on the patient experience of barriers to digital health access, with a focus on the digital health divide.

Methods: We applied an exploratory mixed methods design to ensure that our survey was primarily shaped by the experiences of our interviewees. First, we qualitatively explored the experience of digital health for 19 patients with socioeconomic disadvantage and chronic disease and second, we quantitatively measured some of these findings by designing and administering a survey to 487 Australian general practice patients from 24 general practices.

Results: In our qualitative first phase, the key barriers found to accessing digital health included (1) strong patient preference for human-based health services; (2) low trust in digital health services; (3) high financial costs of necessary tools, maintenance, and repairs; (4) poor publicly available internet access options; (5) reduced capacity to engage due to increased life pressures; and (6) low self-efficacy and confidence in using digital health. In our quantitative second phase, 31% (151/487) of the survey participants were found to have never used a form of digital health, while 10.7% (52/487) were low- to medium-frequency users and 48.5% (236/487) were high-frequency users. High-frequency users were more likely to be interested in digital health and had higher self-efficacy. Low-frequency users were more likely to report difficulty affording the financial costs needed for digital access.

Conclusions: While general digital interest, financial cost, and digital health literacy and empowerment are clear factors in digital health access in a broad primary care population, the digital health divide is also facilitated in part by a stepped series of complex and cumulative barriers. Genuinely improving digital health access for 1 cohort or even 1 person requires a series of multiple different interventions tailored to specific sequential barriers. Within primary care, patient-centered care that continues to recognize the complex individual needs of, and barriers facing, each patient should be part of addressing the digital health divide.

Introduction

The promise of ehealth.

The rapid growth of digital health, sped up by the COVID-19 pandemic and associated lockdowns, brings the promise of improved health care efficiency, empowerment of consumers, and health care equity [ 1 ]. Digital health is the use of information and communication technology to improve health [ 2 ]. eHealth, which is a type of digital health, refers to the use of internet-based technology for health care and can be used by systems, providers, and patients [ 2 ]. At the time of this study (before COVID-19), examples of eHealth used by patients in Australia included searching for web-based health information, booking appointments on the web, participating in online peer-support health forums, using mobile phone health apps (mobile health), emailing health care providers, and patient portals for electronic health records.

Digital health is expected to improve chronic disease management and has already shown great potential in improving chronic disease health outcomes [ 3 , 4 ]. Just under half of the Australian population (47.3%) has at least 1 chronic disease [ 5 ]. Rates of chronic disease and complications from chronic disease are overrepresented among those with socioeconomic disadvantage [ 6 ]. Therefore, patients with chronic disease and socioeconomic disadvantage have a greater need for the potential benefits of digital health, such as an improvement in their health outcomes. However, there is a risk that those who could benefit most from digital health services are the least likely to receive them, exemplifying the inverse care law in the digital age by Hart [ 7 ].

Our Current Understanding of the Digital Health Divide

While the rapid growth of digital health brings the promise of health care equity, it may also intensify existing inequities [ 8 ]. The digital health divide for socioeconomic disadvantage describes a pattern in which patients considered socioeconomically disadvantaged who are already marginalized through poor access to traditional health care are additionally hindered through poor access to digital health [ 9 ]. In Australia, only 67.4% of households in the lowest household income quintile have home internet access, compared to 86% of the general population and 96.9% of households in the highest household income quintile [ 10 ]. Survey-based studies have also shown that even with internet access, effective eHealth use is lower in populations considered disadvantaged, which speaks to broader barriers to digital health access [ 11 ].

The ongoing COVID-19 global pandemic has sped up digital health transitions with the rapid uptake of telephone and video consultations, e-prescription, and the ongoing rollout of e-mental health in Australia. These have supported the continuation of health care delivery while limiting physical contact and the pandemic spread; however, the early evidence shows that the digital health divide remains problematic. A rapid review identified challenges with reduced digital access and digital literacy among the older adults and racial and ethnic minority groups, which are both groups at greater health risk from COVID-19 infections [ 12 ]. An Australian population study showed that the rapid uptake of telehealth during peak pandemic was not uniform, with the older adults, very young, and those with limited English language proficiency having a lower uptake of general practitioner (GP) telehealth services [ 13 ].

To ensure that digital health improves health care outcome gaps, it is essential to better understand the nature and nuance of the digital health divide for socioeconomic disadvantage. The nature of the digital health divide for socioeconomic disadvantage has been explored primarily through quantitative survey data, some qualitative papers, a few mixed methods papers, and systematic reviews [ 11 , 14 - 16 ]. Identified barriers include a lack of physical hardware and adequate internet bandwidth, a reduced inclination to seek out digital health, and a low ability and confidence to use digital health effectively [ 16 ]. The few mixed methods studies that exist on the digital health divide generally triangulate quantitative and qualitative data on a specific disease type or population subgroup to draw a combined conclusion [ 17 , 18 ]. These studies have found digital health access to be associated with education, ethnicity, and gender as well as trust, complementary face-to-face services, and the desire for alternative sources of information [ 17 , 19 ].

What This Work Adds

This project sought to extend previous research by using an exploratory mixed methods design to ensure that the first step and driver of our survey of a larger population was primarily shaped by the experiences of our interviewees within primary care. This differs from the triangulation method, which places the qualitative and quantitative data as equal first contributors to the findings and does not allow one type of data to determine the direction of the other [ 18 ]. We qualitatively explored the experience of digital health for patients with socioeconomic disadvantage and chronic disease and then quantitatively measured some of the qualitative findings via a survey of the Australian general practice patient population. Our key objective was to provide comprehensive primary mixed methods data, describing the experience and extent of barriers to accessing digital health and its benefits, with a focus on the digital health divide. We completed this research in a primary care context to investigate a diverse community-based population with conceivable reasons to seek digital help in managing their health. Findings from this mixed methods study were intended to provide health care providers and policy makers with a more detailed understanding of how specific barriers affect different aspects or steps of accessing digital health. Ultimately, understanding digital health access can influence the future design and implementation of digital health services by more effectively avoiding certain barriers or building in enablers to achieve improved digital health access not only for everyone but also especially for those in need.

Study Design

We conducted a sequential exploratory mixed methods study to explore a complex phenomenon in depth and then measure its prevalence. We qualitatively explored the experience of digital health for patients with chronic disease and socioeconomic disadvantage in the first phase. Data from the first phase informed a quantitative survey of the phenomenon across a wider population in the second phase [ 18 ]. Both stages of research were conducted before the COVID-19 pandemic in Australia.

Recruitment

Qualitative phase participants.

The eligibility criteria for the qualitative phase were as follows: English-speaking adults aged ≥18 years with at least 1 self-reported chronic disease and 1 marker of socioeconomic disadvantage (indicated by ownership of a Health Care Card or receiving a disability pension, unemployment, or a user of public housing). A chronic disease was defined to potential participants as a diagnosed long-term health condition that had lasted at least 6 months (or is expected to last for at least 6 months; examples are listed in Multimedia Appendix 1 ). The markers of socioeconomic disadvantage we used to identify potential participants were based on criteria typically used by local general practices to determine which patients can have lower or no out-of-pocket expenses. Apart from unemployment, the 3 other criteria to identify socioeconomic disadvantage are means-tested government-allocated public social services [ 20 ]. Qualitative phase participants were recruited from May to July 2019 through 3 general practices and 1 service organization that serve populations considered socioeconomically disadvantaged across urban, regional, and rural regions in the Australian Capital Territory and South Eastern New South Wales. A total of 2 recruitment methods were used in consultation with and as per the choice of the participating organizations. Potential participants were either provided with an opportunity to engage with researchers (KB and MAC) in the general practice waiting room or identified by the practice or organization as suitable for an interview. Interested participants were given a detailed verbal and written description of the project in a private space before providing written consent to be interviewed. All interview participants received an Aus $50 (US $32.68) grocery shopping voucher in acknowledgment of their time.

Quantitative Phase Participants

Eligibility for the quantitative phase was English-speaking adults aged ≥18 years. The eligibility criteria for the quantitative phase were deliberately broader than those for the qualitative phase to achieve a larger sample size within the limitations of recruitment and with the intention that the factors of socioeconomic disadvantage and having a chronic disease could be compared to the digital health access of a more general population. The quantitative phase participants were recruited from November 2019 to February 2020. Study information and paper-based surveys were distributed and collected through 24 general practices across the Australian Capital Territory and South Eastern New South Wales regions, with an option for web-based completion.

Ethical Considerations

Qualitative and quantitative phase research protocols, including the participant information sheet, were approved by the Australian Capital Territory Health Human Research Ethics Committee (2019/ETH/00013) and the Australian National University Human Research Ethics Committee (2019/ETH00003). Qualitative phase participants were given a verbal and written explanation of the study, including how and when they could opt out, before they provided written consent. All interview participants received an Aus $50 (US $32.68) grocery shopping voucher in acknowledgment of their time. Quantitative participants were given a written explanation and their informed consent was implied by return of a completed survey. Participants in both phases of the study were told that all their data was deidentified. Consent was implied through the return of a completed survey.

Qualitative Data Collection and Analysis

Participants were purposively sampled to represent a range in age, gender, degree of socioeconomic disadvantage, and experience of digital health. The sampling and sample size were reviewed regularly by the research team as the interviews were being completed to identify potential thematic saturation.

The interview guide was developed by the research team based on a review of the literature and the patient dimensions of the framework of access by Levesque et al [ 21 ]. The framework by Levesque et al [ 21 ] is a conceptualization of health care access comprising 5 service and patient dimensions of accessibility and ability. The patient dimensions are as follows: (1) ability to perceive, (2) ability to seek, (3) ability to reach, (4) ability to pay, and (5) ability to engage [ 21 ]. The key interview topics included (1) digital health use and access, including facilitators and barriers; (2) attitudes toward digital health; and (3) self-perception of digital health skills and potential training. The interview guide was reviewed for face and content validity by the whole research team, a patient advocate, a digital inclusion charity representative, and the general practices where recruitment occurred. The questions and guide were iteratively refined by the research team to ensure relevance and support reaching data saturation. The interview guide has been provided as Multimedia Appendix 1 . The interviews, which took 45 minutes on average, were taped and transcribed. An interview summary sheet and reflective journal were completed by the interviewer after each interview to also capture nonverbal cues and tone.

Interview transcriptions were coded and processed by inductive thematic analysis. Data collection and analysis were completed in parallel to support the identification of data saturation. Data saturation was defined as no significant new information arising from new interviews and was identified by discussion with the research team [ 22 ]. The 2 interviewers (MAC and KB) independently coded the first 5 transcripts and reflected on them with another researcher (EAS) to ensure intercoder validity and reliability. The rest of the interviews were coded independently by the 2 interviewers, who regularly met to reflect on emerging themes and thematic saturation. Data saturation was initially indicated after 15 interviews and subsequently confirmed with a total of 19 interviews. Coding disagreements and theme development were discussed with at least 1 other researcher (EAS, ER, and KD). Thematic saturation and the final themes were agreed upon by the entire research team.

Quantitative Survey Development

The final themes derived in the qualitative phase of the project guided the specific quantitative phase research questions. The final themes were a list of ordered cumulative barriers experienced by participants in accessing digital health and its benefits ( Figure 1 ). The quantitative survey was designed to test the association between barriers to access and the frequency of use of digital health as a proxy measure for digital health access.

research help needed

In the survey, the participants were asked about their demographic details, health and chronic diseases, knowledge, use and experience of digital health tools, internet access, perception of digital resource affordability, trust in digital health and traditional health services, perceived capability, health care empowerment, eHealth literacy, and relationship with their GP.

Existing scales and questions from the literature and standardized Australian-based surveys were used whenever possible. We used selected questions and scales from the Australian Bureau of Statistics standards, the eHealth Literacy Scale (eHEALS), the eHealth Literacy Questionnaire, and the Southgate Institute for Health Society and Equity [ 17 , 23 - 26 ]. We adapted other scales from the ICEpop Capability Measure for Adults, the Health Care Empowerment Inventory (HCEI), the Patient-Doctor Relationship Questionnaire, and the Chao continuity questionnaire [ 23 , 27 - 29 ]. Where an existing scale to measure a barrier or theme did not exist, the research team designed the questions based on the literature. Our questions around the frequency of digital health use were informed by multiple existing Australian-based surveys on general technology use [ 30 , 31 ]. Most of the questions used a Likert scale. Every choice regarding the design, adaptation, or copy of questions for the survey was influenced by the qualitative findings and decided on by full agreement among the 2 researchers who completed and coded the interviews. A complete copy of the survey is provided in Multimedia Appendix 2 .

Pilot-testing of the survey was completed with 5 patients, 2 experts on digital inclusion, and 3 local GPs for both the paper surveys and web-based surveys via Qualtrics Core XM (Qualtrics LLC). The resulting feedback on face and content validity, functionality of the survey logic, and feasibility of questionnaire completion was incorporated into the final version of the survey.

The survey was offered on paper with a participant information sheet, which gave the patients the option to complete the web-based survey. The survey was handed out to every patient on paper to avoid sampling bias through the exclusion of participants who could not complete the web-based survey [ 32 ].

Quantitative Data Treatment and Analysis

Data were exported from Qualtrics Core XM to an SPSS (version 26; IBM Corp) data set. Data cleaning and screening were undertaken (KB and KO).

Descriptive statistics (number and percentage) were used to summarize participant characteristics, preference measures, and frequency of eHealth use. Significance testing was conducted using chi-square tests, with a threshold of P <.05; effect sizes were measured by the φ coefficient for 2×2 comparisons and Cramer V statistic for all others. Where the cells sizes were too small, the categories were collapsed for the purposes of significance testing. The interpretation of effect sizes was as per the study by Cohen [ 33 ]. The analysis was conducted in SPSS and SAS (version 9.4; SAS Institute).

Participant Characteristics

Participants’ self-reported characteristics included gender, indigenous status, income category, highest level of education, marital status, and language spoken at home.

Age was derived from participant-reported year of birth and year of survey completion as of 2019 and stratified into age groups. The state or territory of residence was derived from the participant-reported postcode. The remoteness area was derived using the postcode reported by the participants and mapped to a modified concordance from the Australian Bureau of Statistics. Occupation-free text responses were coded using the Australian Bureau of Statistics Census statistics level 1 and 2 descriptors. The country of birth was mapped to Australia, other Organisation for Economic Cooperation and Development countries, and non–Organisation for Economic Cooperation and Development countries.

Frequency of eHealth Use

A summary measure of the frequency of eHealth use was derived from the questions on the use of different types of eHealth.

Specifically, respondents were asked if they had ever used any form of web-based health (“eHealth“) and, if so, to rate how often (never, at least once, every now and then, and most days) against 6 types of “eHealth” (searching for health information online, booking appointments online, emailing health care providers, using health-related mobile phone apps, accessing My Health Record, and accessing online health forums). The frequency of eHealth use was then classified as follows:

  • High user: answered “most days” to at least 1 question on eHealth use OR answered “every now and then” to at least 2 questions on eHealth use
  • Never user: answered “no” to having ever used any form of eHealth OR “never” to all 6 questions on eHealth use
  • Low or medium user: all other respondents.

The frequency of eHealth use was reported as unweighted descriptive statistics (counts and percentages) against demographic characteristics and for the elements of each of the themes identified in phase 1.

Overview of Key Themes

Data were reported against the 6 themes from the phase 1 results of preference, trust, cost, structural access, capacity to engage, and self-efficacy. Where the components of trust, cost, capacity to engage, and self-efficacy had missing data (for less than half of the components only), mean imputation was used to minimize data loss. For each theme, the analysis excluded those for whom the frequency of eHealth use was unknown.

Preference measures (survey section D1 parts 1 to 3) asked participants to report against measures with a 4-point Likert scale (strongly disagree, disagree, agree, and strongly agree). Chi-square tests were conducted after the categories were condensed into 2 by combining strongly disagree and as well as combining strongly agree and agree.

Summary measures for trust were created in 4 domains: trust from the eHealth Literacy Questionnaire (survey section D1 parts 4 to 8), trust from Southgate—GPs, specialists, or allied health (survey section D2 parts 1 to 5), trust from Southgate—digital health (survey section D2 parts 6, 7, 9, and 10), and trust from Southgate—books or pamphlets (survey section D2 part 8). The data were grouped as low, moderate, and high trust based on the assigned scores from the component data. Chi-square tests were conducted comparing low-to-moderate trust against high trust for GP, specialists, or allied health and comparing low trust against moderate-to-high trust for book or pamphlet.

Summary measures for cost were created from survey item C10. To measure cost, participants were asked about whether they considered certain items or services to be affordable. These included cost items mentioned in the qualitative phase interviews relating to mobile phones (1 that connects to the internet, 1 with enough memory space to download apps, downloads or apps requiring payment, repairs, and maintenance costs), having an iPad or tablet with internet connectivity, a home computer or laptop (owning, repairs, and maintenance), home fixed internet access, and an adequate monthly data allowance. These 9 items were scored as “yes definitely”=1 or 0 otherwise. Chi-square tests were conducted with never and low or medium eHealth users combined.

Structural Access

Structural access included asking where the internet is used by participants (survey section C8) and factors relating to internet access (survey section C8 parts 1-3) reporting against a 4-point Likert scale (strongly disagree, disagree, agree, and strongly agree). Chi-square tests were conducted with strongly disagree, disagree, agree, or strongly agree, and never, low, or medium eHealth use combined.

Capacity to Engage

Summary measures for capacity to engage were created from survey section E1. To measure the capacity to engage, participants were asked about feeling “settled and secure,” “being independent,” and “achievement and progress” as an adaptation of the ICEpop Capability Measure for Adults [ 27 ], reporting against a 4-point Likert-like scale. Responses were scored from 1 (“I am unable to feel settled and secure in any areas of my life”) to 4 (“I am able to feel settled and secure in all areas of my life”).

The summary capacity measure was derived by the summation of responses across the 3 questions, which were classified into 4 groups, A to D, based on these scores. Where fewer than half of the responses were missing, mean imputation was used; otherwise, the record was excluded. Groups A and B were combined for significance testing.

Self-Efficacy

Summary measures for self-efficacy were adapted from the eHEALS (E3) and the HCEI (E2) [ 23 , 24 ].

Survey section E3—eHEALS—comprised 8 questions, with participants reporting against a 5-point Likert scale for each (strongly disagree, disagree, neither, agree, and strongly agree). These responses were assigned 1 to 5 points, respectively. The summary eHEALS measure was derived by the summation of responses across the 8 questions, which were classified into 5 groups, A to E, based on these scores. Where fewer than half of the responses were missing, mean imputation was used; otherwise, the record was excluded. Groups A to C and D to E were combined for significance testing.

Survey section E2—HCEI—comprised 5 questions, with participants reporting against a 5-point Likert scale for each (strongly disagree, disagree, neither, agree, and strongly agree). Strongly disagree and disagree and neither were combined, and similarly agree and strongly agree were combined for significance testing.

Qualitative Results

The demographic characteristics of the patients that we interviewed are presented in Table 1 .

The key barriers found to accessing digital health included (1) strong patient preference for human-based health services; (2) low trust in digital health services; (3) high financial costs of necessary tools, maintenance, and repairs; (4) poor publicly available internet access options; (5) reduced capacity to engage due to increased life pressures; and (6) low self-efficacy and confidence in using digital health.

Rather than being an equal list of factors, our interviewees described these barriers as a stepped series of cumulative hurdles, which is illustrated in Figure 1 . Initial issues of preference and trust were foundational to a person even when considering the option of digital health, while digital health confidence and literacy were barriers to full engagement with and optimal use of digital health. Alternatively, interviewees who did use digital health had been enabled by the same factors that were barriers to others.

a GP: general practitioner.

b Multiple answers per respondent.

Strong Patient Preference for Human-Based Health Services

Some patients expressed a strong preference for human-based health services rather than digital health services. In answer to a question about how digital health services could be improved, a patient said the following:

Well, having an option where you can actually bypass actually having to go through the app and actually talk directly to someone. [Participant #10]

For some patients, this preference for human-based health services appeared to be related to a lack of exposure to eHealth. These patients were not at all interested in or had never thought about digital health options. A participant responded the following to the interviewer’s questions:

Interviewer: So when...something feels not right, how do you find out what’s going on?
Respondent: I talk to Doctor XX.
Interviewer: Do you ever Google your symptoms or look online for information?
Respondent: No, I have never even thought of doing that actually. [Participant #11]

For other patients, their preference for human-based health care stemmed from negative experiences with technology. These patients reported actively disliking computers and technology in general and were generally frustrated with what they saw as the pitfalls of technology. A patient stated the following:

If computers and internet weren’t so frigging slow because everything is on like the slowest speed network ever and there’s ads blocking everything. Ads, (expletive) ads. [Participant #9]

A patient felt that he was pushed out of the workforce due his inability to keep up with technology-based changes and thus made a decision to never own a computer:

But, you know, in those days when I was a lot younger those sorts of things weren’t about and they’re just going ahead in leaps and bounds and that’s one of the reasons why I retired early. I retired at 63 because it was just moving too fast and it’s all computers and all those sorts of things and I just couldn’t keep up. [Participant #17]

Low Trust in Digital Health Services

Several patients described low trust levels for digital and internet-based technology in general. Their low trust was generally based on stories they had heard of other people’s negative experiences. A patient said the following:

I don’t trust the internet to be quite honest. You hear all these stories about people getting ripped off and I’ve worked too hard to get what I’ve got rather than let some clown get it on the internet for me. [Participant #11]

Some of this distrust was specific to eHealth. For example, some patients were highly suspicious of the government’s motives with regard to digital health and were concerned about the privacy of their health information, which made them hesitant about the concept of a universal electronic health record. In response to the interviewer’s question, a participant said the following:

Interviewer: Are there any other ways you think that eHealth might help you?
Respondent: I’m sorry but it just keeps coming back to me, Big Brother. [Participant #7]

Another participant said the following:

I just would run a mile from it because I just wouldn’t trust it. It wouldn’t be used to, as I said, for insurance or job information. [Participant #16]

High Financial Costs of the Necessary Tools, Maintenance, and Repairs

A wide variety of patients described affordability issues across several different aspects of the costs involved in digital health. They expressed difficulty in paying for the following items: a mobile phone that could connect to the internet, a mobile phone with enough memory space to download apps, mobile phone apps requiring extra payment without advertisements, mobile phone repair costs such as a broken screen, a computer or laptop, home internet access, and adequate monthly data allowance and speeds to functionally use the internet. Current popular payment systems, such as plans, were not feasible for some patients. A participant stated the following:

I don’t have a computer...I’m not in the income bracket to own a computer really. Like I could, if I got one on a plan kind of thing or if I saved up for x-amount of time. But then like if I was going on the plan I’d be paying interest for having it on like lay-buy kind of thing, paying it off, and if it ever got lost or stolen I would still have to repay that off, which is always a hassle. And yeah. Yeah, I’m like financially not in the state where I’m able to...own a computer right now as I’m kind of paying off a number of debts. [Participant #9]

Poor Publicly Available Internet Access Options

Some patients described struggling without home internet access. While they noted some cost-free public internet access points, such as libraries, hotel bars, and restaurants, they often found these to be inconvenient, lacking in privacy, and constituting low-quality options for digital health. A patient stated the following:

...it’s incredibly slow at the library. And I know why...a friend I went to school with used to belong to the council and the way they set it up, they just got the raw end of the stick and it is really, really slow. It’s bizarre but you can go to the X Hotel and it’s heaps quicker. [Participant #15]

In response to the interviewer's question, a participant said the following:

Interviewer: And do you feel comfortable doing private stuff on computers at the library...?
Respondent: Not really, no, but I don’t have any other choice, so, yeah. [Participant #9]

Reduced Capacity to Engage Due to Increased Life Pressures

When discussing why they were not using digital health or why they had stopped using digital health, patients often described significant competing priorities and life pressures that affected their capacity to engage. An unemployed patient mentioned that his time and energy on the internet were focused primarily on finding work and that he barely had time to focus on his health in general, let alone engage in digital health.

Other patients reported that they often felt that their ability to learn about and spend time on digital health was taken up by caring for sick family members, paying basic bills, or learning English. Some patients said that the time they would have spent learning digital skills when they were growing up had been lost to adverse life circumstances such as being in jail:

So we didn’t have computers in the house when I was growing up. And I didn’t know I’ve never...I’ve been in and out of jail for 28 odd years so it sort of takes away from learning from this cause it’s a whole different… it’s a whole different way of using a telephone from a prison. [Participant #11]

Low Self-Efficacy and Confidence in Starting the Digital Health Process

Some patients had a pervasive self-perception of being slow learners and being unable to use technology. Their stories of being unconfident learners seemed to stem from the fact that they had been told throughout their lives that they were intellectually behind. A patient said the following:

The computer people...wouldn’t take my calls because I’ve always been dumb with that sort of stuff. Like I only found out this later on in life, but I’m actually severely numerically dyslexic. Like I have to triple-check everything with numbers. [Participant #7]

Another patient stated the following:

I like went to two English classes like a normal English class with all the kids and then another English class with about seven kids in there because I just couldn’t I don’t know maybe because I spoke another language at home and they sort of like know I was a bit backward. [Participant #6]

These patients and others had multiple missing pieces of information that they felt made it harder to engage in digital health compared to “easier” human-based services. A patient said the following:

Yeah I’ve heard of booking online but I just I don’t know I find it easier just to ring up. And I’ll answer an email from a health care provider but I wouldn’t know where to start to look for their email address. [Participant #11]

In contrast, the patients who did connect with digital health described themselves as independent question askers and proactive people. Even when they did not know how to use a specific digital health tool, they were confident in attempting to and asking for help when they needed it. A patient said the following:

I’m a “I will find my way through this, no matter how long it takes me” kind of person. So maybe it’s more my personality...If I have to ask for help from somewhere, wherever it is, I will definitely do that. [Participant #3]

Quantitative Results

A total of 487 valid survey responses were received from participants across 24 general practices. The participant characteristics are presented in detail in Table S1 in Multimedia Appendix 3 .

The mean age of the participants was approximately 50 years (females 48.9, SD 19.4 years; males 52.8, SD 20.0 years), and 68.2% (332/487) of the participants identified as female. Overall, 34.3% (151/439) of respondents reported never using eHealth, and 53.8% (236/439) reported high eHealth use.

There were statistically significant ( P <.05) differences in the frequency of eHealth use in terms of age group, gender, state, remoteness, highest level of education, employment status, occupation group, marital status, and language spoken at home, with effect sizes being small to medium. Specifically, high eHealth characteristics were associated with younger age, being female, living in an urban area, and being employed.

Table 2 presents the frequency of eHealth use against 3 internet preference questions.

Preference for using the internet and technology in general and for health needs in particular were significantly related to the frequency of eHealth use ( P <.05 for each), with the effect sizes being small to medium.

a Excludes those for whom frequency of eHealth use is unknown.

b Chi-square tests conducted with strongly disagree and disagree combined, and agree and strongly agree combined.

Table 3 presents the frequency of eHealth use against 4 measures of trust.

The degree of trust was not statistically significantly different for the frequency of eHealth use for any of the domains.

b eHLQ: eHealth Literacy Questionnaire.

c Derived from survey question D1, parts 4 to 8. Mean imputation used where ≤2 responses were missing. If >2 responses were missing, the records were excluded.

d Derived from survey question D2, parts 1 to 5. Mean imputation used where ≤2 responses were missing. If >2 responses were missing, the records were excluded.

e Chi-square test conducted comparing low-to-moderate trust against high trust.

f Derived from survey question D2, parts 6, 7, 9, and 10. Mean imputation used where ≤2 responses were missing. If >2 responses were missing, the records were excluded.

g Derived from survey question D2 part 8.

h Chi-square test conducted comparing low trust against moderate-to-high trust.

Affordability of items and services was reported as No cost difficulty or Cost difficulty. eHealth frequency of use responses were available for 273 participants; among those with no cost difficulty , 1% (2/204) were never users, 14.2% (29/204) were low or medium users, and 84.8% (173/204) were high users of eHealth; among those with cost difficulty , 1% (1/69) were never users, 26% (18/69) were low or medium users, and 73% (50/69) were high users. There was a statistically significant difference in the presence of cost as a barrier between never and low or medium eHealth users compared to high users ( χ 2 1 =5.25; P =.02), although the effect size was small.

Table 4 presents the frequency of eHealth use for elements of structural access.

Quality of internet access and feeling limited in access to the internet were significantly associated with frequency of eHealth use ( P <.05), although the effect sizes were small.

b N/A: not applicable (cell sizes insufficient for chi-square test).

c Chi-square tests conducted with strongly disagree and disagree combined, agree and strongly agree combined, and never and low or medium categories combined.

Table 5 presents the frequency of eHealth use against respondents’ capacity to engage.

Capacity to engage was not significantly different for the frequency of eHealth use ( P =.54). 

b Derived from survey item E1. Where 1 response was missing, the mean imputation was used. If >1 response was missing, the record was excluded.

c Chi-square tests conducted with groups A and B combined.

Table 6 presents the frequency of eHealth use for elements of self-efficacy.

Statistically significant results were observed for the relationship between self-efficacy by eHEALS (moderate effect size) and frequency of eHealth use as well as for some of the questions from the HCEI (reliance on health professionals or others to access and explain information; small effect size; P <.05).

b eHEALS: eHealth Literacy Scale.

c eHEALS derived from item E3 (8 parts). Where ≤ 4 responses were missing, mean imputation was used. If >4 responses were missing, the records were excluded. Groups A to C as well as groups D to E were combined for the chi-square test.

d Strongly disagree, disagree, neither, and agree or strongly agree combined for significance testing.

Principal Findings

This paper reports on the findings of a sequential exploratory mixed methods study on the barriers to digital health access for a group of patients in Australian family medicine, with a particular focus on chronic disease and socioeconomic disadvantage.

In the qualitative first phase, the patients with socioeconomic disadvantage and chronic disease described 6 cumulative barriers, as demonstrated in Figure 1 . Many nonusers of digital health preferred human-based services and were not interested in technology, while others were highly suspicious of the technology in general. Some digitally interested patients could not afford quality hardware and internet connectivity, a barrier that was doubled by low quality and privacy when accessing publicly available internet connections. Furthermore, although some digitally interested patients had internet access, their urgent life circumstances left scarce opportunity to access digital health and develop digital health skills and confidence.

In our quantitative second phase, 31% (151/487) of the survey participants from Australian general practices were found to have never used a form of digital health. Survey participants were more likely to use digital health tools frequently when they also had a general digital interest and a digital health interest. Those who did not frequently access digital health were more likely to report difficulty affording the financial costs needed for digital access. The survey participants who frequently accessed digital health were more likely to have high eHealth literacy and high levels of patient empowerment.

Comparison With Prior Work

In terms of general digital health access, the finding that 31% (151/487) of the survey participants had never used one of the described forms of eHealth is in keeping with an Australian-based general digital participation study that found that approximately 9% of the participants were nonusers and 17% rarely engaged with the internet at all [ 34 ]. With regard to the digital health divide, another Australian-based digital health divide study found that increased age, living in a lower socioeconomic area, being Aboriginal or Torres Strait Islander, being male, and having no tertiary education were factors negatively associated with access to digital health services [ 17 ]. Their findings correspond to our findings that higher-frequency users of eHealth were associated with younger age, being female, living in an urban area, and being employed. Both studies reinforce the evidence of the digital health divide based on gender, age, and socioeconomic disadvantage in Australia.

With regard to digital health barriers, our findings provide expanded details on the range of digital health items and services that present a cost barrier to consumers. Affordability is a known factor in digital access and digital health access, and it is measured often by general self-report or relative expenditure on internet access to income [ 30 ]. Our study revealed the comprehensive list of relevant costs for patients. Our study also demonstrated factors of cost affordability beyond the dollar value of an item, as interviewees described the struggle of using slow public internet access without privacy features and the risks involved in buying a computer in installments. When we reflected on the complexity and detail of the cost barrier in our survey, participants demonstrated a clear association between cost and the frequency of digital health use. This suggests that a way to improve digital health access for some people is to improve the quality, security, and accessibility of public internet access options as well as to provide free or subsidized hardware, internet connection, and maintenance options for those in need, work that is being done by at least 1 digital inclusion charity in the United Kingdom [ 35 ].

Many studies recognize the factors of eHealth literacy and digital confidence for beneficial digital health access [ 36 ]. Our interviews demonstrated that some patients with socioeconomic disadvantage have low digital confidence, but that this is often underlined by a socially reinforced lifelong low self-confidence in their intellectual ability. In contrast, active users, regardless of other demographic factors, described themselves as innately proactive question askers. This was reinforced by our finding of a relationship between health care empowerment and the frequency of eHealth use. This suggests that while digital health education and eHealth literacy programs can improve access for some patients, broader and deeper long-term solutions addressing socioeconomic drivers of digital exclusion are needed to improve digital health access for some patients with socioeconomic disadvantage [ 8 ]. The deep permeation of socially enforced low self-confidence and lifelong poverty experienced by some interviewees demonstrate that the provision of free hardware and a class on digital health skills can be, for some, a superficial offering when the key underlying factor is persistent general socioeconomic inequality.

The digital health divide literature tends to identify the digital health divide, the factors and barriers that contribute to it, and the potential for it to widen if not specifically addressed [ 16 ]. Our findings have also identified the divide and the barriers, but what this study adds through our qualitative phase in particular is a description of the complex interaction of those barriers and the stepped nature of some of those barriers as part of the individual’s experience in trying to access digital health.

Strengths and Limitations

A key strength of this study is the use of a sequential exploratory mixed methods design. The initial qualitative phase guided a phenomenological exploration of digital health access experiences for patients with chronic disease and socioeconomic disadvantage. Our results in both study phases stem from the patients’ real-life experiences of digital health access. While some of our results echo the findings of other survey-based studies on general digital and digital health participation, our method revealed a greater depth and detail of some of these barriers, as demonstrated in how our findings compare to prior work.

As mentioned previously, the emphasis of this study on the qualitative first phase is a strength that helped describe the interactions between different barriers. The interviewees described their experiences as cumulative unequal stepped barriers rather than as producing a nonordered list of equal barriers. These findings expand on the known complexity of the issue of digital exclusion and add weight to the understanding that improving digital health access needs diverse, complex solutions [ 17 ]. There is no panacea for every individual’s digital health access, and thus, patient-centered digital health services, often guided by health professionals within the continuity of primary care, are also required to address the digital health divide [ 37 ].

While the sequential exploratory design is a strength of the study, it also created some limitations for the second quantitative phase. Our commitment to using the qualitative interview findings to inform the survey questions meant that we were unable to use previously validated scales for every question and that our results were less likely to lead to a normal distribution. This likely affected our ability to demonstrate significant associations for some barriers. We expect that further modeling is required to control for baseline characteristics and determine barrier patterns for different types of users.

One strength of this study is that the survey was administered to a broad population of Australian family medicine patients with diverse patterns of health via both paper-based and digital options. Many other digital health studies use solely digital surveys, which can affect the sample. However, we cannot draw conclusions from our survey about patients with chronic disease due to the limitations of the sample size for these subgroups.

Another sample-based limitation of this study was that our qualitative population did not include anyone aged from 18 to 24 years, despite multiple efforts to recruit. Future research will hopefully address this demographic more specifically.

While not strictly a limitation, we recognize that because this research was before COVID-19, it did not include questions about telehealth, which has become much more mainstream in recent years. The patients may also have changed their frequency of eHealth use because of COVID-19 and an increased reliance on digital services in general. Future work in this area or future versions of this survey should include telehealth and acknowledge the impact of COVID-19. However, the larger concept of the digital health divide exists before and after COVID-19, and in fact, our widespread increased reliance on digital services makes the digital divide an even more pressing issue [ 12 ].

Conclusions

The experience of digital health access across Australian primary care is highly variable and more difficult to access for those with socioeconomic disadvantage. While general digital interest, financial cost, and digital health literacy and empowerment are clear factors in digital health access in a broad primary care population, the digital health divide is also facilitated in part by a stepped series of complex and cumulative barriers.

Genuinely improving digital health access for 1 cohort or even 1 person requires a series of multiple different interventions tailored to specific sequential barriers. Given the rapid expansion of digital health during the global COVID-19 pandemic, attention to these issues is necessary if we are to avoid entrenching inequities in access to health care. Within primary care, patient-centered care that continues to recognize the complex individual needs of, and barriers facing, each patient should be a part of addressing the digital health divide.

Acknowledgments

The authors are thankful to the patients who shared their experiences with them via interview and survey completion. The authors are also very grateful to the general practices in the Australian Capital Territory and New South Wales who kindly gave their time and effort to help organize interviews, administer, and post surveys in the midst of the stress of day-to-day practice life and the bushfires of 2018-2019. The authors thank and acknowledge the creators of the eHealth Literacy Scale, the eHealth Literacy Questionnaire, the ICEpop Capability Measure for Adults, the Health Care Empowerment Inventory, the Patient-Doctor Relationship Questionnaire, the Chao continuity questionnaire, and the Southgate Institute for Health Society and Equity for their generosity in sharing their work with the authors [ 17 , 19 - 25 ]. This study would not have been possible without the support of the administrative team of the Academic Unit of General Practice. This project was funded by the Royal Australian College of General Practitioners (RACGP) through the RACGP Foundation IPN Medical Centres Grant, and the authors gratefully acknowledge their support.

Data Availability

The data sets generated during this study are not publicly available due to the nature of our original ethics approval but are available from the corresponding author on reasonable request.

Authors' Contributions

MAC acquired the funding, conceptualized the project, and organized interview recruitment. MAC and KB conducted interviews and analyzed the qualitative data. EAS, ER, and KD contributed to project planning, supervision and qualitative data analysis. MAC, KB and KO wrote the survey and planned quantitative data analysis. MAC and KB recruited practices for survey administration. KO and KB conducted the quantitative data analysis. MAC and KO, with KB drafted the paper. EAS, ER, and KD helped with reviewing and editing the paper.

Conflicts of Interest

None declared.

Phase 1 interview guide.

Phase 2 survey: eHealth and digital divide.

Phase 2 participant characteristics by frequency of eHealth use.

  • Eysenbach G. What is e-health? J Med Internet Res. 2001;3(2):E20. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Iyawa GE, Herselman M, Botha A. Digital health innovation ecosystems: from systematic literature review to conceptual framework. Procedia Comput Sci. 2016;100:244-252. [ FREE Full text ] [ CrossRef ]
  • Berrouiguet S, Baca-García E, Brandt S, Walter M, Courtet P. Fundamentals for future mobile-health (mHealth): a systematic review of mobile phone and web-based text messaging in mental health. J Med Internet Res. Jun 10, 2016;18(6):e135. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Shen H, van der Kleij RM, van der Boog PJ, Chang X, Chavannes NH. Electronic health self-management interventions for patients with chronic kidney disease: systematic review of quantitative and qualitative evidence. J Med Internet Res. Nov 05, 2019;21(11):e12384. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Australia's health 2018. Australian Institute of Health and Welfare. 2018. URL: https://www.aihw.gov.au/reports/australias-health/australias-health-2018/contents/table-of-contents [accessed 2024-04-04]
  • Australian Institute of Health and Welfare. Chronic Diseases and Associated Risk Factors in Australia, 2006. Canberra, Australia. Australian Institute of Health and Welfare; 2006.
  • Hart JT. The inverse care law. The Lancet. Feb 27, 1971;297(7696):405-412. [ CrossRef ]
  • Davies AR, Honeyman M, Gann B. Addressing the digital inverse care law in the time of COVID-19: potential for digital technology to exacerbate or mitigate health inequalities. J Med Internet Res. Apr 07, 2021;23(4):e21726. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Choi NG, Dinitto DM. The digital divide among low-income homebound older adults: internet use patterns, eHealth literacy, and attitudes toward computer/internet use. J Med Internet Res. May 02, 2013;15(5):e93. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Household use of information technology. Australian Bureau of Statistics. 2018. URL: https://tinyurl.com/4efm6u92 [accessed 2024-03-24]
  • Kontos E, Blake KD, Chou WY, Prestin A. Predictors of eHealth usage: insights on the digital divide from the health information national trends survey 2012. J Med Internet Res. Jul 16, 2014;16(7):e172. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Litchfield I, Shukla D, Greenfield S. Impact of COVID-19 on the digital divide: a rapid review. BMJ Open. Oct 12, 2021;11(10):e053440. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Butler DC, Joshy G, Douglas KA, Sayeed MS, Welsh J, Douglas A, et al. Changes in general practice use and costs with COVID-19 and telehealth initiatives: analysis of Australian whole-population linked data. Br J Gen Pract. Apr 27, 2023;73(730):e364-e373. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Arsenijevic J, Tummers L, Bosma N. Adherence to electronic health tools among vulnerable groups: systematic literature review and meta-analysis. J Med Internet Res. Feb 06, 2020;22(2):e11613. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kontos EZ, Bennett GG, Viswanath K. Barriers and facilitators to home computer and internet use among urban novice computer users of low socioeconomic position. J Med Internet Res. Oct 22, 2007;9(4):e31. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Latulippe K, Hamel C, Giroux D. Social health inequalities and eHealth: a literature review with qualitative synthesis of theoretical and empirical studies. J Med Internet Res. Apr 27, 2017;19(4):e136. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Foley K, Freeman T, Ward P, Lawler A, Osborne R, Fisher M. Exploring access to, use of and benefits from population-oriented digital health services in Australia. Health Promot Int. Aug 30, 2021;36(4):1105-1115. [ CrossRef ] [ Medline ]
  • Cresswell JW, Plano Clark VL. Designing and Conducting Mixed Methods Research. Thousand Oaks, CA. SAGE Publications; 2007.
  • Tappen RM, Cooley ME, Luckmann R, Panday S. Digital health information disparities in older adults: a mixed methods study. J Racial Ethn Health Disparities. Feb 2022;9(1):82-92. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Who can get a card. Services Australia. URL: https://www.servicesaustralia.gov.au/who-can-get-health-care-card?context=21981 [accessed 2023-11-03]
  • Levesque JF, Harris MF, Russell G. Patient-centred access to health care: conceptualising access at the interface of health systems and populations. Int J Equity Health. Mar 11, 2013;12:18. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Bryant A, Charmaz K. The SAGE Handbook of Grounded Theory, Paperback Edition. Thousand Oaks, CA. SAGE Publications; 2010.
  • Johnson MO, Rose CD, Dilworth SE, Neilands TB. Advances in the conceptualization and measurement of health care empowerment: development and validation of the health care empowerment inventory. PLoS One. 2012;7(9):e45692. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Norman CD, Skinner HA. eHEALS: the eHealth literacy scale. J Med Internet Res. Nov 14, 2006;8(4):e27. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kayser L, Karnoe A, Furstrand D, Batterham R, Christensen KB, Elsworth G, et al. A multidimensional tool based on the eHealth literacy framework: development and initial validity testing of the eHealth Literacy Questionnaire (eHLQ). J Med Internet Res. Feb 12, 2018;20(2):e36. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Standards. Australian Bureau of Statistics. URL: https://www.abs.gov.au/statistics/standards [accessed 2024-04-04]
  • Al-Janabi H, Flynn TN, Coast J. Development of a self-report measure of capability wellbeing for adults: the ICECAP-A. Qual Life Res. Feb 2012;21(1):167-176. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Van der Feltz-Cornelis CM, Van Oppen P, Van Marwijk HW, De Beurs E, Van Dyck R. A patient-doctor relationship questionnaire (PDRQ-9) in primary care: development and psychometric evaluation. Gen Hosp Psychiatry. 2004;26(2):115-120. [ CrossRef ] [ Medline ]
  • Chao J. Continuity of care: incorporating patient perceptions. Fam Med. 1988;20(5):333-337. [ Medline ]
  • Wilson CK, Thomas J, Barraket J. Measuring digital inequality in Australia: the Australian digital inclusion index. JTDE. Jun 30, 2019;7(2):102-120. [ CrossRef ]
  • Digital participation: a view of Australia's online behaviours. Australia Post. Jul 2017. URL: https://auspost.com.au/content/dam/auspost_corp/media/documents/white-paper-digital-inclusion.pdf [accessed 2024-04-04]
  • Poli A, Kelfve S, Motel-Klingebiel A. A research tool for measuring non-participation of older people in research on digital health. BMC Public Health. Nov 08, 2019;19(1):1487. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Cohen J. Statistical Power Analysis for the Behavioral Sciences Second Edition. London, UK. Routledge; 1988.
  • Borg K, Smith L. Digital inclusion and online behaviour: five typologies of Australian internet users. Behav Inf Technol. Feb 15, 2018;37(4):367-380. [ CrossRef ]
  • Mathers A, Richardson J, Vincent S, Joseph C, Stone E. Good Things Foundation COVID-19 response report. Good Things Foundation. 2020. URL: https://tinyurl.com/2peu3kak [accessed 2024-04-04]
  • Norman CD, Skinner HA. eHealth literacy: essential skills for consumer health in a networked world. J Med Internet Res. Jun 16, 2006;8(2):e9. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Neves AL, Burgers J. Digital technologies in primary care: implications for patient care and future research. Eur J Gen Pract. Dec 11, 2022;28(1):203-208. [ FREE Full text ] [ CrossRef ] [ Medline ]

Abbreviations

Edited by T Leung; submitted 03.07.23; peer-reviewed by T Freeman, H Shen; comments to author 16.08.23; revised version received 30.11.23; accepted 31.01.24; published 11.04.24.

©Melinda Ada Choy, Kathleen O'Brien, Katelyn Barnes, Elizabeth Ann Sturgiss, Elizabeth Rieger, Kirsty Douglas. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 11.04.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

Read our research on: Gun Policy | International Conflict | Election 2024

Regions & Countries

What public k-12 teachers want americans to know about teaching.

Illustrations by Hokyoung Kim

research help needed

At a time when most teachers are feeling stressed and overwhelmed in their jobs, we asked 2,531 public K-12 teachers this open-ended question:

If there’s one thing you’d want the public to know about teachers, what would it be?

We also asked Americans what they think about teachers to compare with teachers’ perceptions of how the public views them.

Related: What’s It Like To Be a Teacher in America Today?

A bar chart showing that about half of teachers want the public to know that teaching is a hard job.

Pew Research Center conducted this analysis to better understand what public K-12 teachers would like Americans to know about their profession. We also wanted to learn how the public thinks about teachers.

For the open-end question, we surveyed 2,531 U.S. public K-12 teachers from Oct. 17 to Nov. 14, 2023. The teachers surveyed are members of RAND’s American Teacher Panel, a nationally representative panel of public K-12 school teachers recruited through MDR Education. Survey data is weighted to state and national teacher characteristics to account for differences in sampling and response to ensure they are representative of the target population.

Overall, 96% of surveyed teachers provided an answer to the open-ended question. Center researchers developed a coding scheme categorizing the responses, coded all responses, and then grouped them into the six themes explored in the data essay.

For the questions for the general public, we surveyed 5,029 U.S. adults from Nov. 9 to Nov. 16, 2023. The adults surveyed are members of the Ipsos KnowledgePanel, a nationally representative online survey panel. Panel members are randomly recruited through probability-based sampling, and households are provided with access to the Internet and hardware if needed. To ensure that the results of this survey reflect a balanced cross section of the nation, the data is weighted to match the U.S. adult population by gender, age, education, race and ethnicity and other categories.

Here are the questions used for this analysis , along with responses, the teacher survey methodology and the general public survey methodology .

Most of the responses to the open-ended question fell into one of these six themes:

Teaching is a hard job

About half of teachers (51%) said they want the public to know that teaching is a difficult job and that teachers are hardworking. Within this share, many mentioned that they have roles and responsibilities in the classroom besides teaching, which makes the job stressful. Many also talked about working long hours, beyond those they’re contracted for.

“Teachers serve multiple roles other than being responsible for teaching curriculum. We are counselors, behavioral specialists and parents for students who need us to fill those roles. We sacrifice a lot to give all of ourselves to the role as teacher.”

– Elementary school teacher

“The amount of extra hours that teachers have to put in beyond the contractual time is ridiculous. Arriving 30 minutes before and leaving an hour after is just the tip of the iceberg. … And as far as ‘having summers off,’ most of August is taken up with preparing materials for the upcoming school year or attending three, four, seven days’ worth of unpaid development training.”

– High school teacher

Teachers care about their students

The next most common theme: 22% of teachers brought up how fulfilling teaching is and how much teachers care about their students. Many gave examples of the hardships of teaching but reaffirmed that they do their job because they love the kids and helping them succeed. 

research help needed

“We are passionate about what we do. Every child we teach is important to us and we look out for them like they are our own.”

– Middle school teacher

“We are in it for the kids, and the most incredible moments are when children make connections with learning.”

Teachers are undervalued and disrespected

Some 17% of teachers want the public to know that they feel undervalued and disrespected, and that they need more public support. Some mentioned that they are well-educated professionals but are not treated as such. And many teachers in this category responded with a general plea for support from the public, which they don’t feel they’re getting now.

“We feel undervalued. The public and many parents of my students treat me and my peers as if we do not know as much as they do, as if we are uneducated.”

“The public attitudes toward teachers have been degrading, and it is making it impossible for well-qualified teachers to be found. People are simply not wanting to go into the profession because of public sentiments.”

Teachers are underpaid

A similar share of teachers (15%) want the public to know that teachers are underpaid. Many teachers said their salary doesn’t account for the effort and care they put into their students’ education and believe that their pay should reflect this.

research help needed

“We are sorely underpaid for the amount of hours we work and the education level we have attained.”

Teachers need support and resources from government and administrators

About one-in-ten teachers (9%) said they need more support from the government, their administrators and other key stakeholders. Many mentioned working in understaffed schools, not having enough funding and paying for supplies out of pocket. Some teachers also expressed that they have little control over the curriculum that they teach.

“The world-class education we used to be proud of does not exist because of all the red tape we are constantly navigating. If you want to see real change in the classroom, advocate for smaller class sizes for your child, push your district to cap class sizes at a reasonable level and have real, authentic conversations with your child’s teacher about what is going on in the classroom if you’re curious.”

Teachers need more support from parents

Roughly the same share of teachers (8%) want the public to know that teachers need more support from parents, emphasizing that the parent-teacher relationship is strained. Many view parents as partners in their child’s education and believe that a strong relationship improves kids’ overall social and emotional development.

research help needed

“Teachers help students to reach their potential. However, that job is near impossible if parents/guardians do not take an active part in their student’s education.”

How the U.S. public views teachers

While the top response from teachers in the open-ended question is that they want the public to know that teaching is a hard job, most Americans already see it that way. Two-thirds of U.S. adults say being a public K-12 teacher is harder than most other jobs, with 33% saying it’s a lot harder.

And about three-quarters of Americans (74%) say teachers should be paid more than they are now, including 39% who say teachers should be paid a lot more.

research help needed

Americans are about evenly divided on whether the public generally looks up to (32%) or down on (30%) public K-12 teachers. Some 37% say Americans neither look up to or down on public K-12 teachers.

A bar chart showing that teachers’ perceptions of how much Americans trust public K-12 teachers to do their job well is more negative than the general public’s response.

In addition to the open-ended question about what they want the public to know about them, we asked teachers how much they think most Americans trust public K-12 teachers to do their job well. We also asked the public how much they trust teachers. Answers differ considerably.

Nearly half of public K-12 teachers (47%) say most Americans don’t trust teachers much or at all. A third say most Americans trust teachers some, and 18% say the public trusts teachers a great deal or a fair amount.

In contrast, a majority of Americans (57%) say they do trust public K-12 teachers to do their job well a great deal or a fair amount. About a quarter (26%) say they trust teachers some, and 17% say they don’t trust teachers much or at all.

Related: About half of Americans say public K-12 education is going in the wrong direction

How the public’s views differ by party

There are sizable party differences in Americans’ views of teachers. In particular, Democrats and Democratic-leaning independents are more likely than Republicans and Republican leaners to say:

  • They trust teachers to do their job well a great deal or a fair amount (70% vs. 44%)
  • Teaching is a lot or somewhat harder when compared with most other jobs (77% vs. 59%)
  • Teachers should be paid a lot or somewhat more than they are now (86% vs. 63%)

research help needed

In their own words

Below, we have a selection of quotes that describe what teachers want the public to know about them and their profession.

Social Trends Monthly Newsletter

Sign up to to receive a monthly digest of the Center's latest research on the attitudes and behaviors of Americans in key realms of daily life

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

research help needed

Five Fast Facts About Black Maternal Health

Two Black mothers holding babies

By Shelby Crosier

Black Maternal Health Week is celebrated from April 11-17 every year. In recognition, here are five facts that we think you should know.

 Maternal mortality and morbidity are disproportionately high in Black women.

Black women in the U.S. die from pregnancy-related causes at over twice the rate of white women. As the overall maternal mortality rate has risen in recent years, this disparity has become wider. Black women also experience higher rates of other pregnancy-related complications and health problems like high blood pressure and preterm birth.

Black women are the most burdened by restrictive reproductive health policies.

In the post- Roe v. Wade era, Black women in Southern states with particularly restrictive abortion policies experience unique challenges in receiving the care that they need. They are less likely to receive abortion care when they want it, and they often face barriers like a lack of transportation and child care, stigma in the health care system, and less education about abortion options. Some promising interventions could help address the latter.

Systemic and environmental factors contribute to maternal health disparities.

Systemic racism is a large contributing factor to maternal health disparities. It drives social determinants of health like socioeconomic status, increases stress, and leads to provider bias, all of which can increase the odds of poor health outcomes for Black women. All of these factors can also compound the negative health effects from exposure to harmful substances in the environment.

Medicaid expansion, doula care, and other interventions can help improve Black maternal health outcomes.

Policy-level solutions are essential to help solve the Black maternal health crisis. One such solution is expanding postpartum Medicaid coverage , which many states have done in the past two years. Another opportunity to support Black maternal health through Medicaid expansion is to allow for Medicaid reimbursement of doula services. This would increase access to doulas , which could mitigate some effects of social determinants of health and improve birth outcomes .

Continued research and advocacy are needed to advance Black maternal health.

Improving maternal health outcomes, especially for Black women, requires continued research, more advocacy, and better data . It is also vital to partner closely with community members as academic and government institutions launch new research initiatives and programs to address this issue.

Associated Topics:

  • Maternal and Child Health
  • Health Disparities
  • Rollins News
  • In the Media
  • Rollins Experts

Donate to the Public health Preparedness and Research Fund

CNET logo

Our wellness advice is expert-vetted . Our top picks are based on our editors’ independent research, analysis, and hands-on testing. If you buy through our links, we may get a commission. Reviews ethics statement

  • Mental Health

5 Beginner Breathing Exercises to Help Banish Stress

In moments of stress, you can use intentional breathing to help ground yourself. These are the top five beginner exercises to start with.

research help needed

  • Sleep Science Coach Certification from The Spencer Institute.

Woman sitting on a yoga mat meditating and focusing on breath.

We tend to take our breathing for granted. Our bodies automatically do it to keep us alive, so we don't give it a second thought. But have you ever stopped to think about happens when we breathe with purpose? The way we breathe has a direct impact on our  health, stress levels  and even  emotions . 

Health Tips logo

Breathwork has recently become so popular that Gwyneth Paltrow dedicated a whole episode to it on her Netflix series, The Goop Lab . The show highlights various techniques, including breathwork, to overcome mental and physical obstacles. However, breathwork dates back to early Hindu yogic breathing practices known as Pranayama . Prana in Sanskrit translates to "vital life force," while yama means "to control." 

Modern science shows that breathwork can transform your health and relieve stress. The best part? Anyone can do it at any time, for free. Here's what you need to try it at home.

research help needed

What is breathwork?

Breathwork is essentially controlled breathing where you intentionally regulate the flow of your breathing patterns to change your mental, emotional and physical state. In every breathing exercise, you will be asked to become aware of your breath and how it makes you feel. Its purpose is to create a balance between the mind and body. There are multiple breathwork techniques that you can try, and each one has a specific effect on your body. 

What are the benefits of breathing exercises?

If you are looking to incorporate new daily habits to help ease stress, anxiety or improve your overall well-being, breathwork may be what you are looking for. People often practice breathwork exercises to help promote mental, emotional, physical and spiritual well-being . 

According to one study, breathwork can improve cognitive performance and reduce stress in otherwise healthy adults. The same study found that controlled breathing can potentially help reduce health issues associated with chronic stress. 

Similarly, a systematic review that analyzed eight studies on the effects of breathwork on people with chronic obstructive pulmonary disease concluded that patients with COPD who practiced pursed-lip breathing had better endurance during physical activity.

Slow, paced breathing has been linked to:

  • Improved mood
  • Greater alertness and vigor
  • Increased relaxation
  • Less anxiety and depression
  • Reduced symptoms of anger

gettyimages-1333901442

Breathwork techniques for beginners

There are many breathing exercises you can do to help you clear your mind, relax and even improve physical endurance. We've compiled a few of our favorite techniques that are perfect for beginners since they are simple, quick and easy to follow.

The 4-7-8 breath: For when you're feeling stressed

The 4-7-8 breathing pattern was designed by Andrew Weil, M.D ., and is known for being the "relaxing breath." It's a simple yet effective technique for de-stressing that consists of inhaling for four counts, holding the breath for seven counts, then exhaling for eight counts. Many people use this particular technique to relieve anxiety and attain better sleep .

Weil states on his website that "practicing a regular, mindful breathing exercise can be calming and energizing and can even help with stress-related health problems ranging from panic attacks to digestive disorders."

How to practice

The first thing you want to do is place the tip of your tongue against the roof of your mouth, right behind your front teeth, and sit in an upright position. 

Then, follow these steps in the cycle of one breath:

1.  With your mouth closed, inhale through your nose to a count of four.

2.  Hold your breath for seven counts.

3.  Exhale through your mouth, making a whooshing sound for eight seconds.

4.  Repeat steps one to three for a total of four breath cycles.

breathwork-2

The box breath: For clearing the mind

Box breathing, also called four-square breathing, is an easy yogic technique used to slow down your breathing. This type of breathing exercise is so powerful that people with high-stress jobs, like the military , often use it to maintain calm when their bodies go into "fight-or-flight" mode. Its primary focus is to distract the mind while you count and fill your lungs with oxygen.

Unfortunately, there aren't many studies around the effectiveness of box breathing since it's a relatively new technique, but there are studies that have found that similar breathing exercises help induce tranquility and increase attention span .

Box breathing is one of the simplest breathwork techniques and can be done almost anywhere -- at your desk, in your car or even at a busy coworking space. All you need to do is follow these simple steps.

1.  Exhale all of the air in your lungs.

2.  Inhale for four counts.

3.  Hold your breath for another four counts.

4.  Exhale for four counts.

5.  Repeat three to four times.

gettyimages-1134198878

Alternate nostril breath: For optimal respiratory endurance

Alternate nostril breathing, also known as Nadi Shodhana, is another breathwork exercise intended to soothe the mind and body while managing emotions. This breathing exercise is a pretty common practice in yoga and meditation. Nadi Shodhana in Sanskrit means "channel cleaning breathing." As the name suggests, this technique focuses on breathing through one nostril at a time.

A small study conducted in 2017 analyzed the effects of this type of breathing practice on healthy, competitive swimmers. The study concluded that practicing alternate nostril breathing for 30 minutes a day, five days a week for 30 days, helps enhance respiratory endurance. Even though this initial study showed promising results, further research is needed to expand on the long-term effectiveness of alternate nostril breathing.

You can practice alternate nostril breathing by yourself. However, consider asking an experienced practitioner to guide you through your first time to ensure that you are doing it correctly. 

First, sit down in a comfortable position with your back upright, then follow these steps:

1.  Place your left palm over your lap and bring your right hand in front of your face. 

2.  With your right thumb, close your right nostril. If comfortable, you can place your forefinger and middle finger on the center of your forehead.

3.  Close your eyes and inhale slowly through your left nostril.

4.  Once you've taken a deep inhale, cover your left nostril with your ring finger and hold your breath for a few seconds.

5.  Uncover your right nostril and exhale. 

6.  Slowly inhale through your right nostril.

7.  Cover your right nostril again (your ring finger still closing your left nostril) and hold for a few seconds.

8.  Uncover your left nostril and slowly exhale, pausing again at the end of the exhale.

You can repeat these steps for up to five minutes.

alternate-nostril-breathing

Belly breath: For when you need to relax

Belly breathing, also called diaphragmatic breathing, fully engages your abdominal muscles, diaphragm and lungs. Contrary to normal breathing, diaphragmatic breathing expands the abdomen when inhaling rather than the chest. Our normal breaths tend to be shallow, but with belly breaths, you slowly fill your lungs with air making the breath deeper. 

Belly breathing creates a deep sense of relaxation, and is closely associated with meditation . Research has shown that meditation may reduce blood pressure and ease anxiety, depression, insomnia and chronic pain symptoms.

You can practice belly breathing lying down or sitting in a comfortable position.

1.  Place your left hand over your heart and your right hand over your belly.

2.  Inhale slowly, filling up your belly with air.

3.  Purse your lips and exhale slowly, feeling your stomach contract.

4.  Repeat up to 10 breath cycles.

Sitting position belly breathing breathwork

Pursed-lip breathing: For controlling shortness of breath

Pursed-lip breathing is a common technique used to control hyperventilation and shortness of breath. When practicing this breathing technique, you allow yourself to slow your breathing pattern, making each breath deeper. With pursed-lip breathing, you bring more oxygen to your lungs which helps you relax .

A 2021 study found that pursed-lip breathing may alleviate shortness of breath, help you gain control over your breathing and increase your sense of relaxation. More research is needed to conclude the long-term benefits of this breathing exercise.

The first thing to do is sit down in a comfortable, upright position and relax your shoulders. Become aware of any tight muscles around the face and release the tongue from the roof of your mouth.

1.  With your eyes closed, inhale through your nose for two seconds.

2.  Pout your lips as if you are going to blow a whistle.

3.  Breathe out through your mouth for four to six counts.

4.  Repeat for five to 10 cycles.

pursed-lip-breathing

Tips for breathwork beginners

Consult with your health care provider.

Breathwork is generally considered to be low risk and safe for most people. However, it's important that you consult your doctor before trying out any new breathwork exercises, especially if you are pregnant or have an autoimmune disease. There is evidence that breathwork could be related to increased heart rate in rheumatoid arthritis and lupus patients.

Research the different types of breathwork exercises

We covered five breathwork techniques that are great for beginners, but there are many others that you can try. Since there are so many methods, classes and even teachers, it's important that you do your research to find the right technique for you.

Find a trusted practitioner near you

After you've decided which breathwork method is best for you, you can look up teachers or practitioners near you or online. Breathwork Alliance is a great resource to use if you are unsure where to start.  

Listen to your body

Once you start incorporating breathwork into your routine, you must become aware of how it makes you feel in different parts of your body. Notice if it makes you feel relaxed, or perhaps, notice pain somewhere you hadn't experienced before. If you have an adverse reaction, pause your practice and consult your doctor.

There are many benefits associated with breathwork techniques, and a big part of that is letting go of any tension you may be holding in your body. Let yourself feel everything and enjoy the process.

Theragun Mini is surprisingly powerful

research help needed

Other Wellness Guides

  • Best Places to Buy Glasses Online
  • Best Places to Buy Contacts Online
  • Best Prescription Sunglasses
  • Best Place to Buy Replacement Prescription Lenses
  • Best Blue Light Blocking Glasses
  • Best Electric Toothbrush
  • Best Invisible Braces
  • Best Sunscreen
  • Best Mattress
  • Best Mattress for Back Pain
  • Best Adjustable Mattress
  • Purple Mattress
  • Saatva Mattress
  • Best Headphones for Sleeping
  • Best Pillow
  • Best Sheets
  • Best Elliptical
  • Best Treadmill
  • Best Rowing Machine
  • Best Peloton Alternative
  • Best Adjustable Dumbbells
  • Best Weightlifting Shoes
  • Best Massage Gun
  • Theragun Review
  • Best Meal Kit Delivery Service
  • Best Healthy Meal Delivery Service
  • Best Cheap Meal Delivery Service
  • Best Plant-Based Meal Delivery Service
  • Best Keto Meal Delivery
  • Best DNA Test
  • Ancestry vs 23 and Me
  • Best Continuous Glucose Monitors
  • Best Blood Pressure Monitor
  • Best Prescription Delivery Services
  • Best Portable Humidifiers
  • Best Mental Health Apps
  • Best Teas for Stress and Anxiety
  • Best Fidget Toys for Anxiety
  • Best Online Therapy
  • Amazon Promo Codes
  • Air Up Coupons

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Entire Site
  • Research & Funding
  • Health Information
  • About NIDDK
  • Diabetes Overview

Healthy Living with Diabetes

  • Español

On this page:

How can I plan what to eat or drink when I have diabetes?

How can physical activity help manage my diabetes, what can i do to reach or maintain a healthy weight, should i quit smoking, how can i take care of my mental health, clinical trials for healthy living with diabetes.

Healthy living is a way to manage diabetes . To have a healthy lifestyle, take steps now to plan healthy meals and snacks, do physical activities, get enough sleep, and quit smoking or using tobacco products.

Healthy living may help keep your body’s blood pressure , cholesterol , and blood glucose level, also called blood sugar level, in the range your primary health care professional recommends. Your primary health care professional may be a doctor, a physician assistant, or a nurse practitioner. Healthy living may also help prevent or delay health problems  from diabetes that can affect your heart, kidneys, eyes, brain, and other parts of your body.

Making lifestyle changes can be hard, but starting with small changes and building from there may benefit your health. You may want to get help from family, loved ones, friends, and other trusted people in your community. You can also get information from your health care professionals.

What you choose to eat, how much you eat, and when you eat are parts of a meal plan. Having healthy foods and drinks can help keep your blood glucose, blood pressure, and cholesterol levels in the ranges your health care professional recommends. If you have overweight or obesity, a healthy meal plan—along with regular physical activity, getting enough sleep, and other healthy behaviors—may help you reach and maintain a healthy weight. In some cases, health care professionals may also recommend diabetes medicines that may help you lose weight, or weight-loss surgery, also called metabolic and bariatric surgery.

Choose healthy foods and drinks

There is no right or wrong way to choose healthy foods and drinks that may help manage your diabetes. Healthy meal plans for people who have diabetes may include

  • dairy or plant-based dairy products
  • nonstarchy vegetables
  • protein foods
  • whole grains

Try to choose foods that include nutrients such as vitamins, calcium , fiber , and healthy fats . Also try to choose drinks with little or no added sugar , such as tap or bottled water, low-fat or non-fat milk, and unsweetened tea, coffee, or sparkling water.

Try to plan meals and snacks that have fewer

  • foods high in saturated fat
  • foods high in sodium, a mineral found in salt
  • sugary foods , such as cookies and cakes, and sweet drinks, such as soda, juice, flavored coffee, and sports drinks

Your body turns carbohydrates , or carbs, from food into glucose, which can raise your blood glucose level. Some fruits, beans, and starchy vegetables—such as potatoes and corn—have more carbs than other foods. Keep carbs in mind when planning your meals.

You should also limit how much alcohol you drink. If you take insulin  or certain diabetes medicines , drinking alcohol can make your blood glucose level drop too low, which is called hypoglycemia . If you do drink alcohol, be sure to eat food when you drink and remember to check your blood glucose level after drinking. Talk with your health care team about your alcohol-drinking habits.

A woman in a wheelchair, chopping vegetables at a kitchen table.

Find the best times to eat or drink

Talk with your health care professional or health care team about when you should eat or drink. The best time to have meals and snacks may depend on

  • what medicines you take for diabetes
  • what your level of physical activity or your work schedule is
  • whether you have other health conditions or diseases

Ask your health care team if you should eat before, during, or after physical activity. Some diabetes medicines, such as sulfonylureas  or insulin, may make your blood glucose level drop too low during exercise or if you skip or delay a meal.

Plan how much to eat or drink

You may worry that having diabetes means giving up foods and drinks you enjoy. The good news is you can still have your favorite foods and drinks, but you might need to have them in smaller portions  or enjoy them less often.

For people who have diabetes, carb counting and the plate method are two common ways to plan how much to eat or drink. Talk with your health care professional or health care team to find a method that works for you.

Carb counting

Carbohydrate counting , or carb counting, means planning and keeping track of the amount of carbs you eat and drink in each meal or snack. Not all people with diabetes need to count carbs. However, if you take insulin, counting carbs can help you know how much insulin to take.

Plate method

The plate method helps you control portion sizes  without counting and measuring. This method divides a 9-inch plate into the following three sections to help you choose the types and amounts of foods to eat for each meal.

  • Nonstarchy vegetables—such as leafy greens, peppers, carrots, or green beans—should make up half of your plate.
  • Carb foods that are high in fiber—such as brown rice, whole grains, beans, or fruits—should make up one-quarter of your plate.
  • Protein foods—such as lean meats, fish, dairy, or tofu or other soy products—should make up one quarter of your plate.

If you are not taking insulin, you may not need to count carbs when using the plate method.

Plate method, with half of the circular plate filled with nonstarchy vegetables; one fourth of the plate showing carbohydrate foods, including fruits; and one fourth of the plate showing protein foods. A glass filled with water, or another zero-calorie drink, is on the side.

Work with your health care team to create a meal plan that works for you. You may want to have a diabetes educator  or a registered dietitian  on your team. A registered dietitian can provide medical nutrition therapy , which includes counseling to help you create and follow a meal plan. Your health care team may be able to recommend other resources, such as a healthy lifestyle coach, to help you with making changes. Ask your health care team or your insurance company if your benefits include medical nutrition therapy or other diabetes care resources.

Talk with your health care professional before taking dietary supplements

There is no clear proof that specific foods, herbs, spices, or dietary supplements —such as vitamins or minerals—can help manage diabetes. Your health care professional may ask you to take vitamins or minerals if you can’t get enough from foods. Talk with your health care professional before you take any supplements, because some may cause side effects or affect how well your diabetes medicines work.

Research shows that regular physical activity helps people manage their diabetes and stay healthy. Benefits of physical activity may include

  • lower blood glucose, blood pressure, and cholesterol levels
  • better heart health
  • healthier weight
  • better mood and sleep
  • better balance and memory

Talk with your health care professional before starting a new physical activity or changing how much physical activity you do. They may suggest types of activities based on your ability, schedule, meal plan, interests, and diabetes medicines. Your health care professional may also tell you the best times of day to be active or what to do if your blood glucose level goes out of the range recommended for you.

Two women walking outside.

Do different types of physical activity

People with diabetes can be active, even if they take insulin or use technology such as insulin pumps .

Try to do different kinds of activities . While being more active may have more health benefits, any physical activity is better than none. Start slowly with activities you enjoy. You may be able to change your level of effort and try other activities over time. Having a friend or family member join you may help you stick to your routine.

The physical activities you do may need to be different if you are age 65 or older , are pregnant , or have a disability or health condition . Physical activities may also need to be different for children and teens . Ask your health care professional or health care team about activities that are safe for you.

Aerobic activities

Aerobic activities make you breathe harder and make your heart beat faster. You can try walking, dancing, wheelchair rolling, or swimming. Most adults should try to get at least 150 minutes of moderate-intensity physical activity each week. Aim to do 30 minutes a day on most days of the week. You don’t have to do all 30 minutes at one time. You can break up physical activity into small amounts during your day and still get the benefit. 1

Strength training or resistance training

Strength training or resistance training may make your muscles and bones stronger. You can try lifting weights or doing other exercises such as wall pushups or arm raises. Try to do this kind of training two times a week. 1

Balance and stretching activities

Balance and stretching activities may help you move better and have stronger muscles and bones. You may want to try standing on one leg or stretching your legs when sitting on the floor. Try to do these kinds of activities two or three times a week. 1

Some activities that need balance may be unsafe for people with nerve damage or vision problems caused by diabetes. Ask your health care professional or health care team about activities that are safe for you.

 Group of people doing stretching exercises outdoors.

Stay safe during physical activity

Staying safe during physical activity is important. Here are some tips to keep in mind.

Drink liquids

Drinking liquids helps prevent dehydration , or the loss of too much water in your body. Drinking water is a way to stay hydrated. Sports drinks often have a lot of sugar and calories , and you don’t need them for most moderate physical activities.

Avoid low blood glucose

Check your blood glucose level before, during, and right after physical activity. Physical activity often lowers the level of glucose in your blood. Low blood glucose levels may last for hours or days after physical activity. You are most likely to have low blood glucose if you take insulin or some other diabetes medicines, such as sulfonylureas.

Ask your health care professional if you should take less insulin or eat carbs before, during, or after physical activity. Low blood glucose can be a serious medical emergency that must be treated right away. Take steps to protect yourself. You can learn how to treat low blood glucose , let other people know what to do if you need help, and use a medical alert bracelet.

Avoid high blood glucose and ketoacidosis

Taking less insulin before physical activity may help prevent low blood glucose, but it may also make you more likely to have high blood glucose. If your body does not have enough insulin, it can’t use glucose as a source of energy and will use fat instead. When your body uses fat for energy, your body makes chemicals called ketones .

High levels of ketones in your blood can lead to a condition called diabetic ketoacidosis (DKA) . DKA is a medical emergency that should be treated right away. DKA is most common in people with type 1 diabetes . Occasionally, DKA may affect people with type 2 diabetes  who have lost their ability to produce insulin. Ask your health care professional how much insulin you should take before physical activity, whether you need to test your urine for ketones, and what level of ketones is dangerous for you.

Take care of your feet

People with diabetes may have problems with their feet because high blood glucose levels can damage blood vessels and nerves. To help prevent foot problems, wear comfortable and supportive shoes and take care of your feet  before, during, and after physical activity.

A man checks his foot while a woman watches over his shoulder.

If you have diabetes, managing your weight  may bring you several health benefits. Ask your health care professional or health care team if you are at a healthy weight  or if you should try to lose weight.

If you are an adult with overweight or obesity, work with your health care team to create a weight-loss plan. Losing 5% to 7% of your current weight may help you prevent or improve some health problems  and manage your blood glucose, cholesterol, and blood pressure levels. 2 If you are worried about your child’s weight  and they have diabetes, talk with their health care professional before your child starts a new weight-loss plan.

You may be able to reach and maintain a healthy weight by

  • following a healthy meal plan
  • consuming fewer calories
  • being physically active
  • getting 7 to 8 hours of sleep each night 3

If you have type 2 diabetes, your health care professional may recommend diabetes medicines that may help you lose weight.

Online tools such as the Body Weight Planner  may help you create eating and physical activity plans. You may want to talk with your health care professional about other options for managing your weight, including joining a weight-loss program  that can provide helpful information, support, and behavioral or lifestyle counseling. These options may have a cost, so make sure to check the details of the programs.

Your health care professional may recommend weight-loss surgery  if you aren’t able to reach a healthy weight with meal planning, physical activity, and taking diabetes medicines that help with weight loss.

If you are pregnant , trying to lose weight may not be healthy. However, you should ask your health care professional whether it makes sense to monitor or limit your weight gain during pregnancy.

Both diabetes and smoking —including using tobacco products and e-cigarettes—cause your blood vessels to narrow. Both diabetes and smoking increase your risk of having a heart attack or stroke , nerve damage , kidney disease , eye disease , or amputation . Secondhand smoke can also affect the health of your family or others who live with you.

If you smoke or use other tobacco products, stop. Ask for help . You don’t have to do it alone.

Feeling stressed, sad, or angry can be common for people with diabetes. Managing diabetes or learning to cope with new information about your health can be hard. People with chronic illnesses such as diabetes may develop anxiety or other mental health conditions .

Learn healthy ways to lower your stress , and ask for help from your health care team or a mental health professional. While it may be uncomfortable to talk about your feelings, finding a health care professional whom you trust and want to talk with may help you

  • lower your feelings of stress, depression, or anxiety
  • manage problems sleeping or remembering things
  • see how diabetes affects your family, school, work, or financial situation

Ask your health care team for mental health resources for people with diabetes.

Sleeping too much or too little may raise your blood glucose levels. Your sleep habits may also affect your mental health and vice versa. People with diabetes and overweight or obesity can also have other health conditions that affect sleep, such as sleep apnea , which can raise your blood pressure and risk of heart disease.

Man with obesity looking distressed talking with a health care professional.

NIDDK conducts and supports clinical trials in many diseases and conditions, including diabetes. The trials look to find new ways to prevent, detect, or treat disease and improve quality of life.

What are clinical trials for healthy living with diabetes?

Clinical trials—and other types of clinical studies —are part of medical research and involve people like you. When you volunteer to take part in a clinical study, you help health care professionals and researchers learn more about disease and improve health care for people in the future.

Researchers are studying many aspects of healthy living for people with diabetes, such as

  • how changing when you eat may affect body weight and metabolism
  • how less access to healthy foods may affect diabetes management, other health problems, and risk of dying
  • whether low-carbohydrate meal plans can help lower blood glucose levels
  • which diabetes medicines are more likely to help people lose weight

Find out if clinical trials are right for you .

Watch a video of NIDDK Director Dr. Griffin P. Rodgers explaining the importance of participating in clinical trials.

What clinical trials for healthy living with diabetes are looking for participants?

You can view a filtered list of clinical studies on healthy living with diabetes that are federally funded, open, and recruiting at www.ClinicalTrials.gov . You can expand or narrow the list to include clinical studies from industry, universities, and individuals; however, the National Institutes of Health does not review these studies and cannot ensure they are safe for you. Always talk with your primary health care professional before you participate in a clinical study.

This content is provided as a service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health. NIDDK translates and disseminates research findings to increase knowledge and understanding about health and disease among patients, health professionals, and the public. Content produced by NIDDK is carefully reviewed by NIDDK scientists and other experts.

NIDDK would like to thank: Elizabeth M. Venditti, Ph.D., University of Pittsburgh School of Medicine.

Tiny Tots Help Teach Real-Classroom Concepts

Monday, Apr 08, 2024 • Written by Monique Bird :

Dr. Romig talking to a group of students in his class.

Dr. John Romig, an assistant professor of special education, recently begun inviting his young children to campus to help UTA students learn. Among the concepts, “SPED 4301: Strategies for Teaching Individuals with High Incidence Disabilities: Reading and Writing” teaches UTA students to explicitly teach basic reading and writing skills and administer curriculum-based measurements – a method of monitoring a child’s progress – as that child learns to read and write.

Often lacking children to work with, the UTA students were typically asked to practice with one another. However, starting last year with a campus visit from now 5-year-old Jack, Romig’s students can train in more meaningful ways. 

“Having a real kid made the practice more authentic because he made mistakes like real kids make,” said Romig. “When they practice with each other, they don't make the mistakes that a kid would make. Because they each got to practice with him, they were able to see how his scores fluctuated from administration to administration, discuss why that might be happening, and learn about various data principles.”

A U T A student gives 5-year-old Jack a high five.

The unique project is becoming a small tradition.

The latest visit in March marked Jacks’ third campus visit and 3-year-old Will’s first visit.

“Textbook reading tells me what I’m going to be doing or learning, but I don’t see how it’s going to happen in real life,” continued Tillman. With the kids’ visits, “I get to see how the student is not always going to give me the response that the textbook has.”

During the lesson, the UTA students got hands-on practice teaching phonemic awareness to Will. For Jack, Romig asked his class to teach him a lesson using scripted activities in the textbook, “Teach Your Child to Read in 100 Easy Lessons.” The goal was to help Jack develop the skills needed for a strong reading foundation – phonics, fluency, vocabulary, phonemic awareness, and comprehension – as well as writing, Romig told his classroom.

“Writing is not one of the five building blocks, but research shows that if you can spell a word then you can read it,” added Romig. “And you can read every word you can spell, but it doesn’t work the other way around.”

Photo of the instructor, Dr. John Romig, working with 3-year-old Will.

“I love the idea of having the lessons be scripted,” said Tillman. “Being a first-time teacher, I’m feeling very nervous about what I am supposed to be doing.”

Separately, Romig had his students practice collecting data to monitor Jack and Will’s progress.

“Collecting this data is kind of cognitively overwhelming,” added Romig. “You have to read standardized instructions, time the student, listen to what they are saying, and record their responses. So, it's challenging for beginning teachers to keep it all straight. The practice was for them to become more comfortable with administering and scoring the assessments.”

Romig's students, who are pursuing special education teacher certification through UTA’s Bachelor of Science in Education, also get experience with content planning, curriculum development, instruction, assessment, and data collection for elementary and secondary students with mild disabilities.

As for the kids’ thoughts on the activity, Romig said his sons’ experiences on campus have been exciting.

“They took a little while to warm up to the students at the beginning, but they definitely enjoyed it in the end,” Romig said. “Jack still talks about ‘the college students with the letters,’ as he calls them.” 

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • Writing Strong Research Questions | Criteria & Examples

Writing Strong Research Questions | Criteria & Examples

Published on October 26, 2022 by Shona McCombes . Revised on November 21, 2023.

A research question pinpoints exactly what you want to find out in your work. A good research question is essential to guide your research paper , dissertation , or thesis .

All research questions should be:

  • Focused on a single problem or issue
  • Researchable using primary and/or secondary sources
  • Feasible to answer within the timeframe and practical constraints
  • Specific enough to answer thoroughly
  • Complex enough to develop the answer over the space of a paper or thesis
  • Relevant to your field of study and/or society more broadly

Writing Strong Research Questions

Table of contents

How to write a research question, what makes a strong research question, using sub-questions to strengthen your main research question, research questions quiz, other interesting articles, frequently asked questions about research questions.

You can follow these steps to develop a strong research question:

  • Choose your topic
  • Do some preliminary reading about the current state of the field
  • Narrow your focus to a specific niche
  • Identify the research problem that you will address

The way you frame your question depends on what your research aims to achieve. The table below shows some examples of how you might formulate questions for different purposes.

Using your research problem to develop your research question

Note that while most research questions can be answered with various types of research , the way you frame your question should help determine your choices.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research help needed

Research questions anchor your whole project, so it’s important to spend some time refining them. The criteria below can help you evaluate the strength of your research question.

Focused and researchable

Feasible and specific, complex and arguable, relevant and original.

Chances are that your main research question likely can’t be answered all at once. That’s why sub-questions are important: they allow you to answer your main question in a step-by-step manner.

Good sub-questions should be:

  • Less complex than the main question
  • Focused only on 1 type of research
  • Presented in a logical order

Here are a few examples of descriptive and framing questions:

  • Descriptive: According to current government arguments, how should a European bank tax be implemented?
  • Descriptive: Which countries have a bank tax/levy on financial transactions?
  • Framing: How should a bank tax/levy on financial transactions look at a European level?

Keep in mind that sub-questions are by no means mandatory. They should only be asked if you need the findings to answer your main question. If your main question is simple enough to stand on its own, it’s okay to skip the sub-question part. As a rule of thumb, the more complex your subject, the more sub-questions you’ll need.

Try to limit yourself to 4 or 5 sub-questions, maximum. If you feel you need more than this, it may be indication that your main research question is not sufficiently specific. In this case, it’s is better to revisit your problem statement and try to tighten your main question up.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis —a prediction that will be confirmed or disproved by your research.

As you cannot possibly read every source related to your topic, it’s important to evaluate sources to assess their relevance. Use preliminary evaluation to determine whether a source is worth examining in more depth.

This involves:

  • Reading abstracts , prefaces, introductions , and conclusions
  • Looking at the table of contents to determine the scope of the work
  • Consulting the index for key terms or the names of important scholars

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“ x affects y because …”).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses . In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Writing Strong Research Questions

Formulating a main research question can be a difficult task. Overall, your question should contribute to solving the problem that you have defined in your problem statement .

However, it should also fulfill criteria in three main areas:

  • Researchability
  • Feasibility and specificity
  • Relevance and originality

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 21). Writing Strong Research Questions | Criteria & Examples. Scribbr. Retrieved April 9, 2024, from https://www.scribbr.com/research-process/research-questions/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to define a research problem | ideas & examples, how to write a problem statement | guide & examples, 10 research question examples to guide your research project, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Watch CBS News

Why is looking at a solar eclipse dangerous without special glasses? Eye doctors explain.

By Sara Moniuszko

Edited By Allison Elyse Gualtieri

Updated on: April 8, 2024 / 8:54 AM EDT / CBS News

The solar eclipse will be visible for millions of Americans on April 8, 2024, making many excited to see it — but how you watch it matters, since it can be dangerous for your eyes. 

A  solar eclipse occurs when the moon passes between the sun and Earth, blocking the sun's light . When the moon blocks some of the sun, it's a partial solar eclipse, but when moon lines up with the sun, blocking all of its light, a total solar eclipse occurs,  NASA explains . Either way, you need eye protection when viewing.

"The solar eclipse will be beautiful, so I hope that everyone experiences it — but they need to experience it in the right way," said Dr. Jason P. Brinton, an ophthalmologist and medical director at Brinton Vision in St. Louis.

Here's what to know to stay safe.

Why is looking at a solar eclipse dangerous?

Looking at the sun — even when it's partially covered like during an eclipse — can cause eye damage.

There is no safe dose of solar ultraviolet rays or infrared radiation, said  Dr. Yehia Hashad , an ophthalmologist, retinal specialist and the chief medical officer at eye health company Bausch + Lomb.

"A very small dose could cause harm to some people," he said. "That's why we say the partial eclipse could also be damaging. And that's why we protect our eyes with the partial as well as with the full sun."

Some say that during a total eclipse, it's safe to view the brief period time when the moon completely blocks the sun without eye protection. But experts warn against it. 

"Totality of the eclipse lasts only about 1 to 3 minutes based on geographic location, and bright sunlight suddenly can appear as the moon continues to move," notes an eclipse viewing guide published in JAMA , adding, "even a few seconds of viewing the sun during an eclipse" can temporarily or permanently damage your vision. 

Do I need special glasses for eclipse viewing?

Yes.  Eclipse glasses are needed to protect your eyes if you want to look at the eclipse.

Regular sunglasses aren't protective enough for eclipse viewing — even if you stack more than one. 

"There's no amount of sunglasses that people can put on that will make up for the filtering that the ISO standard filters and the eclipse glasses provide," Brinton said.

You also shouldn't look at the eclipse through a camera lens, phone, binoculars or telescope, according to NASA, even while wearing eclipse glasses. The solar rays can burn through the lens and cause serious eye injury.

Eclipse glasses must comply with the  ISO 12312-2 international safety standard , according to NASA, and should have an "ISO" label printed on them to show they comply. The American Astronomical Society  has a list  of approved solar viewers.

Can't find these, or they're sold out near you? You can also  make homemade viewers ,   which allow you to observe the eclipse indirectly — just don't accidentally look at the sun while using one.

How to keep kids safe during the solar eclipse

Since this eclipse is expected to occur around the time of dismissal for many schools across the country, it may be tempting for students to view it without the proper safety precautions while getting to and from their buses. That's why some school districts are  canceling classes early so kids can enjoy the event safely with their families.

Dr. Avnish Deobhakta, vitreoretinal surgeon at New York Eye and Ear Infirmary at Mount Sinai, said parents should also be careful because it can be difficult for children to listen or keep solar eclipse glasses on. 

"You want to actually, in my opinion, kind of avoid them even looking at the eclipse, if possible," he said. "Never look directly at the sun, always wear the right eclipse sunglasses if you are going to look at the sun and make sure that those are coming from a reliable source."

Brinton recommends everyone starts their eclipse "viewing" early, by looking at professional photos and videos of an eclipse online or visiting a local planetarium. 

That way, you "have an idea of what to expect," he said. 

He also recommends the foundation  Prevent Blindness , which has resources for families about eclipse safety.

What happens if you look at a solar eclipse without eclipse glasses?

While your eyes likely won't hurt in the moment if you look at the eclipse without protection, due to lowered brightness and where damage occurs in the eye, beware: The rays can still cause damage .

The harm may not be apparent immediately. Sometimes trouble starts to appear one to a few days following the event. It could affect just one or both eyes.

And while some will regain normal visual function, sometimes the damage is permanent. 

"Often there will be some recovery of the vision in the first few months after it, but sometimes there is no recovery and sometimes there's a degree to which it is permanent," Brinton said. 

How long do you have to look at the eclipse to damage your eyes?

Any amount of time looking at the eclipse without protection is too long, experts say. 

"If someone briefly looks at the eclipse, if it's extremely brief, in some cases there won't be damage. But damage can happen even within a fraction of a second in some cases," Brinton said. He said he's had patients who have suffered from solar retinopathy, the official name for the condition.

Deobhakta treated a patient who watched the 2017 solar eclipse for 20 seconds without proper eye protection. She now has permanent damage in the shape of a crescent that interferes with her vision. 

"The crescent that is burned into the retina, the patient sees as black in her visual field," he said. "The visual deficit that she has will never go away."

How to know if you've damaged your eyes from looking at the eclipse

Signs and symptoms of eye damage following an eclipse viewing include headaches, blurred vision, dark spots, changes to how you see color, lines and shapes. 

Unfortunately, there isn't a treatment for solar retinopathy.

"Seeing an eye care professional to solidify the diagnosis and for education I think is reasonable," Brinton said, but added, "right now there is nothing that we do for this. Just wait and give it time and the body does tend to heal up a measure of it."

Sara Moniuszko is a health and lifestyle reporter at CBSNews.com. Previously, she wrote for USA Today, where she was selected to help launch the newspaper's wellness vertical. She now covers breaking and trending news for CBS News' HealthWatch.

More from CBS News

Couple gets engaged on flight to see total solar eclipse

How to find the best tax relief company

Arizona's abortion ban likely to cause people to travel to states it's still legal

Inflation's rising. Here's how debt relief can help.

IMAGES

  1. Volunteers needed for research study

    research help needed

  2. Home

    research help needed

  3. Top 60 Help Needed Stock Photos, Pictures, and Images

    research help needed

  4. RESEARCH PARTICIPANTS NEEDED

    research help needed

  5. Research Assistance

    research help needed

  6. Market Research

    research help needed

VIDEO

  1. 4. Research Skills

  2. Help Needed 185 (2/15/24) 🔥💯

  3. Get A 2024 Gov't Check To Pay Bills, Start a Business & More

  4. How can Researcher help you with your research?

  5. Help Needed 201 (3/2/24) new

COMMENTS

  1. ResearchMatch

    ResearchMatch helps you find a clinical trial or research study near you, or across the country, by matching you with researchers from leading medical research institutions. Whether you are a healthy volunteer or have a health condition, ResearchMatch connects you to research opportunities so you can make a difference and advance scientific discoveries by participating in research studies ...

  2. A Beginner's Guide to Starting the Research Process

    This describes who the problem affects, why research is needed, and how your research project will contribute to solving it. >>Read more about defining a research problem. Step 3: Formulate research questions. Next, based on the problem statement, you need to write one or more research questions. These target exactly what you want to find out.

  3. How to Write a Research Paper

    Choose a research paper topic. Conduct preliminary research. Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft.

  4. How to Write a Research Proposal

    The length of a research proposal can vary quite a bit. A bachelor's or master's thesis proposal can be just a few pages, while proposals for PhD dissertations or research funding are usually much longer and more detailed. Your supervisor can help you determine the best length for your work.

  5. How to Write a Research Paper

    It will help you to see if more research is needed, and it will provide a framework by which to write a more compelling paper. Your supervisor may even request an outline to approve before beginning to write the first draft of the full paper. An outline will include your topic, thesis statement, key headings, short summaries of the research ...

  6. How to Improve Your Research Skills: 6 Research Tips

    Here are a few research practices and tips to help you hone your research and writing skills: 1. Start broad, then dive into the specifics. Researching is a big task, so it can be overwhelming to know where to start—there's nothing wrong with a basic internet search to get you started. Online resources like Google and Wikipedia, while not ...

  7. Research Basics: an open academic research skills course

    Don't worry, this course has you covered. This introductory program was created by JSTOR to help you get familiar with basic research concepts needed for success in school. The course contains three modules, each made up of three short lessons and three sets of practice quizzes. The topics covered are subjects that will help you prepare for ...

  8. How to Write a Research Plan: A Step by Step Guide

    A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project's goals and mission, creating layers of steps to achieve those goals within a specified timeline.

  9. How to Conduct Responsible Research: A Guide for Graduate Students

    Abstract. Researchers must conduct research responsibly for it to have an impact and to safeguard trust in science. Essential responsibilities of researchers include using rigorous, reproducible research methods, reporting findings in a trustworthy manner, and giving the researchers who contributed appropriate authorship credit.

  10. Google Scholar Search Help

    Search Help. Get the most out of Google Scholar with some helpful tips on searches, email alerts, citation export, and more. Your search results are normally sorted by relevance, not by date. To find newer articles, try the following options in the left sidebar: click the envelope icon to have new results periodically delivered by email.

  11. What Are Research Skills, and How You Can Improve Them

    Research skills are the abilities and techniques needed to conduct research. This includes finding and assessing information and properly citing all research. Research skills are fundamental to academic success, and the more you practice, the better you will become. ... Here are 5 steps to help with your research strategy. Clearly define your ...

  12. Research Skills: What they are and Benefits

    Research skills are the capability a person carries to create new concepts and understand the use of data collection. These skills include techniques, documentation, and interpretation of the collected data. Research is conducted to evaluate hypotheses and share the findings most appropriately. Research skills improve as we gain experience.

  13. Research Resources: What Are Research Resources?

    Your research question and the kind of research you do will guide the types of resources you will need to complete your research. Students' access to information is greater than ever before. To be a good researcher, you must be able to locate, organize, evaluate, and communicate information.

  14. How to Organize Research

    Think about what TYPE of material you need. 2. Choose a topic (one that INTERESTS you for a better result) Look for sources on the AUP library webpage, in the library and on the web. Part of your job is critical thinking. You have to examine, choose, and evaluate your sources as well as the topic you are writing about!

  15. 7 Reasons Why Research Is Important

    It cited the need for research on "the memory capacity of the poor in low-income countries" to enable teachers to better help underprivileged students learn basic skills. The effect of sleep on the human brain is just one of the countless topics that academics and specialists have examined in various universities and medical institutions.

  16. How to Find Sources

    Research databases. You can search for scholarly sources online using databases and search engines like Google Scholar. These provide a range of search functions that can help you to find the most relevant sources. If you are searching for a specific article or book, include the title or the author's name. Alternatively, if you're just ...

  17. Ever wanted to volunteer for a scientific expedition? Here's how

    Not every volunteer scientist is working on a formally organized project. Scott Tilley, an amateur astronomer in British Columbia, located a missing spacecraft in 2018. One night, while looking ...

  18. Research Skills: What They Are and Why They're Important

    Critical thinking. Critical thinking refers to a person's ability to think rationally and analyze and interpret information and make connections. This skill is important in research because it allows individuals to better gather and evaluate data and establish significance. Common critical thinking skills include: Open-mindedness.

  19. FindParticipants.com

    FindParticipants.com is the resource for academic researchers enabling immediate access to thousands of interested research participants, and a platform for research participants to participate in research studies worldwide.. We make research simple, quick, and effective for research studies of any size, for any academic researcher, anywhere in the world!

  20. Cheap Essay and Other Student Papers Online Writing Help

    Visit the website to receive help with the texts that are necessary for your graduation and employment, etc. Paper Writing Help — Real Opportunities to Receive Assistance ... And there are plenty of such cases when the help of specialists is needed. Our service is ready to help you write a high-quality article that meets the strict ...

  21. Office of the Vice President for Research

    Need help with your data? The University Libraries' Research Data Analysis and Statistics Support Service is free and here to help you with: exploratory data analysis, statistical tests, SAS, SPSS, and NVivo. ... NSF Research.gov Training Session. April 16, 2024, 2:00-3:30 p.m. via Microsoft Teams (Online) Register here;

  22. Journal of Medical Internet Research

    Background: The digital health divide for socioeconomic disadvantage describes a pattern in which patients considered socioeconomically disadvantaged, who are already marginalized through reduced access to face-to-face health care, are additionally hindered through less access to patient-initiated digital health. A comprehensive understanding of how patients with socioeconomic disadvantage ...

  23. What Public K-12 Teachers Want Americans To Know About Teaching

    Pew Research Center conducted this analysis to better understand what public K-12 teachers would like Americans to know about their profession. We also wanted to learn how the public thinks about teachers. For the open-end question, we surveyed 2,531 U.S. public K-12 teachers from Oct. 17 to Nov. 14, 2023. ... We need help and support from ...

  24. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  25. Five Fast Facts About Black Maternal Health

    Medicaid expansion, doula care, and other interventions can help improve Black maternal health outcomes. Policy-level solutions are essential to help solve the Black maternal health crisis. One such solution is expanding postpartum Medicaid coverage, which many states have done in the past two years. Another opportunity to support Black ...

  26. 5 Beginner Breathing Exercises to Help Banish Stress

    Once you've taken a deep inhale, cover your left nostril with your ring finger and hold your breath for a few seconds. 5. Uncover your right nostril and exhale. 6. Slowly inhale through your right ...

  27. Healthy Living with Diabetes

    Healthy living is a way to manage diabetes. To have a healthy lifestyle, take steps now to plan healthy meals and snacks, do physical activities, get enough sleep, and quit smoking or using tobacco products. Healthy living may help keep your body's blood pressure, cholesterol, and blood glucose level, also called blood sugar level, in the ...

  28. Tiny Tots Help Teach Real-Classroom Concepts

    The goal was to help Jack develop the skills needed for a strong reading foundation - phonics, fluency, vocabulary, phonemic awareness, and comprehension - as well as writing, Romig told his classroom. "Writing is not one of the five building blocks, but research shows that if you can spell a word then you can read it," added Romig.

  29. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  30. Why is looking at a solar eclipse dangerous without special glasses

    While your eyes likely won't hurt in the moment if you look at the eclipse without protection, due to lowered brightness and where damage occurs in the eye, beware: The rays can still cause damage ...