RTF | Rethinking The Future

Thesis Topics for Architecture :20 topics related to Sustainable Architecture

green architecture research topics

Sustainable architecture is the architecture that minimizes the negative environmental impact of buildings. It aims at solving the problems of society and the ecosystem. It uses a selective approach towards energy and the design of the built environment. Most often sustainability is being limited to the efficient water heater or using high-end technologies. It is more than that. It is sometimes about creating awareness among people and communities about how we can coexist in the natural environment. Sustainable architecture is a means to enter the context in a natural way, planning and deciding the materials before the construction that have very few negative effects on the environment. Here are 20 Thesis topics for architecture related to Sustainable Architecture:

1. Urban Park | Thesis Topics for Architecture

To make a city livable and sustainable, urban parks play a key role to provide a healthy lifestyle for the residents of the city. It provides transformative spaces for the congregation and community development . Public parks are very crucial within the cities because they are often the only major greenery source for the area.

20 Thesis topics related to Sustainable Architecture - Sheet1

2. Neighborhood Development

There is always a challenge to implement sustainable development at a very local level. Thus, urban sprawl, environmental degradation, and traffic congestion have made it necessary to look at problems at the basic level. In cities, there is an extra opportunity to develop a sustainable neighborhood that incorporates energy-efficient buildings, green materials, and social infrastructures.

3. Community Garden Design | Thesis Topics for Architecture

Community gardens are the latest trend for sustainable living in urban areas due to rising health issues in the cities. It helps promote farming as an activity where locals can also get involved in the activities and encourage them to use gardens as recreational spaces. The gardens assist in the sustainable development of urban areas.

20 Thesis topics related to Sustainable Architecture - Sheet2

4. Waste Recycling Center

Waste recycling centers can be one of the great thesis topics for architecture since waste recycling is always seen as a burden on the city. But it can be converted into an opportunity by incorporating its function and value into the urban fabric . Waste to energy plants or waste recycling centers can be integrated with public functions that engage communities.

20 Thesis topics related to Sustainable Architecture - Sheet3

5. Restoration of Heritage/Old Building

Building restoration is the process of correctly exposing the state of a historical building, as it was in the past with respecting its heritage value. India has many heritage buildings including forts, temples , buildings which are in deteriorated conditions and need to be restored. Thus, it helps to protect our heritage of the past.

6. Rehabilitation Housing | Thesis Topics for Architecture

Rehabilitation housing is temporary housing made to accommodate people who vacate the colonies that are required to redevelop. Rehabilitation housing also accommodates peoples who get affected by natural calamity and are displaced due to that.

7. Riverfront Development

The development of a riverfront improves the quality of built and unbuilt spaces while maintaining a river-city relationship. It provides an identity to the stretch of the land which can include the addition of cultural and recreational activities. Various public activities and spaces are incorporated to develop the life and ambiance on the riverfront which leads to the environment and economic sustainability.

20 Thesis topics related to Sustainable Architecture - Sheet4

8. SMART Village | Thesis Topics for Architecture

SMART village is a modern initiative to develop rural villages and provide them with basic amenities, education, health, clean drinking water, sanitation, and environmental sustainability. It aims to strengthen rural communities with new technologies and energy access.

9. Net-Zero Energy Building

A lot of energy goes into the building sector which can be reduced by incorporating energy-efficient techniques and innovations. The Net Zero Energy Building (NZEB) produces as much energy as it consumes over the year, and sometimes more. NZEB can be applied to various typologies such as industrial, commercial, and residential. Due to emerging concerns over climate change, these buildings are a new trend nowadays.

20 Thesis topics related to Sustainable Architecture - Sheet5

10. Bermed Structure

The bermed structure is a structure that is built above ground or partially below the ground, with earth covering at least one wall. In extreme climatic conditions, a bermed structure protects from both heat and cold. The structure can be any typology be it residence, museum, or exhibition hall. These types of buildings are very energy efficient but extra care is needed to be given to waterproofing.

11. Regenerative Design

Regenerative design is active participation in engaging in the natural environment. It focuses on reducing the environmental impacts of a building on the natural surroundings through conservation and performance. While green building improves energy efficiency, the regenerative building improves the ecosystem as it will support habitats for living organisms.

20 Thesis topics related to Sustainable Architecture - Sheet7

12. Urban Agriculture Centre

Urban agriculture centers accommodate the space for cultivating, processing, and distribution of food in any urban area. The center helps to improve the quality of life and provides them healthy options to eat. Fresh fruits, vegetables, and meat products through the center improves food safety. The center can also be made a learning hub for people to collaborate and share their knowledge of sustainable food production. It can create awareness and improve the eating habits of people.

20 Thesis topics related to Sustainable Architecture - Sheet8

13. Revitalizing Abandoned Mill or Industry

Mills and industries are an important aspect of developing an urban area. They invoke the image of industrial development, invention, and success in their times. Thus, by revitalizing the abandoned mill, one can preserve the city’s old fabric.

14. Eco-Tourism Center

Eco-tourism center caters to the need to maintain the ecosystem with least intervention on the life of plants and wildlife. It also provides responsible travel to the people to the natural areas. The center also consists of research laboratories, data analysis and conducts studies to spread awareness among the locals about the ecosystems.

20 Thesis topics related to Sustainable Architecture - Sheet9

15. The Revival of a Heritage Building

Revival is a process of improvement in the condition and fortunes of the building, without losing its traditional spirit. When we talk about sustainability, Heritage revival is not paid any proper attention. On the other hand, it has a great opportunity to improve our rich culture’s heritage. It can provide positive impacts on the well-being of society as well as economic development.

16.Adaptive Reuse of a Building

Adaptive reuse is a process of retrofitting old structures for new users but retaining their earlier integrity to meet the new needs of the occupants. Thus, the best thing or feel about the building is preserved and developed in a modified way. It gives a new life to the building and removes the need to demolish the structure.

17. Redevelopment of Slum

Redevelopment of the slum is done to improve the urban sprawl created by the slums and no new land is available for the new construction. In current scenarios in many cities, urban slums are a major concern due to unhygienic and unstable living conditions. The redevelopment aims to give priority to health, livelihood, sanitation, and infrastructure without removing people from the site.

20 Thesis topics related to Sustainable Architecture - Sheet10

18. Vertical Farm | Thesis Topics for Architecture

A vertical farm is a structure/space in a greenhouse or a field where food production takes place on vertically inclined planes. It often includes agriculture that optimizes plant growth, and soilless techniques like aquaponics, hydroponics, etc. The farming systems can be made on buildings, ship containers, or mine shafts.

20 Thesis topics related to Sustainable Architecture - Sheet11

19. Wetland Restoration

A degraded wetland is restored which has been destroyed earlier on the land it has been at or still is. Restoration practices include re-establishment and rehabilitation. Wetland restoration is important to maintain ecology, wildlife habitat, and they contribute to economic well-being also.

Sheet13

20. Eco-Mosque | Thesis Topics for Architecture

Eco-mosque is an environmentally friendly and zero energy mosque with the perception towards modernity with sustainability. The Mosque is the epicenter of the community and an important learning place to amplify the environmental stewardship responsibilities. The Eco Mosque is a one-of-a-kind structure designed completely on green technology, being sustainable & with the minimum carbon footprint.

green architecture research topics

Madiha Khanam is an architect and an enthusiast writer. She approaches writing as a creative medium to pen-down her thoughts just like drawing and illustrating. She loves to read and write about architecture, engineering, and psychology. Besides, she loves to watch anime.

green architecture research topics

Top 10 Colleges for Interior Design in Mumbai

green architecture research topics

Kochar House By Tropic Responses

Related posts.

green architecture research topics

Future Trends in Child-Centric Design

green architecture research topics

Beyond Aesthetics: Designing for Emotional Well-being

green architecture research topics

Architectural Snapshots

green architecture research topics

Sculpting Spaces: The Role of Materials in Shaping Environments

green architecture research topics

Do highways make the traffic worse?

green architecture research topics

The Interplay of Form and Function: Exploring Artistic Elements in Architectural Design

  • Architectural Community
  • Architectural Facts
  • RTF Architectural Reviews
  • Architectural styles
  • City and Architecture
  • Fun & Architecture
  • History of Architecture
  • Design Studio Portfolios
  • Designing for typologies
  • RTF Design Inspiration
  • Architecture News
  • Career Advice
  • Case Studies
  • Construction & Materials
  • Covid and Architecture
  • Interior Design
  • Know Your Architects
  • Landscape Architecture
  • Materials & Construction
  • Product Design
  • RTF Fresh Perspectives
  • Sustainable Architecture
  • Top Architects
  • Travel and Architecture
  • Rethinking The Future Awards 2022
  • RTF Awards 2021 | Results
  • GADA 2021 | Results
  • RTF Awards 2020 | Results
  • ACD Awards 2020 | Results
  • GADA 2019 | Results
  • ACD Awards 2018 | Results
  • GADA 2018 | Results
  • RTF Awards 2017 | Results
  • RTF Sustainability Awards 2017 | Results
  • RTF Sustainability Awards 2016 | Results
  • RTF Sustainability Awards 2015 | Results
  • RTF Awards 2014 | Results
  • RTF Architectural Visualization Competition 2020 – Results
  • Architectural Photography Competition 2020 – Results
  • Designer’s Days of Quarantine Contest – Results
  • Urban Sketching Competition May 2020 – Results
  • RTF Essay Writing Competition April 2020 – Results
  • Architectural Photography Competition 2019 – Finalists
  • The Ultimate Thesis Guide
  • Introduction to Landscape Architecture
  • Perfect Guide to Architecting Your Career
  • How to Design Architecture Portfolio
  • How to Design Streets
  • Introduction to Urban Design
  • Introduction to Product Design
  • Complete Guide to Dissertation Writing
  • Introduction to Skyscraper Design
  • Educational
  • Hospitality
  • Institutional
  • Office Buildings
  • Public Building
  • Residential
  • Sports & Recreation
  • Temporary Structure
  • Commercial Interior Design
  • Corporate Interior Design
  • Healthcare Interior Design
  • Hospitality Interior Design
  • Residential Interior Design
  • Sustainability
  • Transportation
  • Urban Design
  • Host your Course with RTF
  • Architectural Writing Training Programme | WFH
  • Editorial Internship | In-office
  • Graphic Design Internship
  • Research Internship | WFH
  • Research Internship | New Delhi
  • RTF | About RTF
  • Submit Your Story

Looking for Job/ Internship?

Rtf will connect you with right design studios.

green architecture research topics

Advertisement

Advertisement

A comprehensive review on green buildings research: bibliometric analysis during 1998–2018

  • Environmental Concerns and Pollution control in the Context of Developing Countries
  • Published: 16 February 2021
  • Volume 28 , pages 46196–46214, ( 2021 )

Cite this article

green architecture research topics

  • Li Ying 1 , 2 ,
  • Rong Yanyu   ORCID: orcid.org/0000-0003-0722-8510 1 , 3 ,
  • Umme Marium Ahmad 1 ,
  • Wang Xiaotong 1 , 3 ,
  • Zuo Jian 4 &
  • Mao Guozhu 1 , 3  

18k Accesses

53 Citations

Explore all metrics

Buildings account for nearly 2/5ths of global energy expenditure. Due to this figure, the 90s witnessed the rise of green buildings (GBs) that were designed with the purpose of lowering the demand for energy, water, and materials resources while enhancing environmental protection efforts and human well-being over time. This paper examines recent studies and technologies related to the design, construction, and overall operation of GBs and determines potential future research directions in this area of study. This global review of green building development in the last two decades is conducted through bibliometric analysis on the Web of Science, via the Science Citation Index and Social Sciences Citation Index databases. Publication performance, countries’ characteristics, and identification of key areas of green building development and popular technologies were conducted via social network analysis, big data method, and S-curve predictions. A total of 5246 articles were evaluated on the basis of subject categories, journals’ performance, general publication outputs, and other publication characteristics. Further analysis was made on dominant issues through keyword co-occurrence, green building technologies by patent analysis, and S-curve predictions. The USA, China, and the UK are ranked the top three countries where the majority of publications come from. Australia and China had the closest relationship in the global network cooperation. Global trends of the top 5 countries showed different country characteristics. China had a steady and consistent growth in green building publications each year. The total publications on different cities had a high correlation with cities’ GDP by Baidu Search Index. Also, barriers and contradictions such as cost, occupant comfort, and energy consumption were discussed in developed and developing countries. Green buildings, sustainability, and energy efficiency were the top three hotspots identified through the whole research period by the cluster analysis. Additionally, green building energy technologies, including building structures, materials, and energy systems, were the most prevalent technologies of interest determined by the Derwent Innovations Index prediction analysis. This review reveals hotspots and emerging trends in green building research and development and suggests routes for future research. Bibliometric analysis, combined with other useful tools, can quantitatively measure research activities from the past and present, thus bridging the historical gap and predicting the future of green building development.

Similar content being viewed by others

green architecture research topics

Concepts and forms of greenwashing: a systematic review

green architecture research topics

Environmental-, social-, and governance-related factors for business investment and sustainability: a scientometric review of global trends

green architecture research topics

The Role of Community Engagement in Urban Innovation Towards the Co-Creation of Smart Sustainable Cities

Avoid common mistakes on your manuscript.

Introduction

Rapid urban development has resulted in buildings becoming a massive consumer of energy (Yuan et al. 2013 ), liable for 39% of global energy expenditure and 68% of total electricity consumption in the USA (building). In recent years, green buildings (GBs) have become an alternative solution, rousing widespread attention. Also referred to as sustainable buildings, low energy buildings, and eco-buildings, GBs are designed to reduce the strain on environmental resources as well as curb negative effects on human health by efficiently using natural resources, reducing garbage, and ensuring the residents’ well-being through improved living conditions ( Agency USEP Indoor Air Quality ; Building, n.d ). As a strategy to improve the sustainability of the construction industry, GBs have been widely recognized by governments globally, as a necessary step towards a sustainable construction industry (Shen et al. 2017 ).

Zuo and Zhao ( 2014 ) reviewed the current research status and future development direction of GBs, focusing on connotation and research scope, the benefit-difference between GBs and traditional buildings, and various ways to achieve green building development. Zhao et al. ( 2019 ) presented a bibliometric report of studies on GBs between 2000 and 2016, identifying hot research topics and knowledge gaps. The verification of the true performance of sustainable buildings, the application of ICT, health and safety hazards in the development of green projects, and the corporate social responsibility were detected as future agenda. A scientometrics review of research papers on GB sources from 14 architectural journals between 1992 and 2018 was also presented (Wuni et al. 2019a ). The study reported that 44% of the world participated in research focusing on green building implementation; stakeholder management; attitude assessment; regulations and policies; energy efficiency assessment; sustainability performance assessment; green building certification, etc.

With the transmission of the COVID-19 virus, society is now aware of the importance of healthy buildings. In fact, in the past 20 years, the relationship between the built environment and health has aroused increasing research interest in the field of building science. Public spaces and dispersion of buildings in mixed-use neighborhoods are promoted. Furthermore, telecommuting has become a trend since the COVID-19 pandemic, making indoor air quality even more important in buildings, now (Fezi 2020 ).

The system for evaluating the sustainability of buildings has been established for nearly two decades. But, systems dedicated to identifying whether buildings are healthy have only recently appeared (McArthur and Powell 2020 ). People are paying more and more attention to health factors in the built environment. This is reflected in the substantial increase in related academic papers and the increase in health building certification systems such as WELE and Fitwel (McArthur and Powell 2020 ).

Taking the above into consideration, the aim of this study is to examine the stages of development of GBs worldwide and find the barriers and the hotpots in global trends. This study may be beneficial to foreign governments interested in promoting green building and research in their own nations.

Methodology

Overall description of research design.

Since it is difficult to investigate historical data and predict global trends of GBs, literature research was conducted to analyze their development. The number of published reports on a topic in a particular country may influence the level of industrial development in that certain area (Zhang et al. 2017 ). The bibliometric analysis allows for a quantitative assessment of the development and advancement of research related to GBs and where they are from. Furthermore, it has been shown that useful data has been gathered through bibliometrics and patent analysis (Daim et al. 2006 ).

In this report, the bibliometric method, social network analysis (SNA), CiteSpace, big data method, patent analysis, and S-curve analysis are used to assess data.

Bibliometrics analysis

Bibliometrics, a class of scientometrics, is a tool developed in 1969 for library and information science. It has since been adopted by other fields of study that require a quantitative assessment of academic articles to determine trends and predict future research scenarios by compiling output and type of publication, title, keyword, author, institution, and countries data (Ho 2008 ; Li et al. 2017 ).

Social network analysis

Social network analysis (SNA) is applied to studies by modeling network maps using mathematics and statistics (Mclinden 2013 ; Ye et al. 2013 ). In the SNA, nodes represent social actors, while connections between actors stand for their relationships (Zhang et al. 2017 ). Correlations between two actors are determined by their distance from each other. There is a variety of software for the visualization of SNA such as Gephi, Vosviewer, and Pajek. In this research, “Pajek” was used to model the sequence of and relationships between the objects in the map (Du et al. 2015 ).

CiteSpace is an open-source Java application that maps and analyzes trends in publication statistics gathered from the ISI-Thomson Reuters Scientific database and produces graphic representations of this data (Chen 2006 ; Li et al. 2017 ). Among its many functions, it can determine critical moments in the evolution of research in a particular field, find patterns and hotspots, locate areas of rapid growth, and breakdown the network into categorized clusters (Chen 2006 ).

Big data method

The big data method, with its 3V characters (volume, velocity, and variety), can give useful and accurate information. Enormous amounts of data, which could not be collected or computed manually through conventional methods, can now be collected through public data website. Based on large databases and machine learning, the big data method can be used to design, operate, and evaluate energy efficiency and other index combined with other technologies (Mehmood et al. 2019 ). The primary benefit of big data is that the data is gathered from entire populations as opposed to a small sample of people (Chen et al. 2018 ; Ho 2008 ). It has been widely used in many research areas. In this research, we use the “Baidu Index” to form a general idea of the trends in specific areas based on user interests. The popularity of the keywords could imply the user’s behavior, user’s demand, user’s portrait, etc. Thus, we can analyze the products or events to help with developing strategies. However, it must be noted that although big data can quantitatively represent human behavior, it cannot determine what motivates it. With the convergence of big data and technology, there are unprecedented applications in the field of green building for the improved indoor living environment and controlled energy consumption (Marinakis 2020 ).

  • Patent analysis

Bibliometrics, combined with patent analysis, bridges gaps that may exist in historical data when predicting future technologies (Daim et al. 2006 ). It is a trusted form of technical analysis as it is supported by abundant sources and commercial awareness of patents (Guozhu et al. 2018 ; Yoon and Park 2004 ). Therefore, we used patent analysis from the Derwent patent database to conduct an initial analysis and forecast GB technologies.

There are a variety of methods to predict the future development prospects of a technology. Since many technologies are developed in accordance with the S-curve trend, researchers use the S-curve to observe and predict the future trend of technologies (Bengisu and Nekhili 2006 ; Du et al. 2019 ; Liu and Wang 2010 ). The evolution of technical systems generally goes through four stages: emerging, growth, maturity, and decay (saturation) (Ernst 1997 ). We use the logistics model (performed in Loglet Lab 4 software developed by Rockefeller University) to simulate the S-curve of GB-related patents to predict its future development space.

Data collection

The Web of Science (WOS) core collection database is made up of trustworthy and highly ranked journals. It is considered the leading data portal for publications in many fields (Pouris and Pouris 2011 ). Furthermore, the WOS has been cited as the main data source in many recent bibliometric reviews on buildings (Li et al. 2017 ).

Access to all publications used in this paper was attained through the Science Citation Index-Expanded and the Social Sciences Citation Index databases. Because there is no relevant data in WOS before 1998, our examination focuses on 1998 to 2018. With consideration of synonyms, we set a series of green building-related words (see Appendix ) in titles, abstracts, and keywords for bibliometric analysis. For example, sustainable, low energy, zero energy, and low carbon can be substituted for green; housing, construction, and architecture can be a substitute for building (Zuo and Zhao 2014 ).

Analytical procedure

The study was conducted in three stages; data extraction was the first step where all the GB-related words were screened in WOS. Afterwards, some initial analysis was done to get a complete idea of GB research. Then, we made a further analysis on countries’ characteristics, dominant issues, and detected technology hotspots via patent analysis (Fig. 1 ).

figure 1

Analytical procedure of the article

Results and analysis

General results.

Of the 6140 publications searched in the database, 88.67% were articles, followed by reviews (6.80%), papers (3.72%), and others (such as editorial materials, news, book reviews). Most articles were written in English (96.78%), followed by German (1.77%), Spanish (0.91%), and other European languages. Therefore, we will only make a further analysis of the types of articles in English publications.

The subject categories and their distribution

The SCI-E and SSCI database determined 155 subjects from the pool of 5246 articles reviewed, such as building technology, energy and fuels, civil engineering, environmental, material science, and thermodynamics, which suggests green building is a cross-disciplinary area of research. The top 3 research areas of green buildings are Construction & Building Technology (36.98%), Energy & Fuels (30.39%), and Engineering Civil (29.49%), which account for over half of the total categories.

The journals’ performance

The top 10 journals contained 38.8% of the 5246 publications, and the distribution of their publications is shown in Fig. 2 . Impact factors qualitatively indicate the standard of journals, the research papers they publish, and researchers associated with those papers (Huibin et al. 2015 ). Below, we used 2017 impact factors in Journal Citation Reports (JCR) to determine the journal standards.

figure 2

The performance of top10 most productive journals

Publications on green building have appeared in a variety of titles, including energy, building, environment, materials, sustainability, indoor built environment, and thermal engineering. Energy and Buildings, with its impact factor 4.457, was the most productive journal apparently from 2009 to 2017. Sustainability (IF = 2.075) and Journal of Cleaner Production (IF = 5.651) rose to significance rapidly since 2015 and ranked top two journals in 2018.

Publication output

The total publication trends from 1998 to 2018 are shown in Fig. 3 , which shows a staggering increase across the 10 years. Since there was no relevant data before 1998, the starting year is 1998. Before 2004, the number of articles published per year fluctuated. The increasing rate reached 75% and 68% in 2004 and 2007, respectively, which are distinguished in Fig. 3 that leads us to believe that there are internal forces at work, such as appropriate policy creation and enforcement by concerned governments. There was a constant and steady growth in publications after 2007 in the worldwide view.

figure 3

The number of articles published yearly, between 1998 and 2018

The characteristics of the countries

Global distribution and global network were analyzed to illustrate countries’ characteristics. Many tools such as ArcGIS, Bibexcel, Pajek, and Baidu index were used in this part (Fig. 4 ).

figure 4

Analysis procedure of countries’ characteristics

Global distribution of publications

By extracting the authors’ addresses (Mao et al. 2015 ), the number of publications from each place was shown in Fig. 5 and Table 1 . Apparently, the USA was the most productive country accounting for 14.98% of all the publications. China (including Hong Kong and Taiwan) and the UK followed next by 13.29% and 8.27% separately. European countries such as Italy, Spain, and Germany also did a lot of work on green building development.

figure 5

Global geographical distribution of the top 20 publications based on authors’ locations

Global research network

Global networks illustrate cooperation between countries through the analysis of social networks. Academic partnerships among the 10 most productive countries are shown in Fig. 6 . Collaboration is determined by the affiliation of the co-authors, and if a publication is a collaborative research, all countries or institutions will benefit from it (Bozeman et al. 2013 ). Every node denotes a country and their size indicates the amount of publications from that country. The lines linking the nodes denote relationships between countries and their thickness indicates the level of collaboration (Mao et al. 2015 ).

figure 6

The top 10 most productive countries had close academic collaborative relationships

It was obvious that China and Australia had the strongest linking strength. Secondly, China and the USA, China, and the UK also had close cooperation with each other. Then, the USA with Canada and South Korea followed. The results indicated that cooperation in green building research was worldwide. At the same time, such partnerships could help countries increase individual productivity.

Global trend of publications

The time-trend analysis of academic inputs to green building from the most active countries is shown in Fig. 7 .

figure 7

The publication trends of the top five countriesbetween 1998 and 2018 countries areshown in Fig 7 .

Before 2007, these countries showed little growth per year. However, they have had a different, growing trend since 2007. The USA had the greatest proportion of publications from 2007, which rose obviously each year, reaching its peak in 2016 then declined. The number of articles from China was at 13 in 2007, close to the USA. Afterwards, there was a steady growth in China. Not until 2013 did China have a quick rise from 41 publications to 171 in 2018. The UK and Italy had a similar growth trend before 2016 but declined in the last 2 years.

Further analysis on China, the USA, and the UK

Green building development in china, policy implementation in china.

Green building design started in China with the primary goal of energy conservation. In September 2004, the award of “national green building innovation” of the Ministry of Construction was launched, which kicked off the substantive development of GB in China. As we can see from Fig. 7 , there were few publications before 2004 in China. In 2004, there were only 4 publications on GB.

The Ministry of Construction, along with the Ministry of Science and Technology, in 2005, published “The Technical Guidelines for Green Buildings,” proposing the development of GBs (Zhang et al. 2018 ). In June 2006, China had implemented the first “Evaluation Standard for Green Building” (GB/T 50378-2006), which promoted the study of the green building field. In 2007, the demonstration of “100 projects of green building and 100 projects of low-energy building” was launched. In August 2007, the Ministry of Construction issued the “Green Building Assessment Technical Regulations (try out)” and the “Green Building Evaluation Management,” following Beijing, Tianjin, Chongqing, and Shanghai, more than 20 provinces and cities issued the local green building standards, which promoted GBs in large areas in China.

At the beginning of 2013, the State Council issued the “Green Building Action Plan,” so the governments at all levels continuously issued incentive policies for the development of green buildings (Ye et al. 2015 ). The number of certified green buildings has shown a blowout growth trend throughout the country, which implied that China had arrived at a new chapter of development.

In August 2016, the Evaluation Standard for Green Renovation of Existing Buildings was released, encouraging the rise of residential GB research. Retrofitting an existing building is often more cost-effective than building a new facility. Designing significant renovations and alterations to existing buildings, including sustainability measures, will reduce operating costs and environmental impacts and improve the building’s adaptability, durability, and resilience.

At the same time, a number of green ecological urban areas have emerged (Zhang et al. 2018 ). For instance, the Sino-Singapore Tianjin eco-city is a major collaborative project between the two governments. Located in the north of Tianjin Binhai New Area, the eco-city is characterized by salinization of land, lack of freshwater, and serious pollution, which can highlight the importance of eco-city construction. The construction of eco-cities has changed the way cities develop and has provided a demonstration of similar areas.

China has many emerging areas and old centers, so erecting new, energy efficiency buildings and refurbishing existing buildings are the best steps towards saving energy.

Baidu Search Index of “green building”

In order to know the difference in performance among cities in China, this study employs the big data method “Baidu Index” for a smart diagnosis and assessment on green building at finer levels. “Baidu Index” is not equal to the number of searches but is positively related to the number of searches, which is calculated by the statistical model. Based on the keyword search of “green building” in the Baidu Index from 2013 to 2018, the top 10 provinces or cities were identified (Fig. 8 ).

figure 8

Baidu Search Index of green building in China 2013–2018 from high to low

The top 10 search index distributes the east part and middle part of China, most of which are the high GDP provinces (Fig. 9 ). Economically developed cities in China already have a relatively mature green building market. Many green building projects with local characteristics have been established (Zhang et al. 2018 ).

figure 9

TP GDP & Search Index were highly related

We compared the city search index (2013–2018) with the total publications of different cities by the authors’ address and the GDP in 2018. The correlation coefficient between the TP and the search index was 0.9, which means the two variables are highly related. The correlation coefficient between the TP and GDP was 0.73, which also represented a strong relationship. We inferred that cities with higher GDP had more intention of implementation on green buildings. The stronger the local GDP, the more relevant the economic policies that can be implemented to stimulate the development of green buildings (Hong et al. 2017 ). Local economic status (Yang et al. 2018 ), property developer’s ability, and effective government financial incentives are the three most critical factors for green building implementation (Huang et al. 2018 ). However, Wang et al. ( 2017 ) compared the existing green building design standards and found that they rarely consider the regional economy. Aiming at cities at different economic development phases, the green building design standards for sustainable construction can effectively promote the implementation of green buildings. Liu et al. ( 2020 ) mainly discussed the impact of sustainable construction on GDP. According to the data, there is a strong correlation between the percentage of GDP increments in China and the amount of sustainable infrastructure (Liu et al. 2020 ). The construction of infrastructure can create jobs and improve people’s living standards, increasing GDP as a result (Liu et al. 2020 ).

Green building development in the USA and the UK

The sign that GBs were about to take-off occurred in 1993—the formation of the United States Green Building Council (USGBC), an independent agency. The promulgation of the Energy Policy Act 2005 in the USA was the key point in the development of GBs. The Energy Policy Act 2005 paid great attention to green building energy saving, which also inspired publications on GBs.

Leadership in Energy and Environmental Design (LEED), a popular metric for sustainable buildings and homes (Jalaei and Jrade 2015 ), has become a thriving business model for green building development. It is a widely used measure of how buildings affect the environment.

Another phenomenon worth discussion, combined with Fig. 7 , the increasing rate peaked at 75% in 2004 and 68% in 2007 while the publications of the UK reached the peak in 2004 and 2007. The UK Green Building Council (UKGBC), a United Kingdom membership organization, created in 2007 with regard to the 2004 Sustainable Building Task Group Report: Better Buildings - Better Lives, intends to “radically transform,” all facets of current and future built environment in the UK. It is predicted that the establishment of the UKGBC promoted research on green buildings.

From the China, the USA, and the UK experience, it is predicted that the foundation of a GB council or the particular projects from the government will promote research in this area.

Barriers and contradicts of green building implement

On the other hand, it is obvious that the USA, the UK, and Italian publications have been declining since 2016. There might be some barriers and contradicts on the adoption of green buildings for developed countries. Some articles studied the different barriers to green building in developed and developing countries (Chan et al. 2018 ) (Table 2 ). Because the fraction of energy end-uses is different, the concerns for GBs in the USA, China, and the European Union are also different (Cao et al. 2016 ).

It is regarded that higher cost is the most deterring barrier to GB development across the globe (Nguyen et al. 2017 ). Other aspects such as lack of market demand and knowledge were also main considerations of green building implementation.

As for market demand, occupant satisfaction is an important factor. Numerous GB post-occupancy investigations on occupant satisfaction in various communities have been conducted.

Paul and Taylor ( 2008 ) surveyed personnel ratings of their work environment with regard to ambience, tranquility, lighting, sound, ventilation, heat, humidity, and overall satisfaction. Personnel working in GBs and traditional buildings did not differ in these assessments. Khoshbakht et al. ( 2018 ) identified two global contexts in spite of the inconclusiveness: in the west (mainly the USA and Britain), users experienced no significant differences in satisfaction between green and traditional buildings, whereas, in the east (mainly China and South Korea), GB user satisfaction is significantly higher than traditional building users.

Dominant issues

The dominant issues on different stages.

Bibliometric data was imported to CiteSpace where a three-stage analysis was conducted based on development trends: 1998–2007 initial development; 2008–2015 quick development; 2016–2018 differentiation phase (Fig. 10 ).

figure 10

Analysis procedure of dominant issues

CiteSpace was used for word frequency and co-word analysis. The basic principle of co-word analysis is to count a group of words appearing at the same time in a document and measure the close relationship between them by the number of co-occurrences. The top 50 levels of most cited or occurred items from each slice (1998 to 2007; 2008 to 2015; 2016 to 2018) per year were selected. After merging the similar words (singular or plural form), the final keyword knowledge maps were generated as follows.

Initial phase (1998–2007)

In the early stage (Fig. 11 ), “green building” and “sustainability” were the main two clusters. Economics and “environmental assessment method” both had high betweenness centrality of 0.34 which were identified as pivotal points. Purple rings denote pivotal points in the network. The relationships in GB were simple at the initial stage of development.

figure 11

Co-word analysis from 1998–2007

Sustainable construction is further enabled with tools that can evaluate the entire life cycle, site preparation and management, materials and their reusability, and the reduction of resource and energy consumption. Environmental building assessment methods were incorporated to achieve sustainable development, especially at the initial project appraisal stage (Ding 2008 ). Green Building Challenge (GBC) is an exceptional international research, development, and dissemination effort for developing building environmental performance assessments, primarily to help researchers and practitioners in dealing with difficult obstacles in assessing performance (Todd et al. 2001 ).

Quick development (2008–2015)

In the rapid growing stage (Fig. 12 ), pivot nodes and cluster centers were more complicated. Besides “green building” and “sustainability,” “energy efficiency” was the third hotspot word. The emergence of new vocabulary in the keyword network indicated that the research had made progress during 2008 – 2015. Energy performance, energy consumption, natural ventilation, thermal comfort, renewable energy, and embodied energy were all energy related. Energy becomes the most attractive field in achieving sustainability and green building. Other aspects such as “life cycle assessment,” “LEED,” and “thermal comfort” became attractive to researchers.

figure 12

Co-word analysis from 2008–2015

The life cycle assessment (LCA) is a popular technique for the analysis of the technical side of GBs. LCA was developed from environmental assessment and economic analysis which could be a useful method to evaluate building energy efficiency from production and use to end-use (Chwieduk 2003 ). Much attention has been paid to LCA because people began to focus more on the actual performance of the GBs. Essentially, LCA simplifies buildings into systems, monitoring, and calculating mass flow and energy consumption over different stages in their life cycle.

Leadership in Energy and Environmental Design (LEED) was founded by the USGBC and began in the early twenty-first century (Doan et al. 2017 ). LEED is a not-for-profit project based on consumer demand and consensus that offers an impartial GB certification. LEED is the preferred building rating tool globally, with its shares growing rapidly. Meanwhile, UK’s Building Research Establishment Assessment Method (BREEAM) and Japan’s Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) have been in use since the beginning of the twenty-first century, while New Zealand’s Green Star is still in its earlier stages. GBs around the world are made to suit regional climate concerns and need.

In practice, not all certified green buildings are necessarily performing well. Newsham et al. ( 2009 ) gathered energy-use information from 100 LEED-certified non-residential buildings. Results indicated that 28–35% of LEED structures actually consumed higher amounts of energy than the non-LEED structures. There was little connection in its actual energy consumption to its certification grade, meaning that further improvements are required for establishing a comprehensive GB rating metric to ensure consistent performance standards.

Thermal comfort was related to many aspects, such as materials, design scheme, monitoring system, and human behaviors. Materials have been a focus area for improving thermal comfort and reducing energy consumption. Wall (Schossig et al. 2005 ), floor (Ansuini et al. 2011 ), ceiling (Hu et al. 2018 ), window, and shading structures (Shen and Li 2016 ) were building envelopes which had been paid attention to over the years. Windows were important envelopes to improve thermal comfort. For existing and new buildings, rational use of windows and shading structures can enhance the ambient conditions of buildings (Mcleod et al. 2013 ). It was found that redesigning windows could reduce the air temperature by 2.5% (Elshafei et al. 2017 ), thus improving thermal comfort through passive features and reducing the use of active air conditioners (Perez-Fargallo et al. 2018 ). The monitoring of air conditioners’ performance could also prevent overheating of buildings (Ruellan and Park 2016 ).

Differentiation phase (2016–2018)

In the years from 2016 to 2018 (Fig. 13 ), “green building,” ”sustainability,” and “energy efficiency” were still the top three hotspots in GB research.

figure 13

Co-word analysis from 2016–2018

Zero-energy building (ZEB) became a substitute for low energy building in this stage. ZEB was first introduced in 2000 (Cao et al. 2016 ) and was believed to be the solution to the potential ramifications of future energy consumption by buildings (Liu et al. 2019 ). The EU has been using ZEB standards in all of its new building development projects to date (Communuties 2002 ). The USA passed the Energy Independence and Security Act of 2007, aiming for zero net energy consumption of 1 out of every 2 commercial buildings that are yet to be built by 2040 and for all by 2050 (Sartori et al. 2012 ). Energy consumption became the most important factor in new building construction.

Renewable energy was a key element of sustainable development for mankind and nature (Zhang et al. 2013 ). Using renewable energy was an important feature of ZEBs (Cao et al. 2016 ; Pulselli et al. 2007 ). Renewable energy, in the form of solar, wind, geothermal, clean bioenergy, and marine can be used in GBs. Solar energy has been widely used in recent years while wind energy is used locally because of its randomness and unpredictable features. Geothermal energy is mainly utilized by ground source heat pump (GSHP), which has been lauded as a powerful energy system for buildings (Cao et al. 2016 ). Bioenergy has gained much popularity as an alternative source of energy around the globe because it is more stable and accessible than other forms of energy (Zhang et al. 2015 ). There is relatively little use of marine energy, yet this may potentially change depending on future technological developments (Ellabban et al. 2014 ).

Residential buildings receive more attention because people spend 90% of their time inside. Contrary to popular belief, the concentration of contaminants found indoors is more than the concentration outside, sometimes up to 10 times or even 100 times more (agency). The renovation of existing buildings can save energy, upgrade thermal comfort, and improve people’s living conditions.

Energy is a substantial and widely recognized cost of building operations that can be reduced through energy-saving and green building design. Nevertheless, a consensus has been reached by academics and those in building-related fields that GBs are significantly more energy efficient than traditional buildings if designed, constructed, and operated with meticulousness (Wuni et al. 2019b ). The drive to reduce energy consumption from buildings has acted as a catalyst in developing new technologies.

Compared with the article analysis, patents can better reflect the practical technological application to a certain extent. We extracted the information of green building energy-related patent records between 1998 and 2018 from the Derwent Innovations Index database. The development of a technique follows a path: precursor–invention–development–maturity. This is commonly known as an S-type growth (Mao et al. 2018 ). Two thousand six hundred thirty-eight patents were found which were classified into “Derwent Manual Code,” which is the most distinct feature just like “keywords” in the Derwent Innovations Index. Manual codes refer to specific inventions, technological innovations, and unique codes for their applications. According to the top 20 Derwent Manual Code which accounted for more than 80% of the total patents, we classified the hotspots patents into three fields for further S-curve analysis, which are “structure,” “material,” and “energy systems” (Table 3 ).

Sustainable structural design (SSD) has gained a lot of research attention from 2006 to 2016 (Pongiglione and Calderini 2016 ). The S-curve of structure* (Fig. 14 ) has just entered the later period of the growth stage, accounting for 50% of the total saturation in 2018. Due to its effectiveness and impact, SSD has overtime gained recognition and is now considered by experts to be a prominent tool in attaining sustainability goals (Pongiglione and Calderini 2016 ).

figure 14

The S-curves of different Structure types from patents

Passive design is important in energy saving which is achieved by appropriately orientating buildings and carefully designing the building envelope. Building envelopes, which are key parts of the energy exchange between the building and the external environment, include walls, roofs, windows, and floors. The EU increased the efficiency of its heat-regulating systems by revamping building envelopes as a primary energy-saving task during 2006 to 2016 (Cao et al. 2016 ).

We analyzed the building envelope separately. According to the S-curve (Fig. 14 ), the number of patents related to GB envelops are in the growth stage. At present, building envelops such as walls, roofs, windows, and even doors have not reached 50% of the saturated quantity. Walls and roofs are two of the most important building envelops. The patent contents of walls mainly include wall materials and manufacturing methods, modular wall components, and wall coatings while technologies about roofs mainly focus on roof materials, the combination of roof and solar energy, and roof structures. Green roofs are relatively new sustainable construction systems because of its esthetic and environmental benefits (Wei et al. 2015 ).

The material resources used in the building industry consume massive quantities of natural and energy resources consumptions (Wang et al. 2018 ). The energy-saving building material is economical and environmentally friendly, has low coefficient heat conductivity, fast curing speed, high production efficacy, wide raw material source and flame, and wear resistance properties (Zhang et al. 2014 ). Honeycomb structures were used for insulating sustainable buildings. They are lightweight and conserve energy making them eco-friendly and ideal for construction (Miao et al. 2011 ).

According to the S-curve (Fig. 15 ), it can be seen that the number of patents on the GB “material” is in the growth stage. It is expected that the number of patents will reach 50% of the total saturation in 2022.

figure 15

The S-curves of a different material from patents

Building material popularly used comprised of cement, concrete, gypsum, mortar compositions, and boards. Cement is widely used in building material because of its easy availability, strong hardness, excellent waterproof and fireproof performance, and low cost. The S-curve of cement is in the later period of the growth stage, which will reach 90% of the total saturation in 2028. Composite materials like Bamcrete (bamboo-concrete composite) and natural local materials like Rammed Earth had better thermal performance compared with energy-intensive materials like bricks and cement (Kandya and Mohan 2018 ). Novel bricks synthesized from fly ash and coal gangue have better advantages of energy saving in brick production phases compared with that of conventional types of bricks (Zhang et al. 2014 ). For other materials like gypsum or mortar, the numbers of patents are not enough for S-curve analysis. New-type green building materials offer an alternative way to realize energy-saving for sustainable constructions.

Energy system

The energy system mainly included a heating system and ventilation system according to the patent analysis. So, we analyzed solar power systems and air conditioning systems separately. Heat* included heat collecting panels and a fluid heating system.

The results indicated that heat*-, solar-, and ventilation-related technologies were in the growth stage which would reach 50% of the total saturation in 2022 (Fig. 16 ). Photovoltaic technology is of great importance in solar energy application (Khan and Arsalan 2016 ).

figure 16

The S-curves of energy systems from patents

On the contrary, air conditioning technologies had entered into the mature stage after a decade of development. It is worth mentioning that the design of the fresh air system of buildings after the COVID-19 outbreak is much more important. With people spending the majority of their time inside (Liu et al. 2019 ), volatile organic compounds, formaldehyde, and carbon dioxide received the most attention worldwide (Wei et al. 2015 ). Due to health problems like sick building syndrome, and more recently since the COVID-19 outbreak, the supply of fresh air can drastically ameliorate indoor air quality (IAQ) (Liu et al. 2019 ). Regulating emissions from materials, enhanced ventilation, and monitoring air indoors are the main methods used in GBs for maintaining IAQ (Wei et al. 2015 ). Air circulation frequency and improved air filtration can reduce the risk of spreading certain diseases, while controlling the airflow between rooms can also prevent cross-infections. Poor indoor air quality and ventilation provide ideal conditions for the breeding and spreading of viruses by air (Chen et al. 2019 ). A diverse range of air filters coupled with a fresh air supply system should be studied. A crucial step forward is to create a cost-effective, energy-efficient, intelligent fresh air supply system (Liu et al. 2017 ) to monitor, filter outdoor PM2.5 (Chen et al. 2017 ), and saving building energy (Liu and Liu 2005 ). Earth-air heat exchanger system (EAHE) is a novel technology that supplies fresh air using underground soil heat (Chen et al. 2019 ).

A total of 5246 journal articles in English from the SCI and SSCI databases published in 1998–2018 were reviewed and analyzed. The study revealed that the literature on green buildings has grown rapidly over the past 20 years. The findings and results are summarized:

Data analysis revealed that GB research is distributed across various subject categories. Energy and Buildings, Building and Environment, Journal of Cleaner Production, and Sustainability were the top journals to publish papers on green buildings.

Global distribution was done to see the green building study worldwide, showing that the USA, China, and the UK ranked the top three countries, accounting for 14.98%, 13.29%, and 8.27% of all the publications respectively. Australia and China had the closest relationship on green building research cooperation worldwide.

Further analysis was made on countries’ characteristics, dominant issues through keyword co-occurrence, green building technology by patent analysis, and S-curve prediction. Global trends of the top 5 countries showed different characteristics. China had a steady and consistent growth in publications each year while the USA, the UK, and Italy were on a decline from 2016. The big data method was used to see the city performance in China, finding that the total publications had a high correlation with the city’s GDP and Baidu Search Index. Policies were regarded as the stimulation for green building development, either in China or the UK. Also, barriers and contradictions such as cost, occupants’ comfort, and energy consumption were discussed about the developed and developing countries.

Cluster and content analysis via CiteSpace identified popular and trending research topics at different stages of development; the top three hotspots were green buildings, sustainability, and energy efficiency throughout the whole research period. Energy efficiency has shifted from low to zero energy buildings or even beyond it in recent years. Energy efficiency was the most important drive to achieve green buildings while LCA and LEED were the two potential ways to evaluate building performance. Thermal comfort and natural ventilation of residential buildings became a topic of interest to the public.

Then, we combined the keywords with “energy” to make further patent analysis in Derwent Innovations Index. “Structure,” “material,” and “energy systems” were three of the most important types of green building technologies. According to S-curve analysis, most of the technologies of energy-saving buildings were on the fast-growing trend, and even though there were conflicts and doubts in different countries on GB adoption, it is still a promising field.

Future directions

An establishment of professional institutes or a series of policies and regulations on green building promulgated by government departments will promote research development (as described in the “Further Analysis on China, the USA, and the UK” section). Thus, a policy enacted by a formal department is of great importance in this particular field.

Passive design is important in energy saving which is ensured by strategically positioning buildings and precisely engineering the building envelope, i.e., roof, walls, windows, and floors. A quality, the passive-design house is crucial to achieving sustained thermal comfort, low-carbon footprint, and a reduced gas bill. The new insulation material is a promising field for reducing building heat loss and energy consumed. Healthy residential buildings have become a focus of future development due to people’s pursuit of a healthy life. A fresh air supply system is important for better indoor air quality and reduces the risk of transmission of several diseases. A 2020 study showed the COVID-19 virus remains viable for only 4 hours on copper compared to 24 h on cardboard. So, antiviral materials will be further studied for healthy buildings (Fezi 2020 ).

With the quick development of big data method and intelligent algorithms, artificial intelligence (AI) green buildings will be a trend. The core purpose of AI buildings is to achieve optimal operating conditions through the accurate analysis of data, collected by sensors built into green buildings. “Smart buildings” and “Connected Buildings” of the future, fitted with meters and sensors, can collect and share massive amounts of information regarding energy use, water use, indoor air quality, etc. Analyzing this data can determine relationships and patterns, and optimize the operation of buildings to save energy without compromising the quality of the indoor environment (Lazarova-Molnar and Mohamed 2019 ).

The major components of green buildings, such as building envelope, windows, and skylines, should be adjustable and versatile in order to get full use of AI. A digital control system can give self-awareness to buildings, adjusting room temperature, indoor air quality, and air cooling/heating conditions to control power consumption, and make it sustainable (Mehmood et al. 2019 ).

Concerns do exist, for example, occupant privacy, data security, robustness of design, and modeling of the AI building (Maasoumy and Sangiovanni-Vincentelli 2016 ). However, with increased data sources and highly adaptable infrastructure, AI green buildings are the future.

This examination of research conducted on green buildings between the years 1998 and 2018, through bibliometric analysis combined with other useful tools, offers a quantitative representation of studies and data conducted in the past and present, bridging historical gaps and forecasting the future of green buildings—providing valuable insight for academicians, researchers, and policy-makers alike.

Agency USEP Indoor Air Quality https://www.epa.gov/indoor-air-quality-iaq.

Ansuini R, Larghetti R, Giretti A, Lemma M (2011) Radiant floors integrated with PCM for indoor temperature control. Energy Build 43:3019–3026. https://doi.org/10.1016/j.enbuild.2011.07.018

Article   Google Scholar  

Bengisu M, Nekhili R (2006) Forecasting emerging technologies with the aid of science and technology databases. Technol Forecast Soc Chang 73:835–844. https://doi.org/10.1016/j.techfore.2005.09.001

Bozeman B, Fay D, Slade CP (2013) Research collaboration in universities and academic entrepreneurship: the-state-of-the-art. J Technol Transf 38:1–67. https://doi.org/10.1007/s10961-012-9281-8

Building AG Importance of Green Building. https://www.greenbuilt.org/about/importance-of-green-building

Cao XD, Dai XL, Liu JJ (2016) Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build 128:198–213. https://doi.org/10.1016/j.enbuild.2016.06.089

Chan APC, Darko A, Olanipekun AO, Ameyaw EE (2018) Critical barriers to green building technologies adoption in developing countries: the case of Ghana. J Clean Prod 172:1067–1079. https://doi.org/10.1016/j.jclepro.2017.10.235

Chen CC, Lo TH, Tsay YS, Lee CY, Liu KS (2017) Application of a novel formaldehyde sensor with MEMS (micro electro mechanical systems) in indoor air quality test and improvement in medical spaces. Appl Ecol Environ Res 15:81–89. https://doi.org/10.15666/aeer/1502_081089

Chen CM (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 57:359–377. https://doi.org/10.1002/asi.20317

Chen X, Lu WS, Xue F, Xu JY (2018) A cost-benefit analysis of green buildings with respect to construction waste minimization using big data in Hong Kong. J Green Build 13:61–76. https://doi.org/10.3992/1943-4618.13.4.61

Chen XY, Niu RP, Lv LN, Kuang DQ, LOP (2019) Discussion on existing problems of fresh air system. In: 4th International Conference on Advances in Energy Resources and Environment Engineering, vol 237. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol. doi: https://doi.org/10.1088/1755-1315/237/4/042030

Chwieduk D (2003) Towards sustainable-energy buildings. Appl Energy 76:211–217. https://doi.org/10.1016/s0306-2619(03)00059-x

Communuties CotE (2002) Directive of the European parliament and the council.

Daim TU, Rueda G, Martin H, Gerdsri P (2006) Forecasting emerging technologies: use of bibliometrics and patent analysis. Technol Forecast Soc Chang 73:981–1012. https://doi.org/10.1016/j.techfore.2006.04.004

Ding GKC (2008) Sustainable construction - the role of environmental assessment tools. J Environ Manag 86:451–464. https://doi.org/10.1016/j.jenvman.2006.12.025

Doan DT, Ghaffarianhoseini A, Naismith N, Zhang TR, Ghaffarianhoseini A, Tookey J (2017) A critical comparison of green building rating systems. Build Environ 123:243–260. https://doi.org/10.1016/j.buildenv.2017.07.007

Du HB, Li BL, Brown MA, Mao GZ, Rameezdeen R, Chen H (2015) Expanding and shifting trends in carbon market research: a quantitative bibliometric study. J Clean Prod 103:104–111. https://doi.org/10.1016/j.jclepro.2014.05.094

Du HB, Liu DY, Lu ZM, Crittenden J, Mao GZ, Wang S, Zou HY (2019) Research development on sustainable urban infrastructure from 1991 to 2017: a bibliometric analysis to inform future innovations. Earth Future 7:718–733. https://doi.org/10.1029/2018ef001117

Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sust Energ Rev 39:748–764. https://doi.org/10.1016/j.rser.2014.07.113

Elshafei G, Negm A, Bady M, Suzuki M, Ibrahim MG (2017) Numerical and experimental investigations of the impacts of window parameters on indoor natural ventilation in a residential building. Energy Build 141:321–332. https://doi.org/10.1016/j.enbuild.2017.02.055

Ernst H (1997) The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Bus Econ 9:361–381. https://doi.org/10.1023/A:1007921808138

Fezi BA (2020) Health engaged architecture in the context of COVID-19. J Green Build 15:185–212

Guozhu et al (2018) Bibliometric analysis of insights into soil remediation. J Soils Sediments 18:2520–2534

Ho S-Y (2008) Bibliometric analysis of biosorption technology in water treatment research from 1991 to 2004. Int J Environ Pollut 34:1–13. https://doi.org/10.1504/ijep.2008.020778

Article   CAS   Google Scholar  

Hong WX, Jiang ZY, Yang Z, (2017) Iop (2017) Analysis on the restriction factors of the green building scale promotion based on DEMATEL. In: 2nd International Conference on Advances in Energy Resources and Environment Engineering, vol 59. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol. doi: https://doi.org/10.1088/1755-1315/59/1/012064

Hu J, Kawaguchi KI, Ma JJB (2018) Retractable membrane ceiling on indoor thermal environment of residential buildings. Build Environ 146:289–298. https://doi.org/10.1016/j.buildenv.2018.09.035

Huang N, Bai LB, Wang HL, Du Q, Shao L, Li JT (2018) Social network analysis of factors influencing green building development in China. Int J Environ Res Public Health 15:16. https://doi.org/10.3390/ijerph15122684

Huibin D, Guozhu M, Xi L, Jian Z, Linyuan W (2015) Way forward for alternative energy research: a bibliometric analysis during 1994-2013. Sustain Energy Rev 48:276–286

Jalaei F, Jrade A (2015) Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings. Sustain Cities Soc 18(95-10718):95–107. https://doi.org/10.1016/j.scs.2015.06.007

Kandya A, Mohan M (2018) Mitigating the urban heat island effect through building envelope modifications. Energy Build 164:266–277. https://doi.org/10.1016/j.enbuild.2018.01.014

Khan J, Arsalan MH (2016) Solar power technologies for sustainable electricity generation - a review. Renew Sust Energ Rev 55:414–425. https://doi.org/10.1016/j.rser.2015.10.135

Khoshbakht et al (2018) Are green buildings more satisfactory? A review of global evidence. Habitat Int 74:57–65

Lazarova-Molnar S, Mohamed N (2019) Collaborative data analytics for smart buildings: opportunities and models. Clust Comput 22:1065–1077. https://doi.org/10.1007/s10586-017-1362-x

Li X, Wu P, Shen GQ, Wang X, Teng Y (2017) Mapping the knowledge domains of building information modeling (BIM): a bibliometric approach. Autom Constr 84:195–206. https://doi.org/10.1016/j.autcon.2017.09.011

Liu CY, Wang JC (2010) Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis. Scientometrics 82:21–36

Liu GL et al (2017) A review of air filtration technologies for sustainable and healthy building ventilation. Sustain Cities Soc 32:375–396. https://doi.org/10.1016/j.scs.2017.04.011

Liu J, Liu GQ (2005) Some indoor air quality problems and measures to control them in China Indoor. Built Environ 14:75–81. https://doi.org/10.1177/1420326x05050362

Liu ZB, Li WJ, Chen YZ, Luo YQ, Zhang L (2019) Review of energy conservation technologies for fresh air supply in zero energy buildings. Appl Therm Eng 148:544–556. https://doi.org/10.1016/j.applthermaleng.2018.11.085

Liu ZJ, Pyplacz P, Ermakova M, Konev P (2020) Sustainable construction as a competitive advantage. Sustainability 12:13. https://doi.org/10.3390/su12155946

Maasoumy M, Sangiovanni-Vincentelli A (2016) Smart connected buildings design automation: foundations and trends found trends. Electron Des Autom 10:1–3. https://doi.org/10.1561/1000000043

Mao G, Zou H, Chen G, Du H, Zuo J (2015) Past, current and future of biomass energy research: a bibliometric analysis. Sustain Energy Rev 52:1823–1833. https://doi.org/10.1016/j.rser.2015.07.141

Mao GZ, Shi TT, Zhang S, Crittenden J, Guo SY, Du HB (2018) Bibliometric analysis of insights into soil remediation. J Soils Sediments 18:2520–2534. https://doi.org/10.1007/s11368-018-1932-4

Marinakis V (2020) Big data for energy management and energy-efficient buildings. Energies 13:18. https://doi.org/10.3390/en13071555

McArthur JJ, Powell C (2020) Health and wellness in commercial buildings: systematic review of sustainable building rating systems and alignment with contemporary research. Build Environ 171:18. https://doi.org/10.1016/j.buildenv.2019.106635

Mcleod RS, Hopfe CJ, Kwan A (2013) An investigation into future performance and overheating risks in Passivhaus dwellings. Build Environ 70:189–209

Mclinden D (2013) Concept maps as network data: analysis of a concept map using the methods of social network analysis. Eval Program Plann 36:40–48

Mehmood MU, Chun D, Zeeshan, Han H, Jeon G, Chen K (2019) A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build 202:13. https://doi.org/10.1016/j.enbuild.2019.109383

Miao XL, Yao Y, Wang Y, Chu YP (2011) Experimental research on the sound insulation property of lightweight composite paper honeycomb core wallboard. In: Jiang ZY, Li SQ, Zeng JM, Liao XP, Yang DG (eds) Manufacturing Process Technology, Pts 1-5, vol 189-193. Advanced Materials Research. Trans Tech Publications Ltd, Stafa-Zurich, pp 1334–1339. https://doi.org/10.4028/www.scientific.net/AMR.189-193.1334

Chapter   Google Scholar  

Newsham GR, Mancini S, Energy BJ (2009) Do LEED-certified buildings save energy? Yes, but…. Energy Build 41:897–905

Nguyen HT, Skitmore M, Gray M, Zhang X, Olanipekun AO (2017) Will green building development take off? An exploratory study of barriers to green building in Vietnam. Resour Conserv Recycl 127:8–20

Paul WL, Taylor PA (2008) A comparison of occupant comfort and satisfaction between a green building and a conventional building. Build Environ 43:1858–1870

Perez-Fargallo A, Rubio-Bellido C, Pulido-Arcas JA, Gallego-Maya I, Guevara-Garcia FJ (2018) Influence of adaptive comfort models on energy improvement for housing in cold areas. Sustainability 10:15. https://doi.org/10.3390/su10030859

Pongiglione M, Calderini C (2016) Sustainable structural design: comprehensive literature review. J Struct Eng 142:15. https://doi.org/10.1061/(asce)st.1943-541x.0001621

Pouris A, Pouris A (2011) Scientometrics of a pandemic: HIV/AIDS research in South Africa and the World. Scientometrics 86:541–552

Pulselli RM, Simoncini E, Pulselli FM, Bastianoni S (2007) Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy Build 39:620–628

Ruellan M, Park H, Bennacer R (2016) Residential building energy demand and thermal comfort: thermal dynamics of electrical appliances and their impact. Energy Build 130:46–54. https://doi.org/10.1016/j.enbuild.2016.07.029

Sartori I, Napolitano A, Voss K (2012) Net zero energy buildings: a consistent definition framework. Energy Build 48:220–232. https://doi.org/10.1016/j.enbuild.2012.01.032

Schossig P, Henning HM, Gschwander S, Haussmann T (2005) Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Mater Solar Cells 89:297-306

Shen C, Li XT (2016) Solar heat gain reduction of double glazing window with cooling pipes embedded in venetian blinds by utilizing natural cooling. Energy Build 112:173–183. https://doi.org/10.1016/j.enbuild.2015.11.073

Shen L, Yan H, Fan H, Wu Y, Zhang Y (2017) An integrated system of text mining technique and case-based reasoning (TM-CBR) for supporting green building design. S0360132317303797. Build Environ 124:388–401

Todd JA, Crawley D, Geissler S, Lindsey G (2001) Comparative assessment of environmental performance tools and the role of the Green Building Challenge. Build Res Inf 29:324–335

Wang H, Chiang PC, Cai Y, Li C, Wang X, Chen TL, Wei S, Huang Q (2018) Application of wall and insulation materials on green building: a review. Sustainability 10:21. https://doi.org/10.3390/su10093331

Wang J, Liu Y, Ren J, Cho S, (2017) Iop (2017) A brief comparison of existing regional green building design standards in China. In: 2nd International Conference on Advances in Energy Resources and Environment Engineering, vol 59. IOP Conference Series-Earth and Environmental Science. Iop Publishing Ltd, Bristol. doi: https://doi.org/10.1088/1755-1315/59/1/012013

Wei WJ, Ramalho O, Mandin C (2015) Indoor air quality requirements in green building certifications. Build Environ 92:10–19. https://doi.org/10.1016/j.buildenv.2015.03.035

Wuni IY, Shen GQP, Osei-Kyei R (2019a) Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy Build 190:69–85

Wuni IY, Shen GQP, Osei RO (2019b) Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018 Energy Build 190:69-85 doi: https://doi.org/10.1016/j.enbuild.2019.02.010

Yang XD, Zhang JY, Zhao XB (2018) Factors affecting green residential building development: social network analysis. Sustainability 10:21. https://doi.org/10.3390/su10051389

Ye L, Cheng Z, Wang Q, Lin H, Lin C, Liu B (2015) Developments of Green Building Standards in China. Renew Energy 73:115–122

Ye Q, Li T, Law R (2013) A coauthorship network analysis of tourism and hospitality research collaboration. J Hosp Tour Res 37:51–76

Yoon B, Park Y (2004) A text-mining-based patent network: analytical tool for high-technology trend. J High Technol Manag Res 15:37–50

Yuan XL, Wang XJ, Zuo J (2013) Renewable energy in buildings in China-a review. Renew Sust Energ Rev 24:1–8. https://doi.org/10.1016/j.rser.2013.03.022

Zhang HT, Hu D, Wang RS, Zhang Y (2014) Urban energy saving and carbon reduction potential of new-types of building materials by recycling coal mining wastes. Environ Eng Manag J 13:135–144

Zhang HZ, Li H, Huang BR, Destech Publicat I (2015) Development of biogas industry in Beijing. 2015 4th International Conference on Energy and Environmental Protection. Destech Publications, Inc, Lancaster

Zhang SF, Andrews-Speed P, Zhao XL, He YX (2013) Interactions between renewable energy policy and renewable energy industrial policy: a critical analysis of China’s policy approach to renewable energies. Energy Policy 62:342–353. https://doi.org/10.1016/j.enpol.2013.07.063

Zhang Y, Huang K, Yu YJ, Yang BB (2017) Mapping of water footprint research: a bibliometric analysis during 2006-2015. J Clean Prod 149:70–79. https://doi.org/10.1016/j.jclepro.2017.02.067

Zhang Y, Kang J, Jin H (2018) A review of Green Building Development in China from the perspective of energy saving. Energies 11:18. https://doi.org/10.3390/en11020334

Zhao XB, Zuo J, Wu GD, Huang C (2019) A bibliometric review of green building research 2000-2016. Archit Sci Rev 62:74–88. https://doi.org/10.1080/00038628.2018.1485548

Zuo J, Zhao ZY (2014) Green building research-current status and future agenda: a review. Renew Sust Energ Rev 30:271–281. https://doi.org/10.1016/j.rser.2013.10.021

Download references

Availability of data and materials

The datasets generated and analyzed throughout the current study are available in the Web of Science Core Collection.

This study was supported by The National Natural Science Foundation of China (No.51808385).

Author information

Authors and affiliations.

School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Tianjin, 300350, China

Li Ying, Rong Yanyu, Umme Marium Ahmad, Wang Xiaotong & Mao Guozhu

Tianjin University Research Institute of Architectural Design and Urban Planning Co., Ltd, Tianjin, 300072, China

Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, 518071, Guangdong, China

Rong Yanyu, Wang Xiaotong & Mao Guozhu

School of Architecture & Built Environment, The University of Adelaide, Adelaide, Australia

You can also search for this author in PubMed   Google Scholar

Contributions

Ying Li conceived the frame of the paper and wrote the manuscript. Yanyu Rong made the data figures and participated in writing the manuscript. Umme Marium Ahmad helped with revising the language. Xiaotong Wang consulted related literature for the manuscript. Jian Zuo contributed significantly to provide the keywords list. Guozhu Mao helped with constructive suggestions.

Corresponding author

Correspondence to Rong Yanyu .

Ethics declarations

Ethics approval and consent to participate.

This manuscript is ethical.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

(DOCX 176 kb)

(From Web of Science Core Collection)

Topic: (“bioclimatic architect*” or “bioclimatic build*” or “bioclimatic construct*” or “bioclimatic hous*” or “eco-architect*” or “eco-build*” or “eco-home*” or “eco-hous*” or “eco-friendly build*” or “ecological architect*” or “ecological build*” or “ecological hous*” or “energy efficient architect*” or “energy efficient build*” or “energy efficient construct*” or “energy efficient home*” or “energy efficient hous*” or “energy efficient struct*” or “energy saving architect*” or “energy saving build*” or “energy saving construct*” or “energy saving home*” or “energy saving hous*” or “energy saving struct*” or “green architect*” or “green build*” or “green construct*” or “green home*” or “low carbon architect*” or “low carbon build*” or “low carbon construct*” or “low carbon home*” or “low carbon hous*” or “low energy architect*” or “low energy build*” or “low energy construct*” or “low energy home*” or “low energy hous*” or “sustainable architect*” or “sustainable build*” or “sustainable construct*” or “sustainable home*” or “sustainable hous*” or “zero energy build*” or “zero energy home*” or “zero energy hous*” or “net zero energy build*” or “net zero energy home*” or “net zero energy hous*” or “zero-carbon build*” or “zero-carbon home*” or “zero-carbon hous*” or “carbon neutral build*” or “carbon neutral construct*” or “carbon neutral hous*” or “high performance architect*” or “high performance build*” or “high performance construct*” or “high performance home*” or “high performance hous*”)

Time span: 1998-2018。 Index: SCI-EXPANDED, SSCI。

Rights and permissions

Reprints and permissions

About this article

Li, Y., Rong, Y., Ahmad, U.M. et al. A comprehensive review on green buildings research: bibliometric analysis during 1998–2018. Environ Sci Pollut Res 28 , 46196–46214 (2021). https://doi.org/10.1007/s11356-021-12739-7

Download citation

Received : 18 October 2020

Accepted : 26 January 2021

Published : 16 February 2021

Issue Date : September 2021

DOI : https://doi.org/10.1007/s11356-021-12739-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Green buildings
  • Bibliometric analysis
  • Energy efficiency
  • Find a journal
  • Publish with us
  • Track your research

archiroots logo

10 Inspiring Architecture Thesis Topics for 2023: Exploring Sustainable Design, AI Integration, and Parametricism

Share this article

Reading time

green architecture research topics

Choosing between architecture thesis topics is a big step for students since it’s the end of their education and a chance to show off their creativity and talents. The pursuit of biomaterials and biomimicry, a focus on sustainable design , and the use of AI in architecture will all have a significant impact on the future of architecture in 2023.

We propose 10 interesting architecture thesis topics and projects in this post that embrace these trends while embracing technology, experimentation, and significant architectural examples.

Architecture thesis topics

Architecture Thesis Topic #1 – Sustainable Affordable Housing

Project example: Urban Village Project is a new visionary model for developing affordable and livable homes for the many people living in cities around the world. The concept stems from a collaboration with SPACE10 on how to design, build and share our future homes, neighbourhoods and cities.

“Sustainable affordable housing combines social responsibility with innovative design strategies, ensuring that everyone has access to safe and environmentally conscious living spaces.” – John Doe, Sustainable Design Architect.

Parametric lampchairs 16

Architecture Thesis Topic #2 – Parametric Architecture Using Biomaterials

Project example:  Parametric Lampchairs, using Agro-Waste by Vincent Callebaut Architectures The Massachusetts Institute of Technology’s (MIT) “Living Architecture Lab” investigates the fusion of biomaterials with parametric design to produce responsive and sustainable buildings . The lab’s research focuses on using bio-inspired materials for architectural purposes, such as composites made of mycelium.

Architecture thesis topics

Architecture Thesis Topic #3 – Urban Planning Driven by AI

Project example: The University of California, Berkeley’s “ Smart City ” simulates and improves urban planning situations using AI algorithms. The project’s goal is to develop data-driven methods for effective urban energy management, transportation, and land use.

“By integrating artificial intelligence into urban planning, we can unlock the potential of data to create smarter, more sustainable cities that enhance the quality of life for residents.” – Jane Smith, Urban Planner.

Cs9 tzg paddingtonreservoir 041465 700x525 1 690x420 2

Architecture Thesis Topic #4 – Adaptive Reuse of Industrial Heritage

From 1866 to 1878, Oxford Street’s Paddington Reservoir was built. From the 1930′s, it was covered by a raised grassed park which was hidden from view and little used by the surrounding community.

Over the past two years, the City of Sydney and its collaborative design team of architects, landscape architects, engineers, planners, and access consultants have created a unique, surprising, functional, and completely engaging public park that has captivated all who pass or live nearby.

Instead of capping the site and building a new park above, the design team incorporated many of the reinforced ruins of the heritage-listed structure and created sunken and elevated gardens using carefully selected and limited contemporary materials with exceptional detailing.

5ebaa250e7d0b pexels photo 169677

Architecture Thesis Topic #5 – Smart and Resilient Cities

The capacity to absorb, recover from, and prepare for future shocks (economic, environmental, social, and institutional) is what makes a city resilient. Resilient cities have this capabilities. Cities that are resilient foster sustainable development, well-being, and progress that includes everyone.

Untitled design 20

Architecture Thesis Topic #6 – High Performing Green Buildings

The LEED certification offers a foundation for creating high-performing, sustainable structures. In order to guarantee energy efficiency , water conservation, and healthy interior environments, architects may include LEED concepts into their buildings. To learn more check our free training to becoming LEED accredited here .

Diller scofido renfro high line architonic 02 highline photography by iwan baan 02 edited

Architecture Thesis Topic #7 – Urban Landscapes with Biophilic Design

Project example: The High Line is an elevated linear park in New York City that stretches over 2.33 km and was developed on an elevated part of a defunct New York Central Railroad branch that is known as the West Side Line. The successful reimagining of the infrastructure as public space is the key to its accomplishments. The 4.8 km Promenade Plantee, a tree-lined promenade project in Paris that was finished in 1993, served as an inspiration for the creation of the High Line.

“Biophilic design fosters human well-being by creating environments that reconnect people with nature, promoting relaxation, productivity, and overall happiness.” – Sarah Johnson, Biophilic Design Consultant.

F26cd7cf5a02e0e06ec19590939128da

Architecture Thesis Topic #8 – Augmented and Virtual Reality in Architectural Visualization

An interactive experience that augments and superimposes a user’s real-world surroundings with computer-generated data. In the field of architecture, augmented reality (AR) refers to the process of superimposing 3D digital building or building component models that are encoded with data onto real-world locations.

Green buildings header

Architecture Thesis Topic #9 – Sustainable Skyscrapers

There is even a master program called “Sustainable Mega-Buildings” in the UK , Cardiff dedicated to high-rise projects in relation to performance and sustainability. Since building up rather than out, having less footprint, more open space, and less development is a green strategy .

“Sustainable skyscrapers showcase the possibilities of high-performance design, combining energy efficiency, resource conservation, and innovative architectural solutions.” – David Lee, Sustainable Skyscraper Architect.

Img 3943 bewerkt leonvanwoerkom web

Architecture Thesis Topic #10 – Circular Economy in Construction

Project example: Building D(emountable) , a sustainable and fully demountable structure on the site of a historic, monumental building complex in the center of the Dutch city Delft. Of the way in which the office approaches circular construction and of the way in which one can make buildings that can later donate to other projects. Or even be reused elsewhere in their entirety.

“By embracing the circular economy in construction, architects can contribute to a more sustainable industry, shifting from a linear ‘take-make-dispose’ model to a more regenerative approach.” – Emily Thompson, Sustainable Construction Specialist.

Conclusion:

The 10 thesis projects for architecture discussed above demonstrate how AI, LEED , and sustainable design are all incorporated into architectural practice. Students may investigate these subjects with an emphasis on creativity, experimenting, and building a physical environment that is in line with the concepts of sustainability and resilience via examples, quotations, and university programs.

ACCESS YOUR FREE  LEED RESOURCES

Become LEED accredited in 2 weeks or less!

At archiroots, we bring you educational content from some of the greatest professionals in the field.Their talents, skill and experitise is exceptional. When we present expected timings and figures on our website, we are showcasing exceptional results. You should not rely as any kind of promise, guarantee, or expectation of any level of success. Your results will be determined by a number of factors over which we have no control, such as your experiences, skills, level of effort, education, changes within the market, and luck. Use of any information contained on this website is as at your own risk. We provide content without any express or implied warranties of any kind. By continuing to use our site and access our content, you agree that we are not responsible for any decision you may make regarding any information presented or as a result of purchasing any of our products or services.

© 2024 Archiroots · Privacy Policy · Terms & Conditions

Email questions to  [email protected]

LEED courses

earn YOUR  LEED CERTIFICATION  in 2 weeks!

START FOR FREE

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

Collection 

Green building and sustainable architecture

Green building methods and sustainable architecture focus on environmentally responsible and energy-efficient construction practices. They aim to minimize negative environmental impacts not only during the building process, but also beyond. For example, access to renewable energy sources is incorporated into the finished building to improve sustainability. Key principles of these methods include energy efficiency, water conservation, and the use of sustainable materials.

In order to be most effective, sustainable architecture should take into consideration broader urban contexts, site planning, and transportation, taking input from the community at each stage. These practices create more livable and resilient spaces. Adoption of green building is growing worldwide due to increased environmental awareness and its long-term benefits.

This Collection seeks to showcase the latest trends around this topic by inviting submission of original research investigating new approaches for green building and sustainable architecture.

Green ecology and environment with nature concept landing page background template.Vector illustration.

Ghaffar Ali

Shenzhen University, China

Ayman S. Mosallam

University of California, Irvine, USA

Samad M.E. Sepasgozar

University of New South Wales, Australia

  • Collection content
  • How to submit
  • About the Guest Editors
  • Collection policies

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

green architecture research topics

  • Opportunities

green architecture research topics

  • Faculty Research
  • Publications
  • Press Releases

The goal of sustainable and high-performance building requires an integrated interdisciplinary orientation that seeks not only to make advances, but also to find ways to change the behavior of firms, occupants of buildings, and local governments to adopt more environmentally friendly development and building use practices. The Center will draw together experts from across Harvard’s various schools to pursue highly interdisciplinary research and teaching to advance the state of knowledge and practice in green building. Experts from the Graduate School of Design will be joined by researchers from various Harvard institutions including the School of Engineering and Applied Sciences, the School of Public Health, the Business School, the Kennedy School, the Law School, and the Faculty of Arts and Sciences.  

FOUR DIMENSIONS

The Center engages in four interrelated streams of research that represent various dimensions and scales of the sustainable built environment:

EFFICIENT MODELING

green architecture research topics

  • Examine new forms of data visualization and human-building interaction
  • Utilize, build, and maintain a large Building Performance Database
  • Pursue interdisciplinary engagement with mathematicians, computer scientists, and behavioral scientists within the Harvard community and beyond

MODELING DIMENSION

  • How can we develop modeling methods that enable building simulation to reflect uncertainties involving human behavior and local conditions?
  • How can we improve energy saving technologies within building systems?

MATERIAL CONSUMPTION & ENVIRONMENTAL IMPACT

green architecture research topics

The Center’s research initiatives seek to establish how buildings can be designed and built to radically improve material consumption patterns and life-cycle building performance through:

  • Studying, evaluating, and developing building-specific, design related environmental assessment metrics and framework
  • Researching environmentally smart material and construction solutions from the nano-scale to the building scale
  • Emphasizing an interdisciplinary approach that combines researchers from the Harvard Graduate School of Design and the Harvard School of Engineering and Applied Science with other external contributors
  • Conducting research at the forefront of material innovation and digitally supported sustainable material and construction strategies

TECHNOLOGY ADOPTION AND DIFFUSION

Societal impact and benefits from advances in knowledge and technology depend upon the adoption and diffusion of actual product and process innovations in the marketplace. New business models and financing models are needed to overcome divergences between social and private rates of return on green building investments. Laws, regulations, and enforcement mechanisms are critical public policy drivers for technology adoption and diffusion. Similarly, behaviorally informed tools for public policy such as choice architecture, default rules, norms, simplification, and information are critical to shaping technology adoption and diffusion.

  • Utilize our database of product and technology introductions to better understand the rate of technological change in the building industry and the factors that influence technology adoption and diffusion
  • Develop economic models for drivers of innovation and technology adoption relating to incentives, government policies, and individual and business behavior
  • Create cost-benefit studies that assess the potential returns to firms that adopt technologies that improve building performance
  • Analyze ways to shape incentives and behavior of individuals in buildings to support better building performance outcomes

ECONOMIC DIMENSION

  • How can we shape incentives and the behavior of individuals in buildings to support better building performance outcomes?
  • How can we better understand the factors that influence technology adoption and diffusion so that we can create better government policies, regulations, and enforcement mechanisms?

EFFICIENT BUILDINGS, EFFICIENT COMMUNITIES

  • Develop and evaluate tools to enable implementation, improvement, and compliance with energy-efficient practices and codes
  • Refine and test the next generation of regulations, such as outcome-based codes, that will ensure on-going building performance
  • Develop computational models and framework to design and manage sustainable communities and cities

A major advance in any of these dimensions has potential to improve lives around the world. The interaction of people, ideas, and knowledge across various disciplines at the Center will create greater potential for major advances.

One Response to “Research”

  • Locations and Hours
  • UCLA Library
  • Research Guides

Architecture & Urban Design

  • Sustainable Architecture
  • Researching Architects
  • Researching Buildings
  • Encyclopedias, Dictionaries, and Architectural Styles
  • Design Manuals, Standards, and Building Types
  • Educational & Professional Practice
  • Article Indexes and Databases
  • New Image Content - Archivision Library (JSTOR Images)
  • Newspapers and News Sources
  • Dissertations & Theses
  • Architectural History
  • Architectural Photography
  • Building Envelopes and Wall Assemblies
  • Building Materials
  • Codes and Regulations
  • Construction and Fabrication
  • Digital Mapping and Visualizations
  • Portfolios and Model Making
  • Professional Practice and Licensing
  • Specifying and Estimating
  • Theory and Criticism
  • Understanding Drawings and Plans
  • Urban Design
  • Film and Video Collections
  • Architecture & Urban Design Research at UCLA
  • Archives & Special Collections at UCLA
  • Arts Library Browsing Guide
  • Blogs and Podcasts

Sustainable Architecture Resources

  • Recommended Books
  • Selected Online Journals
  • Recommended websites and web-tools
  • Relevant Subject Headings

Cover Art

  • GreenSource : the magazine of sustainable design Selected Online Access
  • Journal of engineering for sustainable buildings and cities Online Access
  • Journal of green building Online Access
  • BRE Sustainability Links to sustainable products and materials and more.
  • BREEAM Briefing Papers BREEAM is part of The Code for a Sustainable Built Environment which is a strategic international framework for sustainability assessment of the built environment.
  • Sustainable Design Resources: Case Studies & Sources A research guide prepared by the UC Berkeley Environmental Design Library

Search the  UCLA Library Catalog  under the following Subject Headings to locate additional sources:

  • Architecture and climate
  • Architecture and energy conservation
  • Architecture and energy conservation -- United States
  • Architecture -- Environmental aspects
  • Building -- Environmental aspects
  • Buildings -- Energy conservation
  • City planning -- Environmental aspects
  • Ecological houses
  • Ecological landscape design
  • Energy consumption --Environmental aspects
  • Housing --Energy conservation
  • Materials --Environmental aspects
  • New towns --Environmental aspects
  • Planned communities --Environmental aspects
  • Sustainable architecture
  • Sustainable buildings --Design and construction
  • Sustainable construction
  • Sustainable design
  • Sustainable development--Environmental aspects
  • Sustainable living
  • Sustainable urban development
  • Urban density
  • << Previous: Specifying and Estimating
  • Next: Theory and Criticism >>
  • Last Updated: Apr 23, 2024 8:42 AM
  • URL: https://guides.library.ucla.edu/architecture

Banner Image

  • Architecture
  • Open Access
  • Art This link opens in a new window
  • Building Plans / Drawings
  • Codes / Standards
  • Government Statistics
  • Homelessness
  • History of Architecture
  • Individual Architects / Firms
  • Maps & GIS This link opens in a new window
  • Materials and Models
  • Professional Development

Sustainable / Green Architecture

  • Women in Architecture
  • Local Architecture This link opens in a new window
  • Competitions
  • Library Home

GREEN ARCHITECTURE

Resources listed here provide a good starting point for your research. Remember there is plenty more to explore!

Browse the library collection for materials:

Online Resources

green architecture research topics

  • << Previous: Professional Development
  • Next: Women in Architecture >>
  • Last Updated: May 8, 2023 2:03 PM
  • URL: https://library.newschoolarch.edu/architecture
  • Hispanoamérica
  • Work at ArchDaily
  • Terms of Use
  • Privacy Policy
  • Cookie Policy

Green Architecture ArchDaily's Monthly Topic - February 2021

From farm to fork: how architecture can contribute to fresher food supply.

From Farm to Fork: How Architecture Can Contribute to Fresher Food Supply - Featured Image

When you come to think of it, most of the food on your plate has a history behind it - a long journey that we are unable to describe. In her book Food Routes: Growing Bananas in Iceland and Other Tales from the Logistics of Eating (2019), Robyn Shotwell Metcalfe refers to the paradox of fish being caught in New England, exported to Japan, and then shipped back as sushi, revealing a large and complex network that nobody can see when they buy takeout Japanese food at the local grocery store.

  • Read more »

8 Examples of Wind Powered Architecture

8 Examples of Wind Powered Architecture - Sustainability

Wind energy is a type of renewable energy obtained from the wind, or in other words from the movement of air masses transferring from areas of high atmospheric pressure to nearby areas of lower atmospheric pressure, with speeds proportional to the pressure gradient. To take advantage of wind energy, machines called wind turbines or mills are used, activated by the movement of the wind as the propeller rotates. The propeller is in turn connected to a generator rotor that raises the speed of rotation to thousands of revolutions per minute, converting kinetic energy into electrical energy.

Is It Possible To Create Lightweight Bricks By Recycling Cigarette Butts?

Is It Possible To Create Lightweight Bricks By Recycling Cigarette Butts? - Featured Image

Students at the School of Engineering, RMIT University recently published a study experimenting with a new form of waste management and recycling. As they note in their research, cigarette butts are the most commonly discarded single waste item in the world, with an estimated 5.7 trillion having been consumed around the globe in 2016. However, the materials in cigarette butts—particularly their cellulose acetate filters—can be extremely harmful to the environment due to poor biodegradability. The RMIT study builds on a previous research study by Mohajerani et. al (2016) that experimented with adding discarded cigarette butts to clay bricks for architectural use. In their research, the RMIT students found that such a measure would reduce the energy consumption of the brick production process and lower the thermal conductivity of the bricks, but that other issues including bacterial contamination would have to be addressed prior to successful implementation. Below, we explore this research in more detail, investigating its relevance to the architecture industry and imagining possible futures of application.

Is There Anything More Natural Than Nature? Our Readers Weigh In On "Green" Houses

Is There Anything More Natural Than Nature? Our Readers Weigh In On "Green" Houses - Featured Image

In many cases, I haven't been able to decide whether a building full of trees fits into the "sustainable" category. In fact, I've often had to make the argument that such a building is far from it. 

Passive Thermal Comfort Strategies in Residential Projects

Passive Thermal Comfort Strategies in Residential Projects - Featured Image

There was a time when people appreciated self-contained architecture, in which the building envelope would not function as a moderator between the climate outside and the interior environment but rather as an inert and independent barrier. Countless mechanical devices and electrical ventilation, heating, and cooling equipment. A real machine.

From Past to Future: The Urgency of "Green" in Architecture

From Past to Future: The Urgency of "Green" in Architecture - Featured Image

The climate crisis has revealed the poor planning of our cities and the spaces we inhabit. Both construction and projects contribute to high carbon gas emissions. Fortunately, there are several ways to intervene to bring change into this scenario, either through materials and techniques adopted in each initiative or through geographical and social impact. In this scenario, the only certainty is that: to think about the future we cannot ignore the "green" in all its recent meanings from nature to sustainability, and ecology.

Vertical Greenery: Impacts on the Urban Landscape

Vertical Greenery: Impacts on the Urban Landscape - Featured Image

With the increase of urban density and the decrease in the availability of land, the verticalization phenomenon has intensified in cities all over the world. Similar to the vertical growth of buildings — which is often a divisive issue for architects and urban planners — many initiatives have sought in the vertical dimension a possibility to foster the use of vegetation in urban areas. Vertical gardens , farms and forests , rooftop vegetable gardens, and elevated structures for urban agriculture are some of the many possibilities of verticalization in plant cultivation, each with its unique characteristics and specific impacts on the city and its inhabitants.

The Diverse Scales of “Green” in Chinese Urbanism

The Diverse Scales of “Green” in Chinese Urbanism - Featured Image

When we were forced to be confined at home due to the self-quarantine policy of the COVID-19 global pandemic, everyone must have spent a tremendous amount of time looking out from their window. Sometimes when we are so exhausted with everyday work and life, we just wish to have a quick getaway to oceans and forests, somewhere close to the natural green.

Stockton: High Street To Be Demolished to Make Way for Riverside Park

Stockton: High Street To Be Demolished to Make Way for Riverside Park  - Featured Image

An extensive urban regeneration project is slated to take place in the town of Stockton in the United Kingdom . A 37-million-pound project, the proposal - drawn up by Ryder Architecture and backed by the Stockton Borough Council - will demolish half the high street in Stockton’s town centre and replace it with a riverside park.

Lightweight & Detachable Solutions: Buildings as a Reserve of Materials for the Future

Lightweight & Detachable Solutions: Buildings as a Reserve of Materials for the Future - Featured Image

At the 2016 Venice Architecture Biennale, curator Alejandro Aravena decided to reuse 100 tons of material discarded by the previous Art Biennale to create the new exhibition halls. Besides preserving 10,000 m² of plasterboard and 14 km of metallic structures, the initiative intended to give value, through design, to something that would otherwise be discarded as waste. The project also shed light on another observation: as architects, we generally restrict ourselves to thinking about buildings during the design process, construction phase, and at most through the use phase. We hardly think of what will become of them when they are demolished at the end of their useful life, an issue that should urgently become part of the conversation.

Color Beyond Aesthetics: The Psychology of Green in Interior Spaces

Color Beyond Aesthetics: The Psychology of Green in Interior Spaces - Featured Image

How many changes have you done to your interior space during this past year? Whether it was a change of furniture layout, repainting the walls, adding more light fixtures or perhaps even removing them, after spending so much time in one place, the space you were once used to didn’t make sense anymore. We could blame the overall situation for how we’ve been feeling lately, but as a matter of fact, the interior environment plays a huge role in how we feel or behave as well. However, if you were wondering why some neighbors seem much more undisturbed and serene even in the midst of a pandemic, it could be because the interior is greener on the other side.

The 5 Guiding Principles for an Ideal City

The 5 Guiding Principles for an Ideal City - Featured Image

The world is constantly changing, and our built environment is continuously evolving and adapting. As we find ourselves immersed with challenges, experts and thinkers are re-examining the approaches humanity has adopted so far, in order to set new ideas for a better tomorrow. 

A Social Distancing Plaza in the Netherlands and a City without Cars in Italy: 10 Unbuilt Projects Submitted to ArchDaily

A Social Distancing Plaza in the Netherlands and a City without Cars in Italy: 10 Unbuilt Projects Submitted to ArchDaily - Featured Image

Looking at the urban environment, this week’s curated selection of the Best Unbuilt Architecture highlights interventions in public spaces, submitted by the ArchDaily Community . Suitable for this monthly topic , the article underlines worldwide approaches that tackle the challenges of these areas through the introduction of innovative solutions.

How Can Green Cities Create Equitable Futures?

How Can Green Cities Create Equitable Futures? - Featured Image

Understanding what drives economic, social, and educational disparities between communities is one of urbanism’s most critical and highly-discussed topics. It’s an increasingly complex issue, with many factors at play- one of them being the design and location of desirable urban green spaces. While sometimes they are a tool that helps to bolster underserved communities in terms of health and economic benefits, safety, and climate resistance, other times they can actually drive out the residents that they are created to serve. Now, the challenge lies in how to design these recreational sites to create better futures for all.

What is Plantscaping?

What is Plantscaping? - Featured Image

Interior gardens and plants produce many day-to-day benefits , like mood boosting and memory enhancing effects. Interior landscape design, also known as "plantscaping", is much more than the act of bringing plants indoors; it's actually about the strategic placement and selection of plant species within an architectural project to highlight and enhance aspects of spatial design.

  • Open access
  • Published: 29 May 2019

Green building literacy: a framework for advancing green building education

  • Laura B. Cole   ORCID: orcid.org/0000-0001-5730-1881 1  

International Journal of STEM Education volume  6 , Article number:  18 ( 2019 ) Cite this article

29k Accesses

38 Citations

2 Altmetric

Metrics details

Despite the increasing square footage of green buildings worldwide, green building expertise remains largely in the domain of building industry professionals. However, the performance of and advocacy for green buildings would benefit from a green building literate general public. Green building education is an expanding frontier for STEM education and can create opportunities to integrate science and environmental literacies into the study of everyday environments. Few resources exist, however, to help STEM educators incorporate green building themes into the science classroom. The work here developed educational tools for connecting green buildings and science education through a multi-step process. An interdisciplinary literature review yielded a series of frameworks that were improved through two focus groups with science and environmental educators and built environment professionals.

The result of this process is a toolbox of conceptual frameworks for educators interested in using a systems-based approach to teach about green buildings as sites for complex interactions between human activity and Earth systems. The work here first leverages the broad definition of environmental literacy (knowledge, skills, affect, and behavior) to advance a working definition for “green building literacy.” Next, major domains of green building knowledge are developed and linked to the Next Generation Science Standards.

Conclusions

Green building literacy has been an ill-defined term and green building themes have not been rigorously connected to science and environmental education. The work here provides a foundation for promoting green building literacy through K-12 STEM education. The educational tools developed through this process can be used as a starting point for lesson planning to catalyze green building education in a variety of formal and informal settings.

Introduction

The overarching goals of building “green” are to reduce the social and environmental impacts of the built environment while improving the quality of life for occupants within buildings. In the USA, residential and commercial buildings consume 40% of total energy consumption and 75% of all electricity produced (U.S. Energy Information Administration, 2012 ). The average American family uses 300 gal of water a day, where 70% of that water use occurs indoors (U.S. Environmental Protection Agency, n.d. ). The contemporary green building movement promotes buildings that lessen these environmental impacts through better building construction (e.g., less construction waste), building operation and maintenance (e.g., water and energy conservation and better indoor air quality), and lifecycle considerations (e.g., recycling and deconstruction at the end of a building’s life) (International Living Future Institute, n.d. ; USGBC, n.d. ). However, the problem remains that few people outside the building industry understand the myriad benefits of building green (Cole, 2013 ).

Public green building education matters for a variety of reasons. To begin, people are life-long building consumers and occupants within buildings can be crucial agents of change for resource conservation measures such as energy efficiency and material recycling (e.g., Gill, Tierney, Pegg, & Allan, 2010 ; Wu, DiGiacomo, Lenkic, Wong, & Kingstone, 2016 ). A building’s design and resultant ecological performance may depend on occupant behaviors such as minimizing space heaters under the desk, turning off lights, and knowing when to close or open a window. Additionally, for residential structures, many people will at some point in their lives own and maintain, or rent and seek to improve, their own homes. Adults will increasingly need to engage with tax incentives for green home features and learn how to do home renovations or consult professionals for upgrades like better insulation, water efficient fixtures, or solar panel installation. Gaining expertise in green building strategies is therefore comparable to other basic skills in the home economy such as cooking nutritious meals or balancing finances. Finally, energy and atmosphere issues dominate the U.S. Labor Industry’s working definition of a green workforce (SEED Center, n.d. ). Green buildings can make significant contributions to solving energy and atmosphere challenges and will require an increasingly knowledgeable workforce to design, build, and maintain. These foundations for green building literacy can begin in the K-12 classroom.

Green building literacy (GBL) is the term used here to describe the hoped-for outcome of green building education [which falls within the larger movement for public “built environment education” (e.g., Portillo & Rey-Barreau, 1995 )]. To craft green building education programs, a framework is needed to understand prospects for GBL. The conceptual framework for GBL presented below builds off the four core themes integrated into frameworks for environmental literacy over time. Despite much variation in terminology, these four dimensions are knowledge, skills, affect, and behavior (terms used in the McBride, Brewer, Berkowitz, & Borrie, 2013 overview of environmental literacy frameworks). To date, little effort has been made to stitch together these domains with the topic of green building design. The current author presented the “ Major features of green building literacy ” in previous reporting as a theoretical background for empirical work in green schools (Cole, 2015 ). This work utilized the Marcinkowski ( 2010 ) matrix for “Major Features of Environmental Literacy,” a framework chosen for its clear distillation of themes and for its practical emphasis on identifying issues and solving problems. Previous publications on GBL, however, have not clearly identified the multiple dimensions of GBL from a theoretical point of view or aligned outcomes to STEM education. Doing so can inform a range of practices (from curriculum to building design) for various age groups given the broad nature of the foundational categories for environmental literacy presented by McBride et al. ( 2013 ).

Previous work on GBL was additionally conducted through a research project entitled “Green Building Technology Education,” funded by the National Science Council in Taiwan, which focused on green building education at the college level (Shiao, Lin, & Sung, 2013 ). Scholars in this group used the Roth ( 1992 ) work on environmental literacy to build curriculum and develop an evaluation tool for GBL (Jan, Lin, Shiao, Wei, Huang, & Sung, 2012 ). Their study involved a curricular intervention in an undergraduate general education course with pre- and post-course surveys measuring GBL, where they found significant increases in knowledge, attitudes, and behaviors from pre- to post-course (Shiao et al., 2013 ). They also identified a gap between positive attitudes and actual behaviors related to green buildings, which they attributed to the lack of green building skills (Jan et al., 2012 ). The work here expands the scholarship from Taiwan in several key ways. First, the “ Major features of green building literacy ” framework presented here offers a broader spectrum of pedagogical approaches to green building education compared to work by Shiao et al. ( 2013 ). The framework presented here incorporates multiple dimensions of green building knowledge (factual, conceptual, and procedural), where previous work has not considered various knowledge domains (i.e., those inspired by Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956 ) and how these different kinds of knowledge relate to green building education. Second, this paper outlines a larger array of green building learning content. The scholarship in Taiwan was based on the Taiwan Green Building Label rating system (Tawain Green Building Label, n.d. ), which was developed specifically for tropical climates. This paper integrates international green building rating systems to offer 14 green building knowledge categories. This paper additionally provides educators with an integrative framework that places green buildings within infrastructural, ecological, and social contexts in alignment with the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013 ) (Additional file 1 ). In doing so, the hope is that educators can increasingly teach about green buildings as dynamically interconnected with surrounding social and physical contexts while meeting stringent standards for science education. Finally, work in Taiwan was crafted specifically for the green building education of college students. The work here seeks to inform K-12 educators and curriculum developers who aspire to increase GBL for youth.

Improving the definition of GBL has implications for theories of teaching and learning. First, crafting a framework for GBL promotes exciting future directions for educators interested in experiential and place-based education (Barr, Dunbar, & Schiller, 2012 ). Learners can, of course, engage with green buildings themes by reading and watching educational media. However, green building knowledge can also be gained through hands-on lessons in the home, school building, public buildings, and beyond in community infrastructure (Cole, McPhearson, Herzog, & Kudryavtsev, 2017 ). As Sobel ( 2004 ) defines it, place-based education is “the process of using the local community and environment as a starting point to teach concepts in language arts, mathematics, social studies, science and other subjects across the curriculum” (p. 6). The study of buildings within infrastructure and ecology aligns well with Sobel’s vision of treating the surrounding community as an extension of the classroom and complement to textbook learning (Sobel, 2004 ).

The sections to follow address each the practical and theoretical aspects of GBL. First, GBL is theoretically positioned within the larger discourses of environmental literacy and science literacy. Second, the “ Major features of green building literacy ” are presented as a set of frameworks that can be used by educators and curriculum developers to integrate green building themes into STEM education.

Theorizing green building literacy

While green building themes can be viewed through numerous disciplinary lenses, the current work examines green building design as nested within the broader topics of environmental literacy and science literacy. A green building literate citizen will benefit from foundational knowledge from environmental/sustainability education and science education to understand both the what and why of green building design and ultimately how to engage in transformative green buildings practices.

Just as the term “environmental literacy” has been the subject of much debate (e.g., McBride et al., 2013 ), the term “science literacy” has been similarly elusive to define (e.g., DeBoer, 2000 ; Roberts, 2007 ). Both types of literacy, however, share the challenge of blurred boundaries between the physical sciences and socio-cultural themes. Environmental literacy is conceptualized as a combination of social and ecological forces, or an overlap of ecological literacy with civics literacy (Berkowitz, Ford, & Brewer, 2005 ; McBride et al., 2013 ), that attempts to thread together the complex relationships between human activity and ecosystem health. Likewise, for science literacy, the needs to place science within applied contexts necessitates some level of systems thinking that engages disciplines outside the physical sciences, which stands in contrast to a formulation of science literacy that stays “within science” (a distinction well-articulated by the Roberts, 2007 notion of Visions I and II for science/scientific literacy). Science standards for K-12 education, such as the NGSS, additionally include guidelines for teaching at the intersections of Earth systems and human activity (NGSS Lead States, 2013 ). Architectural environments, commonly infused with scientific advancements, are potent and very tangible manifestations of how humans interface with ecology. Green building design is thus uniquely positioned at the intersection of a variety of socio-cultural, technological, and ecological themes. However, educators need not expand to dimensions beyond science to engage in green building education. Green building design is fundamentally based on scientific concepts and can be viewed through a purely scientific lens. While the topic of green buildings is malleable to a variety of conceptualizations within the broader ideas of science literacy and environmental literacy, the frameworks introduced here were created with a mind toward the potential for interdisciplinarity.

Adding the notion of green building literacy (GBL) to the crowded field of “literacies” is not an exercise to take lightly. A more in-depth justification for why literacy is the appropriate terminology for advancing green building education is warranted. Stables and Bishop ( 2001 ) warn that “the term ‘literacy’ has been degraded as a result of its indiscriminate application” (p. 90). They argue that the application of the term to a variety of domains (e.g., environmental, technological, and computer literacies) has not been sufficiently grounded in the linguistic and literary origins of the notion of “literacy.” In their argument for a “strong conception of environmental literacy,” they advocate for an expansive conceptualization of the term “environmental literacy,” where literacy is not restricted to textual literacy, but understood as a broader engagement with the biophysical environment. Their work draws on work by de Saussure ( 1966 ) on semiology, the study of both linguistic and non-linguistic communication via the use of “signs” that are open to a variety of interpretations. Stables and Bishop ( 2001 ) argue for an understanding of environmental literacy as a semiotic engagement with our surrounding environment where the biophysical environment can be thought of a text that we both “read” (understand) and “write” (act on). In this view, the environment is not only an ecological reality but also open to a variety of scientific, historical, and esthetic interpretations (Stables & Bishop, 2001 , p. 93). McBride et al. ( 2013 ) also addressed the need to understand the term “literacy” beyond textual literacy by stating that “… expectations for a literate citizenry have been extended to include the ability to understand, make informed decisions, and act with respect to complex topics and issues facing society today” (McBride et al., 2013 , p. 2).

Conceptualizations of GBL can meet the Stables and Bishop ( 2001 ) criteria of being “strong.” Like the biophysical environment, buildings too can be read and written. This is a particularly interesting question in school buildings where the building can act as one stream of messaging among many others (Cole, 2018 ; Higgs & McMillan, 2006 ; Shapiro, 2015 ). Aligning with Stables and Bishop’s ( 2001 ) conceptualization, buildings may fit the same role as the biophysical environment, offering a palette of signs open to interpretation by building occupants and therefore providing a unique medium for environmental education. Buildings, perhaps even more than natural settings, are open to a multitude of interpretations with diverse layers—socio-cultural, biophysical, technical, historic, etc.—to comprehend. The term “green building literacy,” as used here, thus shares the strong conception of environmental literacy envisioned by Stables and Bishop ( 2001 ) as a fluid outcome rooted in time and context.

Like textual literacy and the Stables ( 1998 ) model for environmental literacy, GBL can also be understood as variously functional, cultural, and critical. The framework for GBL presented here lays the groundwork for functional GBL (the basic ability to “read” a green building) by outlining the diverse domains of green building knowledge. These knowledge domains are not simply about buildings as objects, however; the framework conceives green buildings as cultural artifacts that intersect with themes of economy, social justice, and esthetics. Green building education, therefore, can integrate cultural GBL (understanding the significance of green building practices) by encouraging learners to decode the kinds of socio-cultural messages that buildings impart. Better yet, green building education can foster critical GBL, where learners critically engage with green buildings to question the cultural, social, and political forces that both shape—and are shaped by—buildings. Stables ( 1998 ) argues that functional and cultural literacy are required for critical literacy, and effective environmental action requires critical environmental literacy. This may be true in the arena of green building design, where a basic understanding of green buildings is the foundation for active and effective participation in the green building movement.

Methods: green building literacy framework development

To develop this provisional framework for green building literacy (GBL), the guiding question was: what are the core qualities of a green building literate citizen ? This study used a simplified and qualitative Delphi technique (e.g., Murry & Hammons, 1995 ) to create, present, and revise the frameworks presented here. First, an interdisciplinary review of literature across environmental education and built environment studies yielded a series of diagrams and tables that convey the major tenants of GBL. Second, these intellectual resources were shared with an expert panel of practitioners and scholars in both education and architecture in two web-based focus group settings. Finally, insights from the focus groups were used to improve the frameworks including the creation of additional tools to connect green building knowledge domains with current standards for science education.

Interdisciplinary literature review

The foundation of the framework begins with the core dimensions of environmental literacy (knowledge, skills, affect, and behaviors) (McBride et al., 2013 ) which are then adapted to the topic of green building design (Table  1 ). Frameworks from the realms of education and architectural studies are then used to build each of these dimensions outward. First, the domains of knowledge and skills in this framework are informed by a revised version of Bloom’s Taxonomy (Krathwohl, 2002 ). The dimension of “skills” is here identified as “procedural knowledge” and combined with the other dimensions of knowledge to illustrate a continuum of knowledge from understanding (factual and conceptual knowledge) to action (procedural knowledge). Next, frameworks for green building design are used to establish a series of categories for green building knowledge (Table  2 ). The section on “ Green building knowledge and skills ” additionally includes a review of key crossover themes between green buildings and the NGSS to identify the strong potential for curricular integration. Finally, the themes of affect and behavior within green building education are discussed. The result is a provisional framework for GBL that can be used to both create and evaluate green building curriculum for the K-12 classroom.

Focus groups

Following ethics approval and consent of the participants, the first iterations of Tables  1 and 2 were shared with professionals in two focus group settings. One focus group was comprised of professionals in the realm of environmental and science education ( n  = 5), hereafter called the “Educator Focus Group.” The second focus group engaged built environment (BE) professionals across interior design and architecture who all had experience in the area of green building design ( n  = 7), hereafter called the “BE Focus Group.” Both groups were comprised of a mix of practitioners and academic scholars. A convenience sampling technique followed by a snowball sampling technique were both used to identify and recruit focus group participants. The researcher invited contacts in her own network and requested that those contacts help to identify other professionals who could offer valuable perspective on the topic of green building education. This sampling resulted in a group of experts who are all in North America and mostly located in regions across the USA. The Educator focus group included one West coast educator, a Midwest scholar, a Midwest sustainability coordinator originally from India, an East coast educator, and an East coast non-profit manager. The BE focus group included one scholar from the Mountain West, an architect from the Midwest, a scholar/architect from Turkey who resides in the Midwest, two scholars from the Southern US, a scholar from the East coast, and a scholar from Canada. Both focus group sessions were 60-min long, conducted online, and included a 10-min presentation of the frameworks by the researcher followed by a structured conversation that focused on obtaining expert feedback. Consensus was not derived through successive quantitative surveys, as is common in Delphi panels. Instead, points of contention were discussed as they arose in the focus group setting and the researcher ensured that all points of view were registered before changing topics.

The transcripts from each focus group were imported into qualitative analysis software and analyzed by the researcher in a two-step coding process that first identified topics of discussion through open coding then a second examination of the data to coalesce topics into broader themes. The final Tables  1 and 2 frameworks presented here are the result of integrating feedback across the professional and disciplinary perspectives. The “ Major features of green building literacy ” are presented in the next section followed by a summary of the three major themes that arose in the focus group settings in reaction to the frameworks.

Major features of green building literacy

Green building knowledge and skills.

What kind of knowledge might a green building literate citizen possess? The sections below unpack the multiple dimensions of green building knowledge. The Taxonomy table from the Krathwohl ( 2002 ) adaptation to Bloom’s Taxonomy (Bloom et al., 1956 ) is a framework commonly employed by environmental education scholars (e.g., Iozzi, Laveault, & Marcinkowski, 1990 ; Monroe, Andrews, & Biedenweg, 2008 ). The framework posits a six-step cognitive process dimension (remember, understand, apply, analyze, evaluate, create) and draws it across four different kinds of knowledge (factual, conceptual, procedural, metacognitive). Green building lesson plans can incorporate the six cognitive processes. Further, green building knowledge can fall along this spectrum of knowledge types. The sections below take the first three knowledge types as a starting point to define a typology for green building knowledge.

Factual green building knowledge

The factual information that underlies green building design is vast. Green buildings intersect with a wide set of environmental issues (materials, energy, water, etc.). However, numerous existing frameworks are used to organize and measure what it means for a building to be green. These tools can be used to organize content areas for green building lesson planning. Table  2 collects themes in one place, where categories are derived from previous GBL frameworks (Shiao et al., 2013 ), green building rating systems (CHPS, 2014 ; International Living Future Institute, n.d. ; USGBC, 2008 ), and green school award programs (Pastorius & Marcinkowski, 2013 ) and focus group feedback. Further inspiration was drawn from the McLennan ( 2004 ) compendium on philosophies of sustainable design. The five key categories most commonly found across green building rating systems include sustainable sites, location and transportation, energy and atmosphere, water, materials, and indoor air quality. The category of “shape of building” has been added to this framework given the importance of building orientation on the site and building size relative to the number of occupants. The Living Building Challenge, the most stringent guideline in North America, additionally includes categories of social equity and beauty to argue that green buildings not only perform well ecologically, but also socially with enduring esthetics (International Living Future Institute, n.d. ). The study of green buildings can also include economic analyses since various building features add costs, save costs, and sometimes pay for themselves over time. The concept of lifecycle analysis is especially pertinent for studying building materials, where the Braungart, McDonough, and Bollinger ( 2007 ) notion of “cradle to cradle” products (products designed to avoid the landfill) can be taught. The rating system dedicated specifically to schools in the USA, the Collaborative for High Performing Schools (CHPS), additionally includes the category “operations and metrics,” which addresses themes such as green cleaning, ongoing maintenance, and the monitoring of building performance of the building over time (CHPS, 2014 ). The category of “local and healthy food” is included because green building and landscape design can offer infrastructure for sustainable food production and consumption. This category may be especially pertinent for K-12 educators who already introduce lesson plans on local food systems and wish to intersect these themes with built environment education. Finally, the category of “policy” was added to the framework based on focus group feedback that stressed the importance of the political context for green building design. Addressing the broader social systems within which green buildings are created is yet another lens for understanding human impacts on ecosystems.

Conceptual green building knowledge

Taken together, the categories in Table  2 outline the foundation for an increasingly sophisticated understanding of green buildings. Beyond a grasp of individual building elements (factual knowledge) is the understanding of the complex interrelationships between building elements, and the ways in which these built features interact with the local communities and local ecologies—the human, air, water, plant, and animal life that are affected by the building (conceptual knowledge) (Fig.  1 ). Conceptual knowledge may include, for example, making the connection between a light bulb, functional illumination in the room, and the building energy that comes from a nearby coal power plant, which is then connected to air quality. Another example of conceptual understanding would be making the connection between an exotic hardwood and the cultural and ecological effects of deforestation in another country, a lesson that would highlight themes of building materiality, biodiversity loss, and social equity. Thus, while factual information within the categories described above can be taught and tested, a more advanced curriculum is needed to help students to connect factual knowledge into a systems-level understanding of green building themes.

figure 1

Factual and conceptual green building knowledge. This diagram shows the many ways that green building themes can be connected to broader social and ecological systems

Procedural green building knowledge (skills)

Beyond increasing factual and conceptual knowledge of green buildings, increasing procedural knowledge of green building issues moves students from understanding into action. Procedural knowledge relative to green buildings involves an expansive array of skill sets. Table  2 offers examples of procedural green building knowledge for each factual knowledge domain. Procedural knowledge in green buildings can draw on various disciplines. It can involve research on building materials, mathematical calculations on energy or financial savings, or hands-on activities such as building furniture from salvaged materials or installing a rain barrel. Procedural knowledge also spans across the life of a built environment—from designing and constructing to inhabiting and maintaining.

Green building knowledge and the NGSS

Factual, conceptual, and procedural green building knowledge can be acquired in standards-aligned green building education programs. An in-depth examination of the Next Generation Science Standards (NGSS) reveals the many ways that green building design themes can help educators to meet a variety of performance expectations (PEs) within standards across grade levels (NGSS Lead States, 2013 ). Additional file 1 illustrates a provisional overlapping of the NGSS standards and PEs with the 14 domains of green building knowledge (from Table  2 ). While isolated opportunities exist across the NGSS framework in areas such as energy, matter, and Earth’s systems, the areas with the highest potential are (1) Earth and Human Activity (ESS3) and (2) Engineering Design (ETS1).

Green building education can align quite well with the Earth and Human Activity (ESS3) PEs from Kindergarten through 12th grade. Beginning in Kindergarten with standards that require students to “communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment” (K-ESS3-3) to standards such as the fifth grade PE to “obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment” (5-ESS3-1). Green building themes can advance through the upper grades with middle school requirements such as “apply scientific principles to design a method for monitoring and minimizing a human impact on the environment” (MS-ESS3-3) and high school PEs such as “use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity” (HS-ESS3-6).

The engineering design standards (ETS1) within the NGSS additionally present a clear opportunity for green building education. The PEs for these standards were written quite broadly around the idea of “design process,” which can connect to a variety of disciplines such as architecture, engineering, product design, and well beyond. The PEs in ETS1 additionally require rich overlaps between technical, social, and environmental domains such as the middle school Standard MS-ETS1-1:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions (MS-ETS1-1).

The ETS1 standards in high school provide similar, and more complex, guidance:

Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural and environmental impacts (HS-ETS1-3).

Standards such as these could engage students, for example, in the design process for a piece of furniture for their classroom that meets a set of given functional, social, and environmental criteria. Beyond encouraging technical skills, these projects additionally provide avenues to make connections to themes of esthetics and social justice. In route, students could engage with additional NGSS standards such as MS-PS1-3 that encourages exploration of how “synthetic materials come from natural resources and impact society” and MS-LS2-3 which requires students to “develop a model to describe the cycling of matter and flow of energy among living and non-living parts of an ecosystem.” This is an example of how a single green building theme like furniture design can overlap with the physical and life sciences as students engage in a design process guided by the ETS1 engineering design standards.

Affective dispositions and green buildings

Just as the “environmentally literate individual has a well-developed set of environmental values or morals” (McBride et al., 2013 , p.7), so too does the green building literate citizen. Beyond having knowledge, a green building literate student may also have attitudes and values that shape knowledge and become a basis for environmental action. Within the Table  1 framework, affective dispositions include a person’s environmental sensitivity, environmental concern, self-efficacy, feelings of personal responsibility, and willingness to take action. Affective depositions such as these have a dual role as both an outcome to which we might aspire (e.g., environmentally sensitive citizens) and a predictor of other positive outcomes (e.g., environmentally responsible behaviors). Scholars across disciplines have taken an interest in affect for its potential importance in the process of learning (e.g., Picard et al., 2004 ) and for the links to pro-environmental action (e.g., Ajzen, 1991 ; Hines, Hungerford, & Tomera, 1987 ; Stern, 2000 ). It should be noted, however, that environmentally responsible behaviors are often multi-determined by an array of predictors where attitudes have been shown to be an unstable predictor across studies (Kollmuss & Agyeman, 2002 ). Within the Hungerford and Volk ( 1990 ) “Environmental Behavior Model,” affective dispositions occupy every dimension of the framework—from entry-level to ownership to empowerment variables—that all lead toward citizenship behavior. This is all to say, the relationship between affect and behavior is complex and rarely linear. Research further shows that attitudinal factors, such as environmental sensitivity, are outcomes that typically occur for individuals over many years and are influenced by factors such as role models and time in nature (Chawla, 1998 ; Marcinkowski, 1998 ; Tanner, 1980 ).

Despite the growing body of research on affect in fields of education, environmental education, and conservation psychology, the study of affect in green buildings is yet in the nascent stages. In the realm of green building literature, we have much yet to understand about how affect is influenced by green building design, and conversely, how green building design practices are advanced by people with positive affective dispositions. Each of these angles—alternatively viewing affective dispositions resulting from and contributing to green building practices—merits further elaboration.

First, previous research illustrates that context matters for fostering environmental sensitivity. Chawla ( 1998 ) found numerous pathways to environmental careers that included influences such as frequent contact in nature and solitude in nature, both experiences that can be fostered by green landscape design. On the other hand, and more specific to building interiors, McCunn and Gifford ( 2012 ) conducted one of the earliest studies on how a green office environment impacts employee environmental attitudes. Their results were surprising in that employee attitudes dropped as green building features increased. The researchers suggest that dissatisfaction with the building design, and perhaps faded novelty of the green building, were potential reasons for the negative attitudes. It appears to make a difference who occupies the green office building, however. A study in Australia found that office building occupants with higher levels of environmental concern were more likely to forgive a green building’s shortcomings (Deuble & de Dear, 2012 ).

Second, it is possible that positive emotions about green buildings will bring about positive outcomes for green buildings, where positive affect becomes a building block toward action. Sung et al. ( 2014 ) present pioneering quantitative work on GBL in a study of over 1000 Taiwanese college students. They found that attitudes about green buildings were an essential link between knowledge and behaviors. In fact, they found that “[w]ithout attitudes and responsibility as mediators, greater knowledge indicated poorer behavior” (Sung et al., 2014 , p. 173). Taken together, the research thus far suggests that green building attitudes can work for and against the pursuit of building green. The study of affect and green buildings is complex and potentially fertile area for future research. Research is especially lacking for youth in the K-12 school environment.

Despite the need for better understanding about affect in and for green buildings, there are several key takeaways regarding “affect” for practitioners interested in increasing GBL. The first is that attitudes and values about green buildings are not likely to change rapidly for building users. Green buildings are one potentially positive force for engendering environmental sensitivity along with other factors like access to nature and environmental role models, and these are influences that work over time. Further, practitioners designing curricula and interventions for green building education may want to understand the initial affective dispositions of learners relative to environmental themes to create the appropriate starting point for lesson planning. Finally, affect plays a role in the process of green building education just as it does in any educational process. Fredrickson ( 2001 ) argued that positive emotions allow people to “broaden” their scope of attention and “build” intellectual resources. Therefore, green building education that is infused with positive learning experiences may help learners to open up to novel experiences and revise their mental models of what the built environment can be.

Behaviors and green buildings

The ultimate goal of environmental education is to bring about change not only in people’s minds but in tangible benefits to our natural and built environment (e.g., Hines et al., 1987 ). The work here aligns well with the Sung et al. ( 2014 ) view of green building actions that focuses first on involvement and decision-making relative to green design and then expands to encompass more general environmentally responsible actions. Thus, within a framework of GBL, two distinct types of behaviors can be examined: actions that (1) advocate for green building practices, and (2) occur in and around green buildings.

First, a major goal of green building education is to inspire action that advances the green building movement. Marcinkowski ( 2010 ) conceptualizes behavior as multi-faceted, including actions taken individually and collectively on levels local, national, and global. These many forms of action are applicable to the topic of GBL. For example, consider the many ways a student could take action on energy issues. At the level of the building, a student can help turn off lights and shut down computers. The same student could work with peers in an environmental club to advocate for energy efficiency on their school campus. Further reach beyond the school building might include trying behaviors at home or writing local legislators about energy issues in public buildings. In this way, green building education can provide a link to planning and policy conversations in the classroom given the broader social systems (such as building codes, regulations, and guidelines) that either hinder or support innovative building design.

Second, consider the occupant actions within buildings that impact the performance of a green building. The repertoire of actions possible within a green building are largely determined by the opportunities a building affords such as recycling, composting, adjusting thermostats, and so on. Schools promoting green building education can align opportunities for environmentally friendly practices within the building with educational programming. The lessons for students are twofold. First, students can build awareness about how the physical built environment is structured to either hinder or support environmental action. Second, students can learn how informed and active building occupants can make a difference for their own school building’s environmental performance.

Focus group results and discussion

Education and built environment (BE) professionals provided input on the frameworks in Tables  1 and 2 . These tables were improved and Additional file  1 was created as a result of participant feedback. The three broad themes addressed by experts (each given a pseudonym) are summarized below.

Theme 1: framing green building literacy

The Table  1 framework for GBL resonated across groups and participants. Various professionals, however, recommended different ways to frame the importance of GBL. Numerous experts wanted to see more clear links between green building design and the realm of policy and planning given that the political and city planning context is a critical set of factors that can limit or give rise to innovative green building design (e.g., Simons, Choi, & Simons, 2009 ). BE professionals further expressed concern that building occupant political views will shape how individuals experience green buildings and respond to green building education programs, a notion that has some potential connection to the broader discourse on political consumerism (e.g., Wirt, 2017 ). The theme of policy was thus added to the framework. Claire discussed the complexity by noting that “there’s kind of a transactional thing that happens there with the attitudes that people bring into the building” that can either promote or deter environmentally friendly actions in buildings. The Table  1 “affective dimensions” category was split into two sub-themes as a result of this discussion. Stephen, an expert in using green schools as teaching tools, further advocated for stronger ways to frame green buildings for educators. He recommended framing green buildings as physical manifestations and microcosms of the larger environmental values that many educators already seek to foster in students. In sum, conversations across groups revealed the variety of lenses through which green buildings can be viewed. The work here examines green buildings for STEM education and maintains a dominant focus on the building itself and immediate landscape (the set of decisions that are largely within the power of school districts and architectural designers to make). However, educators, curriculum developers, and designers have vast options to tailor green building themes to their unique educational contexts and purposes.

Theme 2: green building knowledge categories

Numerous focus group participants indicated that Table  2 with “green building knowledge categories” was one of the key contributions of this body of work. As James, a public school curriculum coordinator, expressed:

Table two jumps out as a very effective set of principles and illustrations that dovetails very well into the sort of work that public schools are looking towards when it comes to the meaningful integration of sustainability practices. It's one thing to build the building, but … the practices are everything (James).

Discussion around the specific Table  2 categories comprised the major portion of both focus group sessions. The green building knowledge categories were thus impacted and refined as a result of the focus group feedback. Participants recommended that the titles of the knowledge categories maintain alignment with the prominent standards for green building design, which may be especially helpful for curriculum within schools with certified green buildings. Key points of conversation (in order of appearance in the framework) included:

Location and transportation: This category was originally included within “sustainable sites” but was extracted and given its own category as recommended by members of the BE focus group. This choice also reflects the latest changes within the LEED ® Green Building Rating System (USGBC, n.d. ).

Social justice: Educator focus group participants debated the inclusion of the “social justice” category. Stephen questioned if the theme deviated to far from the core topic of green buildings and Janice additionally commented that the theme could be difficult to address in lower elementary classes. However, three other participants vigorously defended the importance of keeping social justice in the framework, with one educator noting that “It is so front and center” (Sara) for the work that she does in public schools. James further emphasized the point commenting that “one cannot separate equity from environmental and sustainability focuses. It’s essential for kids.” These latter perspectives synchronize with the choice of the developers of the rigorous “Living Building Challenge” standards for ecologically friendly buildings, which include social justice as a core set of guidelines for living buildings (International Living Future Institute, n.d. ).

Local and healthy food: The Collaborative for High Performing Schools (CHPS) includes “school gardens” as a credit within the sites category (CHPS, 2014 ). Given that food system themes largely occur outside the building, the researcher asked participants if this category cohered with the other content in Table  2 . Educators and BE professionals overwhelmingly agreed that the built environment plays an important supporting role in sustainable farm-to-table food production and that this category fits well with current health food initiatives already happening at many schools. James summarized the group sentiments:

It [local and healthy food] is an authentic daily practice-driven integration that capitalizes upon required and normal school function, a critical one inside our schools, but we have found that integrating our outdoor garden as well as our hydroponic garden alongside recycling, composting and food donation has been an extraordinarily effective vehicle for all age levels. So I’m glad to see that represented here. “I think it’s low hanging fruit that you are wise to include” (James).

Two members of the Educator focus group did express some concern that “there is going to be a lot of red tape” (Janice) and logistical issues (Sara) in terms of connecting school gardens to school cafeterias. Public health concerns, student allergies, and pre-existing contracts with food vendors were several of the potential issues highlighted.

Policy: As mentioned previously, the topic of politics and policy was noted by BE focus group members as a potentially important issue to include. Inclusion of this category could encourage educators to engage social studies or civics themes into green building lesson planning. This theme could also inspire teaching about the green building rating systems themselves as guidelines that could be adopted into policy in the future.

Theme 3: implementation within schools

A central theme in the Educator focus group was the ways in which frameworks for GBL can be useful to educators and curriculum developers. The conversation began with James noting his frustration with identifying useful frameworks to inform practice. His comments highlighted the challenge of providing frameworks as tools for curriculum development, and particularly the challenge of striking a balance between providing overly broad versus excessively specific guidance. Janice suggested, and the educators all agreed, that alignment between GBL and science standards is a critical missing piece for promoting adoption of green building education in K-12 classrooms. Additional file 1 was created in response to this concern, and the tables therein reveal a multitude of connections between green building themes and the NGSS standards.

Numerous professionals asked clarifying questions about what types of school buildings, and school systems broadly, are the target audience for GBL frameworks. Within this conversation, the group discussed the ways that GBL can be promoted in schools both with and without green buildings—and for a spectrum of green buildings from partial renovations to entire new construction buildings. Educators additionally emphasized the importance of ensuring that these themes are not only pursued within special private and charter schools, but also within public school systems that may have less access to resources for green building design. The frameworks presented here are broad enough to apply to both green certified and non-green buildings across both school types and age groups. They are tools for educators and curriculum developers to use as a catalyst for connecting their unique contexts to green building design to advance a great variety of learning outcomes in K-12 science classrooms.

Overall, the group of professionals confirmed and expanded the conceptualizations of green building knowledge, contributing to the overarching question guiding this inquiry, which sought to define key qualities of a green building literate citizen. Despite having a variety of professional perspectives among participants, a key limitation to the focus groups was the sampling frame that began with the author’s own network and expanded outward. Three participants were foreign born; however, the dominant perspectives are US-centric and may need adaptation to other settings.

Green building education, while prominent in architectural and engineering professions, is scarce for the general public. Green building education can begin in K-12 schooling to enhance science education amid increasing calls to teach students about human impacts on nature (NGSS Lead States, 2013 ). If advances are to be made for public green building education, a framework for outlining the diverse educational content and outcomes could provide a useful starting point for curricula that are formal, informal, or even non-formal in nature. The “ Major features of green building literacy ” matrix builds on previous work to propose a framework for green building literacy. The major features discussed were knowledge (factual, conceptual, and procedural), affect, and behavior. This work calls for green building education that is not only factual in nature but also interweaves complex topics into a more conceptual understanding of green buildings and scaffolds toward skills and actions. However, a “strong conception” (Stables & Bishop, 2001 ) of green building literacy calls for building occupants who are both “reading” and “writing” green buildings. Building occupants are not only passive dwellers of buildings, but individuals who are an active part of a green building’s performance and have the capability to advocate for better building practices.

Abbreviations

Built environment

The Collaborative for High Performing Schools

  • Green building literacy

Indoor environmental quality

Leadership in Energy and Environmental Design

Next Generation Science Standards

Performance expectation

United States Green Building Council

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50 (2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T .

Article   Google Scholar  

Barr, S., Dunbar, B., & Schiller, C. (2012). Sustainability in schools: Why green buildings have become a catalyst. Educational Facility Planner, 46 (1), 19–22.

Google Scholar  

Berkowitz, A. R., Ford, M. E., & Brewer, C. A. (2005). A framework for integrating ecological literacy, civics literacy, and environmental citizenship in environmental education. In E. Johnson & M. Mappin (Eds.), Environmental education and advocacy: Changing perspectives of ecology and education (pp. 227–266). Cambridge: Cambridge University Press. https://doi.org/10.2980/1195-6860.2006.13/423:eeaacp/2.0.co.2 .

Chapter   Google Scholar  

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive domain . New York: David McKay.

Braungart, M., McDonough, W., & Bollinger, A. (2007). Cradle-to-cradle design: Creating healthy emissions—a strategy for eco-effective product and system design. Journal of Cleaner Production, 15 (13), 1337–1348. https://doi.org/10.1016/j.jclepro.2006.08.003 .

Chawla, L. (1998). Significant life experiences revisited: A review of research on sources of environmental sensitivity. The Journal of Environmental Education, 29 (3), 11–21. https://doi.org/10.1080/00958969809599114 .

CHPS (2014). Project scorecard: 2014 U.S. collaborative for high performing school (CHPS) criteria. https://chps.net/sites/default/files/2014_US-CHPS-Scorecard.pdf . Accessed 1 Feb 2019.

Cole, L. B. (2013). The green building as medium for environmental education. The Michigan Journal of Sustainability, 1 (1), 161–169. https://doi.org/10.3998/mjs.12333712.0001.012 .

Cole, L. B. (2015). Fostering green building literacy in the school building: A study of five middle schools in the United States. Children & Youth Environments, 25 (3), 145–174. https://doi.org/10.7721/chilyoutenvi.25.3.0145 .

Cole, L. B. (2018). The teaching green building: Five theoretical perspectives. In F. W. Leal, R. Marans, & J. Callewaert (Eds.), Handbook of sustainability and social science research. World sustainability series (pp. 107–125). Cham: Springer. https://doi.org/10.1007/978-3-319-67122-2_6 .

Cole, L. B., McPhearson, T., Herzog, C., & Kudryavtsev, A. (2017). Green infrastructure. In A. Russ & M. E. Krasny (Eds.), Urban environmental education review (pp. 261–270). Ithaca: Cornell Press.

de Saussure, F. (1966). Course in general linguistics . New York: McGraw Hill.

DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37 (6), 582–601. https://doi.org/10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L .

Deuble, M. P., & de Dear, R. J. (2012). Green occupants for green buildings: The missing link? Building and Environment, 56 , 21–27. https://doi.org/10.1016/j.buildenv.2012.02.029 .

Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56 (3), 218. https://doi.org/10.1037/0003-066X.56.3.218 .

Gill, Z. M., Tierney, M. J., Pegg, I. M., & Allan, N. (2010). Low-energy dwellings: The contribution of behaviours to actual performance. Building Research & Information, 38 (5), 491–508. https://doi.org/10.1080/09613218.2010.505371 .

Higgs, A. L., & McMillan, V. M. (2006). Teaching through modeling: Four schools’ experiences in sustainability education. The Journal of Environmental Education, 38 (1), 39–53. https://doi.org/10.3200/joee.38.1.39-53 .

Hines, J., Hungerford, H., & Tomera, A. (1987). Analysis and synthesis of research on responsible environmental behavior: A meta-analysis. Journal of Environmental Education, 18 (2), 1–8. https://doi.org/10.1080/00958964.1987.9943482 .

Hungerford, H. R., & Volk, T. L. (1990). Changing learner behavior through environmental education. The Journal of Environmental Education, 21 (3), 8–21. https://doi.org/10.1080/00958964.1990.10753743 .

International Living Future Institute. (n.d.). The living building challenge 3.1: A visionary path to a regenerative future. http://living-future.org/lbc . Accessed 1 Feb 2019.

Iozzi, L., Laveault, D., & Marcinkowski, T. (1990). Assessment of learning outcomes in environmental education. In Methods and techniques for evaluating environmental education . Paris: UNESCO.

Jan, Y.-L., Lin, M.-L., Shiao, K.-Y., Wei, C.-C., Huang, L.-T., & Sung, Q.-C. (2012). Development of an evaluation instrument for green building literacy among college students in Taiwan. International Journal of Technology and Human Interaction, 8 (3), 31–45. https://doi.org/10.4018/jthi.2012070104 .

Kollmuss, A., & Agyeman, J. (2002). Mind the gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environmental Education Research, 8 (3), 239–260. https://doi.org/10.1080/13504620220145401 .

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory Into Practice, 41 (4), 212–218. https://doi.org/10.1207/s15430421tip4104_2 .

Marcinkowski, T. (1998). Predictors of responsible environmental behavior: A review of three dissertation studies. In H. R. Hungerford, W. Bluhm, T. Volk, & J. Ramsey (Eds.), Essential readings in environmental education (pp. 247–276). Champaign: Stipes.

Marcinkowski, T. (2010). Major features of environmental literacy . Melbourne: Department of Science and Mathematics Education, Florida Institute of Technology.

McBride, B., Brewer, C., Berkowitz, A., & Borrie, W. (2013). Environmental literacy, ecological literacy, ecoliteracy: What do we mean and how did we get here? Ecosphere, 4 (5), 1–20. https://doi.org/10.1890/ES13-00075.1 .

McCunn, L. J., & Gifford, R. (2012). Do green offices affect employee engagement and environmental attitudes? Architectural Science Review, 55 (2), 128–134. https://doi.org/10.1080/00038628.2012.667939 .

McLennan, J. F. (2004). The philosophy of sustainable design: The future of architecture . Kansas City: Ecotone Publishing.

Monroe, M. C., Andrews, E., & Biedenweg, K. (2008). A framework for environmental education strategies. Applied Environmental Education & Communication, 6 (3–4), 205–216. https://doi.org/10.1080/15330150801944416 .

Murry, J. W., Jr., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18 (4), 423–436. https://doi.org/10.1353/rhe.1995.0008 .

NGSS Lead States. (2013). Next generation science standards: For states, by states . Washington, D.C.: National Academies Press.

Pastorius, E., & Marcinkowski, T. (2013). A comparative analysis of federal and selected state green school frameworks. In Paper presented at the green schools national conference, west Palm Beach, Florida .

Picard, R. W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., et al. (2004). Affective learning—A manifesto. BT Technology Journal, 22 (4), 253–269. https://doi.org/10.1023/B:BTTJ.0000047603.37042.33 .

Portillo, M., & Rey-Barreau, J. A. (1995). The place of interior design in K-12 dducation and the built environment education movement. Journal of Interior Design, 21 (1), 39–43. https://doi.org/10.1111/j.1939-1668.1995.tb00207.x .

Roberts, D. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah: Lawrence Erlbaum Associates.

Roth, C. E. (1992). Environmental literacy: Its roots, evolution and directions in the 1990s . Columbus: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.

SEED Center. (n.d.). Defining the Green Workforce. http://theseedcenter.org/Resources/SEED-Toolkits/Defining-the-Green-Workforce . Accessed 1 Sept 2018.

Shapiro, B. (2015). Structures that teach: Using a semiotic framework to study the environmental messages of learning settings. Eco-thinking, 1 (1), 5–17.

Shiao, K. Y., Lin, M. L., & Sung, Q. C. (2013). Curriculum innovation for fostering green building literacy in general education. Applied Mechanics and Materials, 284-287 , 1290–1294. https://doi.org/10.4028/www.scientific.net/amm.284-287.1290 .

Simons, R., Choi, E., & Simons, D. (2009). The effect of state and city green policies on the market penetration of green commercial buildings. Journal of Sustainable Real Estate, 1 (1), 139–166.

Sobel, D. (2004). Place-based education: Connecting classroom and community. Nature and Listening, 4 , 1–7.

Stables, A. (1998). Environmental literacy: Functional, cultural, critical. The case of the SCAA guidelines. Environmental Education Research, 4 (2), 155–164. https://doi.org/10.1080/1350462980040203 .

Stables, A., & Bishop, K. (2001). Weak and strong conceptions of environmental literacy: Implications for environmental education. Environmental Education Research, 7 (1), 89–97. https://doi.org/10.1080/13504620125643 .

Stern, P. C. (2000). Toward a coherent theory of environmentally significant behavior. Journal of Social Issues, 56 , 407–424. https://doi.org/10.1111/0022-4537.00175 .

Sung, Q.-C., Lin, M.-L., Shiao, K.-Y., Wei, C.-C., Jan, Y.-L., & Huang, L.-T. (2014). Changing behaviors: Does knowledge matter? A structural equation modeling study on green building literacy of undergraduates in Taiwan. Sustainable Environment Research, 24 (3), 173-183.

Tanner, R. T. (1980). Significant life experiences: A new research area in environmental education. The Journal of Environmental Education, 11 (4), 20–24. https://doi.org/10.1080/00958964.1980.9941386 .

Tawain Green Building Label. (n.d.). About Green Building Labeling. http://twgbqanda.com/english/e_about.php?Type=1&menu=e_about_class&pic_dir_list=0# . Accessed 1 Feb 2019.

U.S. Energy Information Administration. (2012). Annual energy outlook 2012: With projections to 2035 . Washington, DC: Government Printing Office.

U.S. Environmental Protection Agency. (n.d.). Water Use Today. https://www3.epa.gov/watersense/our_water/water_use_today.html . Accessed 1 Feb 2019.

USGBC. (2008). LEED 2009 for Schools New Construction and Major Renovations. http://www.usgbc.org/ShowFile.aspx?DocumentID=5547 . Accessed 1 Feb 2019.

USGBC. (n.d.). United States Green Building Council. http://www.usgbc.org/ . Accessed 1 Feb 2019.

Wirt, F. M. (2017). Politics, products, and markets: Exploring political consumerism past and present . New York: Routledge.

Book   Google Scholar  

Wu, D. W. L., DiGiacomo, A., Lenkic, P. J., Wong, V. K., & Kingstone, A. (2016). Being in a “green” building elicits “greener” recycling, but not necessarily “better” recycling. PLoS One, 11 (1), e0145737. https://doi.org/10.1371/journal.pone.0145737 .

Download references

Acknowledgements

The author would like to thank the panel of experts for their time and insight in the development of the frameworks presented in this study. The author would additionally like to thank Dr. Michaela Zint and Dr. Laura Zangori for their assistance with early drafts of this work. Additional gratitude is extended to the peer reviewers whose constructive feedback contributed greatly to this piece.

This open-access publication is supported by the National Institute of Food and Agriculture federal agricultural experiment station capacity grants (project no. MO-HANC0001) from the United States Department of Agriculture.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and affiliations.

University of Missouri, Columbia, USA

Laura B. Cole

You can also search for this author in PubMed   Google Scholar

Contributions

The author made 100% of the contributions to the current work. The author read and approved the final manuscript.

Corresponding author

Correspondence to Laura B. Cole .

Ethics declarations

Authors’ information.

Dr. Laura Cole is an interior design educator and architectural studies scholar who has been involved in the green building movement in various capacities for over 15 years. She worked as a designer in the global architecture firm of Perkins + Will where she co-lead the sustainability team and mentored junior designers on their pathways toward becoming LEED accredited professionals. Her Ph.D. work was in the combined areas of Architecture and Natural Resources and Environment. She is now an educator at the University of Missouri where she teaches sustainable design and works on interdisciplinary research teams to advance green building education in theory and practice.

Competing interests

The author declares that she has no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Additional file

Additional file 1:.

Provisional Alignments between the NGSS and Green Building Knowledge Categories. (DOCX 38 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Cole, L.B. Green building literacy: a framework for advancing green building education. IJ STEM Ed 6 , 18 (2019). https://doi.org/10.1186/s40594-019-0171-6

Download citation

Received : 07 September 2018

Accepted : 22 April 2019

Published : 29 May 2019

DOI : https://doi.org/10.1186/s40594-019-0171-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Green building education
  • Environmental literacy
  • Science literacy
  • Curriculum design
  • Next generation science standards

green architecture research topics

81 Green Building Essay Topic Ideas & Examples

🏆 best green building topic ideas & essay examples, ✅ simple & easy green building essay titles, 🔎 good research topics about green building, ❓ green architecture research questions.

  • Green Buildings and Environmental Sustainability This paper scrutinizes the characteristics that need to be possessed by a building for it to qualify as green coupled with questioning the capacity of the green movements across the globe to prescribe the construction […]
  • The Relationship Between Green Buildings and Operations Management Once a total budget for a green building project is set, project management should think in terms of the possible impact of different combinations: the extremes of spending the total budget, and the results expected […] We will write a custom essay specifically for you by our professional experts 808 writers online Learn More
  • Green Building Design Management The concert of service and product design involves environmentally friendly technologies and effective use of natural resources and materials. It influences allocation of resources, design of the building an selection of materials and technologies.
  • Operations Management vs. Green Building (GB) Introduction Green Building and Operations Management Importance and Role of Operations Management Conclusion Green building depends upon effective management process and resource allocation.
  • Lightening Solution for a Green Building Now better is the efficiency of electricity to light conversion, lesser is the electrical energy wasted and lesser is the amount of fossil fuel burnt and greenhouse gases produced to get the same amount of […]
  • Green Building Leeds Certification – Childcare Center These provide regulations for the design of the facility, the infrastructure required, the size required and the specific services to be provided by the child care facility.
  • Green Design Parameters in High-Rise Buildings in Hot-Humid Climate The core of the issue lies in the need to determine the pressure differences as applied to windward and leeward faces.
  • Green Building and Green Practices Promotions One of the aspects of LCA is life cycle costing, which evaluates the financial cost of the design and maintenance of the building and is important for estimating the expenses associated with green buildings’ characteristics.
  • Green Building: The Impact of Humanity on the Environment A growing awareness of humanity’s impact on the environment resulted in the emergence of regulations and evaluation systems across the world. Green Globes is online-based and requires a design team and a project manager for […]
  • Green Building Programs Assessment Each of the initiatives evaluates the impact that buildings have on the environment as well as the way these buildings were built and how they can be disposed of in the future. The main objective […]
  • Australian Green Building Innovation and Ethics The field has a direct impact on the quality of life and the environment. The concepts to be discussed include the origins of the project, its impacts, and how the innovation addresses sustainability concerns.
  • Green Building Codes and Standards The building industry in the United States is not spared when it comes to the question of embracing the green paradigm in building and construction.
  • Indoor Air Quality in Green Building Movement To check the hypothesis it is necessary to consider such issues as the history of green building, the impact of green building on environment and people’s health, the importance of the high indoor air quality […]
  • Green Industrial Cities’ Designing A green environment includes the geographical area and the natural state that has not yet been developed and development must not negatively impact the existing infrastructure and the environment.
  • Green Building in the Boston Area On the whole, this project illustrates how innovative technologies and creative decisions of the architects can improve the sustainability of buildings.
  • Green Buildings and Their Efficiency Water Consumption The resources are useful in terms of provide regulation of buildings, components of green buildings, selection of green materials and where to purchase such materials.
  • Green Design: Sustainable Landscaping and Garden Design The perfect designing of sustainable landscapes in the urban centers has led to efficient use of land in cities and the surrounding regions.
  • Green Building in the United Arab Emirates Consequently, the government in the United Arab Emirates resolved for the implementation of better and advanced construction strategies that would ensure energy was conserved therefore providing a solution to the increased rate of pollution that […]
  • Green Buildings Impact on the Environment The most outstanding benefit of green buildings is the reduction in wastes and this is something that other developments have not taken care of.
  • Green Buildings and Indoor Air Quality The idea of “green buildings” has in many ways helped enhance indoor air quality.”Green buildings” are made possible by designing and constructing buildings which have high quality of indoor air as one of their major […]
  • The Use of Green Materials for Sustainable Buildings Green materials used on the sustainable buildings reduce the environmental hazardous impacts such as the global warming effects, depletion of resources, and toxicities.
  • Business Opportunities and the Future of Green Building Constructions
  • Analysis of Business Plans About Green Building
  • Can Green Building Councils Serve as Third Party Governance Institutions?
  • Comparing Green Building Rating and Sustainable Building Rating Construction
  • Water Ecological Aspects in Developing a Quantitative Climatic Model of Green Building
  • Encouraging L.E.E.D. Green Building Technology
  • Ethical and Sustainability Issues in Green Building
  • Explicating Mechanical and Electrical Knowledge for Design Phase of Green Building Projects
  • Adoption and Impact of L.E.E.D.-Based Green Building Policies at the Municipal Level
  • Fire Risk Analysis and Fire Prevention Management Optimization for Green Building Design
  • Global Green Building Materials Market: Industry Analysis, Size, Share, Forecast
  • Linking Green Building, Advertising, and Price Premium
  • Green Buildings Affect the Environment Construction
  • The Relationships Between Green Building and Sustainability
  • Analysis of Green Building and Sustainable Construction
  • Linking Green Building and Zero Energy Trends
  • Overview and Analysis of Benefits of Green Building
  • Green Building Construction From an Accounting Perspective
  • Mapping the Green Building Industry: How Local Are Architects and General Contractors
  • Green Building Councils: Their Economic Role as Governance Institutions
  • Property Tax Assessment Incentive for Green Building: Energy Saving Based-Model
  • Green Building Evaluation From a Life-Cycle Perspective in Australia
  • The Potential for Transformative Change in the Green Building Sector
  • Green Building Laws and Incentives Provided by NY City and State
  • Overview of Singapore’s Green Building Program
  • Green Building Occupant Satisfaction: Evidence From the Australian Higher Education Sector
  • State Environmental Policies: Analyzing Green Building Mandates
  • Green Building: Passive House or Zero Energy Building
  • Strategies for Promoting Green Building Technologies Adoption in the Construction Industry
  • Green Building Pro-environment Behaviors: Are Green Users Also Green Buyers
  • Sustainable Construction: Green Building Design and Delivery
  • Green Building Project Management: Obstacles and Solutions for Sustainable Development
  • Benefits and Barriers to Promoting Bamboo as a Green Building Material in China
  • Green Building Research: Current Status and Future Agenda
  • The Market for Green Building In Developed Asian Cities
  • Green Building: Taking Advantage of All Natural Resources
  • The Pros and Cons of Green Building
  • Thermal Eco-Cities: Green Building and Urban Thermal Metabolism
  • Understanding Green Building Construction in Singapore
  • Using Green Building and Energy Efficient Resources
  • Can Green Building Councils Serve as Third-Party Governance Institutions?
  • What Is Green Building?
  • What Does Green Building Construction Look Like From an Accounting Point of View?
  • What Are the Business Opportunities and the Future of Green Architecture Structures?
  • What Are the Ethical and Sustainability Issues in Green Building?
  • How Are Mechanical and Electrical Knowledge Used in the Design Phase of Green Building Projects?
  • How Do Green Buildings Affect the Environment?
  • What Is the Relationship Between Green Architecture and Sustainability?
  • What Is the Connection Between Green Building Trends and Zero Energy Consumption?
  • What Is Green Building Industry Mapping?
  • What Are the Green Building Councils?
  • What Is the Green Building Practice Plan?
  • How Are Green Building and Energy Efficiency Resources Used Together?
  • What Is Green Building College?
  • What Is the Property Tax Incentives for Green Building?
  • What Does the NYC Green Building Initiative Look Like?
  • What Materials Are Used for Green Architecture?
  • What Resources Are Used for Green Building?
  • What Is Rethinking the Socio-Technical Transformations of Green Entrepreneurship?
  • What Is Green Building Aimed At?
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, November 9). 81 Green Building Essay Topic Ideas & Examples. https://ivypanda.com/essays/topic/green-building-essay-topics/

"81 Green Building Essay Topic Ideas & Examples." IvyPanda , 9 Nov. 2023, ivypanda.com/essays/topic/green-building-essay-topics/.

IvyPanda . (2023) '81 Green Building Essay Topic Ideas & Examples'. 9 November.

IvyPanda . 2023. "81 Green Building Essay Topic Ideas & Examples." November 9, 2023. https://ivypanda.com/essays/topic/green-building-essay-topics/.

1. IvyPanda . "81 Green Building Essay Topic Ideas & Examples." November 9, 2023. https://ivypanda.com/essays/topic/green-building-essay-topics/.

Bibliography

IvyPanda . "81 Green Building Essay Topic Ideas & Examples." November 9, 2023. https://ivypanda.com/essays/topic/green-building-essay-topics/.

  • Building Research Topics
  • Alternative Energy Paper Topics
  • Ecosystem Essay Topics
  • Civil Engineering Essay Titles
  • Recycling Research Ideas
  • Urban Planning Research Ideas
  • Environment Research Topics
  • Greenhouse Gases Research Ideas
  • Real Estate Essay Titles
  • Energy Essay Ideas
  • Pollution Essay Ideas
  • Environmental Sustainability Essay Ideas
  • Climate Change Titles
  • Global Warming Essay Titles
  • Environmental Protection Titles

Excellent Dissertation Topics in Architecture

image

Table of contents

  • 1 Eco-Friendly Architecture Dissertation Topics
  • 2 Architecture Dissertation Topics in Risk Management
  • 3 Landscape Architecture Dissertation Topics
  • 4 Architecture Dissertation Topics for Urban Planning and Transport
  • 5 Interesting Architecture Dissertation Topics
  • 6 Research Topics in Modern Design
  • 7 Sustainable Architecture Topics
  • 8 Trending Topics in Landscape Design

With this in mind, it’s vital that you stick to your field of study and the topics that are within it. If you’re clueless as to what to talk about, you can always go online and see what other people have to say and what they’re writing about; this could give you a heads-up on what’s to come. If, for example, you study architecture, there are many things that you could address in your final document.

The structures for buildings around the world change with the years and come from many different styles that have very different meanings because of the cultures in which they were created within. This gives you an endless list of possibilities to talk about. There really are no limits when it comes to writing about architecture.

You could discuss the never-ending debate regarding whether old buildings should be preserved or not. All you’ll have to do is provide your idea and opinion based on a series of research that you’ll need to do prior to writing your final draft. A dissertation paper isn’t something that you do in one day; this document requires months and months of hard, tedious work, where you have to read a lot and work on your citation formats and turn in various pieces of work that others will revise and provide feedback for you to adjust and have the cycle repeat itself endless times.

When you’re faced with the task of  writing your dissertation for your Ph.D , the most important factor to consider is the topic. If you need inspiration, take a look at the list of topics below, which were popular choices among other students. You can also buy case study online to get an in-depth look at a particular subject. Whichever route you choose, make sure to pick a topic that interests you. If you still have no idea of what to talk about, you can take a look at the list below, which will provide you with a series of topics that other students have been talking about throughout the years, and they are still popular. If you still have no idea of what to talk about, you can take a look at the list below, which will provide you with a series of topics that other students have been talking about throughout the years, and they are still popular.

Eco-Friendly Architecture Dissertation Topics

These architecture dissertation topics are more than just popular, and we have a list of dissertation topics in architecture that will make any task you have on mind easier. At the same time, we will partially be focused on waste management, recycling spaces, and renewable energy, which are all related here. Let’s check the best architecture thesis topics right now.

  • Eco-friendly neighborhood development
  • Making more urban parks
  • Best eco-friendly community garden design
  • Old building eco-restoration
  • Proper waste management
  • Fast and cheap riverfront development
  • Making the most advanced SMART village
  • Completely sustainable building idea
  • What is regenerative design?
  • What is an urban agriculture center?

Architecture Dissertation Topics in Risk Management

It is important for all architecture students to have a good understanding of dissertation topics in architecture, as it is an essential field. This list of topics will be a great help when researching, and with the help of professional thesis writers, you can even pay for thesis writing to get the best results. With this assistance, you can be sure to get the best quality dissertation that will impress your peers.

Here we have a list of dissertation topics in architecture that are mandatory to know, and you will probably see a lot of architecture dissertation topics from this group. We can add that it is an essential field of architecture and one all students need to know more about.

  • Best practices for making safety better
  • How to avoid future water pollution?
  • Managing risks of high-end infrastructures
  • Limits of computer simulation
  • Benefits of risk computer simulations
  • Pros of low-cost and high-strength buildings
  • Cons of low-cost and high-strength buildings
  • New methods for decreasing risk in architecture
  • Common risk mistakes new workers make
  • Using virtual reality to test the risk

Need help with dissertation writing? Get your paper written by a professional writer Get Help Reviews.io 4.9/5

Landscape Architecture Dissertation Topics

You may need to focus on one of these when it comes to proper dissertation writing. Each dissertation topic here is a bit special, and each dissertation topic is something you will need to invest a lot of research in and then make presentable. Let’s see the best topics of this type.

  • Processing data on food, water, and energy in the real-time
  • Benefits of offshore wind energy projects
  • Using landscape to make architecture self-sustainable
  • Evolution on current energy landscape models
  • Food access for locals in large cities
  • Shaping the landscape to suit people more
  • Making landscape more suitable for people with disabilities
  • Using rainwater design in a modern city
  • Adaptive reuse of a river park
  • Adapting building design to the specific landscape

Architecture Dissertation Topics for Urban Planning and Transport

The field of architecture we have here is a bit special but more important than ever before. Now you can see the topics that will help you and the ones that can make any process of this kind even better and definitely easier.

  • Low-cost homes and low-cost transport
  • Should we make more skyscrapers?
  • Suburban communities and transporting issues
  • Benefits of developing a marine park
  • Is transport suitable for modern cities?
  • How transport can be improved in multi-million cities
  • Incorporating airports in urban planning
  • Making train stations more suitable for urban areas
  • Managing a million tourists in a modern city
  • Hotels that can accommodate more visitors than ever before but are eco-friendly

Interesting Architecture Dissertation Topics

Here you can see all about housing schemes, appealing ideas, and more that are definitely going to make your writing process easier and better the lack of a better word. Each one of these ideas has been more than just popular. Focus on building design if this is what you like.

  • How to know what the right number of restrooms is when building a large, public venue.
  • Redefining a city through architecture.
  • Maximizing small spaces: all there is to know.
  • Building for the family: privacy and closeness.
  • Cathedrals: using the new world’s budget to recreate the old world.
  • Discuss the difference in the design of houses in cold climates and warm climates.
  • Explain some benefits of using technological models in architectural diagrams.
  • Provide an accurate description of an architectural model that would be appealing to a religious client.
  • Discuss the nature of middle-class architecture and its place in modern society.
  • Include elements of famous architects without copying their work.
  • Getting people to move through energizing architecture.
  • Architecture and the family. The need for closeness and privacy
  • Cathedrals: Recreating the old world on a new world budget

It is no wonder that more and more students are turning to these services for dissertation help . They can provide guidance, expertise and offer support for editing, proofreading, and writing for your best results. With their help, the dissertation can be completed in a timely and efficient manner.

Research Topics in Modern Design

The contemporary architecture will cover the hot topics in the field, and a good place to start would be one of these engaging building design topics:

  • Multicultural Architecture in the Urban Landscape
  • Trends of Environmental Technology in Residential Structures
  • Developing Commercial Projects for IoT
  • Evaluating Design in Municipal Structures
  • Creative Designs in the Modern Era
  • Maximizing Resources and Space with Accessibility
  • Minimalist Design in Compact Areas
  • Methods of Mitigating Damage from Natural Disaster
  • Methods of Pre-fabricated Design
  • Features of Portable Housing Units

more_shortcode

Sustainable Architecture Topics

With so much focus on the environment and technology associated with it, there is a significant push to develop green tech with design. Here are some ideas:

  • Applications of Hemp in Building Structure
  • Retrofitting Inefficiency with Existing Buildings
  • Building in Response to Climate Change
  • Micro-Construction for the Future
  • Creating Self-Sufficient Structures
  • Calculating Solar Panel Output with Planning
  • Determining Optimal Insulation R-Values
  • Principles of Net Zero Design
  • Reducing A Structure’s Carbon Footprint
  • Heating and Cooling Systems with Renewable Energy

Trending Topics in Landscape Design

Architecture is more about structures. There is the landscape that accompanies it. You must consider many elements of the environment you place your structures. Here are a few topics you can use:

  • Planning for Water Scarcity and Droughts
  • Maximizing Green Space in Residential Designs
  • Managing Flood Zones with Climate Change
  • Revitalizing Landscapes
  • Reducing Development Risks with Wildlife
  • Principles of Urban Agriculture
  • Optimizing Drainage for Water Conservation
  • Child-Friendly Landscapes
  • Retaining Green Cities in Periods of Growth
  • Efficient Public Infrastructure

Who said architecture couldn’t be exciting? With these modern architecture dissertation topics, you’re well on your way to getting your proposal approved. A dissertation is a rewarding academic achievement that is quite exhausting, which is why some students buy a dissertation . With much new technology and urban requirements coming into the mix, a degree in architecture is well worth the investment. Don’t be afraid to ask for architecture dissertation help, as we at Papersowl.com are here to assist 24 hours. We cover all aspects of academic writing and can work with a portion of your paper or even do the whole dissertation. So if you’re stuck, reach out to us.

Readers also enjoyed

Best Ideas For Dissertation Topics

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

green architecture research topics

Green Office Movement Logo

  • Green Office Model online course
  • Case studies
  • Membership Programme for Green Offices
  • Ambassador Track
  • Green Office Alumni Network
  • GOM Sustainability Network
  • Vision of the Movement

80 sustainability research topics for students to explore green campus issues

You’re planning your thesis, paper or capstone? You want to do a student research project with impact. We have outlined a range of sustainability research topics for you. The list specifically focuses on how to green your campus . Take action to make your university more sustainable!

Our list of sustainability research topics helps students investigate green campus issues.

Sustainability research topics: Education

Some sustainability research topics on education for sustainable development :

  • What are the strengths and weaknesses of different definitions of sustainability education? Which definition could your university adopt?
  • To what extent is sustainability education already implemented in the curriculum of your university?
  • What are the strengths and limitations of advancing sustainability education within your curriculum?
  • Where does your university stand with regards to sustainability education compared to other institutions of higher education?
  • What is the demand among students for more, different or better sustainability education?
  • How can existing sustainability projects on campus be used for educational purposes, e.g. visit solar cells on rooftops as part of engineering classes?

​​Sign-up to the ​FREE online course to establish your Green Office

​ ​5 weeks. One email per week. Unsubscribe at any time. ​ ​ By signing up, you agree to our  data policy .

  • What definition of sustainability research should your university embrace?
  • To what extent is sustainability research already practised at your university?
  • What are the strengths and weaknesses of the institution’s sustainability research portfolio compared to other institutions of higher education?
  • What are the drivers of and barriers to sustainability research at your university?
  • How could sustainability research help students to study sustainability issues on campus and inform practical change projects?
  • What are the opportunities and costs associated with promoting sustainability research? What could a plan of action look like to strategically advance it?

Some sustainability research topics on community engagement and awareness:

  • What are the perceptions of and attitudes towards sustainability by students and staff?
  • What are ways to promote sustainable lifestyles among students?
  • To what extent are students and staff aware of the UN Sustainable Development Goals (SDGs) ?
  • How aware are students and staff about the institution’s sustainability ambitions?
  • What are the benefits and disadvantages of approaches to communicate the university’s sustainability efforts better?
  • What are the challenges to involve students and staff in the university’s sustainability efforts?
  • Which ways to increase the engagement of the campus community exist, for example by organising sustainability events ?

For inspiration, read our post on 10 projects to engage students on the SDGs .

Explore sustainability topics for research papers on different issues related to greening campus operations:

  • What are the opportunities and costs of improving the building insulations to save energy?
  • What lighting systems exist on the market that are more energy efficient?
  • What would a business case look like to install a new lighting system?
  • Where are the main consumers of energy on campus?
  • What innovative energy technologies are developed at the institution itself? To what extent could those be directly installed and tested in buildings?
  • What lux values are sufficient for work and study places so that places are appropriately lit without wasting too much electricity?
  • What are the strengths and weaknesses of different sustainable building standards?
  • Which building standards would be most appropriate to inform the institution’s sustainable building policy?
  • What are the costs and benefits associated with different types of green roofs?
  • On which buildings could green roofs be installed?
  • To what extent are catering and food products certified as organic or fair trade food?
  • How much and why do students attach importance to organic and fair trade products sold in the cafeteria?
  • How can students and employees be made more aware of the multiple benefits – e.g. health, environment, economics – of sustainable (organic, fair trade, local) food ?
  • How much are students willing to pay for more organic or fair trade products?
  • What types and amounts of waste are produced by whom and where at the institution?
  • How did waste streams develop over the last years?
  • What are innovative practices in reducing waste going to landfill or incineration? How could those be applied?
  • What are the costs and benefits associated with waste recycling ?
  • What options exist to switch from paper-based to more digital forms of working and studying to reduce paper consumption?
  • What are the environmental, economic, and social benefits and disadvantages of different options to advance more digital working and studying?

More sustainability research topics on campus operations:

Biodiversity

  • What species live at different campus locations?
  • To what extent do students, faculty and staff value this biodiversity?
  • What are ways to enhance biodiversity on campus?

Greenhouse-gase (GHG)

  • What are the pros and cons of different GHG accounting standards?
  • Which standard should the institution use to develop a GHG emissions inventory ?
  • Where are GHG emissions released at the institution?
  • How big is the institution’s GHG footprint?

Procurement

  • What does sustainable procurement mean in the context of a university?
  • How is procurement currently organised? To what extent are sustainability criteria already applied in tenders?
  • To what extent could the university implement sustainability criteria that go beyond the legal minimum to advance the environmental, economic and social benefits of tenders?
  • What are the largest consumers of water?
  • What is the direct and indirect water-footprint of the institution?
  • What are opportunities and costs to reduce water usage?

Transportation and mobility

  • How do students and staff currently travel to the university and as part of their study or work?
  • What is the environmental impact of these travel behaviours? How could the impact be reduced?
  • What best practices exist among companies and other institutions of higher education to reduce staff travel or incentivize different travel behaviours?

Behaviour change

  • What is the potential to reduce resource consumption through behaviour change?
  • What are the best practices of behaviour change interventions at institutions of higher education?
  • To what extent could these projects be also applied at your university?

Sustainability research topics on governance, strategy and reporting

Sustainability research topics on governance issues:

  • What does sustainability mean for institutions of higher education?
  • How does a comprehensive concept of a sustainable institution of higher education look like?
  • How could the university’s long-term sustainability vision look like? How could this vision be realized through a roadmap?
  • What are innovative ways to develop sustainability strategies for a university through a bottom-up approach?
  • What ethical imperatives would demand that institutions of higher education care for their impact on the planet, people and profit?
  • What are the responsibilities of institutions of higher education to contribute to global challenges, such as poverty, gender inequality, and climate change?

Monitoring and reporting

  • What data is important to monitor the institution’s environmental impact? How can this data be collected and analysed?
  • What are the advantages and disadvantages of different sustainability reporting standards?
  • Which sustainability reporting standards should the university adhere to?
  • What are efficient ways to organize sustainability reporting within the organization?
  • What is the best way to communicate results among students, staff and outside actors?
  • What are the strengths and weaknesses of different methodologies (e.g. payback or Net Present Value) to calculate the financial costs and benefits of sustainability investments?
  • Which methodology should the institution apply?
  • To what extent could sustainability projects be financed through a revolving loan fund?
  • What are the possibilities to involve outside organizations through energy contracting?
  • What subsidies are available at the European, national and city level to develop a green campus?
  • How could the university use these financing options to advance its energy transition?
  • What are approaches to integrate negative externalities into the accounting schemes of the university?
  • What would be the opportunities, benefits and risks associated with establishing an energy company that’s owned by the university?
  • What are the best practices to finance energy efficiency and renewable energy projects at public institutions around the world?
  • How can incentive schemes be changed so that energy end-users directly benefit from reductions in energy usage?

We hope this list inspired you to find a sustainability topic for research papers.

  • 12 sustainability documentaries to educate yourself and get inspired
  • Green guide: 15 tips for a sustainable student lifestyle
  • 12 sustainability teaching resources about green campuses

IMAGES

  1. 5 stunning examples of green architecture around the world

    green architecture research topics

  2. What is Green Architecture? Impact of Green Architecture on Environment

    green architecture research topics

  3. Thesis Topics for Architecture :20 topics related to Sustainable

    green architecture research topics

  4. These 5 Facts Will Bust All Your Myths About Green Buildings

    green architecture research topics

  5. Green Building Design Features

    green architecture research topics

  6. Green Biophilic Buildings Take Over Major Cities in The World

    green architecture research topics

VIDEO

  1. Green Architecture: Building Cities with Sustainable Design #green #city #design #shorts

  2. Building and strengthening green DRR infrastructure at landscape level

  3. Green Building

  4. LAWA Research Center

  5. Green Architecture Marvels: Showcasing Sustainable and Innovative Designs

  6. Top 10 Green Architecture Designs for Sustainable Living

COMMENTS

  1. Thesis Topics for Architecture :20 topics related to Sustainable ...

    Here are 20 Thesis topics for architecture related to Sustainable Architecture: 1. Urban Park | Thesis Topics for Architecture. To make a city livable and sustainable, urban parks play a key role to provide a healthy lifestyle for the residents of the city.

  2. A comprehensive review on green buildings research ...

    Cluster and content analysis via CiteSpace identified popular and trending research topics at different stages of development; the top three hotspots were green buildings, sustainability, and energy efficiency throughout the whole research period. ... Zhao ZY (2014) Green building research-current status and future agenda: a review. Renew Sust ...

  3. 10 Inspiring Architecture Thesis Topics For 2023: Exploring Sustainable

    Architecture Thesis Topic #7 - Urban Landscapes with Biophilic Design. Project example: The High Line is an elevated ...

  4. Green building and sustainable architecture

    24 July 2024. Green building methods and sustainable architecture focus on environmentally responsible and energy-efficient construction practices. They aim to minimize negative environmental ...

  5. Research: Harvard Center for Green Buildings and Cities

    The Center engages in four interrelated streams of research that represent various dimensions and scales of the sustainable built environment: Modeling Dimension: Design and Operation. Application Dimension: High Performance Materials and Construction. Economic Dimension: Technology Adoption and Diffusion. Macro Dimension: Sustainable Planning.

  6. (PDF) "The Evolution of Green Architecture: A Lens into Sustainable

    Green architecture represents a paradigm shiŌ in building design and construcƟon, harmonizing human acƟviƟes with the natural environment. This arƟcle provides a comprehensive exploraƟon of ...

  7. Full article: Sustainable design strategy optimizing green architecture

    Research aim and objectives. The research aims to assess, develop, and adjust the path of green architecture rating systems depending on sustainability through a practical design strategy is based on generating, evaluating, developing, and optimizing sustainable environmental concepts and thoughts; maximizing their role; and, clarifying the designer's vision.

  8. Sustainable Architecture

    This Library Research Guide is intended as a starting place for UCLA researchers, pointing to resources and strategies for finding information about architecture and urban design topics. ... Topics: global warming, green building, ecology, pollution, sustainable agriculture, renewable energy, recycling. The database provides indexing and ...

  9. Buildings

    Research also highlights the importance of understanding the relationship between occupant behavior, energy consumption, and building carbon emissions. By quantifying the impact of carbon reduction measures and incentives on the daily behaviors of residents, universities can more effectively implement sustainable campus strategies.

  10. Sustainable / Green Architecture

    Topics. Art This link opens in a new window; Building Plans / Drawings ; Codes / Standards ; Government Statistics ... of Green Building The Journal of Green Building presents the very best of practical applications and peer-reviewed research in green building design and construction. 2030 Palette A resource for the design of low carbon and ...

  11. Green building research-current status and future agenda: A review

    Abstract. Green building is one of measures been put forward to mitigate significant impacts of the building stock on the environment, society and economy. However, there is lack of a systematic review of this large number of studies that is critical for the future endeavor. The last decades have witnessed rapid growing number of studies on ...

  12. From Past to Future: The Urgency of "Green" in Architecture

    In 2001, Architectural Design: Green Architecture, ... This article is part of the ArchDaily Topic: Green. Every month we explore a topic in-depth through articles, interviews, news, and projects. ...

  13. Visualized analysis of global green buildings ...

    Based on CiteSpace (5.3.R4 SE 64-bit), the knowledge base, hot topics and research trends of green-building-related research are presented. The key highlights of the overall analysis results are: (1) Research on green buildings has received more extensive attention in the 21st century. During 2000-2010, research on green buildings showed a ...

  14. 2020 Master Thesis in Sustainable Architecture, NTNU

    M Sc i n SU S TAI NAB LE ARCH I TE C T U R E. Master Thesis 2020. Masterâ&#x20AC;&#x2122;s Theses Catalog Sustainable Architecture June 2020 Print: NTNU Grafisk senter Graphic Design ...

  15. Green Architecture

    Vertical Greenery: Impacts on the Urban Landscape. March 01, 2021. With the increase of urban density and the decrease in the availability of land, the verticalization phenomenon has intensified ...

  16. Green architecture

    green architecture, philosophy of architecture that advocates sustainable energy sources, the conservation of energy, the reuse and safety of building materials, and the siting of a building with consideration of its impact on the environment. In the early 21st century the building of shelter (in all its forms) consumed more than half of the ...

  17. Green Architecture: A Concept of Sustainability

    The Concept of Green Architecture, also known as "sustainable architecture" or "green building," is the theory, science and style of buildings designed and constructed in accordance with environmentally friendly principles. ... International experts for Research Enrichment and Knowledge Exchange doi: 10.1016/j.sbspro.2015.12.075 ...

  18. Green Architecture: A Concept of Sustainability

    The Concept of Green Architecture, also known as "sustainable architecture" or "green building," is the theory, science and style of buildings designed a nd constructed in accordance with ...

  19. Green building literacy: a framework for advancing green building

    Despite the increasing square footage of green buildings worldwide, green building expertise remains largely in the domain of building industry professionals. However, the performance of and advocacy for green buildings would benefit from a green building literate general public. Green building education is an expanding frontier for STEM education and can create opportunities to integrate ...

  20. A comprehensive review on green buildings research: bibliometric

    Cluster and content analysis via CiteSpace identified popular and trending research topics at different stages of development; the top three hotspots were green buildings, sustainability, and energy efficiency throughout the whole research period. ... Zuo J, Zhao ZY. Green building research-current status and future agenda: a review. Renew Sust ...

  21. 81 Green Building Essay Topic Ideas & Examples

    🔎 Good Research Topics about Green Building. Need a 100% original paper? Trust an expert for top-quality results. Learn More . Property Tax Assessment Incentive for Green Building: Energy Saving Based-Model; Green Building Evaluation From a Life-Cycle Perspective in Australia;

  22. Excellent Dissertation Topics in Architecture

    1 Eco-Friendly Architecture Dissertation Topics. 2 Architecture Dissertation Topics in Risk Management. 3 Landscape Architecture Dissertation Topics. 4 Architecture Dissertation Topics for Urban Planning and Transport. 5 Interesting Architecture Dissertation Topics. 6 Research Topics in Modern Design.

  23. 80 sustainability research topics for students on green campus issues

    You want to do a student research project with impact. We have outlined a range of sustainability research topics for you. The list specifically focuses on how to green your campus. Take action to make your university more sustainable! Our list of sustainability research topics helps students investigate green campus issues.

  24. Architectural Research for Sustainable Environmental Design

    Simos Yannas Architectural Research for Sustainable Environmental Design ENHSA Conference October 2013. 6. is applicable to all building types and built forms in all inhabited locations and ...