Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Academic writing
  • How to write a lab report

How To Write A Lab Report | Step-by-Step Guide & Examples

Published on May 20, 2021 by Pritha Bhandari . Revised on July 23, 2023.

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper .

Lab reports are commonly used in science, technology, engineering, and mathematics (STEM) fields. This article focuses on how to structure and write a lab report.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Structuring a lab report, introduction, other interesting articles, frequently asked questions about lab reports.

The sections of a lab report can vary between scientific fields and course requirements, but they usually contain the purpose, methods, and findings of a lab experiment .

Each section of a lab report has its own purpose.

  • Title: expresses the topic of your study
  • Abstract : summarizes your research aims, methods, results, and conclusions
  • Introduction: establishes the context needed to understand the topic
  • Method: describes the materials and procedures used in the experiment
  • Results: reports all descriptive and inferential statistical analyses
  • Discussion: interprets and evaluates results and identifies limitations
  • Conclusion: sums up the main findings of your experiment
  • References: list of all sources cited using a specific style (e.g. APA )
  • Appendices : contains lengthy materials, procedures, tables or figures

Although most lab reports contain these sections, some sections can be omitted or combined with others. For example, some lab reports contain a brief section on research aims instead of an introduction, and a separate conclusion is not always required.

If you’re not sure, it’s best to check your lab report requirements with your instructor.

Prevent plagiarism. Run a free check.

Your title provides the first impression of your lab report – effective titles communicate the topic and/or the findings of your study in specific terms.

Create a title that directly conveys the main focus or purpose of your study. It doesn’t need to be creative or thought-provoking, but it should be informative.

  • The effects of varying nitrogen levels on tomato plant height.
  • Testing the universality of the McGurk effect.
  • Comparing the viscosity of common liquids found in kitchens.

An abstract condenses a lab report into a brief overview of about 150–300 words. It should provide readers with a compact version of the research aims, the methods and materials used, the main results, and the final conclusion.

Think of it as a way of giving readers a preview of your full lab report. Write the abstract last, in the past tense, after you’ve drafted all the other sections of your report, so you’ll be able to succinctly summarize each section.

To write a lab report abstract, use these guiding questions:

  • What is the wider context of your study?
  • What research question were you trying to answer?
  • How did you perform the experiment?
  • What did your results show?
  • How did you interpret your results?
  • What is the importance of your findings?

Nitrogen is a necessary nutrient for high quality plants. Tomatoes, one of the most consumed fruits worldwide, rely on nitrogen for healthy leaves and stems to grow fruit. This experiment tested whether nitrogen levels affected tomato plant height in a controlled setting. It was expected that higher levels of nitrogen fertilizer would yield taller tomato plants.

Levels of nitrogen fertilizer were varied between three groups of tomato plants. The control group did not receive any nitrogen fertilizer, while one experimental group received low levels of nitrogen fertilizer, and a second experimental group received high levels of nitrogen fertilizer. All plants were grown from seeds, and heights were measured 50 days into the experiment.

The effects of nitrogen levels on plant height were tested between groups using an ANOVA. The plants with the highest level of nitrogen fertilizer were the tallest, while the plants with low levels of nitrogen exceeded the control group plants in height. In line with expectations and previous findings, the effects of nitrogen levels on plant height were statistically significant. This study strengthens the importance of nitrogen for tomato plants.

Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure:

  • Start with the broad, general research topic
  • Narrow your topic down your specific study focus
  • End with a clear research question

Begin by providing background information on your research topic and explaining why it’s important in a broad real-world or theoretical context. Describe relevant previous research on your topic and note how your study may confirm it or expand it, or fill a gap in the research field.

This lab experiment builds on previous research from Haque, Paul, and Sarker (2011), who demonstrated that tomato plant yield increased at higher levels of nitrogen. However, the present research focuses on plant height as a growth indicator and uses a lab-controlled setting instead.

Next, go into detail on the theoretical basis for your study and describe any directly relevant laws or equations that you’ll be using. State your main research aims and expectations by outlining your hypotheses .

Based on the importance of nitrogen for tomato plants, the primary hypothesis was that the plants with the high levels of nitrogen would grow the tallest. The secondary hypothesis was that plants with low levels of nitrogen would grow taller than plants with no nitrogen.

Your introduction doesn’t need to be long, but you may need to organize it into a few paragraphs or with subheadings such as “Research Context” or “Research Aims.”

Check for common mistakes

Use the best grammar checker available to check for common mistakes in your text.

Fix mistakes for free

A lab report Method section details the steps you took to gather and analyze data. Give enough detail so that others can follow or evaluate your procedures. Write this section in the past tense. If you need to include any long lists of procedural steps or materials, place them in the Appendices section but refer to them in the text here.

You should describe your experimental design, your subjects, materials, and specific procedures used for data collection and analysis.

Experimental design

Briefly note whether your experiment is a within-subjects  or between-subjects design, and describe how your sample units were assigned to conditions if relevant.

A between-subjects design with three groups of tomato plants was used. The control group did not receive any nitrogen fertilizer. The first experimental group received a low level of nitrogen fertilizer, while the second experimental group received a high level of nitrogen fertilizer.

Describe human subjects in terms of demographic characteristics, and animal or plant subjects in terms of genetic background. Note the total number of subjects as well as the number of subjects per condition or per group. You should also state how you recruited subjects for your study.

List the equipment or materials you used to gather data and state the model names for any specialized equipment.

List of materials

35 Tomato seeds

15 plant pots (15 cm tall)

Light lamps (50,000 lux)

Nitrogen fertilizer

Measuring tape

Describe your experimental settings and conditions in detail. You can provide labelled diagrams or images of the exact set-up necessary for experimental equipment. State how extraneous variables were controlled through restriction or by fixing them at a certain level (e.g., keeping the lab at room temperature).

Light levels were fixed throughout the experiment, and the plants were exposed to 12 hours of light a day. Temperature was restricted to between 23 and 25℃. The pH and carbon levels of the soil were also held constant throughout the experiment as these variables could influence plant height. The plants were grown in rooms free of insects or other pests, and they were spaced out adequately.

Your experimental procedure should describe the exact steps you took to gather data in chronological order. You’ll need to provide enough information so that someone else can replicate your procedure, but you should also be concise. Place detailed information in the appendices where appropriate.

In a lab experiment, you’ll often closely follow a lab manual to gather data. Some instructors will allow you to simply reference the manual and state whether you changed any steps based on practical considerations. Other instructors may want you to rewrite the lab manual procedures as complete sentences in coherent paragraphs, while noting any changes to the steps that you applied in practice.

If you’re performing extensive data analysis, be sure to state your planned analysis methods as well. This includes the types of tests you’ll perform and any programs or software you’ll use for calculations (if relevant).

First, tomato seeds were sown in wooden flats containing soil about 2 cm below the surface. Each seed was kept 3-5 cm apart. The flats were covered to keep the soil moist until germination. The seedlings were removed and transplanted to pots 8 days later, with a maximum of 2 plants to a pot. Each pot was watered once a day to keep the soil moist.

The nitrogen fertilizer treatment was applied to the plant pots 12 days after transplantation. The control group received no treatment, while the first experimental group received a low concentration, and the second experimental group received a high concentration. There were 5 pots in each group, and each plant pot was labelled to indicate the group the plants belonged to.

50 days after the start of the experiment, plant height was measured for all plants. A measuring tape was used to record the length of the plant from ground level to the top of the tallest leaf.

In your results section, you should report the results of any statistical analysis procedures that you undertook. You should clearly state how the results of statistical tests support or refute your initial hypotheses.

The main results to report include:

  • any descriptive statistics
  • statistical test results
  • the significance of the test results
  • estimates of standard error or confidence intervals

The mean heights of the plants in the control group, low nitrogen group, and high nitrogen groups were 20.3, 25.1, and 29.6 cm respectively. A one-way ANOVA was applied to calculate the effect of nitrogen fertilizer level on plant height. The results demonstrated statistically significant ( p = .03) height differences between groups.

Next, post-hoc tests were performed to assess the primary and secondary hypotheses. In support of the primary hypothesis, the high nitrogen group plants were significantly taller than the low nitrogen group and the control group plants. Similarly, the results supported the secondary hypothesis: the low nitrogen plants were taller than the control group plants.

These results can be reported in the text or in tables and figures. Use text for highlighting a few key results, but present large sets of numbers in tables, or show relationships between variables with graphs.

You should also include sample calculations in the Results section for complex experiments. For each sample calculation, provide a brief description of what it does and use clear symbols. Present your raw data in the Appendices section and refer to it to highlight any outliers or trends.

The Discussion section will help demonstrate your understanding of the experimental process and your critical thinking skills.

In this section, you can:

  • Interpret your results
  • Compare your findings with your expectations
  • Identify any sources of experimental error
  • Explain any unexpected results
  • Suggest possible improvements for further studies

Interpreting your results involves clarifying how your results help you answer your main research question. Report whether your results support your hypotheses.

  • Did you measure what you sought out to measure?
  • Were your analysis procedures appropriate for this type of data?

Compare your findings with other research and explain any key differences in findings.

  • Are your results in line with those from previous studies or your classmates’ results? Why or why not?

An effective Discussion section will also highlight the strengths and limitations of a study.

  • Did you have high internal validity or reliability?
  • How did you establish these aspects of your study?

When describing limitations, use specific examples. For example, if random error contributed substantially to the measurements in your study, state the particular sources of error (e.g., imprecise apparatus) and explain ways to improve them.

The results support the hypothesis that nitrogen levels affect plant height, with increasing levels producing taller plants. These statistically significant results are taken together with previous research to support the importance of nitrogen as a nutrient for tomato plant growth.

However, unlike previous studies, this study focused on plant height as an indicator of plant growth in the present experiment. Importantly, plant height may not always reflect plant health or fruit yield, so measuring other indicators would have strengthened the study findings.

Another limitation of the study is the plant height measurement technique, as the measuring tape was not suitable for plants with extreme curvature. Future studies may focus on measuring plant height in different ways.

The main strengths of this study were the controls for extraneous variables, such as pH and carbon levels of the soil. All other factors that could affect plant height were tightly controlled to isolate the effects of nitrogen levels, resulting in high internal validity for this study.

Your conclusion should be the final section of your lab report. Here, you’ll summarize the findings of your experiment, with a brief overview of the strengths and limitations, and implications of your study for further research.

Some lab reports may omit a Conclusion section because it overlaps with the Discussion section, but you should check with your instructor before doing so.

If you want to know more about AI for academic writing, AI tools, or fallacies make sure to check out some of our other articles with explanations and examples or go directly to our tools!

  • Ad hominem fallacy
  • Post hoc fallacy
  • Appeal to authority fallacy
  • False cause fallacy
  • Sunk cost fallacy
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment . Lab reports are commonly assigned in science, technology, engineering, and mathematics (STEM) fields.

The purpose of a lab report is to demonstrate your understanding of the scientific method with a hands-on lab experiment. Course instructors will often provide you with an experimental design and procedure. Your task is to write up how you actually performed the experiment and evaluate the outcome.

In contrast, a research paper requires you to independently develop an original argument. It involves more in-depth research and interpretation of sources and data.

A lab report is usually shorter than a research paper.

The sections of a lab report can vary between scientific fields and course requirements, but it usually contains the following:

  • Abstract: summarizes your research aims, methods, results, and conclusions
  • References: list of all sources cited using a specific style (e.g. APA)
  • Appendices: contains lengthy materials, procedures, tables or figures

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, July 23). How To Write A Lab Report | Step-by-Step Guide & Examples. Scribbr. Retrieved July 8, 2024, from https://www.scribbr.com/academic-writing/lab-report/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, how to write an apa methods section, how to write an apa results section, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Are you seeking one-on-one college counseling and/or essay support? Limited spots are now available. Click here to learn more.

How to Write a Lab Report – with Example/Template

April 11, 2024

how to write a lab report template

Perhaps you’re in the midst of your challenging AP chemistry class in high school, or perhaps college you’re enrolled in biology , chemistry , or physics at university. At some point, you will likely be asked to write a lab report. Sometimes, your teacher or professor will give you specific instructions for how to format and write your lab report, and if so, use that. In case you’re left to your own devices, here are some guidelines you might find useful. Continue reading for the main elements of a lab report, followed by a detailed description of the more writing-heavy parts (with a lab report example/lab report template). Lastly, we’ve included an outline that can help get you started.

What is a lab report?

A lab report is an overview of your experiment. Essentially, it explains what you did in the experiment and how it went. Most lab reports end up being 5-10 pages long (graphs or other images included), though the length depends on the experiment. Here are some brief explanations of the essential parts of a lab report:

Title : The title says, in the most straightforward way possible, what you did in the experiment. Often, the title looks something like, “Effects of ____ on _____.” Sometimes, a lab report also requires a title page, which includes your name (and the names of any lab partners), your instructor’s name, and the date of the experiment.

Abstract : This is a short description of key findings of the experiment so that a potential reader could get an idea of the experiment before even beginning.

Introduction : This is comprised of one or several paragraphs summarizing the purpose of the lab. The introduction usually includes the hypothesis, as well as some background information.

Lab Report Example (Continued)

Materials : Perhaps the simplest part of your lab report, this is where you list everything needed for the completion of your experiment.

Methods : This is where you describe your experimental procedure. The section provides necessary information for someone who would want to replicate your study. In paragraph form, write out your methods in chronological order, though avoid excessive detail.

Data : Here, you should document what happened in the experiment, step-by-step. This section often includes graphs and tables with data, as well as descriptions of patterns and trends. You do not need to interpret all of the data in this section, but you can describe trends or patterns, and state which findings are interesting and/or significant.

Discussion of results : This is the overview of your findings from the experiment, with an explanation of how they pertain to your hypothesis, as well as any anomalies or errors.

Conclusion : Your conclusion will sum up the results of your experiment, as well as their significance. Sometimes, conclusions also suggest future studies.

Sources : Often in APA style , you should list all texts that helped you with your experiment. Make sure to include course readings, outside sources, and other experiments that you may have used to design your own.

How to write the abstract

The abstract is the experiment stated “in a nutshell”: the procedure, results, and a few key words. The purpose of the academic abstract is to help a potential reader get an idea of the experiment so they can decide whether to read the full paper. So, make sure your abstract is as clear and direct as possible, and under 200 words (though word count varies).

When writing an abstract for a scientific lab report, we recommend covering the following points:

  • Background : Why was this experiment conducted?
  • Objectives : What problem is being addressed by this experiment?
  • Methods : How was the study designed and conducted?
  • Results : What results were found and what do they mean?
  • Conclusion : Were the results expected? Is this problem better understood now than before? If so, how?

How to write the introduction

The introduction is another summary, of sorts, so it could be easy to confuse the introduction with the abstract. While the abstract tends to be around 200 words summarizing the entire study, the introduction can be longer if necessary, covering background information on the study, what you aim to accomplish, and your hypothesis. Unlike the abstract (or the conclusion), the introduction does not need to state the results of the experiment.

Here is a possible order with which you can organize your lab report introduction:

  • Intro of the intro : Plainly state what your study is doing.
  • Background : Provide a brief overview of the topic being studied. This could include key terms and definitions. This should not be an extensive literature review, but rather, a window into the most relevant topics a reader would need to understand in order to understand your research.
  • Importance : Now, what are the gaps in existing research? Given the background you just provided, what questions do you still have that led you to conduct this experiment? Are you clarifying conflicting results? Are you undertaking a new area of research altogether?
  • Prediction: The plants placed by the window will grow faster than plants placed in the dark corner.
  • Hypothesis: Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.
  • How you test your hypothesis : This is an opportunity to briefly state how you go about your experiment, but this is not the time to get into specific details about your methods (save this for your results section). Keep this part down to one sentence, and voila! You have your introduction.

How to write a discussion section

Here, we’re skipping ahead to the next writing-heavy section, which will directly follow the numeric data of your experiment. The discussion includes any calculations and interpretations based on this data. In other words, it says, “Now that we have the data, why should we care?”  This section asks, how does this data sit in relation to the hypothesis? Does it prove your hypothesis or disprove it? The discussion is also a good place to mention any mistakes that were made during the experiment, and ways you would improve the experiment if you were to repeat it. Like the other written sections, it should be as concise as possible.

Here is a list of points to cover in your lab report discussion:

  • Weaker statement: These findings prove that basil plants grow more quickly in the sunlight.
  • Stronger statement: These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.
  • Factors influencing results : This is also an opportunity to mention any anomalies, errors, or inconsistencies in your data. Perhaps when you tested the first round of basil plants, the days were sunnier than the others. Perhaps one of the basil pots broke mid-experiment so it needed to be replanted, which affected your results. If you were to repeat the study, how would you change it so that the results were more consistent?
  • Implications : How do your results contribute to existing research? Here, refer back to the gaps in research that you mentioned in your introduction. Do these results fill these gaps as you hoped?
  • Questions for future research : Based on this, how might your results contribute to future research? What are the next steps, or the next experiments on this topic? Make sure this does not become too broad—keep it to the scope of this project.

How to write a lab report conclusion

This is your opportunity to briefly remind the reader of your findings and finish strong. Your conclusion should be especially concise (avoid going into detail on findings or introducing new information).

Here are elements to include as you write your conclusion, in about 1-2 sentences each:

  • Restate your goals : What was the main question of your experiment? Refer back to your introduction—similar language is okay.
  • Restate your methods : In a sentence or so, how did you go about your experiment?
  • Key findings : Briefly summarize your main results, but avoid going into detail.
  • Limitations : What about your experiment was less-than-ideal, and how could you improve upon the experiment in future studies?
  • Significance and future research : Why is your research important? What are the logical next-steps for studying this topic?

Template for beginning your lab report

Here is a compiled outline from the bullet points in these sections above, with some examples based on the (overly-simplistic) basil growth experiment. Hopefully this will be useful as you begin your lab report.

1) Title (ex: Effects of Sunlight on Basil Plant Growth )

2) Abstract (approx. 200 words)

  • Background ( This experiment looks at… )
  • Objectives ( It aims to contribute to research on…)
  • Methods ( It does so through a process of…. )
  • Results (Findings supported the hypothesis that… )
  • Conclusion (These results contribute to a wider understanding about…)

3) Introduction (approx. 1-2 paragraphs)

  • Intro ( This experiment looks at… )
  • Background ( Past studies on basil plant growth and sunlight have found…)
  • Importance ( This experiment will contribute to these past studies by…)
  • Hypothesis ( Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.)
  • How you will test your hypothesis ( This hypothesis will be tested by a process of…)

4) Materials (list form) (ex: pots, soil, seeds, tables/stands, water, light source )

5) Methods (approx. 1-2 paragraphs) (ex: 10 basil plants were measured throughout a span of…)

6) Data (brief description and figures) (ex: These charts demonstrate a pattern that the basil plants placed in direct sunlight…)

7) Discussion (approx. 2-3 paragraphs)

  • Support or reject hypothesis ( These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.)
  • Factors that influenced your results ( Outside factors that could have altered the results include…)
  • Implications ( These results contribute to current research on basil plant growth and sunlight because…)
  • Questions for further research ( Next steps for this research could include…)
  • Restate your goals ( In summary, the goal of this experiment was to measure…)
  • Restate your methods ( This hypothesis was tested by…)
  • Key findings ( The findings supported the hypothesis because…)
  • Limitations ( Although, certain elements were overlooked, including…)
  • Significance and future research ( This experiment presents possibilities of future research contributions, such as…)
  • Sources (approx. 1 page, usually in APA style)

Final thoughts – Lab Report Example

Hopefully, these descriptions have helped as you write your next lab report. Remember that different instructors may have different preferences for structure and format, so make sure to double-check when you receive your assignment. All in all, make sure to keep your scientific lab report concise, focused, honest, and organized. Good luck!

For more reading on coursework success, check out the following articles:

  • How to Write the AP Lang Argument Essay (With Example)
  • How to Write the AP Lang Rhetorical Analysis Essay (With Example)
  • 49 Most Interesting Biology Research Topics
  • 50 Best Environmental Science Research Topics
  • High School Success

' src=

Sarah Mininsohn

With a BA from Wesleyan University and an MFA from the University of Illinois at Urbana-Champaign, Sarah is a writer, educator, and artist. She served as a graduate instructor at the University of Illinois, a tutor at St Peter’s School in Philadelphia, and an academic writing tutor and thesis mentor at Wesleyan’s Writing Workshop.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • College Success
  • Costs & Financial Aid
  • Data Visualizations
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Homeschool Resources
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Outdoor Adventure
  • Private High School Spotlight
  • Research Programs
  • Summer Program Spotlight
  • Summer Programs
  • Teacher Tools
  • Test Prep Provider Spotlight

College Transitions Sidebar Block Image

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

I am a... Student Student Parent Counselor Educator Other First Name Last Name Email Address Zip Code Area of Interest Business Computer Science Engineering Fine/Performing Arts Humanities Mathematics STEM Pre-Med Psychology Social Studies/Sciences Submit

hypothesis in lab report

Princeton Correspondents on Undergraduate Research

How to Write An Effective Lab Report

hypothesis in lab report

Whether you are in lab for general chemistry, independent work, or senior thesis, almost all lab experiments will be followed up with a lab report or paper. Although it should be relatively easy to write about an experiment you completed, this is often the most difficult part of lab work, especially when the results are unexpected. In this post, I will outline the components of a lab report while offering tips on how to write one.

Understand Your Experiments Thoroughly

Before you begin writing your draft, it is important that you understand your experiment, as this will help you decide what to include in your paper. When I wrote my first organic chemistry lab report, I rushed to begin answering the discussion questions only to realize halfway through that I had a major conceptual error. Because of this, I had to revise most of what I had written so far, which cost me a lot of time. Know what the purpose of the lab is, formulate the hypothesis, and begin to think about the results you are expecting. At this point, it is helpful to check in with your Lab TA, mentor, or principal investigator (PI) to ensure that you thoroughly understand your project. 

The abstract of your lab report will generally consist of a short summary of your entire report, typically in the same order as your report. Although this is the first section of your lab report, this should be the last section you write. Rather than trying to follow your entire report based on your abstract, it is easier if you write your report first before trying to summarize it.

Introduction and Background

The introduction and background of your report should establish the purpose of your experiment (what principles you are examining), your hypothesis (what you expect to see and why), and relevant findings from others in the field. You have likely done extensive reading about the project from textbooks, lecture notes, or scholarly articles. But as you write, only include background information that is relevant to your specific experiments. For instance, over the summer when I was still learning about metabolic engineering and its role in yeast cells, I read several articles detailing this process. However, a lot of this information was a very broad introduction to the field and not directly related to my project, so I decided not to include most of it. 

This section of the lab report should not contain a step-by-step procedure of your experiments, but rather enough details should be included so that someone else can understand and replicate what you did. From this section, the reader should understand how you tested your hypothesis and why you chose that method. Explain the different parts of your project, the variables being tested, and controls in your experiments. This section will validate the data presented by confirming that variables are being tested in a proper way.

You cannot change the data you collect from your experiments; thus the results section will be written for you. Your job is to present these results in appropriate tables and charts. Depending on the length of your project, you may have months of data from experiments or just a three-hour lab period worth of results. For example, for in-class lab reports, there is usually only one major experiment, so I include most of the data I collect in my lab report. But for longer projects such as summer internships, there are various preliminary experiments throughout, so I select the data to include. Although you cannot change the data, you must choose what is relevant to include in your report. Determine what is included in your report based on the goals and purpose of your project.

Discussion and Conclusion

In this section, you should analyze your results and relate your data back to your hypothesis. You should mention whether the results you obtained matched what was expected and the conclusions that can be drawn from this. For this section, you should talk about your data and conclusions with your lab mentors or TAs before you begin writing. As I mentioned above, by consulting with your mentors, you will avoid making large conceptual error that may take a long time to address.

There is no correct order for how to write a report, but it is generally easier to write some sections before others. For instance, because your results cannot be changed, it is easier to write the results section first. Likewise, because you also cannot change the methods you used in your experiment, it is helpful to write this section after writing your results. Although there are multiple ways to write and format a lab report or research paper, the goals of every report are the same: to describe what you did, your results, and why they are significant. As you write, keep your audience and these goals in mind.

— Saira Reyes, Engineering Correspondent

Share this:

  • Share on Tumblr

hypothesis in lab report

Lab Report Format: Step-by-Step Guide & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In psychology, a lab report outlines a study’s objectives, methods, results, discussion, and conclusions, ensuring clarity and adherence to APA (or relevant) formatting guidelines.

A typical lab report would include the following sections: title, abstract, introduction, method, results, and discussion.

The title page, abstract, references, and appendices are started on separate pages (subsections from the main body of the report are not). Use double-line spacing of text, font size 12, and include page numbers.

The report should have a thread of arguments linking the prediction in the introduction to the content of the discussion.

This must indicate what the study is about. It must include the variables under investigation. It should not be written as a question.

Title pages should be formatted in APA style .

The abstract provides a concise and comprehensive summary of a research report. Your style should be brief but not use note form. Look at examples in journal articles . It should aim to explain very briefly (about 150 words) the following:

  • Start with a one/two sentence summary, providing the aim and rationale for the study.
  • Describe participants and setting: who, when, where, how many, and what groups?
  • Describe the method: what design, what experimental treatment, what questionnaires, surveys, or tests were used.
  • Describe the major findings, including a mention of the statistics used and the significance levels, or simply one sentence summing up the outcome.
  • The final sentence(s) outline the study’s “contribution to knowledge” within the literature. What does it all mean? Mention the implications of your findings if appropriate.

The abstract comes at the beginning of your report but is written at the end (as it summarises information from all the other sections of the report).

Introduction

The purpose of the introduction is to explain where your hypothesis comes from (i.e., it should provide a rationale for your research study).

Ideally, the introduction should have a funnel structure: Start broad and then become more specific. The aims should not appear out of thin air; the preceding review of psychological literature should lead logically into the aims and hypotheses.

The funnel structure of the introducion to a lab report

  • Start with general theory, briefly introducing the topic. Define the important key terms.
  • Explain the theoretical framework.
  • Summarise and synthesize previous studies – What was the purpose? Who were the participants? What did they do? What did they find? What do these results mean? How do the results relate to the theoretical framework?
  • Rationale: How does the current study address a gap in the literature? Perhaps it overcomes a limitation of previous research.
  • Aims and hypothesis. Write a paragraph explaining what you plan to investigate and make a clear and concise prediction regarding the results you expect to find.

There should be a logical progression of ideas that aids the flow of the report. This means the studies outlined should lead logically to your aims and hypotheses.

Do be concise and selective, and avoid the temptation to include anything in case it is relevant (i.e., don’t write a shopping list of studies).

USE THE FOLLOWING SUBHEADINGS:

Participants

  • How many participants were recruited?
  • Say how you obtained your sample (e.g., opportunity sample).
  • Give relevant demographic details (e.g., gender, ethnicity, age range, mean age, and standard deviation).
  • State the experimental design .
  • What were the independent and dependent variables ? Make sure the independent variable is labeled and name the different conditions/levels.
  • For example, if gender is the independent variable label, then male and female are the levels/conditions/groups.
  • How were the IV and DV operationalized?
  • Identify any controls used, e.g., counterbalancing and control of extraneous variables.
  • List all the materials and measures (e.g., what was the title of the questionnaire? Was it adapted from a study?).
  • You do not need to include wholesale replication of materials – instead, include a ‘sensible’ (illustrate) level of detail. For example, give examples of questionnaire items.
  • Include the reliability (e.g., alpha values) for the measure(s).
  • Describe the precise procedure you followed when conducting your research, i.e., exactly what you did.
  • Describe in sufficient detail to allow for replication of findings.
  • Be concise in your description and omit extraneous/trivial details, e.g., you don’t need to include details regarding instructions, debrief, record sheets, etc.
  • Assume the reader has no knowledge of what you did and ensure that he/she can replicate (i.e., copy) your study exactly by what you write in this section.
  • Write in the past tense.
  • Don’t justify or explain in the Method (e.g., why you chose a particular sampling method); just report what you did.
  • Only give enough detail for someone to replicate the experiment – be concise in your writing.
  • The results section of a paper usually presents descriptive statistics followed by inferential statistics.
  • Report the means, standard deviations, and 95% confidence intervals (CIs) for each IV level. If you have four to 20 numbers to present, a well-presented table is best, APA style.
  • Name the statistical test being used.
  • Report appropriate statistics (e.g., t-scores, p values ).
  • Report the magnitude (e.g., are the results significant or not?) as well as the direction of the results (e.g., which group performed better?).
  • It is optional to report the effect size (this does not appear on the SPSS output).
  • Avoid interpreting the results (save this for the discussion).
  • Make sure the results are presented clearly and concisely. A table can be used to display descriptive statistics if this makes the data easier to understand.
  • DO NOT include any raw data.
  • Follow APA style.

Use APA Style

  • Numbers reported to 2 d.p. (incl. 0 before the decimal if 1.00, e.g., “0.51”). The exceptions to this rule: Numbers which can never exceed 1.0 (e.g., p -values, r-values): report to 3 d.p. and do not include 0 before the decimal place, e.g., “.001”.
  • Percentages and degrees of freedom: report as whole numbers.
  • Statistical symbols that are not Greek letters should be italicized (e.g., M , SD , t , X 2 , F , p , d ).
  • Include spaces on either side of the equals sign.
  • When reporting 95%, CIs (confidence intervals), upper and lower limits are given inside square brackets, e.g., “95% CI [73.37, 102.23]”
  • Outline your findings in plain English (avoid statistical jargon) and relate your results to your hypothesis, e.g., is it supported or rejected?
  • Compare your results to background materials from the introduction section. Are your results similar or different? Discuss why/why not.
  • How confident can we be in the results? Acknowledge limitations, but only if they can explain the result obtained. If the study has found a reliable effect, be very careful suggesting limitations as you are doubting your results. Unless you can think of any c onfounding variable that can explain the results instead of the IV, it would be advisable to leave the section out.
  • Suggest constructive ways to improve your study if appropriate.
  • What are the implications of your findings? Say what your findings mean for how people behave in the real world.
  • Suggest an idea for further research triggered by your study, something in the same area but not simply an improved version of yours. Perhaps you could base this on a limitation of your study.
  • Concluding paragraph – Finish with a statement of your findings and the key points of the discussion (e.g., interpretation and implications) in no more than 3 or 4 sentences.

Reference Page

The reference section lists all the sources cited in the essay (alphabetically). It is not a bibliography (a list of the books you used).

In simple terms, every time you refer to a psychologist’s name (and date), you need to reference the original source of information.

If you have been using textbooks this is easy as the references are usually at the back of the book and you can just copy them down. If you have been using websites then you may have a problem as they might not provide a reference section for you to copy.

References need to be set out APA style :

Author, A. A. (year). Title of work . Location: Publisher.

Journal Articles

Author, A. A., Author, B. B., & Author, C. C. (year). Article title. Journal Title, volume number (issue number), page numbers

A simple way to write your reference section is to use Google scholar . Just type the name and date of the psychologist in the search box and click on the “cite” link.

google scholar search results

Next, copy and paste the APA reference into the reference section of your essay.

apa reference

Once again, remember that references need to be in alphabetical order according to surname.

Psychology Lab Report Example

Quantitative paper template.

Quantitative professional paper template: Adapted from “Fake News, Fast and Slow: Deliberation Reduces Belief in False (but Not True) News Headlines,” by B. Bago, D. G. Rand, and G. Pennycook, 2020,  Journal of Experimental Psychology: General ,  149 (8), pp. 1608–1613 ( https://doi.org/10.1037/xge0000729 ). Copyright 2020 by the American Psychological Association.

Qualitative paper template

Qualitative professional paper template: Adapted from “‘My Smartphone Is an Extension of Myself’: A Holistic Qualitative Exploration of the Impact of Using a Smartphone,” by L. J. Harkin and D. Kuss, 2020,  Psychology of Popular Media ,  10 (1), pp. 28–38 ( https://doi.org/10.1037/ppm0000278 ). Copyright 2020 by the American Psychological Association.

Print Friendly, PDF & Email

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 8 July 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • How To Find Articles with Databases
  • Video Learning
  • Artificial Intelligence Tools
  • Commercialization & Industry
  • How To Evaluate Articles
  • Search Tips, General
  • Develop a Research Question
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Lab Report
  • How To Write A Scientific Paper
  • Get More Help
  • Teaching Materials
  • Other STEM Guides
  • Systematic & Evideced-Based Reviews

Writing Lab Reports

Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. 

  • Ex: "Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the experiment as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a lab report. 
  • Not all lab reports will require an abstract. However, they are often included in upper-level lab reports and should be studied carefully. 
  • Why was the research done or experiment conducted?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?

Introduction

  • The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the experiment by briefly explaining the problem.

Methods and Materials

  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • The results show the data that was collected or found during the experiment. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of the lab report. It analyzes the results of the experiment and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the experiment and compare your results to other similar experiments.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • If using any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • In the event that no outside sources are used, the references section may be left out. 

Other Useful Sources

  • The Lab Report
  • Sample Laboratory Report #2
  • Some Tips on Writing Lab Reports
  • Writing a Science Lab Report
  • << Previous: How To Interpret Data
  • Next: How To Write A Scientific Paper >>
  • Last Updated: Jul 3, 2024 11:31 AM
  • URL: https://guides.libraries.indiana.edu/STEM

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin

How to Write a Lab Report

Lab Reports Describe Your Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Lab reports are an essential part of all laboratory courses and usually a significant part of your grade. If your instructor gives you an outline for how to write a lab report, use that. Some instructors require a lab report to be included in a lab notebook , while others will request a separate report. Here's a format for a lab report you can use if you aren't sure what to write or need an explanation of what to include in the different parts of the report.

A lab report is how you explain what you did in ​your experiment, what you learned, and what the results meant.

Lab Report Essentials

Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states:​

  • The title of the experiment.
  • Your name and the names of any lab partners.
  • Your instructor's name.
  • The date the lab was performed or the date the report was submitted.

The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation. An example of a title would be: "Effects of Ultraviolet Light on Borax Crystal Growth Rate". If you can, begin your title using a keyword rather than an article like "The" or "A".

Introduction or Purpose

Usually, the introduction is one paragraph that explains the objectives or purpose of the lab. In one sentence, state the hypothesis. Sometimes an introduction may contain background information, briefly summarize how the experiment was performed, state the findings of the experiment, and list the conclusions of the investigation. Even if you don't write a whole introduction, you need to state the purpose of the experiment, or why you did it. This would be where you state your hypothesis .

List everything needed to complete your experiment.

Describe the steps you completed during your investigation. This is your procedure. Be sufficiently detailed that anyone could read this section and duplicate your experiment. Write it as if you were giving direction for someone else to do the lab. It may be helpful to provide a figure to diagram your experimental setup.

Numerical data obtained from your procedure usually presented as a table. Data encompasses what you recorded when you conducted the experiment. It's just the facts, not any interpretation of what they mean.

Describe in words what the data means. Sometimes the Results section is combined with the Discussion.

Discussion or Analysis

The Data section contains numbers; the Analysis section contains any calculations you made based on those numbers. This is where you interpret the data and determine whether or not a hypothesis was accepted. This is also where you would discuss any mistakes you might have made while conducting the investigation. You may wish to describe ways the study might have been improved.

Conclusions

Most of the time the conclusion is a single paragraph that sums up what happened in the experiment, whether your hypothesis was accepted or rejected, and what this means.

Figures and Graphs

Graphs and figures must both be labeled with a descriptive title. Label the axes on a graph, being sure to include units of measurement. The independent variable is on the X-axis, the dependent variable (the one you are measuring) is on the Y-axis. Be sure to refer to figures and graphs in the text of your report: the first figure is Figure 1, the second figure is Figure 2, etc.

If your research was based on someone else's work or if you cited facts that require documentation, then you should list these references.

  • The 10 Most Important Lab Safety Rules
  • Null Hypothesis Examples
  • Examples of Independent and Dependent Variables
  • How to Format a Biology Lab Report
  • Science Lab Report Template - Fill in the Blanks
  • How to Write a Science Fair Project Report
  • How to Write an Abstract for a Scientific Paper
  • Six Steps of the Scientific Method
  • How To Design a Science Fair Experiment
  • Understanding Simple vs Controlled Experiments
  • Make a Science Fair Poster or Display
  • How to Organize Your Science Fair Poster
  • What Is an Experiment? Definition and Design
  • Scientific Method Lesson Plan
  • What Are the Elements of a Good Hypothesis?
  • Science & Math
  • Sociology & Philosophy
  • Law & Politics

How to Write Hypothesis for Lab Report

  • How to Write Hypothesis for…

What Is a Real Hypothesis?

A hypothesis is a tentative statement that proposes a possible explanation for some phenomenon or event. A useful hypothesis is a testable statement that may include a prediction.

When Are Hypotheses Used?

The keyword is testable. That is, you will perform a test of how two variables might be related. This is when you are doing a real experiment. You are testing variables. Usually, a hypothesis is based on some previous observations such as noticing that in November many trees undergo color changes in their leaves and the average daily temperatures are dropping. Are these two events connected? How?

Any laboratory procedure you follow without a hypothesis is really not an experiment. It is just an exercise or demonstration of what is already known.

How Are Hypotheses Written?

  • Chocolate may cause pimples.
  • Salt in soil may affect plant growth.
  • Plant growth may be affected by the color of the light.
  • Bacterial growth may be affected by temperature.
  • Ultraviolet light may cause skin cancer.
  • The temperature may cause leaves to change color.

All of these are examples of hypotheses because they use the tentative word “may.”. However, their form is not particularly useful. Using the word may do not suggest how you would go about proving it. If these statements had not been written carefully, they may not have even been hypotheses at all. For example, if we say “Trees will change color when it gets cold.” we are making a prediction. Or if we write, “Ultraviolet light causes skin cancer.” could be a conclusion. One way to prevent making such easy mistakes is to formalize the form of the hypothesis.

Formalized Hypotheses example: If the incidence of skin cancer is related to exposure levels of ultraviolet light , then people with a high exposure to uv light will have a higher frequency of skin cancer.

If leaf color change is related to temperature , then exposing plants to low temperatures will result in changes in leaf color .

Notice that these statements contain the words, if and then. They are necessary for a formalized hypothesis. But not all if-then statements are hypotheses. For example, “If I play the lottery, then I will get rich.” This is a simple prediction. In a formalized hypothesis, a tentative relationship is stated. For example, if the frequency of winning is related to the frequency of buying lottery tickets . “Then” is followed by a prediction of what will happen if you increase or decrease the frequency of buying lottery tickets. If you always ask yourself that if one thing is related to another, then you should be able to test it.

Formalized hypotheses contain two variables. One is “independent” and the other is “dependent.” The independent variable is the one you, the “scientist” control, and the dependent variable is the one that you observe and/or measure the results. In the statements above the dependent variable is underlined and the independent variable is underlined and italicized .

The ultimate value of a formalized hypothesis is it forces us to think about what results we should look for in an experiment.

For the “ If, Then, Because ” hypothesis…you would use: “ IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

IF X and Y both do or share this, THEN this should be found/confirmed, BECAUSE of this fact or logical assumption.

Example Question : How does the type of liquid (water, milk, or orange juice) given to a plant affect how tall the plant will grow? Hypothesis : If the plant is given water then the plant will grow the tallest because water helps the plant absorb the nutrients that the plant needs to survive.

Related Posts

  • Energy Content of Food Lab Report Answers
  • Phet Projectile Motion Lab: Lab Answers
  • Magnesium Oxide: Percent Yield Lab Report
  • How to Write a Formal Laboratory Report
  • Physics: Lab Report Style

16 Comments

How would I write a hypothesis about a flying pig lab?

your lab hypothesis should have been written before the experiment. The purpose of the hypothesis was to create a testable statement in which your experimental data would either support or reject. Having a hypothesis based on a logical assumption (regardless of whether your data supports it) is still correct. If there is a disagreement between your hypothesis and experimental data it should be addressed in the discussion.

So you can go ahead an choose a hypothesis for either increase or decrease of adipogenesis after the inducement of insulin and not be wrong….as long as it is correctly formatted (see examples above).

Hey, I am having trouble writing my hypothesis.. I am supposed to write a hypothesis about how much adipogenesis was produced after the inducement of insulin. However, after proceeding with the experiments the results were On/Off .. meaning it will increase, decrease, increase, etc.. so it wasnt a constant result. It was supposed to be increasing.

please help!!!

this is very helpful but i don’t know how i would structure my hypothesis. i’m supposed to come up with a hypothesis related to the topic ‘how does mass effect the stopping distance of a cart?’. Could you help?

Thank you so much, it really help alot.:)

This is a rather difficult usage of this construct. It would most likely follow

“If the empirical formula of (enter compound’s name) is (enter compound’s formula) then it would be expected that combustion of _________ would yield _________, because (enter your rationale)

Need more background info.

For the “If, then, because” hypothesis I am doing an experiment to determine the empirical formula by using combustion but I am unsure on how to formulate the hypothesis using this structure.

For the “If, Then, Because” hypothesis…you would use: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks, really helpful. Just one question, what about the ‘because’ part? right after the ‘if’ and ‘then’ parts?

I really need help for onion skin lab hypothesis for class

@Lauren An if/and statement is not usually apart of the convention. What exactly do you need help with?

Is there such thing as a if/and statement? I am in 8th grade science an I need to know for my lab report due tomorrow.HELP!!!!

Would have been better if more examples were given

If the purpose of your lab is “To obtain dissecting skills in an observational lab,” you can’t really formulate a testable hypothesis for that. I’ll assume you are doing some kind of pig or frog dissection. Often teachers give general outlines of skills that students are meant to ascertain from an experiment which aren’t necessarily what the actual experiment is directly testing. Obviously to do the dissection lab you need to obtain dissection skills but testing that would be rather subjective unless the teacher provided you with standards or operationally defined “dissecting skills”. If I were you, I would obviously mention it in the introduction of your lab but I am not sure if your teacher wants you to actually format it as a hypothesis; you can ask your teacher for clarification. If making a hypothesis from each purpose was some arbitrary exercise assigned to you then, it could look like this:

“If a student has successful acquired dissection skills, then they will be able to complete this observational lab with satisfactory competence because they utilized these newly acquired skills.”

For the “If, Then, Because” hypothesis…you pretty much have it. You would modify what you posted: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks for this, it proved to be helpful. However, I do have a few questions. Obviously different teachers or instructors have their own requirements for their classes. How would you write an appropriate Question to follow each purpose in your lab report? For example: If the purpose was, “To obtain dissecting skills in an observational lab,” what question could you formulate with the purpose? (which is answered in the hypothesis)

And if a teacher requires the hypothesis to be in the format “If, Then, Because” how should this be written? I can actively complete the if and then, but I’m unsure how to incorporate the “because’ statement. For example, “If pigs and humans share the same nutritional behaviors, then their internal organs should function comparably and look relatively the same.” (how do i incorporate because?)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Post comment

hypothesis in lab report

Verify originality of an essay

Get ideas for your paper

Find top study documents

Learn How to Write a Hypothesis in a Lab Report

Published 17 Jul 2023

Lab Report: What is the Purpose of a Lab Report in Scientific Experiments? 

In learning how to write a hypothesis for a lab report, it is crucial to understand the main purpose and aspects of the scientific lab report itself. In simple terms, we are dealing with a particular structure that must reflect its importance and relevance. It can be related to an experiment, an assumption, or a hypothesis being made. It means discussing the aims and providing a hypothesis based on a particular methodology. It has to explain why the practical work has been conducted and what tools or solutions have been chosen. The method part must also be added to show how the work has been conducted and what data processing methods have been used. All of it brings us to the explanation of a hypothesis. 

This way, a lab report hypothesis represents a special statement that makes a proposal or an assumption of a scientific idea. The main purpose is to explain a phenomenon or an argument that follows your objectives. It can also be related to an event. Most importantly, it has to be a testable statement that can be evaluated and include a prediction. 

Understand the Role of Hypothesis and Scientific Methods: Defining The Differences

A hypothesis definition can be summed up by making a scientific assumption based on certain evidence. It means that one should have an initial point to start an investigation. It may include your objectives and transition of ideas into research questions and predictions of the outcomes. The crucial components include variables, sample groups, geopolitical factors, population peculiarities, or other variables to make a hypothesis trustworthy. 

The key is to test things in advance using your research work for that! The lab report represents a perfect environment for a real-time experiment where variables are tested. Learning how to write a hypothesis in a lab report, you may turn to prior observations like noticing how racial prejudice has shaped student movements during the 1970s and how things have changed since then. You may ask yourself about the interconnection between these two events and explain how exactly! 

The key differences between a hypothesis, a theory, and a fact can be explained easily this way: 

  • Fact: "When you drop an apple, it will hit the ground." 
  • Theory: "There is a gravitational force that will affect an apple once it falls.”
  • Hypothesis: "When an apple hits the ground, it happens because a certain force pulls it down." 

Summing up, we can safely state that a theory is the next step to a scientific fact. A hypothesis is a process that needs evidence to explain the scientific assumption. In creating a lab report hypothesis, leading your target audience to an explanation and justification of the outcomes is essential. 

Crucial Elements of a Good Hypothesis 

The structure plays a critical role in creating a strong hypothesis to help you proceed with the further elements of a scientific lab report. In most scenarios, you should provide the following: 

  • An assumption you offer should not be a stated question because the main purpose is to assume something based on facts by keeping your target audience motivated. Offer a practical objective instead! 
  • Your hypothesis lab report writing should be testable regarding empirical research, stating whether something is right or wrong. 
  • Keep your statement specific and precise! 
  • The key is to specify variables to help readers determine the relationship between what is being tested and the outcome (including methodology). 

Summing things up, we receive this: 

  • The research question or a problem. 
  • The independent variable. 
  • The dependent variable. 
  • A relationship between what is independent and dependent. 

The best way to compose a reliable hypothesis for a lab report is to first ask a question by formulating the problem and conducting preliminary research. Next, variables must be defined as the " IF X is so, then Y is that " pattern. Collect sufficient research data that will help to support your hypothesis. Finally, keep your tone confident as you develop an explanation and the conclusion part (basic summary) of your research lab report. 

Hypothesis vs. Null Hypothesis

Many students often feel confused when they have to learn the difference between working with a scientific hypothesis and a null hypothesis. To keep things simple and accessible, a hypothesis always stands for something that a person tries to prove as a researcher. Now, a null hypothesis is totally different because it is what you have to argue and disprove. Still, you can safely use both methods to research and evaluate your data.

When dealing with a classic hypothesis, you should speculate and brainstorm a particular theory. If your evidence is insufficient, it must be mentioned, as your lab report leads to even more testing, evaluation, and experiments. Learning how to write hypotheses in lab report limitations and using a null hypothesis will include the same set of variables with a major difference. It often states that there is no significance or strong relation between two variables that you have obtained. 

In terms of examples, a null hypothesis may state, "There is no difference in the number of autism cases between children who have gone through vaccination procedures and those who have not." It often speaks of the elimination of connections between this and that, unlike a hypothesis that would say, "Poor vaccination culture leads to autism risks among children." 

6 Steps to Take When Composing a Hypothesis in a Lab Report

While there are many ways to write a hypothesis statement, there are still universal ways to develop it for your lab report. Without a doubt, you must consult your academic advisor and check your grading rubric twice. Let's narrow things down a little bit to the following six steps: 

  • Provide a research question . It means that you must start with a research question introduction you offer. It should be precise and clear. 
  • Offer preliminary research work. Consider research theories and prior studies to support your methodology and an assumption. It is a step that should include lab analysis and evaluation aspects. 
  • Narrow down your hypothesis statement . When you have an idea, create a detailed yet short hypothesis like, "Playing video games daily improves cognitive skills". 
  • Refine your hypothesis with variables. It is where you must make your hypothesis possible to replicate and test as you offer a lab report. Talk about variables and specific sample groups, and add your predictions. 
  • Work on "IF" and "THEN" elements. Talk about relationships, positive or negative effects, differences, and comparisons. 
  • Compose a null hypothesis (If necessary). If something has no effect, state that "X has no effect on Y, as Z proves." 

The Most Popular Formats to Write a Hypothesis 

It's possible to choose various approaches to composing your hypothesis statement. Still, the best of them would be the classic method of the "If this happens under certain variables, then this is bound to happen" pattern. Taking things to practice, one can structure things by using a descriptive tone. The trick is to make an assumption and describe what will happen to the dependent variable in case you change the features of the independent variable. Other types of lab report hypothesis options may include but are not limited to the following: 

  • Simple (classic) hypothesis;
  • Complex hypothesis structure;
  • Directional hypothesis format;
  • Non-directional hypothesis method;
  • Discussion in a lab report approach; 
  • Null hypothesis;
  • Associative and causal hypothesis combination.

Choosing one of the above will depend on your type of lab reporting, research subject, and the list of variables. Choosing an associative evidence method will be the best solution if you want to work in the cause-and-effect field. Likewise, if you are unsure about what method to choose, the typical “IF” and “THEN,” “BECAUSE” would be the most universal approach. 

Conclusion and Initial Section of Hypothesis 

The conclusion of your lab report must provide a summary with an analytical explanation. It should not become a repetition of the results but talk about your objectives and methodology mentioned in your conclusion. As you make a hypothesis, you always provide some evidence. Now, when you write your lab report , do not discuss the evidence and the facts but discuss the results achieved with limitations and challenges faced. If you are unsure how to structure the final part, consider whether your assumption has been made and what has been discovered. 

As a rule, your lab report conclusion should be about 15% of the total amount or even less. Do not introduce any new ideas or statistical data in this part because you should only summarize things and discuss the results by stating your hypothesis once again. Keep your tone and language simple in this part, and avoid using citations or references to prior research work. 

Eliminating the Most Common Mistakes 

As a way to receive the best grades for your hypothesis in a lab report, you must avoid the most common mistakes in addition to grammar and spelling issues: 

  • Your hypothesis should not be a question. 
  • Avoid placing a citation before and after your hypothesis statement. 
  • Do not use colloquial language in a lab report.
  • Avoid the first person in a lab report and hypothesis statement unless specified. 
  • Do not state a hypothesis that is not narrowed down and unclear. 
  • Do not use lengthy statistical data, as it is not a hypothesis but evidence that helps to support your assumption. 
  • Avoid submitting your lab report without proofreading your content aloud. 
  • Avoid using more than three citations per page (300 words).
  • Never submit a hypothesis in a lab report without a Method part that is clearly outlined after your goals and statement of the problem.

Writing a Hypothesis in a Lab Report Checklist 

If all of this sounds like rocket science to you and you are about to give up on your Chemistry lab report or any other subject, try to do the following by checking this simple hypothesis in a lab report checklist: 

  • Choose a particular problem that you would like to address. 
  • Continue with the specific format of hypothesis writing. 
  • Try predicting relationships between variables and the possible outcome. 
  • Keep your writing simple without being wordy. 
  • Make no assumptions about what your target audience knows or does not know. 
  • Keep your results replicable and possible to test and/or observe. 
  • Provide relevant examples to understand your method in a better way. 
  • It must be possible to repeat and analyze your research work. 
  • Proofread and edit things twice! 

Using Additional Helpful Resources 

When you are writing hypothesis for a lab report based on specific research, it is important to take your time and explore additional resources. These may include online libraries, academic journals, books in print, specific databases, or even paying a visit to the local library of your college or university. As you look at similar research works, you can find out why some problems are relevant and what methods work best or what approaches have not been taken. It will help you to narrow things down and make your research stand out from the rest. Here are some useful resources to help you explore your scientific subject: 

  • JStor Database ;
  • PubMed (good for healthcare and medical subjects);
  • ScienceDirect ;
  • Google Scholar ;
  • Web of Science ;
  • Semantic Scholar ;
  • Purdue OWL Writing Lab (good for learning more about citation format styles).

If something is unclear, check your grading rubric twice and ask questions by turning to your academic advisor! 

Was this helpful?

Thanks for your feedback, related blog posts, how to write a case study assignment: writing tips and examples.

Case studies are a powerful tool for students and professionals. They offer a practical way to explore real-world situations, sharpen analytical sk...

Writing Lab Report Observations: Your Ultimate Guide

The key to an effective observation is the absence of subjectivity — it ensures all the data is consistent and accurate. That’s when some students ...

How to Write a Good Conclusion For a Lab Report

As a rule, your conclusion part in a report should provide a clear and accessible summary of the experiment or research that has been presented in ...

Join our 150K of happy users

  • Get original papers written according to your instructions
  • Save time for what matters most

Banner

  • Scientific Lab Reports
  • Understanding the Assignment
  • Need a Topic?
  • Evaluating Sources
  • Brainstorming Strategies
  • Drafting Strategies
  • Thesis Formulation
  • Introductions
  • Conclusions
  • Show Don't Tell
  • Expand Your Draft
  • Flow & Lexical Coherence
  • Revision Checklist
  • Introduction to Style and Grammar
  • Apostrophes
  • Article Usage for ESL Learners
  • Capitalization
  • Clarity: Get Rid of Nominalizations
  • Cohesion: Does my Paragraph Flow?
  • Commas and Colons
  • Conciseness
  • Confusing Words
  • Parallel Structure
  • Passive Voice
  • Quotation Marks
  • Run-on Sentences
  • Subject-Verb Agreement
  • Writing Mechanics
  • Other Styles
  • Art History This link opens in a new window
  • Programming Lab Reports

Writing a Lab Report

Link to other resources.

  • Screenwriting
  • Publication Opportunities
  • Meet with a Tutor This link opens in a new window

Academic Resource Center Hours :

Monday-Thursday: 8:00 AM-6:00 PM

Friday: 8:00 AM-4:00 PM

Phone Number : 310-338-2847

Email :  [email protected]

www.lmu.edu/arc

We are located in Daum Hall on the 2nd floor!

Writing a scientific lab report is significantly different from writing for other classes like philosophy, English, and history. The most prominent form of writing in biology, chemistry, and environmental science is the lab report, which is a formally written description of results and discoveries found in an experiment. College lab reports should emulate and follow the same formats as reports found in scholarly journals, such as Nature , Cell , and The American Journal of Biochemistry .

Report Format

Title: The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation.

  • Example:  Caffeine Increases Amylase Activity in the Mealworm ( Tenebrio molitar).
  • If you can, begin your title using a keyword rather than an article like “The” or “A.”

Abstract: An abstract is a very concise summary of the purpose of the report, data presented, and major conclusions in about 100 - 200 words.  Abstracts are also commonly required for conference/presentation submissions because they summarize all of the essential materials necessary to understand the purpose of the experiment. They should consist of a background sentence , an introduction sentence , your hypothesis/purpose of the experiment, and a sentence about the results and what this means.

Introduction: The introduction of a lab report defines the subject of the report, provides background information and relevant studies, and outlines scientific purpose(s) and/or objective(s).

  • The introduction is a place to provide the reader with necessary research on the topic and properly cite sources used.
  • Summarizes the current literature on the topic including primary and secondary sources.
  • Introduces the paper’s aims and scope.
  • States the purpose of the experiment and the hypothesis.

Materials and Methods: The materials and methods section is a vital component of any formal lab report. This section of the report gives a detailed account of the procedure that was followed in completing the experiment as well as all important materials used. (This includes bacterial strains and species names in tests using living subjects.)

  • Discusses the procedure of the experiment in as much detail as possible.
  • Provides information about participants, apparatus, tools, substances, location of experiment, etc.
  • For field studies, be sure to clearly explain where and when the work was done.
  • It must be written so that anyone can use the methods section as instructions for exact replications.
  • Don’t hesitate to use subheadings to organize these categories.
  • Practice proper scientific writing forms. Be sure to use the proper abbreviations for units. Example: The 50mL sample was placed in a 5ºC room for 48hrs.

Results: The results section focuses on the findings, or data, in the experiment, as well as any statistical tests used to determine their significance.

  • Concentrate on general trends and differences and not on trivial details.
  • Summarize the data from the experiments without discussing their implications (This is where all the statistical analyses goes.)
  • Organize data into tables, figures, graphs, photographs, etc.  Data in a table should not be duplicated in a graph or figure. Be sure to refer to tables and graphs in the written portion, for example, “Figure 1 shows that the activity....”
  • Number and title all figures and tables separately, for example, Figure 1 and Table 1 and include a legend explaining symbols and abbreviations. Figures and graphs are labeled below the image while tables are labeled above.

  Discussion: The discussion section interprets the results, tying them back to background information and experiments performed by others in the past.This is also the area where further research opportunities shold be explored.

  • Interpret the data; do not restate the results.
  • Observations should also be noted in this section, especially anything unusual which may affect your results.

For example, if your bacteria was incubated at the wrong temperature or a piece of equipment failed mid-experiment, these should be noted in the results section.

  • Relate results to existing theories and knowledge.This can tie back to your introduction section because of the background you provided.
  • Explain the logic that allows you to accept or reject your original hypotheses.
  • Include suggestions for improving your techniques or design, or clarify areas of doubt for further research.

Acknowledgements and References: A references list should be compiled at the end of the report citing any works that were used to support the paper. Additionally, an acknowledgements section should be included to acknowledge research advisors/ partners, any group or person providing funding for the research and anyone outside the authors who contributed to the paper or research.

General Tips

  • In scientific papers, passive voice is perfectly acceptable. On the other hand, using “I” or “we” is not.

          Incorrect: We found that caffeine increased amylase levels in Tenebrio molitar.  Correct: It was discovered that caffeine increased amylase levels in Tenebrio molitar.   

  • It is expected that you use as much formal (bland) language and scientific terminology as you can. There should be no emphasis placed on “expressing yourself” or “keeping it interesting”; a lab report is not a narrative.
  • In a lab report, it is important to get to the point. Be descriptive enough that your audience can understand the experiment, but strive to be concise.
  • << Previous: Programming Lab Reports
  • Next: Screenwriting >>
  • Last Updated: Jun 2, 2024 10:04 PM
  • URL: https://libguides.lmu.edu/writing

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

states your hypothesis explains how you derived that hypothesis and how it connects to previous research; gives the purpose of the experiment/study
details how you tested your hypothesis clarifies why you performed your study in that particular way
provides raw (i.e., uninterpreted) data collected (perhaps) expresses the data in table form, as an easy-to-read figure, or as percentages/ratios
considers whether the data you obtained support the hypothesis explores the implications of your finding and judges the potential limitations of your experimental design

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
1058
432
7
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

• • •
 

The primary job of any scientific Introduction is to establish the purpose for doing the experiment that is to be reported.� When scientists do research, the main purpose that guides their work is to contribute to the knowledge of their field.� That's why the scientific context they establish in their introductions usually consists of summarizing previous research reports published in the field.� A scientific contribution to the knowledge of the field can be understood only within the context of what other scientists have done.

The main purpose of writing a lab report, of course, is not to contribute to the knowledge of the field; but to provide you the opportunity for learning.� That's why it's important to begin the lab by establishing that learning context.� The provides a way for you to situate the lab report within the overall purpose for doing the lab in the first place:� .

An effective introduction to a lab report typically performs the following tasks, generally in the order presented:

it establishes the learning context for the lab by:
a. saying what the lab is about, that is, what scientific concept (theory, principle, procedure, etc.)� the researcher is supposed to be learning about by doing the lab; and
b. giving the necessary background for the learning context by providing

pertinent�information about the scientific concept (this information can come from the lab manual, the textbook, lecture notes, and other sources recommended by the lab manual or teacher; in more advanced labs you may also be expected to cite the findings of previous scientific studies related to the lab).

it provides the primary goals of the lab by:
a. presenting the objective(s) for the experimental procedure (what is being done in the experiment, such as to measure something, to test something, to determine something, etc.); and
b. defining the purpose of the lab (the way the experimental procedure is linked to the learning context).
it offers a hypothesis for the experimental procedure by:
a. stating the hypothesis, or the best estimation of the outcome of the lab procedure; and
b. explaining the scientific reasoning that leads the researcher to that hypothesis.

Materials and Methods :� What did you do and how did you do it?

There are various other headings one may find for this section of the report, such as "Experimental Procedure," "Experimental," or "Methodology."� Sometimes Materials and Methods may be separated in different sections.� But however it is titled, the main tasks of the Materials and Methods are to describe (1) the lab apparatus and the laboratory procedure used to gather the data and (2) the process used to analyze the data.

Materials and Methods takes the reader step by step through the laboratory procedure that the experimenters followed.� The rule of thumb in constructing this section is to provide enough detail so that a competent scientist in the field can repeat, or replicate, the procedure.� The challenge, however, is to do so as efficiently as you can.� This means, for example, not including details that the same competent scientist already knows, such as descriptions of standard procedures that most everyone in the field would already be familiar with.

Go to the Materials and Methods of the Annotated Sample Lab Report

Results:� What did you find?

This is the heart of the scientific paper, in which the researcher reports the outcomes of the experiment.� Report is a key word here because Results should not contain any explanations of the experimental findings or in any other way interpret or draw conclusions about the data.� Results should stick to the facts as they have been observed.

Generally speaking, the Results begins with a succinct statement (a sentence or two) summarizing the overall findings of the experiment.� After that the Results integrates both visual (graphs, tables, drawings) and verbal (words) representations of the data.� The verbal descriptions consist of series of findings (general statements that summarize or give the important point of a visual) and support for the findings (further details about the data that give pertinent information about the findings).

Discussion: � What does it mean?

The purpose of the Discussion is to interpret your results, that is, to explain, analyze, and compare them. �This is the point at which the researcher stands back from the results and talks about them within the broader context set forth in the Introduction.� It is perhaps the most important part of the report because it is where you demonstrate that you understand the experiment beyond the level of simply doing it.� Do not discuss any outcomes not presented in the Results.

The Discussion section often begins by making a statement as to whether the findings in the Results support or do not support the expected findings stated in the hypothesis.� It's important to make such a comparison because returning to the hypothesis is crucial to basic scientific thinking.� The statement of support or non-support then leads to the next logical issue, an explanation of why the hypothesis was or was not supported by the data.� The explanation might focus on the scientific reasoning that supported the original hypothesis (based on the scientific concept on which the lab is founded) and on changes to or errors in the experimental procedure and how they could have affected the outcomes.� The Discussion also provides the opportunity to compare the results to the research of others.

Conclusion: � What have I learned?

The Conclusion returns to the larger purpose of the lab, which is presented as the learning context in the Introduction:� to learn something about the scientific concept that provides the reason for doing the lab.� This is where you demonstrate that you have indeed learned something by stating what it is you have learned.� This is important because it helps you to understand the value of the lab and convinces the reader that the lab has been a success.� It's important, then, to be specific, providing details of what you have learned about the theory or principle or procedure at the center of the lab.

Abstract: � What is the essence of the report?

The Abstract is a miniature version of the lab report, one concise paragraph of 80-200 words.� Its purpose is to present the nature and scope of the report.� In the scientific literature, abstracts must be stand-alone documents, whole and self-contained, because they are often published by themselves in research guides.

To create a miniature version of the report, abstracts usually consist of one-sentence summaries of each of the parts of the report (sometimes two sentences are necessary for especially complex parts).� And those sentences are arranged on the order that the parts come in the report:� Introduction, Materials and Methods, Results, Discussion/Conclusion.

Title:� What is the report about?

The main job of the title is to describe the content of the report.� In science, a title usually tells the reader what the subject of the experiment and the key research variables are, and it often gives an indication of what research methodology was used.� Titles are especially important to scientists because articles are typically indexed according to key words that come from the title.� So when scientists are searching for research articles, it is those key words that lead them the articles they need.� It's necessary, then, that titles be fully informative about the content of the report.

References:� What sources were used?

This is a list of the references that were cited in the lab report, including the lab manual, any handouts accompanying the lab, the textbook, and sources from the scientific literature.� The format for references differs in different fields and even within the same field.� It's important that you check with you teacher or lab manual to find out what is expected of you.

Appendices :� What additional material is included?

Appendices are places where you put information that does not deserve to be included in the report itself but may be helpful to some readers who want to know more about the details.� The kinds of information you might find in an appendix are:

  • detailed drawings of apparatus, sources of hard-to-find materials, or other information related to the methodology of the experiment;
  • raw data in tables, drawings, or photographs that may be useful to understanding certain findings.
| | | | |

Sponsored and funded by

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic &amp; molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids &amp; bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals &amp; rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants &amp; mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition &amp; subtraction addition & subtraction, sciencing_icons_multiplication &amp; division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations &amp; expressions equations & expressions, sciencing_icons_ratios &amp; proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents &amp; logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science ⋅
  • Chemistry ⋅

How to Write a Lab Report About Titration

Titrations are used to determine an unknown concentration.

How to Calculate & Mix Chemical Solutions

Titrations are standard chemistry laboratory procedures usually used to determine the unknown concentration of a substance. They involve slowly adding a reagent to a reaction mixture until the chemical reaction is complete. The completion of the reaction is usually marked by the color change of an indicator substance. The volume of reagent required to complete the reaction is precisely measured using a burette. Calculations can then be carried out to determine the concentration of the original substance.

Complete your titration ensuring you achieve concordant results. You should have three results within 0.1 cubic centimeters of each other in order to be concordant.

Write your introduction. For a titration, the introduction should include information about what you hope to find out and what substance or product you will be analyzing. Write about the reaction you will be using, including the equation and the conditions required. Include details of the indicator stating the expected color change and writing a brief explanation of the suitability of the chosen indicator.

Describe details of your experimental method in the next section. Include a description of how you made up your solutions, if applicable. State the volume and concentration of any reagents used.

Draw a table to represent the results of your titration. It is customary to write the final burette volume in the first row, the initial burette volume in the second row and the titre in the third row. The titre is calculated by subtracting the initial volume from the final volume. To indicate precision, write all your results in cubic centimeters to two decimal places, adding a zero to the end of the number if necessary. Most standard burettes allow measurement to the nearest 0.05 cubic centimeters. Include all your repeat readings in the table, and indicate which are the concordant results to be used in the calculation of the mean titre. Calculate the mean titre using the concordant results only and record it below your results table.

Calculate your unknown using the mean titre and standard volumetric analysis methods. Lay out your calculations clearly, writing them down in a step-by-step format. This will help you to avoid mistakes, and will also ensure you are given credit for method if you make a minor error. Ensure you add the appropriate units to your answers, and use a suitable degree of precision: usually two decimal places. For guidance on completing the calculations, there are a number of online resources.

Write your conclusion. In a titration, the conclusion is often a simple statement of the experimentally determined parameter. Depending on the aim of the titration, more detail may be required. For example, a brief discussion on whether the results fall within the expected range may be appropriate.

Things You'll Need

Related articles, how to calculate melting & boiling points using molality, acid base titration sources of error improvements, definition of endpoint titration, how to make a 20% sugar solution, how to know when a titration is complete, steps in finding percent yield, the effects of water during a titration experiment, how to calculate the ph titration, how to determine the concentration of a titration, how to make a calibration standard for an hplc, how to calculate the calculations for spectrophotometers, what type of reaction produces a precipitate, how to test for sodium bicarbonate, errors in titration experiments, the advantages of potentiometric titration, titration of sodium carbonate with hydrochloric acid, titration explained, how to identify if a solution is neutral, base or acidic.

  • UCLA Chemistry Department: Some Tips on Writing Lab Reports
  • Germanna Community College: Writing a Formal Lab Report

About the Author

Veronica Mitchell has been a freelancer since 2010, writing mainly in biomedical and health fields, but also covering lifestyle and parenting topics. She has a Master of Arts in veterinary and medical sciences from Cambridge University and is a qualified high-school science teacher.

Photo Credits

laboratory image by Lemonade from Fotolia.com

Find Your Next Great Science Fair Project! GO

Watch CBS News

Aliens could be "walking among us" on Earth, Harvard researchers suggest

By Neal Riley

Updated on: July 2, 2024 / 11:55 AM EDT / CBS Boston

CAMBRIDGE - Are we alone in the universe? A recent paper from researchers at Harvard University puts an interesting twist on one of humanity's biggest questions.

The paper , which is not affiliated with the university, addresses a resurgent interest in UFOs , known officially as Unidentified Anomalous Phenomena or UAPs by the government. The United States is tracking more than 650 potential UFOs , a Pentagon official said last year.

Harvard researchers Tim Lomas, Brendan Case and Montana Technological University professor Michael Masters put forward a "cryptoterrestrial hypothesis" for the UFOs, theorizing that there's a "concealed earthly explanation" for the sightings. They argue scientists should seriously consider this possibility, alongside explanations that pilots are actually seeing human-made technology or something from an advanced civilization in another part of space. 

"We've seen these cockpit videos so many times ... but what's inside?" Masters said in an interview with CBS News Boston.

What is the cryptoterrestrial hypothesis?

The trio explains that the cryptoterrestrial hypothesis suggests that the intelligent beings responsible for the UFOs may be "concealed in stealth" on Earth or nearby. That could mean they are underground, on the far side of the moon or "even walking among us" and passing as humans.

"We're not saying this is right, we're not saying that this is absolutely 100% the case, we're saying these are some potentialities, these are some possibilities to help explain the origin of these beings," Masters said.

Masters is a biological anthropologist who said he was asked to help research potential explanations for UFOs. He said "aliens" may actually just be humans from far in the future who have figured out how to time travel. 

Are aliens just humans from the future?

Masters said the beings in reported alien encounters are "ubiquitously described as looking just like us." He argues it's highly unlikely that aliens looking just like humans would be from another planet. It "may simply be that they're us," he said. 

"We may go on to look like them," Masters said, referring to typical depictions of "little green men." "Based on our evolutionary characteristics over the last 6 to 8 million years, we are arguably going to have bigger heads, smaller faces, more advanced technology and a lot of these traits are described in association with these beings."

He speculates that the intelligent beings may have "gone underground until we're ready for contact."

"We must seem extremely primitive to them based on what we see flying around in the skies," Masters said.

"Something that we should all be talking about"

A Pentagon report released this year says there's no evidence that any UAP sighting "represented extraterrestrial technology." And while the researchers acknowledge that their paper is "a speculative thought piece," they say it still deserves serious consideration.

"It is something that we should all be talking about," Masters said. 

He said technology from the future could help humans tackle the big problems they face today, such as climate change .

"What if we all just opened our minds to the fact that there's this thing much bigger than us right now, and what could we learn from it?" he said. 

Neal J. Riley is a digital producer for CBS Boston. He has been with WBZ-TV since 2014. His work has appeared in The Boston Globe and The San Francisco Chronicle. Neal is a graduate of Boston University.

Featured Local Savings

More from cbs news.

Braintree neighborhood says nearby pickleball courts cause "constant stress"

Peabody's Alex Jackson breaks 50-year-old records, eyes Olympics

What's going on in the Sumner Tunnel? Here's a look at the work being done

Hearing to be held on duty status of lead investigator in Karen Read case

IMAGES

  1. Lab report hypothesis sections

    hypothesis in lab report

  2. LABORATORY REPORT

    hypothesis in lab report

  3. Lab Report ~ How to Write it Step-by-Step with Examples

    hypothesis in lab report

  4. How to Write a Lab Report

    hypothesis in lab report

  5. Simple How To Write A Good Hypothesis For Lab Report Apa

    hypothesis in lab report

  6. Simple How To Write A Good Hypothesis For Lab Report Apa

    hypothesis in lab report

VIDEO

  1. REPORT ON STATISTICAL HYPOTHESIS

  2. Proportion Hypothesis Testing, example 2

  3. LAB LEAK HYPOTHESIS IS IRRESISTIBLE! 4June24

  4. Proper Lab Report Format and Expectations

  5. HOW TO WRITE A LAB REPORT w/ Dr. B

  6. Research Steps

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. How To Write A Lab Report

    A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. ... In support of the primary hypothesis, the high nitrogen group plants were significantly taller than the low nitrogen group and the control group plants. Similarly, the results supported the secondary hypothesis: the low nitrogen plants were taller ...

  3. How to Write a Lab Report

    What is a lab report? A lab report is an overview of your experiment. Essentially, it explains what you did in the experiment and how it went. Most lab reports end up being 5-10 pages long (graphs or other images included), though the length depends on the experiment. Here are some brief explanations of the essential parts of a lab report:

  4. PDF Biology Lab Report Sample

    Biology Lab Report Sample, Cont'd Introduction The introduction gives background information on why your experiment is important and clearly states the issues that will be addressed in the rest of the report. Since it provides the structure for the entire report, it is a good idea to write the other sections of your report first, and

  5. How to Write An Effective Lab Report

    Abstract. The abstract of your lab report will generally consist of a short summary of your entire report, typically in the same order as your report. Although this is the first section of your lab report, this should be the last section you write. Rather than trying to follow your entire report based on your abstract, it is easier if you write ...

  6. How to Write a Lab Report: Step-by-Step Guide & Examples

    A typical lab report would include the following sections: title, abstract, introduction, method, results, and discussion. The title page, abstract, references, and appendices are started on separate pages (subsections from the main body of the report are not). Use double-line spacing of text, font size 12, and include page numbers.

  7. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  8. Library Research Guides: STEM: How To Write A Lab Report

    The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. The hypothesis of the experiment and the motivation for the research are stated in this section. Write the introduction in your own words. Try not to copy from a lab manual or other guidelines.

  9. How to Write a Lab Report

    Title Page. Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states: . The title of the experiment. Your name and the names of any lab partners. Your instructor's name. The date the lab was performed or the date the report was submitted.

  10. PDF The Complete Guide to Writing a Report for a Scientific ...

    Remove unwanted data or labels on the figure such as legent boxes showing "data 6", "data 7". The data identifiers are good to keep in your lab notebook but are clumsy for a lab report. 5. When a plot is saved from any software such as MATLAB or LabVIEW, make sure it is saved in the PDF format or as a vector graphic.

  11. How to Write Hypothesis for Lab Report

    If leaf color change is related to temperature , then exposing plants to low temperatures will result in changes in leaf color. Notice that these statements contain the words, if and then. They are necessary for a formalized hypothesis. But not all if-then statements are hypotheses. For example, "If I play the lottery, then I will get rich.".

  12. A Guide on How to Write a Hypothesis in a Lab Report

    The dependent variable. A relationship between what is independent and dependent. The best way to compose a reliable hypothesis for a lab report is to first ask a question by formulating the problem and conducting preliminary research. Next, variables must be defined as the " IF X is so, then Y is that " pattern.

  13. Lab Report Format

    A typical lab report format includes a title, introduction, procedure, results, discussion, and conclusions. A science laboratory experiment isn't truly complete until you've written the lab report. You may have taken excellent notes in your laboratory notebook, but it isn't the same as a lab report. The lab report format is designed to ...

  14. Scientific Lab Reports

    Writing a Lab Report. Writing a scientific lab report is significantly different from writing for other classes like philosophy, English, and history. The most prominent form of writing in biology, chemistry, and environmental science is the lab report, which is a formally written description of results and discoveries found in an experiment.

  15. LabCheck : Improving your lab report

    A good Abstract is a miniature version of the lab report in one concise paragraph and labeled Abstract. If you are not sure what should be included in each summary sentence, use the following list as a guide: Introduction: main objective(s) of lab; hypothesis; Methods: a quick description of the procedure

  16. Scientific Reports

    This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach this writing situation ...

  17. Student Tutorial: Introduction to Writing Lab Reports

    An effective introduction to a lab report typically performs the following tasks, generally in the order presented: 1. it establishes the learning context for the lab by: a. saying what the lab is about, that is, what scientific concept (theory, principle, procedure, etc.)Ý the researcher is supposed to be learning about by doing the lab; and. b.

  18. Science: Lab report

    A science lab report is a structured way of communicating the outcomes of your practical work. The structure of a typical lab report includes the following sections: Introduction - Why you conducted the practical work, and indicate your aim, hypothesis or research question. Method - How you conducted the practical work and how any data ...

  19. 9.3: Lab Report

    Apply what you learned in the lab to explain why it is said that marine organisms, which live in saline environments, literally live in a desert environment. This page titled 9.3: Lab Report is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Darcy Ernst, May Chen, Katie Foltz, and Bridget Greuel ( Open Educational ...

  20. How to Write a Lab Report About Titration

    The titre is calculated by subtracting the initial volume from the final volume. To indicate precision, write all your results in cubic centimeters to two decimal places, adding a zero to the end of the number if necessary. Most standard burettes allow measurement to the nearest 0.05 cubic centimeters. Include all your repeat readings in the ...

  21. How to Write a Lab Report—Basic Parts and Steps

    Hannah Skaggs. Hannah, a writer and editor since 2017, specializes in clear and concise academic and business writing. She has mentored countless scholars and companies in writing authoritative and engaging content. Learn all you need to know to write a standout lab report. We've got you covered on everything from comprehending the components ...

  22. Lab 15

    Lab Report: Arthropod Diversity / Intermediate Disturbance hypothesis (IDH) Objective The objective of this assignment is to give you a guided experience with reporting scientific results in a written format.

  23. Aliens could be "walking among us" on Earth, Harvard researchers

    Researcher shares cryptoterrestrial hypothesis 13:35. ... A Pentagon report released this year says there's no evidence that any UAP sighting "represented extraterrestrial technology." And while ...