• Type 2 Diabetes
  • Heart Disease
  • Digestive Health
  • Multiple Sclerosis
  • COVID-19 Vaccines
  • Occupational Therapy
  • Healthy Aging
  • Health Insurance
  • Public Health
  • Patient Rights
  • Caregivers & Loved Ones
  • End of Life Concerns
  • Health News
  • Thyroid Test Analyzer
  • Doctor Discussion Guides
  • Hemoglobin A1c Test Analyzer
  • Lipid Test Analyzer
  • Complete Blood Count (CBC) Analyzer
  • What to Buy
  • Editorial Process
  • Meet Our Medical Expert Board

An Overview of the Vaccine Debate

Looking at Both Sides of the Argument

There is a wealth of research demonstrating the efficacy and safety of vaccines —including how some have virtually eradicated infectious diseases that once killed millions. However, this has done little to sway those who believe that untold harms are being hidden from the American public.

The vaccine debate—including the argument as to whether vaccines are safe, effective, or could cause conditions like autism —has received a lot of attention from the media in recent years. With so much conflicting information being publicized, it can be a challenge to discern what is true and what is not. Therefore, it is important to learn the facts before making health decisions.

Claims and Controversy

Those who are part of the anti-vaccination movement include not only non-medical professionals but several scientists and healthcare providers who hold alternative views about vaccines and vaccination in general.

Some notable examples include:

  • British healthcare provider Andrew Wakefield, who in 1998 published research linking the MMR vaccine and autism . That study has since been retracted, and he was later removed from the medical registry in the United Kingdom for falsifying scientific data.
  • Pediatrician Bob Sears, who wrote the bestseller "The Vaccine Book: Making the Right Decision for your Child ," which suggested that many essential childhood vaccines were "optional." However, he was subsequently put on probation by the Medical Review Board of California in 2018 for alleged medical negligence and the inappropriate writing of medical exemptions for vaccinations.
  • Dr. Jane M. Orient, director of the Association of American Healthcare Providers and Surgeons, who was among the leading opponents of the COVID-19 vaccine and one of the leading proponents of using hydroxychloroquine to treat COVID-19 during the pandemic.

These opposing views and claims, along with other information promoted by the news and social media, have led some people to question whether they know everything they need to know about vaccines.

Common Concerns Regarding Vaccines

The arguments made against vaccines are not new and have been made well before the first vaccine was developed for smallpox back in the 18th century.

The following are some of the common arguments against vaccines:

  • Vaccines contain "toxic" ingredients that can lead to an assortment of chronic health conditions such as autism.
  • Vaccines are a tool of "Big Pharma," in which manufacturers are willing to profit off of harm to children.
  • Governments are "pharma shills," meaning they are bought off by pharmaceutical companies to hide cures or approve drugs that are not safe.
  • A child’s immune system is too immature to handle vaccines , leading the immune system to become overwhelmed and trigger an array of abnormal health conditions.
  • Natural immunity is best , suggesting that a natural infection that causes disease is "better" than receiving a vaccine that may cause mild side effects.
  • Vaccines are not tested properly , suggesting a (highly unethical) approach in which one group of people is given a vaccine, another group is not, and both are intentionally inoculated with the same virus or bacteria.
  • Infectious diseases have declined due in part to improved hygiene and sanitation , suggesting that hand-washing and other sanitary interventions are all that are needed to prevent epidemics.
  • Vaccines cause the body to "shed" virus , a claim that is medically true, although the amount of shed virus is rarely enough to cause infection.

The impact of anti-vaccination claims has been profound. For example, it has led to a resurgence of measles in the United States and Europe, despite the fact that the disease was declared eliminated in the U.S. back in 2000.

Studies have suggested that the anti-vaccination movement has cast doubt on the importance of childhood vaccinations among large sectors of the population. The added burden of the COVID-19 pandemic has led to further declines in vaccination rates.

There is also concern that the same repercussions may affect COVID-19 vaccination rates—both domestically and abroad. Ultimately, vaccine rates must be high for herd immunity to be effective.

According to a study from the Centers for Disease Control and Prevention (CDC), the rate of complete recommended vaccination among babies age 5 months has declined from 66.6% in 2016 to 49.7% by May 2020. Declines in vaccination coverage were seen in other age groups as well.

Benefits of Vaccination

Of the vaccines recommended by the CDC, the benefits of immunization are seen to overwhelmingly outweigh the potential risks. While there are some people who may need to avoid certain vaccines due to underlying health conditions, the vast majority can do so safely.

According to the U.S. Department of Health and Human Services, there are five important reasons why your child should get the recommended vaccines:

  • Immunizations can save your child’s life . Consider that polio once killed up to 30% of those who developed paralytic symptoms. Due to polio vaccination, the disease is no longer a public health concern in the United States.
  • Vaccination is very safe and effective . Injection site pain and mild, flu-like symptoms may occur with vaccine shots. However, serious side effects , such as a severe allergic reaction, are very rare.
  • Immunization protects others . Because respiratory viruses can spread easily among children, getting your child vaccinated not only protects your child but prevents the further spread of disease.
  • Immunizations can save you time and money . According to the non-profit Borgen Project, the average cost of a measles vaccination around the world is roughly $1.76, whereas the average cost of treating measles is $307. In the end, the cost of prevention is invariably smaller than the cost of treatment.
  • Immunization protects future generations . Smallpox vaccinations have led to the eradication of smallpox . Rubella (German measles) vaccinations have helped eliminate birth defects caused by infection of pregnant mothers in the developed world. With persistence and increased community uptake, measles could one day be declared eliminated (again) as well.

A Word From Verywell

If you have any questions or concerns about vaccinations, do not hesitate to speak with your healthcare provider or your child's pediatrician.

If a vaccine on the immunization schedule has been missed, speak to a healthcare provider before seeking the vaccination on your own (such as at a pharmacy or clinic). In some cases, additional doses may be needed.

Vaccines Healthcare Provider Discussion Guide

Get our printable guide for your next healthcare provider's appointment to help you ask the right questions.

Sign up for our Health Tip of the Day newsletter, and receive daily tips that will help you live your healthiest life.

Thank you, {{form.email}}, for signing up.

There was an error. Please try again.

Eggerton L.  Lancet retracts 12-year-old article linking autism to MMR vaccines .  CMAJ . 2010 Mar 9; 182(4):e199-200. doi:10.1503/cmaj.109-3179

Park A. Doctor behind vaccine-autism link loses license . Time .

Offit PA, Moser CA.  The problem with Dr Bob's alternative vaccine schedule .  Pediatrics.  2009 Jan;123 (1):e164-e169. doi:10.1542/peds.2008-2189

Before the Medical Board of California, Department of Consumer Affairs, State of California. In the Matter of the Accusation Against Robert William Sears, M.D., Case No. 800-2015-012268 .

Stolberg SG. Anti-vaccine doctor has been invited to testify before Senate committee . The New York Times.

Wolfe RM, Sharp LK.  Anti-vaccinationists past and present . BMJ. 2002;325(7361):430-2. doi:10.1136/bmj.325.7361.430

Agley J, Xiao Y. Misinformation about COVID-19: Evidence for differential latent profiles and a strong association with trust in science . BMC Public Health. 2021;21:89. doi:10.1186/s12889-020-10103-x

Centers for Disease Control and Prevention. Measles history .

Hussain A, Ali S, Ahmed M, Hussain S. The anti-vaccination movement: a regression in modern medicine .  Cureus . 2018;10(7): e2919. doi:10.7759/cureus.2919

Bramer CA, Kimmins LM, Swanson R, et al. Decline in child vaccination coverage during the COVID-19 pandemic — Michigan Care Improvement Registry, May 2016–May 2020 . MMWR. 2020 May;69(20):630-1. doi:10.15585/mmwr.mm6920e1

Centers for Disease Control and Prevention. Why vaccinate .

Centers for Disease Control and Prevention. Poliomyelitis .

Centers for Disease Control and Prevention. Making the vaccine decision .

Borgen Project. What is the cost of measles in the developed world? .

By Vincent Iannelli, MD  Vincent Iannelli, MD, is a board-certified pediatrician and fellow of the American Academy of Pediatrics. Dr. Iannelli has cared for children for more than 20 years. 

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • For authors
  • BMJ Journals More You are viewing from: Google Indexer

You are here

  • Volume 107, Issue 3
  • Should children be vaccinated against COVID-19?
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0002-2388-4318 Petra Zimmermann 1 , 2 , 3 ,
  • http://orcid.org/0000-0002-2395-4574 Laure F Pittet 3 , 4 , 5 ,
  • http://orcid.org/0000-0003-1756-5668 Adam Finn 6 , 7 ,
  • http://orcid.org/0000-0001-7361-719X Andrew J Pollard 8 , 9 ,
  • http://orcid.org/0000-0003-3446-4594 Nigel Curtis 3 , 4 , 10
  • 1 Faculty of Science and Medicine , University of Fribourg , Fribourg , Switzerland
  • 2 Department of Paediatrics , Fribourg Hospital HFR , Fribourg , Switzerland
  • 3 Infectious Diseases Research Group , Murdoch Children’s Research Institute , Parkville , Victoria , Australia
  • 4 Department of Paediatrics , The University of Melbourne , Parkville , Victoria , Australia
  • 5 Pediatric Infectious Diseases Unit , Geneva University Hospitals and Faculty of Medicine , Geneva , Switzerland
  • 6 Bristol Vaccine Centre, School of Clinical Sciences and School of Cellular & Molecular Medicine , University of Bristol , Bristol , UK
  • 7 Bristol Royal Hospital for Children , University Hospitals Bristol NHS Foundation Trust , Bristol , UK
  • 8 Oxford Vaccine Group, Department of Paediatrics , University of Oxford , Oxford , UK
  • 9 NIHR Oxford Biomedical Research Centre , Oxford , UK
  • 10 Infectious Diseases Unit , The Royal Children’s Hospital Melbourne , Parkville , Victoria , Australia
  • Correspondence to Dr Petra Zimmermann, Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland; petra.zimmermann{at}unifr.ch

Whether all children under 12 years of age should be vaccinated against COVID-19 remains an ongoing debate. The relatively low risk posed by acute COVID-19 in children, and uncertainty about the relative harms from vaccination and disease mean that the balance of risk and benefit of vaccination in this age group is more complex. One of the key arguments for vaccinating healthy children is to protect them from long-term consequences. Other considerations include population-level factors, such as reducing community transmission, vaccine supply, cost, and the avoidance of quarantine, school closures and other lockdown measures. The emergence of new variants of concern necessitates continual re-evaluation of the risks and benefits. In this review, we do not argue for or against vaccinating children against COVID-19 but rather outline the points to consider and highlight the complexity of policy decisions on COVID-19 vaccination in this age group.

  • child health
  • communicable diseases
  • epidemiology

Data availability statement

No data are available. N/A.

https://doi.org/10.1136/archdischild-2021-323040

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

What is already known on this topic?

COVID-19 is generally asymptomatic or mild in children, but can be more severe in those with certain comorbidities.

There is no consensus on whether all healthy children less than 12 years of age should be vaccinated against COVID-19.

Data from COVID-19 vaccine use in this age group will become available in the near future.

What this study adds?

The balance of risks and benefits of COVID-19 vaccination in children is more complex than in adults as the relative harms from vaccination and disease are less well established in this age group.

One of the key arguments for vaccinating children less than 12 years of age, apart from reducing acute illness, is to protect them from long-term consequences of COVID-19; other considerations include population-level factors.

The risks and benefits need continual re-evaluation with the emergence of new variants of concern, and new data on effectiveness and adverse effects.

Introduction

Whether all children should be offered vaccination against SARS-CoV-2 has been controversial in children aged 12–15 years old, and remains so for those under 12 years of age, partly because the balance of risk and benefit in this age group is more complex (see figure 1 ).

  • Download figure
  • Open in new tab
  • Download powerpoint

Summary of benefits and risks of vaccinating children against COVID-19. PIMS-TS, paediatric inflammatory multisystem syndrome-temporally associated with SARS-CoV-2.

The risk of severe acute COVID-19 in healthy children infected with SARS-CoV-2 is much lower than in adults. 1–10 Two longer term consequences of SARS-CoV-2 infection might therefore be more of a concern in this age group. The first is ‘paediatric inflammatory multisystem syndrome-temporally associated with SARS-CoV-2 (PIMS-TS)’, also known as ‘multisystem inflammatory syndrome in children’, an immune-mediated disease that occurs in a small proportion of children 2–6 weeks after being infected with SARS-CoV-2. 11–20 The second is long COVID-19, the persistence of symptoms following SARS-CoV-2 infection, a heterogeneous group of conditions. 21

Aside from potential long-term consequences, other considerations in deciding on COVID-19 vaccine policy for children include safety (both common reactions and rare serious side effects), population-level factors, such as reducing community transmission, vaccine supply, cost of vaccination, the avoidance of quarantine, school closures and other lockdown measures, and the potential impact on routine immunisation programmes.

In this review, we do not argue for or against vaccinating children against COVID-19 but rather outline the points to consider to highlight the complexity of policy decisions on COVID-19 vaccination in this age group.

Benefits and risks of vaccinating children against COVID-19

The main question for implementing any vaccine is ‘do the benefits of the vaccine in preventing the harms of the disease outweigh any known or potential risks associated with vaccination?’ To date, two COVID-19 vaccines have been shown to be effective in children aged 12–17 years, and have been authorised for emergency use and subsequently recommended for this age group in many countries. 22–26 Both vaccines are currently being evaluated in children aged 6 months–12 years and it is likely that emergency authorisation will be sought in this age group soon. Nevertheless, COVID-19 vaccine trials in adolescents so far include less than 4000 participants and appropriately focus on efficacy, immunogenicity and rates of common reactions. 25 26 A phase 2/3 trial in children 5–12 years of age recently reported that a messenger RNA (mRNA) vaccine was safe, well tolerated and induced robust neutralising antibodies. 27 Results from the same trial in children under 5 years of age are expected by the end of 2021. Rare adverse effects are difficult to detect with such sample sizes, and are often seen only after large-scale use. Outside clinical trials, millions of adolescents between 12 and 18 years of age have been vaccinated, including 13 million in the USA. 28 Arguments for and against vaccinating children against COVID-19 are summarised in table 1 .

  • View inline

Arguments for and against vaccinating children against COVID-19

Potential benefits of vaccinating children

Protection against covid-19.

COVID-19 is generally a mild disease in children with less than 2% of symptomatic children requiring hospital admission. 1–10 The rate of intensive care admission of hospitalised children ranges between 2% and 13%. 1 7 8 29 30 Higher rates (10%–25%, 31 32 up to 33% in some studies 33 34 ) are reported from the USA. However, these numbers often include children who are hospitalised with COVID-19 and not because of COVID-19, and therefore overestimate the severity. In children and adolescents, the risk of death from SARS-CoV-2 infection is 0.005%, 35 and in those who are hospitalised with COVID-19 it is 0%–0.7%. 1 7 8 29 30 33 34 However, again, these numbers often include children who died with a SARS-CoV-2 infection and not because of it (a recent population-based study showed that only 41% of child deaths reported from SARS-CoV-2 infections were from COVID-19). 35 Therefore, the prevention of SARS-CoV-2 infection is not as strong an argument for vaccinating all healthy children as it is for adults. Nevertheless, this might change if new variants emerge which cause more severe disease in otherwise healthy children.

There are insufficient data to estimate the risk of myocarditis in children and adolescents with COVID-19, although one report from the USA suggested a risk of 876 cases per million. 36 Another study reported an adjusted risk ratio for myocarditis from patients with COVID-19 compared with patients without COVID-19 of 36.8 in children less than 16 years of age and 7.4 in adolescents 16–24 years of age. 37 A third study reported an 8.2-fold increase in myocarditis admissions during the pandemic, but no cases among the 1371 children and adolescents less than 18 years of age. 38 Information on the long-term outcome of myocarditis resulting from SARS-CoV-2 infection (e.g., progression to fibrosis) is currently lacking.

In the USA, with the emergence of the more transmissible Delta variant, a recent rise in infections in children has led to overcrowded hospital and intensive care units. 39 For hospitalised children, intensive care admission and mortality rates are currently stable at 23% and 0.4% 29 – 1.8%, 30 respectively. Of note, this has occurred in settings with low vaccine coverage in adults and suboptimal preventive measures in place. There are no reports indicating an increase in the severity of COVID-19 in children since the Delta variant has become dominant.

At this time, COVID-19 vaccines only have ‘emergency use authorisation’ in children between 12 and 16 years of age, which is for interventions that address a serious or life-threatening condition. It has been argued that, unless children are at high risk of severe COVID-19 because of an underlying condition, it is unclear whether the benefits to the individual outweigh the risks in this age group, and approval through the standard regulatory process should be awaited. 40

There are good reasons to consider offering vaccination to children and adolescents at higher risk of being hospitalised or becoming severely unwell from a SARS-CoV-2 infection, as, in their case, the risk of harm from vaccination is estimated to be lower than the risk of harm from COVID-19. This includes children with neurodisabilities, Down’s syndrome, immunodeficiencies, malignancies, some cardiac, respiratory and renal diseases, obesity and poorly controlled diabetes. 41

The low risk of hospitalisation and death from COVID-19 might not be a good argument against vaccinating against this disease as the risk is similar or even higher than that for other diseases for which vaccines are routinely given, such as varicella, rubella, hepatitis A and influenza. 42 In addition, if a high proportion of children are infected, even a very low rate of severe illness might translate to a high absolute number of cases. Moreover, in low/middle-income countries (LMICs), the impact of COVID-19 in children may be greater due to comorbidities that impact immunity, including diarrhoea, dengue fever, tuberculosis, malnutrition, stunting and anaemia. 33 Similary, in high-income countries, children from deprived and ethnic minority groups are more frequently infected with SARS-CoV-2, which might be due to a greater likelihood of living with unvaccinated adults or in multigenerational and overcrowded households. 43 44 These children have also been reported to have more severe COVID-19 and to more frequently suffer from PIMS-TS. 45–47

Protection against PIMS-TS

The risk of PIMS-TS is low, affecting less than 0.1% of SARS-CoV-2-infected children. Although up to 70% of children with PIMS-TS are admitted to intensive care units, 48 49 almost all patients recover without sequelae. 11–20 48 50 51 Between 79% and 100% of abnormal cardiac findings are reported to resolve within 14–30 days after hospital discharge. 48 52 53 Six months after discharge, 96% of children have a normal echocardiography, and renal, haematological, otolaryngological and neurological abnormalities have largely resolved. 45 However, the long-term consequences of PIMS-TS remain uncertain and the death rate from PIMS-TS is estimated to be 1%–2%. 48 49 There is no evidence to date on whether vaccination protects against PIMS-TS: although by protecting against SARS-CoV-2 infection it may well also protect against post-infectious sequelae; data are needed to confirm this. Since the pathogenesis of PIMS-TS remains unclear, there is also a theoretical risk that antibodies induced by COVID-19 vaccination could cause PIMS-TS, though there is no evidence of this to date.

Protection against long COVID-19

While vaccination prevents infection with SARS-CoV-2 to a degree and thus, presumably, persistent symptoms following the infection, more data are needed to determine accurately the incidence of long COVID-19 in children. 21 Studies to date report a prevalence ranging from 1.2% to 66%. 54–64 However, most of these studies have substantial limitations, including a lack of a clear case definition, the absence of a control group without infection, inclusion of children without laboratory-confirmed SARS-CoV-2 infection, follow-up at arbitrary time points and high non-responder bias. 54–63 65–68 Of the five studies to date that have included controls, 55 59 61 65 two did not find a difference in the prevalence of persistent symptoms between infected and uninfected children. 61 65 This highlights the difficulty of separating COVID-19-related symptoms from those attributable to other factors associated with the pandemic, such as lockdowns and school closures. The three that did find a difference had significant limitations, including potential selection bias due to a high non-responder rate, that could lead to an overestimate of the risk of long COVID-19. 55 59

Prevention of community transmission

Another advantage of vaccinating children is helping decrease transmission and thus reducing severe cases in adults and the risk of new virus variants emerging. As well as reducing disease, COVID-19 vaccines also reduce infection. Initial studies reported that vaccinated individuals who become infected are less likely to transmit the virus due to decreased viral load and duration of virus shedding 69 70 and as a consequence, transmission from vaccinated individual to household contacts is significantly lower 71 (by 50% in one study 69 ). However, more recent studies done since the Delta variant became dominant show similar viral loads in vaccinated and unvaccinated individuals. 72–75

Children, including young children, can transmit SARS-CoV-2. 76 Nonetheless, even though transmission in schools can contribute to the circulation of SARS-CoV-2, 77 the rate of transmission in educational settings is low and index cases are often adults. 78–81 The risk of infection in schools correlates strongly with local community infection rates, which can be reduced by vaccinating older age groups. Nevertheless, the risk of transmission in different age groups and settings might change with the emergence of new virus variants of concern. For the Delta variant, it has been suggested that infected fully vaccinated individuals are as likely to transmit SARS-CoV-2 as infected unvaccinated individuals, although for shorter duration. 82 83 However, recent data from Australia reported a low risk of transmission in educational settings with protection measurements in place, even with the Delta variant (the transmission rate from adults to children was 8%, from children to adults 1.3% and from children to other children 1.8%). 84

Earlier in the pandemic, it was reported that index cases in households were more likely to be a parent or adolescent than a young child. 6 85–87 However, one study suggests that children and adolescents are more likely to infect others. 88 Another study reported that household transmission was more common from children aged 0–3 years than from children aged 14–17 years. 89 However, this might change with the Delta or other new variants. In a population with low numbers of vaccinated adults, infected children transmitted the Delta variant to 70% of households (in 57% of households all members became infected). 84 Nevertheless, once a large proportion of the adult population is vaccinated, preventing transmission to them from unvaccinated children becomes less important. There is a stronger argument for vaccinating children and adolescents who live with immunosuppressed or other high-risk household members, not only for the protection of the latter but also to benefit the mental health of the former. Also, in LMICs children under 12 years of age form a larger proportion of the population and might therefore have a larger role in tranmission.

Another consideration is that, once SARS-CoV-2 becomes endemic, primary SARS-CoV-2 infection in early childhood, when COVID-19 is mild, with subsequent boosting from ongoing exposure at older ages, may bring about population immunity, as seen with common circulating coronaviruses, more effectively than mass immunisation. 90

Avoidance of indirect (population-level) harms

Vaccinating children and adolescents might help reduce the indirect harms caused by quarantine, lockdowns, repeat testing, school exclusion and closures, and other policies aimed at reducing community transmission, although the extent to which mass vaccination is necessary to achieve this remains unclear. Also, if the purpose of lockdowns and school closures is to protect adults, the incremental benefit of vaccinating children will be minimal once most adults are protected through vaccination. The possibility that vaccination might become a requirement for children for international travel is another consideration.

Potential risks of vaccinating children

Risk of adverse effects.

As with any vaccine, there are potential rare adverse effects of COVID-19 vaccines. The development of myocarditis or pericarditis after mRNA vaccines has been a recent concern, 91 92 particularly in male adolescents (studies reporting 6.3–6.7 cases per 100 000 second vaccine doses in males aged 12–17 years, 91 93 and 15.1 cases per 100 000 second vaccine doses in males aged 16–19 years 94 ). Another study reported an incidence of 10.7 cases per 100 000 persons in males aged 16–29 years. 95 Of these patients, approximately 6% required intensive care admission. 96 However, most recovered without sequelae (86% had resolution of symptoms after mean duration of 35 days). 97 98 Importantly, even in this age group, recent reports suggest the risk of myocarditis associated with COVID-19 is higher (see above).

The risk of thrombosis after viral vector vaccines observed rarely in adults also needs to be considered. The thrombotic risk in children or adolescents is less 99 and no cases have been reported to date in this age group. However, since the pathogenesis underlying thrombosis associated with COVID-19 vaccines is thought to differ from that for clots from other causes, such as stasis and the contraceptive pill, further data from children are necessary. As thrombotic events have either not been observed or appear to be very rare in Asia, Africa and Latin America, some countries are considering these vaccines as an option. The theoretical risk of COVID-19 vaccines triggering PIMS-TS has been raised but there are no reports of this to date. 100

Long-term safety

The lack of long-term safety data is another consideration. Longer term follow-up of myocarditis cases is needed to exclude any possibility of myocardial fibrosis and associated dysfunction or arrhythmia risk. Two studies showed a high prevalence of late gadolinium enhancement in MRIs in patients suffering from post-vaccine myocarditis. 97 101 Further studies are needed to establish whether this resolves or evolves into fibrosis. As discussed above, information on this risk is also needed for myocarditis resulting from SARS-CoV-2 infection.

Although the majority of adverse vaccine effects occur early after vaccination, any unforeseen adverse effects could undermine vaccine confidence and reduce vaccination rates against other diseases. 102

Vaccine supply

The currently limited global COVID-19 vaccine supply is another factor to consider. To date, many LMICs have only been able to vaccinate less than 5% of their population despite the COVAX programme. At this time, available supplies might be better prioritised for vaccinating adults with a higher risk of severe COVID-19 and death, including healthcare workers. 103 Another consideration is the higher immunogenicity of mRNA vaccines in children, meaning that one dose or a reduced dose might be sufficient to protect this age group. 25 On the other hand, the infrastructure to upscale the production of COVID-19 vaccines already exists and strategies for boosting global supply have been outlined. 104

Since the risks of intensive care admission or death in children are so low, the cost–benefit ratio of COVID-19 vaccination in children is higher. However, the emergence of new variants might change this if these variants cause more frequent or more severe disease in children. 105 The cost of vaccination also needs to be balanced against the reduction in community transmission that might be achieved through vaccinating children, which would enable a faster return to pre-pandemic economic stability with associated benefits to children.

Other immunisation programmes

Routine immunisation programmes for children and adolescents have been disrupted by the pandemic. 106 107 Implementing a universal COVID-19 vaccine programme for these age groups runs the risk of causing further delays by using up existing delivery resources and personnel. This in turn may harm children by resulting in more cases of vaccine-preventable infections and diseases such as cervical cancer, meningitis, measles and pertussis. However, if COVID-19 vaccination is combined with the administration of other routine vaccines, this problem might be reduced.

Concluding remarks

In summary, the case for vaccinating all healthy children against COVID-19 is more difficult than for adults as the balance of risks and benefits is more nuanced. If COVID-19 remains a generally mild disease in children and in vaccinated adults, it may not be necessary to vaccinate all children. 90 108 In addition, it is important to consider different age groups separately; the balance of risk and benefit of vaccination is likely to differ between infants, young children and adolescents. Children under 5 years of age are likely to need separate consideration to those 5–11 years of age. Continued monitoring of disease severity across all age groups is crucial. If a variant of concern emerges with increased severity in children (as is, for example, the case for Middle East respiratory syndrome-related coronavirus), this would alter the risk–benefit equation. 90 In LMICs, where the burden of COVID-19 is higher in the paediatric population as a result of comorbidities, there may be a lower threshold for vaccinating children. A one-dose schedule (as now recommended in the UK and Norway) 109 110 or a reduced-dose vaccine might be an option for this age group; this might also reduce the risk of myocarditis with the second dose of mRNA vaccines. Although mass COVID-19 vaccination of all ages, including children under 12 years of age, may become the general approach globally in the future, it seems wise at present to weigh up the risks and benefits with caution and to proceed with care.

Ethics statements

Patient consent for publication.

Not required.

  • Götzinger F ,
  • Santiago-García B ,
  • Noguera-Julián A , et al
  • Zimmermann P ,
  • Castagnoli R ,
  • Licari A , et al
  • Ludvigsson JF
  • Buettcher M ,
  • Bernhard-Stirnemann S
  • Harwood R ,
  • ↵ World Health Organization. COVID-19 detailed surveillance data dashboard . Available: https://covid19.who.int [Accessed 27 July 2021 ].
  • Stokes EK ,
  • Zambrano LD ,
  • Anderson KN , et al
  • Verdoni L ,
  • Gervasoni A , et al
  • Whittaker E
  • Toubiana J ,
  • Poirault C ,
  • Corsia A , et al
  • Riphagen S ,
  • Gonzalez-Martinez C , et al
  • Moraleda C ,
  • Serna-Pascual M ,
  • Soriano-Arandes A
  • Cheung EW ,
  • Zachariah P ,
  • Gorelik M , et al
  • Whittaker E ,
  • Bamford A ,
  • Kenny J , et al
  • Godfred-Cato S , et al
  • Pittet LF ,
  • European Medicines Agency
  • National Institute for Health Research
  • National Advisory Committee on Immunization
  • Frenck RW ,
  • Kitchin N , et al
  • Zhou H , et al
  • Alatovic J , et al
  • Centers for Disease Control and Prevention
  • Du H , et al
  • Bhuiyan MU ,
  • Hassan MZ , et al
  • Delahoy MJ ,
  • Whitaker M , et al
  • Siegel DA ,
  • Cool AJ , et al
  • Havers FP ,
  • Whitaker M ,
  • Self JL , et al
  • O'Halloran A , et al
  • Singer ME ,
  • Boehmer TK ,
  • Kompaniyets L ,
  • Lavery AM , et al
  • Gierada M ,
  • Fralick M , et al
  • American Academy of Pediatrics
  • Fernandes DM ,
  • Oliveira CR ,
  • Guerguis S , et al
  • Anderson EJ ,
  • Campbell JD ,
  • Creech CB , et al
  • Ogunyemi D ,
  • Mantilla R ,
  • Markus A , et al
  • Vahidy FS ,
  • Nicolas JC ,
  • Meeks JR , et al
  • Abdel-Mannan O ,
  • Grant K , et al
  • Kanthimathinathan HK , et al
  • Brighouse J , et al
  • Feldstein LR ,
  • Tenforde MW ,
  • Friedman KG , et al
  • Oster ME , et al
  • Shingleton J ,
  • Bennett E , et al
  • Riollano-Cruz M ,
  • Akkoyun E ,
  • Briceno-Brito E , et al
  • Minocha PK ,
  • Phoon CKL ,
  • Verma S , et al
  • Ramcharan T ,
  • Lai CY , et al
  • Osmanov IM ,
  • Spiridonova E ,
  • Navaratnam AMD
  • Molteni E ,
  • Canas LS , et al
  • Buonsenso D ,
  • Munblit D ,
  • De Rose C , et al
  • Crawford N ,
  • McNab S , et al
  • Stephenson T ,
  • Shafran R ,
  • De Stavola B , et al
  • Olsson-Åkefeldt S ,
  • Hertting O , et al
  • Puhan MA , et al
  • Blomberg B ,
  • Mohn KG-I ,
  • Brokstad KA , et al
  • Pucuka Z , et al
  • Ayoubkhani D ,
  • Pawelek P ,
  • Blankenburg J ,
  • Wekenborg MK ,
  • Espuny Pujol F ,
  • Brackel CLH ,
  • Buddingh EP , et al
  • Ashkenazi-Hoffnung L ,
  • Shmueli E ,
  • Harris RJ ,
  • Zaidi A , et al
  • Levine-Tiefenbrun M ,
  • Shah AS V ,
  • Gribben C ,
  • Riemersma KK ,
  • Grogan BE ,
  • Kita-Yarbro A
  • Musser JM ,
  • Christensen PA ,
  • Johnson H , et al
  • Xiang Ong SW ,
  • Yousaf AR ,
  • Chang K , et al
  • Litvinova M ,
  • Liang Y , et al
  • Ismail SA ,
  • Lopez Bernal J , et al
  • National Centre for Immunisation Research and Surveillance NCIRS
  • National Institute for Public Health and the Environment, Netherlands
  • Ladhani SN ,
  • Baawuah F ,
  • Beckmann J , et al
  • Public Health England
  • McLean HQ ,
  • Grijalva CG ,
  • Hanson KE , et al
  • Siebach MK ,
  • Piedimonte G ,
  • Maltezou HC ,
  • Magaziotou I ,
  • Dedoukou X , et al
  • Liu M-J , et al
  • Daneman N ,
  • Schwartz KL , et al
  • Lavine JS ,
  • Bjornstad ON ,
  • Gargano JW ,
  • Wallace M ,
  • Hadler SC , et al
  • Israelian Ministry of Health
  • Bozkurt B ,
  • Mevorach D ,
  • Cedar N , et al
  • Witberg G ,
  • Hoss S , et al
  • Advisory Committee on Immunization Practices (ACIP), Centers for Disease Control and Prevention
  • Steele JM ,
  • Fonseca B , et al
  • Goddard K , et al
  • Ignjatovic V ,
  • Blumenthal JA ,
  • Sperotto F ,
  • Chamberlain S , et al
  • Our World in Data
  • Castillo JC ,
  • Athey S , et al
  • ↵ American Academy of Pediatrics . Available: https://protect-au.mimecast.com/s/kTiQCp8AxKsn7BoR2HPuc2Q?domain=downloads.aap.org [Accessed 10 Aug 2021 ].
  • Santoli JM ,
  • Lindley MC ,
  • DeSilva MB , et al
  • Centers for Disease Control and Prevention, Messonnier N
  • Coleman PG ,
  • Woolhouse ME
  • UK joint Committee on vaccination and immunisation
  • Norwegian Institute of Public Health
  • Mizumoto K ,
  • Milani GP ,
  • Bottino I ,
  • Rocchi A , et al
  • Mytton OT ,
  • Bonell C , et al
  • Zhang Z-B , et al
  • Szablewski CM ,
  • Brown MM , et al
  • Russell S ,
  • Medicines and Healthcare products Regulatory Agency

Twitter @Dr_Petzi, @PittetLaure, @adamhfinn, @ajpollard1, @nigeltwitt

Contributors PZ drafted the initial manuscript. All authors critically revised the manuscript and approved the final manuscript as submitted.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Disclaimer The views expressed in this article do not necessarily represent the views of the DHSC, JCVI, NIHR or WHO.

Competing interests AJP is chair of UK Department of Health and Social Care’s (DHSC) Joint Committee on Vaccination & Immunisation (JCVI), but does not participate in policy decisions on COVID-19 vaccine. He is a member of the WHO’s SAGE. AJP is chief investigator on clinical trials of Oxford University’s COVID-19 vaccine funded by NIHR. Oxford University has entered a joint COVID-19 vaccine development partnership with AstraZeneca. AF is an investigator in trials and studies of COVID-19 vaccines manufactured by Pfizer-BioNTech, AstraZeneca, Janssen, Valneva and Sanofi but receives no personal remuneration or benefits for this work. He is a member of the UK Joint Committee on Vaccination and Immunisation and chairs the WHO Euro Regional Technical Advisory Group of Experts (ETAGE) on immunisation.

Provenance and peer review Not commissioned; externally peer reviewed.

Read the full text or download the PDF:

Should COVID-19 vaccines be mandatory? Two experts discuss

argumentative essay for vaccinations

Senior Research Fellow, Oxford Uehiro Centre for Practical Ethics, University of Oxford

argumentative essay for vaccinations

NIHR Academic Clinical Fellow in Public Health Medicine, UCL

Disclosure statement

Alberto Giubilini receives funding from the Arts and Humanities Research Council/UK Research and Innovation (AHRC/UKRI) and has previously received funding from the Wellcome Trust.

Vageesh Jain is affiliated with Public Health England under an honorary contract as a speciality registrar.

University College London provides funding as a founding partner of The Conversation UK.

University of Oxford provides funding as a member of The Conversation UK.

View all partners

A nurse giving a woman a vaccine

To be properly protective, COVID-19 vaccines need to be given to most people worldwide. Only through widespread vaccination will we reach herd immunity – where enough people are immune to stop the disease from spreading freely. To achieve this, some have suggested vaccines should be made compulsory , though the UK government has ruled this out . But with high rates of COVID-19 vaccine hesitancy in the UK and elsewhere , is this the right call? Here, two experts to make the case for and against mandatory COVID-19 vaccines.

Alberto Giubilini, Senior Research Fellow, Oxford Uehiro Centre for Practical Ethics, University of Oxford

COVID-19 vaccination should be mandatory – at least for certain groups. This means there would be penalties for failure to vaccinate, such as fines or limitations on freedom of movement.

The less burdensome it is for an individual to do something that prevents harm to others, and the greater the harm prevented, the stronger the ethical reason for mandating it.

Being vaccinated dramatically reduces the risk of seriously harming or killing others. Vaccines such as the Pfizer , AstraZeneca or Moderna ones with 90-95% efficacy at preventing people from getting sick are also likely to be effective at stopping the virus from spreading, though possibly to a lower degree. Such benefits would come at a very minimal cost to individuals.

Lockdown is mandatory. Exactly like mandatory vaccination, it protects vulnerable people from COVID-19. But, as I have argued in detail elsewhere, unlike mandatory vaccination, lockdown entails very large individual and societal costs. It is inconsistent to accept mandatory lockdown but reject mandatory vaccination. The latter can achieve a much greater good at a much smaller cost.

Also, mandatory vaccination ensures that the risks and burdens of reaching herd immunity are distributed evenly across the population. Because herd immunity benefits society collectively, it’s only fair that the responsibility of reaching it is shared evenly among society’s individual members.

Of course, we might achieve herd immunity through less restrictive alternatives than making vaccination mandatory – such as information campaigns to encourage people to be vaccinated. But even if we reach herd immunity, the higher the uptake of vaccines, the lower the risk of falling below the herd immunity threshold at a later time. We should do everything we can to prevent that emergency from happening – especially when the cost of doing so is low.

Fostering trust and driving uptake by making people more informed is a nice narrative, but it’s risky. Merely giving people information on vaccines does not always result in increased willingness to vaccinate and might actually lower confidence in vaccines. On the other hand, we’ve seen mandatory vaccination policies in Italy recently successfully boost vaccine uptake for other diseases.

Mandatory seatbelt policies have proven very successful in reducing deaths from car accidents, and are now widely endorsed despite the (very small) risks that seatbelts entail. We should see vaccines as seatbelts against COVID-19. In fact, as very special seatbelts, which protect ourselves and protect others.

A protestor holding a sign that says: 'No to mandatory vaccines'

Vageesh Jain, NIHR Academic Clinical Fellow in Public Health Medicine, UCL

Mandatory vaccination does not automatically increase vaccine uptake. An EU-funded project on epidemics and pandemics, which took place several years before COVID-19, found no evidence to support this notion. Looking at Baltic and Scandinavian countries, the project’s report noted that countries “where a vaccination is mandatory do not usually reach better coverage than neighbour or similar countries where there is no legal obligation”.

According to the Nuffield Council of Bioethics, mandatory vaccination may be justified for highly contagious and serious diseases. But although contagious, Public Health England does not classify COVID-19 as a high-consequence infectious disease due to its relatively low case fatality rate.

COVID-19 severity is strongly linked with age, dividing individual perceptions of vulnerability within populations. The death rate is estimated at 7.8% in people aged over 80, but at just 0.0016% in children aged nine and under. In a liberal democracy, forcing the vaccination of millions of young and healthy citizens who perceive themselves to be at an acceptably low risk from COVID-19 will be ethically disputed and is politically risky.

Public apprehensions for a novel vaccine produced at breakneck speed are wholly legitimate. A UK survey of 70,000 people found 49% were “very likely” to get a COVID-19 vaccine once available. US surveys are similar . This is not because the majority are anti-vaxxers.

Despite promising headlines, the trials and pharmaceutical processes surrounding them have not yet been scrutinised. With the first trials only beginning in April , there is limited data on long-term safety and efficacy. We don’t know how long immunity lasts for. None of the trials were designed to tell us if the vaccine prevents serious disease or virus transmission.

To disregard these ubiquitous concerns would be counterproductive. As a tool for combating anti-vaxxers – estimated at around 58 million globally and making up a small minority of those not getting vaccinated – mandatory vaccines are also problematic. The forces driving scientific and political populism are the same . Anti-vaxxers do not trust experts, industry and especially not the government. A government mandate will not just be met with unshakeable defiance, but will also be weaponised to recruit others to the anti-vaxxer cause.

In the early 1990s, polio was endemic in India , with between 500 and 1,000 children getting paralysed daily. By 2011, the virus was eliminated. This was not achieved through legislation. It was down to a consolidated effort to involve communities, target high-need groups, understand concerns, inform, educate, remove barriers, invest in local delivery systems and link with political and religious leaders.

Mandatory vaccination is rarely justified. The successful roll-out of novel COVID-19 vaccines will require time, communication and trust. We have come too far, too fast, to lose our nerve now.

  • Mandatory vaccination
  • Coronavirus
  • Vaccine hesitancy
  • Coronavirus insights

argumentative essay for vaccinations

Faculty of Law - Academic Appointment Opportunities

argumentative essay for vaccinations

Operations Manager

argumentative essay for vaccinations

Senior Education Technologist

argumentative essay for vaccinations

Audience Development Coordinator (fixed-term maternity cover)

argumentative essay for vaccinations

Lecturer (Hindi-Urdu)

  • Open access
  • Published: 09 November 2023

To vaccinate or not to vaccinate? The interplay between pro- and against- vaccination reasons

  • Marta Caserotti 1 ,
  • Paolo Girardi 2 ,
  • Roberta Sellaro 1 ,
  • Enrico Rubaltelli 1 ,
  • Alessandra Tasso 3 ,
  • Lorella Lotto 1 &
  • Teresa Gavaruzzi 4  

BMC Public Health volume  23 , Article number:  2207 ( 2023 ) Cite this article

2001 Accesses

1 Altmetric

Metrics details

By mid 2023, European countries reached 75% of vaccine coverage for COVID-19 and although vaccination rates are quite high, many people are still hesitant. A plethora of studies have investigated factors associated with COVID-19 vaccine hesitancy, however, insufficient attention has been paid to the reasons why people get vaccinated against COVID-19. Our work aims to investigate the role of reasons in the decision to get vaccinated against COVID-19 in a representative sample of 1,689 adult Italians (March–April 2021) balanced in terms of age, gender, educational level and area of residence.

Through an online questionnaire, we asked participants to freely report up to three reasons for and against COVID-19 vaccination, and the weight each had in the decision to get vaccinated. We first investigated the role of emotional competence and COVID-19 risk perception in the generation of both reasons using regression models. Next, we studied the role that the different reasons had in the vaccination decision, considering both the intention to vaccinate (using a beta regression model) and the decision made by the participants who already had the opportunity to get vaccinated (using a logistic regression model). Finally, two different classification tree analyses were carried out to characterize profiles with a low or high willingness to get vaccinated or with a low or high probability to accept/book the vaccine.

High emotional competence positively influences the generation of both reasons (ORs > 1.5), whereas high risk perception increases the generation of positive reasons (ORs > 1.4) while decreasing reasons against vaccination (OR = 0.64). As pro-reasons increase, vaccination acceptance increases, while the opposite happens as against-reasons increase (all p  < 0.001). One strong reason in favor of vaccines is enough to unbalance the decision toward acceptance of vaccination, even when reasons against it are also present ( p  < 0.001). Protection and absence of distrust are the reasons that mostly drive willingness to be vaccinated and acceptance of an offered vaccine.

Conclusions

Knowing the reasons that drive people’s decision about such an important choice can suggest new communication insights to reduce possible negative reactions toward vaccination and people's hesitancy. Results are discussed considering results of other national and international studies.

Peer Review reports

Introduction

By mid 2023 the European Union reached nearly 75% vaccine coverage for the primary vaccine cycle against COVID-19, with countries such as Croatia, Slovakia, and Poland falling short of 60% and others such as France, Portugal, and Italy close to 90% [ 1 ]. Although vaccination rates are, on average, quite high, many people are still hesitant. Vaccine hesitancy indicates the delay or refusal of a vaccine despite availability in vaccine services [ 2 , 3 ] and is a multidimensional construct, resulting from the interaction between individual, social, and community aspects [ 4 ]. In the last two years, a plethora of studies have investigated factors associated with COVID-19 vaccine hesitancy showing, for example, that vaccine hesitancy is higher in women [ 5 , 6 ], in young people [ 5 , 7 , 8 ], in people with low education [ 8 , 9 ], low trust in authorities [ 10 , 11 ], and strong conspiracy beliefs [ 5 , 12 , 13 ]. However, to the best of our knowledge no one has investigated the interplay that pro- and against- vaccination reasons may play in the choice to get vaccinated, namely what happens when a person has both pro- and against-vaccine considerations. Trying to fill this gap in the literature, our work aims to investigate how different reasons and the importance people place on them are likely to influence the decision to get vaccinated against COVID-19.

In line with the vaccine hesitancy continuum defined by SAGE [ 2 ], while extremely pro-vax people are likely to express only reasons pro-vaccination and extremely no-vax people are likely to express only reasons against vaccination, individuals who fall between the two extreme end-points are likely to feel some doubts. This large number of people offer us the unique opportunity to assess which category of reasons (pro- vs. against- vaccination) is more impactful in driving people's vaccination decisions. As it is reasonable to imagine, among the reasons for choosing to get (or not) vaccinated some reasons are more rational, while others are more related to affect. For example, there are people who rationally recognize the importance of vaccines but at the same time are frightened by the side effects. Thus, the decision to get (or not) vaccinated is the result of a complex process, in which costs and benefits are weighed more or less rationally. Indeed, while several studies have pointed out that the decision to vaccinate is due to cognitive rather than emotional processes [ 14 , 15 , 16 , 17 ], others have highlighted the role of affect and risk perception in the vaccination decision [ 18 , 19 , 20 ]. Thus, the intention to accept the vaccine is driven by emotional and affective feelings as much as by cognitive and rational judgments. Particular attention to what people feel and think about vaccine-preventable diseases and vaccination in general is paid in the model developed by the “Measuring Behavioral and Social Drivers of Vaccination” (BeSD), a global group of experts established by the World Health Organization [ 21 ]. This model encompasses two groups of proximal antecedents of vaccination, namely, what people think and feel (e.g., perceived risk, worry, confidence, trust and safety concerns) and social processes (e.g., provider recommendation, social norms and rumors). Antecedents affect vaccination motivation (i.e., vaccination readiness, willingness, intention, hesitancy), which can then be strengthened or weakened by practical issues (such as vaccine availability, convenience and cost but also requirements and incentives), resulting in acceptance, delay or refusal of vaccination (vaccination behavior).

Although some studies have considered whether the cognitive or affective component has greater weight in determining the intention to vaccinate, no one, to the best of our knowledge, has studied the interplay between pro- and against- vaccination reasons, nor the weight these have in the choice to vaccinate. In addition to the drivers already studied in the literature [ 5 , 6 , 7 , 8 , 11 , 12 ], we believe that the focus on this interaction may be relevant to better understand the complex phenomena related to vaccine hesitancy. Few recent studies have attempted to investigate the complexity of vaccination choice by studying the reasons why people choose to get (or not) vaccinated against COVID-19. Fieselmann and colleagues [ 22 ] highlighted that among the reasons that reduce adherence to vaccination are a low perception of its benefits, a low perception of the risk of contracting COVID-19, health concerns, lack of information, distrust of the system, and spiritual or religious reasons. Another study, instead, shed light on the reasons that encourage hesitant people to consider vaccination, such as protecting themselves, their family, friends and community from COVID-19, and being able to return to normal life [ 23 ].

In the present study we asked the participants to spontaneously come up with their own reasons to get (or not) vaccinated, without limiting or influencing them with a set of predefined options to choose from, thus aiming to obtain more genuine answers that may better capture the intuitive aspect of people’s opinions (for a similar reasoning see [ 24 ]). The procedure we used has been implemented by Moore et al. [ 23 ], the only study, as far as we know, that asked for reasons with an open-ended question. Critically, in their study, participants were asked to report only reasons in favor of vaccination (e.g., "What are your reasons for getting the COVID-19 vaccine?"), excluding reasons against. By contrast, we asked participants to freely report up to three reasons in favor and up to three reasons against COVID-19 vaccination and to rate on a 5-point Likert scale their weight in the decision about getting (or not) vaccinated.

From a theoretical point of view, the reasons pro- and against vaccination may be seen within the framework of prospect theory [ 25 , 26 ] which suggests that people evaluate the outcome of a choice based on a reference point, against which losses and gains are determined: the former below this point, the latter above this point. Importantly, especially in this specific context, losses and negative consequences are weighted more than gains and benefits, making us hypothesize that if a person has one reason for and one reason against the vaccine, which are of equal importance, they will more likely lean toward choosing not to vaccinate. Consistently, it is known that negative experiences have a greater impact than neutral or positive ones (i.e., the negativity bias [ 27 ]).

Besides delving into the reasons that may influence the choice to get (or not) vaccinated, it would be interesting to also look at the individual differences that may determine the reporting of pro- and against- vaccination reasons and their valence. In this regard, the literature suggests that risk perception and emotion regulation can both have a great impact in the decision to get vaccinated. For instance, studies conducted during H1N1 influenza have shown that perception of disease-related risk is one of the strongest predictors of vaccine adherence [ 28 , 29 ]. Additional insights have been provided by more recent studies investigating the role of COVID-19 risk perception in the decision to get vaccinated against COVID-19. Viswanath and colleagues [ 30 ] showed that people are more willing to vaccinate themselves and those under their care to the extent to which they feel more vulnerable to COVID-19 and rate the consequences of a possible infection as severe. Such a relationship between COVID-19 risk perception and intention to vaccinate was confirmed by another study using a cross-sectional design, which focused on the early months of the pandemic [ 31 ]. This study also examined how risk perception changed during the pandemic phases and showed that during the lockdown, compared to the pre-lockdown phase, also those who reported some hesitancy were more likely to get vaccinated when they perceived a strong COVID-19 risk.

With regard to emotion regulation, the literature suggests that people react differently to affective stimuli [ 32 ] and that their decisions are influenced by their abilities to regulate emotions [ 33 , 34 ]. Recent works investigating the relationship between hesitancy in pediatric vaccinations and the emotional load associated with vaccinations, have shown that a negative affective reaction is one of the factors leading to lower vaccine uptake [ 35 , 36 ]. Specifically, Gavaruzzi and colleagues [ 36 ] showed that concerns about vaccine safety and extreme views against vaccines are associated with vaccine refusal. Interestingly, they also showed that parents' intrapersonal emotional competences, i.e., their ability to manage, identify, and recognize their own emotions, is critical to vaccine acceptance for their children. Therefore, in our study we measured people's risk perception and emotional competencies to assess their possible role in the production of reasons in favor and against vaccination.

As described in Fig.  1 , the relationship between different domains of interest can be hierarchically structured, using a directed acyclic graph, starting from the risk perception and emotion regulation, to the generation of pro- and against- vaccination reasons and their valence, and finally to the vaccination willingness/adherence. With respect to the mentioned structure, we are interested to investigate the following research hypotheses:

The number and weight associated with reasons pro- and against-vaccination should be influenced by individual differences in the ability to regulate emotions;

The number and weight associated with pro-vaccination reasons should be influenced by individual differences in COVID-19 risk perception;

A higher number of strong (i.e., with high weight) reasons pro- (vs. against-) vaccination should correspond to a more (vs. less) likelihood to accept the vaccination.

Generating an equal number of reasons in favor and against vaccination should lead to a weaker likelihood to accept the vaccination.

figure 1

Directed Acyclic Graph (DAG) between variables considered in the study (PEC: Short Profile of Emotional Competence scale)

As we conducted the study between March and April 2021, a time when vaccinations were being progressively rolled out, we decided to consider the role of personal reasons on both the intention to get vaccinated (for those who had not yet had the opportunity to get vaccinated) and the choice already made (e.g., vaccine received or booked vs. refused).

Finally, through a non-parametric classification analysis, we will explore how specific pro- and against-vaccination reasons impact the decision to get (or not) vaccinated. Specifically, we will investigate the role that different categories of reasons play in the choice to vaccinate.

Participants

Data collection was commissioned to a survey and market research agency (Demetra Opinions.net), with the aim of securing a representative sample of the adult (+ 18) Italian population, estimated at 49.8 million [ 37 ]. The sample was balanced in terms of age, gender, educational level (middle school or lower, high school, degree or higher), and area of residence (North, Center, South, and Islands). The agency distributed via email the survey link to its panelists, who freely decided whether to participate in the study in exchange for financial compensation. Out of 1,833 participants who started the questionnaire, 77 (4%) were excluded because they did not complete the survey and 16 (0.9%) were excluded since they reported offensive content in open-ended questions. Finally, 124 (6.8%) participants were excluded because of missing information. Thus, the final sample consisted of 1,689 participants. The project was approved by the ethical committee for Psychology Research of the University of Padova (Italy), with protocol number 3911/2020 and informed consent was obtained for all participants.

We developed an ad-hoc questionnaire including a series of open-ended and closed questions (see Additional file 1 : Appendix 2 for the full material). We first investigated the vaccination status of the participants, asking whether they already had received at least the first dose, whether they had booked it or were still ineligible, and finally whether they had refused the vaccination. Those not yet eligible were asked to rate how likely they would be to get vaccinated at the time they responded (0 =  Not at all likely , 100 =  Extremely likely ). Then, we asked participants to report a maximum of three reasons both in favor of the COVID-19 vaccine and against it (in counterbalanced order) and to rate how much each of the reported reasons weighed in their choice to vaccinate or not, on a 5-point likert scale (1 =  Not at all , 5 =  Extremely ). Due to the sparsity on the rate and the number of provided reasons we re-coded the provided information into two semi-quantitative variables, one for pro- and one for against- vaccination reasons, as following: missing/invalid reasons, low average rating (answers 1–3 on the Likert scale) and 1–3 reasons, high rating (answers 4–5 points on the Likert scale) and 1 reason, and high average rating (answer 4–5 points on the Likert scale) and 2–3 reasons.

The questionnaire also included the 20-item Short Profile of Emotional Competence scale (S-PEC; [ 38 ]) to measure intra- and inter-personal emotional competences separately. The intra-personal scale (10 items) refers to emotional competences related to oneself and it includes items such as "In my life I never make decisions based on my emotions'' or "I don't always understand why I react in a certain way". The inter-personal scale (10 items) refers to emotional competences related to other people and it includes items such as “If I wanted, I could easily make someone feel uneasy” or “Most of the time, I understand why the people feel the way they do”. All items are answered on a 7-point likert scale (1 =  Not at all agree , 7 =  Completely agree ). The internal consistency of the S-PEC scale, measured by means of Cronbach’s α, was adequate (α = 0.81). Further, we measured participants' risk perception of COVID-19 by asking them to indicate how scared they felt of the virus, how serious they think the disease is, how likely they think they are to get sick, and how worried they feel about the various mutations [ 10 , 31 ]. We then asked participants to report their age, gender, educational level, their occupation (health workers, white-collar workers, entrepreneurs, other non-health-related contract forms, and the unemployed), whether they already had COVID-19 (No or don't know, Yes asymptomatic, Yes with few symptoms, and Yes with severe symptoms). The questionnaire was pilot tested by 30 participants who filled the questionnaire first then were asked to discuss and comment on the comprehension of the wording of questions and answer options. Two questions were slightly reworded to improve clarity.

Scoring of reasons

In the first instance, a bottom-up process from reasons to categories was followed by reading a sample of both types of reasons, with the aim of constructing initial categorizing patterns. Examples of pro-vaccination reasons include protection of personal and public health, return to normality, and civic duty; while reasons against vaccination include fears for one's health, sociopolitical perplexity, and distrust of science and institutions (see Additional file 1 : Appendix 1). At this stage, response information was added to the categorizations indicating whether the responses were valid or missing/invalid. Specifically, valid responses had both a reason and the respective weight; missing/invalid responses were those where reason, weight or both were missing or with utterly unrelated concepts or meaningless strings or letters. Finally, by applying a top-down process, we constructed macro categories by merging specific conceptually assimilated categories, so as to avoid the dispersion of data into too many ramifications (see Table S 5 ).

Statistical analysis

Descriptive analysis.

All the analyses were performed only on respondents with no missing observations on the variables of interest (1,681, 92%) excluding also a limited number of those with a non-valid set of pro- or against-vaccination reasons (Table S 1 ; 0.9%). The study variables were summarized in frequency tables and figures (frequency for categorical variables, median and Interquartile Range (IQR) for continuous variables). Kruskal–Wallis tests were computed to compare the distribution of continuous variables across the categories of vaccine status. Categorical variables were compared using chi-squared or Fisher's exact test where expected frequencies in any combination were less than 10. Statistical significance was assumed at the 5% level.

COVID-19 Perceived risk—exploratory factor analysis

An Exploratory Factorial Analysis (EFA) was performed on groups of variables related to COVID-19 perceived risk: scare, severity, contagiousness, and the likelihood of mutation. Since the presence of limited support (0–100 scale) and non-normal marginal distribution, the EFA was performed using a weighted least square mean and variance adjusted (WLSMV) estimator. We extracted from the EFA only the first factor, which explained the highest percentage of variance (Table S 2 ; 61%). The estimated loadings were then used to calculate the regression factor scores. The number and the name of items included, their internal consistency (Cronbach’s α), the estimated loadings, and the proportion of deviance explained are reported in Table S 2 .

Propensity score weighting

At the time of data collection (March–April 2021), the vaccine offer was not opened to the entire population. To adjust the estimates of the following regression models for the propensity to receive the vaccine, we estimated a logistic regression model in which the dependent variable was the response to the question about a previous vaccination offer (Yes/No), while all the factors that can influence the vaccine proposal served as independent variables: age-class (young ≤ 25, young adult 26–45, adult 46–65, elderly 66–84), gender (male, female), occupational status (health worker, not at work, not health worker-employer, not health worker-entrepreneur, not health worker-other), educational level (low = middle school or lower, medium = high school, high = degree or higher), key worker status (yes, no, I don’t know), past COVID-19 contagion (no, yes asymptomatic, yes low symptoms, yes severe symptoms), and familiar status (single/in a relation, married/cohabitant, divorced/separated/other). The predicted probability was used to estimate the weights for the following regression models using a framework based on an inverse probability of treatment weighting (IPTW; for further details, see [ 39 ]).

Regression models

Our research questions can be summarized by trying to describe the relationship exploited by the directed acyclic graph in Fig.  1 . The first step regression model aims to assess how S-PEC scores (inter- and intra-personal) and COVID-19 risk perception influenced the reasons pro- and against-vaccination produced by participants while considering the presence of a set of confounders (age-class, gender, occupational status, educational level, key worker status, and familial status).

Since both the pro- and against-vaccination reasons are formed by a categorical variable with 4 levels (missing/invalid, low 1/2/3 reasons, high 1 reason, high 2/3 reasons), we evaluated whether S-PEC and COVID-19 risk perception scores influenced the distribution of pro- and against-vaccination reasons employing two different multinomial regression models including all the previously mentioned variables (S-PEC, COVID-19 risk perception, and confounders). The overall significance of a variable in the model was tested using an analysis of the variance (ANOVA).

The second step in the analyses was taken to investigate whether the generation of pro- and/or against-vaccination reasons affected the willingness to be vaccinated or the vaccine acceptance. Each participant reported their willingness to get vaccinated on a 0–100 scale or, in case a COVID-19 vaccine had been already offered, their vaccination status (done, booked, or refused). For respondents who had not yet been contacted for booking/getting the vaccination, we evaluated whether pro- and/or against vaccination reasons influenced the willingness to be vaccinated by employing a beta regression model in which the respondent variable scale (0–100) was rescaled to be a relative frequency [ 40 ]. The full models included the semi-quantitative pro- and against-vaccination reasons variables and, even if non-statistically significant, all the confounders in order to adjust for age class, gender, educational level, occupational status, familial status, and key worker status. Beta regression coefficients were estimated using a maximum likelihood estimator (MLE). Results were presented in terms of Odds Ratios (ORs) by exponentiating the estimated coefficients and producing a relative 95% Confidence Interval (95% CI).

A further regression analysis was conducted through a logistic regression model to explain which factors influenced vaccine acceptance (done/booked vs. refused) among those who already received the vaccine offers. The full model included the same variables considered in the previous beta regression model, after recoding the variables related to pro- and against-vaccination reasons into a binary form (missing/invalid vs. presence of at least one valid reason) due to low sample size and the sparsity of the response variable. As a consequence, we tested a simplified version of Hypothesis 3, considering the presence (vs. missing/invalid) of pro- or against-vaccination reasons in order to test their influence on the probability of having accepted/booked the vaccination.

Results were reported employing ORs and relative 95% Confidence Interval (95% CI).

Both the beta regression and logistic regression were weighed using an IPTW scheme to take into account the presence of a different probability of a vaccine offer among respondents.

The presence of an interaction between pro- and against-vaccination reasons was tested by means of a likelihood ratio test. The regression models were estimated through the R 4.0 program (R Core Team, 2021), and for the beta regression we employed the betareg package [ 41 ].

Classification tree analysis

Two different classification tree analyses were carried out to characterize profiles with a low or high willingness to get vaccinated (respondents who had not yet been offered a vaccine) or with a low or high probability to accept/book the vaccine (respondents who had already received a vaccine offer).

Although the dependent variables were non-normally distributed (scale 0–100 or binary 0/1), we considered them continuously distributed adopting a splitting criterion based on the analysis of the variance (ANOVA). We tested the inclusion in the model considering the type of pro- or against-vaccination reasons. A tree pruning strategy was adopted to reduce classification tree overfitting considering the overall determination coefficient (R 2 ) as an indicator and fixing that at each classification step in the tree if the R 2 did not increase by 0.5% the tree should be stopped. Classification tree analysis was performed using the rpart package [ 42 ] on R environment [ 43 ].

The main characteristics of the respondents by vaccination status (received, booked, not yet, and refused) were reported in Table 1 . Among respondents, 23.3% were offered the vaccination and, among them, 13.8% refused it (Fig. S 1 ). Among those not yet eligible, willingness to be vaccinated showed a median value of 80 points (average: 68.7). The distribution of gender was almost equal (51% females, 49% male), and the median age was 47 years old (IQR: 34–57 years). Educational level was low in 41% of the sample, while the most represented employment status was not at work (39%) followed by employed (37%), and entrepreneur (9.8%). A quarter (26%) of respondents classified themselves as key workers during the COVID-19 pandemic. The predominance of respondents (63%) were married or living with a partner, while only 9% had had a COVID-19 infection.

COVID-19 risk perception and the S-PEC score (intra- and inter-personal) were categorized into three categories according to empirical tertiles (low:1 st tertile, medium: 2 nd tertile, high: 3 rd tertile). The level of COVID-19 risk perception differed across vaccination status ( p  < 0.001). The reasons pro- and against-vaccination have a different distribution according to COVID-19 vaccination status (Table 2 ). The highest frequency of pro-vaccination reasons was reported by those who received the COVID-19 vaccination; conversely the lowest frequency of pro-vaccination reasons was generated by those who refused the vaccine, whereas, intermediate frequencies were shown by people who were not yet offered the vaccination and those who had booked the vaccine, who reported a comparable distribution of the number of pro-vaccination reasons. A reverse pattern was exhibited for against-vaccination reasons, which were generated with the highest percentage by respondents who refused the vaccine (in particular high and multiple reasons). Conversely those who have booked/done the COVID-19 vaccine showed the lowest frequency of reasons against vaccination, while respondents without a vaccine offer reported an intermediate frequency of reasons against vaccination.

The estimated results of the propensity score model for the vaccine offer are shown in Table S 3 . Respondents older than 65 years exhibited a nearly four-fold increase in the probability to be contacted for the vaccination with respect to the reference age-class (≤ 25 years). All non-health employees showed a high drop in the probability of having received the vaccination offer, while the probability increased as the educational level increased. Being a key worker during pandemic resulted in an increased probability of having received the vaccination proposal while no statistical significant influence was observed for the past COVID-19 contagion or for familial status. The distribution of the propensity score by vaccine status obtained by the model is reported in Fig. S 1 , in which it is shown that the distribution is different by vaccine offer, but the two density functions partially overlap. The discriminant power of the propensity score estimated was only discrete (ROC analysis, AUC: 71.8%).

The results of the multinomial regression models which investigated the effect of emotional competences and risk perception on the generation and the predictors of pro- and against-vaccination reasons with respect to missing/invalid level and the reference categories are presented in Table 3 (see also Fig.  1 ). Compared to the reference category (missing/invalid), high values of S-PEC-self were associated with a higher probability to report pro- and against-vaccination reasons (all ORs > 1.5), while high values of S-PEC-others were associated with a mild probability to report multiple pro-vaccination reasons (all ORs > 1.42). A high (vs. low) COVID-19 risk perception increased the frequency of one strong pro-vaccination reason while it had a null or low decremental effect on the frequency of against weak vaccination reasons. Further, medium (vs. low) COVID-19 risk perception only increased the strong pro-vaccination. Compared to the reference age-class (young), adults and elderly showed a higher probability to generate a strong unique pro-vaccination reason (adults vs. young OR: 1.72, 95%CI: 1.07–2.77); elderly vs. young OR: 2.24, 95%CI: 1.26–4.00), while lower probability to generate against vaccination reasons was observed for elderly compared to young respondents (OR: 0.48, 95%CI: 0.26–0.90). Female participants generated fewer strong pro-vaccination reasons (ORs < 0.73), and also fewer multiple weak against-vaccination reasons (OR: 0.68, 95%CI: 0.51–0.91) compared to male participants. Overall, the occupational status did not affect the generation of pro- and against-vaccination reasons (ANOVA test p  > 0.05); however an increased frequency of low 1/2/3 against-vaccination reasons emerged among the category “Other—not health workers” compared to the reference group represented by health workers (OR: 2.52, 95%CI:1.09–5.86). Pro-vaccination reasons are more frequent as the educational level becomes higher, while the relation of the educational level with against- vaccination reasons appears weaker and significantly increased only for the presence of multiple weak reasons against vaccination (High vs. Low educational level, OR: 2.10, 95%CI: 1.45–3.03). Not being a key worker is related to a higher frequency of multiple strong both pro- and against vaccination reasons. The familiar status did not seem to be related to the frequency or the strength of the reasons, except for the status of divorced/separate/other that, with respect to the reference category single/in a relation, showed a twofold increase in the frequency of a strong unique against vaccination reason.

Through a beta regression model we investigated the predictors of willingness to be vaccinated for the participants who had not yet received the vaccination offer. As shown in Table 4 , the generation of pro- and against-vaccination reasons strongly influences the willingness to be vaccinated. The predicted probability from the combination of pro- and against-vaccination reasons is shown in Fig.  2 (and Table S 4 ): respondents who did not report any reasons had an average predicted probability above 60%, while the presence of at least one reason against vaccination decreased the willingness to be vaccinated, in particular in the case of strong multiple against vaccination reasons. On the other hand, the presence of at least one pro-vaccination reason strongly increased the probability. In the end, the presence of both strong multiple pro and against vaccination reasons resulted in a high probability of getting the vaccine. Regression models adjusted by propensity score weighting allowed us to comment the influence of potential confounders: males reported an increased willingness to be vaccinated (vs. females; OR: 1.26, 95%CI: 1.11–1.42), and so did those with a high educational level (vs. low; OR: 1.22, 95%CI: 1.04–1.44) while the opposite was true among no key workers (vs. key workers; OR: 0.85, 95%CI: 0.72–0.99).

figure 2

Predicted willingness to get vaccinated by interaction between pro- and against-vaccination reasons

Finally, with a logistic model we investigated the predictors of vaccine acceptance\booking. As shown in Table 5 , people who accepted or booked the COVID-19 vaccine were more likely to show pro-vaccination reasons and less likely to show against-vaccination reasons. Interestingly, when both kinds of reasons were provided, the probability of getting/booking the vaccine remained nevertheless very high (Fig.  3 ). Compared to the age class [46-65], younger age classes reported a strong reduction in the probability to have accepted/booked the vaccine. Male participants (OR: 1.53, 95%CI: 1.10–2.12) and those with a high educational level (OR: 2.65, 95%CI: 1.60–4.54) showed an increased probability of vaccine acceptance/booking when compared to females and participants with medium educational level, respectively. Being a health worker had a strong and positive influence on the probability of getting/booking the vaccine with respect to those employed as no health workers (OR: 6.61, 95%CI: 2.10–30.9).

figure 3

Predicted COVID-19 vaccine acceptance/booking probability by interaction between pro- and against-vaccination reasons

Two regression tree models were estimated separately on the willingness to be vaccinated for those who had not yet received the vaccine offer and on the booking/acceptance of the vaccination in case of vaccine offer. Results are shown in Fig.  4 . Considering the willingness to be vaccinated, the presence of distrust in the vaccination was the most discriminant variable; this latter in conjunction with reasons related to protection, herd immunity, and the absence of no clinical trials guided the willingness to be vaccinated. In particular, the combination of the absence of reasons related to distrust and the presence of protection reasons showed the highest values on the intention to get vaccinated (average value = 83 points, 22% of the sample). On the other side, the presence of at least one reason related to distrust without any positive reasons concerning protection, herd immunity, and trust predicted the lowest willingness to be vaccinated (average value = 29 points, 6% of the sample).

figure 4

Regression tree for the willingness to be vaccinated (left) and for COVID-19 vaccine acceptance/booking (right) by selected type of pro- and against-vaccination reasons

The sense of protection given by the vaccine or the trust in the vaccination was the main reason for vaccination acceptance/booking (average probability = 0.96 and 1.00, 33% and 5% of the sample, respectively). The combination of the absence of protective reasons and the presence of doubts about the lack of clinical studies results in the lowest likelihood of accepting/booking the vaccination (average probability = 0.40, 3% of the sample). The presence of distrust and the belief in herd immunity were the other discriminant reasons with intermediate results in terms of the probability to accept/book the vaccination.

The frequency of each category of pro- and against-vaccination reasons by COVID-19 vaccine status is shown in Table S 5 .

In the present study we aimed to investigate the reasons behind the decision to get (or not) vaccinated against COVID-19 by asking participants to report up to three reasons in favor and three reasons against the COVID-19 vaccination and to indicate the weight these reasons had in their decision. Although some researchers discourage categorization, the sparsity of the responses related to the number of reasons and their weight implies a semi-quantitative solution since a simple variable multiplication between rating and frequency (recoding to zero in case of zero reasons) is not feasible. In this case, this approach was not satisfactory as such coding would not allow differences underlying identical scores to emerge. For example, only 1 strong motivation (rating 5) would be coded in the same way as three motivations with weights 1, 2, and 2. Instead, we decided to categorize the combination of frequency-weight reasons as categorical variables (missing/invalid, low 1/2/3 reasons, high 1 reason, high 2/3 reasons) in which rating and number of reasons are combined into a single variable. This categorization allows us not only to study the weight that different categories have on the decision to get vaccinated but also to overcome the risk of imputing a specific value for missing responses.

As shown in Fig.  1 , analyses were run in two steps. The first step aimed to assess how emotional competences and risk perception impacted the generation of reasons pro- and against-vaccination (Hypotheses 1A and 1B), whereas the second step investigated how different reasons affected the intention to get vaccinated (Hypotheses 2 and 3). The results support the hypotheses that emotional competences and risk perception play a significant role. Regarding emotional competence as measured by the S-PEC, the results show that high intra-personal emotional competence positively influences the production of stronger and more numerous pro-vaccination and against-vaccination reasons (confirming Hypothesis 1A). This result suggests that greater awareness of one's emotions and of what one is feeling promotes higher fluency in the production of reasons about the vaccination. Research has shown that people can be ambivalent about vaccines and hold both positive and negative reasons [ 2 , 44 ]. It is reasonable to assume that, compared to people with low intra-personal emotional competences, those with high intra-personal emotional competences are more likely to have higher awareness of these contrasting attitudes and to embrace them without suppressing one of the two stances. Furthermore, the results showed that only high inter-personal emotional competences influence the generation of multiple strong reasons in favor of vaccination, and this appears to be related to the perception of vaccines as a public good and a tool to protect others. As for risk perception, a moderate to high perception of risk associated with COVID-19 influences the generation of strong pro-vaccination reasons (confirming Hypothesis 1B). These results are in line with the literature showing that a high perception of risk associated with COVID-19 positively influences the decision to get vaccinated [ 30 , 31 , 45 , 46 , 47 ]. In particular, perceiving a medium/high risk leads to generating a high number of reasons strongly in favor of vaccination, while reducing the number and weight of the reasons against the vaccine. The main premise of the psychological literature examining the relationship between risk perception and affect is that one’s behaviors are affected by rapid and intuitive evaluations, either positive or negative, people make while assessing things happening around them [ 48 , 49 ]. Thus, an event is evaluated not only on the basis of objective information, but also on the basis of the experienced feelings. Emotional competence, which is clearly related to affect, also modulates how we perceive and process the emotional component underlying our judgments [ 36 ].

The results also show that, compared with younger people, those over 45 more frequently produce reasons in favor of vaccines while those over 65 produce fewer reasons against vaccination. These results are in line with the fact that younger people are at lower risk of severe consequences than older people [ 50 ], but can also be explained by considering that age was particularly salient during the period of the data collection, as the vaccination campaign was phased out by age groups, starting from the elderly. As for gender, women produced less strong pro-vaccine and weak-against vaccine reasons than men. These results are congruent with the general findings in the literature on vaccine hesitancy showing that females are more hesitant than males [ 5 , 51 , 52 ]. Furthermore, medium and high educational levels favored the production of both pro- and against-vaccination reasons, whereas not being in a relationship or being divorced/separated increased the generation of a strong reason against vaccination. Consistent with previous work [ 53 ], we confirmed that non-health professionals participants or non-key workers categories showed a lower intention to get vaccinated and a higher likelihood of having refused the vaccine compared to health care and key workers.

Once the role of demographics aspects and individual differences on the generation of reasons pro and/or against vaccination had been established, we ran two additional models to assess the role that those reasons have on the decision to accept the vaccination (see Fig.  1 ). More specifically, we tested the hypothesis that a higher number of pro- (vs. against-) vaccination reasons, connoted by a higher weight, corresponded to a stronger (vs. weaker) acceptance of vaccination (Hypothesis 2). Since data collection took place between March and April 2021, when the vaccination campaign had already started in Italy, we developed two different regression models, with the first investigating the willingness to be vaccinated in participants who were not yet offered the vaccine and the second investigating the likelihood of accepting/booking or refusing the vaccine in those who already received the offer. In particular, thanks to the propensity score weighting technique, we managed to reduce the estimates bias, especially for those factors (age, occupational status, and educational level) that influenced the vaccine offer the most [ 54 ]. The results of the two models are very similar, as the intention to get vaccinated and the likelihood of having accepted/booked the vaccine are predicted by the same factors. Specifically, the production of strong positive reasons increases either the intention to get vaccinated or having accepted/booked the vaccination. In contrast, generating strong negative reasons reduces vaccination intention and predicts the refusal of the vaccination. Hypothesis 2 is thus confirmed.

Results on the interactions between reasons, pro- and against-vaccination, and vaccination intention or vaccination choice are particularly worthy of attention. The third hypothesis was derived from the literature on prospect theory [ 25 , 26 ], suggesting that at equal intensity subjective losses are more important in determining a decision than subjective gains. We therefore expected that negative reasons would count more than positive reasons in deciding whether to get vaccinated or to accept the vaccine. However, in contrast to our hypothesis, the results showed that just the generation of a single positive reason with a strong weight was enough to shift behavior and attitude in favor of the vaccination, regardless of the number and weight of negative reasons. In other words, vaccine refusal is predicted by the absence of any positive strong reasons, while when people generate both positive and negative reasons, the positive ones seem to yield a particularly important role when having a strong weight. According to prospect theory, people evaluate their goals depending on the reference point they focus on. During the pandemic, the vaccination offered an opportunity to be safer, reduced the risk of infection, and more generally appeared as the best way to re-open and get back to life as it was before COVID-19. After a year of pandemic characterized by periods of lockdown and some re-opening attempts, people were likely feeling in a state of loss (e.g., the lost freedom to go out and meet with friends and family, the lost freedom of traveling) and were looking forward to whatever chance available to recover and return to their previous lifestyle and habits. Just as those who gamble are willing to do anything to make up for a loss, so probably those who were not entirely certain about the vaccine were more willing to take risks to recover the loss in quality of life. It follows that the pandemic emergency made people forgo some of their doubts about the vaccine when, at the same time, they had reasons to get their shot. In addition, several studies [ 19 , 55 , 56 ] have highlighted the relationship between anticipated regret and vaccination, showing that anticipated regret is associated with an increased likelihood of adhering, or having one's children adhere, to vaccine offerings. Trusting that the vaccine would work, focusing less on its potential side effects, made sense for people who were looking forward to recovering what was perceived (and was indeed) a loss of quality of life and freedom, because they desired to be back doing the things had ever enjoyed doing (e.g., going to restaurants, movies, etc.). This finding is also interesting from a communicative perspective: providing positive reasons that resonate well with people and have therefore a strong weight for them could offset their doubts, yielding to a greater acceptance of COVID-19 vaccination.

Therefore, it is crucial to consider what kind of reasons drive the decision toward or against vaccination. Allowing participants to openly report their reasons pro- or against- vaccination can facilitate a freer exploration of the concerns and reservations of the most hesitant individuals [ 24 ], thus providing valuable insights for shaping future vaccine-related communications. In fact, thanks to the regression tree on vaccination intention, it emerges that positive attitudes toward vaccines are strongly determined by "Protection" and "Community Protection" reasons. The fact that the sense of individual and collective protection is among the principal determinants of the decision with respect to COVID-19 vaccines suggests that in general vaccination is seen as a means of avoiding nefarious clinical consequences. The effect of the sense of communal protection as the reason favoring vaccination and of other-oriented S-PEC in determining the generation of multiple pro-vaccine motivations confirms previous results suggesting that people often are more willing to get vaccinated primarily to protect their loved ones [ 57 , 58 , 59 ], especially when they have a good understanding of how community immunity works [ 60 , 61 ]. However, it is worth mentioning that, at the time the study was conducted (March–April 2021), there was still uncertainty about whether COVID-19 vaccines could provide sterilizing immunity (i.e., could prevent the transmission of the infection) in addition to protecting the individual. To foster people's willingness to get vaccinated, it is crucial from a public health perspective that people understand that even when vaccines do not yield sterilizing immunity, vaccination can still increase protection of others by reducing the circulation of the virus.

The reasons that influenced the willingness to be vaccinated or the vaccination acceptance/booking were generally in line with the existing literature, although they differed depending on whether respondents had already been offered a vaccine or not: among those who did not received a vaccination offer, the main reasons promoting vaccination acceptance were protection against COVID-19 for oneself, one's family, friends, and community [ 23 ], while among the main reasons that reduced vaccination adherence for those who got the vaccine offer we found the lack of clinical trials [ 62 , 63 ], as well as the distrust of institutions and science [ 22 ]. This latter emerged as the most reported negative reason by those who have refused the vaccine and those who have not yet received the vaccine offer. Thus, effective communication aimed at defusing the perception of risk regarding vaccines themselves should focus on enhancing trust in the scientific process and experimental rigor. Indeed, these reasons were deemed as very important not only by those who refused the vaccination, but also by those who had not yet been offered the vaccine, and even by those who held mixed feelings but eventually chose to get vaccinated. While it is unlikely that individuals firmly against vaccination will be persuaded by simple interventions [ 64 ], we should keep in mind that vaccine hesitancy is a dynamic process. As such, reducing hesitancy or enhancing ambivalence, for example through motivational interviewing (e.g., [ 65 , 66 ]), could potentially lead to small shifts towards greater vaccine acceptance.

Our findings are also in line with the results of other international studies that have used a qualitative approach to examine reasons for and against vaccinations. For example, Hamilton and colleagues [ 67 ] employed a qualitative content analysis to extract the main motivations for and concerns about COVID-19 vaccination from medical records obtained by 102 consults in Australia. The study was conducted in June 2021, and revealed that most consults were driven by doubts about the vaccine available and recommended at that time (i.e., ChAdOx1-S, also known as Vaxzevria), followed by need for further information regarding vaccines and vaccination, also considering specific comorbidities. Notwithstanding the peculiarity of the Australian context in which a very low number of COVID-19 infections was observed, the analysis performed by Hamilton et al. [ 67 ] revealed a set of themes that largely overlaps with the reasons identified in our study. Indeed, among the reason to get vaccinated, 5 themes emerged: a) Protection, b) Occupational or facility responsibility or requirement, c) Trust in primary healthcare physician, d) Autonomy, and e) Civic duty, likewise, concerns about vaccination were mainly in terms of: a) Perceived vaccine risks, b) Perceived vaccine performance, c) Uncertainty, d) Autonomy, and e) Fairness in access. An aspect worth noting is that after the consultation, 81% of participants received the vaccination, 19% did not. Consistent results were observed in another study by Purvis and colleagues [ 68 ] conducted in the USA, which focused specifically on “hesitant adopters”, i.e. those who accepted vaccination but showed some level of hesitancy. To note that in this study the focus was on factors influencing the decision to get the COVID-19 vaccine, not on reasons against it. The authors interviewed 49 participants as a follow up of a larger study ( N  = 2022) conducted from mid-September 2021 through mid-October 2021, to explore factors that influenced their decision-making process about COVID-19 vaccination [ 68 ]. Two main themes emerged, each with four subthemes: 1) sociocultural context (political, cultural, health professionals, employment, and media environment) and 2) individual and group influences (attitudes and beliefs related to vaccines, family and social networks, free to return to normal, and COVID-19 outcomes).

As for the Italian context, to the best of our knowledge, only one study (i.e., [ 69 ]) attempted to provide a qualitative examination of the concept associated with vaccination in general, through open-ended and closed questions. Notably, this study was conducted a year later than our own study (April–May 2022) and was administered to a non-representative sample of Italians. The authors used a combination of closed and open-ended questions to assess concepts associated with vaccination in general. Consistent with our findings, Boragno et al. reported that participants who had been vaccinated against COVID-19 (92% of the sample) frequently mentioned concepts related to protection and salvation, whereas those who were not vaccinated frequently mentioned mistrust and ambivalence as concepts associated with vaccination [ 69 ].

This study has some limitations. First, COVID-19 perceived risk score was obtained only with respect to the disease and a similar score should be of interest for the COVID-19 vaccine. Second, data were collected during a vaccine offer limited to a well-defined slice of the population and the investigation on the vaccine acceptance/booking has, as a consequence, a limited sample size. Finally, the lack of a longitudinal perspective does not allow us to evaluate how strong the association is between the willingness to get vaccinated, vaccine acceptance and potential changes in risk perception. Thus, we cannot generalize our results beyond the period of data collection and to other countries or health systems. Since the dynamics have now changed, results may not apply to the decision to get a booster shot or not or an annual shot, however it might be interesting to study what motivations are most relevant now. Likewise, it remains to be established whether our results are generalisable to other populations.

Future studies could consider how the interaction between perceived risk associated with the disease and perceived risk associated with the vaccine influences the choice to get the shot. Furthermore, it would be important to explore how we can harness the reasons that most hold back vaccination in a specific communication strategy for the most hesitant people. Moreover, at the time of data collection, the vaccination campaign was still at an early stage, and only a small portion of the population had already received their shot. Therefore, we believe that it might be of particular interest to know more in detail, with a larger sample, what are the reasons that to date, almost 2 years after the release of the vaccine, still make some people reject the vaccine. Only by knowing these reasons will it be possible to develop appropriate vaccination campaigns.

In conclusion, our work examined pro- and against-vaccination reasons and how these, and their interaction, influence the decision to get vaccinated or not. Specifically, high emotional competence and risk perception influence the generation of pro- and against-vaccination reasons and that the presence of a strong pro-vaccination reason shifts intention toward vaccination. We also highlighted the category of reasons that influence intention to vaccinate. That said, given that the discussion about the next doses is still open and that in any case the next pandemic is a matter of when and not if [ 70 ], it is of paramount importance to know the best way to counteract vaccine hesitancy, fostering more effective communication strategies.

Availability of data and materials

Raw data are available on https://osf.io/dpn2q/?view_only=af05427467634411b471af7a8475ffab .

European Centre for Disease Prevention and Control. Cumulative uptake (%) of the primary course among adults (+18) in EU/EEA countries as of 2023–09–07. https://vaccinetracker.ecdc.europa.eu/public/extensions/COVID-19/vaccine-tracker.html#uptake-tab . Accessed 12 Sept 2023.

MacDonald NE. Vaccine hesitancy: Definition, scope and determinants. Vaccine. 2015; https://doi.org/10.1016/j.vaccine.2015.04.036.

Bedford H, Attwell K, Danchin M, Marshall H, Corben P, Leask J. Vaccine hesitancy, refusal and access barriers: the need for clarity in terminology. Vaccine. 2018; https://doi.org/10.1016/j.vaccine.2017.08.004.

Paul KT, Zimmermann BM, Corsico P, Fiske A, Geiger S, Johnson S, Kuiper JM, Lievevrouw E, Marelli L, Prainsack B, Spahl W. Anticipating hopes, fears and expectations towards COVID-19 vaccines: a qualitative interview study in seven European countries. SSM-Qual Res Health. 2022; https://doi.org/10.1016/j.ssmqr.2021.100035.

Murphy J, Vallières F, Bentall RP, Shevlin M, McBride O, Hartman TK, McKay R, Bennett K, Mason L, Gibson-Miller J, Levita L. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat Commun. 2021; https://doi.org/10.1038/s41467-020-20226-9.

Soares P, Rocha JV, Moniz M, Gama A, Laires PA, Pedro AR, Dias S, Leite A, Nunes C. Factors associated with COVID-19 vaccine hesitancy. Vaccines. 2021; https://doi.org/10.3390/vaccines9030300.

Fisher KA, Bloomstone SJ, Walder J, Crawford S, Fouayzi H, Mazor KM. Attitudes toward a potential SARS-CoV-2 vaccine: a survey of US adults. Ann Internal Med. 2020; https://doi.org/10.7326/M20-3569.

Robertson E, Reeve KS, Niedzwiedz CL, Moore J, Blake M, Green M, Katikireddi SV, Benzeval MJ. Predictors of COVID-19 vaccine hesitancy in the UK household longitudinal study. Brain Behav Immun. 2021; https://doi.org/10.1016/j.bbi.2021.03.008.

Caserotti M, Gavaruzzi T, Girardi P, Tasso A, Buizza C, Candini V, Zarbo C, Chiarotti F, Brescianini S, Calamandrei G, Starace F. Who is likely to vacillate in their COVID-19 vaccination decision? Free-riding intention and post-positive reluctance. Prev Med. 2022; https://doi.org/10.1016/j.ypmed.2021.106885.

Caserotti M, Girardi P, Tasso A, Rubaltelli E, Lotto L, Gavaruzzi T. Joint analysis of the intention to vaccinate and to use contact tracing app during the COVID-19 pandemic. Sci Rep. 2022; https://doi.org/10.1038/s41598-021-04765-9 .

Pereira B, Fehl AG, Finkelstein SR, Jiga‐Boy GM, Caserotti M. Scarcity in COVID‐19 vaccine supplies reduces perceived vaccination priority and increases vaccine hesitancy. Psychol Mark. 2022; https://doi.org/10.1002/mar.21629 .

Đorđević JM, Mari S, Vdović M, Milošević A. Links between conspiracy beliefs, vaccine knowledge, and trust: Anti-vaccine behavior of Serbian adults. Soc Sci Med. 2021; https://doi.org/10.1016/j.socscimed.2021.113930 .

Candini V, Brescianini S, Chiarotti F, Zarbo C, Zamparini M, Caserotti M, Gavaruzzi T, Girardi P, Lotto L, Tasso A, Starace F. Conspiracy mentality and health-related behaviour during the COVID-19 pandemic: a multi-wave survey in Italy. Public Health. 2023, https://doi.org/10.1016/j.puhe.2022.11.005 .

Asch DA, Baron J, Hershey JC, Kunreuther H, Meszaros J, Ritov I, Spranca M. Omission bias and pertussis vaccination. Medic Decis Mak. 1994; https://doi.org/10.1177/0272989X9401400204 .

Meszaros JR, Asch DA, Baron J, Hershey JC, Kunreuther H, Schwartz-Buzaglo J. Cognitive processes and the decisions of some parents to forego pertussis vaccination for their children. J Clin Epidemiol. 1996; https://doi.org/10.1016/0895-4356(96)00007-8 .

Bell RA, McGlone MS, Dragojevic M. Vicious viruses and vigilant vaccines: Effects of linguistic agency assignment in health policy advocacy. J Health Commun. 2014; https://doi.org/10.1080/10810730.2013.81133 .

Nan X, Madden K. HPV vaccine information in the blogosphere: how positive and negative blogs influence vaccine-related risk perceptions, attitudes, and behavioral intentions. Health Commun. 2012; https://doi.org/10.1080/10410236.2012.661348 .

Christy SM, Winger JG, Raffanello EW, Halpern LF, Danoff-Burg S, Mosher CE. The role of anticipated regret and health beliefs in HPV vaccination intentions among young adults. J Behav Med. 2016; https://doi.org/10.1007/s10865-016-9716-z .

Chapman GB, Coups EJ. Emotions and preventive health behavior: worry, regret, and influenza vaccination. Health Psychol. 2006; https://doi.org/10.1037/0278-6133.25.1.82 .

Klasko-Foster LB, Przybyla S, Orom H, Gage-Bouchard E, Kiviniemi MT. The influence of affect on HPV vaccine decision making in an HPV vaccine naïve college student population. Prev Med Rep. 2020; https://doi.org/10.1016/j.pmedr.2020.101195.

World Health Organization = Organisation mondiale de la Santé. Understanding the behavioural and social drivers of vaccine uptake WHO position paper – May 2022 – Comprendre les facteurs comportementaux et sociaux de l’adoption des vaccins Note de synthèse de l’OMS – mai 2022. Weekly Epidemiological Record = Relevé épidémiologique hebdomadaire, 97 (20), 209 - 224. World Health Organization = Organisation mondiale de la Santé. 2022; https://apps.who.int/iris/handle/10665/354460 .

Fieselmann J, Annac K, Erdsiek F, Yilmaz-Aslan Y, Brzoska P. What are the reasons for refusing a COVID-19 vaccine? A qualitative analysis of social media in Germany. BMC Public Health. 2022; https://doi.org/10.1186/s12889-022-13265-y .

Moore R, Purvis RS, Hallgren E, Willis DE, Hall S, Reece S, CarlLee S, Judkins H, McElfish PA. Motivations to vaccinate among hesitant adopters of the COVID-19 vaccine. J Commun Health. 2022; https://doi.org/10.1007/s10900-021-01037-5 .

Cassels TG, Birch SA. Comparisons of an open-ended vs. forced-choice ‘mind reading’task: Implications for measuring perspective-taking and emotion recognition. PLoS One. 2014; https://doi.org/10.1371/journal.pone.0093653 .

Kahneman D, & Tversky A. On the interpretation of intuitive probability: A reply to Jonathan Cohen. 1979; https://doi.org/10.1016/0010-0277(79)90024-6 .

Tversky A, Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty. J Risk Uncertain. 1992; https://doi.org/10.1007/BF00122574 .

Baumeister RF, Bratslavsky E, Finkenauer C, Vohs KD. Bad is stronger than good. Review of general psychology. 2001; https://doi.org/10.1037/1089-2680.5.4.323 .

Chor JS, Ngai KL, Goggins WB, Wong MC, Wong SY, Lee N, Leung TF, Rainer TH, Griffiths S, Chan PK. Willingness of Hong Kong healthcare workers to accept pre-pandemic influenza vaccination at different WHO alert levels: two questionnaire surveys. BMJ. 2009; https://doi.org/10.1136/bmj.b3391 .

Pareek M, Clark T, Dillon H, Kumar R, Stephenson I. Willingness of healthcare workers to accept voluntary stockpiled H5N1 vaccine in advance of pandemic activity. Vaccine. 2009; https://doi.org/10.1016/j.vaccine.2008.12.006 .

Viswanath K, Bekalu M, Dhawan D, Pinnamaneni R, Lang J, McLoud R. Individual and social determinants of COVID-19 vaccine uptake. BMC Public Health. 2021; https://doi.org/10.1186/s12889-021-10862-1 .

Caserotti M, Girardi P, Rubaltelli E, Tasso A, Lotto L, Gavaruzzi T. Associations of COVID-19 risk perception with vaccine hesitancy over time for Italian residents. Soc Sci Med. 2021; https://doi.org/10.1016/j.socscimed.2021.113688 .

Finucane ML, Peters E, & Slovic P. (2003). Judgment and decision making: The dance of affect and reason. In: S. L. Schneider & J. Shanteau, editors. Emerging Perspectives on Judgment and Decision Research Cambridge. University Press; 2003. 327–364. https://doi.org/10.1017/CBO9780511609978.012 .

Pittarello A, Conte B, Caserotti M, Scrimin S, Rubaltelli E. Emotional intelligence buffers the effect of physiological arousal on dishonesty. Psychonomic Bull Rev. 2018; https://doi.org/10.3758/s13423-017-1285-9 .

Scrimin S, Rubaltelli E. Dehumanization after terrorism: the role of psychophysiological emotion regulation and trait emotional intelligence. Curr Psychol. 2021; https://doi.org/10.1007/s12144‐019‐00189‐x .

Tomljenovic H, Bubic A, Erceg N. It just doesn’t feel right–the relevance of emotions and intuition for parental vaccine conspiracy beliefs and vaccination uptake. Psychol Health. 2020; https://doi.org/10.1080/08870446.2019.1673894 .

Gavaruzzi T, Caserotti M, Leo I, Tasso A, Speri L, Ferro A, Fretti E, Sannino A, Rubaltelli E, Lotto L. The role of emotional competences in parents’ vaccine hesitancy. Vaccines. 2021; https://doi.org/10.3390/vaccines9030298 .

ISTAT. Resident population on 1st January: By age. http://dati.istat.it/?lang=en&SubSessionId=d7024c9e-239b-455d-924b-df19345a27b2 . Accessed Sept 25, 2023.

Mikolajczak M., Brasseur S, & Fantini-Hauwel C. Measuring intrapersonal and interpersonal EQ: The short profile of emotional competence (S-PEC). Pers Individ Differ. 2014; https://doi.org/10.1016/j.paid.2014.01.023 .

Olmos A, Govindasamy P. A practical guide for using propensity score weighting in R. Pract Assess Res Eval. 2015; https://doi.org/10.7275/jjtm-r398 .

Smithson M, Verkuilen J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological methods. 2006; https://doi.org/10.1037/1082-989X.11.1.54 .

Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions. Journal of applied statistics. 2004; https://doi.org/10.1080/0266476042000214501 .

Thernau T, Atkinson B, Ripley B. Rpart: Recursive Partitioning. R Package 4.1–0. http://CRAN.R-project.org/package=rpart .

RC Team. R Core Team R: A language and environment for statistical computing. R. . Foundation for Statistical Computing. 2014. https://www.r-project.org .

Freeman D, Loe BS, Chadwick A, Vaccari C, Waite F, Rosebrock L, ... & Lambe S. COVID-19 vaccine hesitancy in the UK: the Oxford coronavirus explanations, attitudes, and narratives survey (Oceans) II. Psychol Med. 2022; https://doi.org/10.1017/S0033291720005188 .

Caserotti M, Gavaruzzi T, Girardi P, Sellaro R, Rubaltelli E, Tasso A, Lotto L. People’s perspectives about COVID-19 vaccination certificate: Findings from a representative Italian sample. Vaccine. 2022; https://doi.org/10.1016/j.vaccine.2022.08.016 .

MacDonald NE, Comeau J, Dubé È, Graham J, Greenwood M, Harmon S, McElhaney J, Meghan McMurtry C, Middleton A, Steenbeek A, Taddio A. Royal society of Canada COVID-19 report: Enhancing COVID-19 vaccine acceptance in Canada. Facets. 2021; https://doi.org/10.1139/facets-2021-0037 .

Schwarzinger M, Watson V, Arwidson P, Alla F, Luchini S. COVID-19 vaccine hesitancy in a representative working-age population in France: a survey experiment based on vaccine characteristics. Lancet Public Health. 2021; https://doi.org/10.1016/S2468-2667(21)00012-8 .

Slovic P, Finucane M, Peters E, MacGregor DG. Rational actors or rational fools: Implications of the affect heuristic for behavioral economics. J Socio-Econ. 2002; https://doi.org/10.1016/S1053-5357(02)00174-9 .

Slovic P, Finucane ML, Peters E, MacGregor DG. Risk as analysis and risk as feelings: Some thoughts about affect, reason, risk and rationality. In The feeling of risk 2013 Mar 7 (pp. 21–36). Routledge.

Bhopal SS, Bagaria J, Olabi B, Bhopal R. Children and young people remain at low risk of COVID-19 mortality. Lancet Child Adolesc Health. 2021; https://doi.org/10.1016/S2352-4642(21)00066-3 .

Lazarus JV, Wyka K, Rauh L, Rabin K, Ratzan S, Gostin LO, Larson HJ, El-Mohandes A. Hesitant or not? The association of age, gender, and education with potential acceptance of a COVID-19 vaccine: a country-level analysis. J Health Commun. 2020; https://doi.org/10.1080/10810730.2020.1868630 .

Seale H, Heywood AE, Leask J, Sheel M, Durrheim DN, Bolsewicz K, Kaur R. Examining Australian public perceptions and behaviors towards a future COVID-19 vaccine. BMC Infect Dis. 2021; https://doi.org/10.1186/s12879-021-05 .

Butter S, McGlinchey E, Berry E, Armour C. Psychological, social, and situational factors associated with COVID‐19 vaccination intentions: A study of UK key workers and non‐key workers. Br J Health Psychol. 2022; https://doi.org/10.1111/bjhp.12530 .

Freedman DA, Berk RA. Weighting regressions by propensity scores. Eval Rev. 2008; https://doi.org/10.1177/0193841X08317586 .

Lagoe C, Farrar KM. Are you willing to risk it? The relationship between risk, regret, and vaccination intent. Psychol Health Med. 2015; https://doi.org/10.1080/13548506.2014.911923 .

Ziarnowski KL, Brewer NT, Weber B. Present choices, future outcomes: anticipated regret and HPV vaccination. Prev Med. 2009; https://doi.org/10.1016/j.ypmed.2008.10.006 .

Betsch C, Böhm R, Korn L, Holtmann C. On the benefits of explaining herd immunity in vaccine advocacy. Nat Hum Behav. 2017; https://doi.org/10.1038/s41562-017-0056 .

Loomba S, de Figueiredo A, Piatek SJ, de Graaf K, Larson HJ. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat Hum Behav. 2021; https://doi.org/10.1038/s41562-021-01056-1 .

Pfattheicher S, Petersen MB, Böhm R. Information about herd immunity through vaccination and empathy promote COVID-19 vaccination intentions. Health Psychol. 2022;41(2):85.

Article   PubMed   Google Scholar  

Hakim H, Provencher T, Chambers CT, Driedger SM, Dube E, Gavaruzzi T, ... & Witteman HO. Interventions to help people understand community immunity: a systematic review. Vaccine. 2019; https://doi.org/10.1016/j.vaccine.2018.11.016 .

Hakim H, Bettinger JA, Chambers CT, Driedger SM, Dubé E, Gavaruzzi T, Giguere AMC, Kavanagh É, Leask J, MacDonald SE, Orji R, Parent E, Paquette J, Roberge J, Sander B, Scherer AM, Tremblay-Breault M, Wilson K, Reinharz D, Witteman HO. A Web Application About Herd Immunity Using Personalized Avatars: Development Study. Journal of medical Internet research. 2020; https://doi.org/10.2196/20113 .

Callaghan T, Moghtaderi A, Lueck JA, Hotez P, Strych U, Dor A, Fowler EF, Motta M. Correlates and disparities of intention to vaccinate against COVID-19. Soc Sci Med (1982). 2021; https://doi.org/10.1016/j.socscimed.2020.113638 .

Griffith J, Marani H, Monkman H. COVID-19 vaccine hesitancy in Canada: Content analysis of tweets using the theoretical domains framework. Journal of medical Internet research. 2021; https://doi.org/10.2196/26874 .

Attwell K, Lake J, Sneddon J, Gerrans P, Blyth C, & Lee J. Converting the maybes: Crucial for a successful COVID-19 vaccination strategy. PLoS One. 2021; https://doi.org/10.1371/journal.pone.0245907 .

Breckenridge LA, Burns D, & Nye C. The use of motivational interviewing to overcome COVID‐19 vaccine hesitancy in primary care settings. Public Health Nurs. 2022; https://doi.org/10.1111/phn.13003 .

Gabarda A, & Butterworth SW. Using best practices to address COVID-19 vaccine hesitancy: The case for the motivational interviewing approach. Health Promot Pract, 2021; https://doi.org/10.1177/152483992110164 .

Hamilton EM, Oversby S, Ratsch A, & Kitchener S.COVID-19 vaccination: An exploratory study of the motivations and concerns detailed in the medical records of a regional Australian population. Vaccines. 2022; https://doi.org/10.3390/vaccines10050657 .

Purvis RS, Moore R, Willis DE, Hallgren E, & McElfish PA. Factors influencing COVID-19 vaccine decision-making among hesitant adopters in the United States. Human Vaccines Immunother. 2022; https://doi.org/10.1080/21645515.2022.2114701 .

Boragno P, Fiabane E, Taino I, Maffoni M, Sommovigo V, Setti I, Gabanelli P. Perceptions of COVID-19 Vaccines: Protective Shields or Threatening Risks? A Descriptive Exploratory Study among the Italian Population. Vaccines. 2023; https://doi.org/10.3390/vaccines11030642 .

Centers for Disease Control and Prevention. Why it matters: The pandemic threat. Retrieved December. 2020;1:2020.

Download references

Acknowledgements

Not applicable.

Open access funding provided by Università degli Studi di Padova. The project was developed thanks to institutional research funding of TG and AT.

Author information

Authors and affiliations.

Department of Developmental Psychology and Socialization, University of Padova, Padua, Italy

Marta Caserotti, Roberta Sellaro, Enrico Rubaltelli & Lorella Lotto

Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venezia, Venice, Italy

Paolo Girardi

Department of Humanities, University of Ferrara, Ferrara, Italy

Alessandra Tasso

Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy

Teresa Gavaruzzi

You can also search for this author in PubMed   Google Scholar

Contributions

MC: Conceptualization, Formal analysis, Visualization, Writing—original draft and Writing—review & editing. PG: Conceptualization, Formal analysis, Visualization, Writing—original draft. RS: Conceptualization, Writing—review & editing. ER: Conceptualization, Writing—review & editing. AT: Conceptualization, Writing—review & editing. LL: Conceptualization, Writing—review & editing. TG: Conceptualization, Visualization, Writing—review & editing.

Corresponding author

Correspondence to Marta Caserotti .

Ethics declarations

Ethics approval and consent to participate.

The project was approved by the ethical committee for Psychology Research of the University of Padova (Italy), with protocol number 3911/2020, and informed consent was obtained for all participants.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: appendix 1..

Scoring for pro- and against-vaccination reasons.  Appendix 2. Structure of the questionnaire. Table S1. Selection criteria. Table S2. Number of items, internal consistency (Cronbach’s α), name of the items and their estimated loadings, total deviance explained by the loadings and proportion of variance explained by EFA for COVID-19 perceived risk. Table S3. Odds ratios (ORs) estimated by the logistic model for the propensity score weighting for the COVID-19 vaccine offer. Table S4 . Predicted willingness to get vaccinated by combination of pro- and against-vaccination reasons by category of reference.  Table S5. Frequency of reported categories of pro- and against-vaccination reasons overall, and by COVID-19 vaccine status. Figure S1. Distribution of the propensity scores by vaccine offer.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Caserotti, M., Girardi, P., Sellaro, R. et al. To vaccinate or not to vaccinate? The interplay between pro- and against- vaccination reasons. BMC Public Health 23 , 2207 (2023). https://doi.org/10.1186/s12889-023-17112-6

Download citation

Received : 12 December 2022

Accepted : 30 October 2023

Published : 09 November 2023

DOI : https://doi.org/10.1186/s12889-023-17112-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Pro-and against-reasons
  • Vaccination intention
  • Risk perception
  • Emotional competences

BMC Public Health

ISSN: 1471-2458

argumentative essay for vaccinations

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection
  • PMC10127050

Logo of pheelsevier

Learning from five bad arguments against mandatory vaccination

Maxwell j. smith.

a Faculty of Health Sciences and Rotman Institute of Philosophy, Western University, 1151, Richmond Street, London, Ontario N6A 5B9, Canada

Ezekiel J. Emanuel

b Perelman School of Medicine and The Wharton School, University of Pennsylvania, 423, Guardian Drive, Blockley Hall, Philadelphia, PA 19104-4884, USA

Associated Data

No data was used for the research described in the article.

1. Introduction

The suboptimal uptake of COVID-19 vaccines in many parts of the world has prompted unprecedented public debate concerning the ethics of mandatory vaccination [1] . It is imperative we learn lessons from this debate so we are better positioned to navigate policy proposals for mandatory vaccination in the future. Specifically, we should aim to dispense with unsophisticated ethical claims that distract from or otherwise parody more nuanced and forceful arguments and which overshadow other important ethical concerns that have by comparison received little attention. To this end, we identify five ethical objections to mandatory vaccination that are of poor quality but have been frequently raised during the COVID-19 pandemic, including that mandatory vaccination violates the Nuremberg Code, that it is coercive, that it violates informed consent, that it is discriminatory, and that it infringes civil liberties. We argue that, presented as such, each ought to be rejected, allowing future consideration of mandatory vaccination to be focused on concerns more worthy of ethical scrutiny.

2. Mandatory vaccination violates the Nuremberg code

The Nuremberg Code is a set of principles for the ethics of human experimentation delineated in the 1947 Nazi doctor case of United States v. Brandt et al. [2] . Principle one emphasizes that voluntary consent is essential for human participation in research. Vaccination mandates violate the Nuremberg Code because COVID-19 vaccines are ‘experimental’ and because mandates undermine the voluntariness of informed consent.

2.2. Response

COVID-19 vaccines used in practice and involved in vaccination mandates are either authorized or fully approved by national regulatory authorities. Hence, they are not experimental and not part of research, and thus not covered by the Nuremberg Code. Taking approved medicines prescribed or used as a matter of regular medical or public health practice does not constitute an experiment or research in any common understandings of the terms.

But what of the fact that COVID-19 vaccines are still being studied? All medicines undergo on-going study without being considered experimental. The study of medicines does not cease once evidence regarding their safety and efficacy has met the standards of regulatory approval and are used in regular clinical and public health practice. For instance, a drug’s effectiveness is often compared to other interventions. But this does not render those medicines ‘experimental’ and subject to regulations for human subjects research.

Ultimately, whether something is called ‘experimental’ is arguably irrelevant and unhelpful when evaluating the ethics of vaccination mandates because this is a term that could include everything from first-in-human use to off-label use to medicines authorized for emergency use. Each of these has different evidentiary standards, requiring different forms of ethical scrutiny, and so should be assessed accordingly. The mere charge of being ‘experimental’ is therefore of little or no moral importance; instead, what should matter from a moral perspective is whether there is sufficient causal evidence and a positive risk-benefit ratio to justify the use of the medicine in practice [3] . In practical terms, approval or authorization by a national regulatory authority indicate when this condition has been satisfied.

Finally, this objection seems to be confused because no country has in fact legally recognized the Nuremberg Code for the ethical conduct of research. Consequently, a ‘violation’ of the Nuremberg Code would represent a violation of principles of historical ethical importance, not a violation of a law or regulation (e.g., actual regulations governing research or laws concerning informed consent for vaccination).

3. Mandatory vaccination is coercive

Coercive policies use force or threats to compel individuals to do something they would not otherwise do [4] . Mandatory vaccination compels people to get vaccinated by, for instance, threatening them with job loss or a fine if they aren’t vaccinated, and are thus coercive, and hence, unethical.

3.2. Response

People are routinely compelled to do things they would not otherwise do under threat of punishment, including paying taxes, heeding speed limits, and showing up to work on time. If one considers these to be examples of coercion, then the power wielded by governments and employers is commonly ‘coercive’ power. Consequently, the mere charge of coercion is not enough to conclude that an activity is necessarily ethically wrong. Instead, opponents of vaccination mandates should explain why the use of coercion is unjustified, for example because it is not necessary or proportionate to achieve an important objective, because the ethical costs of coercion outweigh the goods that can be achieved through its use, or because its consequences would be so severe as to negate meaningful choice [5] .

Conversely, ethicists sometimes define coercion more narrowly as a state of affairs where people are made worse off no matter which choice they take (where ‘worse off’ may be understood both in terms of becoming materially worse off or becoming worse off by virtue of interference with one’s rights, but not simply disliking one’s choices) [4] , [5] . The classic example is the thief with a gun demanding “your money or your life.” If one believes people are not worse off for having obeyed tax policies, speed limits, and work requirements, or because such activities are justified by people’s consent to the overall scheme of society, one might conclude these cases do not actually constitute coercion. This is reflected in the claim that “if the mafia threatens to destroy your property if you fail to pay protection money, this threat will count as coercive; but if the just, well-regulated state threatens to confiscate your property unless you pay taxes, this threat is arguably not coercive.” [6] . Hence, on this account, mandatory vaccination would be coercive only if people were made worse off no matter which option they choose. Consequently, on this view, opponents of mandatory vaccination should show why all options they are presented with, including being vaccinated with all accommodations or exemptions for medical or religious reasons, makes people worse off (appreciating that no policies, e.g., tax policies, speed limits, etc., carry no burden at all). And as previously noted, even if one is successful in arguing that mandatory vaccination is coercive, one must still argue why that use of coercion is ethically objectionable, and hence, unjustified.

4. Mandatory vaccination violates informed consent

Vaccination is a medical intervention for which there is an ethical and legal requirement to obtain informed consent, which must be given voluntarily. Mandatory vaccination violates informed consent because the consent is not voluntary.

4.2. Response

Mandatory vaccination and laws requiring informed consent have co-existed for decades, strongly suggesting that mandatory vaccination does not, or at least need not, undermine legal requirements of informed consent. Mandatory vaccination would be involuntary if it were truly compulsory; that is, a forced injection. But typically, mandatory vaccination policies tend to require that one be vaccinated as a condition of work or to use a service. Do these conditions undermine the voluntariness of informed consent?

Requirements to get a medical intervention exist in many situations without violating informed consent. As an extreme example, doctors staying the winter at an Australian Antarctic station are required to prophylactically have their appendix removed [7] . In some instances, organ transplant patients are required to have various vaccines, such as the hepatitis B vaccine. While these examples share few features with vaccination employment conditions, they are analogous insofar as they illustrate how requirements to get a medical intervention as a condition to do something else, like work in a particular setting, need not vitiate the voluntariness of informed consent. By making a voluntary decision to stay the winter at an Australian Antarctic station or get a transplant, a person has made a choice to accept the associated required medical intervention. There is no requirement to get an organ transplant or stay at an Australian Antarctic station. While there may be compelling reasons to do so, a patient remains free to refuse consent to those conditions.

The important moral sense in which informed consent to be vaccinated is voluntary is if one is able to visit a vaccination clinic, experience no pressure to be vaccinated, and be free to walk away at any point without getting vaccinated. That one has a compelling reason to visit the vaccination clinic and get vaccinated does not necessarily mean the voluntariness of their consent has been undermined.

5. Mandatory vaccination is discriminatory

Mandatory vaccination imposes restrictions or sanctions on individuals who are unwilling to be vaccinated. This discriminates against people just because they are unvaccinated.

5.2. Response

Differential treatment is not inherently discriminatory in the important moral sense of the term. For example, employment conditions routinely impose requirements of education, skills, or medical procedures. These lead to the unequal treatment of people who belong to different groups. But this does not necessarily constitute discrimination that is morally objectionable, and hence, prohibited by law—that is, wrongfully imposed disadvantageous treatment—because the distinction is not arbitrarily related to a characteristic the person does not control or that is unrelated to job performance, such as sex, race, sexual orientation, or religion. Employment conditions become discriminatory when they make distinctions between people on grounds that are unrelated to job performance or occupational health and safety. Vaccination status on its own is not considered discriminatory because it is modifiable and can reflect a bona fide requirement of occupational health and safety.

Where vaccination status could be construed as discriminatory in the important moral and legal senses is when it is meaningfully connected to grounds otherwise protected from discrimination, such as disability or religion [8] . Consequently, vaccination mandates typically provide reasonable accommodations to avoid discrimination on these protected grounds. But this obligation is not absolute. If the accommodation puts others at risk of harm, the duty to accommodate may be limited. This is why some jurisdictions, like the state of Mississippi, maintain that “exemption from required immunizations for religious, philosophical, or conscientious reasons is not allowed.” [9] . Moreover, some human rights agencies have noted that while discrimination based on religious beliefs (i.e., ‘creed’) is prohibited on human rights grounds, personal preferences or singular beliefs about vaccination do not amount to a creed and thus do not constitute a protected ground upon which discrimination is prohibited [8] .

6. Mandatory vaccination infringes civil liberties

The imposition of direct or indirect restrictions or sanctions via vaccination mandates interferes with civil liberties, including the right to liberty, privacy, and bodily integrity, which renders them unethical.

6.2. Response

Civil liberties are not absolute and can be justifiably limited. This is reflected in the adage “my right to swing my fist ends where your nose begins.” This idea is also commonly enshrined in law and constitutions, where a balance is effected between the rights of the individual and the interests of society by permitting limits to be placed on guaranteed civil liberties. Consequently, the mere charge that vaccination mandates infringe civil liberties is not enough to conclude they are necessarily ethically wrong. In fact, mandatory vaccination could in some cases advance civil liberties. As the American Civil Liberties Union argues: “Far from compromising civil liberties, vaccine mandates actually further civil liberties. They protect the most vulnerable among us, including people with disabilities and fragile immune systems, children too young to be vaccinated and communities of color hit hard by the disease.” [10] . Opponents of vaccination mandates should instead argue how vaccination mandates are more than minimally impairing of rights and that the overall impact on a person’s rights is unnecessary or disproportionate to achieve the stated objectives of the mandate [11] .

7. Conclusions

The COVID-19 pandemic has taught the world many lessons, including about the ethics of mandatory vaccination. Many of the arguments frequently raised against mandatory vaccination represent unsophisticated claims that, if not significantly modified to engage the ethical contours related to the approval of medicines, coercion, informed consent, discrimination, and civil liberties, should not be taken seriously. Moreover, we should not accept these unsophisticated claims as ‘shorthands’ for more sophisticated ones, whereby we are expected to ‘fill in the blanks’ about how, for example, one’s mere charge of coercion or discrimination entails the sorts of arguments that may give that charge greater moral force. Such arguments must be made explicit. To be clear, the five arguments against mandatory vaccination presented in this paper are bad arguments (but are nonetheless common). They can be improved to become more forceful. But as presented, they do not supply the necessary elements to be convincing, and thereby distract from more nuanced arguments that carry greater force and overshadow other important ethical concerns that have by comparison received little attention, such as concerns related to the potential negative impacts vaccination mandates may have on equity and public trust and how those impacts might be mitigated. [1] It would be a shame if when the next pandemic occurs the world rejects the possibility of vaccination mandates on the basis of the superficial claims identified in this paper rather than engaging with more sophisticated arguments for and against their use.

8. Author statement

All authors attest they meet the ICMJE criteria for authorship.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: MJS is an uncompensated Expert Advisory Member of the World Health Organization (WHO) COVID-19 Ethics & Governance Working Group, WHO Expert Group on Ethical Considerations of Social Listening and Infodemic Management, Public Health Agency of Canada Public Health Ethics Consultative Group, and Ontario Public Health Emergencies Science Advisory Committee, and from 2020-2021 served as a compensated member of Ontario’s COVID-19 Vaccine Distribution Task Force. EJE reports the following: UNESCO Global Conference uncompensated speaker; School of Pharmaceutical & Biotech Business uncompensated speaker; NIH Demystifying Medicine Series uncompensated speaker; ASPO 45th Annual Meeting uncompensated speaker; Blue Cross Blue Shield uncompensated speaker; National Health Equity Summit uncompensated speaker; The Galien Foundation uncompensated speaker; Temple Shalom Chicago speaker series uncompensated speaker; AIFA Italian Medical Agency uncompensated speaker; Rainbow Push Coalition/CEF uncompensated speaker; IDSA uncompensated speaker, personal fees from Rise Health, travel fees from The Galien Foundation; Vin Future uncompensated speaker;  personal fees from Well Sky; personal fees from Rightway; Brown University uncompensated speaker; personal fees from Signature Healthcare Foundation; Organisation for Economic Cooperation & Development uncompensated speaker, personal fees from Healthcare Leaders of New York; 21st Population Health Colloquium uncompensated speaker; personal fees from Medimpact; American Academy of Arts & Sciences uncompensated speaker; Village MD uncompensated speaker; The Galien Foundation uncompensated speaker; University of Sydney Australia uncompensated speaker; personal fees from Massachusetts Association of Health Plans; Virtahealth uncompensated speaker; Tel Aviv University uncompensated speaker; American Philosophical Society uncompensated speaker; personal fees from Princeton University; personal fees from Philadelphia Committee on Foreign Relations; Health Action Alliance uncompensated speaker; personal fees from Yale University Grand Rounds; personal fees from Hartford Medical Society; UCSF uncompensated speaker; Ichan School of Medicine uncompensated speaker; University of Minnesota uncompensated speaker; IPHS Addis Conference uncompensated speaker; personal fees from AAHC Global Innovation Forum; personal fees from HMSA & Queens Health System; Faith Health Alliance Project uncompensated speaker; travel fees from Macalester College; CDC Learning event uncompensated speaker; travel fees from Oak CEO Summit; American Academy of Political & Social Science uncompensated speaker; Primary Care Transformation Summit uncompensated speaker; 16th World Congress of Bioethics uncompensated speaker; Blue Cross Blue Shield Research Health Alliance uncompensated speaker; personal fees from Advocate Aurora Health Summit, travel fees from DPharm Conference; personal fees from UPMC Shadyside Medical Center; ASCO Quality Care Symposium uncompensated speaker;  travel fees from UCSF Department of Urology Grand Rounds; personal fees from Advocate Aurora Health; personal fees from Cain Brothers Conference; personal fees from Bowdoin College; Brookings Institution uncompensated moderator;  travel fees from Galien Jerusalem Ethics Forum; non-financial support from HLTH 2022 Las Vegas; National Academies Forum on Microbial Threats uncompensated speaker; National University of Singapore uncompensated speaker; Williams College uncompensated speaker; NIH Grand Rounds uncompensated discussant, travel fees from HMSA; Stanford Graduate School of Business uncompensated speaker; World Bank uncompensated panelist; travel fees from Tel Aviv University; Serving on the following boards: Board of Advisors Cellares; Advisor Clarify Health; Unpaid External Advisory Board Member Village MD; Occasional Advisor Notable; Advisory Board Member JSL Health; Advisory Board Member Peterson Center on Healthcare; Special Advisor to Director General WHO; Expert Advisory Member WHO COVID-19 Ethics & Governance Working Group; Advisory Board Member Biden's Transition COVID-19 Committee; Advisory Board Member HIEx Health Innovation Exchange Partnership sponsored by the UN Geneva.

Data availability

  • Share full article

Advertisement

Supported by

student opinion

Should Schools Require Students to Get the Coronavirus Vaccine?

Los Angeles became the first major school district to mandate vaccines for students 12 and older who are attending class in person. Should all school districts follow suit?

Los Angeles Requires Vaccines for Students 12 and Older

The board of education voted, 6-0, to pass the measure, making los angeles the first major school district in the united states to mandate coronavirus vaccines for students 12 and older who are attending class in person..

“We are here today to discuss requiring all students who are eligible for the Covid-19 vaccination to be vaccinated, unless they have a qualified exemption or conditional admission.” “The bottom line for me, as an advocate of children and families and learning, is that the vaccine will help us avoid a winter like last year. The vaccine, for me and my family, has provided protection and to be able to just go on with our lives.” “I do not see this as your choice or my choice about my great-nieces and nephews and grandchildren or your children. I see this as a community necessity to protect the children under 12 who cannot be vaccinated.”

Video player loading

By Nicole Daniels

Were you required to receive certain vaccinations, such as those for protection against chickenpox or measles , before attending school or summer camp? Do you believe it is important for schools to require vaccinations like these to keep all students safe? Or do you think it should be up to individual families to decide?

In “ Los Angeles Mandates Vaccines for Students 12 and Older, ” Dana Goldstein writes about the school district’s decision to require coronavirus vaccines and how families have reacted:

Los Angeles is the first major school district in the United States to mandate coronavirus vaccines for students 12 and older who are attending class in person. With the Delta variant ripping across the country, the district’s Board of Education voted, 6-0, to pass the measure on Thursday afternoon. The Los Angeles Unified School District is the second largest in the nation, and the mandate would eventually apply to more than 460,000 students, including some enrolled at independent charter schools located in district buildings. The interim superintendent, Megan Reilly, said at Thursday’s board meeting that student vaccination was one way to ensure that the district’s classrooms would be able to remain open. Los Angeles had some of the country’s most extended school closures last year. Speaking about a 12th-grade athlete whom she met during a vaccination drive, Ms. Reilly said, “We owe this child his senior year.” Los Angeles already has a strict vaccine mandate for teachers and staff members, and the new student mandate will further increase the safety of the classroom. But it is also likely to be more divisive, with far-reaching educational repercussions. According to the Los Angeles County Department of Public Health, 58 percent of 12- to 18-year-olds living within the district’s boundaries have already received at least one dose of a vaccine. But polls show that many parents are hesitant to vaccinate their children against the coronavirus, raising the question of how many families will keep their children home to learn online or transfer them to schools that do not require the shots. Leaving the classroom again could be debilitating for some students. When virtual learning was widespread last academic year, millions of children fell behind academically; the impact was largest on low-income students and students of color.

Ms. Goldstein goes on to write that not everyone is in support of the vaccine mandates:

Vaccine hesitancy in Los Angeles exists across a broad range of demographic and ideological groups, from affluent, largely white, liberal parents who oppose a range of mainstream childhood vaccination practices; to conservative activists who have specifically targeted the coronavirus vaccines; to low-income Black and Hispanic families who are wary of the medical establishment.

The article continues:

Some parents, however, are likely to oppose any mandate because no coronavirus vaccine for children ages 12 to 15 has received full government approval. The Food and Drug Administration has authorized the Pfizer-BioNTech vaccine on an emergency basis for that age group and could potentially grant full approval this year. (No vaccine has been authorized in the United States for children younger than 12.) Some public health experts and parents have raised concerns about a rare side effect of that vaccine, a heart condition called myocarditis that is known to disproportionately affect young men. Angelica Ramos, 29, a mother of three public school students in the Baldwin Hills neighborhood of South Los Angeles, said she would either enroll her children in a charter school or home-school before vaccinating them. While she takes the pandemic seriously and supports masking, she said, she is concerned about side effects and said most of the parents she knew felt similarly. “It shouldn’t be mandatory,” she said. “It should be our decision.”

Students, read the entire article , then tell us:

What is your reaction to the decision made by the Los Angeles Unified School District? Do you believe it is an important step in keeping students and teachers safe? Or do you think parents and caregivers should be the ones to make decisions about whether students receive vaccinations?

Do you think more schools should have vaccine mandates? Would you want your school district to enact a mandate for students to attend in person? Why or why not?

According to the article, “All 50 states mandate vaccines for school attendance, such as those that protect against polio, measles, mumps, rubella and chickenpox.” If that is the case, why do you think there is such resistance to requiring the coronavirus vaccine?

Los Angeles has chosen to require vaccinations, while providing a remote option for families that refuse them. Other districts, like New York City, have reopened schools for in-person learning without requiring vaccinations, but only offer limited online schooling for students with medical issues. Do you think one of these approaches is better than the other? If so, which one and why? What other options do you think schools should consider to keep students safe this school year?

Schools aren’t the only institutions that have started to require vaccines. President Biden recently moved to mandate vaccines for health care workers, federal contractors and a vast majority of federal workers, and to mandate that all companies with more than 100 workers require vaccinations or weekly testing.

Supporters of this plan say vaccine mandates encourage more people to get vaccinated, in turn protecting the most vulnerable among us, including people with disabilities and children too young to be vaccinated. Opponents argue that it is government overreach and that individuals should be able to make decisions for themselves without risk of losing their jobs.

What is your reaction to vaccine mandates across the public and private sectors? What are the benefits and limitations of requiring vaccinations? Are all arguments for and against such mandates equal? If not, which should we weigh more heavily?

Learn more about Student Opinion here and find all of our questions in this column . Teachers, see how you can incorporate this feature into your classroom routine here .

Students 13 and older in the United States and the United Kingdom, and 16 and older elsewhere, are invited to comment. All comments are moderated by the Learning Network staff, but please keep in mind that once your comment is accepted, it will be made public.

Nicole Daniels joined The Learning Network as a staff editor in 2019 after working in museum education, curriculum writing and bilingual education. More about Nicole Daniels

Argument Essay Sydney Bess-2

Central Piedmont Community College *

Arts Humanities

Apr 3, 2024

Uploaded by JudgeRainWallaby37 on coursehero.com

  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help

IMAGES

  1. ≫ Vaccinations: Are There any Real Benefits? Free Essay Sample on

    argumentative essay for vaccinations

  2. What it Takes to Create a Vaccine

    argumentative essay for vaccinations

  3. ≫ Vaccination Requirements for Children Free Essay Sample on Samploon.com

    argumentative essay for vaccinations

  4. ≫ The Anti-Vaxxer Epidemic: Why Vaccination Should Be Mandatory Free

    argumentative essay for vaccinations

  5. Argumentative Essay Examples to Inspire You [+Formula]

    argumentative essay for vaccinations

  6. ≫ Anti-Vaccination Beliefs and Ways to Overcome Them Free Essay Sample

    argumentative essay for vaccinations

VIDEO

  1. Argumentative Essay: Victim Blaming

  2. Argumentative Essay Topic Selection

  3. Argumentative Essay- Week 8, Task 2

  4. Identify parts and features of argumentative essay

  5. What is argumentative essay || teach chnnal

  6. How to write an argumentative essay #9958067504 #algomauniversity #makemyassignmentsandprojects.com

COMMENTS

  1. The Vaccine Debate: Questions and Concerns

    The vaccine debate—including the argument as to whether vaccines are safe, effective, or could cause conditions like autism —has received a lot of attention from the media in recent years. With so much conflicting information being publicized, it can be a challenge to discern what is true and what is not.

  2. You May Think You Want Vaccine Mandates, but Do You Really?

    jane coaston. Today on "The Argument" — do vaccine mandates maybe make things worse? [MUSIC PLAYING] archived recording. You will soon have to show proof of full vaccination if you want to ...

  3. A Vaccine a Day to Keep the Doctor Away: A Research Essay on Vaccinations

    An additional aspect of vaccines many parents are troubled with is the increase in suggested vaccines for young children. "Today, the CDC recommends that children receive vaccines for 10 diseases — plus the flu vaccine — by age 6, which can mean up to 37 separate shots. That compares to five vaccines for the same age group in 1995 ...

  4. Vaccine Mandates Are Needed in the U.S.

    Guest Essay. Vaccine Mandates Are Coming. Good. June 28, 2021. Smallpox vaccinations in the 1960s. ... The mRNA vaccines, made by Moderna and Pfizer-BioNTech, will likely get full approval for use ...

  5. There are plenty of moral reasons to be vaccinated

    The simple argument The discussion of whether or not one should take the COVID-19 vaccine is often framed in terms of individual self-interest: The benefits outweigh the risk, so you should do it ...

  6. Should Covid Vaccines Be Mandatory?

    Covid vaccine mandates will almost certainly encounter legal trouble, whatever form they take. That's because the Food and Drug Administration has authorized them for only emergency use. Under ...

  7. Debate on mandatory COVID-19 vaccination

    Discussion. Although vaccines demonstrate effectiveness against this disease, vaccine hesitancy reveals concerns towards short-term and long-term side effects or adverse reactions such as post-inoculation death. Mandatory vaccination is used to provide herd immunity, but is refutable due to infringement of human rights and autonomy.

  8. Should children be vaccinated against COVID-19?

    Whether all children under 12 years of age should be vaccinated against COVID-19 remains an ongoing debate. The relatively low risk posed by acute COVID-19 in children, and uncertainty about the relative harms from vaccination and disease mean that the balance of risk and benefit of vaccination in this age group is more complex. One of the key arguments for vaccinating healthy children is to ...

  9. Should COVID-19 vaccines be mandatory? Two experts discuss

    Here, two experts to make the case for and against mandatory COVID-19 vaccines. Alberto Giubilini, Senior Research Fellow, Oxford Uehiro Centre for Practical Ethics, University of Oxford. COVID-19 ...

  10. Argumentative Essay About Vaccines

    A. Vaccines save lives and they can save money too. It's cheaper to prevent a disease than to treat it. The routine childhood immunization in one child saves $13.6 billion in direct cost. Every dollar spent on childhood vaccinations has saved $18.40 (Colorado Children's Immunization Coalition, 2019).

  11. The Importance of Global COVID-19 Vaccination

    Please use one of the following formats to cite this article in your essay, paper or report: APA. Moore, Sarah. (2022, January 17). The Importance of Global COVID-19 Vaccination.

  12. The Benefits of Vaccinations: An Argumentative Essay Example

    The benefits of vaccinations far outweigh the risks and vaccines do and have eradicated many diseases. The side effects of vaccines are occasionally serious, but are so rare that parents should follow the vaccination schedule to prevent widespread outbreaks. II.Vaccinating children have reduced death rates significantly and the risk of not ...

  13. Should Vaccination Be Mandatory: Argumentative Essay

    This essay sample was donated by a student to help the academic community. Papers provided by EduBirdie writers usually outdo students' samples. In 2019, the WHO declared vaccine hesitancy as one of the world`s top ten global health threats (WHO, 2019). It was reported that vaccination rates, in Scotland that year, dropped in fourteen of the ...

  14. Pros and Cons of Vaccinations: Argumentative Essay

    The first of the cons is vaccinations can cause serious and fatal side effects. "According to the CDC, all vaccines carry a risk of a life-threatening allergic reaction (anaphylaxis) in about one per million children. The rotavirus vaccination can cause intussusception, a type of bowel blockage that may require hospitalization, in about one ...

  15. To vaccinate or not to vaccinate? The interplay between pro- and

    Background By mid 2023, European countries reached 75% of vaccine coverage for COVID-19 and although vaccination rates are quite high, many people are still hesitant. A plethora of studies have investigated factors associated with COVID-19 vaccine hesitancy, however, insufficient attention has been paid to the reasons why people get vaccinated against COVID-19. Our work aims to investigate the ...

  16. Vaccine Persuasion

    Caroline Gutman for The New York Times. 2. Hearing pro-vaccine messages from doctors, friends and relatives. For many people who got vaccinated, messages from politicians, national experts and the ...

  17. Argumentative Essay On Vaccines

    Decent Essays. 713 Words. 3 Pages. Open Document. Childhood Vaccinations The number of individuals who are unvaccinated or infected in the United States has increased (Sun). Vaccines recommended for children are crucial and result in fewer health risks and greater healthy lifestyles. Proponents agree that vaccines are safe and effective, while ...

  18. Learning from five bad arguments against mandatory vaccination

    3.1. Claim. Coercive policies use force or threats to compel individuals to do something they would not otherwise do [4]. Mandatory vaccination compels people to get vaccinated by, for instance, threatening them with job loss or a fine if they aren't vaccinated, and are thus coercive, and hence, unethical. 3.2.

  19. Should Schools Require Students to Get the Coronavirus Vaccine?

    The Board of Education voted, 6-0, to pass the measure, making Los Angeles the first major school district in the United States to mandate coronavirus vaccines for students 12 and older who are ...

  20. Why You Should Get Vaccinated Persuasive Essay

    100 Words Essay on Vaccination. Vaccination works by introducing a vaccine, typically a weakened or inactive form of a pathogen, into the body. This exposure prompts the immune system to develop antibodies, equipping it to combat the actual disease more effectively. ... Why You Should Get Vaccinated Persuasive Essay. (2022, September 27 ...

  21. Argumentative on Vaccinations for Children Essay

    Argumentative Essay On Vaccinations For Children. One could say a total nightmare for one's new born child would be having the baby infected with a harmful disease. Today, children and adults of different races and generations are becoming victims of communicable diseases. Fortunately, an English doctor named Edward Jenner developed the first ...

  22. Argument Essay Sydney Bess-2.pdf

    Bess 1 Sydney Bess Professor Virginia Mullins Argumentative Essay 22 February 2024 Exploring Individual Choices: Case Against Mandatory Vaccinations Vaccines have played a vital role in controlling the spread of infectious diseases and public health safety. However, the question of whether vaccines should be mandatory has sparked immense debates. Vaccines should not be mandatory because of ...

  23. Covid-19 Vaccine Argumentative Essay

    The Significance Of The Flu Vaccination The Public's Perception And Acceptance Of The Anticipated Covid-19 Vaccine The Role Of The Biotechnology In The Current Pandemic Of Covid-19 Significant Role Of Social Media In Anti Vaccine Movement Pros and Cons of Vaccinations: Argumentative Essay The Risks Of Anti-vaccine Movement Imagining Federal ...