CodeAvail

Best 151+ Quantitative Research Topics for STEM Students

Quantitative Research Topics for STEM Students

In today’s rapidly evolving world, STEM (Science, Technology, Engineering, and Mathematics) fields have gained immense significance. For STEM students, engaging in quantitative research is a pivotal aspect of their academic journey. Quantitative research involves the systematic collection and interpretation of numerical data to address research questions or test hypotheses. Choosing the right research topic is essential to ensure a successful and meaningful research endeavor. 

In this blog, we will explore 151+ quantitative research topics for STEM students. Whether you are an aspiring scientist, engineer, or mathematician, this comprehensive list will inspire your research journey. But we understand that the journey through STEM education and research can be challenging at times. That’s why we’re here to support you every step of the way with our Engineering Assignment Help service. 

What is Quantitative Research in STEM?

Table of Contents

Quantitative research is a scientific approach that relies on numerical data and statistical analysis to draw conclusions and make predictions. In STEM fields, quantitative research encompasses a wide range of methodologies, including experiments, surveys, and data analysis. The key characteristics of quantitative research in STEM include:

  • Data Collection: Systematic gathering of numerical data through experiments, observations, or surveys.
  • Statistical Analysis: Application of statistical techniques to analyze data and draw meaningful conclusions.
  • Hypothesis Testing: Testing hypotheses and theories using quantitative data.
  • Replicability: The ability to replicate experiments and obtain consistent results.
  • Generalizability: Drawing conclusions that can be applied to larger populations or phenomena.

Importance of Quantitative Research Topics for STEM Students

Quantitative research plays a pivotal role in STEM education and research for several reasons:

1. Empirical Evidence

It provides empirical evidence to support or refute scientific theories and hypotheses.

2. Data-Driven Decision-Making

STEM professionals use quantitative research to make informed decisions, from designing experiments to developing new technologies.

3. Innovation

It fuels innovation by providing data-driven insights that lead to the creation of new products, processes, and technologies.

4. Problem Solving

STEM students learn critical problem-solving skills through quantitative research, which are invaluable in their future careers.

5. Interdisciplinary Applications 

Quantitative research transcends STEM disciplines, facilitating collaboration and the tackling of complex, real-world problems.

Also Read: Google Scholar Research Topics

Quantitative Research Topics for STEM Students

Now, let’s explore important quantitative research topics for STEM students:

Biology and Life Sciences

Here are some quantitative research topics in biology and life science:

1. The impact of climate change on biodiversity.

2. Analyzing the genetic basis of disease susceptibility.

3. Studying the effectiveness of vaccines in preventing infectious diseases.

4. Investigating the ecological consequences of invasive species.

5. Examining the role of genetics in aging.

6. Analyzing the effects of pollution on aquatic ecosystems.

7. Studying the evolution of antibiotic resistance.

8. Investigating the relationship between diet and lifespan.

9. Analyzing the impact of deforestation on wildlife.

10. Studying the genetics of cancer development.

11. Investigating the effectiveness of various plant fertilizers.

12. Analyzing the impact of microplastics on marine life.

13. Studying the genetics of human behavior.

14. Investigating the effects of pollution on plant growth.

15. Analyzing the microbiome’s role in human health.

16. Studying the impact of climate change on crop yields.

17. Investigating the genetics of rare diseases.

Let’s get started with some quantitative research topics for stem students in chemistry:

1. Studying the properties of superconductors at different temperatures.

2. Analyzing the efficiency of various catalysts in chemical reactions.

3. Investigating the synthesis of novel polymers with unique properties.

4. Studying the kinetics of chemical reactions.

5. Analyzing the environmental impact of chemical waste disposal.

6. Investigating the properties of nanomaterials for drug delivery.

7. Studying the behavior of nanoparticles in different solvents.

8. Analyzing the use of renewable energy sources in chemical processes.

9. Investigating the chemistry of atmospheric pollutants.

10. Studying the properties of graphene for electronic applications.

11. Analyzing the use of enzymes in industrial processes.

12. Investigating the chemistry of alternative fuels.

13. Studying the synthesis of pharmaceutical compounds.

14. Analyzing the properties of materials for battery technology.

15. Investigating the chemistry of natural products for drug discovery.

16. Analyzing the effects of chemical additives on food preservation.

17. Investigating the chemistry of carbon capture and utilization technologies.

Here are some quantitative research topics in physics for stem students:

1. Investigating the behavior of subatomic particles in high-energy collisions.

2. Analyzing the properties of dark matter and dark energy.

3. Studying the quantum properties of entangled particles.

4. Investigating the dynamics of black holes and their gravitational effects.

5. Analyzing the behavior of light in different mediums.

6. Studying the properties of superfluids at low temperatures.

7. Investigating the physics of renewable energy sources like solar cells.

8. Analyzing the properties of materials at extreme temperatures and pressures.

9. Studying the behavior of electromagnetic waves in various applications.

10. Investigating the physics of quantum computing.

11. Analyzing the properties of magnetic materials for data storage.

12. Studying the behavior of particles in plasma for fusion energy research.

13. Investigating the physics of nanoscale materials and devices.

14. Analyzing the properties of materials for use in semiconductors.

15. Studying the principles of thermodynamics in energy efficiency.

16. Investigating the physics of gravitational waves.

17. Analyzing the properties of materials for use in quantum technologies.

Engineering

Let’s explore some quantitative research topics for stem students in engineering: 

1. Investigating the efficiency of renewable energy systems in urban environments.

2. Analyzing the impact of 3D printing on manufacturing processes.

3. Studying the structural integrity of materials in aerospace engineering.

4. Investigating the use of artificial intelligence in autonomous vehicles.

5. Analyzing the efficiency of water treatment processes in civil engineering.

6. Studying the impact of robotics in healthcare.

7. Investigating the optimization of supply chain logistics using quantitative methods.

8. Analyzing the energy efficiency of smart buildings.

9. Studying the effects of vibration on structural engineering.

10. Investigating the use of drones in agricultural practices.

11. Analyzing the impact of machine learning in predictive maintenance.

12. Studying the optimization of transportation networks.

13. Investigating the use of nanomaterials in electronic devices.

14. Analyzing the efficiency of renewable energy storage systems.

15. Studying the impact of AI-driven design in architecture.

16. Investigating the optimization of manufacturing processes using Industry 4.0 technologies.

17. Analyzing the use of robotics in underwater exploration.

Environmental Science

Here are some top quantitative research topics in environmental science for students:

1. Investigating the effects of air pollution on respiratory health.

2. Analyzing the impact of deforestation on climate change.

3. Studying the biodiversity of coral reefs and their conservation.

4. Investigating the use of remote sensing in monitoring deforestation.

5. Analyzing the effects of plastic pollution on marine ecosystems.

6. Studying the impact of climate change on glacier retreat.

7. Investigating the use of wetlands for water quality improvement.

8. Analyzing the effects of urbanization on local microclimates.

9. Studying the impact of oil spills on aquatic ecosystems.

10. Investigating the use of renewable energy in mitigating greenhouse gas emissions.

11. Analyzing the effects of soil erosion on agricultural productivity.

12. Studying the impact of invasive species on native ecosystems.

13. Investigating the use of bioremediation for soil cleanup.

14. Analyzing the effects of climate change on migratory bird patterns.

15. Studying the impact of land use changes on water resources.

16. Investigating the use of green infrastructure for urban stormwater management.

17. Analyzing the effects of noise pollution on wildlife behavior.

Computer Science

Let’s get started with some simple quantitative research topics for stem students:

1. Investigating the efficiency of machine learning algorithms for image recognition.

2. Analyzing the security of blockchain technology in financial transactions.

3. Studying the impact of quantum computing on cryptography.

4. Investigating the use of natural language processing in chatbots and virtual assistants.

5. Analyzing the effectiveness of cybersecurity measures in protecting sensitive data.

6. Studying the impact of algorithmic trading in financial markets.

7. Investigating the use of deep learning in autonomous robotics.

8. Analyzing the efficiency of data compression algorithms for large datasets.

9. Studying the impact of virtual reality in medical simulations.

10. Investigating the use of artificial intelligence in personalized medicine.

11. Analyzing the effectiveness of recommendation systems in e-commerce.

12. Studying the impact of cloud computing on data storage and processing.

13. Investigating the use of neural networks in predicting disease outbreaks.

14. Analyzing the efficiency of data mining techniques in customer behavior analysis.

15. Studying the impact of social media algorithms on user behavior.

16. Investigating the use of machine learning in natural language translation.

17. Analyzing the effectiveness of sentiment analysis in social media monitoring.

Mathematics

Let’s explore the quantitative research topics in mathematics for students:

1. Investigating the properties of prime numbers and their distribution.

2. Analyzing the behavior of chaotic systems using differential equations.

3. Studying the optimization of algorithms for solving complex mathematical problems.

4. Investigating the use of graph theory in network analysis.

5. Analyzing the properties of fractals in natural phenomena.

6. Studying the application of probability theory in risk assessment.

7. Investigating the use of numerical methods in solving partial differential equations.

8. Analyzing the properties of mathematical models for population dynamics.

9. Studying the optimization of algorithms for data compression.

10. Investigating the use of topology in data analysis.

11. Analyzing the behavior of mathematical models in financial markets.

12. Studying the application of game theory in strategic decision-making.

13. Investigating the use of mathematical modeling in epidemiology.

14. Analyzing the properties of algebraic structures in coding theory.

15. Studying the optimization of algorithms for image processing.

16. Investigating the use of number theory in cryptography.

17. Analyzing the behavior of mathematical models in climate prediction.

Earth Sciences

Here are some quantitative research topics for stem students in earth science:

1. Investigating the impact of volcanic eruptions on climate patterns.

2. Analyzing the behavior of earthquakes along tectonic plate boundaries.

3. Studying the geomorphology of river systems and erosion.

4. Investigating the use of remote sensing in monitoring wildfires.

5. Analyzing the effects of glacier melt on sea-level rise.

6. Studying the impact of ocean currents on weather patterns.

7. Investigating the use of geothermal energy in renewable power generation.

8. Analyzing the behavior of tsunamis and their destructive potential.

9. Studying the impact of soil erosion on agricultural productivity.

10. Investigating the use of geological data in mineral resource exploration.

11. Analyzing the effects of climate change on coastal erosion.

12. Studying the geomagnetic field and its role in navigation.

13. Investigating the use of radar technology in weather forecasting.

14. Analyzing the behavior of landslides and their triggers.

15. Studying the impact of groundwater depletion on aquifer systems.

16. Investigating the use of GIS (Geographic Information Systems) in land-use planning.

17. Analyzing the effects of urbanization on heat island formation.

Health Sciences and Medicine

Here are some quantitative research topics for stem students in health science and medicine:

1. Investigating the effectiveness of telemedicine in improving healthcare access.

2. Analyzing the impact of personalized medicine in cancer treatment.

3. Studying the epidemiology of infectious diseases and their spread.

4. Investigating the use of wearable devices in monitoring patient health.

5. Analyzing the effects of nutrition and exercise on metabolic health.

6. Studying the impact of genetics in predicting disease susceptibility.

7. Investigating the use of artificial intelligence in medical diagnosis.

8. Analyzing the behavior of pharmaceutical drugs in clinical trials.

9. Studying the effectiveness of mental health interventions in schools.

10. Investigating the use of gene editing technologies in treating genetic disorders.

11. Analyzing the properties of medical imaging techniques for early disease detection.

12. Studying the impact of vaccination campaigns on public health.

13. Investigating the use of regenerative medicine in tissue repair.

14. Analyzing the behavior of pathogens in antimicrobial resistance.

15. Studying the epidemiology of chronic diseases like diabetes and heart disease.

16. Investigating the use of bioinformatics in genomics research.

17. Analyzing the effects of environmental factors on health outcomes.

Quantitative research is the backbone of STEM fields, providing the tools and methodologies needed to explore, understand, and innovate in the world of science and technology . As STEM students, embracing quantitative research not only enhances your analytical skills but also equips you to address complex real-world challenges. With the extensive list of 155+ quantitative research topics for stem students provided in this blog, you have a starting point for your own STEM research journey. Whether you’re interested in biology, chemistry, physics, engineering, or any other STEM discipline, there’s a wealth of quantitative research topics waiting to be explored. So, roll up your sleeves, grab your lab coat or laptop, and embark on your quest for knowledge and discovery in the exciting world of STEM.

I hope you enjoyed this blog post about quantitative research topics for stem students.

Related Posts

8 easiest programming language to learn for beginners.

There are so many programming languages you can learn. But if you’re looking to start with something easier. We bring to you a list of…

10 Online Tutoring Help Benefits

Do you need a computer science assignment help? Get the best quality assignment help from computer science tutors at affordable prices. They always presented to help…

StatAnalytica

200+ Experimental Quantitative Research Topics For STEM Students In 2023

Experimental Quantitative Research Topics For Stem Students

STEM means Science, Technology, Engineering, and Math, which is not the only stuff we learn in school. It is like a treasure chest of skills that help students become great problem solvers, ready to tackle the real world’s challenges.

In this blog, we are here to explore the world of Research Topics for STEM Students. We will break down what STEM really means and why it is so important for students. In addition, we will give you the lowdown on how to pick a fascinating research topic. We will explain a list of 200+ Experimental Quantitative Research Topics For STEM Students.

And when it comes to writing a research title, we will guide you step by step. So, stay with us as we unlock the exciting world of STEM research – it is not just about grades; it is about growing smarter, more confident, and happier along the way.

What Is STEM?

Table of Contents

STEM is Science, Technology, Engineering, and Mathematics. It is a way of talking about things like learning, jobs, and activities related to these four important subjects. Science is about understanding the world around us, technology is about using tools and machines to solve problems, engineering is about designing and building things, and mathematics is about numbers and solving problems with them. STEM helps us explore, discover, and create cool stuff that makes our world better and more exciting.

Why STEM Research Is Important?

STEM research is important because it helps us learn new things about the world and solve problems. When scientists, engineers, and mathematicians study these subjects, they can discover cures for diseases, create new technology that makes life easier, and build things that help us live better. It is like a big puzzle where we put together pieces of knowledge to make our world safer, healthier, and more fun.

  • STEM research leads to new discoveries and solutions.
  • It helps find cures for diseases.
  • STEM technology makes life easier.
  • Engineers build things that improve our lives.
  • Mathematics helps us understand and solve complex problems.

How to Choose a Topic for STEM Research Paper

Here are some steps to choose a topic for STEM Research Paper:

Step 1: Identify Your Interests

Think about what you like and what excites you in science, technology, engineering, or math. It could be something you learned in school, saw in the news, or experienced in your daily life. Choosing a topic you’re passionate about makes the research process more enjoyable.

Step 2: Research Existing Topics

Look up different STEM research areas online, in books, or at your library. See what scientists and experts are studying. This can give you ideas and help you understand what’s already known in your chosen field.

Step 3: Consider Real-World Problems

Think about the problems you see around you. Are there issues in your community or the world that STEM can help solve? Choosing a topic that addresses a real-world problem can make your research impactful.

Step 4: Talk to Teachers and Mentors

Discuss your interests with your teachers, professors, or mentors. They can offer guidance and suggest topics that align with your skills and goals. They may also provide resources and support for your research.

Step 5: Narrow Down Your Topic

Once you have some ideas, narrow them down to a specific research question or project. Make sure it’s not too broad or too narrow. You want a topic that you can explore in depth within the scope of your research paper.

Here we will discuss 200+ Experimental Quantitative Research Topics For STEM Students: 

Qualitative Research Topics for STEM Students:

Qualitative research focuses on exploring and understanding phenomena through non-numerical data and subjective experiences. Here are 10 qualitative research topics for STEM students:

  • Exploring the experiences of female STEM students in overcoming gender bias in academia.
  • Understanding the perceptions of teachers regarding the integration of technology in STEM education.
  • Investigating the motivations and challenges of STEM educators in underprivileged schools.
  • Exploring the attitudes and beliefs of parents towards STEM education for their children.
  • Analyzing the impact of collaborative learning on student engagement in STEM subjects.
  • Investigating the experiences of STEM professionals in bridging the gap between academia and industry.
  • Understanding the cultural factors influencing STEM career choices among minority students.
  • Exploring the role of mentorship in the career development of STEM graduates.
  • Analyzing the perceptions of students towards the ethics of emerging STEM technologies like AI and CRISPR.
  • Investigating the emotional well-being and stress levels of STEM students during their academic journey.

Easy Experimental Research Topics for STEM Students:

These experimental research topics are relatively straightforward and suitable for STEM students who are new to research:

  •  Measuring the effect of different light wavelengths on plant growth.
  •  Investigating the relationship between exercise and heart rate in various age groups.
  •  Testing the effectiveness of different insulating materials in conserving heat.
  •  Examining the impact of pH levels on the rate of chemical reactions.
  •  Studying the behavior of magnets in different temperature conditions.
  •  Investigating the effect of different concentrations of a substance on bacterial growth.
  •  Testing the efficiency of various sunscreen brands in blocking UV radiation.
  •  Measuring the impact of music genres on concentration and productivity.
  •  Examining the correlation between the angle of a ramp and the speed of a rolling object.
  •  Investigating the relationship between the number of blades on a wind turbine and energy output.

Research Topics for STEM Students in the Philippines:

These research topics are tailored for STEM students in the Philippines:

  •  Assessing the impact of climate change on the biodiversity of coral reefs in the Philippines.
  •  Studying the potential of indigenous plants in the Philippines for medicinal purposes.
  •  Investigating the feasibility of harnessing renewable energy sources like solar and wind in rural Filipino communities.
  •  Analyzing the water quality and pollution levels in major rivers and lakes in the Philippines.
  •  Exploring sustainable agricultural practices for small-scale farmers in the Philippines.
  •  Assessing the prevalence and impact of dengue fever outbreaks in urban areas of the Philippines.
  •  Investigating the challenges and opportunities of STEM education in remote Filipino islands.
  •  Studying the impact of typhoons and natural disasters on infrastructure resilience in the Philippines.
  •  Analyzing the genetic diversity of endemic species in the Philippine rainforests.
  •  Assessing the effectiveness of disaster preparedness programs in Philippine communities.

Read More 

  • Frontend Project Ideas
  • Business Intelligence Projects For Beginners

Good Research Topics for STEM Students:

These research topics are considered good because they offer interesting avenues for investigation and learning:

  •  Developing a low-cost and efficient water purification system for rural communities.
  •  Investigating the potential use of CRISPR-Cas9 for gene therapy in genetic disorders.
  •  Studying the applications of blockchain technology in securing medical records.
  •  Analyzing the impact of 3D printing on customized prosthetics for amputees.
  •  Exploring the use of artificial intelligence in predicting and preventing forest fires.
  •  Investigating the effects of microplastic pollution on aquatic ecosystems.
  •  Analyzing the use of drones in monitoring and managing agricultural crops.
  •  Studying the potential of quantum computing in solving complex optimization problems.
  •  Investigating the development of biodegradable materials for sustainable packaging.
  •  Exploring the ethical implications of gene editing in humans.

Unique Research Topics for STEM Students:

Unique research topics can provide STEM students with the opportunity to explore unconventional and innovative ideas. Here are 10 unique research topics for STEM students:

  •  Investigating the use of bioluminescent organisms for sustainable lighting solutions.
  •  Studying the potential of using spider silk proteins for advanced materials in engineering.
  •  Exploring the application of quantum entanglement for secure communication in the field of cryptography.
  •  Analyzing the feasibility of harnessing geothermal energy from underwater volcanoes.
  •  Investigating the use of CRISPR-Cas12 for rapid and cost-effective disease diagnostics.
  •  Studying the interaction between artificial intelligence and human creativity in art and music generation.
  •  Exploring the development of edible packaging materials to reduce plastic waste.
  •  Investigating the impact of microgravity on cellular behavior and tissue regeneration in space.
  •  Analyzing the potential of using sound waves to detect and combat invasive species in aquatic ecosystems.
  •  Studying the use of biotechnology in reviving extinct species, such as the woolly mammoth.

Experimental Research Topics for STEM Students in the Philippines

Research topics for STEM students in the Philippines can address specific regional challenges and opportunities. Here are 10 experimental research topics for STEM students in the Philippines:

  •  Assessing the effectiveness of locally sourced materials for disaster-resilient housing construction in typhoon-prone areas.
  •  Investigating the utilization of indigenous plants for natural remedies in Filipino traditional medicine.
  •  Studying the impact of volcanic soil on crop growth and agriculture in volcanic regions of the Philippines.
  •  Analyzing the water quality and purification methods in remote island communities.
  •  Exploring the feasibility of using bamboo as a sustainable construction material in the Philippines.
  •  Investigating the potential of using solar stills for freshwater production in water-scarce regions.
  •  Studying the effects of climate change on the migration patterns of bird species in the Philippines.
  •  Analyzing the growth and sustainability of coral reefs in marine protected areas.
  •  Investigating the utilization of coconut waste for biofuel production.
  •  Studying the biodiversity and conservation efforts in the Tubbataha Reefs Natural Park.

Capstone Research Topics for STEM Students in the Philippines:

Capstone research projects are often more comprehensive and can address real-world issues. Here are 10 capstone research topics for STEM students in the Philippines:

  •  Designing a low-cost and sustainable sanitation system for informal settlements in urban Manila.
  •  Developing a mobile app for monitoring and reporting natural disasters in the Philippines.
  •  Assessing the impact of climate change on the availability and quality of drinking water in Philippine cities.
  •  Designing an efficient traffic management system to address congestion in major Filipino cities.
  •  Analyzing the health implications of air pollution in densely populated urban areas of the Philippines.
  •  Developing a renewable energy microgrid for off-grid communities in the archipelago.
  •  Assessing the feasibility of using unmanned aerial vehicles (drones) for agricultural monitoring in rural Philippines.
  •  Designing a low-cost and sustainable aquaponics system for urban agriculture.
  •  Investigating the potential of vertical farming to address food security in densely populated urban areas.
  •  Developing a disaster-resilient housing prototype suitable for typhoon-prone regions.

Experimental Quantitative Research Topics for STEM Students:

Experimental quantitative research involves the collection and analysis of numerical data to conclude. Here are 10 Experimental Quantitative Research Topics For STEM Students interested in experimental quantitative research:

  •  Examining the impact of different fertilizers on crop yield in agriculture.
  •  Investigating the relationship between exercise and heart rate among different age groups.
  •  Analyzing the effect of varying light intensities on photosynthesis in plants.
  •  Studying the efficiency of various insulation materials in reducing building heat loss.
  •  Investigating the relationship between pH levels and the rate of corrosion in metals.
  •  Analyzing the impact of different concentrations of pollutants on aquatic ecosystems.
  •  Examining the effectiveness of different antibiotics on bacterial growth.
  •  Trying to figure out how temperature affects how thick liquids are.
  •  Finding out if there is a link between the amount of pollution in the air and lung illnesses in cities.
  •  Analyzing the efficiency of solar panels in converting sunlight into electricity under varying conditions.

Descriptive Research Topics for STEM Students

Descriptive research aims to provide a detailed account or description of a phenomenon. Here are 10 topics for STEM students interested in descriptive research:

  •  Describing the physical characteristics and behavior of a newly discovered species of marine life.
  •  Documenting the geological features and formations of a particular region.
  •  Creating a detailed inventory of plant species in a specific ecosystem.
  •  Describing the properties and behavior of a new synthetic polymer.
  •  Documenting the daily weather patterns and climate trends in a particular area.
  •  Providing a comprehensive analysis of the energy consumption patterns in a city.
  •  Describing the structural components and functions of a newly developed medical device.
  •  Documenting the characteristics and usage of traditional construction materials in a region.
  •  Providing a detailed account of the microbiome in a specific environmental niche.
  •  Describing the life cycle and behavior of a rare insect species.

Research Topics for STEM Students in the Pandemic:

The COVID-19 pandemic has raised many research opportunities for STEM students. Here are 10 research topics related to pandemics:

  •  Analyzing the effectiveness of various personal protective equipment (PPE) in preventing the spread of respiratory viruses.
  •  Studying the impact of lockdown measures on air quality and pollution levels in urban areas.
  •  Investigating the psychological effects of quarantine and social isolation on mental health.
  •  Analyzing the genomic variation of the SARS-CoV-2 virus and its implications for vaccine development.
  •  Studying the efficacy of different disinfection methods on various surfaces.
  •  Investigating the role of contact tracing apps in tracking & controlling the spread of infectious diseases.
  •  Analyzing the economic impact of the pandemic on different industries and sectors.
  •  Studying the effectiveness of remote learning in STEM education during lockdowns.
  •  Investigating the social disparities in healthcare access during a pandemic.
  • Analyzing the ethical considerations surrounding vaccine distribution and prioritization.

Research Topics for STEM Students Middle School

Research topics for middle school STEM students should be engaging and suitable for their age group. Here are 10 research topics:

  • Investigating the growth patterns of different types of mold on various food items.
  • Studying the negative effects of music on plant growth and development.
  • Analyzing the relationship between the shape of a paper airplane and its flight distance.
  • Investigating the properties of different materials in making effective insulators for hot and cold beverages.
  • Studying the effect of salt on the buoyancy of different objects in water.
  • Analyzing the behavior of magnets when exposed to different temperatures.
  • Investigating the factors that affect the rate of ice melting in different environments.
  • Studying the impact of color on the absorption of heat by various surfaces.
  • Analyzing the growth of crystals in different types of solutions.
  • Investigating the effectiveness of different natural repellents against common pests like mosquitoes.

Technology Research Topics for STEM Students

Technology is at the forefront of STEM fields. Here are 10 research topics for STEM students interested in technology:

  • Developing and optimizing algorithms for autonomous drone navigation in complex environments.
  • Exploring the use of blockchain technology for enhancing the security and transparency of supply chains.
  • Investigating the applications of virtual reality (VR) and augmented reality (AR) in medical training and surgery simulations.
  • Studying the potential of 3D printing for creating personalized prosthetics and orthopedic implants.
  • Analyzing the ethical and privacy implications of facial recognition technology in public spaces.
  • Investigating the development of quantum computing algorithms for solving complex optimization problems.
  • Explaining the use of machine learning and AI in predicting and mitigating the impact of natural disasters.
  • Studying the advancement of brain-computer interfaces for assisting individuals with
  • disabilities.
  • Analyzing the role of wearable technology in monitoring and improving personal health and wellness.
  • Investigating the use of robotics in disaster response and search and rescue operations.

Scientific Research Topics for STEM Students

Scientific research encompasses a wide range of topics. Here are 10 research topics for STEM students focusing on scientific exploration:

  • Investigating the behavior of subatomic particles in high-energy particle accelerators.
  • Studying the ecological impact of invasive species on native ecosystems.
  • Analyzing the genetics of antibiotic resistance in bacteria and its implications for healthcare.
  • Exploring the physics of gravitational waves and their detection through advanced interferometry.
  • Investigating the neurobiology of memory formation and retention in the human brain.
  • Studying the biodiversity and adaptation of extremophiles in harsh environments.
  • Analyzing the chemistry of deep-sea hydrothermal vents and their potential for life beyond Earth.
  • Exploring the properties of superconductors and their applications in technology.
  • Investigating the mechanisms of stem cell differentiation for regenerative medicine.
  • Studying the dynamics of climate change and its impact on global ecosystems.

Interesting Research Topics for STEM Students:

Engaging and intriguing research topics can foster a passion for STEM. Here are 10 interesting research topics for STEM students:

  • Exploring the science behind the formation of auroras and their cultural significance.
  • Investigating the mysteries of dark matter and dark energy in the universe.
  • Studying the psychology of decision-making in high-pressure situations, such as sports or
  • emergencies.
  • Analyzing the impact of social media on interpersonal relationships and mental health.
  • Exploring the potential for using genetic modification to create disease-resistant crops.
  • Investigating the cognitive processes involved in solving complex puzzles and riddles.
  • Studying the history and evolution of cryptography and encryption methods.
  • Analyzing the physics of time travel and its theoretical possibilities.
  • Exploring the role of Artificial Intelligence  in creating art and music.
  • Investigating the science of happiness and well-being, including factors contributing to life satisfaction.

Practical Research Topics for STEM Students

Practical research often leads to real-world solutions. Here are 10 practical research topics for STEM students:

  • Developing an affordable and sustainable water purification system for rural communities.
  • Designing a low-cost, energy-efficient home heating and cooling system.
  • Investigating strategies for reducing food waste in the supply chain and households.
  • Studying the effectiveness of eco-friendly pest control methods in agriculture.
  • Analyzing the impact of renewable energy integration on the stability of power grids.
  • Developing a smartphone app for early detection of common medical conditions.
  • Investigating the feasibility of vertical farming for urban food production.
  • Designing a system for recycling and upcycling electronic waste.
  • Studying the environmental benefits of green roofs and their potential for urban heat island mitigation.
  • Analyzing the efficiency of alternative transportation methods in reducing carbon emissions.

Experimental Research Topics for STEM Students About Plants

Plants offer a rich field for experimental research. Here are 10 experimental research topics about plants for STEM students:

  • Investigating the effect of different light wavelengths on plant growth and photosynthesis.
  • Studying the impact of various fertilizers and nutrient solutions on crop yield.
  • Analyzing the response of plants to different types and concentrations of plant hormones.
  • Investigating the role of mycorrhizal in enhancing nutrient uptake in plants.
  • Studying the effects of drought stress and water scarcity on plant physiology and adaptation mechanisms.
  • Analyzing the influence of soil pH on plant nutrient availability and growth.
  • Investigating the chemical signaling and defense mechanisms of plants against herbivores.
  • Studying the impact of environmental pollutants on plant health and genetic diversity.
  • Analyzing the role of plant secondary metabolites in pharmaceutical and agricultural applications.
  • Investigating the interactions between plants and beneficial microorganisms in the rhizosphere.

Qualitative Research Topics for STEM Students in the Philippines

Qualitative research in the Philippines can address local issues and cultural contexts. Here are 10 qualitative research topics for STEM students in the Philippines:

  • Exploring indigenous knowledge and practices in sustainable agriculture in Filipino communities.
  • Studying the perceptions and experiences of Filipino fishermen in coping with climate change impacts.
  • Analyzing the cultural significance and traditional uses of medicinal plants in indigenous Filipino communities.
  • Investigating the barriers and facilitators of STEM education access in remote Philippine islands.
  • Exploring the role of traditional Filipino architecture in natural disaster resilience.
  • Studying the impact of indigenous farming methods on soil conservation and fertility.
  • Analyzing the cultural and environmental significance of mangroves in coastal Filipino regions.
  • Investigating the knowledge and practices of Filipino healers in treating common ailments.
  • Exploring the cultural heritage and conservation efforts of the Ifugao rice terraces.
  • Studying the perceptions and practices of Filipino communities in preserving marine biodiversity.

Science Research Topics for STEM Students

Science offers a diverse range of research avenues. Here are 10 science research topics for STEM students:

  • Investigating the potential of gene editing techniques like CRISPR-Cas9 in curing genetic diseases.
  • Studying the ecological impacts of species reintroduction programs on local ecosystems.
  • Analyzing the effects of microplastic pollution on aquatic food webs and ecosystems.
  • Investigating the link between air pollution and respiratory health in urban populations.
  • Studying the role of epigenetics in the inheritance of acquired traits in organisms.
  • Analyzing the physiology and adaptations of extremophiles in extreme environments on Earth.
  • Investigating the genetics of longevity and factors influencing human lifespan.
  • Studying the behavioral ecology and communication strategies of social insects.
  • Analyzing the effects of deforestation on global climate patterns and biodiversity loss.
  • Investigating the potential of synthetic biology in creating bioengineered organisms for beneficial applications.

Correlational Research Topics for STEM Students

Correlational research focuses on relationships between variables. Here are 10 correlational research topics for STEM students:

  • Analyzing the correlation between dietary habits and the incidence of chronic diseases.
  • Studying the relationship between exercise frequency and mental health outcomes.
  • Investigating the correlation between socioeconomic status and access to quality healthcare.
  • Analyzing the link between social media usage and self-esteem in adolescents.
  • Studying the correlation between academic performance and sleep duration among students.
  • Investigating the relationship between environmental factors and the prevalence of allergies.
  • Analyzing the correlation between technology use and attention span in children.
  • Studying how environmental factors are related to the frequency of allergies.
  • Investigating the link between parental involvement in education and student achievement.
  • Analyzing the correlation between temperature fluctuations and wildlife migration patterns.

Quantitative Research Topics for STEM Students in the Philippines

Quantitative research in the Philippines can address specific regional issues. Here are 10 quantitative research topics for STEM students in the Philippines

  • Analyzing the impact of typhoons on coastal erosion rates in the Philippines.
  • Studying the quantitative effects of land use change on watershed hydrology in Filipino regions.
  • Investigating the quantitative relationship between deforestation and habitat loss for endangered species.
  • Analyzing the quantitative patterns of marine biodiversity in Philippine coral reef ecosystems.
  • Studying the quantitative assessment of water quality in major Philippine rivers and lakes.
  • Investigating the quantitative analysis of renewable energy potential in specific Philippine provinces.
  • Analyzing the quantitative impacts of agricultural practices on soil health and fertility.
  • Studying the quantitative effectiveness of mangrove restoration in coastal protection in the Philippines.
  • Investigating the quantitative evaluation of indigenous agricultural practices for sustainability.
  • Analyzing the quantitative patterns of air pollution and its health impacts in urban Filipino areas.

Things That Must Keep In Mind While Writing Quantitative Research Title 

Here are few things that must be keep in mind while writing quantitative research tile:

1. Be Clear and Precise

Make sure your research title is clear and says exactly what your study is about. People should easily understand the topic and goals of your research by reading the title.

2. Use Important Words

Include words that are crucial to your research, like the main subjects, who you’re studying, and how you’re doing your research. This helps others find your work and understand what it’s about.

3. Avoid Confusing Words

Stay away from words that might confuse people. Your title should be easy to grasp, even if someone isn’t an expert in your field.

4. Show Your Research Approach

Tell readers what kind of research you did, like experiments or surveys. This gives them a hint about how you conducted your study.

5. Match Your Title with Your Research Questions

Make sure your title matches the questions you’re trying to answer in your research. It should give a sneak peek into what your study is all about and keep you on the right track as you work on it.

STEM students, addressing what STEM is and why research matters in this field. It offered an extensive list of research topics , including experimental, qualitative, and regional options, catering to various academic levels and interests. Whether you’re a middle school student or pursuing advanced studies, these topics offer a wealth of ideas. The key takeaway is to choose a topic that resonates with your passion and aligns with your goals, ensuring a successful journey in STEM research. Choose the best Experimental Quantitative Research Topics For Stem Students today!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

ct-logo

189+ Good Quantitative Research Topics For STEM Students

Quantitative research is an essential part of STEM (Science, Technology, Engineering, and Mathematics) fields. It involves collecting and analyzing numerical data to answer research questions and test hypotheses. 

In 2023, STEM students have a wealth of exciting research opportunities in various disciplines. Whether you’re an undergraduate or graduate student, here are quantitative research topics to consider for your next project.

If you are looking for the best list of quantitative research topics for stem students, then you can check the given list in each field. It offers STEM students numerous opportunities to explore and contribute to their respective fields in 2023 and beyond. 

Whether you’re interested in astrophysics, biology, engineering, mathematics, or any other STEM field.

Also Read: Most Exciting Qualitative Research Topics For Students

What Is Quantitative Research

Table of Contents

Quantitative research is a type of research that focuses on the organized collection, analysis, and evaluation of numerical data to answer research questions, test theories, and find trends or connections between factors. It is an organized, objective way to do study that uses measurable data and scientific methods to come to results.

Quantitative research is often used in many areas, such as the natural sciences, social sciences, economics, psychology, education, and market research. It gives useful information about patterns, trends, cause-and-effect relationships, and how often things happen. Quantitative tools are used by researchers to answer questions like “How many?” and “How often?” “Is there a significant difference?” or “What is the relationship between the variables?”

In comparison to quantitative research, qualitative research uses non-numerical data like conversations, notes, and open-ended surveys to understand and explore the ideas, experiences, and points of view of people or groups. Researchers often choose between quantitative and qualitative methods based on their research goals, questions, and the type of thing they are studying.

How To Choose Quantitative Research Topics For STEM

Here’s a step-by-step guide on how to choose quantitative research topics for STEM:

Step 1:- Identify Your Interests and Passions

Start by reflecting on your personal interests within STEM. What areas or subjects in STEM excite you the most? Choosing a topic you’re passionate about will keep you motivated throughout the research process.

Step 2:- Review Coursework and Textbooks

Look through your coursework, textbooks, and class notes. Identify concepts, theories, or areas that you found particularly intriguing or challenging. These can be a source of potential research topics.

Step 3:- Consult with Professors and Advisors

Discuss your research interests with professors, academic advisors, or mentors. They can provide valuable insights, suggest relevant topics, and guide you toward areas with research opportunities.

Step 4:- Read Recent Literature

Explore recent research articles, journals, and publications in STEM fields. This will help you identify current trends, gaps in knowledge, and areas where further research is needed.

Step 5:- Narrow Down Your Focus

Once you have a broad area of interest, narrow it down to a specific research focus. Consider questions like:

  • What specific problem or phenomenon do you want to investigate?
  • Are there unanswered questions or controversies in this area?
  • What impact could your research have on the field or society?

Step 6:- Consider Resources and Access

Assess the resources available to you, including access to laboratories, equipment, databases, and funding. Ensure that your chosen topic aligns with the resources you have or can access.

Step 7:- Think About Practicality

Consider the feasibility of conducting research on your chosen topic. Are the data readily available, or will you need to collect data yourself? Can you complete the research within your available time frame?

Step 8:- Define Your Research Question

Formulate a clear and specific research question or hypothesis. Your research question should guide your entire study and provide a focus for your data collection and analysis.

Step 9:- Conduct a Literature Review

Dive deeper into the existing literature related to your chosen topic. This will help you understand the current state of research, identify gaps, and refine your research question.

Step 10:- Consider the Impact

Think about the potential impact of your research. How does your topic contribute to the advancement of knowledge in your field? Does it have practical applications or implications for society?

Step 11:- Brainstorm Research Methods

Determine the quantitative research methods and data collection techniques you plan to use. Consider whether you’ll conduct experiments, surveys, data analysis, simulations, or use existing datasets.

Step 12:- Seek Feedback

Share your research topic and ideas with peers, advisors, or mentors. They can provide valuable feedback and help you refine your research focus.

Step 13:- Assess Ethical Considerations

Consider ethical implications related to your research, especially if it involves human subjects, sensitive data, or potential environmental impacts. Ensure that your research adheres to ethical guidelines.

Step 14:- Finalize Your Research Topic

Once you’ve gone through these steps, finalize your research topic. Write a clear and concise research proposal that outlines your research question, objectives, methods, and expected outcomes.

Step 15:- Stay Open to Adjustments

Be open to adjusting your research topic as you progress. Sometimes, new insights or challenges may lead you to refine or adapt your research focus.

Following are the most interesting quantitative research topics for stem students. These are given below.

Quantitative Research Topics In Physics and Astronomy

  • Quantum Computing Algorithms : Investigate new algorithms for quantum computers and their potential applications.
  • Dark Matter Detection Methods : Explore innovative approaches to detect dark matter particles.
  • Quantum Teleportation : Study the principles and applications of quantum teleportation.
  • Exoplanet Characterization : Analyze data from telescopes to characterize exoplanets.
  • Nuclear Fusion Modeling : Create mathematical models for nuclear fusion reactions.
  • Superconductivity at High Temperatures : Research the properties and applications of high-temperature superconductors.
  • Gravitational Wave Analysis : Analyze gravitational wave data to study astrophysical phenomena.
  • Black Hole Thermodynamics : Investigate the thermodynamics of black holes and their entropy.

Quantitative Research Topics In Biology and Life Sciences

  • Genome-Wide Association Studies (GWAS) : Conduct GWAS to identify genetic factors associated with diseases.
  • Pharmacokinetics and Pharmacodynamics : Study drug interactions in the human body.
  • Ecological Modeling : Model ecosystems to understand population dynamics.
  • Protein Folding : Research the kinetics and thermodynamics of protein folding.
  • Cancer Epidemiology : Analyze cancer incidence and risk factors in specific populations.
  • Neuroimaging Analysis : Develop algorithms for analyzing brain imaging data.
  • Evolutionary Genetics : Investigate evolutionary patterns using genetic data.
  • Stem Cell Differentiation : Study the factors influencing stem cell differentiation.

Engineering and Technology Quantitative Research Topics

  • Renewable Energy Efficiency : Optimize the efficiency of solar panels or wind turbines.
  • Aerodynamics of Drones : Analyze the aerodynamics of drone designs.
  • Autonomous Vehicle Safety : Evaluate safety measures for autonomous vehicles.
  • Machine Learning in Robotics : Implement machine learning algorithms for robot control.
  • Blockchain Scalability : Research methods to scale blockchain technology.
  • Quantum Computing Hardware : Design and test quantum computing hardware components.
  • IoT Security : Develop security protocols for the Internet of Things (IoT).
  • 3D Printing Materials Analysis : Study the mechanical properties of 3D-printed materials.

Quantitative Research Topics In Mathematics and Statistics

Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics.

  • Prime Number Distribution : Investigate the distribution of prime numbers.
  • Graph Theory Algorithms : Develop algorithms for solving graph theory problems.
  • Statistical Analysis of Financial Markets : Analyze financial data and market trends.
  • Number Theory Research : Explore unsolved problems in number theory.
  • Bayesian Machine Learning : Apply Bayesian methods to machine learning models.
  • Random Matrix Theory : Study the properties of random matrices in mathematics and physics.
  • Topological Data Analysis : Use topology to analyze complex data sets.
  • Quantum Algorithms for Optimization : Research quantum algorithms for optimization problems.

Experimental Quantitative Research Topics In Science and Earth Sciences

  • Climate Change Modeling : Develop climate models to predict future trends.
  • Biodiversity Conservation Analysis : Analyze data to support biodiversity conservation efforts.
  • Geographic Information Systems (GIS) : Apply GIS techniques to solve environmental problems.
  • Oceanography and Remote Sensing : Use satellite data for oceanographic research.
  • Air Quality Monitoring : Develop sensors and models for air quality assessment.
  • Hydrological Modeling : Study the movement and distribution of water resources.
  • Volcanic Activity Prediction : Predict volcanic eruptions using quantitative methods.
  • Seismology Data Analysis : Analyze seismic data to understand earthquake patterns.

Chemistry and Materials Science Quantitative Research Topics

  • Nanomaterial Synthesis and Characterization : Research the synthesis and properties of nanomaterials.
  • Chemoinformatics : Analyze chemical data for drug discovery and materials science.
  • Quantum Chemistry Simulations : Perform quantum simulations of chemical reactions.
  • Materials for Renewable Energy : Investigate materials for energy storage and conversion.
  • Catalysis Kinetics : Study the kinetics of chemical reactions catalyzed by materials.
  • Polymer Chemistry : Research the properties and applications of polymers.
  • Analytical Chemistry Techniques : Develop new analytical techniques for chemical analysis.
  • Sustainable Chemistry : Explore green chemistry approaches for sustainable materials.

Computer Science and Information Technology Topics

  • Natural Language Processing (NLP) : Work on NLP algorithms for language understanding.
  • Cybersecurity Analytics : Analyze cybersecurity threats and vulnerabilities.
  • Big Data Analytics : Apply quantitative methods to analyze large data sets.
  • Machine Learning Fairness : Investigate bias and fairness issues in machine learning models.
  • Human-Computer Interaction (HCI) : Study user behavior and interaction patterns.
  • Software Performance Optimization : Optimize software applications for performance.
  • Distributed Systems Analysis : Analyze the performance of distributed computing systems.
  • Bioinformatics Data Mining : Develop algorithms for mining biological data.

Good Quantitative Research Topics Students In Medicine and Healthcare

  • Clinical Trial Data Analysis : Analyze clinical trial data to evaluate treatment effectiveness.
  • Epidemiological Modeling : Model disease spread and intervention strategies.
  • Healthcare Data Analytics : Analyze healthcare data for patient outcomes and cost reduction.
  • Medical Imaging Algorithms : Develop algorithms for medical image analysis.
  • Genomic Medicine : Apply genomics to personalized medicine approaches.
  • Telemedicine Effectiveness : Study the effectiveness of telemedicine in healthcare delivery.
  • Health Informatics : Analyze electronic health records for insights into patient care.

Agriculture and Food Sciences Topics

  • Precision Agriculture : Use quantitative methods for optimizing crop production.
  • Food Safety Analysis : Analyze food safety data and quality control.
  • Aquaculture Sustainability : Research sustainable practices in aquaculture.
  • Crop Disease Modeling : Model the spread of diseases in agricultural crops.
  • Climate-Resilient Agriculture : Develop strategies for agriculture in changing climates.
  • Food Supply Chain Optimization : Optimize food supply chain logistics.
  • Soil Health Assessment : Analyze soil data for sustainable land management.

Social Sciences with Quantitative Approaches

  • Educational Data Mining : Analyze educational data for improving learning outcomes.
  • Sociodemographic Surveys : Study social trends and demographics using surveys.
  • Psychometrics : Develop and validate psychological measurement instruments.
  • Political Polling Analysis : Analyze political polling data and election trends.
  • Economic Modeling : Develop economic models for policy analysis.
  • Urban Planning Analytics : Analyze data for urban planning and infrastructure.
  • Climate Policy Evaluation : Evaluate the impact of climate policies on society.

Environmental Engineering Quantitative Research Topics

  • Water Quality Assessment : Analyze water quality data for environmental monitoring.
  • Waste Management Optimization : Optimize waste collection and recycling programs.
  • Environmental Impact Assessments : Evaluate the environmental impact of projects.
  • Air Pollution Modeling : Model the dispersion of air pollutants in urban areas.
  • Sustainable Building Design : Apply quantitative methods to sustainable architecture.

Quantitative Research Topics Robotics and Automation

  • Robotic Swarm Behavior : Study the behavior of robot swarms in different tasks.
  • Autonomous Drone Navigation : Develop algorithms for autonomous drone navigation.
  • Humanoid Robot Control : Implement control algorithms for humanoid robots.
  • Robotic Grasping and Manipulation : Study robotic manipulation techniques.
  • Reinforcement Learning for Robotics : Apply reinforcement learning to robotic control.

Quantitative Research Topics Materials Engineering

  • Additive Manufacturing Process Optimization : Optimize 3D printing processes.
  • Smart Materials for Aerospace : Research smart materials for aerospace applications.
  • Nanostructured Materials for Energy Storage : Investigate energy storage materials.
  • Corrosion Prevention : Develop corrosion-resistant materials and coatings.

Nuclear Engineering Quantitative Research Topics

  • Nuclear Reactor Safety Analysis : Study safety aspects of nuclear reactor designs.
  • Nuclear Fuel Cycle Analysis : Analyze the nuclear fuel cycle for efficiency.
  • Radiation Shielding Materials : Research materials for radiation protection.

Quantitative Research Topics In Biomedical Engineering

  • Medical Device Design and Testing : Develop and test medical devices.
  • Biomechanics Analysis : Analyze biomechanics in sports or rehabilitation.
  • Biomaterials for Medical Implants : Investigate materials for medical implants.

Good Quantitative Research Topics Chemical Engineering

  • Chemical Process Optimization : Optimize chemical manufacturing processes.
  • Industrial Pollution Control : Develop strategies for pollution control in industries.
  • Chemical Reaction Kinetics : Study the kinetics of chemical reactions in industries.

Best Quantitative Research Topics In Renewable Energy

  • Energy Storage Systems : Research and optimize energy storage solutions.
  • Solar Cell Efficiency : Improve the efficiency of photovoltaic cells.
  • Wind Turbine Performance Analysis : Analyze and optimize wind turbine designs.

Brilliant Quantitative Research Topics In Astronomy and Space Sciences

  • Astrophysical Simulations : Simulate astrophysical phenomena using numerical methods.
  • Spacecraft Trajectory Optimization : Optimize spacecraft trajectories for missions.
  • Exoplanet Detection Algorithms : Develop algorithms for exoplanet detection.

Quantitative Research Topics In Psychology and Cognitive Science

  • Cognitive Psychology Experiments : Conduct quantitative experiments in cognitive psychology.
  • Emotion Recognition Algorithms : Develop algorithms for emotion recognition in AI.
  • Neuropsychological Assessments : Create quantitative assessments for brain function.

Geology and Geological Engineering Quantitative Research Topics

  • Geological Data Analysis : Analyze geological data for mineral exploration.
  • Geological Hazard Prediction : Predict geological hazards using quantitative models.

Top Quantitative Research Topics In Forensic Science

  • Forensic Data Analysis : Analyze forensic evidence using quantitative methods.
  • Crime Pattern Analysis : Study crime patterns and trends in urban areas.

Great Quantitative Research Topics In Cybersecurity

  • Network Intrusion Detection : Develop quantitative methods for intrusion detection.
  • Cryptocurrency Analysis : Analyze blockchain data and cryptocurrency trends.

Mathematical Biology Quantitative Research Topics

  • Epidemiological Modeling : Model disease spread and control in populations.
  • Population Genetics : Analyze genetic data to understand population dynamics.

Quantitative Research Topics In Chemical Analysis

  • Analytical Chemistry Methods : Develop quantitative methods for chemical analysis.
  • Spectroscopy Analysis : Analyze spectroscopic data for chemical identification.

Mathematics Education Quantitative Research Topics

  • Mathematics Curriculum Analysis : Analyze curriculum effectiveness in mathematics education.
  • Mathematics Assessment Development : Develop quantitative assessments for mathematics skills.

Quantitative Research Topics In Social Research

  • Social Network Analysis : Analyze social network structures and dynamics.
  • Survey Research : Conduct quantitative surveys on social issues and trends.

Quantitative Research Topics In Computational Neuroscience

  • Neural Network Modeling : Model neural networks and brain functions computationally.
  • Brain Connectivity Analysis : Analyze functional and structural brain connectivity.

Best Topics In Transportation Engineering

  • Traffic Flow Modeling : Model and optimize traffic flow in urban areas.
  • Public Transportation Efficiency : Analyze the efficiency of public transportation systems.

Good Quantitative Research Topics In Energy Economics

  • Energy Policy Analysis : Evaluate the economic impact of energy policies.
  • Renewable Energy Cost-Benefit Analysis : Assess the economic viability of renewable energy projects.

Quantum Information Science

  • Quantum Cryptography Protocols : Develop and analyze quantum cryptography protocols.
  • Quantum Key Distribution : Study the security of quantum key distribution systems.

Human Genetics

  • Genome Editing Ethics : Investigate ethical issues in genome editing technologies.
  • Population Genomics : Analyze genomic data for population genetics research.

Marine Biology

  • Coral Reef Health Assessment : Quantitatively assess the health of coral reefs.
  • Marine Ecosystem Modeling : Model marine ecosystems and biodiversity.

Data Science and Machine Learning

  • Machine Learning Explainability : Develop methods for explaining machine learning models.
  • Data Privacy in Machine Learning : Study privacy issues in machine learning applications.
  • Deep Learning for Image Analysis : Develop deep learning models for image recognition.

Environmental Engineering

Robotics and automation, materials engineering, nuclear engineering, biomedical engineering, chemical engineering, renewable energy, astronomy and space sciences, psychology and cognitive science, geology and geological engineering, forensic science, cybersecurity, mathematical biology, chemical analysis, mathematics education, quantitative social research, computational neuroscience, quantitative research topics in transportation engineering, quantitative research topics in energy economics, topics in quantum information science, amazing quantitative research topics in human genetics, quantitative research topics in marine biology, what is a common goal of qualitative and quantitative research.

A common goal of both qualitative and quantitative research is to generate knowledge and gain a deeper understanding of a particular phenomenon or topic. However, they approach this goal in different ways:

1. Understanding a Phenomenon

Both types of research aim to understand and explain a specific phenomenon, whether it’s a social issue, a natural process, a human behavior, or a complex event.

2. Testing Hypotheses

Both qualitative and quantitative research can involve hypothesis testing. While qualitative research may not use statistical hypothesis tests in the same way as quantitative research, it often tests hypotheses or research questions by examining patterns and themes in the data.

3. Contributing to Knowledge

Researchers in both approaches seek to contribute to the body of knowledge in their respective fields. They aim to answer important questions, address gaps in existing knowledge, and provide insights that can inform theory, practice, or policy.

4. Informing Decision-Making

Research findings from both qualitative and quantitative studies can be used to inform decision-making in various domains, whether it’s in academia, government, industry, healthcare, or social services.

5. Enhancing Understanding

Both approaches strive to enhance our understanding of complex phenomena by systematically collecting and analyzing data. They aim to provide evidence-based explanations and insights.

6. Application

Research findings from both qualitative and quantitative studies can be applied to practical situations. For example, the results of a quantitative study on the effectiveness of a new drug can inform medical treatment decisions, while qualitative research on customer preferences can guide marketing strategies.

7. Contributing to Theory

In academia, both types of research contribute to the development and refinement of theories in various disciplines. Quantitative research may provide empirical evidence to support or challenge existing theories, while qualitative research may generate new theoretical frameworks or perspectives.

Conclusion – Quantitative Research Topics For STEM Students

So, selecting a quantitative research topic for STEM students is a pivotal decision that can shape the trajectory of your academic and professional journey. The process involves a thoughtful exploration of your interests, a thorough review of the existing literature, consideration of available resources, and the formulation of a clear and specific research question.

Your chosen topic should resonate with your passions, align with your academic or career goals, and offer the potential to contribute to the body of knowledge in your STEM field. Whether you’re delving into physics, biology, engineering, mathematics, or any other STEM discipline, the right research topic can spark curiosity, drive innovation, and lead to valuable insights.

Moreover, quantitative research in STEM not only expands the boundaries of human knowledge but also has the power to address real-world challenges, improve technology, and enhance our understanding of the natural world. It is a journey that demands dedication, intellectual rigor, and an unwavering commitment to scientific inquiry.

What is quantitative research in STEM?

Quantitative research in this context is designed to improve our understanding of the science system’s workings, structural dependencies and dynamics.

What are good examples of quantitative research?

Surveys and questionnaires serve as common examples of quantitative research. They involve collecting data from many respondents and analyzing the results to identify trends, patterns

What are the 4 C’s in STEM?

They became known as the “Four Cs” — critical thinking, communication, collaboration, and creativity.

Similar Articles

Tips To Write An Assignment

13 Best Tips To Write An Assignment

Whenever the new semester starts, you will get a lot of assignment writing tasks. Now you enter the new academic…

How To Do Homework Fast

How To Do Homework Fast – 11 Tips To Do Homework Fast

Homework is one of the most important parts that have to be done by students. It has been around for…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

logo

60+ Best Quantitative Research Topics for STEM Students: Dive into Data

Embark on a captivating journey through the cosmos of knowledge with our curated guide on Quantitative Research Topics for STEM Students. Explore innovative ideas in science, technology, engineering, and mathematics, designed to ignite curiosity and shape the future.

Unleash the power of quantitative research and dive into uncharted territories that go beyond academics, fostering innovation and discovery.

Hey, you future scientists, tech wizards, engineering maestros, and math superheroes – gather ’round! We’re about to dive headfirst into the rad world of quantitative research topics, tailor-made for the rockstars of STEM.

In the crazy universe of science, technology, engineering, and math (STEM), quantitative research isn’t just a nerdy term—it’s your VIP pass to an interstellar adventure. Picture this: you’re strapping into a rocket ship, zooming through the cosmos, and decoding the universe’s coolest secrets, all while juggling numbers like a cosmic DJ.

But here’s the real scoop: finding the ultimate research topic is like picking the juiciest star in the galaxy. It’s about stumbling upon something so mind-blowing that you can’t resist plunging into the data. It’s about choosing questions that make your STEM-loving heart do the cha-cha.

In this guide, we’re not just your sidekicks; we’re your partners in crime through the vast jungle of quantitative research topics. Whether you’re a rookie gearing up for your first lab escapade or a seasoned explorer hunting for a new thrill, think of this article as your treasure map, guiding you to the coolest STEM discoveries.

From the teeny wonders of biology to the brain-bending puzzles of physics, the cutting-edge vibes of engineering, and the downright gorgeous dance of mathematics – we’ve got your back.

So, buckle up, fellow STEM enthusiasts! We’re setting sail on a cosmic adventure through the groovy galaxy of quantitative research topics. Get ready to unravel the secrets of science and tech, one sizzling digit at a time.

Stick around for a ride that’s part data, part disco, and all STEM swagger!

Table of Contents

Benefits of Choosing Quantitative Research

Embarking on the quantitative research journey is like stepping into a treasure trove of benefits across a spectrum of fields. Let’s dive into the exciting advantages that make choosing quantitative research a game-changer:

Numbers That Speak Louder

Quantitative research deals in cold, hard numbers. This means your data isn’t just informative; it’s objective, measurable, and has a voice of its own.

Statistical Swagger

Crunching numbers isn’t just for show. With quantitative research, statistical tools add a touch of pizzazz, boosting the validity of your findings and turning your study into a credible performance.

For the Masses

Quantitative research loves a crowd. Larger sample sizes mean your discoveries aren’t just for the lucky few – they’re for everyone. It’s the science of sharing the knowledge wealth.

Data Showdown

Ready for a duel between variables? Quantitative research sets the stage for epic battles, letting you compare, contrast, and uncover cause-and-effect relationships in the data arena.

Structured and Ready to Roll

Think of quantitative research like a well-organized party. It follows a structured plan, making replication a breeze. Because who doesn’t love a party that’s easy to recreate?

Data Efficiency Dance

Efficiency is the name of the game. Surveys, experiments, and structured observations make data collection a dance – choreographed, smooth, and oh-so-efficient.

Data Clarity FTW

No decoding needed here. Quantitative research delivers crystal-clear results. It’s like reading a good book without the need for interpretation – straightforward and to the point.

Spotting Trends Like a Pro

Ever wish you had a crystal ball for trends? Quantitative analysis is the next best thing. It’s like having a trend-spotting superpower, revealing patterns that might have otherwise stayed hidden.

Bias Be Gone

Quantitative research takes bias out of the equation. Systematic data collection and statistical wizardry reduce researcher bias, leaving you with results that are as unbiased as a judge at a talent show.

Key Components of a Quantitative Research Study

Launching into a quantitative research study is like embarking on a thrilling quest, and guess what? You’re the hero of this research adventure! Let’s unravel the exciting components that make your study a blockbuster:

Quest-Starter: Research Question or Hypothesis

It’s your “once upon a time.” Kick off your research journey with a bang by crafting a captivating research question or hypothesis. This is the spark that ignites your curiosity.

Backstory Bonanza: Literature Review

Think of it as your research Netflix binge. Dive into existing literature for the backstory. It’s not just research – it’s drama, plot twists, and the foundation for your epic tale.

Blueprint Brilliance: Research Design

Time to draw up the plans for your study castle. Choose your research design – is it a grand experiment or a cunning observational scheme? Your design is the architectural genius behind your research.

Casting Call: Population and Sample

Who’s in your star-studded lineup? Define your dream cast – your target population – and then handpick a sample that’s ready for the research red carpet.

Gear Up: Data Collection Methods

Choose your research tools wisely – surveys, experiments, or maybe a bit of detective work. Your methods are like the gadgets in a spy movie, helping you collect the data treasures.

The Numbers Game: Variables and Measures

What’s in the spotlight? Identify your main characters – independent and dependent variables. Then, sprinkle in some measures to add flair and precision to your study.

Magic Analysis Wand: Data Analysis Techniques

Enter the wizardry zone! Pick your magic wand – statistical methods, tests, or software – and watch as it unravels the mysteries hidden in your data.

Ethical Superhero Cape: Ethical Considerations

Every hero needs a moral compass. Clearly outline how you’ll be the ethical superhero of your study, protecting the well-being and secrets of your participants.

Grand Finale: Results and Findings

It’s showtime! Showcase your results like the grand finale of a fireworks display. Tables, charts, and statistical dazzle – let your findings steal the spotlight.

Wrap-Up Party: Conclusion and Implications

Bring out the confetti! Summarize your findings, discuss their VIP status in the research world, and hint at the afterparty – how your results shape the future.

Behind-the-Scenes Blooper Reel: Limitations and Future Research

No Hollywood film is perfect. Share the bloopers – the limitations of your study – and hint at the sequel with ideas for future research. It’s all part of the cinematic journey.

Roll Credits: References

Give a shout-out to the supporting cast! Cite your sources – it’s the credits that add credibility to your blockbuster.

Bonus Scene: Appendix

Think of it as the post-credits scene. Tuck in any extra goodies – surveys, questionnaires, or behind-the-scenes material – for those eager to dive deeper into your research universe.

By weaving these storylines together, your quantitative research study becomes a cinematic masterpiece, leaving a lasting impact on the grand stage of academia. Happy researching, hero!

Quantitative Research Topics for STEM Students

Check out the best quantitative research topics for STEM students:-

  • Investigating the Effects of Different Soil pH Levels on Plant Growth.
  • Analyzing the Impact of Pesticide Exposure on Bee Populations.
  • Studying the Genetic Variability in Endangered Species.
  • Quantifying the Relationship Between Temperature and Microbial Growth in Water.
  • Analyzing the Effects of Ocean Acidification on Coral Reefs.
  • Investigating the Correlation Between Pollinator Diversity and Crop Yield.
  • Studying the Role of Gut Microbiota in Human Health and Disease.
  • Quantifying the Impact of Antibiotics on Soil Microbial Communities.
  • Analyzing the Effects of Light Pollution on Nocturnal Animal Behavior.
  • Investigating the Relationship Between Altitude and Plant Adaptations in Mountain Ecosystems.
  • Measuring the Speed of Light Using Interferometry Techniques.
  • Investigating the Quantum Properties of Photons in Quantum Computing.
  • Analyzing the Factors Affecting Magnetic Field Strength in Electromagnets.
  • Studying the Behavior of Superfluids at Ultra-Low Temperatures.
  • Quantifying the Efficiency of Energy Transfer in Photovoltaic Cells.
  • Analyzing the Properties of Quantum Dots for Future Display Technologies.
  • Investigating the Behavior of Particles in High-Energy Particle Accelerators.
  • Studying the Effects of Gravitational Waves on Space-Time.
  • Quantifying the Frictional Forces on Objects at Different Surfaces.
  • Analyzing the Characteristics of Dark Matter and Dark Energy in the Universe.

Engineering

  • Optimizing the Design of Wind Turbine Blades for Maximum Efficiency.
  • Investigating the Use of Smart Materials in Structural Engineering.
  • Analyzing the Impact of 3D Printing on Prototyping in Product Design.
  • Studying the Behavior of Composite Materials Under Extreme Temperatures.
  • Evaluating the Efficiency of Water Treatment Plants in Removing Contaminants.
  • Investigating the Aerodynamics of Drones for Improved Flight Control.
  • Quantifying the Effects of Traffic Flow on Roadway Maintenance.
  • Analyzing the Impact of Vibration Damping in Building Structures.
  • Studying the Mechanical Properties of Biodegradable Polymers in Medical Devices.
  • Investigating the Use of Artificial Intelligence in Autonomous Robotic Systems.

Mathematics

  • Exploring Chaos Theory and Its Applications in Nonlinear Systems.
  • Modeling the Spread of Infectious Diseases in Population Dynamics.
  • Analyzing Data Mining Techniques for Predictive Analytics in Business.
  • Studying the Mathematics of Cryptography Algorithms for Data Security.
  • Quantifying the Patterns in Stock Market Price Movements Using Time Series Analysis.
  • Investigating the Applications of Fractal Geometry in Computer Graphics.
  • Analyzing the Behavior of Differential Equations in Climate Modeling.
  • Studying the Optimization of Supply Chain Networks Using Linear Programming.
  • Investigating the Mathematical Concepts Behind Machine Learning Algorithms.
  • Quantifying the Patterns of Prime Numbers in Number Theory.
  • Investigating the Chemical Mechanisms Behind Enzyme Catalysis.
  • Analyzing the Thermodynamic Properties of Chemical Reactions.
  • Studying the Kinetics of Chemical Reactions in Different Solvents.
  • Quantifying the Concentration of Pollutants in Urban Air Quality.
  • Evaluating the Effectiveness of Antioxidants in Food Preservation.
  • Investigating the Electrochemical Properties of Batteries for Energy Storage.
  • Studying the Behavior of Nanomaterials in Drug Delivery Systems.
  • Analyzing the Chemical Composition of Exoplanet Atmospheres Using Spectroscopy.
  • Quantifying Heavy Metal Contamination in Soil and Water Sources.
  • Investigating the Correlation Between Chemical Exposure and Human Health.

Computer Science

  • Analyzing Machine Learning Algorithms for Natural Language Processing.
  • Investigating Quantum Computing Algorithms for Cryptography Applications.
  • Studying the Efficiency of Data Compression Methods for Big Data Storage.
  • Quantifying Cybersecurity Threats and Vulnerabilities in IoT Devices.
  • Evaluating the Impact of Cloud Computing on Distributed Systems.
  • Investigating the Use of Artificial Intelligence in Autonomous Vehicles.
  • Analyzing the Behavior of Neural Networks in Deep Learning Applications.
  • Studying the Performance of Blockchain Technology in Supply Chain Management.
  • Quantifying User Behavior in Social Media Analytics.
  • Investigating Quantum Machine Learning for Enhanced Data Processing.

These additional project ideas provide a diverse range of opportunities for STEM students to engage in quantitative research and explore various aspects of their respective fields. Each project offers a unique avenue for discovery and contribution to the world of science and technology.

What is an example of a quantitative research?

Quantitative research is a powerful investigative approach, wielding numbers to shed light on intricate relationships and phenomena. Let’s dive into an example of quantitative research to understand its workings:

Research Question

What is the correlation between the time students devote to studying and their academic grades?

Students who invest more time in studying are likely to achieve higher grades.

Research Design

Imagine a researcher embarking on a journey within a high school. They distribute surveys to students, inquiring about their weekly study hours and their corresponding grades in core subjects.

Data Analysis

Equipped with statistical tools, our researcher scrutinizes the collected data. Lo and behold, a significant positive correlation emerges—students who dedicate more time to studying generally earn higher grades.

With data as their guide, the researcher concludes that indeed, a relationship exists between study time and academic grades. The more time students commit to their studies, the brighter their academic stars tend to shine.

This example merely scratches the surface of quantitative research’s potential. It can delve into an extensive array of subjects and investigate complex hypotheses. Here are a few more examples:

  • Assessing a New Drug’s Effectiveness: Quantifying the impact of a  novel medication  in treating a specific illness.
  • Socioeconomic Status and Crime Rates: Investigating the connection between economic conditions and criminal activity.
  • Analyzing the Influence of an Advertising Campaign on Sales: Measuring the effectiveness of a marketing blitz on product purchases.
  • Factors Shaping Customer Satisfaction: Using data to pinpoint the elements contributing to customer contentment.
  • Government Policies and Employment Rates: Evaluating the repercussions of new governmental regulations on job opportunities.

Quantitative research serves as a potent beacon, illuminating the complexities of our world through data-driven inquiry. Researchers harness its might to collect, analyze, and draw valuable conclusions about a vast spectrum of phenomena. It’s a vital tool for unraveling the intricacies of our universe. 

As we bid adieu to our whirlwind tour of quantitative research topics tailor-made for the STEM dreamers, it’s time to soak in the vast horizons that science, technology, engineering, and mathematics paint for us.

We’ve danced through the intricate tango of poverty and crime, peeked into the transformative realm of cutting-edge technologies, and unraveled the captivating puzzles of quantitative research. But these aren’t just topics; they’re open invitations to dive headfirst into the uncharted seas of knowledge.

To you, the STEM trailblazers, these research ideas aren’t mere academic pursuits. They’re portals to curiosity, engines of innovation, and blueprints for shaping the future of our world. They’re the sparks that illuminate the trail leading to discovery.

As you set sail on your research odyssey, remember that quantitative research isn’t just about unlocking answers—it’s about nurturing that profound sense of wonder, igniting innovation, and weaving your unique thread into the fabric of human understanding.

Whether you’re stargazing, decoding the intricate language of genes, engineering marvels, or tackling global challenges head-on, realize that your STEM and quantitative research journey is a perpetual adventure.

May your questions be audacious, your data razor-sharp, and your discoveries earth-shattering. Keep that innate curiosity alive, keep exploring, and let the spirit of STEM be your North Star, guiding you towards a future that’s not just brighter but brilliantly enlightened.

And with that, fellow adventurers, go forth, embrace the unknown, and let your journey in STEM be the epic tale that reshapes the narrative of tomorrow!

Frequently Asked Questions

How can i ensure the ethical conduct of my quantitative research project.

To ensure ethical conduct, obtain informed consent from participants, maintain data confidentiality, and adhere to ethical guidelines established by your institution and professional associations.

Are there any software tools recommended for data analysis in STEM research?

Yes, there are several widely used software tools for data analysis in STEM research, including R, Python, MATLAB, and SPSS. The choice of software depends on your specific research needs and familiarity with the tools.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

100+ Quantitative Research Topics For Students

Quantitative Research Topics

Quantitative research is a research strategy focusing on quantified data collection and analysis processes. This research strategy emphasizes testing theories on various subjects. It also includes collecting and analyzing non-numerical data.

Quantitative research is a common approach in the natural and social sciences , like marketing, business, sociology, chemistry, biology, economics, and psychology. So, if you are fond of statistics and figures, a quantitative research title would be an excellent option for your research proposal or project.

How to Get a Title of Quantitative Research

How to make quantitative research title, what is the best title for quantitative research, amazing quantitative research topics for students, creative quantitative research topics, perfect quantitative research title examples, unique quantitative research titles, outstanding quantitative research title examples for students, creative example title of quantitative research samples, outstanding quantitative research problems examples, fantastic quantitative research topic examples, the best quantitative research topics, grade 12 quantitative research title for students, list of quantitative research titles for high school, easy quantitative research topics for students, trending topics for quantitative research, quantitative research proposal topics, samples of quantitative research titles, research title about business quantitative.

Finding a great title is the key to writing a great quantitative research proposal or paper. A title for quantitative research prepares you for success, failure, or mediocre grades. This post features examples of quantitative research titles for all students.

Putting together a research title and quantitative research design is not as easy as some students assume. So, an example topic of quantitative research can help you craft your own. However, even with the examples, you may need some guidelines for personalizing your research project or proposal topics.

So, here are some tips for getting a title for quantitative research:

  • Consider your area of studies
  • Look out for relevant subjects in the area
  • Expert advice may come in handy
  • Check out some sample quantitative research titles

Making a quantitative research title is easy if you know the qualities of a good title in quantitative research. Reading about how to make a quantitative research title may not help as much as looking at some samples. Looking at a quantitative research example title will give you an idea of where to start.

However, let’s look at some tips for how to make a quantitative research title:

  • The title should seem interesting to readers
  • Ensure that the title represents the content of the research paper
  • Reflect on the tone of the writing in the title
  • The title should contain important keywords in your chosen subject to help readers find your paper
  • The title should not be too lengthy
  • It should be grammatically correct and creative
  • It must generate curiosity

An excellent quantitative title should be clear, which implies that it should effectively explain the paper and what readers can expect. A research title for quantitative research is the gateway to your article or proposal. So, it should be well thought out. Additionally, it should give you room for extensive topic research.

A sample of quantitative research titles will give you an idea of what a good title for quantitative research looks like. Here are some examples:

  • What is the correlation between inflation rates and unemployment rates?
  • Has climate adaptation influenced the mitigation of funds allocation?
  • Job satisfaction and employee turnover: What is the link?
  • A look at the relationship between poor households and the development of entrepreneurship skills
  • Urbanization and economic growth: What is the link between these elements?
  • Does education achievement influence people’s economic status?
  • What is the impact of solar electricity on the wholesale energy market?
  • Debt accumulation and retirement: What is the relationship between these concepts?
  • Can people with psychiatric disorders develop independent living skills?
  • Children’s nutrition and its impact on cognitive development

Quantitative research applies to various subjects in the natural and social sciences. Therefore, depending on your intended subject, you have numerous options. Below are some good quantitative research topics for students:

  • The difference between the colorific intake of men and women in your country
  • Top strategies used to measure customer satisfaction and how they work
  • Black Friday sales: are they profitable?
  • The correlation between estimated target market and practical competitive risk assignment
  • Are smartphones making us brighter or dumber?
  • Nuclear families Vs. Joint families: Is there a difference?
  • What will society look like in the absence of organized religion?
  • A comparison between carbohydrate weight loss benefits and high carbohydrate diets?
  • How does emotional stability influence your overall well-being?
  • The extent of the impact of technology in the communications sector

Creativity is the key to creating a good research topic in quantitative research. Find a good quantitative research topic below:

  • How much exercise is good for lasting physical well-being?
  • A comparison of the nutritional therapy uses and contemporary medical approaches
  • Does sugar intake have a direct impact on diabetes diagnosis?
  • Education attainment: Does it influence crime rates in society?
  • Is there an actual link between obesity and cancer rates?
  • Do kids with siblings have better social skills than those without?
  • Computer games and their impact on the young generation
  • Has social media marketing taken over conventional marketing strategies?
  • The impact of technology development on human relationships and communication
  • What is the link between drug addiction and age?

Need more quantitative research title examples to inspire you? Here are some quantitative research title examples to look at:

  • Habitation fragmentation and biodiversity loss: What is the link?
  • Radiation has affected biodiversity: Assessing its effects
  • An assessment of the impact of the CORONA virus on global population growth
  • Is the pandemic truly over, or have human bodies built resistance against the virus?
  • The ozone hole and its impact on the environment
  • The greenhouse gas effect: What is it and how has it impacted the atmosphere
  • GMO crops: are they good or bad for your health?
  • Is there a direct link between education quality and job attainment?
  • How have education systems changed from traditional to modern times?
  • The good and bad impacts of technology on education qualities

Your examiner will give you excellent grades if you come up with a unique title and outstanding content. Here are some quantitative research examples titles.

  • Online classes: are they helpful or not?
  • What changes has the global CORONA pandemic had on the population growth curve?
  • Daily habits influenced by the global pandemic
  • An analysis of the impact of culture on people’s personalities
  • How has feminism influenced the education system’s approach to the girl child’s education?
  • Academic competition: what are its benefits and downsides for students?
  • Is there a link between education and student integrity?
  • An analysis of how the education sector can influence a country’s economy
  • An overview of the link between crime rates and concern for crime
  • Is there a link between education and obesity?

Research title example quantitative topics when well-thought guarantees a paper that is a good read. Look at the examples below to get started.

  • What are the impacts of online games on students?
  • Sex education in schools: how important is it?
  • Should schools be teaching about safe sex in their sex education classes?
  • The correlation between extreme parent interference on student academic performance
  • Is there a real link between academic marks and intelligence?
  • Teacher feedback: How necessary is it, and how does it help students?
  • An analysis of modern education systems and their impact on student performance
  • An overview of the link between academic performance/marks and intelligence
  • Are grading systems helpful or harmful to students?
  • What was the impact of the pandemic on students?

Irrespective of the course you take, here are some titles that can fit diverse subjects pretty well. Here are some creative quantitative research title ideas:

  • A look at the pre-corona and post-corona economy
  • How are conventional retail businesses fairing against eCommerce sites like Amazon and Shopify?
  • An evaluation of mortality rates of heart attacks
  • Effective treatments for cardiovascular issues and their prevention
  • A comparison of the effectiveness of home care and nursing home care
  • Strategies for managing effective dissemination of information to modern students
  • How does educational discrimination influence students’ futures?
  • The impacts of unfavorable classroom environment and bullying on students and teachers
  • An overview of the implementation of STEM education to K-12 students
  • How effective is digital learning?

If your paper addresses a problem, you must present facts that solve the question or tell more about the question. Here are examples of quantitative research titles that will inspire you.

  • An elaborate study of the influence of telemedicine in healthcare practices
  • How has scientific innovation influenced the defense or military system?
  • The link between technology and people’s mental health
  • Has social media helped create awareness or worsened people’s mental health?
  • How do engineers promote green technology?
  • How can engineers raise sustainability in building and structural infrastructures?
  • An analysis of how decision-making is dependent on someone’s sub-conscious
  • A comprehensive study of ADHD and its impact on students’ capabilities
  • The impact of racism on people’s mental health and overall wellbeing
  • How has the current surge in social activism helped shape people’s relationships?

Are you looking for an example of a quantitative research title? These ten examples below will get you started.

  • The prevalence of nonverbal communication in social control and people’s interactions
  • The impacts of stress on people’s behavior in society
  • A study of the connection between capital structures and corporate strategies
  • How do changes in credit ratings impact equality returns?
  • A quantitative analysis of the effect of bond rating changes on stock prices
  • The impact of semantics on web technology
  • An analysis of persuasion, propaganda, and marketing impact on individuals
  • The dominant-firm model: what is it, and how does it apply to your country’s retail sector?
  • The role of income inequality in economy growth
  • An examination of juvenile delinquents’ treatment in your country

Excellent Topics For Quantitative Research

Here are some titles for quantitative research you should consider:

  • Does studying mathematics help implement data safety for businesses
  • How are art-related subjects interdependent with mathematics?
  • How do eco-friendly practices in the hospitality industry influence tourism rates?
  • A deep insight into how people view eco-tourisms
  • Religion vs. hospitality: Details on their correlation
  • Has your country’s tourist sector revived after the pandemic?
  • How effective is non-verbal communication in conveying emotions?
  • Are there similarities between the English and French vocabulary?
  • How do politicians use persuasive language in political speeches?
  • The correlation between popular culture and translation

Here are some quantitative research titles examples for your consideration:

  • How do world leaders use language to change the emotional climate in their nations?
  • Extensive research on how linguistics cultivate political buzzwords
  • The impact of globalization on the global tourism sector
  • An analysis of the effects of the pandemic on the worldwide hospitality sector
  • The influence of social media platforms on people’s choice of tourism destinations
  • Educational tourism: What is it and what you should know about it
  • Why do college students experience math anxiety?
  • Is math anxiety a phenomenon?
  • A guide on effective ways to fight cultural bias in modern society
  • Creative ways to solve the overpopulation issue

An example of quantitative research topics for 12 th -grade students will come in handy if you want to score a good grade. Here are some of the best ones:

  • The link between global warming and climate change
  • What is the greenhouse gas impact on biodiversity and the atmosphere
  • Has the internet successfully influenced literacy rates in society
  • The value and downsides of competition for students
  • A comparison of the education system in first-world and third-world countries
  • The impact of alcohol addiction on the younger generation
  • How has social media influenced human relationships?
  • Has education helped boost feminism among men and women?
  • Are computers in classrooms beneficial or detrimental to students?
  • How has social media improved bullying rates among teenagers?

High school students can apply research titles on social issues  or other elements, depending on the subject. Let’s look at some quantitative topics for students:

  • What is the right age to introduce sex education for students
  • Can extreme punishment help reduce alcohol consumption among teenagers?
  • Should the government increase the age of sexual consent?
  • The link between globalization and the local economy collapses
  • How are global companies influencing local economies?

There are numerous possible quantitative research topics you can write about. Here are some great quantitative research topics examples:

  • The correlation between video games and crime rates
  • Do college studies impact future job satisfaction?
  • What can the education sector do to encourage more college enrollment?
  • The impact of education on self-esteem
  • The relationship between income and occupation

You can find inspiration for your research topic from trending affairs on social media or in the news. Such topics will make your research enticing. Find a trending topic for quantitative research example from the list below:

  • How the country’s economy is fairing after the pandemic
  • An analysis of the riots by women in Iran and what the women gain to achieve
  • Is the current US government living up to the voter’s expectations?
  • How is the war in Ukraine affecting the global economy?
  • Can social media riots affect political decisions?

A proposal is a paper you write proposing the subject you would like to cover for your research and the research techniques you will apply. If the proposal is approved, it turns to your research topic. Here are some quantitative titles you should consider for your research proposal:

  • Military support and economic development: What is the impact in developing nations?
  • How does gun ownership influence crime rates in developed countries?
  • How can the US government reduce gun violence without influencing people’s rights?
  • What is the link between school prestige and academic standards?
  • Is there a scientific link between abortion and the definition of viability?

You can never have too many sample titles. The samples allow you to find a unique title you’re your research or proposal. Find a sample quantitative research title here:

  • Does weight loss indicate good or poor health?
  • Should schools do away with grading systems?
  • The impact of culture on student interactions and personalities
  • How can parents successfully protect their kids from the dangers of the internet?
  • Is the US education system better or worse than Europe’s?

If you’re a business major, then you must choose a research title quantitative about business. Let’s look at some research title examples quantitative in business:

  • Creating shareholder value in business: How important is it?
  • The changes in credit ratings and their impact on equity returns
  • The importance of data privacy laws in business operations
  • How do businesses benefit from e-waste and carbon footprint reduction?
  • Organizational culture in business: what is its importance?

We Are A Call Away

Interesting, creative, unique, and easy quantitative research topics allow you to explain your paper and make research easy. Therefore, you should not take choosing a research paper or proposal topic lightly. With your topic ready, reach out to us today for excellent research paper writing services .

Leave a Reply Cancel reply

  • Privacy Policy

Research Method

Home » 500+ Quantitative Research Titles and Topics

500+ Quantitative Research Titles and Topics

Table of Contents

Quantitative Research Topics

Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology , economics , and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas to explore, from analyzing data on a specific population to studying the effects of a particular intervention or treatment. In this post, we will provide some ideas for quantitative research topics that may inspire you and help you narrow down your interests.

Quantitative Research Titles

Quantitative Research Titles are as follows:

Business and Economics

  • “Statistical Analysis of Supply Chain Disruptions on Retail Sales”
  • “Quantitative Examination of Consumer Loyalty Programs in the Fast Food Industry”
  • “Predicting Stock Market Trends Using Machine Learning Algorithms”
  • “Influence of Workplace Environment on Employee Productivity: A Quantitative Study”
  • “Impact of Economic Policies on Small Businesses: A Regression Analysis”
  • “Customer Satisfaction and Profit Margins: A Quantitative Correlation Study”
  • “Analyzing the Role of Marketing in Brand Recognition: A Statistical Overview”
  • “Quantitative Effects of Corporate Social Responsibility on Consumer Trust”
  • “Price Elasticity of Demand for Luxury Goods: A Case Study”
  • “The Relationship Between Fiscal Policy and Inflation Rates: A Time-Series Analysis”
  • “Factors Influencing E-commerce Conversion Rates: A Quantitative Exploration”
  • “Examining the Correlation Between Interest Rates and Consumer Spending”
  • “Standardized Testing and Academic Performance: A Quantitative Evaluation”
  • “Teaching Strategies and Student Learning Outcomes in Secondary Schools: A Quantitative Study”
  • “The Relationship Between Extracurricular Activities and Academic Success”
  • “Influence of Parental Involvement on Children’s Educational Achievements”
  • “Digital Literacy in Primary Schools: A Quantitative Assessment”
  • “Learning Outcomes in Blended vs. Traditional Classrooms: A Comparative Analysis”
  • “Correlation Between Teacher Experience and Student Success Rates”
  • “Analyzing the Impact of Classroom Technology on Reading Comprehension”
  • “Gender Differences in STEM Fields: A Quantitative Analysis of Enrollment Data”
  • “The Relationship Between Homework Load and Academic Burnout”
  • “Assessment of Special Education Programs in Public Schools”
  • “Role of Peer Tutoring in Improving Academic Performance: A Quantitative Study”

Medicine and Health Sciences

  • “The Impact of Sleep Duration on Cardiovascular Health: A Cross-sectional Study”
  • “Analyzing the Efficacy of Various Antidepressants: A Meta-Analysis”
  • “Patient Satisfaction in Telehealth Services: A Quantitative Assessment”
  • “Dietary Habits and Incidence of Heart Disease: A Quantitative Review”
  • “Correlations Between Stress Levels and Immune System Functioning”
  • “Smoking and Lung Function: A Quantitative Analysis”
  • “Influence of Physical Activity on Mental Health in Older Adults”
  • “Antibiotic Resistance Patterns in Community Hospitals: A Quantitative Study”
  • “The Efficacy of Vaccination Programs in Controlling Disease Spread: A Time-Series Analysis”
  • “Role of Social Determinants in Health Outcomes: A Quantitative Exploration”
  • “Impact of Hospital Design on Patient Recovery Rates”
  • “Quantitative Analysis of Dietary Choices and Obesity Rates in Children”

Social Sciences

  • “Examining Social Inequality through Wage Distribution: A Quantitative Study”
  • “Impact of Parental Divorce on Child Development: A Longitudinal Study”
  • “Social Media and its Effect on Political Polarization: A Quantitative Analysis”
  • “The Relationship Between Religion and Social Attitudes: A Statistical Overview”
  • “Influence of Socioeconomic Status on Educational Achievement”
  • “Quantifying the Effects of Community Programs on Crime Reduction”
  • “Public Opinion and Immigration Policies: A Quantitative Exploration”
  • “Analyzing the Gender Representation in Political Offices: A Quantitative Study”
  • “Impact of Mass Media on Public Opinion: A Regression Analysis”
  • “Influence of Urban Design on Social Interactions in Communities”
  • “The Role of Social Support in Mental Health Outcomes: A Quantitative Analysis”
  • “Examining the Relationship Between Substance Abuse and Employment Status”

Engineering and Technology

  • “Performance Evaluation of Different Machine Learning Algorithms in Autonomous Vehicles”
  • “Material Science: A Quantitative Analysis of Stress-Strain Properties in Various Alloys”
  • “Impacts of Data Center Cooling Solutions on Energy Consumption”
  • “Analyzing the Reliability of Renewable Energy Sources in Grid Management”
  • “Optimization of 5G Network Performance: A Quantitative Assessment”
  • “Quantifying the Effects of Aerodynamics on Fuel Efficiency in Commercial Airplanes”
  • “The Relationship Between Software Complexity and Bug Frequency”
  • “Machine Learning in Predictive Maintenance: A Quantitative Analysis”
  • “Wearable Technologies and their Impact on Healthcare Monitoring”
  • “Quantitative Assessment of Cybersecurity Measures in Financial Institutions”
  • “Analysis of Noise Pollution from Urban Transportation Systems”
  • “The Influence of Architectural Design on Energy Efficiency in Buildings”

Quantitative Research Topics

Quantitative Research Topics are as follows:

  • The effects of social media on self-esteem among teenagers.
  • A comparative study of academic achievement among students of single-sex and co-educational schools.
  • The impact of gender on leadership styles in the workplace.
  • The correlation between parental involvement and academic performance of students.
  • The effect of mindfulness meditation on stress levels in college students.
  • The relationship between employee motivation and job satisfaction.
  • The effectiveness of online learning compared to traditional classroom learning.
  • The correlation between sleep duration and academic performance among college students.
  • The impact of exercise on mental health among adults.
  • The relationship between social support and psychological well-being among cancer patients.
  • The effect of caffeine consumption on sleep quality.
  • A comparative study of the effectiveness of cognitive-behavioral therapy and pharmacotherapy in treating depression.
  • The relationship between physical attractiveness and job opportunities.
  • The correlation between smartphone addiction and academic performance among high school students.
  • The impact of music on memory recall among adults.
  • The effectiveness of parental control software in limiting children’s online activity.
  • The relationship between social media use and body image dissatisfaction among young adults.
  • The correlation between academic achievement and parental involvement among minority students.
  • The impact of early childhood education on academic performance in later years.
  • The effectiveness of employee training and development programs in improving organizational performance.
  • The relationship between socioeconomic status and access to healthcare services.
  • The correlation between social support and academic achievement among college students.
  • The impact of technology on communication skills among children.
  • The effectiveness of mindfulness-based stress reduction programs in reducing symptoms of anxiety and depression.
  • The relationship between employee turnover and organizational culture.
  • The correlation between job satisfaction and employee engagement.
  • The impact of video game violence on aggressive behavior among children.
  • The effectiveness of nutritional education in promoting healthy eating habits among adolescents.
  • The relationship between bullying and academic performance among middle school students.
  • The correlation between teacher expectations and student achievement.
  • The impact of gender stereotypes on career choices among high school students.
  • The effectiveness of anger management programs in reducing violent behavior.
  • The relationship between social support and recovery from substance abuse.
  • The correlation between parent-child communication and adolescent drug use.
  • The impact of technology on family relationships.
  • The effectiveness of smoking cessation programs in promoting long-term abstinence.
  • The relationship between personality traits and academic achievement.
  • The correlation between stress and job performance among healthcare professionals.
  • The impact of online privacy concerns on social media use.
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders.
  • The relationship between teacher feedback and student motivation.
  • The correlation between physical activity and academic performance among elementary school students.
  • The impact of parental divorce on academic achievement among children.
  • The effectiveness of diversity training in improving workplace relationships.
  • The relationship between childhood trauma and adult mental health.
  • The correlation between parental involvement and substance abuse among adolescents.
  • The impact of social media use on romantic relationships among young adults.
  • The effectiveness of assertiveness training in improving communication skills.
  • The relationship between parental expectations and academic achievement among high school students.
  • The correlation between sleep quality and mood among adults.
  • The impact of video game addiction on academic performance among college students.
  • The effectiveness of group therapy in treating eating disorders.
  • The relationship between job stress and job performance among teachers.
  • The correlation between mindfulness and emotional regulation.
  • The impact of social media use on self-esteem among college students.
  • The effectiveness of parent-teacher communication in promoting academic achievement among elementary school students.
  • The impact of renewable energy policies on carbon emissions
  • The relationship between employee motivation and job performance
  • The effectiveness of psychotherapy in treating eating disorders
  • The correlation between physical activity and cognitive function in older adults
  • The effect of childhood poverty on adult health outcomes
  • The impact of urbanization on biodiversity conservation
  • The relationship between work-life balance and employee job satisfaction
  • The effectiveness of eye movement desensitization and reprocessing (EMDR) in treating trauma
  • The correlation between parenting styles and child behavior
  • The effect of social media on political polarization
  • The impact of foreign aid on economic development
  • The relationship between workplace diversity and organizational performance
  • The effectiveness of dialectical behavior therapy in treating borderline personality disorder
  • The correlation between childhood abuse and adult mental health outcomes
  • The effect of sleep deprivation on cognitive function
  • The impact of trade policies on international trade and economic growth
  • The relationship between employee engagement and organizational commitment
  • The effectiveness of cognitive therapy in treating postpartum depression
  • The correlation between family meals and child obesity rates
  • The effect of parental involvement in sports on child athletic performance
  • The impact of social entrepreneurship on sustainable development
  • The relationship between emotional labor and job burnout
  • The effectiveness of art therapy in treating dementia
  • The correlation between social media use and academic procrastination
  • The effect of poverty on childhood educational attainment
  • The impact of urban green spaces on mental health
  • The relationship between job insecurity and employee well-being
  • The effectiveness of virtual reality exposure therapy in treating anxiety disorders
  • The correlation between childhood trauma and substance abuse
  • The effect of screen time on children’s social skills
  • The impact of trade unions on employee job satisfaction
  • The relationship between cultural intelligence and cross-cultural communication
  • The effectiveness of acceptance and commitment therapy in treating chronic pain
  • The correlation between childhood obesity and adult health outcomes
  • The effect of gender diversity on corporate performance
  • The impact of environmental regulations on industry competitiveness.
  • The impact of renewable energy policies on greenhouse gas emissions
  • The relationship between workplace diversity and team performance
  • The effectiveness of group therapy in treating substance abuse
  • The correlation between parental involvement and social skills in early childhood
  • The effect of technology use on sleep patterns
  • The impact of government regulations on small business growth
  • The relationship between job satisfaction and employee turnover
  • The effectiveness of virtual reality therapy in treating anxiety disorders
  • The correlation between parental involvement and academic motivation in adolescents
  • The effect of social media on political engagement
  • The impact of urbanization on mental health
  • The relationship between corporate social responsibility and consumer trust
  • The correlation between early childhood education and social-emotional development
  • The effect of screen time on cognitive development in young children
  • The impact of trade policies on global economic growth
  • The relationship between workplace diversity and innovation
  • The effectiveness of family therapy in treating eating disorders
  • The correlation between parental involvement and college persistence
  • The effect of social media on body image and self-esteem
  • The impact of environmental regulations on business competitiveness
  • The relationship between job autonomy and job satisfaction
  • The effectiveness of virtual reality therapy in treating phobias
  • The correlation between parental involvement and academic achievement in college
  • The effect of social media on sleep quality
  • The impact of immigration policies on social integration
  • The relationship between workplace diversity and employee well-being
  • The effectiveness of psychodynamic therapy in treating personality disorders
  • The correlation between early childhood education and executive function skills
  • The effect of parental involvement on STEM education outcomes
  • The impact of trade policies on domestic employment rates
  • The relationship between job insecurity and mental health
  • The effectiveness of exposure therapy in treating PTSD
  • The correlation between parental involvement and social mobility
  • The effect of social media on intergroup relations
  • The impact of urbanization on air pollution and respiratory health.
  • The relationship between emotional intelligence and leadership effectiveness
  • The effectiveness of cognitive-behavioral therapy in treating depression
  • The correlation between early childhood education and language development
  • The effect of parental involvement on academic achievement in STEM fields
  • The impact of trade policies on income inequality
  • The relationship between workplace diversity and customer satisfaction
  • The effectiveness of mindfulness-based therapy in treating anxiety disorders
  • The correlation between parental involvement and civic engagement in adolescents
  • The effect of social media on mental health among teenagers
  • The impact of public transportation policies on traffic congestion
  • The relationship between job stress and job performance
  • The effectiveness of group therapy in treating depression
  • The correlation between early childhood education and cognitive development
  • The effect of parental involvement on academic motivation in college
  • The impact of environmental regulations on energy consumption
  • The relationship between workplace diversity and employee engagement
  • The effectiveness of art therapy in treating PTSD
  • The correlation between parental involvement and academic success in vocational education
  • The effect of social media on academic achievement in college
  • The impact of tax policies on economic growth
  • The relationship between job flexibility and work-life balance
  • The effectiveness of acceptance and commitment therapy in treating anxiety disorders
  • The correlation between early childhood education and social competence
  • The effect of parental involvement on career readiness in high school
  • The impact of immigration policies on crime rates
  • The relationship between workplace diversity and employee retention
  • The effectiveness of play therapy in treating trauma
  • The correlation between parental involvement and academic success in online learning
  • The effect of social media on body dissatisfaction among women
  • The impact of urbanization on public health infrastructure
  • The relationship between job satisfaction and job performance
  • The effectiveness of eye movement desensitization and reprocessing therapy in treating PTSD
  • The correlation between early childhood education and social skills in adolescence
  • The effect of parental involvement on academic achievement in the arts
  • The impact of trade policies on foreign investment
  • The relationship between workplace diversity and decision-making
  • The effectiveness of exposure and response prevention therapy in treating OCD
  • The correlation between parental involvement and academic success in special education
  • The impact of zoning laws on affordable housing
  • The relationship between job design and employee motivation
  • The effectiveness of cognitive rehabilitation therapy in treating traumatic brain injury
  • The correlation between early childhood education and social-emotional learning
  • The effect of parental involvement on academic achievement in foreign language learning
  • The impact of trade policies on the environment
  • The relationship between workplace diversity and creativity
  • The effectiveness of emotion-focused therapy in treating relationship problems
  • The correlation between parental involvement and academic success in music education
  • The effect of social media on interpersonal communication skills
  • The impact of public health campaigns on health behaviors
  • The relationship between job resources and job stress
  • The effectiveness of equine therapy in treating substance abuse
  • The correlation between early childhood education and self-regulation
  • The effect of parental involvement on academic achievement in physical education
  • The impact of immigration policies on cultural assimilation
  • The relationship between workplace diversity and conflict resolution
  • The effectiveness of schema therapy in treating personality disorders
  • The correlation between parental involvement and academic success in career and technical education
  • The effect of social media on trust in government institutions
  • The impact of urbanization on public transportation systems
  • The relationship between job demands and job stress
  • The correlation between early childhood education and executive functioning
  • The effect of parental involvement on academic achievement in computer science
  • The effectiveness of cognitive processing therapy in treating PTSD
  • The correlation between parental involvement and academic success in homeschooling
  • The effect of social media on cyberbullying behavior
  • The impact of urbanization on air quality
  • The effectiveness of dance therapy in treating anxiety disorders
  • The correlation between early childhood education and math achievement
  • The effect of parental involvement on academic achievement in health education
  • The impact of global warming on agriculture
  • The effectiveness of narrative therapy in treating depression
  • The correlation between parental involvement and academic success in character education
  • The effect of social media on political participation
  • The impact of technology on job displacement
  • The relationship between job resources and job satisfaction
  • The effectiveness of art therapy in treating addiction
  • The correlation between early childhood education and reading comprehension
  • The effect of parental involvement on academic achievement in environmental education
  • The impact of income inequality on social mobility
  • The relationship between workplace diversity and organizational culture
  • The effectiveness of solution-focused brief therapy in treating anxiety disorders
  • The correlation between parental involvement and academic success in physical therapy education
  • The effect of social media on misinformation
  • The impact of green energy policies on economic growth
  • The relationship between job demands and employee well-being
  • The correlation between early childhood education and science achievement
  • The effect of parental involvement on academic achievement in religious education
  • The impact of gender diversity on corporate governance
  • The relationship between workplace diversity and ethical decision-making
  • The correlation between parental involvement and academic success in dental hygiene education
  • The effect of social media on self-esteem among adolescents
  • The impact of renewable energy policies on energy security
  • The effect of parental involvement on academic achievement in social studies
  • The impact of trade policies on job growth
  • The relationship between workplace diversity and leadership styles
  • The correlation between parental involvement and academic success in online vocational training
  • The effect of social media on self-esteem among men
  • The impact of urbanization on air pollution levels
  • The effectiveness of music therapy in treating depression
  • The correlation between early childhood education and math skills
  • The effect of parental involvement on academic achievement in language arts
  • The impact of immigration policies on labor market outcomes
  • The effectiveness of hypnotherapy in treating phobias
  • The effect of social media on political engagement among young adults
  • The impact of urbanization on access to green spaces
  • The relationship between job crafting and job satisfaction
  • The effectiveness of exposure therapy in treating specific phobias
  • The correlation between early childhood education and spatial reasoning
  • The effect of parental involvement on academic achievement in business education
  • The impact of trade policies on economic inequality
  • The effectiveness of narrative therapy in treating PTSD
  • The correlation between parental involvement and academic success in nursing education
  • The effect of social media on sleep quality among adolescents
  • The impact of urbanization on crime rates
  • The relationship between job insecurity and turnover intentions
  • The effectiveness of pet therapy in treating anxiety disorders
  • The correlation between early childhood education and STEM skills
  • The effect of parental involvement on academic achievement in culinary education
  • The impact of immigration policies on housing affordability
  • The relationship between workplace diversity and employee satisfaction
  • The effectiveness of mindfulness-based stress reduction in treating chronic pain
  • The correlation between parental involvement and academic success in art education
  • The effect of social media on academic procrastination among college students
  • The impact of urbanization on public safety services.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Music Research Topics

500+ Music Research Topics

Educational Research Topics

500+ Educational Research Topics

Biology Research Topics

350+ Biology Research Topics

Nursing research topic ideas

500+ Nursing Research Topic Ideas

History Research Paper Topics

500+ History Research Paper Topics

Interesting Research Topics

300+ Interesting Research Topics

edeuphoria

200 Quantitative Research Title for Stem Students

Are you a STEM (Science, Technology, Engineering, and Mathematics) student looking for inspiration for your next research project? You’re in the right place! Quantitative research involves gathering numerical data to answer specific questions, and it’s a fundamental part of STEM fields. To help you get started on your research journey, we’ve compiled a list of 200 quantitative research title for stem students. These titles span various STEM disciplines, from biology to computer science. Whether you’re an undergraduate or graduate student, these titles can serve as a springboard for your research ideas.

Biology and Life Sciences

  • The Impact of pH Levels on Microbial Growth
  • Examining the Impact of Temperature on Enzyme Activity.
  • Investigating the Relationship Between Genetics and Obesity
  • Exploring the Diversity of Microorganisms in Soil Samples
  • Quantifying the Impact of Pesticides on Aquatic Ecosystems
  • Studying the Effect of Light Exposure on Plant Growth
  • Analyzing the Efficiency of Antibiotics on Bacterial Infections
  • Investigating the Relationship Between Blood Type and Disease Susceptibility
  • Evaluating the Effects of Different Diets on Lifespan in Fruit Flies
  • Evaluating the Influence of Air Pollution on Respiratory Health.
  • Determining the Kinetics of Chemical Reactions
  • Investigating the Conductivity of Various Ionic Solutions
  • Analyzing the Effects of Temperature on Gas Solubility
  • Studying the Corrosion Rate of Metals in Different Environments
  • Quantifying the Concentration of Heavy Metals in Water Sources
  • Evaluating the Efficiency of Photocatalytic Materials in Water Purification
  • Examining the Thermodynamics of Electrochemical Cells
  • Investigating the Effect of pH on Acid-Base Titrations
  • Analyzing the Composition of Natural and Synthetic Polymers
  • Assessing the Chemical Properties of Nanoparticles
  • Measuring the Speed of Light Using Interferometry
  • Studying the Behavior of Electromagnetic Waves in Different Media
  • Investigating the Relationship Between Mass and Gravitational Force
  • Analyzing the Efficiency of Solar Cells in Energy Conversion
  • Examining Quantum Entanglement in Photon Pairs
  • Quantifying the Heat Transfer in Different Materials
  • Evaluating the Efficiency of Wind Turbines in Energy Production
  • Studying the Elasticity of Materials Through Stress-Strain Analysis
  • Analyzing the Effects of Magnetic Fields on Particle Motion
  • Investigating the Behavior of Superconductors at Low Temperatures

Mathematics

  • Exploring Patterns in Prime Numbers
  • Analyzing the Distribution of Random Variables
  • Investigating the Properties of Fractals in Geometry
  • Evaluating the Efficiency of Optimization Algorithms
  • Studying the Dynamics of Differential Equations
  • Quantifying the Growth of Cryptocurrency Markets
  • Analyzing Network Theory and its Applications
  • Investigating the Complexity of Sorting Algorithms
  • Assessing the Predictive Power of Machine Learning Models
  • Examining the Distribution of Prime Factors in Large Numbers

Computer Science

  • Evaluating the Performance of Encryption Algorithms
  • Analyzing the Efficiency of Data Compression Techniques
  • Investigating Cybersecurity Threats in IoT Devices
  • Quantifying the Impact of Code Refactoring on Software Quality
  • Studying the Behavior of Neural Networks in Image Recognition
  • Analyzing the Effectiveness of Natural Language Processing Models
  • Investigating the Relationship Between Software Bugs and Development Methods
  • Evaluating the Efficiency of Blockchain Consensus Mechanisms
  • Assessing the Privacy Implications of Social Media Data Mining
  • Studying the Dynamics of Online Social Networks

Engineering

  • Analyzing the Structural Integrity of Bridges Under Load
  • Investigating the Efficiency of Renewable Energy Systems
  • Quantifying the Performance of Water Filtration Systems
  • Evaluating the Durability of 3D-Printed Materials
  • Studying the Aerodynamics of Drone Design
  • Analyzing the Impact of Noise Pollution on Urban Environments
  • Investigating the Efficiency of Heat Exchangers in HVAC Systems
  • Assessing the Safety of Autonomous Vehicles in Real-world Scenarios
  • Exploring the Applications of Artificial Intelligence in Robotics
  • Investigating Material Behavior in Extreme Conditions.

Environmental Science

  • Assessing the Effect of Climate Change on Wildlife Migration.
  • Analyzing the Effect of Deforestation on Carbon Sequestration
  • Investigating the Relationship Between Air Quality and Human Health
  • Quantifying the Rate of Soil Erosion in Different Landscapes
  • Analyzing the Impacts of Ocean Acidification on Coral Reefs.
  • Assessing the Efficiency of Waste-to-Energy Conversion Technologies
  • Analyzing the Impact of Urbanization on Local Microclimates
  • Investigating the Effect of Oil Spills on Aquatic Ecosystems
  • Assessing the Effectiveness of Endangered Species Conservation Initiatives.
  • Studying the Dynamics of Ecological Communities

Astronomy and Space Sciences

  • Measuring the Orbits of Exoplanets Using Transit Photometry
  • Investigating the Formation of Stars in Nebulae
  • Analyzing the Characteristics of Black Holes
  • Exploring the Characteristics of Cosmic Microwave Background Radiation.
  • Quantifying the Distribution of Dark Matter in Galaxies
  • Assessing the Effects of Space Weather on Satellite Communications
  • Evaluating the Potential for Asteroid Mining
  • Investigating the Habitability of Exoplanets in the Goldilocks Zone
  • Analyzing Gravitational Waves from Neutron Star Collisions
  • Investigating the Evolution of Galaxies Across Cosmic Eras.

Health Sciences

  • Evaluating the Impact of Exercise on Cardiovascular Health
  • Analyzing the Relationship Between Diet and Diabetes
  • Investigating the Efficacy of Vaccination Programs
  • Quantifying the Psychological Effects of Social Media Use
  • Studying the Genetics of Neurodegenerative Diseases
  • Analyzing the Effects of Meditation on Stress Reduction
  • Investigating the Correlation Between Sleep Patterns and Mental Health
  • Assessing the Influence of Environmental Factors on Allergies
  • Evaluating the Effectiveness of Telemedicine in Patient Care
  • Studying the Health Disparities Among Different Demographic Groups

Materials Science

  • Analyzing the Properties of Carbon Nanotubes for Nanoelectronics
  • Investigating the Thermal Conductivity of Advanced Ceramics
  • Quantifying the Strength of Composite Materials
  • Studying the Optical Properties of Quantum Dots
  • Evaluating the Biocompatibility of Biomaterials for Implants
  • Investigating the Phase Transitions in Perovskite Materials
  • Analyzing the Mechanical Behavior of Shape Memory Alloys
  • Assessing the Corrosion Resistance of Coatings on Metals
  • Studying the Electrical Conductivity of Polymer Blends
  • Exploring the Superconducting Properties of High-Temperature Superconductors

Earth Sciences

  • Assessing the Influence of Volcanic Eruptions on Climate.
  • Analyzing the Geological Processes Shaping Earth’s Surface
  • Investigating the Seismic Activity in Subduction Zones
  • Quantifying the Rate of Glacial Retreat in Polar Regions
  • Studying the Formation of Earthquakes Along Fault Lines
  • Analyzing the Changes in Ocean Circulation Due to Climate Change
  • Investigating the Effects of Urbanization on Groundwater Quality
  • Assessing the Risk of Landslides in Hilly Terrain
  • Evaluating the Impact of Coastal Erosion on Communities
  • Studying the Behavior of Hurricanes in Different Oceanic Basins

Social Sciences and Economics

  • Analyzing the Economic Impact of Natural Disasters
  • Investigating the Relationship Between Education and Income
  • Quantifying the Effects of Public Health Policies on Disease Spread
  • Studying the Demographic Changes in Aging Populations
  • Evaluating the Effects of Gender Diversity on Corporate Performance
  • Analyzing the Influence of Social Media on Political Behavior
  • Investigating the Correlation Between Happiness and Economic Growth
  • Assessing the Factors Affecting Consumer Buying Behavior
  • Studying the Dynamics of International Trade Flows
  • Exploring the Effects of Income Inequality on Social Mobility

Robotics and Artificial Intelligence

  • Evaluating the Performance of Reinforcement Learning Algorithms in Robotics
  • Analyzing the Efficiency of Autonomous Navigation Systems
  • Investigating Human-Robot Interaction in Collaborative Environments
  • Quantifying the Accuracy of Object Detection Algorithms
  • Studying the Ethics of Autonomous AI Decision-Making
  • Analyzing the Robustness of Machine Learning Models to Adversarial Attacks
  • Investigating the Use of AI in Healthcare Diagnosis
  • Assessing the Impact of AI on Job Markets
  • Evaluating the Efficiency of Natural Language Processing in Chatbots
  • Studying the Potential for AI to Enhance Education

Energy and Sustainability

  • Examining the Environmental Consequences of Renewable Energy Sources.
  • Investigating the Efficiency of Energy Storage Systems
  • Quantifying the Benefits of Green Building Technologies
  • Studying the Effects of Carbon Pricing on Emissions Reduction
  • Examining the Prospect for Carbon Capture and Storage
  • Assessing the Sustainability of Food Production Systems
  • Investigating the Impact of Electric Vehicles on Urban Air Quality
  • Analyzing the Energy Consumption Patterns in Smart Cities
  • Studying the Feasibility of Hydrogen as a Clean Energy Carrier
  • Exploring Sustainable Agriculture Practices for Crop Yield Improvement

Neuroscience and Psychology

  • Evaluating the Cognitive Effects of Video Game Play
  • Analyzing Brain Activity During Decision-Making Processes
  • Investigating the Neural Correlates of Emotional Regulation
  • Quantifying the Impact of Music on Brain Function
  • Analyzing the Outcomes of Mindfulness Meditation on Anxiety
  • Analyzing Sleep Patterns and Memory Consolidation
  • Investigating the Relationship Between Neurotransmitters and Mood
  • Assessing the Neural Basis of Addiction
  • Evaluating the Effects of Trauma on Brain Structure
  • Studying the Brain’s Response to Virtual Reality Environments

Mechanical Engineering

  • Analyzing the Efficiency of Heat Exchangers in Power Plants
  • Investigating the Wear and Tear of Mechanical Bearings
  • Quantifying the Vibrations in Mechanical Systems
  • Studying the Aerodynamics of Wind Turbine Blades
  • Evaluating the Frictional Properties of Lubricants
  • Assessing the Efficiency of Cooling Systems in Electronics
  • Investigating the Performance of Internal Combustion Engines
  • Analyzing the Impact of Additive Manufacturing on Product Development
  • Studying the Dynamics of Fluid Flow in Pipelines
  • Exploring the Behavior of Composite Materials in Aerospace Structures

Biomedical Engineering

  • Evaluating the Biomechanics of Human Joint Replacements
  • Analyzing the Performance of Wearable Health Monitoring Devices
  • Investigating the Biocompatibility of 3D-Printed Medical Implants
  • Quantifying the Drug Release Rates from Biodegradable Polymers
  • Studying the Efficiency of Drug Delivery Systems
  • Assessing the Use of Nanoparticles in Cancer Therapies
  • Investigating the Biomechanics of Tissue Engineering Constructs
  • Analyzing the Effects of Electrical Stimulation on Nerve Regeneration
  • Evaluating the Mechanical Properties of Artificial Heart Valves
  • Studying the Biomechanics of Human Movement

Civil and Environmental Engineering

  • Analyzing the Structural Behavior of Tall Buildings in Seismic Zones
  • Investigating the Efficiency of Stormwater Management Systems
  • Quantifying the Impact of Green Infrastructure on Urban Flooding
  • Studying the Behavior of Soils in Slope Stability Analysis
  • Evaluating the Performance of Water Treatment Plants
  • Assessing the Sustainability of Transportation Systems
  • Investigating the Effects of Climate Change on Infrastructure Resilience
  • Analyzing the Environmental Impact of Construction Materials
  • Studying the Dynamics of River Sediment Transport
  • Exploring the Use of Smart Materials in Civil Engineering Applications

Chemical Engineering

  • Evaluating the Efficiency of Chemical Reactors in Pharmaceutical Production
  • Analyzing the Mass Transfer Rates in Membrane Separation Processes
  • Investigating the Effects of Catalysis on Chemical Reactions
  • Quantifying the Kinetics of Polymerization Reactions
  • Studying the Thermodynamics of Gas-Liquid Absorption Processes
  • Assessing the Efficiency of Adsorption-Based Carbon Capture
  • Investigating the Rheological Properties of Non-Newtonian Fluids
  • Analyzing the Effects of Surfactants on Foam Stability
  • Studying the Mass Transport in Microfluidic Devices
  • Exploring the Synthesis of Nanomaterials for Energy Applications

Electrical and Electronic Engineering

  • Analyzing the Efficiency of Power Electronics in Electric Vehicles
  • Investigating the Performance of Wireless Communication Systems
  • Quantifying the Power Consumption of IoT Devices
  • Studying the Reliability of Printed Circuit Boards
  • Evaluating the Efficiency of Photovoltaic Inverters
  • Assessing the Electromagnetic Compatibility of Electronic Devices
  • Investigating the Behavior of Antenna Arrays in Beamforming
  • Analyzing the Power Quality in Electrical Grids
  • Studying the Security of IoT Networks
  • Exploring the Use of Machine Learning in Signal Processing

These 200 quantitative research titles offer a diverse array of options to inspire your next STEM research endeavor. Always remember to select a subject that truly captivates your interest and curiosity, as your enthusiasm and curiosity will drive your research to new heights. Good luck with your research journey, STEM student!

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Java Assignment Help

199+ Engaging Quantitative Research Topics for STEM Students

quantitative research topics for stem students (2)

Discover engaging quantitative research topics for STEM students, spanning energy solutions, medical advancements, and cutting-edge technology. Explore hands-on ideas to sharpen skills and make a tangible impact on the future.

Hey STEM buddy! Ready for some awesome research ideas? We’ve handpicked cool topics just for you.

Inside, you’ll find stuff from new energy solutions to medical breakthroughs. They’re chosen to let you shine with your skills in numbers, problems, and creativity.

You’ll get better at stats, experiments, and telling a great story with your results.

Best part? These ideas make a real impact. Whether it’s saving the environment or inventing something new, let’s dive in and shape the future together!

Why Choose Quantitative Research for STEM Students?

Here’s why quantitative research rocks for STEM students:

Boosts Core Skills

  • Crunching Numbers: It helps you analyze big data, spot trends, and draw solid conclusions, super important in any STEM gig.
  • Problem-Solving with Math: You’ll ace making research questions that need number answers, a must-have skill in physics, engineering, and computer science.
  • Smart Thinking: By sussing out good data and drawing logical conclusions, you’ll become a pro problem-solver in STEM.

Preps You for More

  • Grad School Ready: Quantitative research sets you up for success in advanced STEM studies.
  • R&D Pros: Get ready to contribute big time to scientific breakthroughs and cool research projects.

Keeps It Real

  • Less Bias, More Facts: Quantitative research sticks to the facts, making your findings solid and reliable.
  • Tangible Results: You’ll get real numbers and clear outcomes, making your research super easy to understand and compare.

Works in All Kinds of STEM

  • Engineering: Perfect for testing designs and improving processes.
  • Computer Science: From writing code to analyzing networks, you’ll need those numbers.
  • Life Sciences: It’s vital for everything from drug trials to understanding how living things work.

So while qualitative research is cool, focusing on numbers sets you up with the skills you need to rock STEM like a pro!

Quantitative Research Topics for STEM Students

Check out quantiative research topics for STEM students:-

  • Impact of environment on bacteria growth.
  • Effects of fertilizers on plant growth.
  • Genetic mutations and disease prevalence.
  • Strategies for biodiversity preservation.
  • Temperature’s influence on enzyme activity.
  • Ecological footprint of a species.
  • Spread of infectious diseases.
  • Pollution’s effects on aquatic ecosystems.
  • Diet’s correlation with lifespan.
  • Climate change’s impact on bird migration.
  • Catalyst efficiency in reactions.
  • Chemical reaction kinetics.
  • Nanoparticle properties in drug delivery.
  • pH levels and metal corrosion.
  • Pollution analysis in air and water.
  • Water purification methods.
  • Polymer behavior under conditions.
  • Thermodynamics of chemical compounds.
  • Additives’ impact on food stability.
  • Solar cell efficiency.
  • Superconductor properties at temperatures.
  • Mass-acceleration relationship.
  • Energy transfer in collisions.
  • Material behavior under pressure.
  • Projectile trajectory modeling.
  • Renewable energy source efficiency.
  • Aerodynamics of wing designs.
  • Electromagnetic wave properties.
  • Doppler effect in astronomy.
  • Temperature’s effect on conductivity.

Mathematics

  • Resource allocation algorithms.
  • Prime number distribution analysis.
  • Fractals in mathematical modeling.
  • Numerical equation-solving methods.
  • Geometry-topology relationship.
  • Chaotic system modeling.
  • Convergence properties of methods.
  • Graph theory in networks.
  • Financial market risk analysis.
  • Population growth prediction models.

Engineering

  • Structural material performance.
  • Heat exchanger efficiency.
  • Stability of bridges and buildings.
  • Vehicle propulsion system efficiency.
  • Fluid behavior in hydraulic systems.
  • Vibration effects on mechanics.
  • Electrical circuit reliability.
  • Manufacturing process energy efficiency.
  • Traffic flow optimization.

Environmental Science

  • Deforestation’s impact on climate.
  • Soil erosion rate quantification.
  • Conservation strategy effectiveness.
  • Air pollution’s effects on health.
  • Ocean acidification’s impact.
  • Waste management technique analysis.
  • Carbon footprint analysis.
  • Urbanization’s effect on water quality.
  • Renewable energy policy effectiveness.
  • Species distribution analysis.

Computer Science

  • Image recognition algorithm development.
  • Sorting algorithm efficiency.
  • Machine learning model performance.
  • Scalability of distributed systems.
  • Encryption method vulnerability.
  • Network behavior under cyber-attacks.
  • Routing protocol efficiency.
  • Social media user behavior analysis.
  • Data compression technique performance.
  • Algorithmic bias impact analysis.

Agricultural Science

  • Irrigation method impact on crop yield.
  • Climate change effects on productivity.
  • Pest control method efficiency.
  • Crop nutritional content analysis.
  • Plant disease spread modeling.
  • Soil composition and crop growth.
  • Water usage in farming systems.
  • Genetically modified crop efficacy.
  • Land use change biodiversity impact.
  • Organic farming economic viability.

Material Science

  • Graphene-based material mechanical properties.
  • Ceramic thermal conductivity.
  • Metal alloy corrosion resistance.
  • Semiconductor electrical properties.
  • Composite material behavior modeling.
  • Nanomaterial optical property analysis.
  • Material hardness quantification.
  • Polymer biocompatibility assessment.
  • Material self-healing property study.
  • Manufacturing process environmental impact.

Health Sciences

  • Exercise impact on cardiovascular health.
  • Diet’s correlation with obesity.
  • Air quality’s effects on respiratory health.
  • Genetic predisposition to diseases.
  • Infectious disease spread modeling.
  • Rehabilitation technique effectiveness.
  • Psychological factors in substance abuse.
  • Treatment efficacy for mental disorders.
  • Sleep patterns’ effect on cognition.
  • Telemedicine’s healthcare access impact.

Neuroscience

  • Neural mechanisms of learning and memory.
  • Neurotransmitter effects on brain function.
  • Neuroplasticity’s brain injury recovery impact.
  • Brain structure’s cognitive ability correlation.
  • Decision-making neural network modeling.
  • Stress effects on brain development.
  • Brain activity analysis with EEG or fMRI.
  • Intervention efficacy for neurodegenerative diseases.
  • Neural basis of addiction.
  • Aging’s effect on brain health.
  • Dark matter distribution analysis.
  • Exoplanet properties using transit photometry.
  • Galaxy cluster dynamics.
  • Star formation and evolution.
  • Celestial body gravitational interaction modeling.
  • Asteroid and comet composition analysis.
  • Stellar spectra analysis.
  • Pulsating star variability study.
  • Black hole properties analysis.
  • Cosmic microwave background radiation analysis.

Earth Science

  • Tectonic activity and seismicity relationship.
  • Climate change’s glacier retreat impact.
  • Tornadoes and hurricanes formation factors.
  • Ocean currents’ climate effect.
  • Groundwater system behavior modeling.
  • Deforestation’s local climate impact.
  • Soil erosion rate analysis.
  • Landslide risk assessment.
  • Volcanic eruption impact on atmosphere.
  • Historical climate data analysis.

Social Sciences

  • Socioeconomic status and education correlation.
  • Early childhood intervention impact.
  • Social media’s mental health effect.
  • Voter behavior influencing factors.
  • Misinformation spread modeling.
  • Crime rate intervention effectiveness.
  • Urban area income inequality analysis.
  • Immigration’s labor market impact.
  • Social support’s health outcome impact.
  • Residential segregation patterns analysis.
  • Teaching method impact on learning.
  • Class size’s academic achievement impact.
  • Student retention and graduation analysis.
  • Parental involvement and student success correlation.
  • Socioeconomic status’ educational attainment impact.
  • Educational technology effectiveness analysis.
  • Gender gap in STEM fields analysis.
  • Early childhood education program effectiveness.
  • Standardized testing’s educational equity impact.
  • Teacher training’s student achievement impact.

Business and Economics

  • Consumer behavior influencing factors.
  • Advertising’s product sales impact.
  • Pricing strategy effectiveness analysis.
  • Inflation’s economic growth correlation.
  • Financial market dynamics modeling.
  • Government policy economic impact analysis.
  • Income inequality’s economic stability impact.
  • International trade agreement impact analysis.
  • Entrepreneurship program economic growth impact.
  • Corporate governance’s firm performance correlation.

Linguistics

  • Bilingual children’s language acquisition patterns.
  • Linguistic diversity’s communication impact.
  • Language structure and cognitive process correlation.
  • Language evolution modeling.
  • Cultural trait spread modeling.
  • Colonialism’s impact on indigenous languages.
  • Phonological variation analysis.
  • Technology’s language impact.
  • Language processing neural basis study.
  • Language’s cultural identity shaping role.
  • Decision-making in social dilemmas analysis.
  • Stress impact on cognitive performance.
  • Personality traits’ academic achievement impact.
  • Emotion regulation neural mechanism study.
  • Attachment style development modeling.
  • Sleep deprivation’s mood and behavior impact.
  • Psychotherapy intervention effectiveness analysis.
  • Social support’s mental health outcome impact.
  • Social media’s self-esteem impact.
  • Online community behavior analysis.

Anthropology

  • Cultural transmission patterns in indigenous communities.
  • Globalization’s impact on traditional cultures.
  • Kinship structures and social organization relationship.
  • Cooperative behavior evolution in societies.
  • Cultural trait diffusion modeling.
  • Colonialism’s impact on indigenous populations.
  • Material culture’s social identity implications.
  • Migration’s cultural diversity impact.
  • Rituals and ceremonies’ social cohesion role.
  • Cultural contact’s language evolution impact.

Political Science

  • Voter turnout influencing factors analysis.
  • Gerrymandering’s political representation impact.
  • Media bias and public opinion correlation.
  • Campaign finance law electoral outcome impact.
  • Political polarization modeling.
  • International diplomacy’s conflict resolution effectiveness.
  • Government policy income distribution impact.
  • Electoral system political stability impact.
  • Identity politics’ political movement impact.
  • Political participation and activism patterns analysis.

These simplified points should provide a clear overview of research topics in each category for STEM students.

What is quantitative research related to stem students?

Quantitative research is like a secret weapon for STEM students. It helps them explore science using numbers and stats, making their findings solid and reliable. Here’s why:-

  • It’s Objective: Numbers don’t lie, so it keeps things fair and unbiased.
  • Testing Ideas: Got a hunch? Quantitative research helps you test your theories properly.
  • Big Picture: With lots of data, you can make conclusions that matter to more than just your study group.

Now, here are some cool areas where STEM students can get into it:

  • Environmental Science: Measure climate change impacts or track biodiversity loss.
  • Public Health: Look at how diets affect diseases or see if vaccines really work.
  • Engineering: Figure out which materials make things stronger or find the best renewable energy sources.

And a few tips for STEM students diving into quantitative research:

  • Find the Data: Check out government databases or online sources for info on your topic.
  • Think Beyond Science: Consider how your research might affect society or the environment.
  • Get Advice: Talk to your professors for guidance on your project.

With quantitative research, STEM students can unlock new discoveries and make a real impact on the world.

What are the best topics for quantitative research for STEM?

Selecting the “best” topic hinges on your specific STEM interests, but here are some general paths to guide your quantitative research:

Considering Your STEM Field

Data Trends: Explore existing data to uncover patterns. For instance, analyze how different fertilizers impact crop yield or the relationship between exercise and heart rate across demographics.

Efficiency Evaluation: Assess effectiveness through quantitative methods. Research topics could include comparing insulation materials or evaluating algorithm performance for specific tasks.

Design Optimization: Enhance designs by studying material properties’ impact on structural integrity or how design features influence aerodynamic efficiency.

Phenomena Modeling: Use mathematical models to understand real-world scenarios. Investigate disease spread models or analyze financial markets through time series analysis.

General Tips for Strong Quantitative Research:

  • Data Accessibility: Ensure you can access necessary data, whether from existing sources or through your own experiments.
  • Real-World Relevance: Address pertinent issues with your research.
  • Feasibility: Consider time and resource constraints.

Finding Inspiration

  • Current Events: Stay informed about recent breakthroughs or technological advancements.
  • Personal Interests: Blend academic pursuits with personal hobbies for added motivation.
  • Review Papers: Explore current challenges researchers are tackling in your field.

Additional Tips

  • Focus on Specificity: Craft a precise research question for targeted data collection and analysis.
  • Consider Study Design: Choose between correlational or experimental approaches to suit your research goals.

Remember, the ideal topic should spark your enthusiasm and enable you to contribute meaningfully to your field.

How can you apply quantitative research in STEM?

Quantitative research is like the engine driving progress in STEM fields. Here’s how it works:

Understanding Phenomena

  • Modeling and Prediction: We use math to create models of complex systems, making better predictions about real-world behavior. For example, epidemiological models forecast disease spread.
  • Spotting Relationships: Crunching numbers helps us find connections between things. In ecology, we might study how ocean temperatures affect fish populations.

Testing and Evaluating

  • Experimenting: We design experiments with controlled variables to discover new stuff. Quantitative research ensures our tests are fair and help us pinpoint what works, like developing new technologies or drugs.
  • Performance Boost: Engineers use numbers to make things better, like testing different car designs to improve fuel efficiency.

Making Smart Choices

  • Data-Driven Decisions: From building roads to treating illnesses, STEM fields rely on data to make smart decisions. For instance, traffic data helps plan efficient road networks, while clinical trial results inform medical treatments.
  • Spotting Trends: Big datasets reveal hidden patterns, helping us predict future events or manage resources. Quantitative weather analysis, for instance, helps forecast climate patterns.

In a nutshell, quantitative research gives us the tools to test ideas, analyze data, and make informed decisions in STEM, driving innovation and understanding in our world.

How do you choose a research topic in STEM?

Choosing an exciting STEM research topic is like embarking on a thrilling quest, blending your passions, feasibility, and potential impact. Here’s your guide:

Ignite Your Passion

  • Follow What Interests You: Dive into what excites you most in STEM. Whether it’s the mysteries of the human body, the elegance of math, or the potential of renewable energy, let your interests guide your journey.
  • Stay Current: Keep an eye on the latest breakthroughs in AI or pressing environmental issues. Researching these hot topics can give your project relevance and timeliness.
  • Classroom Insights: Reflect on standout moments from your STEM classes. Did a concept or experiment leave you eager to explore further? Use that as a starting point for your research.

Refine Your Focus

  • From Broad to Specific: Begin with a broad STEM area of interest, then zoom into specific subtopics that intrigue you. Whether it’s a particular gene’s role or the ethical dilemmas of AI, sharpen your focus.
  • Background Check: Dive into preliminary research to understand what’s already known in your chosen subtopic. Look for gaps or unanswered questions that your research can tackle.

Consider Feasibility

  • Data Access: Can you get your hands on the data you need? Explore existing datasets or plan to gather your own. Also, consider the resources available, like lab equipment or software.
  • Time and Resources: Be realistic about what’s achievable with your available time and resources. Some topics might demand more effort and advanced tools than others.

Sharpen Your Focus

  • Craft Your Question: Develop a clear and focused research question. It should guide your data collection and analysis, specific enough to answer but broad enough to intrigue.
  • Design Decision: Decide on your research approach—correlational or experimental. Choose the one that best fits your question and goals.
  • Seek Guidance: Discuss your ideas with professors or researchers. They can offer insights to refine your topic and ensure its feasibility.
  • Find Your Fit: Your ideal topic should excite you, allow for meaningful contribution, and align with your academic goals and resources.

By following these steps, you’ll uncover a captivating STEM research topic that not only ignites your curiosity but also propels you toward making a valuable scientific contribution. Let the adventure begin!

Absolutely, selecting research topics for STEM scholars resembles navigating a vast ocean of opportunities.

From unraveling the mysteries of the cosmos to devising solutions for mundane hurdles, an entire realm awaits exploration.

Simply pursue your passions, maintain a pragmatic approach, and embrace collaboration when needed.

Whether you’re crunching numbers, conducting experiments, or dissecting data, always keep in mind the essence: unearthing novel insights and effecting tangible change.

Therefore, plunge into the depths, relish the journey, and allow your inquisitiveness to chart the course!

Leave a Comment Cancel reply

Hire Article Writer

199+ Quantitative Research Topics For STEM Students to Try Now

Discover engaging Quantitative Research Topics for STEM Students – Explore the world of science, tech, engineering, and math with simplified, fascinating ideas.

Have you ever wondered how science, tech, and math shape our world? You’re not alone! STEM (Science, Technology, Engineering, and Math) is like a treasure chest of discoveries. And the best part? You can be part of it!

Our blog is your path to the exciting world of STEM. We aim to make it interesting, enjoyable, and simple to comprehend. No tricky words, no fancy talk – just simple and exciting stuff.

In this blog, we’ve collected the best quantitative research topics for stem students. Scientists use these numbers to answer questions, and it’s cool!

Do you enjoy learning? We’re here to spark your curiosity and hold your interest.

From exploring nature to solving tech puzzles and uncovering the universe’s secrets, we’ve got it all. Think of it as an adventure, with each topic leading to great discoveries.

So, get ready to dive into STEM.  Let’s learn and explore together, one topic at a time. Your STEM journey starts now!

What Is Quantitative Research? 

Quantitative research involves gathering and studying numerical data. It tries to measure things, count them, or put them into classes that can be counted. For example, a researcher might ask 100 people their age and gender. They would count how many men and women are present and work out the average age.

Quantitative research gives us numbers that help us see patterns, test theories, and predict things. The goal is to be accurate and get precise, measurable results that can be summarized numerically. This type of research aims to remove personal biases.

Tips To Choose Quantitative Research Topics For STEM Students

First, let’s find how to quantitative research topics for STEM students, and then we will move on to the project ideas.

Choose a Topic That Interests You

Picking a research topic you’re genuinely curious or passionate about makes the research process so much more engaging and rewarding. Choosing something that excites you motivates you to push through the hard work.

Look for Gaps in Existing Research

Review academic journals and existing research to find gaps where further study is needed. Look for topics where findings are contradictory or inconclusive. New research could help resolve differences or offer additional insights. Exploring open questions interests the research community.

Consider Real-World Applications

Consider how quantitative research could inform products, services, policies, and processes to improve them. Research with practical implications beyond academia tends to be impactful and worthwhile.

Ensure Quantitative Methods Apply

Not all topics lend themselves well to quantitative analysis. Assess whether statistical numerical methods will work for your research question. If not, qualitative methods may be better.

Find a Unique Angle

Avoid research topics that have already been extensively studied from every angle. Look for a creative, novel way to approach the topic that hasn’t been done before. This will ensure your work is original.

Talk to Knowledgeable People

Discuss ideas with professors, peers, and academics knowledgeable about your field. They might identify poorly researched topics or suggest exciting questions for further inquiry.

Review Coursework

Look back at class assignments, readings, lectures, and textbooks. Note down any topics that stood out as warranting deeper investigation. Build off classwork.

Choose a Manageable Scope

Ensure your topic is focused enough to tackle within the time and resources you have. Overly, broad topics become unmanageable. Define a clear, concise research question.

It is time to uncover the best quantitative research topics for STEM students.

199+ Best Quantitative Research Topics For STEM Students

These are the top most interesting Quantitative Research Topics For STEM Students.

You’ll receive better grades as a result of that.

Biology Quantitative Research Topics For STEM Students

  • How do different fertilizers affect how plants grow?
  • Does temperature change how fast enzymes work?
  • What is the variety of life like in a particular ecosystem over time?
  • What genetics underlie a rare disease?
  • Is there a link between diet and chronic illness?
  • Do some antibiotics work better on bacteria?
  • How does pollution impact water life in cities?
  • Is there a connection between stress and the immune system?
  • How do different fungi grow?
  • Do night and day animals behave differently?

Chemistry Quantitative Research Topics For STEM Students

  • What affects how fast chemical reactions occur?
  • What’s in household cleaners?
  • How do catalysts change hydrogen peroxide breakdown?
  • How do polymers act in different environments?
  • Can different salts dissolve in water?
  • What are pH levels like in natural waters?
  • Does temperature affect gas density?
  • How do acids and bases neutralize?
  • How does cooking change food chemicals?
  • Do antioxidants help preserve food?

Physics Quantitative Research Topics For STEM Students

  • How does light’s angle change reflection?
  • What affects a pendulum’s swing?
  • How do magnets work in different materials?
  • What makes solar cells efficient?
  • How do objects move in gravity?
  • What affects the speed of sound?
  • Does air resistance affect falling objects?
  • How do particle states differ?
  • Are superconductors different at low temperatures?
  • Does heat change electrical conductivity?

Computer Science Quantitative Research Topics For STEM Students

  • Do programming languages affect efficiency?
  • What security holes exist in operating systems?
  • What algorithms sort data best?
  • How can network routing be optimized?
  • How well do encryption methods secure data?
  • Can machine learning ID images?
  • Does parallel processing speed computing?
  • How do data structures affect memory?
  • What makes a good app interface?
  • Can cybersecurity tools spot threats?

Environmental Science Quantitative Research Topics For STEM Students

  • Does deforestation change the local climate?
  • Can recycling reduce waste?
  • How does urban growth impact wildlife?
  • Is there a link between pollution and illness?
  • Do renewable energies cut emissions?
  • How does water quality differ between cities and rural areas?
  • Are oceans and coral bleaching connected?
  • How does climate change impact plants?
  • How well do wastewater treatments work?
  • How do invasive species affect ecosystems?

Mathematics Quantitative Research Topics For STEM Students

  • Are there patterns in prime numbers?
  • What are the properties of fractals?
  • How are lottery numbers distributed?
  • How does math relate to the real world?
  • Can math model disease spread?
  • How well do integration methods work?
  • How do calculus sequences and series behave?
  • What are geometrical shape properties?
  • How does graph theory apply to social networks?
  • Can statistics analyze voting patterns?

Engineering Quantitative Research Topics For STEM Students

  • How efficient are renewable energies?
  • What building materials are sturdiest?
  • What aircraft designs are most aerodynamic?
  • How stable are different bridge types?
  • Can materials help purify water?
  • What irrigation systems work best in agriculture?
  • How do cities’ transit systems compare?
  • What cooling systems work best for electronics?
  • What car safety features work best?
  • What construction methods are most sustainable?

Health Sciences Quantitative Research Topics For STEM Students

  • Is exercise linked to heart health?
  • How do diets affect weight loss?
  • Do sleep patterns affect thinking?
  • How well do vaccines work?
  • Do genes influence disease risk?
  • Which physical therapies work best?
  • Is there a link between air quality and respiratory health?
  • How does stress management affect mental health?
  • Does telemedicine improve outcomes?
  • Can wearables effectively monitor vital signs?

Geology Quantitative Research Topics For STEM Students

  • What Geological Factors Cause Earthquakes?
  • How do rocks erode?
  • How does volcanism impact ecosystems?
  • What’s the history of a region?
  • Does climate change affect glaciers?
  • How has sea level changed over time?
  • What minerals are in different soils?
  • How do caves form?
  • How does geology affect groundwater?
  • How does geology relate to resource extraction?

Materials Science Quantitative Research Topics For STEM Students

  • How do semiconductors conduct electricity?
  • What coatings are most durable?
  • Which insulators resist heat flow?
  • What magnetic properties are helpful in electronics?
  • How does radiation affect spacecraft materials?
  • How do materials change under stress?
  • What alloys resist corrosion?
  • What can nanomaterials do?
  • How do polymers behave in different environments?
  • What properties have 3D printed materials?

Astronomy Quantitative Research Topics For STEM Students

  • What are the properties of exoplanets?
  • How do solar system bodies interact?
  • How do stars evolve and affect galaxies?
  • What does cosmic microwave radiation reveal about the early universe?
  • What are black holes’ properties and gravitational effects?
  • How fast is the universe expanding?
  • What is dark matter?
  • What have telescopes revealed about the universe?
  • What are the planets’ geological features?
  • Could there be life on Mars or Europa?

Robotics Quantitative Research Topics For STEM Students

  • What locomotion mechanisms work best in robots?
  • How can swarm robotics enable collaboration?
  • How is AI being developed for autonomous robots?
  • How are robotic arms designed and controlled?
  • How are robots used in disaster response?
  • Are robot-assisted surgeries effective?
  • What are the ethics of AI robots?
  • How do autonomous vehicles behave?
  • How are robots used in space?
  • Could humans and robots productively collaborate?
:

Social Sciences Quantitative Research Topics For STEM Students

  • How does social media affect relationships?
  • What parenting styles influence child development?
  • Is there a link between socioeconomics and education?
  • How does culture influence behavior?
  • What psychology underlies online consumerism?
  • Can interventions reduce addiction?
  • What is the impact of immigration policies?
  • How do people cope after crises?
  • Can social programs reduce poverty?
  • How do gender and identity affect workplaces?

Economics Quantitative Research Topics For STEM Students

  • How does inflation relate to economic growth?
  • How do fiscal policies affect income inequality?
  • What tax systems generate the most revenue?
  • What are the economic effects of trade deals?
  • What drives e-commerce purchases?
  • Do environmental policies improve economic outcomes?
  • How do interest rates affect investment?
  • What are the economic impacts of healthcare reforms?
  • How does technology affect labor markets?
  • What is the global impact of financial crises?

Agriculture Quantitative Research Topics For STEM Students

  • What irrigation methods work best?
  • How does climate change impact crop yields?
  • Can organic farming improve soil health?
  • What genetic traits confer pest/disease resistance?
  • What environmental effects do farming techniques have?
  • How do growing conditions alter nutritional value?
  • Can data analytics and precision agriculture improve yields?
  • Are small farms economically sustainable?
  • How do supply chain issues impact food security?
  • Could vertical farming work in cities?

Quantitative Research Topic Ideas For STEM Students In The Philippines:

  • Typhoon Training and Resilience
  • Air Quality in Manila
  • Online Learning and Math Scores
  • Solar Power in Rural Villages
  • Food and School Performance
  • Local Plants for Medicine
  • Water Quality in Rivers
  • Mangroves and Coastal Protection
  • Dengue Fever in Cities
  • Waste Management in Cities

Experimental Quantitative Research Topics For STEM Students

  • Testing Bridge Designs
  • Wind Turbine Prototype Efficiency
  • Battery Storage Capacity
  • Water Filtration Methods
  • Crop Growth With Organic Fertilizers
  • Material Strength Under Stress
  • Rocket Engine Performance
  • Artificial Intelligence Image Recognition
  • Electric Car Energy Use
  • Greenhouse Gas Reduction Strategies

30 Quantitative Research Topic Ideas For STEM Students

  • Investigating the properties and applications of novel materials created through 3D printing.
  • Studying the effectiveness of virtual reality simulations for medical training programs.
  • Analyzing the feasibility and methods for mineral extraction from asteroids.
  • Developing machine learning algorithms to improve navigation in self-driving cars.
  • Testing the use of drone systems for disaster response and relief operations.
  • Implementing augmented reality to enhance manufacturing and assembly processes.
  • Evaluating efficiency and optimal positioning for offshore wind farms.
  • Comparing methods and materials for recycling different types of plastics.
  • Examining the unique properties of graphene for uses in electronics and composites.
  • Assessing the risks and solutions for commercial space travel programs.
  • Designing and deploying rainwater harvesting systems in urban environments.
  • Creating biodegradable packaging materials from sustainable sources.
  • Building neural networks to predict stock market trends and patterns.
  • Using aquaponics systems for urban farming in limited spaces.
  • Leveraging AI algorithms for early detection of diseases like cancer.
  • Developing applications to take advantage of quantum computing breakthroughs.
  • Analyzing Martian soil for viability in growing crops for future colonies.
  • Optimizing traffic flow patterns on highways to reduce congestion.
  • Evaluating energy use and optimization in smartphones and devices.
  • Converting ocean wave energy into usable electricity.
  • Printing 3D biocompatible tissues and organs for transplants.
  • Improving cybersecurity through new encryption and authentication techniques.
  • Using solar power to operate desalination systems for clean water access.
  • Editing plant genes with CRISPR to improve crop yields.
  • Building fully electric aircraft for regional commercial flights.
  • Using tiny microrobots for targeted drug delivery and therapies.
  • Developing robotic exoskeletons to improve mobility for disabled individuals.
  • Implementing blockchain technology to securely track global supply chains.
  • Designing floating wind turbines for offshore energy generation.
  • Creating a hyperloop system for high-speed terrestrial transportation.

Final Thoughts,

In conclusion, quantitative research is valuable for STEM students. It lets them test ideas using statistics, experiments, and measurable data. This allows students to move beyond theory and into evidence-based findings. With quantitative methods, students can verify ideas and expand their knowledge. 

Mastering these methods prepares STEM students to innovate and lead in the future. However, they must use quantitative research ethically and objectively. If used properly, it can lead to discoveries that advance STEM fields. Quantitative research gives STEM students concrete insights to deepen their scientific understanding. 

The numeric precision of quantitative data enables final conclusions to be drawn. By learning quantitative skills, STEM students position themselves at the forefront of creation. Yet, they must analyze results in a balanced way. Overall, quantitative research is a strong tool that can unlock breakthroughs when utilized judiciously.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

23+ Quantitative Research Topics For STEM Students In The Philippines

quantitative-research-topics-for-stem-students-in-the-philippines

  • Post author By Ankit
  • February 6, 2024

“Did you know only 28% of college graduates in the Philippines get degrees in STEM fields? Finding good research topics is vital to getting more Filipino students curious about quantitative studies.

With limited research money and resources, it can be hard for STEM students to find quantitative projects that are possible, new, and impactful. Often, researchers end up feeling apart from local issues and communities.

This blog post offers a unique collection of quantitative research topics for STEM students in the Philippines. Thus, drawing from current events, social issues, and the country’s needs, these project ideas will feel relevant and help students do research that creates positive change. 

Philippines students can find inspiration for quantitative studies that make a difference at home through many examples across science, technology, engineering, and math.

Read Our Blog: 120+ Best Quantitative Research Topics for Nursing Students (2024 Edition)

Table of Contents

30 Great Quantitative Research Topics for STEM Students in The Philippines

Here are the top quantitative research topics for STEM students in the Philippines in 2024

1. Impact of Climate Change on Farming

Analyze how changing weather affects the growth of crops like rice and corn in different parts of the Philippines. Use numbers to find ways and suggest ways farmers can adapt.

2. Using Drones to Watch Nature

See how well drones with special sensors can watch over forests and coasts in the Philippines. Look at the data they gather to figure out how to save these places.

3. Making Solar Panels Work Better

Experiment with various ways to make more power with solar panels in sunny, humid places like the Philippines. Utilize math to guess how well they’ll work.

4. Checking How Pollution Hurts Coral Reefs

Count how much damage pollution does to coral reefs in the Philippines. Try to predict how bad it’ll get if we don’t stop polluting.

5. Watching Traffic to Fix Roads

Look at how cars move in big cities like Manila. Use math to figure out how to make traffic flow better and help people get around faster.

6. at Air and Sick People

Measure how clean the air is in various parts of the Philippines and see if it affects how many people get sick. Find out which areas need help to stay healthy.

7. Guessing When Earthquakes Might Happen

Look at data from sensors all over the Philippines to see if we can tell when earthquakes might come. Try to guess where they’ll occur next.

8. Making Water Pipes Better

Use math tricks to design cheap pipes that bring clean water to small towns in the Philippines. Think about things like hills and how many people need water.

9. Checking If Planting Trees Helps

Measure if planting trees helps stop the shore from washing away during storms. Use photos from far away and math to see if it’s working.

10. Teaching Computers to Find Sickness

Teach computers to look at pictures and records from hospitals to see if people are sick. Check if they’re good at spotting problems in the Philippines.

11. Finding Better Bags That Break Down

Test different materials like banana leaves to see which ones can be made into bags that don’t hurt the environment. Compare them to regular plastic bags.

12. Making Gardens in the City

See if we can grow vegetables in tall buildings in big cities like Manila. Use numbers to figure out if it’s a good idea.

13. Checking If Bugs Spread Easily in Crowded Places

Use computers to see if diseases spread fast in busy places in the Philippines. Look at how people move around to stop diseases from spreading.

14. Storing Energy for Islands Without Power

Think about ways to save power for small islands without electricity. Try out different ways to save energy and see which one works best.

15. Seeing How Much Storms Hurt Farms

Calculate how much damage storms do to farms in the Philippines. Use numbers to see how much money farmers lose.

16. Testing Ways to Stop Dirt from Washing Away

Try out different ways to stop dirt from being washed away when it rains. Use math to see which way works best on hills in the Philippines.

17. Checking How Healthy Local Food Is

Look at the vitamins and minerals in local foods like sweet potatoes and moringa leaves. See if eating them is good for people in the Philippines.

18. Making Cheap Water Cleaners

Build simple machines that clean dirty water in small towns. Notice if they work better than expensive ones.

19. Seeing How Hot Cities Get

Use satellites to see how hot cities like Manila get compared to places with more trees. Think about how this affects people.

20. Thinking About Trash in Cities

Look at how much trash cities in the Philippines make and find ways to deal with it. Consider what people can do to make less trash.

21. Checking If We Can Use Hot Rocks for Power

Look at rocks under the ground to see if we can get power from them. Consider whether it is beneficial for the environment.

22. Counting Animals in the Forest

Use cameras to count how many animals are in forests in the Philippines. Notice which places need the most help to keep animals safe.

23. Making Fishing Fair

Look at how many fish are caught in the Philippines and see if it’s fair. Think about ways to make sure there will always be enough fish to catch.

24. Making Power Lines Smarter

Design power lines that can change how much power they use. Try to make sure power goes where it’s needed most.

25. Looking at Dirty Water

Find out if chopping down trees and building things by rivers makes the water dirty. Think about what this means for people and animals.

26. Thinking About Big Waves

Use computers to see if big waves could hit the Philippines and what might happen. Think about how to keep people safe.

27. Seeing If Parks Help Cities

Ask people if they like having parks in their city and see what animals live there. Think about if parks make cities better.

28. Making Houses That Don’t Break in Storms

Make houses that don’t fall when there are big storms. Try to make them cheap so more people can have them.

29. Stopping Food from Going Bad

Look at how food gets from farms to people’s houses and see if we can stop it from going bad. Think about how to make sure people have enough to eat.

30. Seeing How Hot Cities Get

Put machines around cities to see how hot they get. Consider how this affects people and what we can do to help.

These topics will help you to make a good project that assists you in getting better scores.

Importance Of Quantitative Research For STEM Students

Read why quantitative research matters to Filipino students.

  • Helps us understand problems more clearly by revealing trends, patterns, and connections in the data
  • Provides an accurate picture by removing personal biases and opinions
  • Allows quantitative comparison of results if studies use the same methods
  • Enables testing hypotheses and theories through experiments that can prove/disprove predictions
  • Allows replication and verification as other researchers can redo experiments and study methods
  • Numbers give a more precise, factual understanding compared to qualitative data.
  • Removes subjectivity through quantitative data rather than opinions
  • A key part of the scientific process is that data helps confirm or reject proposed explanations.
  • Overall, collecting and analyzing quantitative data is crucial for gaining insights, testing ideas, ensuring consistency, and reducing bias

It’s time to see what challenges students face with their quantitative research.

Challenge Philippines Students Face With Their Quantitative Research 

Here are the common challenges that students face with their quantitative research topics:

  • Lack of resources and funding

Doing quantitative research needs access to equipment, software , datasets etc, which can be costly. Many students lack funding and access to these resources.

  • Lack of background in mathematics and statistics

Quantitative research relies heavily on math and statistical skills. However, many students haven’t developed strong enough skills in these areas yet.

  • Difficulty accessing scholarly databases

Students need access to academic journals and databases for literature reviews. However, these can be costly for people to access.

  • Language barriers

Many of the academic literature is in English. This can make reading and learning complex statistical concepts more difficult.

  • Lack of mentorship

Having an experienced mentor to provide guidance is invaluable. However, not all students have access to mentorship in quantitative research.

  • Managing large datasets

Collecting, cleaning and analyzing large datasets requires advanced technical skills. Students may struggle without proper guidance.

  • Presenting results clearly

Learning how to visualize and communicate statistical findings effectively is an important skill that takes practice.

  • Ethical challenges

Ensuring quantitative studies are designed ethically can be difficult for novice researchers.

  • Writing scientifically

Adopting the formal, precise writing style required in quantitative research is challenging initially.

  • Maintaining motivation

Quantitative research is complex and time-consuming. Students may lose motivation without a strong support network.

While quantitative research presents many challenges, Philippines STEM students can overcome these through access to proper resources and support. With hard work, mentorship and collaborative opportunities, students can build essential skills and contribute to the quantitative research landscape.

Tips For Conducting Quantitative Research In The Philippines

When conducting research in a new cultural context like the Philippines, it is vital to take time to understand local norms and build trust. Approaching research openly and collaboratively will lead to more meaningful insights.

1. Get Required Approvals

Be sure to get any necessary ethics reviews or approvals from local governing boards before conducting the analysis. It is wise to follow proper protocols and permissions.

2. Hire Local Assistants

Hire local research helpers to help navigate logistics, translation, and cultural sensitivities. This provides jobs and insider insights.

3. Use Multiple Research Methods

Triangulate findings using interviews, focus groups, surveys, participant observation, etc. Multiple methods provide more potent and well-rounded results.

4. Verify Information

Politely verify information collected from interviews before publication. Follow up to ensure accurate representation and context.

5. Share Results

Report back to participants and communities on research findings and next steps. This shows respect and accountability for their contributions.

6. Acknowledge Limitations

Openly acknowledge the limitations of perspective and methods as an outside researcher. Remain humble and keep improving approaches.

Keep in mind, when entering a new community to conduct research, taking an open, patient, and collaborative approach leads to more ethical and meaningful results. Thus, making the effort to understand and work within cultural norms demonstrates respect.

STEM students in the Philippines have many possible research topics using numbers. They could look at renewable energy, sustainability, pollution, environment, disease prevention, farming improvements, preparing for natural disasters, building projects, transportation, and technology access. 

By carefully analyzing statistics and creating mathematical models, young Filipino researchers can provide key ideas to guide future policies and programs. Quantitative research allows real observations and suggestions based on evidence to make the country better now and later. 

Number-based methods help young researchers in the Philippines give tangible recommendations to improve their communities.

How can I limit my choices and pick the right research topic?

Think about what you enjoy and what you’re skilled at. Consider if your topic is meaningful and if you have the resources to study it. Get advice from teachers or friends to help you decide.

What are some common problems in doing math research in science, technology, engineering, and math?

Problems might include: 1. Finding data. 2. Make sure your measurements are correct. 3. Following rules about ethics. 4. Handling big sets of data.

How can I make sure my research is done well?

Plan your study carefully, use the correct methods and tools, write down everything you do, and think about the strengths and weaknesses of your work.

  • Tags Quantitative Research Topics For STEM Students In The Philippines
  • australia (2)
  • duolingo (13)
  • Education (283)
  • General (78)
  • How To (17)
  • IELTS (127)
  • Latest Updates (162)
  • Malta Visa (6)
  • Permanent residency (1)
  • Programming (31)
  • Scholarship (1)
  • Sponsored (4)
  • Study Abroad (187)
  • Technology (12)
  • work permit (8)

Recent Posts

Cheapest Country To Visit From India

  • Open access
  • Published: 22 April 2020

Research and trends in STEM education: a systematic analysis of publicly funded projects

  • Yeping Li 1 ,
  • Ke Wang 2 ,
  • Yu Xiao 1 ,
  • Jeffrey E. Froyd 3 &
  • Sandra B. Nite 1  

International Journal of STEM Education volume  7 , Article number:  17 ( 2020 ) Cite this article

17k Accesses

30 Citations

7 Altmetric

Metrics details

Taking publicly funded projects in STEM education as a special lens, we aimed to learn about research and trends in STEM education. We identified a total of 127 projects funded by the Institute of Education Sciences (IES) of the US Department of Education from 2003 to 2019. Both the number of funded projects in STEM education and their funding amounts were high, although there were considerable fluctuations over the years. The number of projects with multiple principal investigators increased over time. The project duration was typically in the range of 3–4 years, and the goals of these projects were mostly categorized as “development and innovation” or “efficacy and replication.” The majority of the 127 projects focused on individual STEM disciplines, especially mathematics. The findings, based on IES-funded projects, provided a glimpse of the research input and trends in STEM education in the USA, with possible implications for developing STEM education research in other education systems around the world.

Introduction

The rapid development of science, technology, engineering, and mathematics (STEM) education and research since the beginning of this century has benefited from strong, ongoing support from many different entities, including government agencies, professional organizations, industries, and education institutions (Li, 2014 ). Typically, studies that summarized the status of research in STEM education have used publications as the unit of their analyses (e.g., Li et al., 2019 ; Li et al., 2020 ; Margot & Kettler, 2019 ; Minichiello et al., 2018 ; Otten, Van den Heuvel-Panhuizen, & Veldhuis, 2019 ; Schreffler et al., 2019 ). Another approach, which has been used less frequently, is to study research funding. Although not all research publications were generated from funded projects and not all funded projects have been equally productive, as measured by publications, research funding and publications present two different, but related perspectives on the state of research in STEM education. Our review focuses on research funding.

Types of funding support to education research

There are different types of sources and mechanisms in place to allocate, administer, distribute, and manage funding support to education. In general, there are two sources of funding: public and private.

Public funding sources are commonly government agencies that support education program development and training, project evaluation, and research. For example, multiple state and federal agencies in the USA provide and manage funding support to education research, programs and training, including the US Department of Education (ED), the National Science Foundation (NSF), and the National Endowment for the Humanities—Division of Education Programs. Researchers seeking support from public funding sources often submit proposals that are vetted through a well-structured peer-review process. The process is competitive, and the decision to fund a project validates both its importance and alignment with the funding agency’s development agenda. Changes in the agencies’ agendas and funding priorities can reflect governmental intentions and priorities for education and research.

Private funding sources have played a very important role in supporting education programs and research with a long history. Some private funding sources in the USA can be sizeable, such as the Bill & Melinda Gates Foundation ( https://www.gatesfoundation.org ), while many also have specific foci, such as the Howard Hughes Medical Institute ( https://www.hhmi.org ) that is dedicated to advancing science through research and science education. At the same time, private funding sources often have their own development agendas, flexibility in deciding funding priorities, and specific mechanisms in making funding decisions, including how funds can be used, distributed, and managed. Indeed, private funding sources differ from public funding sources in many ways. Given many special features associated with private funding sources, including the lack of transparency, we chose to examine projects that were supported by public funding sources in this review.

Approaches to examining public research funding support

One approach to studying public research funding support to STEM education would be to examine requests-for-proposals (RFPs) issued by different government agencies. However, those RFPs tend to provide guidelines, which are not sufficiently concrete to learn about specific research that is funded. In contrast, reviewing those projects selected for funding can provide more detailed information on research activity. Figure 1 shows a flowchart of research activity and distinguishes how funded projects and publications might provide different perspectives on research. In this review, we focus on the bolded portion of the flowchart, i.e., projects funded to promote STEM education.

figure 1

A general flowchart of RFPs to publications

Current review

Why focus on research funding in the usa.

Recent reviews of journal publications in STEM education have consistently revealed that scholars in the USA played a leading role in producing and promoting scholarship in STEM education, with about 75% of authorship credits for all publications in STEM education either in the International Journal of STEM Education alone from 2014 to 2018 (Li et al., 2019 ) or in 36 selected journals published from 2000 to 2018 (Li et al., 2020 ). The strong scholarship development in the USA is likely due to a research environment that is well supported and conducive to high research output. Studying public funding support for STEM education research in the USA will provide information on trends and patterns, which will be valuable both in the USA and in other countries.

The context of policy and public funding support to STEM education in the USA

The tremendous development of STEM education in the USA over the past decades has benefited greatly from both national policies and strong funding support from the US governmental agencies as well as private funding sources. Federal funding for research and development in science, mathematics, technology, and engineering-related education in the USA was restarted in the late 1980s, in the latter years of the Reagan administration, which had earlier halted funding. In recent years, the federal government has strongly supported STEM education research and development. For example, the Obama administration in the USA (The White House, 2009 ) launched the “Educate to Innovate” campaign in November 2009 for excellence in STEM education as a national priority, with over 260 million USD in financial and in-kind support commitment. The Trump administration has continued to emphasize STEM education. For example, President Trump signed a memorandum in 2017 to direct ED to spend 200 million USD per year on competitive grants promoting STEM (The White House, 2017 ). In response, ED awarded 279 million USD in STEM discretionary grants in Fiscal Year 2018 (US Department of Education, 2018 ). The Trump administration took a step further to release a report in December 2018 detailing its five-year strategic plan of boosting STEM education in the USA (The White House, 2018 ). The strategic plan envisions that “All Americans will have lifelong access to high-quality STEM education and the USA will be the global leader in STEM literacy, innovation, and employment.” (Committee on STEM Education, 2018 , p. 1). Consistently, current Secretory of Education DeVos in the Trump administration has taken STEM as a centerpiece of her comprehensive education agenda (see https://www.ed.gov/stem ). The consistency in national policies and public funding support shows that STEM education continues to be a strategic priority in the USA.

Among many federal agencies that funded STEM education programs, the ED and NSF have functioned as two primary agencies. For ED, the Institute of Education Sciences (Institute of Education Sciences (IES), n.d. , see https://ies.ed.gov/aboutus/ ) was created by the Education Sciences Reform Act of 2002 as its statistics, research, and evaluation arm. ED’s support to STEM education research has been mainly administered and managed by IES since 2003. In contrast to the focus of ED on education, NSF (see https://www.nsf.gov/about/ ) was created by Congress in 1950 to support basic research in many fields such as mathematics, computer sciences, and social sciences. Education and Human Resources is one of its seven directorates that provides important funding support to STEM education programs and research. In addition to these two federal agencies, some other federal agencies also provide funding support to STEM education programs and research from time to time.

Any study of public funding support to STEM education research in the USA would need to limit its scope, given the complexity of various public funding sources available in the system, the ambiguity associated with the meaning of STEM education across different federal agencies (Li et al., 2020 ), and the number of programs that have funded STEM education research over the years. For the purpose of this review, we have chosen to focus on the projects in STEM education funded by IES.

Research questions

Given the preceding research approach decision to focus on research projects funded by IES, we generated the following questions:

What were the number of projects, total project funding, and the average funding per project from 2003 to 2019 in STEM education research?

What were the trends of having single versus multiple principal investigator(s) in STEM education?

What were the types of awardees of the projects?

What were the participant populations in the projects?

What were the types of projects in terms of goals for program development and research in STEM education?

What were the disciplinary foci of the projects?

What research methods did projects tend to use in conducting STEM education research?

Based on the above discussion to focus on funding support from IES, we first specified the time period, and then searched the IES website to identify STEM education research projects funded by IES within the specified time period.

Time period

As discussed above, IES was established in 2002 and it did not start to administer and manage research funding support for ED until 2003. Therefore, we considered IES funded projects from 2003 to the end of 2019.

Searching and identifying IES funded projects in STEM education

Given the diverse perspectives about STEM education across different agencies and researchers (Li et al., 2020 ), we did not discuss and define the meaning of STEM education. Instead, we used the process described in the following paragraph to identify STEM education research projects funded by IES.

On the publicly accessible IES website ( https://ies.ed.gov ), one menu item is “FUNDING OPPORTUNITIES”, and there is a list of choices within this menu item. One choice is “SEARCH FUNDED RESEARCH GRANTS AND CONTRACTS.” On this web search page, we can choose “Program” under “ADDITIONAL SEARCH OPTIONS.” There are two program categories related to STEM under the option of “Program.” One is “Science, Technology, Engineering, and Mathematics (STEM) Education” under one large category of “Education Research” and the other is “Science, Technology, Engineering, and Mathematics” under another large category of “Special Education Research.” We searched for funded projects under these two program categories, and the process returned 98 funded projects in “Science, Technology, Engineering, and Mathematics (STEM) Education” under “Education Research” and 29 funded projects in “Science, Technology, Engineering, and Mathematics” under “Special Education Research,” for a total of 127 funded projects in these two programs designated for STEM education by IES Footnote 1 .

Data analysis

To address questions 1, 2, 3, and 4, we collected the following information about these projects identified using above procedure: amount of funding, years of duration, information about the PI, types of awardees that received and administered the funding (i.e., university versus those non-university including non-profit organization such as WestEd, Educational Testing Service), and projects’ foci on school level and participants. When a project’s coverage went beyond one category, the project was then coded in terms of its actual number of categories being covered. For example, we used the five categories to classify project’s participants: Pre–K, grades 1–4, grades 5–8, grades 9–12, and adult. If a funded project involved participants from Pre-school to grade 8, then we coded the project as having participants in three categories: Pre-K, grades 1–4, and grades 5–8.

To address question 5, we analyzed projects based on goal classifications from IES. IES followed the classification of research types that was produced through a joint effort between IES and NSF in 2013 (Institute of Education Sciences (IES) and National Science Foundation (NSF), 2013 ). The effort specified six types of research that provide guidance on the goals and level of funding support: foundational research, early-stage or exploratory research, design and development research, efficacy research, effectiveness research, and scale-up research. Related to these types, IES classified goals for funded projects: development and innovation, efficacy and replication, exploration, measurement, and scale-up evaluation, as described on the IES website.

To address question 6, we coded the disciplinary focus using the following five categories: mathematics, science, technology, engineering, and integrated (meaning an integration of any two or more of STEM disciplines). In some cases, we coded a project with multiple disciplinary foci into more than one category. The following are two project examples and how we coded them in terms of disciplinary foci:

The project of “A Randomized Controlled Study of the Effects of Intelligent Online Chemistry Tutors in Urban California School Districts” (2008, https://ies.ed.gov/funding/grantsearch/details.asp?ID=601 ) was to test the efficacy of the Quantum Chemistry Tutors, a suite of computer-based cognitive tutors that are designed to give individual tutoring to high school students on 12 chemistry topics. Therefore, we coded this project as having three categories of disciplinary foci: science because it was chemistry, technology because it applied instructional technology, and integrated because it integrated two or more of STEM disciplines.

The project of “Applications of Intelligent Tutoring Systems (ITS) to Improve the Skill Levels of Students with Deficiencies in Mathematics” (2009, https://ies.ed.gov/funding/grantsearch/details.asp?ID=827 ) was coded as having three categories of disciplinary foci: mathematics, technology because it used intelligent tutoring systems, and integrated because it integrated two or more of STEM disciplines.

To address question 7, all 127 projects were coded using a classification category system developed and used in a previous study (Wang et al., 2019 ). Specifically, each funded project was coded in terms of research type (experimental, interventional, longitudinal, single case, correlational) Footnote 2 , data collection method (interview, survey, observation, researcher designed tests, standardized tests, computer data Footnote 3 ), and data analysis method (descriptive statistics, ANOVA*, general regression, HLM, IRT, SEM, others) Footnote 4 . Based on a project description, specific method(s) were identified and coded following a procedure similar to what we used in a previous study (Wang et al., 2019 ). Two researchers coded each project’s description, and the agreement between them for all 127 projects was 88.2%. When method and disciplinary focus-coding discrepancies occurred, a final decision was reached after discussion.

Results and discussion

In the following sections, we report findings as corresponding to each of the seven research questions.

Question 1: the number of projects, total funding, and the average funding per project from 2003 to 2019

Figure 2 shows the distribution of funded projects over the years in each of the two program categories, “Education Research” and “Special Education Research,” as well as combined (i.e., “STEM” for projects funded under “Education Research,” “Special STEM” for projects funded under “Special Education Research,” and “Combined” for projects funded under both “Education Research” and “Special Education Research”). As Fig. 2 shows, the number of projects increased each year up to 2007, with STEM education projects started in 2003 under “Education Research” and in 2006 under “Special Education Research.” The number of projects in STEM under “Special Education Research” was generally less than those funded under the program category of “Education Research,” especially before 2011. There are noticeable decreases in combined project counts from 2009 to 2011 and from 2012 to 2014, before the number count increased again in 2015. We did not find a consistent pattern across the years from 2003 to 2019.

figure 2

The distribution of STEM education projects over the years. (Note: STEM refers to projects funded under “Education Research,” Special STEM refers to projects funded under “Special Education Research,” and “Combined” refers to projects funded under both “Education Research” and “Special Education Research.” The same annotations are used in the rest of the figures.)

A similar trend can be observed in the total funding amount for STEM education research (see Fig. 3 ). The figure shows noticeably big year-to-year swings from 2003 to 2019, with the highest funding amount of more than 33 million USD in 2007 and the lowest amount of 2,698,900 USD in 2013 from these two program categories. Although it is possible that insufficient high-quality grant proposals were available in one particular year to receive funding, the funded amount and the number of projects (Fig. 2 ) provide insights about funding trends over the time period of the review.

figure 3

Annual funding totals

As there are diverse perspectives and foci about STEM education, we also wondered if STEM education research projects might be funded by IES but in program options other than those designated options of “Science, Technology, Engineering, and Mathematics (STEM) Education.” We found a total of 54 funded projects from 2007 to 2019, using the acronym “STEM” as a search term under the option of “SEARCH FUNDED RESEARCH GRANTS AND CONTRACTS” without any program category restriction. Only 2 (3.7%) out of these 54 projects were in the IES designated program options of STEM education in the category of “Education Research.” Further information about these 54 projects and related discussion can be found as additional notes at the end of this review.

Results from two different approaches to searching for IES-funded projects will likely raise questions about what kinds of projects were funded in the designated program option of “Science, Technology, Engineering, and Mathematics (STEM) Education,” if only two funded projects under this option contained the acronym “STEM” in a project’s title and/or description. We shall provide further information in the following sub-sections, especially when answering question 6 related to projects’ disciplinary focus.

Figure 4 illustrates the trend of average funding amount per project each year in STEM education research from 2003 to 2019. The average funding per project varied considerably in the program category “Special Education Research,” and no STEM projects were funded in 2014 and 2017 in this category. In contrast, average funding per project was generally within the range of 1,132,738 USD in 2019 to 3,475,975 USD in 2014 for the projects in the category of “Education Research” and also for project funding in the combined category.

figure 4

The trend of average funding amount per project funded each year in STEM education research

Figure 5 shows the number of projects in different funding amount categories (i.e., less than 1 million USD, 1–2 million USD, 2–3 million USD, 3 million USD or more). The majority of the 127 projects obtained funding of 1–2 million USD (77 projects, 60.6%), with 60 out of 98 projects (61.2%) under “Education Research” program and 17 out of 29 projects (58.6%) in the program category “Special Education Research.” The category with second most projects is funding of 3 million USD or more (21 projects, 16.5%), with 15 projects (15.3% of 98 projects) under “Education Research” and 6 projects (20.7% of 29 projects) under “Special Education Research.”

figure 5

The number of projects in terms of total funding amount categories

Figure 6 shows the average amount of funding per project funded across these different funding amount and program categories. In general, the projects funded under “Education Research” tended to have a higher average amount than those funded under “Special Education Research,” except for those projects in the total funding amount category of “less than 1 million USD.” Considering all 127 funded projects, the average amount of funding was 1,960,826.3 USD per project.

figure 6

The average amount of funding per project across different total funding amount and program categories

Figure 7 shows that the vast majority of these 127 projects were 3- or 4-year projects. In particular, 59 (46.5%) projects were funded as 4-year projects, with 46 projects (46.9%) under “Education Research” and 13 projects (44.8%) under “Special Education Research.” This category is followed closely by 3-year projects (54 projects, 42.5%), with 41 projects (41.8%) under “Education Research” and 13 projects (44.8%) under “Special Education Research.”

figure 7

The number of projects in terms of years of project duration. (Note, 2: 2-year projects; 3: 3-year projects; 4: 4-year projects; 5: 5-year projects)

Question 2: trends of single versus multiple principal investigator(s) in STEM education

Figure 8 shows the distribution of projects over the years grouped by a single PI or multiple PIs where the program categories of “Education Research” and “Special Education Research” have been combined. The majority of projects before 2009 had a single PI, and the trend has been to have multiple PIs for STEM education research projects since 2009. The trend illustrates the increased emphases on collaboration in STEM education research, which is consistent with what we learned from a recent study of journal publications in STEM education (Li et al., 2020 ).

figure 8

The distribution of projects with single versus multiple PIs over the years (combined)

Separating projects by program categories, Fig. 9 shows projects funded in the program category “Education Research.” The trends of single versus multiple PIs in Fig. 9 are similar to the trends shown in Fig. 8 for the combined programs. In addition, almost all projects in STEM education funded under this regular research program had multiple PIs since 2010.

figure 9

The distribution of projects with single versus multiple PIs over the years (in “Education Research” program)

Figure 10 shows projects funded in the category “Special Education Research.” The pattern in Fig. 10 , where very few projects funded under this category had multiple PIs before 2014, is quite different from the patterns in Figs. 8 and 9 . We did not learn if single PIs were appropriate for the nature of these projects. The trend started to change in 2015 as the number of projects with multiple PIs increased and the number of projects with single PIs declined.

figure 10

The distribution of projects with single versus multiple PIs over the years (in “Special Education Research” program)

Question 3: types of awardees of these projects

Besides the information about the project’s PI, the nature of the awardees can help illustrate what types of entity or organization were interested in developing and carrying out STEM education research. Figure 11 shows that the university was the main type of awardee before 2012, with 80 (63.0%) projects awarded to universities from 2003 to 2019. At the same time, non-university entities received funding support for 47 (37.0%) projects and they seem to have become even more active and successful in obtaining research funding in STEM education over the past several years. The result suggests that diverse organizations develop and conduct STEM education research, another indicator of the importance of STEM education research.

figure 11

The distribution of projects funded to university versus non-university awardees over the years

Question 4: participant populations in the projects

Figure 12 indicates that the vast majority of projects were focused on student populations in preschool to grade 12. This is understandable as IES is the research funding arm of ED. Among those projects, middle school students were the participants in the most projects (70 projects), followed by student populations in elementary school (48 projects), and high school (38 projects). The adult population (including post-secondary students and teachers) was the participant group in 36 projects in a combined program count.

figure 12

The number of projects in STEM education for different groups of participants (Note: Pre-K: preschool-kindergarten; G1–4: grades 1–4; G5–8: grades 5–8; G9–12: grades 9–12; adult: post-secondary students and teachers)

If we separate “Education Research” and “Special Education Research” programs, projects in the category “Special Education Research” focused on student populations in elementary and middle school most frequently, and then adult population. In contrast, projects in the category “Education Research” focused most frequently on middle school student population, followed by student populations in high school and elementary school.

Given the importance of funded research in special education Footnote 5 at IES, we considered projects focused on participants with disabilities. Figure 13 shows there were 28 projects in the category “Special Education Research” for participants with disabilities. There were also three such projects funded in the category “Education Research,” which together accounted for a total of 31 (24.4%) projects. In addition, some projects in the category “Education Research” focused on other participants, including 11 projects focused on ELL students (8.7%) projects and 37 projects focused on low SES students (29.1%).

figure 13

The number of funded projects in STEM education for three special participant populations (Note: ELL: English language learners, Low SES: low social-economic status)

Figure 14 shows the trend of projects in STEM education for special participant populations. Participant populations with ELL and/or Low SES gained much attention before 2011 among these projects. Participant populations with disabilities received relatively consistent attention in projects on STEM education over the years. Research on STEM education with special participant populations is important and much needed. However, related scholarship is still in an early development stage. Interested readers can find related publications in this journal (e.g., Schreffler et al., 2019 ) and other journals (e.g., Lee, 2014 ).

figure 14

The distribution of projects in STEM education for special participant populations over the years

Question 5: types of projects in terms of goals for program development and research

Figure 15 shows that “development and innovation” was the most frequently funded type of project (58 projects, 45.7%), followed by “efficacy and replication” (34 projects, 26.8%), and “measurement” (21 projects, 16.5%). The pattern is consistent across “Education Research,” “Special Education Research,” and combined. However, it should be noted that all five projects with the goal of “scale-up evaluation” were in the category “Education Research” Footnote 6 and funding for these projects were large.

figure 15

The number of projects in terms of the types of goals

Examining the types of projects longitudinally, Fig. 16 shows that while “development and innovation” and “efficacy and replication” types of projects were most frequently funded in the “Education Research” program, the types of projects being funded changed longitudinally. The number of “development and innovation” projects was noticeably fewer over the past several years. In contrast, the number of “measurement” projects and “efficacy and replication” projects became more dominant. The change might reflect a shift in research development and needs.

figure 16

The distribution of projects in terms of the type of goals over the years (in “Education Research” program)

Figure 17 shows the distribution of project types in the category “Special Education Research.” The pattern is different from the pattern shown in Fig. 16 . The types of “development and innovation” and “efficacy and replication” projects were also the dominant types of projects under “Special Education Research” program category in most of these years from 2007 to 2019. Projects in the type “measurement” were only observed in 2010 when that was the only type of project funded.

figure 17

The distribution of projects in terms of goals over the years (in “Special Education Research” program)

Question 6: disciplinary foci of projects in developing and conducting STEM education research

Figure 18 shows that the majority of the 127 projects under such specific programs included disciplinary foci on individual STEM disciplines: mathematics in 88 projects, science in 51 projects, technology in 43 projects, and engineering in 2 projects. The tremendous attention to mathematics in these projects is a bit surprising, as mathematics was noted as being out of balance in STEM education (English, 2016 ) and also in STEM education publications (Li, 2018b , 2019 ). As noted above, each project can be classified in multiple disciplinary foci. However, of the 88 projects with a disciplinary focus on mathematics, 54 projects had mathematics as the only disciplinary focus (38 under “Education Research” program and 16 under “Special Education Research” program). We certainly hope that there will be more projects that further scholarship where mathematics is included as part of (integrated) STEM education (see Li & Schoenfeld, 2019 ).

figure 18

The number of projects in terms of disciplinary focus

There were also projects with specific focus on integrated STEM education (i.e., combining any two or more disciplines of STEM), with a total of 55 (43.3%) projects in a combined program count. The limited number of projects on integrated STEM in the designated STEM funding programs further confirms the common perception that the development of integrated STEM education and research is still in its initial stage (Honey et al., 2014 ; Li, 2018a ).

In examining possible funding trends, Fig. 19 shows that mathematics projects were more frequently funded before 2012. Engineering was a rare disciplinary focus. Integrated STEM was a disciplinary focus from time to time among these projects. No other trends were observed.

figure 19

The distribution of projects in terms of disciplinary focus over the years

Question 7: research types and methods that projects used

Figure 20 indicates that “interventional” (in 104 projects, 81.9%) and “experimental research” (in 89 projects, 70.1%) were the most frequently funded types of research. The percentages of projects funded under the regular education research program were similar to those funded under “Special Education Research” program, except that projects funded under “Special Education Research” tended to utilize correlational research more often.

figure 20

The number of projects in terms of the type of research conducted

Research in STEM education uses diverse data collection and analysis methods; therefore, we wanted to study types of methods (Figs. 21 and 22 , respectively). Among the six types of methods used for data collection, Fig. 21 indicates that “standardized tests” and “designed tests” were the most commonly used methods for data collection, followed by “survey,” “observation,” and “interview.” The majority of projects used three quantitative methods (“standardized tests,” “researcher designed tests,” and “survey”). The finding is consistent with the finding from analysis of journal publications in STEM education (Li et al., 2020 ). Data collected through “interview” and “observation” were more likely to be analyzed using qualitative methods as part of a project’s research methodology.

figure 21

The number of projects categorized by the type of data collection methods

figure 22

The number of projects categorized by the type of data analysis methods

Figure 22 shows the use of seven (including others) data analysis methods among these projects. The first six methods (i.e., descriptive, ANOVA*, general regression, HLM, IRT, and SEM) as well as some methods in “others” are quantitative data analysis methods. The number of projects that used these quantitative methods is considerably larger than the number of projects that used qualitative methods (i.e., included in “others” category).

Concluding remarks

The systematic analysis of IES-funded research projects in STEM education presented an informative picture about research support for STEM education development in the USA, albeit based on only one public funding agency from 2003 to 2019. Over this 17-year span, IES funded 127 STEM education research projects (an average of over seven projects per year) in two designated STEM program categories. Although we found no discernable longitudinal funding patterns in these two program categories, both the number of funded projects in STEM education and their funding amounts were high. If we included an additional 52 projects with the acronym “STEM” funded by many other programs from 2007 to 2019 (see “ Notes ” section below), the total number of projects in STEM education research would be even higher, and the number of projects with the acronym “STEM” would also be larger. The results suggested the involvement of many researchers with diverse expertise in STEM education research was supported by a broad array of program areas in IES.

Addressing the seven questions showed several findings. Funding support for STEM education research was strong, with an average of about 2 million USD per project for a typical 3–4 year duration. Also, our analysis showed that the number of projects with multiple PIs over the years increased over the study time period, which we speculate was because STEM education research increasingly requires collaboration. STEM education research is still in early development stage, evidenced by the predominance of project goals in either “development and innovation” or “efficacy and replication” categories. We found very few projects (5 out of 127 projects, 4.0%) that were funded for “scale-up evaluation.” Finally, as shown by our analysis of project participants, IES had focused on funding projects for students in grades 1–12. Various quantitative research methods were frequently used by these projects for data collection and analyses.

These results illustrated how well STEM education research was supported through both the designated STEM education and many other programs during the study time period, which helps to explain why researchers in the USA have been so productive in producing and promoting scholarship in STEM education (Li et al., 2019 ; Li et al., 2020 ). We connected several findings from this study to findings from recent reviews of journal publications in STEM education. For example, publications in STEM education appeared in many different journals as many researchers with diverse expertise were supported to study various issues related to STEM education, STEM education publications often have co-authorship, and there is heavy use of quantitative research methods. The link between public funding and significant numbers of publications in STEM education research from US scholars offers a strong argument for the importance of providing strong funding support to research and development in STEM education in the USA and also in many other countries around the world.

The systematic analysis also revealed that STEM education, as used by IES in naming the designated programs, did not convey a clear definition or scope. In fact, we found diverse disciplinary foci in these projects. Integrated STEM was not a main focus of these designated programs in funding STEM education. Instead, many projects in these programs had clear subject content focus in individual disciplines, which is very similar to discipline-based education research (DBER, National Research Council, 2012 ). Interestingly enough, STEM education research had also been supported in many other programs of IES with diverse foci Footnote 7 , such as “Small Business Innovation Research,” “Cognition and Student Learning,” and “Postsecondary and Adult Education.” This funding reality further suggested the broad scope of issues associated with STEM education, as well as the growing need of building STEM education research as a distinct field (Li, 2018a ).

Inspired by our recent review of journal publications as research output in STEM education, this review started with an ambitious goal to study funding support as research input for STEM education. However, we had to limit the scope of the study for feasibility. We limited funding sources to one federal agency in the USA. Therefore, we did not analyze funding support from private funding sources including many private foundations and corporations. Although public funding sources have been one of the most important funding supports available for researchers to develop and expand their research work, the results of this systematic analysis suggest the importance future studies to learn more about research support and input to STEM education from other sources including other major public funding agencies, private foundations, and non-profit professional organizations.

Among these 54 funded projects containing the acronym “STEM” from 2007 to 2019, Table 1 shows that only 2 (3.7%) were in the IES designated program option of STEM education in the category of “Education Research.” Forty-nine projects were in 13 other program options in the category of “Education Research,” with surprisingly large numbers of projects under the “Small Business Innovation Research” option (17, 31.5%) and “Cognition and Student Learning” (11, 20.4%). Three of the 54 funded projects were in the program category of “Special Education Research.” To be specific, two of the three were in the program of “Small Business Innovation Research in Special Education,” and one was in the program of “Special Topic: Career and Technical Education for Students with Disabilities.”

The results suggest that many projects, focusing on various issues and questions directly associated with STEM education, were funded even when researchers applied for funding support in program options not designated as “Science, Technology, Engineering, and Mathematics (STEM) Education.” It implies that issues associated with STEM education had been generally acknowledged as important across many different program areas in education research and special education research. The funding support available in diverse program areas likely allowed numerous scholars with diverse expertise to study many different questions and publish their research in diverse journals, as we noted in the recent review of journal publications in STEM education (Li et al., 2020 ).

A previous study identified and analyzed a total of 46 IES funded projects from 2007 to 2018 (with an average of fewer than 4 projects per year) that contain the acronym “STEM” in a project’s title and/or description (Wang et al., 2019 ). Finding eight newly funded projects in 2019 suggested a growing interest in research on issues directly associated with STEM education in diverse program areas. In fact, five out of these eight newly funded projects specifically included the acronym “STEM” in the project’s title to explicitly indicate the project’s association with STEM education.

Availability of data and materials

The data and materials used and analyzed for the review are publicly available at the IES website, White House website, and other government agency websites.

In a previous study (Wang, Li, & Xiao, 2019), we used the acronym “STEM” as a search term under the option of “SEARCH FUNDED RESEARCH GRANTS AND CONTRACTS” without any program category restriction, and identified and analyzed 46 funded projects from 2007 to 2018 that contain “STEM” in a project’s title and/or description after screening out unrelated key words containing “stem” such as “system”. To make comparisons when needed, we did the same search using the acronym “STEM” and found 8 more funded projects in 2019 for a total of 54 funded projects across many different program categories from 2007 to 2019.

The project of “A Randomized Controlled Study of the Effects of Intelligent Online Chemistry Tutors in Urban California School Districts” (2008). In the project description, its subtitle shows intervention information. We coded this project as “interventional.” Then, the project also included the treatment group and the control group. We coded this project as “experimental.” Finally, this project was to test the efficacy of computer-based cognitive tutors. This was a correlational study. We thus coded it as “correlational.”

Computer data means that the project description indicated this kind of information, such as log data on students.

Descriptive means “descriptive statistics.” General regression means multiple regression, linear regression, logistical regression, except hierarchical linear regression model. ANOVA* is used here as a broad term to include analysis of variance, analysis of covariance, multivariate analysis of variance, and/or multivariate analysis of variance. Others include factor analysis, t tests, Mann-Whitney tests, and binomial tests, log data analysis, meta-analysis, constant comparative data analysis, and qualitative analysis.

Special education originally was about students with disabilities. It has broadened in scope over the years.

The number of students under Special Education was 14% of students in public schools in the USA in 2017–2018. https://nces.ed.gov/programs/coe/indicator_cgg.asp

For example, “Design Environment for Educator-Student Collaboration Allowing Real-Time Engineering-centric, STEM (DESCARTES) Exploration in Middle Grades” (2017) was funded as a 2-year project to Parametric Studios, Inc. (awardee) under the program option of “Small Business Innovation Research” (here is the link: https://ies.ed.gov/funding/grantsearch/details.asp?ID=1922 ). “Exploring the Spatial Alignment Hypothesis in STEM Learning Environments” (2017) was funded as a 4-year project to WestEd (awardee) under the program option of “Cognition and Student Learning” (link: https://ies.ed.gov/funding/grantsearch/details.asp?ID=2059 ). “Enhancing Undergraduate STEM Education by Integrating Mobile Learning Technologies with Natural Language Processing” (2018) was funded as a 4-year project to Purdue University (awardee) under the program option of “Postsecondary and Adult Education” (link: https://ies.ed.gov/funding/grantsearch/details.asp?ID=2130 ).

Abbreviations

Analysis of variance

Discipline-based education research

Department of Education

Hierarchical linear modeling

Institute of Education Sciences

Item response theory

National Science Foundation

Pre-school–grade 12

Requests-for-proposal

Structural equation modeling

Science, technology, engineering, and mathematics

Committee on STEM Education, National Science & Technology Council, the White House (2018). Charting a course for success: America’s strategy for STEM education . Washington, DC. https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf Accessed on 18 Jan 2019.

English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3 , 3 https://doi.org/10.1186/s40594-016-0036-1 .

Article   Google Scholar  

Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: status, prospects, and an agenda for research . Washington DC: National Academies Press.

Google Scholar  

Institute of Education Sciences (IES) (n.d.). About IES: connecting research, policy and practice. Retrieved from https://ies.ed.gov/aboutus/ Accessed on 2 Feb 2020.

Institute of Education Sciences (IES) & National Science Foundation (NSF). (2013). Common guidelines for education research and development. Washington, DC: The authors. Retrieved from https://www.nsf.gov/pubs/2013/nsf13126/nsf13126.pdf Accessed on 2 Feb 2020.

Lee, A. (2014). Students with disabilities choosing science technology engineering and math (STEM) majors in postsecondary institutions. Journal of Postsecondary Education and Disability, 27 (3), 261–272.

Li, Y. (2014). International journal of STEM education – a platform to promote STEM education and research worldwide. International Journal of STEM Education, 1 , 1 https://doi.org/10.1186/2196-7822-1-1 .

Li, Y. (2018a). Journal for STEM Education Research – promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, 1 (1-2), 1–6 https://doi.org/10.1007/s41979-018-0009-z .

Li, Y. (2018b). Four years of development as a gathering place for international researchers and readers in STEM education. International Journal of STEM Education, 5 , 54 https://doi.org/10.1186/s40594-018-0153-0 .

Li, Y. (2019). Five years of development in pursuing excellence in quality and global impact to become the first journal in STEM education covered in SSCI. International Journal of STEM Education, 6 , 42 https://doi.org/10.1186/s40594-019-0198-8 .

Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: a systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6 , 19 https://doi.org/10.1186/s40594-019-0176-1 .

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as ‘given’ in STEM education. International Journal of STEM Education, 6 , 44 https://doi.org/10.1186/s40594-019-0197-9 .

Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020). Research and trends in STEM education: a systematic review of journal publications. International Journal of STEM Education, 7 , 11 https://doi.org/10.1186/s40594-020-00207-6 .

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6 , 2 https://doi.org/10.1186/s40594-018-0151-2 .

Minichiello, A., Hood, J. R., & Harkness, D. S. (2018). Bring user experience design to bear on STEM education: a narrative literature review. Journal for STEM Education Research, 1 (1-2), 7–33.

National Research Council. (2012). Discipline-based education research: understanding and improving learning in undergraduate science and engineering . Washington DC: National Academies Press.

Otten, M., Van den Heuvel-Panhuizen, M., & Veldhuis, M. (2019). The balance model for teaching linear equations: a systematic literature review. International Journal of STEM Education, 6 , 30 https://doi.org/10.1186/s40594-019-0183-2 .

Schreffler, J., Vasquez III, E., Chini, J., & James, W. (2019). Universal design for learning in postsecondary STEM education for students with disabilities: a systematic literature review. International Journal of STEM Education, 6 , 8 https://doi.org/10.1186/s40594-019-0161-8 .

The White House (2009). President Obama launches “Educate to Innovate” campaign for excellence in science, technology, engineering & math (Stem) education. Retrieved from https://obamawhitehouse.archives.gov/the-press-office/president-obama-launches-educate-innovate-campaign-excellence-science-technology-en Accessed on 2 Feb 2020.

The White House (2017). Presidential memorandum for the secretary of Education. Retrieved from https://www.whitehouse.gov/presidential-actions/presidential-memorandum-secretary-education/ Accessed on 2 Feb 2020.

The White House (2018). President Donald J. Trump is working to ensure all Americans have access to STEM education. Retrieved from https://www.whitehouse.gov/briefings-statements/president-donald-j-trump-is-working-to-ensure-all-americans-have-access-to-stem-education/ Accessed on 2 Feb 2020.

U.S. Department of Education (2018). U.S. Department of Education fulfills administration promise to invest $200 million in STEM education. Retrieved from https://www.ed.gov/news/press-releases/us-department-education-fulfills-administration-promise-invest-200-million-stem-education Accessed on 2 Feb 2020.

Wang, K., Li, Y., & Xiao, Y. (2019). Exploring the status and development trends of STEM education research: the case of IES funded projects on STEM education in the U.S. 数学教育学报 . Journal of Mathematics Education, 28 (3), 53–61.

Download references

This review was supported by a grant from the National Science Foundation (DUE-1852942). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and affiliations.

Texas A&M University, College Station, TX, 77843-4232, USA

Yeping Li, Yu Xiao & Sandra B. Nite

Nicholls State University, Thibodaux, LA, 70310, USA

Ohio State University, Columbus, OH, 43210, USA

Jeffrey E. Froyd

You can also search for this author in PubMed   Google Scholar

Contributions

YL conceptualized the study and drafted the manuscript. KW contributed with data collection, coding, analyses, and manuscript reviews. YX contributed to data collection, coding, and manuscript reviews. JEF and SBN contributed to manuscript improvement through manuscript reviews and revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeping Li .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Li, Y., Wang, K., Xiao, Y. et al. Research and trends in STEM education: a systematic analysis of publicly funded projects. IJ STEM Ed 7 , 17 (2020). https://doi.org/10.1186/s40594-020-00213-8

Download citation

Received : 18 March 2020

Accepted : 20 March 2020

Published : 22 April 2020

DOI : https://doi.org/10.1186/s40594-020-00213-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Scholarship
  • STEM education research
  • STEM funding

quantitative research topics in stem strand

quantitative research topics in stem strand

  • 2023 AERA in the News
  • 2022 AERA in the News
  • 2021 AERA In the News
  • 2020 AERA In the News
  • 2019 AERA In the News
  • 2018 AERA In the News
  • 2017 AERA In the News
  • 2016 AERA In the News
  • 2015 AERA In the News
  • 2014 AERA In the News
  • 2013 AERA In the News
  • AERA Speaking Out on Major Issues
  • 2023 AERA News Releases
  • 2022 AERA News Releases
  • 2021 AERA News Releases
  • 2020 AERA News Releases
  • 2019 AERA News Releases
  • 2018 AERA News Releases
  • 2017 AERA News Releases
  • 2016 AERA News Releases
  • 2015 AERA News Releases
  • 2014 AERA News Releases
  • 2013 AERA News Releases
  • 2012 AERA News Releases
  • 2011 News Releases
  • 2010 News Releases
  • 2009 News Releases
  • 2008 News Releases
  • 2007 News Releases
  • 2006 News Releases
  • 2005 News Releases
  • 2004 News Releases
  • AERA Research Archive
  • Trending Topic Research Files
  • Communication Resources for Researchers
  • AERA Highlights Archival Issues
  • AERA Video Gallery

quantitative research topics in stem strand

Share 

 
STEM

Science, Technology Engineering, and Mathematics (STEM) is one of the most talked about topics in education, emphasizing research, problem solving, critical thinking, and creativity.

The following compendium of open-access articles are inclusive of all substantive AERA journal content regarding STEM published since 1969. This page will be updated as new articles are published. 


Jason Jabbari, Yung Chun, Wenrui Huang, Stephen Roll
October 2023
Researchers found that program acceptance was significantly associated with increased earnings and probabilities of working in a science, technology, engineering, and math (STEM) profession.


Robert R. Martinez, Jr., James M. Ellis
September 2023
Researchers found that STEM-CR involves four related yet distinct dimensions of Think, Know, Act, and Go. Results also demonstrated soundness of these STEM-CR dimensions by race and gender (key learning skills and techniques/Act).


Rosemary J. Perez, Rudisang Motshubi, Sarah L. Rodriguez
April 2023
Researchers found that because participants did not attend to how racism and White supremacy fostered negative climate, their strategies (e.g., increased recruitment, committees, workshops) left systemic racism intact and (un)intentionally amplified labor for racially minoritized graduate students and faculty champions who often led change efforts with little support.


Kathleen Lynch, Lily An, Zid Mancenido
, July 2022
Researchers found an average weighted impact estimate of +0.10 standard deviations on mathematics achievement outcomes.


Luis A. Leyva, R. Taylor McNeill, B R. Balmer, Brittany L. Marshall, V. Elizabeth King, Zander D. Alley
, May 2022
Researchers address this research gap by exploring four Black queer students’ experiences of oppression and agency in navigating invisibility as STEM majors.


Angela Starrett, Matthew J. Irvin, Christine Lotter, Jan A. Yow
, May 2022
Researchers found that the more place-based workforce development adolescents reported, the higher their expectancy beliefs, STEM career interest, and rural community aspirations.


Matthew H. Rafalow, Cassidy Puckett
May 2022
Researchers found that educational resources, like digital technologies, are also sorted by schools.


Pamela Burnard, Laura Colucci-Gray, Carolyn Cooke
 April 2022
This article makes a case for repositioning STEAM education as democratized enactments of transdisciplinary education, where arts and sciences are not separate or even separable endeavors.


Salome Wörner, Jochen Kuhn, Katharina Scheiter
, April 2022
Researchers conclude that for combining real and virtual experiments, apart from the individual affordances and the learning objectives of the different experiment types, especially their specific function for the learning task must be considered.


Seung-hyun Han, Eunjung Grace Oh, Sun “Pil” Kang
April 2022
Researchers found that the knowledge sharing mechanism and student learning outcomes can be explained in terms of their social capital within social networks.


Barbara Schneider, Joseph Krajcik, Jari Lavonen, Katariina Salmela-Aro, Christopher Klager, Lydia Bradford, I-Chien Chen, Quinton Baker, Israel Touitou, Deborah Peek-Brown, Rachel Marias Dezendorf, Sarah Maestrales, Kayla Bartz
March 2022 
Researchers found that improving secondary school science learning is achievable with a coherent system comprising teacher and student learning experiences, professional learning, and formative unit assessments that support students in “doing” science.


Paulo Tan, Alexis Padilla, Rachel Lambert
, March 2022
Researchers found that studies continue to avoid meaningful intersectional considerations of race and disability.


Ta-yang Hsieh, Sandra D. Simpkins
March 2022
Researchers found patterns with overall high/low beliefs, patterns with varying levels of motivational beliefs, and patterns characterized by domain differentiation.


Jonté A. Myers, Bradley S. Witzel, Sarah R. Powell, Hongli Li, Terri D. Pigott, Yan Ping Xin, Elizabeth M. Hughes
, February 2022
Findings of meta-regression analyses showed several moderators, such as sample composition, group size, intervention dosage, group assignment approach, interventionist, year of publication, and dependent measure type, significantly explained heterogeneity in effects across studies.


Grace A. Chen, Ilana S. Horn
, January 2022
The findings from this review highlight the interconnectedness of structures and individual lives, of the material and ideological elements of marginalization, of intersectionality and within-group heterogeneity, and of histories and institutions.


Victor R. Lee, Michelle Hoda Wilkerson, Kathryn Lanouette
December 2021
Researchers offer an interdisciplinary framework based on literature from multiple bodies of educational research to inform design, teaching and research for more effective, responsible, and inclusive student learning experiences with and about data.


Ido Davidesco, Camillia Matuk, Dana Bevilacqua, David Poeppel, Suzanne Dikker
December 2021
This essay critically evaluates the value added by portable brain technologies in education research and outlines a proposed research agenda, centered around questions related to student engagement, cognitive load, and self-regulation.


Guan K. Saw, Charlotte A. Agger
December 2021
Researchers found that during high school rural and small-town students shifted away from STEM fields and that geographic disparities in postsecondary STEM participation were largely explained by students’ demographics and precollege STEM career aspirations and academic preparation.


Kyle M. Whitcomb, Sonja Cwik, Chandralekha Singh
November 2021
Researchers found that on average across all years of study, underrepresented minority (URM) students experience a larger penalty to their mean overall and STEM GPA than even the most disadvantaged non-URM students.


Lana M. Minshew, Amanda A. Olsen, Jacqueline E. McLaughlin
, October 2021
Researchers found that the CA framework is a useful and effective model for supporting faculty in cultivating rich learning opportunities for STEM graduate students.


Xin Lin, Sarah R. Powell
, October 2021
Findings suggested fluency in both mathematics and reading, as well as working memory, yielded greater impacts on subsequent mathematics performance.


Christine L. Bae, Daphne C. Mills, Fa Zhang, Martinique Sealy, Lauren Cabrera, Marquita Sea
, September 2021
This systematic literature review is guided by a complex systems framework to organize and synthesize empirical studies of science talk in urban classrooms across individual (student or teacher), collective (interpersonal), and contextual (sociocultural, historical) planes.


Toya Jones Frank, Marvin G. Powell, Jenice L. View, Christina Lee, Jay A. Bradley, Asia Williams
 August/September 2021
Researchers found that teachers’ experiences of microaggressions accounted for most of the variance in our modeling of teachers’ thoughts of leaving the profession.


Ebony McGee, Yuan Fang, Yibin (Amanda) Ni, Thema Monroe-White
August 2021
Researchers found that 40.7% of the respondents reported that their career plans have been affected by Trump’s antiscience policies, 54.5% by the COVID-19 pandemic.


Martha Cecilia Bottia, Roslyn Arlin Mickelson, Cayce Jamil, Kyleigh Moniz, Leanne Barry
, May 2021
Consistent with cumulative disadvantage and critical race theories, findings reveal that the disproportionality of racially minoritized students in STEM is related to their inferior secondary school preparation; the presence of racialized lower quality educational contexts; reduced levels of psychosocial factors associated with STEM success; less exposure to inclusive and appealing curricula and instruction; lower levels of family social, cultural, and financial capital that foster academic outcomes; and fewer prospects for supplemental STEM learning opportunities. Policy implications of findings are discussed.


Iris Daruwala, Shani Bretas, Douglas D. Ready
 April 2021
Researchers describe how teachers, school leaders, and program staff navigated institutional pressures to improve state grade-level standardized test scores while implementing tasks and technologies designed to personalize student learning.


Michael A. Gottfried, Jay Plasman, Jennifer A. Freeman, Shaun Dougherty
March 2021
Researchers found that students with learning disabilities were more likely to earn more units in CTE courses compared with students without disabilities.


Ebony Omotola McGee
 December 2020
This manuscript also discusses how universities institutionalize diversity mentoring programs designed mostly to fix (read “assimilate”) underrepresented students of color while ignoring or minimizing the role of the STEM departments in creating racially hostile work and educational spaces.


Miray Tekkumru-Kisa, Mary Kay Stein, Walter Doyle
 November 2020
The purpose of this article is to revisit theory and research on tasks, a construct introduced by Walter Doyle nearly 40 years ago.


Elizabeth S. Park, Federick Ngo
November 2020
Researchers found that lower math placement may have supported women, and to a lesser extent URM students, in completing transferable STEM credits.


Karisma Morton, Catherine Riegle-Crumb
 August/September 2020
Results of regression analyses reveal that, net of school, teacher, and student characteristics, the time that teachers report spending on algebra and more advanced content in eighth grade algebra classes is significantly lower in schools that are predominantly Black compared to those that are not predominantly minority. Implications for future research are discussed.


Qi Zhang, Jessaca Spybrook, Fatih Unlu
, July 2020
Researchers consider strategies to maximize the efficiency of the study design when both student and teacher effects are of primary interest.


Jennifer Lin Russell, Richard Correnti, Mary Kay Stein, Ally Thomas, Victoria Bill, Laurie Speranzo
, July 20, 2020
Analysis of videotaped coaching conversations and teaching events suggests that model-trained coaches improved their capacity to use a high-leverage coaching practice—deep and specific prelesson planning conversations—and that growth in this practice predicted teaching improvement, specifically increased opportunities for students to engage in conceptual thinking.


Maithreyi Gopalan, Kelly Rosinger, Jee Bin Ahn
, April 21, 2020
The overarching purpose of this chapter is to explore and document the growth, applicability, promise, and limitations of quasi-experimental research designs in education research.


Thomas M. Philip, Ayush Gupta
, April 21, 2020
By bringing this collection of articles together, this chapter provides collective epistemic and empirical weight to claims of power and learning as co-constituted and co-constructed through interactional, microgenetic, and structural dynamics.


Steve Graham, Sharlene A. Kiuhara, Meade MacKay
, March 19, 2020
This meta-analysis examined if students writing about content material in science, social studies, and mathematics facilitated learning.


Janina Roloff, Uta Klusmann, Oliver Lüdtke, Ulrich Trautwein
, January 2020 
Multilevel regression analyses revealed that agreeableness, high school GPA, and the second state examination grade predicted teachers’ instructional quality.

: Contemporary Views on STEM Subjects and Language With English Learners
Okhee Lee, Amy Stephens
, 2020 
With the release of the consensus report , the authors highlight foundational constructs and perspectives associated with STEM subjects and language with English learners that frame the report.


Angela Calabrese Barton and Edna Tan
, 2020 
This essay presents a rightful presence framework to guide the study of teaching and learning in justice-oriented ways.


Day Greenberg, Angela Calabrese Barton, Carmen Turner, Kelly Hardy, Akeya Roper, Candace Williams, Leslie Rupert Herrenkohl, Elizabeth A. Davis, Tammy Tasker
, 2020
Researchers  report on how one community builds capacity for disrupting injustice and supporting each other during the COVID-19 crisis.


Tatiana Melguizo, Federick Ngo
, 2020
This study explores the extent to which “college-ready” students, by high school standards, are assigned to remedial courses in college.


Karisma Morton and Catherine Riegle-Crumb
, 2020
Results of regression analyses reveal that, net of school, teacher, and student characteristics, the time that teachers report spending on algebra and more advanced content in eighth grade algebra classes is significantly lower in schools that are predominantly Black compared to those that are not predominantly minority. Implications for future research are discussed.


Jonathan D. Schweig, Julia H. Kaufman, and V. Darleen Opfer
, 2020
Researchers found that there are both substantial fluctuations in students’ engagement in these practices and reported cognitive demand from day to day, as well as large differences across teachers.


David Blazar and Casey Archer
, 2020
Researchers found that exposure to “ambitious” mathematics practices is more strongly associated with test score gains of English language learners compared to those of their peers in general education classrooms.


Megan Hopkins, Hayley Weddle, Maxie Gluckman, Leslie Gautsch
, December 2019 
Researchers show how both researchers and practitioners facilitated research use.


Adrianna Kezar, Samantha Bernstein-Sierra
, October 2019
Findings suggest that Association of American Universities’ influence was a powerful motivator for institutions to alter deeply ingrained perceptions and behaviors.


Denis Dumas, Daniel McNeish, Julie Sarama, Douglas Clements
, October 2019
While students who receive a short-term intervention in preschool may not differ from a control group in terms of their long-term mathematics outcomes at the end of elementary school, they do exhibit significantly steeper growth curves as they approach their eventual skill level.


Jessica Thompson, Jennifer Richards, Soo-Yean Shim, Karin Lohwasser, Kerry Soo Von Esch, Christine Chew, Bethany Sjoberg, Ann Morris
, September 2019
Researchers used data from professional learning communities to analyze pathways into improvement work and reflective data to understand practitioners’ perspectives.


Ross E. O’Hara, Betsy Sparrow
, September 2019
Results indicate that interventions that target psychosocial barriers experienced by community college STEM students can increase retention and should be considered alongside broader reforms.


Ran Liu, Andrea Alvarado-Urbina, Emily Hannum
, September 2019
Findings reveal disparate national patterns in gender gaps across the performance distribution.


Adam Kirk Edgerton
, September 2019 
Through an analysis of 52 interviews with state, regional, and district officials in California, Texas, Ohio, Pennsylvania, and Massachusetts, the author investigates the decline in the popularity of K–12 standards-based reform.


Amy Noelle Parks
, September 2019 
The study suggests that more research needs to represent mathematics lessons from the perspectives of children and youth, particularly those students who engage with teachers infrequently or in atypical ways.


Rajeev Darolia, Cory Koedel, Joyce B. Main, J. Felix Ndashimye, Junpeng Yan
, September 30, 2019
Researchers found that differential access to high school courses does not affect postsecondary STEM enrollment or degree attainment.


Laura A. Davis, Gregory C. Wolniak, Casey E. George, Glen R. Nelson
, August 2019
The findings point to variation in informational quality across dimensions ranging from clarity of language use and terminology, to consistency and coherence of visual displays, which accompany navigational challenges stemming from information fragmentation and discontinuity across pages.


Juan E. Saavedra, Emma Näslund-Hadley, Mariana Alfonso
, August 12, 2019
Researchers present results from the first randomized experiment of a remedial inquiry-based science education program for low-performing elementary students in a developing country.


F. Chris Curran, James Kitchin
, July 2019
Researchers found suggestive evidence in some models (student fixed effects and regression with observable controls) that time on science instruction is related to science achievement but little evidence that the number of science topics/skills covered are related to greater science achievement.


Kathleen Lynch, Heather C. Hill, Kathryn E. Gonzalez, Cynthia Pollard
, June 2019
Programs saw stronger outcomes when they helped teachers learn to use curriculum materials; focused on improving teachers’ content knowledge, pedagogical content knowledge, and/or understanding of how students learn; incorporated summer workshops; and included teacher meetings to troubleshoot and discuss classroom implementation. We discuss implications for policy and practice.


Elizabeth Stearns, Martha Cecilia Bottia, Jason Giersch, Roslyn Arlin Mickelson, Stephanie Moller, Nandan Jha, Melissa Dancy
, June 2019 
Researchers found that relative advantages in college academic performance in STEM versus non-STEM subjects do not contribute to the gender gap in STEM major declaration.


Nicole Shechtman, Jeremy Roschelle, Mingyu Feng, Corinne Singleton
, May 2019
As educational leaders throughout the United States adopt digital mathematics curricula and adaptive, blended approaches, the findings provide a relevant caution.


Colleen M. Ganley, Robert C. Schoen, Mark LaVenia, Amanda M. Tazaz
, March 2019
Factor analyses support a distinction between components of general math anxiety and anxiety about teaching math.


Felicia Moore Mensah
, February 2019 
The implications for practice in both teacher education and science education show that educational and emotional support for teachers of color throughout their educational and professional journey is imperative to increasing and sustaining Black teachers.


Herbert W. Marsh, Brooke Van Zanden, Philip D. Parker, Jiesi Guo, James Conigrave, Marjorie Seaton
, February 2019 
Researchers evaluated STEM coursework selection by women and men in senior high school and university, controlling achievement and expectancy-value variables.


Yasemin Copur-Gencturk, Debra Plowman, Haiyan Bai
, January 2019 
The results showed that a focus on curricular content knowledge and examining students’ work were significantly related to teachers’ learning.


Rebecca Colina Neri, Maritza Lozano, Louis M. Gomez
, 2019
Researchers found that teacher resistance to CRE as a multilevel learning problem stems from (a) limited understanding and belief in the efficacy of CRE and (b) a lack of know-how needed to execute it.


Russell T. Warne, Gerhard Sonnert, and Philip M. Sadler
, 2019
Researchers  investigated the relationship between participation in AP mathematics courses (AP Calculus and AP Statistics) and student career interest in STEM.


Catherine Riegle-Crumb, Barbara King, and Yasmiyn Irizarry
, 2019 
Results reveal evidence of persistent racial/ethnic inequality in STEM degree attainment not found in other fields.


Eben B. Witherspoon, Paulette Vincent-Ruz, and Christian D. Schunn
, 2019 
Researchers found that high-performing women often graduate with lower paying, lower status degrees.


Bruce Fuller, Yoonjeon Kim, Claudia Galindo, Shruti Bathia, Margaret Bridges, Greg J. Duncan, and Isabel García Valdivia
, 2019
This article details the growing share of Latino children from low-income families populating schools, 1998 to 2010.


Rebekka Darner
, 2019
Drawing from motivated reasoning and self-determination theories, this essay builds a theoretical model of how negative emotions, thwarting of basic psychological needs, and the backfire effect interact to undermine critical evaluation of evidence, leading to science denial.


Okhee Lee
, 2019
As the fast-growing population of English learners (ELs) is expected to meet college- and career-ready content standards, the purpose of this article is to highlight key issues in aligning ELP standards with content standards.


Mark C. Long, Dylan Conger, and Raymond McGhee, Jr.
, 2019
The authors offer the first model of the components inherent in a well-implemented AP science course and the first evaluation of AP implementation with a focus on public schools newly offering the inquiry-based version of AP Biology and Chemistry courses.


Yasemin Copur-Gencturk, Joseph R. Cimpian, Sarah Theule Lubienski, and Ian Thacker
, 2019
Results indicate that teachers are not free of bias, and that teachers from marginalized groups may be susceptible to bias that favors stereotype-advantaged groups.


Geoffrey B. Saxe and Joshua Sussman
, 2019 
Multilevel analysis of longitudinal data on a specialized integers and fractions assessment, as well as a California state mathematics assessment, revealed that the ELs in LMR classrooms showed greater gains than comparison ELs and gained at similar rates to their EP peers in LMR classrooms.


Jordan Rickles, Jessica B. Heppen, Elaine Allensworth, Nicholas Sorensen, and Kirk Walters
, 2019 
The authors discuss whether it would have been appropriate to test for nominally equivalent outcomes, given that the study was initially conceived and designed to test for significant differences, and that the conclusion of no difference was not solely based on a null hypothesis test.


Soobin Kim, Gregory Wallsworth, Ran Xu, Barbara Schneider, Kenneth Frank, Brian Jacob, Susan Dynarski
, 2019
Using detailed Michigan high school transcript data, this article examines the effect of the MMC on various students’ course-taking and achievement outcomes.


Dario Sansone
, December 2018
Researchers found that students were less likely to believe that men were better than women in math or science when assigned to female teachers or to teachers who valued and listened to ideas from their students.


Ebony McGee
, December 2018
The authors argues that both racial groups endure emotional distress because each group responds to its marginalization with an unrelenting motivation to succeed that imposes significant costs.


Barbara Means, Haiwen Wang, Xin Wei, Emi Iwatani, Vanessa Peters
, November 2018
Students overall and from under-represented groups who had attended inclusive STEM high schools were significantly more likely to be in a STEM bachelor’s degree program two years after high school graduation.


Paulo Tan, Kathleen King Thorius
, November 2018 
Results indicate identity and power tensions that worked against equitable practices.


Caesar R. Jackson
, November 2018
This study investigated the validity and reliability of the Motivated Strategies for Learning Questionnaire (MSLQ) for minority students enrolled in STEM courses at a historically black college/university (HBCU).


Tuan D. Nguyen, Christopher Redding
, September 2018
The results highlight the importance of recruiting qualified STEM teachers to work in high-poverty schools and providing supports to help them thrive and remain in the classroom.


Joseph A. Taylor, Susan M. Kowalski, Joshua R. Polanin, Karen Askinas, Molly A. M. Stuhlsatz, Christopher D. Wilson, Elizabeth Tipton, Sandra Jo Wilson
, August 2018
The meta-analysis examines the relationship between science education intervention effect sizes and a host of study characteristics, allowing primary researchers to access better estimates of effect sizes for a priori power analyses. The results of this meta-analysis also support programmatic decisions by setting realistic expectations about the typical magnitude of impacts for science education interventions.


Brian A. Burt, Krystal L. Williams, Gordon J. M. Palmer
, August 2018
Three factors are identified as helping them persist from year to year, and in many cases through completion of the doctorate: the role of family, spirituality and faith-based community, and undergraduate mentors.


Anna-Lena Rottweiler, Jamie L. Taxer, Ulrike E. Nett
, June 2018
Suppression improved mood in exam-related anxiety, while distraction improved mood only in non-exam-related anxiety.


Gabriel Estrella, Jacky Au, Susanne M. Jaeggi, Penelope Collins
, April 2018
Although an analysis of 26 articles confirmed that inquiry instruction produced significantly greater impacts on measures of science achievement for ELLs compared to direct instruction, there was still a differential learning effect suggesting greater efficacy for non-ELLs compared to ELLs.


Heather C. Hill, Mark Chin
, April 2018
In this article, evidence from 284 teachers suggests that accuracy can be adequately measured and relates to instruction and student outcomes.


Darrell M. Hull, Krystal M. Hinerman, Sarah L. Ferguson, Qi Chen, Emma I. Näslund-Hadley
, April 20, 2018
Both quantitative and qualitative evidence suggest students within this culture respond well to this relatively simple and inexpensive intervention that departs from traditional, expository math instruction in many developing countries.


Erika C. Bullock
, April 2018
The author reviews CME studies that employ intersectionality as a way of analyzing the complexities of oppression.


Angela Calabrese Barton, Edna Tan
, March 2018 
Building a conceptual argument for an equity-oriented culture of making, the authors discuss the ways in which making with and in community opened opportunities for youth to project their communities’ rich culture knowledge and wisdom onto their making while also troubling and negotiating the historicized injustices they experience.


Sabrina M. Solanki, Di Xu
, March 2018 
Researchers found that having a female instructor narrows the gender gap in terms of engagement and interest; further, both female and male students tend to respond to instructor gender.


Susanne M. Jaeggi, Priti Shah
, February 2018
These articles provide excellent examples for how neuroscientific approaches can complement behavioral work, and they demonstrate how understanding the neural level can help researchers develop richer models of learning and development.


Danyelle T. Ireland, Kimberley Edelin Freeman, Cynthia E. Winston-Proctor, Kendra D. DeLaine, Stacey McDonald Lowe, Kamilah M. Woodson
, 2018
Researchers found that (1) identity; (2) STEM interest, confidence, and persistence; (3) achievement, ability perceptions, and attributions; and (4) socializers and support systems are key themes within the experiences of Black women and girls in STEM education.


Ann Y. Kim, Gale M. Sinatra, Viviane Seyranian
, 2018
Findings indicate that young women experience challenges to their participation and inclusion when they are in STEM settings.


Guan Saw, Chi-Ning Chang, and Hsun-Yu Chan
, 2018 
Results indicated that female, Black, Hispanic, and low SES students were less likely to show, maintain, and develop an interest in STEM careers during high school years.


Di Xu, Sabrina Solanki, Peter McPartlan, and Brian Sato
, 2018
This paper estimates the causal effects of a first-year STEM learning communities program on both cognitive and noncognitive outcomes at a large public 4-year institution.


Christina S. Chhin, Katherine A. Taylor, and Wendy S. Wei
, 2018
Data showed that IES has not funded any direct replications that duplicate all aspects of the original study, but almost half of the funded grant applications can be considered conceptual replications that vary one or more dimensions of a prior study.


Okhee Lee
, 2018
As federal legislation requires that English language proficiency (ELP) standards are aligned with content standards, this article addresses issues and concerns in aligning ELP standards with content standards in English language arts, mathematics, and science.


Jordan Rickles, Jessica B. Heppen, Elaine Allensworth, Nicholas Sorensen, and Kirk Walters
, 2018
Researchers found no statistically significant differences in longer term outcomes between students in the online and face-to-face courses. Implications of these null findings are discussed.


Colleen M. Ganley, Casey E. George, Joseph R. Cimpian, Martha B. Makowski
, December 2017 
Researchers found that perceived gender bias against women emerges as the dominant predictor of the gender balance in college majors.


James P. Spillane, Megan Hopkins, Tracy M. Sweet
, December 2017
This article examines the relationship between teachers’ instructional ties and their beliefs about mathematics instruction in one school district working to transform its approach to elementary mathematics education. 


Susan A. Yoon, Sao-Ee Goh, Miyoung Park
, December 6, 2017
Results revealed needs in five areas of research: a need to diversify the knowledge domains within which research is conducted, more research on learning about system states, agreement on the essential features of complex systems content, greater focus on contextual factors that support learning including teacher learning, and a need for more comparative research.


Candace Walkington, Virginia Clinton, Pooja Shivraj
, November 2017 
Textual features that make problems more difficult to process appear to differentially negatively impact struggling students, while features that make language easier to process appear to differentially positively impact struggling students.


Rebecca L. Matz, Benjamin P. Koester, Stefano Fiorini, Galina Grom, Linda Shepard, Charles G. Stangor, Brad Weiner, Timothy A. McKay
, November 2017
Biology, chemistry, physics, accounting, and economics lecture courses regularly exhibit gendered performance differences that are statistically and materially significant, whereas lab courses in the same subjects do not.


Adam V. Maltese, Christina S. Cooper
, August 2017
The results reveal that although there is no singular pathway into STEM fields, self-driven interest is a large factor in persistence, especially for males, and females rely more heavily on support from others.


Brian R. Belland, Andrew E. Walker, Nam Ju Kim
, August 2017
Scaffolding has a consistently strong effect across student populations, STEM disciplines, and assessment levels, and a strong effect when used with most problem-centered instructional and educational levels.


Di Xu, Shanna Smith Jaggars
, July 2017
The findings indicate a robust negative impact of online course taking for both subjects.


Maisie L. Gholson, Charles E. Wilkes
, June 2017
This chapter reviews two strands of identity-based research in mathematics education related to Black children, exemplified by Martin (2000) and Nasir (2002).


Sarah Theule Lubienski, Emily K. Miller, and Evthokia Stephanie Saclarides
, November 2017 
Using data from a survey of doctoral students at one large institution, this study finds that men submitted and published more scholarly works than women across many fields, with differences largest in natural/biological sciences and engineering. 


David Blazar, Cynthia Pollard
, October 2017
Drawing on classroom observations and teacher surveys, researchers find that test preparation activities predict lower quality and less ambitious mathematics instruction in upper-elementary classrooms.


Nicole M. Joseph, Meseret Hailu, Denise Boston
, June 2017
This integrative review used critical race theory (CRT) and Black feminism as interpretive frames to explore factors that contribute to Black women’s and girls’ persistence in the mathematics pipeline and the role these factors play in shaping their academic outcomes.


Benjamin L. Wiggins, Sarah L. Eddy, Daniel Z. Grunspan, Alison J. Crowe
, May 2017
Researchers describe the results of a quasi-experimental study to test the apex of the ICAP framework (interactive, constructive, active, and passive) in this ecological classroom environment.


Sean Gehrke, Adrianna Kezar
, May 2017 
This study examines how involvement in four cross-institutional STEM faculty communities of practice is associated with local departmental and institutional change for faculty members belonging to these communities.


Lawrence Ingvarson, Glenn Rowley
, May 2017
This study investigated the relationship between policies related to the recruitment, selection, preparation, and certification of new teachers and (a) the quality of future teachers as measured by their mathematics content and pedagogy content knowledge and (b) student achievement in mathematics at the national level. 


Will Tyson, Josipa Roksa
, April 2017
This study examines how course grades and course rigor are associated with math attainment among students with similar eighth-grade standardized math test scores. 


Anne K. Morris, James Hiebert
, March 2017
Researchers investigated whether the content pre-service teachers studied in elementary teacher preparation mathematics courses was related to their performance on a mathematics lesson planning task 2 and 3 years after graduation. 


Laura M. Desimone, Kirsten Lee Hill
, March 2017
Researchers use data from a randomized controlled trial of a middle school science intervention to explore the causal mechanisms by which the intervention produced previously documented gains in student achievement.


Okhee Lee
, March 2017
This article focuses on how the Common Core State Standards (CCSS) and the Next Generation Science Standards (NGSS) treat “argument,” especially in Grades K–5, and the extent to which each set of standards is grounded in research literature, as claimed.


Cory Koedel, Diyi Li, Morgan S. Polikoff, Tenice Hardaway, Stephani L. Wrabel
, February 2017
Researchers estimate relative achievement effects of the four most commonly adopted elementary mathematics textbooks in the fall of 2008 and fall of 2009 in California.


Mary Kay Stein, Richard Correnti, Debra Moore, Jennifer Lin Russell, Katelynn Kelly
, January 2017
Researchers argue that large-scale, standards-based improvements in the teaching and learning of mathematics necessitate advances in theories regarding how teaching affects student learning and progress in how to measure instruction.


Alan H. Schoenfeld
, December 2016
The author begins by tracing the growth and change in research in mathematics education and its interdependence with research in education in general over much of the 20th century, with an emphasis on changes in research perspectives and methods and the philosophical/empirical/disciplinary approaches that underpin them. 


Marcia C. Linn, Libby Gerard, Camillia Matuk, Kevin W. McElhaney
, December 2016
This chapter focuses on how investigators from varied fields of inquiry who initially worked separately began to interact, eventually formed partnerships, and recently integrated their perspectives to strengthen science education.

: Are Teachers’ Implicit Cognitions Another Piece of the Puzzle?
Almut E. Thomas
, December 2016
Drawing on expectancy-value theory, this study investigated whether teachers’ implicit science-is-male stereotypes predict between-teacher variation in males’ and females’ motivational beliefs regarding physical science. 

: A By-Product of STEM College Culture?
Ebony O. McGee
, December 2016 
The researcher found that the 38 high-achieving Black and Latino/a STEM study participants, who attended institutions with racially hostile academic spaces, deployed an arsenal of strategies (e.g., stereotype management) to deflect stereotyping and other racial assaults (e.g., racial microaggressions), which are particularly prevalent in STEM fields. 


James Cowan, Dan Goldhaber, Kyle Hayes, Roddy Theobald
, November 2016
Researchers discuss public policies that contribute to teacher shortages in specific subjects (e.g., STEM and special education) and specific types of schools (e.g., disadvantaged) as well as potential solutions.

: A Sociological Analysis of Multimethod Data From Young Women Aged 10–16 to Explore Gendered Patterns of Post-16 Participation
Louise Archer, Julie Moote, Becky Francis, Jennifer DeWitt, Lucy Yeomans
, November 2016
Researchers draw on survey data from more than 13,000 year 11 (age 15/16) students and interviews with 70 students (who had been tracked from age 10 to 16), focusing in particular on seven girls who aspired to continue with physics post-16, discussing how the cultural arbitrary of physics requires these girls to be highly “exceptional,” undertaking considerable identity work and deployment of capital in order to “possibilize” a physics identity—an endeavor in which some girls are better positioned to be successful than others.


Jeremy Roschelle, Mingyu Feng, Robert F. Murphy, Craig A. Mason
, October 2016
In a randomized field trial with 2,850 seventh-grade mathematics students, researchers evaluated whether an educational technology intervention increased mathematics learning.

: Making Research Participation Instructionally Effective
Sherry A. Southerland, Ellen M. Granger, Roxanne Hughes, Patrick Enderle, Fengfeng Ke, Katrina Roseler, Yavuz Saka, Miray Tekkumru-Kisa
, October 2016
As current reform efforts in science place a premium on student sense making and participation in the practices of science, researchers use a close examination of 106 science teachers participating in Research Experiences for Teachers (RET) to identify, through structural equation modeling, the essential features in supporting teacher learning from these experiences.


Brian R. Belland, Andrew E. Walker, Nam Ju Kim, Mason Lefler
, October 2016
This review addresses the need for a comprehensive meta-analysis of research on scaffolding in STEM education by synthesizing the results of 144 experimental studies (333 outcomes) on the effects of computer-based scaffolding designed to assist the full range of STEM learners (primary through adult education) as they navigated ill-structured, problem-centered curricula.


Vaughan Prain, Brian Hand
, October 2016
Researchers claim that there are strong evidence-based reasons for viewing writing as a central but not sole resource for learning, drawing on both past and current research on writing as an epistemological tool and on their professional background in science education research, acknowledging its distinctive take on the use of writing for learning. 


June Ahn, Austin Beck, John Rice, Michelle Foster
, September 2016
Researchers present analyses from a researcher-practitioner partnership in the District of Columbia Public Schools, where the researchers are exploring the impact of educational software on students’ academic achievement.


Barbara King
, September 2016
This study uses nationally representative data from a recent cohort of college students to investigate thoroughly gender differences in STEM persistence. 


Ryan C. Svoboda, Christopher S. Rozek, Janet S. Hyde, Judith M. Harackiewicz, Mesmin Destin
, August 2016
This longitudinal study draws on identity-based and expectancy-value theories of motivation to explain the socioeconomic status (SES) and mathematics and science course-taking relationship. 

Mathematics Course Placements in California Middle Schools, 2003–2013
Thurston Domina, Paul Hanselman, NaYoung Hwang, Andrew McEachin
, July 2016 
Researchers consider the organizational processes that accompanied the curricular intensification of the proportion of California eighth graders enrolled in algebra or a more advanced course nearly doubling to 65% between 2003 and 2013.


Lina Shanley
, July 2016
Using a nationally representative longitudinal data set, this study compared various models of mathematics achievement growth on the basis of both practical utility and optimal statistical fit and explored relationships within and between early and later mathematics growth parameters. 


Mimi Engel, Amy Claessens, Tyler Watts, George Farkas
, June 2016
Analyzing data from two nationally representative kindergarten cohorts, researchers examine the mathematics content teachers cover in kindergarten.


F. Chris Curran, Ann T. Kellogg
, June 2016
Researchers present findings from the recently released Early Childhood Longitudinal Study, Kindergarten Class of 2010–2011 that demonstrate significant gaps in science achievement in kindergarten and first grade by race/ethnicity.


Rachel Garrett, Guanglei Hong
, June 2016
Analyzing the Early Childhood Longitudinal Study–Kindergarten cohort data, researchers find that heterogeneous grouping or a combination of heterogeneous and homogeneous grouping under relatively adequate time allocation is optimal for enhancing teacher ratings of language minority kindergartners’ math performance, while using homogeneous grouping only is detrimental. 


Jennifer Gnagey, Stéphane Lavertu
, May 2016
This study is one of the first to estimate the impact of “inclusive” science, technology, engineering, and mathematics (STEM) high schools using student-level data. 


Hanna Gaspard, Anna-Lena Dicke, Barbara Flunger, Isabelle Häfner, Brigitte M. Brisson, Ulrich Trautwein, Benjamin Nagengast
, May 2016 
Through data from a cluster-randomized study in which a value intervention was successfully implemented in 82 ninth-grade math classrooms, researchers address how interventions on students’ STEM motivation in school affect motivation in subjects not targeted by the intervention.


Rebecca M. Callahan, Melissa H. Humphries
, April 2016 
Researchers employ multivariate methods to investigate immigrant college going by linguistic status using the Educational Longitudinal Study of 2002.


Federick Ngo, Tatiana Melguizo
, March 2016
Researchers take advantage of heterogeneous placement policy in a large urban community college district in California to compare the effects of math remediation under different policy contexts.

: An Analysis of German Fourth- and Sixth-Grade Classrooms
Steffen Tröbst, Thilo Kleickmann, Kim Lange-Schubert, Anne Rothkopf, Kornelia Möller
, February 2016 
Researchers examined if changes in instructional practices accounted for differences in situational interest in science instruction and enduring individual interest in science between elementary and secondary school classrooms.

: A Mixed-Methods Study
David F. Feldon, Michelle A. Maher, Josipa Roksa, James Peugh
, February 2016 
Researchers offer evidence of a similar phenomenon to cumulative advantage, accounting for differential patterns of research skill development in graduate students over an academic year and explore differences in socialization that accompany diverging developmental trajectories. 

 : The Influence of Time, Peers, and Place
Luke Dauter, Bruce Fuller
, February 2016 
Researchers hypothesize that pupil mobility stems from the (a) student’s time in school and grade; (b) student’s race, class, and achievement relative to peers; (c) quality of schooling relative to nearby alternatives; and (4) proximity, abundance, and diversity of local school options. 

: How Workload and Curricular Affordances Shape STEM Faculty Decisions About Teaching and Learning
Matthew T. Hora
, January 2016
In this study the idea of the “problem space” from cognitive science is used to examine how faculty construct mental representations for the task of planning undergraduate courses. 


Jessaca Spybrook, Carl D. Westine, Joseph A. Taylor
, January 2016
This article provides empirical estimates of design parameters necessary for planning adequately powered cluster randomized trials (CRTs) focused on science achievement. 


Paul L. Morgan, George Farkas, Marianne M. Hillemeier, Steve Maczuga
, January 2016
Researchers examined the age of onset, over-time dynamics, and mechanisms underlying science achievement gaps in U.S. elementary and middle schools. 

: Opportunity Structures and Outcomes in Inclusive STEM-Focused High Schools
Lois Weis, Margaret Eisenhart, Kristin Cipollone, Amy E. Stich, Andrea B. Nikischer, Jarrod Hanson, Sarah Ohle Leibrandt, Carrie D. Allen, Rachel Dominguez
, December 2015 
Researchers present findings from a three-year comparative longitudinal and ethnographic study of how schools in two cities, Buffalo and Denver, have taken up STEM education reform, including the idea of “inclusive STEM-focused schools,” to address weaknesses in urban high schools with majority low-income and minority students. 

: How Do They Interact in Promoting Science Understanding?
Jasmin Decristan, Eckhard Klieme, Mareike Kunter, Jan Hochweber, Gerhard Büttner, Benjamin Fauth, A. Lena Hondrich, Svenja Rieser, Silke Hertel, Ilonca Hardy
, December 2015
Researchers examine the interplay between curriculum-embedded formative assessment—a well-known teaching practice—and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students’ understanding of the scientific concepts of floating and sinking.

: An International Perspective
William H. Schmidt, Nathan A. Burroughs, Pablo Zoido, Richard T. Houang
, October 2015
In this paper, student-level indicators of opportunity to learn (OTL) included in the 2012 Programme for International Student Assessment are used to explore the joint relationship of OTL and socioeconomic status (SES) to student mathematics literacy. 


Xueli Wang
, September 2015
This study examines the effect of beginning at a community college on baccalaureate success in science, technology, engineering, and mathematics (STEM) fields. 

: Trends and Predictors
David M. Quinn, North Cooc
, August 2015
With research on science achievement disparities by gender and race/ethnicity often neglecting the beginning of the pipeline in the early grades, researchers address this limitation using nationally representative data following students from Grades 3 to 8. 


Shaun M. Dougherty, Joshua S. Goodman, Darryl V. Hill, Erica G. Litke, Lindsay C. Page
, May 2015
Researchers highlight a collaboration to investigate one district’s effort to increase middle school algebra course-taking.


David F. Feldon, Michelle A. Maher, Melissa Hurst, Briana Timmerman
, April 2015
This mixed-method study investigates agreement between student mentees’ and their faculty mentors’ perceptions of the students’ developing research knowledge and skills in STEM. 

: Reviving Science Education for Civic Ends
John L. Rudolph
, December 2014 
This article revisits John Dewey’s now-well-known address “Science as Subject-Matter and as Method” and examines the development of science education in the United States in the years since that address.


Dermot F. Donnelly, Marcia C. Linn Sten Ludvigsen
, December 2014
The National Science Foundation–sponsored report Fostering Learning in the Networked World called for “a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences”; we review research on science inquiry learning environments (ILEs) to characterize current platforms. 

: A Longitudinal Case Study of America’s Chemistry Teachers
Gregory T. Rushton, Herman E. Ray, Brett A. Criswell, Samuel J. Polizzi, Clyde J. Bearss, Nicholas Levelsmier, Himanshu Chhita, Mary Kirchhoff
, November 2014 
Researchers perform a longitudinal case study of U.S. public school chemistry teachers to illustrate a diffusion of responsibility within the STEM community regarding who is responsible for the teacher workforce. 

: Relations Between Early Mathematics Knowledge and High School Achievement
Tyler W. Watts, Greg J. Duncan, Robert S. Siegler, Pamela E. Davis-Kean
, October 2014
Researchers find that preschool mathematics ability predicts mathematics achievement through age 15, even after accounting for early reading, cognitive skills, and family and child characteristics.


T. Jared Robinson, Lane Fischer, David Wiley, John Hilton, III
, October 2014
The purpose of this quantitative study is to analyze whether the adoption of open science textbooks significantly affects science learning outcomes for secondary students in earth systems, chemistry, and physics.

: 1968–2009
Robert N. Ronau, Christopher R. Rakes, Sarah B. Bush, Shannon O. Driskell, Margaret L. Niess, David K. Pugalee
, October 2014 
We examined 480 dissertations on the use of technology in mathematics education and developed a Quality Framework (QF) that provided structure to consistently define and measure quality.


Andrew D. Plunk, William F. Tate, Laura J. Bierut, Richard A. Grucza
, June 2014
Using logistic regression with Census and American Community Survey (ACS) data (  = 2,892,444), researchers modeled mathematics and science course graduation requirement (CGR) exposure on (a) high school dropout, (b) beginning college, and (c) obtaining any college degree. 


Corey Drake, Tonia J. Land, Andrew M. Tyminski
, April 2014
Building on the work of Ball and Cohen and that of Davis and Krajcik, as well as more recent research related to teacher learning from and about curriculum materials, researchers seek to answer the question, How can prospective teachers (PTs) learn to read and use educative curriculum materials in ways that support them in acquiring the knowledge needed for teaching?


Lorraine M. McDonnell, M. Stephen Weatherford
, December 2013
This article draws on theories of political and policy learning and interviews with major participants to examine the role that the Common Core State Standards (CCSS) supporters have played in developing and implementing the standards, supporters’ reasons for mobilizing, and the counterarguments and strategies of recently emerging opposition groups.

: Motivation, High School Learning, and Postsecondary Context of Support
Xueli Wang
, October 2013 
This study draws upon social cognitive career theory and higher education literature to test a conceptual framework for understanding the entrance into science, technology, engineering, and mathematics (STEM) majors by recent high school graduates attending 4-year institutions. 


Philip M. Sadler, Gerhard Sonnert, Harold P. Coyle, Nancy Cook-Smith, Jaimie L. Miller
, October 2013
This study examines the relationship between teacher knowledge and student learning for 9,556 students of 181 middle school physical science teachers.

: Teaching Critical Mathematics in a Remedial Secondary Classroom
Andrew Brantlinger
, October 2013 
The researcher presents results from a practitioner research study of his own teaching of critical mathematics (CM) to low-income students of color in a U.S. context. 


Jason G. Hill, Ben Dalton
, October 2013
This study investigates the distribution of math teachers with a major or certification in math using data from the National Center for Education Statistics’ High School Longitudinal Study of 2009 (HSLS:09).


Kristin F. Butcher, Mary G. Visher
, September 2013
This study uses random assignment to investigate the impact of a “light-touch” intervention, where an individual visited math classes a few times during the semester, for a few minutes each time, to inform students about available services.


Janet M. Dubinsky, Gillian Roehrig, Sashank Varma
, August 2013 
Researchers argue that the neurobiology of learning, and in particular the core concept of  , have the potential to directly transform teacher preparation and professional development, and ultimately to affect how students think about their own learning. 

: The Impact of Undergraduate Research Programs
M. Kevin Eagan, Jr., Sylvia Hurtado, Mitchell J. Chang, Gina A. Garcia, Felisha A. Herrera, Juan C. Garibay
, August 2013 
Researchers’ findings indicate that participation in an undergraduate research program significantly improved students’ probability of indicating plans to enroll in a STEM graduate program.


Okhee Lee, Helen Quinn, Guadalupe Valdés
, May 2013
This article addresses language demands and opportunities that are embedded in the science and engineering practices delineated in “A Framework for K–12 Science Education,” released by the National Research Council (2011).


Liliana M. Garces
, April 2013 
This study examines the effects of affirmative action bans in four states (California, Florida, Texas, and Washington) on the enrollment of underrepresented students of color within six different graduate fields of study: the natural sciences, engineering, social sciences, business, education, and humanities.

: Learning Lessons From Research on Diversity in STEM Fields
Shirley M. Malcom, Lindsey E. Malcom-Piqueux
, April 2013
Researchers argue that social scientists ought to look to the vast STEM education research literature to begin the task of empirically investigating the questions raised in the   case. 


Roslyn Arlin Mickelson, Martha Cecilia Bottia, Richard Lambert
, March 2013
This metaregression analysis reviewed the social science literature published in the past 20 years on the relationship between mathematics outcomes and the racial composition of the K–12 schools students attend. 


Jeffrey Grigg, Kimberle A. Kelly, Adam Gamoran, Geoffrey D. Borman
, March 2013
Researchers examine classroom observations from a 3-year large-scale randomized trial in the Los Angeles Unified School District (LAUSD) to investigate the extent to which a professional development initiative in inquiry science influenced teaching practices in in 4th and 5th grade classrooms in 73 schools.


Angela Calabrese Barton, Hosun Kang, Edna Tan, Tara B. O’Neill, Juanita Bautista-Guerra, Caitlin Brecklin
, February 2013 
This longitudinal ethnographic study traces the identity work that girls from nondominant backgrounds do as they engage in science-related activities across school, club, and home during the middle school years. 

: A Review of the State of the Field
Shuchi Grover, Roy Pea
, January 2013 
This article frames the current state of discourse on computational thinking in K–12 education by examining mostly recently published academic literature that uses Jeannette Wing’s article as a springboard, identifies gaps in research, and articulates priorities for future inquiries.


Catherine Riegle-Crumb, Barbara King, Eric Grodsky, Chandra Muller
, December 2012 
This article investigates the empirical basis for often-repeated arguments that gender differences in entrance into science, technology, engineering, and mathematics (STEM) majors are largely explained by disparities in prior achievement. 


Richard M. Ingersoll, Henry May
, December 2012
This study examines the magnitude, destinations, and determinants of mathematics and science teacher turnover. 

: How Families Shape Children’s Engagement and Identification With Science
Louise Archer, Jennifer DeWitt, Jonathan Osborne, Justin Dillon, Beatrice Willis, Billy Wong
, October 2012 
Drawing on the conceptual framework of Bourdieu, this article explores how the interplay of family habitus and capital can make science aspirations more “thinkable” for some (notably middle-class) children than others.


Erin Marie Furtak, Tina Seidel, Heidi Iverson, Derek C. Briggs
, September 2012
This meta-analysis introduces a framework for inquiry-based teaching that distinguishes between cognitive features of the activity and degree of guidance given to students. 


Jaekyung Lee, Todd Reeves
, June 2012
This study examines the impact of high-stakes school accountability, capacity, and resources under NCLB on reading and math achievement outcomes through comparative interrupted time-series analyses of 1990–2009 NAEP state assessment data. 

: Toward a Theory of Teaching
Paola Sztajn, Jere Confrey, P. Holt Wilson, Cynthia Edgington
, June 2012
Researchers propose a theoretical connection between research on learning and research on teaching through recent research on students’ learning trajectories (LTs). 

: The Perspectives of Exemplary African American Teachers
Jianzhong Xu, Linda T. Coats, Mary L. Davidson
, February 2012 
Researchers argue both the urgency and the promise of establishing a constructive conversation among different bodies of research, including science interest, sociocultural studies in science education, and culturally relevant teaching. 


Rebecca M. Schneider, Kellie Plasman
, December 2011
This review examines the research on science teachers’ pedagogical content knowledge (PCK) in order to refine ideas about science teacher learning progressions and how to support them. 


Brian A. Nosek, Frederick L. Smyth
, October 2011 
Researchers examined implicit math attitudes and stereotypes among a heterogeneous sample of 5,139 participants. 


Libby F. Gerard, Keisha Varma, Stephanie B. Corliss, Marcia C. Linn
, September 2011
Researchers’ findings suggest that professional development programs that engaged teachers in a comprehensive, constructivist-oriented learning process and were sustained beyond 1 year significantly improved students’ inquiry learning experiences in K–12 science classrooms. 

: Teaching and Learning Impacts of Reading Apprenticeship Professional Development
Cynthia L. Greenleaf, Cindy Litman, Thomas L. Hanson, Rachel Rosen, Christy K. Boscardin, Joan Herman, Steven A. Schneider, Sarah Madden, Barbara Jones
, June 2011 
This study examined the effects of professional development integrating academic literacy and biology instruction on science teachers’ instructional practices and students’ achievement in science and literacy. 


Paul Cobb, Kara Jackson
, May 2011
The authors comment on Porter, McMaken, Hwang, and Yang’s recent analysis of the Common Core State Standards for Mathematics by critiquing their measures of the focus of the standards and the absence of an assessment of coherence. 


P. Wesley Schultz, Paul R. Hernandez, Anna Woodcock, Mica Estrada, Randie C. Chance, Maria Aguilar, Richard T. Serpe
, March 2011
This study reports results from a longitudinal study of students supported by a national National Institutes of Health–funded minority training program, and a propensity score matched control. 

: Three Large-Scale Studies
Jeremy Roschelle, Nicole Shechtman, Deborah Tatar, Stephen Hegedus, Bill Hopkins, Susan Empson, Jennifer Knudsen, Lawrence P. Gallagher
, December 2010 
The authors present three studies (two randomized controlled experiments and one embedded quasi-experiment) designed to evaluate the impact of replacement units targeting student learning of advanced middle school mathematics. 

: Examining Disparities in College Major by Gender and Race/Ethnicity
Catherine Riegle-Crumb, Barbara King
, December 2010 
The authors analyze national data on recent college matriculants to investigate gender and racial/ethnic disparities in STEM fields, with an eye toward the role of academic preparation and attitudes in shaping such disparities. 


Mary Kay Stein, Julia H. Kaufman
, September 2010 
This article begins to unravel the question, “What curricular materials work best under what kinds of conditions?” The authors address this question from the point of view of teachers and their ability to implement mathematics curricula that place varying demands and provide varying levels of support for their learning. 


Andy R. Cavagnetto
, September 2010
This study of 54 articles from the research literature examines how argument interventions promote scientific literacy. 


Victoria M. Hand
, March 2010
The researcher examined how the teacher and students in a low-track mathematics classroom jointly constructed opposition through their classroom interactions.


Terrence E. Murphy, Monica Gaughan, Robert Hume, S. Gordon Moore, Jr.
, March 2010
Researchers evaluate the association of a summer bridge program with the graduation rate of underrepresented minority (URM) students at a selective technical university. 

Advertisement

Advertisement

Trends and Hot Topics of STEM and STEM Education: a Co-word Analysis of Literature Published in 2011–2020

  • Published: 23 February 2023
  • Volume 33 , pages 1069–1092, ( 2024 )

Cite this article

quantitative research topics in stem strand

  • Ying-Shao Hsu   ORCID: orcid.org/0000-0002-1635-8213 1 , 2 ,
  • Kai-Yu Tang   ORCID: orcid.org/0000-0002-3965-3055 3 &
  • Tzu-Chiang Lin   ORCID: orcid.org/0000-0003-3842-3749 4 , 5  

1118 Accesses

3 Citations

Explore all metrics

This study explored research trends in science, technology, engineering, and mathematics (STEM) education. Descriptive analysis and co-word analysis were used to examine articles published in Social Science Citation Index journals from 2011 to 2020. From a search of the Web of Science database, a total of 761 articles were selected as target samples for analysis. A growing number of STEM-related publications were published after 2016. The most frequently used keywords in these sample papers were also identified. Further analysis identified the leading journals and most represented countries among the target articles. A series of co-word analyses were conducted to reveal word co-occurrence according to the title, keywords, and abstract. Gender moderated engagement in STEM learning and career selection. Higher education was critical in training a STEM workforce to satisfy societal requirements for STEM roles. Our findings indicated that the attention of STEM education researchers has shifted to the professional development of teachers. Discussions and potential research directions in the field are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

quantitative research topics in stem strand

Similar content being viewed by others

quantitative research topics in stem strand

An Integrative Review with Word Cloud Analysis of STEM Education

quantitative research topics in stem strand

A review of STEM education with the support of visualizing its structure through the CiteSpace software

quantitative research topics in stem strand

A systematic review of STEM education research in the GCC countries: trends, gaps and barriers

Data availability.

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Akgunduz, D. (2016). A Research about the placement of the top thousand students placed in STEM fields in Turkey between the years 2000 and 2014. EURASIA Journal of Mathematics, Science and Technology Education, 12 (5), 1365–1377.

Google Scholar  

Appianing, J., & Van Eck, R. N. (2018). Development and validation of the Value-Expectancy STEM Assessment Scale for students in higher education. International Journal of STEM Education , 5 , article 24.

Assefa, S. G., & Rorissa, A. (2013). A bibliometric mapping of the structure of STEM education using co-word analysis. Journal of the American Society for Information Science and Technology, 64 (12), 2513–2536.

Belland, B. R., Walker, A. E., Kim, N. J., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87 (2), 309–344.

Brotman, J. S., & Moore, F. M. (2008). Girls and science: A review of four themes in the science education literature. Journal of Research in Science Teaching, 45 (9), 971–1002.

Brown, R. E., & Bogiages, C. A. (2019). Professional development through STEM integration: How early career math and science teachers respond to experiencing integrated STEM tasks. International Journal of Science and Mathematics Education, 17 (1), 111–128.

Burt, B. A., Williams, K. L., & Palmer, G. J. M. (2019). It takes a village: The role of emic and etic adaptive strengths in the persistence of black men in engineering graduate programs. American Educational Research Journal, 56 (1), 39–74.

Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22 (1), 155–205.

Carlisle, D. L. & Weaver, G. C. (2018). STEM education centers: Catalyzing the improvement of undergraduate STEM education. International Journal of STEM Education, 5 , article 47.

Chang, D. F., & ChangTzeng, H. C. (2020). Patterns of gender parity in the humanities and STEM programs: The trajectory under the expanded higher education system. Studies in Higher Education, 45 (6), 1108–1120.

Charleston, L. J. (2012). A qualitative investigation of African Americans’ decision to pursue computing science degrees: Implications for cultivating career choice and aspiration. Journal of Diversity in Higher Education, 5 (4), 222–243.

Charleston, L. J., George, P. L., Jackson, J. F. L., Berhanu, J., & Amechi, M. H. (2014). Navigating underrepresented STEM spaces: Experiences of black women in US computing science higher education programs who actualize success. Journal of Diversity in Higher Education, 7 (3), 166–176.

Chien, Y. H., & Chu, P. Y. (2018). The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16 (6), 1047–1064.

Dehdarirad, T., Villarroya, A., & Barrios, M. (2014). Research trends in gender differences in higher education and science: A co-word analysis. Scientometrics, 101 (1), 273–290.

Dickerson, D. L., Eckhoff, A., Stewart, C. O., Chappell, S., & Hathcock, S. (2014). The examination of a pullout STEM program for urban upper elementary students. Research in Science Education, 44 (3), 483–506.

Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J., & Midgley, C. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and Achievement Motives . W. San Francisco: H. Freeman.

Ellison, S., & Allen, B. (2018). Disruptive innovation, labor markets, and Big Valley STEM School: Network analysis in STEM education. Cultural Studies of Science Education, 13 (1), 267–298.

Erdogan, N., Navruz, B., Younes, R., & Capraro, R. M. (2016). Viewing how STEM project-based learning influences students’ science achievement through the implementation lens: A latent growth modeling. Eurasia Journal of Mathematics, Science and Technology Education, 12 (8), 2139–2154.

European Commission, Directorate-General for Education, Youth, Sport and Culture (2016). Does the EU need more STEM graduates? Final report . Retrieve from https://data.europa.eu/doi/10.2766/000444

Fredricks, J. A., Hofkens, T., Wang, M. T., Mortenson, E., & Scott, P. (2018). Supporting girls’ and boys’ engagement in math and science learning: A mixed methods study. Journal of Research in Science Teaching, 55 (2), 271–298.

Fry, R., Kennedy, B., & Funk, C. (2021). Stem jobs see uneven progress in increasing gender, racial and ethnic diversity. Retrieve from https://www.pewresearch.org/science/wp-content/uploads/sites/16/2021/03/PS_2021.04.01_diversity-in-STEM_REPORT.pdf

Ganley, C. M., George, C. E., Cimpian, J. R., & Makowski, M. B. (2018). Gender equity in college majors: Looking beyond the STEM/non-STEM dichotomy for answers regarding female participation. American Educational Research Journal, 55 (3), 453–487.

Gehrke, S., & Kezar, A. (2019). Perceived outcomes associated with engagement in and design of faculty communities of practice focused on STEM reform. Research in Higher Education, 60 (4), 844–869.

Gilmore, J., Vieyra, M., Timmerman, B., Feldon, D., & Maher, M. (2015). The relationship between undergraduate research participation and subsequent research performance of early career STEM graduate students. Journal of Higher Education, 86 (6), 834–863.

Godwin, A., Potvin, G., Hazari, Z., & Lock, R. (2016). Identity, critical agency, and engineering: An affective model for predicting engineering as a career choice. Journal of Engineering Education, 105 (2), 312–340.

Han, S., Yalvac, B., Capraro, M. M., & Capraro, R. M. (2015). In-service teachers’ implementation and understanding of STEM project based learning. Eurasia Journal of Mathematics Science and Technology Education, 11 (1), 63–76.

Heras, M., Ruiz-Mallén, I., & Gallois, S. (2020). Staging science with young people: Bringing science closer to students through stand-up comedy. International Journal of Science Education, 42 (12), 1968–1987.

Hernandez, P. R., Estrada, M., Woodcock, A., & Schultz, P. W. (2017). Protégé perceptions of high mentorship quality depend on shared values more than on demographic match. Journal of Experimental Education, 85 (3), 450–468.

Hinojo Lucena, F. J., Lopez Belmonte, J., Fuentes Cabrera, A., Trujillo Torres, J. M., & Pozo Sanchez, S. (2020). Academic effects of the use of flipped learning in physical education. International journal of Environmental Research and Public Health , 17 (1), article 276.

Holmes, K., Gore, J., Smith, M., & Lloyd, A. (2018). An integrated analysis of school students’ aspirations for STEM careers: Which student and school factors are most predictive? International Journal of Science and Mathematics Education, 16 (4), 655–675.

Huang, X., & Qiao, C. (2022). Enhancing computational thinking skills through artificial intelligence education at a STEAM high school. Science & Education . https://doi.org/10.1007/s11191-022-00392-6

Article   Google Scholar  

Hughes, R. M., Nzekwe, B., & Molynearx, K. J. (2013). The single sex debate for girls in science: A comparison between two informal science programs on middle school students’ STEM identity formation. Research in Science Education, 43 , 1979–2007.

Hughes, B. S., Corrigan, M. W., Grove, D., Andersen, S. B., & Wong, J. T. (2022). Integrating arts with STEM and leading with STEAM to increase science learning with equity for emerging bilingual learners in the United States. International Journal of STEM Education , 9 , article 58.

Johnson, A. M. (2019). “I can turn it on when I need to”: Pre-college integration, culture, and peer academic engagement among black and Latino/a engineering students. Sociology of Education, 92 (1), 1–20.

Kayan-Fadlelmula, F., Sellami, A., Abdelkader, N., & Umer, S. (2022). A systematic review of STEM education research in the GCC countries: Trends, gaps and barriers. International Journal of STEM Education, 9 , article 2.

Kelly, R., Mc Garr, O., Leahy, K., & Goos, M. (2020). An investigation of university students and professionals’ professional STEM identity status. Journal of Science Education and Technology, 29 (4), 536–546.

Kezar, A., Gehrke, S., & Bernstein-Sierra, S. (2017). Designing for success in STEM communities of practice: Philosophy and personal interactions. The Review of Higher Education, 40 (2), 217–244.

Kezar, A., Gehrke, S., & Bernstein-Sierra, S. (2018). Communities of transformation: Creating changes to deeply entrenched issues. The Journal of Higher Education, 89 (6), 832–864.

Kricorian, K., Seu, M., Lpoez, D., Ureta, E., & Equils, O. (2020). Factors influencing participation of underrepresented students in STEM fields: Matched mentors and mindsets. International Journal of STEM Education, 7 , article 16.

Ku, C. J., Hsu, Y. S., Chang, M. C., & Lin, K. Y. (2022). A model for examining middle school students’ STEM integration behavior in a national technology competition. International Journal of STEM Education, 9 (1), 3.

Leydesdroff, L. (1989). Words and co-words as indicators of intellectual organization. Research Policy, 18 (4), 209–223.

Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020a). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education, 7 , article 11.

Li, Y., Wang, K., Xiao, Y., Froyd, J. E., Nite, S. B. (2020b). Research and trends in STEM education: A systematic analysis of publicly funded projects. International Journal of STEM Education, 7 , article 17.

Lin, T. C., Lin, T. J., & Tsai, C. C. (2014). Research trends in science education from 2008 to 2012: A systematic content analysis of publications in selected journals. International Journal of Science Education, 36 (8), 1346–1372.

Lin, T. J., Lin, T. C., Potvin, P., & Tsai, C. C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Lin, T. C., Tang, K. Y., Lin, S. S., Changlai, M. L., & Hsu, Y. S. (2022). A co-word analysis of selected science education literature: Identifying research trends of scaffolding in two decades (2000–2019). Frontiers in Psychology, 13 , 844425.

Liu, J. S., & Lu, L. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology, 63 (3), 528–542.

Liu, C. Y., & Wu, C. J. (2022). STEM without art: A ship without a sail. Thinking Skills and Creativity, 43 , 100977.

Lou, S. H., Shih, R. C., Diez, C. R., & Tseng, K. H. (2011). The impact of problem-based learning strategies on STEM knowledge integration and attitudes: An exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21 (2), 195–215.

Lynch, S. J., Burton, E. P., Behrend, T., House, A., Ford, M., Spillane, N., Matray, S., Han, E., & Means, B. (2018). Understanding inclusive STEM high schools as opportunity structures for underrepresented students: Critical components. Journal of Research in Science Teaching, 55 (5), 712–748.

Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The Role of mathematics in interdisciplinary STEM education. ZDM-Mathematics Education, 51 (6), 869–884.

Mansfield, K. C. (2014). How listening to student voices informs and strengthens social justice research and practice. Educational Administration Quarterly, 50 (3), 392–430.

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM education , 6 , article 2.

Marín-Marín, J. A., Moreno-Guerrero, A. J., Dúo-Terrón, P., & López-Belmonte, J. (2021). STEAM in education: A bibliometric analysis of performance and co-words in Web of Science. International Journal of STEM Education , 8 , article 41.

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A Review of Literature. Science Education, 103 (4), 799–822.

McGee, E. O. (2020). Interrogating structural racism in STEM higher education. Educational Researcher, 49 (9), 633–644.

Meho, L. I., & Yang, K. (2006). A new era in citation and bibliometric analyses: Web of Science, Scopus, and Google Scholar. arXiv preprint cs/0612132 .

Mejias, S., Thompson, N., Sedas, R. M., Rosin, M., Soep, E., Peppler, K., Roche, J., Wong, J., Hurley, M., Bell, P., & Bevan, B. (2021). The trouble with STEAM and why we use it anyway. Science Education, 105 (2), 209–231.

Micari, M., Van Winkle, Z., & Pazos, P. (2016). Among friends: The role of academic-preparedness diversity in individual performance within a small-group STEM learning environment. International Journal of Science Education, 38 (12), 1904–1922.

Millar, V. (2020). Trends, issues and possibilities for an interdisciplinary STEM curriculum. Science & Education, 29 (4), 929–948.

Nadelson, L. S., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM perception and preparation: Inquiry-based STEM professional development for elementary teachers. Journal of Educational Research, 106 (2), 157–168.

Nakatoh, T., & Hirokawa, S. (2019, July). Evaluation index to find relevant papers: Improvement of focused citation count. In International Conference on Human-Computer Interaction (pp. 555–566). Springer, Cham.

National Science Technology Council. (2012). Coordinating federal science, technology, engineering, and mathematics (STEM) education investments: Progress report. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/nstc_federal_stem_education_coordination_report.pdf

National Science Technology Council. (2013). Federal Science, Technology, Engineering, and Mathematics (STEM) Education 5-Year Strategic Plan. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/stem_stratplan_2013.pdf

Ong, M., Smith, J. M., & Ko, L. T. (2018). Counterspaces for women of color in STEM higher education: Marginal and central spaces for persistence and success. Journal of Research in Science Teaching, 55 (2), 206–245.

Organisation for Economic Cooperation and Development, OECD (2021). Education at A Glance 2021. Retrieve from https://read.oecd.org/10.1787/b35a14e5-en?format=pdf

Perez-Felkner, L., Felkner, J. S., Nix, S., & Magalhaes, M. (2020). The puzzling relationship between international development and gender equity: The case of STEM postsecondary education in Cambodia. International Journal of Educational Development, 72 , 102102.

Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31 , 31–43.

Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: Implementation of steam teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25 (3), 410–426.

Ramey, K. E., & Stevens, R. (2019). Interest development and learning in choice-based, in-school, making activities: The case of a 3D printer. Learning, Culture and Social Interaction, 23 , 100262.

Salami, M. K., Makela, C. J., & de Miranda, M. A. (2017). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology and Design Education, 27 (1), 63–88.

Sanders, M. (2009). Integrative STEM education primer. The Technology Teacher, 68 (4), 20–26.

Saorín, J. L., Melian-Díaz, D., Bonnet, A., Carrera, C. C., Meier, C., & De La Torre-Cantero, J. (2017). Makerspace teaching-learning environment to enhance creative competence in engineering students. Thinking Skills and Creativity, 23 , 188–198.

Simon, R. M., Wagner, A., & Killion, B. (2017). Gender and choosing a STEM major in college: Femininity, masculinity, chilly climate, and occupational values. Journal of Research in Science Teaching, 54 (3), 299–323.

Stolle-McAllister, K., Domingo, M. R. S., & Carrillo, A. (2011). The Meyerhoff way: How the Meyerhoff scholarship program helps black students succeed in the sciences. Journal of Science Education and Technology, 20 (1), 5–16.

Thomas, B., & Watters, J. J. (2015). Perspectives on Australian, Indian and Malaysian approaches to STEM education. International Journal of Educational Development, 45 , 42–53.

Tosun, C. (2022). Analysis of the last 40 years of science education research via bibliometric methods. Science & Education . https://doi.org/10.1007/s11191-022-00400-9

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84 (2), 523–538.

Vencent-Ruz, P., & Schunn, C. D. (2017). The increasingly important role of science competency beliefs for science learning in girls. Journal of Research in Science Teaching, 54 (6), 790–822.

Wang, S., Chen, Y., Lv, X., & Xu, J. (2022). Hot topics and frontier evolution of science education research: A bibliometric mapping from 2001 to 2020. Science & Education . https://doi.org/10.1007/s11191-022-00337-z

Weeden, K. A., Gelbgiser, D., & Morgan, S. L. (2020). Pipeline dreams: Occupational plans and gender differences in STEM major persistence and completion. Sociology of Education, 93 (4), 297–314.

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25 (1), 68–81.

Download references

Author information

Authors and affiliations.

Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Ting-Jou Rd., Sec. 4, Taipei City, 116, Taiwan

Ying-Shao Hsu

Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, No. 88, Ting-Jou Rd., Sec. 4, Taipei City, 116, Taiwan

Graduate Institute of Library & Information Science, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan

Kai-Yu Tang

Center for Liberal Arts, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist, Kaohsiung City, 807618, Taiwan

Tzu-Chiang Lin

Center for Teacher Education, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist, Kaohsiung City, 807618, Taiwan

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Tzu-Chiang Lin .

Ethics declarations

Ethical approval and consent to participate.

This study involves neither human participants’ data nor relevant biological material. Ethics approval and informed consent are hence not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Hsu, YS., Tang, KY. & Lin, TC. Trends and Hot Topics of STEM and STEM Education: a Co-word Analysis of Literature Published in 2011–2020. Sci & Educ 33 , 1069–1092 (2024). https://doi.org/10.1007/s11191-023-00419-6

Download citation

Accepted : 26 January 2023

Published : 23 February 2023

Issue Date : August 2024

DOI : https://doi.org/10.1007/s11191-023-00419-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • STEM education
  • Co-word analysis
  • Research trends
  • Find a journal
  • Publish with us
  • Track your research

IRSC Libraries Home

STEM Camp: STEM Research Topics

  • Starting Research
  • Evaluating Information
  • Interactive
  • DNA Fingerprinting
  • Ethics & Genetics
  • Humans & Wildlife
  • Malnutrition
  • Psychology of Plastic Surgery
  • Lying with Numbers
  • << Previous: Interactive
  • Next: DNA Fingerprinting >>
  • Last Updated: Apr 18, 2024 12:04 PM
  • URL: https://irsc.libguides.com/STEMCamp

quantitative research topics in stem strand

Get the Reddit app

For students from the Philippines, by students from the Philippines. For strand, course, and admission questions, please post on r/CollegeAdmissionsPH

NEED SUGGESTIONS!! RESEARCH TOPIC/QUESTION RELATED TO STEM/ONLINE CLASSES/STUDENTS <3

Hello po!! If you see this and you have suggestions po for research topic na related to STEM pls leave suggestions po! Thank you so much, I really need help since yung groupmates ko di nagrerespond SAKET so I'm really doing my best (and yes tatanggalin ko sila if wala silang ambag) and I'm in need po of more suggestions since imo yung mga naging ideas ko parang same din sa iba kaya need ko pa po ng help!!

Wish me luck din po! This is our first research and honestly hindi pa po ganon ka broad ang understanding ko when it comes to practical research so if you have advices po I am very grateful!!

Thank you again!! P.S. I'm not sure if need ko imention pero Qualitative po yung type of research namin!! Thank you so much!!

IMAGES

  1. Best 151+ Quantitative Research Topics for STEM Students

    quantitative research topics in stem strand

  2. 190+ Best Quantitative Research Topics for STEM Students

    quantitative research topics in stem strand

  3. 101 Best Quantitative Research Topics for STEM Students

    quantitative research topics in stem strand

  4. Quantitative Research Titles for STEM Students

    quantitative research topics in stem strand

  5. 199+ Quantitative Research Topics For STEM Students to Try Now

    quantitative research topics in stem strand

  6. Research Titles for STEM Strand Student

    quantitative research topics in stem strand

VIDEO

  1. Asya Rolls

  2. 81st Symposium

  3. DISASTER READINESS AND RISK REDUCTION (DRRR) || 1st Quarter Topics|| Grade 11 or Grade 12 #shs

  4. 81st Symposium

  5. 81st Symposium

  6. Erica Sloan

COMMENTS

  1. Best 151+ Quantitative Research Topics for STEM Students

    In today's rapidly evolving world, STEM (Science, Technology, Engineering, and Mathematics) fields have gained immense significance. For STEM students, engaging in quantitative research is a pivotal aspect of their academic journey. Quantitative research involves the systematic collection and interpretation of numerical data to address research questions or test hypotheses. Choosing the ...

  2. 200+ Experimental Quantitative Research Topics For Stem Students

    Explore 200+ Experimental Quantitative Research Topics For Stem Students in 2023. Choose the topic wisely and also remember some things that must be kept in mind while writing a quantitative research title.

  3. 189+ Good Quantitative Research Topics For STEM Students

    If you are looking for the best list of quantitative research topics for stem students, then you can check the given list in each field. Let's know.

  4. 60+ Best Quantitative Research Topics for STEM Students: Dive into Data

    Embark on a captivating journey through the cosmos of knowledge with our curated guide on Quantitative Research Topics for STEM Students. Explore innovative ideas in science, technology, engineering, and mathematics, designed to ignite curiosity and shape the future. Unleash the power of quantitative research and dive into uncharted territories ...

  5. 55 Brilliant Research Topics For STEM Students

    The major challenge many STEM students face in research writing is choosing a topic for research. Here are some reliable STEM topics to guide your research.

  6. Best 101 Quantitative Research Topics for STEM Students

    Discover the best and engaging 101 quantitative research topics for STEM students in this comprehensive blog. Kickstart your research journey today!

  7. 210 Best Quantitative Research Topics For STEM Students

    Here are the key characteristics of quantitative research topics for STEM Students: Measurable Data: Quantitative topics examine things that can be measured and quantified with numbers, allowing statistical analysis of the data. Statistical Analysis: Quantitative topics use mathematical statistics to analyze numerical data and spot patterns ...

  8. 100+ Best Quantitative Research Topics For Students In 2023

    The 100+ best quantitative research topics for students explain events with mathematical analysis and data points. Here are examples to guide you.

  9. 500+ Quantitative Research Titles and Topics

    Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology, economics, and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas ...

  10. Top 200 Quantitative Research Title for Stem Students

    Are you a STEM (Science, Technology, Engineering, and Mathematics) student looking for inspiration for your next research project? You're in the right place! Quantitative research involves gathering numerical data to answer specific questions, and it's a fundamental part of STEM fields. To help you get started on your research journey, we've compiled a list of 200 quantitative research ...

  11. Research and trends in STEM education: a systematic review of journal

    With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments ...

  12. 55 Brilliant Research Topics For STEM Students (2024)

    For your quantitative research in STEM, you'll need to learn how to cite a thesis MLA for the topic you're choosing. Below are some of the best quantitative research topics for STEM students.

  13. 199+ Engaging Quantitative Research Topics for STEM Students

    Discover engaging quantitative research topics for STEM students, spanning energy solutions, medical advancements, and cutting-edge technology. Explore hands-on ideas to sharpen skills and make a tangible impact on the future.

  14. 199+ Quantitative Research Topics For STEM Students to Try Now

    Discover engaging Quantitative Research Topics for STEM Students - Explore the world of science, tech, engineering, and math with simplified, fascinating ideas.

  15. 23+ Quantitative Research Topics For STEM Students In ...

    This blog post offers a unique collection of quantitative research topics for STEM students in the Philippines. Thus, drawing from current events, social issues, and the country's needs, these project ideas will feel relevant and help students do research that creates positive change.

  16. Research and trends in STEM education: a systematic analysis of

    The majority of the 127 projects focused on individual STEM disciplines, especially mathematics. The findings, based on IES-funded projects, provided a glimpse of the research input and trends in STEM education in the USA, with possible implications for developing STEM education research in other education systems around the world.

  17. Trending Topic Research: STEM

    Trending Topic Research File. Science, Technology Engineering, and Mathematics (STEM) is one of the most talked about topics in education, emphasizing research, problem solving, critical thinking, and creativity. The following compendium of open-access articles are inclusive of all substantive AERA journal content regarding STEM published since ...

  18. Can someone help us pick our research topic for Stem which must be

    We were having trouble picking out our quantitative research topics that must be related to stem. Some of our old title proposals were rejected because it was hard to quantify and required a diploma to do.

  19. Trends and Hot Topics of STEM and STEM Education: a Co-word ...

    This study explored research trends in science, technology, engineering, and mathematics (STEM) education. Descriptive analysis and co-word analysis were used to examine articles published in Social Science Citation Index journals from 2011 to 2020. From a search of the Web of Science database, a total of 761 articles were selected as target samples for analysis. A growing number of STEM ...

  20. Any good experimental quantitative research topic for STEM students

    Since you are a STEM student (like me but Im already College), most experimental quanti researches I've read so far are alternatives of this and that (eg. Alternative for Cell Staining)... so take time to go to library and read existing research. Need help please, I made 5 proposals for the past weeks but all got rejected dahil either not STEM ...

  21. Quantitative research title suggestions : r/studentsph

    It will be easier if you already have specific parameters e.g. Correlational Analysis on the Efficiency of [METHOD] Teaching for Grade 12 Students in 2nd Semestral [STEM SUBJ] Final Grade Reports. In this way, possible topics for your research will come naturally and will be more appropriate depending on your interests, skills, and feasibility.

  22. STEM Camp: STEM Research Topics

    Resources for participants at IRSC's 2013 STEM camp. Ideas for a research paper using a science, technology, engineering, or math topic.

  23. Need Suggestions!! Research Topic/Question Related to Stem/Online

    NEED SUGGESTIONS!! RESEARCH TOPIC/QUESTION RELATED TO STEM/ONLINE CLASSES/STUDENTS <3. Hello po!! If you see this and you have suggestions po for research topic na related to STEM pls leave suggestions po! Thank you so much, I really need help since yung groupmates ko di nagrerespond SAKET so I'm really doing my best (and yes tatanggalin ko ...