Sage Research Methods Community

Case Study Methods and Examples

By Janet Salmons, PhD Manager, Sage Research Methods Community

What is Case Study Methodology ?

Case studies in research are both unique and uniquely confusing. The term case study is confusing because the same term is used multiple ways. The term can refer to the methodology, that is, a system of frameworks used to design a study, or the methods used to conduct it. Or, case study can refer to a type of academic writing that typically delves into a problem, process, or situation.

Case study methodology can entail the study of one or more "cases," that could be described as instances, examples, or settings where the problem or phenomenon can be examined. The researcher is tasked with defining the parameters of the case, that is, what is included and excluded. This process is called bounding the case , or setting boundaries.

Case study can be combined with other methodologies, such as ethnography, grounded theory, or phenomenology. In such studies the research on the case uses another framework to further define the study and refine the approach.

Case study is also described as a method, given particular approaches used to collect and analyze data. Case study research is conducted by almost every social science discipline: business, education, sociology, psychology. Case study research, with its reliance on multiple sources, is also a natural choice for researchers interested in trans-, inter-, or cross-disciplinary studies.

The Encyclopedia of case study research provides an overview:

The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case.

It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed methods because this they use either more than one form of data within a research paradigm, or more than one form of data from different paradigms.

A case study inquiry could include multiple types of data:

multiple forms of quantitative data sources, such as Big Data + a survey

multiple forms of qualitative data sources, such as interviews + observations + documents

multiple forms of quantitative and qualitative data sources, such as surveys + interviews

Case study methodology can be used to achieve different research purposes.

Robert Yin , methodologist most associated with case study research, differentiates between descriptive , exploratory and explanatory case studies:

Descriptive : A case study whose purpose is to describe a phenomenon. Explanatory : A case study whose purpose is to explain how or why some condition came to be, or why some sequence of events occurred or did not occur. Exploratory: A case study whose purpose is to identify the research questions or procedures to be used in a subsequent study.

case studies quantitative research

Robert Yin’s book is a comprehensive guide for case study researchers!

You can read the preface and Chapter 1 of Yin's book here . See the open-access articles below for some published examples of qualitative, quantitative, and mixed methods case study research.

Mills, A. J., Durepos, G., & Wiebe, E. (2010).  Encyclopedia of case study research (Vols. 1-0). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781412957397

Yin, R. K. (2018). Case study research and applications (6th ed.). Thousand Oaks: SAGE Publications.

Open-Access Articles Using Case Study Methodology

As you can see from this collection, case study methods are used in qualitative, quantitative and mixed methods research.

Ang, C.-S., Lee, K.-F., & Dipolog-Ubanan, G. F. (2019). Determinants of First-Year Student Identity and Satisfaction in Higher Education: A Quantitative Case Study. SAGE Open. https://doi.org/10.1177/2158244019846689

Abstract. First-year undergraduates’ expectations and experience of university and student engagement variables were investigated to determine how these perceptions influence their student identity and overall course satisfaction. Data collected from 554 first-year undergraduates at a large private university were analyzed. Participants were given the adapted version of the Melbourne Centre for the Study of Higher Education Survey to self-report their learning experience and engagement in the university community. The results showed that, in general, the students’ reasons of pursuing tertiary education were to open the door to career opportunities and skill development. Moreover, students’ views on their learning and university engagement were at the moderate level. In relation to student identity and overall student satisfaction, it is encouraging to state that their perceptions of studentship and course satisfaction were rather positive. After controlling for demographics, student engagement appeared to explain more variance in student identity, whereas students’ expectations and experience explained greater variance in students’ overall course satisfaction. Implications for practice, limitations, and recommendation of this study are addressed.

Baker, A. J. (2017). Algorithms to Assess Music Cities: Case Study—Melbourne as a Music Capital. SAGE Open. https://doi.org/10.1177/2158244017691801

Abstract. The global  Mastering of a Music City  report in 2015 notes that the concept of music cities has penetrated the global political vernacular because it delivers “significant economic, employment, cultural and social benefits.” This article highlights that no empirical study has combined all these values and offers a relevant and comprehensive definition of a music city. Drawing on industry research,1 the article assesses how mathematical flowcharts, such as Algorithm A (Economics), Algorithm B (Four T’s creative index), and Algorithm C (Heritage), have contributed to the definition of a music city. Taking Melbourne as a case study, it illustrates how Algorithms A and B are used as disputed evidence about whether the city is touted as Australia’s music capital. The article connects the three algorithms to an academic framework from musicology, urban studies, cultural economics, and sociology, and proposes a benchmark Algorithm D (Music Cities definition), which offers a more holistic assessment of music activity in any urban context. The article concludes by arguing that Algorithm D offers a much-needed definition of what comprises a music city because it builds on the popular political economy focus and includes the social importance of space and cultural practices.

Brown, K., & Mondon, A. (2020). Populism, the media, and the mainstreaming of the far right: The Guardian’s coverage of populism as a case study. Politics. https://doi.org/10.1177/0263395720955036

Abstract. Populism seems to define our current political age. The term is splashed across the headlines, brandished in political speeches and commentaries, and applied extensively in numerous academic publications and conferences. This pervasive usage, or populist hype, has serious implications for our understanding of the meaning of populism itself and for our interpretation of the phenomena to which it is applied. In particular, we argue that its common conflation with far-right politics, as well as its breadth of application to other phenomena, has contributed to the mainstreaming of the far right in three main ways: (1) agenda-setting power and deflection, (2) euphemisation and trivialisation, and (3) amplification. Through a mixed-methods approach to discourse analysis, this article uses  The Guardian  newspaper as a case study to explore the development of the populist hype and the detrimental effects of the logics that it has pushed in public discourse.

Droy, L. T., Goodwin, J., & O’Connor, H. (2020). Methodological Uncertainty and Multi-Strategy Analysis: Case Study of the Long-Term Effects of Government Sponsored Youth Training on Occupational Mobility. Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique, 147–148(1–2), 200–230. https://doi.org/10.1177/0759106320939893

Abstract. Sociological practitioners often face considerable methodological uncertainty when undertaking a quantitative analysis. This methodological uncertainty encompasses both data construction (e.g. defining variables) and analysis (e.g. selecting and specifying a modelling procedure). Methodological uncertainty can lead to results that are fragile and arbitrary. Yet, many practitioners may be unaware of the potential scale of methodological uncertainty in quantitative analysis, and the recent emergence of techniques for addressing it. Recent proposals for ‘multi-strategy’ approaches seek to identify and manage methodological uncertainty in quantitative analysis. We present a case-study of a multi-strategy analysis, applied to the problem of estimating the long-term impact of 1980s UK government-sponsored youth training. We use this case study to further highlight the problem of cumulative methodological fragilities in applied quantitative sociology and to discuss and help develop multi-strategy analysis as a tool to address them.

Ebneyamini, S., & Sadeghi Moghadam, M. R. (2018). Toward Developing a Framework for Conducting Case Study Research .  International Journal of Qualitative Methods .  https://doi.org/10.1177/1609406918817954

Abstract. This article reviews the use of case study research for both practical and theoretical issues especially in management field with the emphasis on management of technology and innovation. Many researchers commented on the methodological issues of the case study research from their point of view thus, presenting a comprehensive framework was missing. We try representing a general framework with methodological and analytical perspective to design, develop, and conduct case study research. To test the coverage of our framework, we have analyzed articles in three major journals related to the management of technology and innovation to approve our framework. This study represents a general structure to guide, design, and fulfill a case study research with levels and steps necessary for researchers to use in their research.

Lai, D., & Roccu, R. (2019). Case study research and critical IR: the case for the extended case methodology. International Relations , 33 (1), 67-87. https://doi.org/10.1177/0047117818818243

Abstract. Discussions on case study methodology in International Relations (IR) have historically been dominated by positivist and neopositivist approaches. However, these are problematic for critical IR research, pointing to the need for a non-positivist case study methodology. To address this issue, this article introduces and adapts the extended case methodology as a critical, reflexivist approach to case study research, whereby the case is constructed through a dynamic interaction with theory, rather than selected, and knowledge is produced through extensions rather than generalisation. Insofar as it seeks to study the world in complex and non-linear terms, take context and positionality seriously, and generate explicitly political and emancipatory knowledge, the extended case methodology is consistent with the ontological and epistemological commitments of several critical IR approaches. Its potential is illustrated in the final part of the article with reference to researching the socioeconomic dimension of transitional justice in Bosnia and Herzegovina.

Lynch, R., Young, J. C., Boakye-Achampong, S., Jowaisas, C., Sam, J., & Norlander, B. (2020). Benefits of crowdsourcing for libraries: A case study from Africa . IFLA Journal. https://doi.org/10.1177/0340035220944940

Abstract. Many libraries in the Global South do not collect comprehensive data about themselves, which creates challenges in terms of local and international visibility. Crowdsourcing is an effective tool that engages the public to collect missing data, and it has proven to be particularly valuable in countries where governments collect little public data. Whereas crowdsourcing is often used within fields that have high levels of development funding, such as health, the authors believe that this approach would have many benefits for the library field as well. They present qualitative and quantitative evidence from 23 African countries involved in a crowdsourcing project to map libraries. The authors find benefits in terms of increased connections between stakeholders, capacity-building, and increased local visibility. These findings demonstrate the potential of crowdsourced approaches for tasks such as mapping to benefit libraries and similarly positioned institutions in the Global South in multifaceted ways.

Mason, W., Morris, K., Webb, C., Daniels, B., Featherstone, B., Bywaters, P., Mirza, N., Hooper, J., Brady, G., Bunting, L., & Scourfield, J. (2020). Toward Full Integration of Quantitative and Qualitative Methods in Case Study Research: Insights From Investigating Child Welfare Inequalities. Journal of Mixed Methods Research, 14 (2), 164-183. https://doi.org/10.1177/1558689819857972

Abstract. Delineation of the full integration of quantitative and qualitative methods throughout all stages of multisite mixed methods case study projects remains a gap in the methodological literature. This article offers advances to the field of mixed methods by detailing the application and integration of mixed methods throughout all stages of one such project; a study of child welfare inequalities. By offering a critical discussion of site selection and the management of confirmatory, expansionary and discordant data, this article contributes to the limited body of mixed methods exemplars specific to this field. We propose that our mixed methods approach provided distinctive insights into a complex social problem, offering expanded understandings of the relationship between poverty, child abuse, and neglect.

Rashid, Y., Rashid, A., Warraich, M. A., Sabir, S. S., & Waseem, A. (2019). Case Study Method: A Step-by-Step Guide for Business Researchers .  International Journal of Qualitative Methods .  https://doi.org/10.1177/1609406919862424

Abstract. Qualitative case study methodology enables researchers to conduct an in-depth exploration of intricate phenomena within some specific context. By keeping in mind research students, this article presents a systematic step-by-step guide to conduct a case study in the business discipline. Research students belonging to said discipline face issues in terms of clarity, selection, and operationalization of qualitative case study while doing their final dissertation. These issues often lead to confusion, wastage of valuable time, and wrong decisions that affect the overall outcome of the research. This article presents a checklist comprised of four phases, that is, foundation phase, prefield phase, field phase, and reporting phase. The objective of this article is to provide novice researchers with practical application of this checklist by linking all its four phases with the authors’ experiences and learning from recently conducted in-depth multiple case studies in the organizations of New Zealand. Rather than discussing case study in general, a targeted step-by-step plan with real-time research examples to conduct a case study is given.

VanWynsberghe, R., & Khan, S. (2007). Redefining Case Study. International Journal of Qualitative Methods, 80–94. https://doi.org/10.1177/160940690700600208

Abstract. In this paper the authors propose a more precise and encompassing definition of case study than is usually found. They support their definition by clarifying that case study is neither a method nor a methodology nor a research design as suggested by others. They use a case study prototype of their own design to propose common properties of case study and demonstrate how these properties support their definition. Next, they present several living myths about case study and refute them in relation to their definition. Finally, they discuss the interplay between the terms case study and unit of analysis to further delineate their definition of case study. The target audiences for this paper include case study researchers, research design and methods instructors, and graduate students interested in case study research.

More Sage Research Methods Community Posts about Case Study Research

Use Research Cases to Teach Methods for Large-Scale Data Analysis

Use research cases as the basis for individual or team activities that build skills.

A Case for Teaching Methods

Find an 10-step process for using research cases to teach methods with learning activities for individual students, teams, or small groups. (Or use the approach yourself!)

Design Strategy: How to Choose a Qualitative Research Design

How do you decide which methodology fits your study? In this dialogue Linda Bloomberg and Janet Boberg explain the importance of a strategic approach to qualitative research design that stresses alignment with the purpose of the study.

Perspectives from Researchers on Case Study Design

Case study methods are used by researchers in many disciplines. Here are some open-access articles about multimodal qualitative or mixed methods designs that include both qualitative and quantitative elements.

Designing research with case study methods

Case study methodology is both unique, and uniquely confusing. It is unique given one characteristic: case studies draw from more than one data source.

Case Study Methods and Examples

What is case study methodology? It is unique given one characteristic: case studies draw from more than one data source. In this post find definitions and a collection of multidisciplinary examples.

14381_photo-200x300.jpg

Find discussion of case studies and published examples.

Istanbul as a regional computational social science hub

Experiments and quantitative research.

Quantitative study designs: Case Studies/ Case Report/ Case Series

Quantitative study designs.

  • Introduction
  • Cohort Studies
  • Randomised Controlled Trial
  • Case Control
  • Cross-Sectional Studies
  • Study Designs Home

Case Study / Case Report / Case Series

Some famous examples of case studies are John Martin Marlow’s case study on Phineas Gage (the man who had a railway spike through his head) and Sigmund Freud’s case studies, Little Hans and The Rat Man. Case studies are widely used in psychology to provide insight into unusual conditions.

A case study, also known as a case report, is an in depth or intensive study of a single individual or specific group, while a case series is a grouping of similar case studies / case reports together.

A case study / case report can be used in the following instances:

  • where there is atypical or abnormal behaviour or development
  • an unexplained outcome to treatment
  • an emerging disease or condition

The stages of a Case Study / Case Report / Case Series

case studies quantitative research

Which clinical questions does Case Study / Case Report / Case Series best answer?

Emerging conditions, adverse reactions to treatments, atypical / abnormal behaviour, new programs or methods of treatment – all of these can be answered with case studies /case reports / case series. They are generally descriptive studies based on qualitative data e.g. observations, interviews, questionnaires, diaries, personal notes or clinical notes.

What are the advantages and disadvantages to consider when using Case Studies/ Case Reports and Case Series ?

What are the pitfalls to look for.

One pitfall that has occurred in some case studies is where two common conditions/treatments have been linked together with no comprehensive data backing up the conclusion. A hypothetical example could be where high rates of the common cold were associated with suicide when the cohort also suffered from depression.

Critical appraisal tools 

To assist with critically appraising Case studies / Case reports / Case series there are some tools / checklists you can use.

JBI Critical Appraisal Checklist for Case Series

JBI Critical Appraisal Checklist for Case Reports

Real World Examples

Some Psychology case study / case report / case series examples

Capp, G. (2015). Our community, our schools : A case study of program design for school-based mental health services. Children & Schools, 37(4), 241–248. A pilot program to improve school based mental health services was instigated in one elementary school and one middle / high school. The case study followed the program from development through to implementation, documenting each step of the process.

Cowdrey, F. A. & Walz, L. (2015). Exposure therapy for fear of spiders in an adult with learning disabilities: A case report. British Journal of Learning Disabilities, 43(1), 75–82. One person was studied who had completed a pre- intervention and post- intervention questionnaire. From the results of this data the exposure therapy intervention was found to be effective in reducing the phobia. This case report highlighted a therapy that could be used to assist people with learning disabilities who also suffered from phobias.

Li, H. X., He, L., Zhang, C. C., Eisinger, R., Pan, Y. X., Wang, T., . . . Li, D. Y. (2019). Deep brain stimulation in post‐traumatic dystonia: A case series study. CNS Neuroscience & Therapeutics. 1-8. Five patients were included in the case series, all with the same condition. They all received deep brain stimulation but not in the same area of the brain. Baseline and last follow up visit were assessed with the same rating scale.

References and Further Reading  

Greenhalgh, T. (2014). How to read a paper: the basics of evidence-based medicine. (5th ed.). New York: Wiley.

Heale, R. & Twycross, A. (2018). What is a case study? Evidence Based Nursing, 21(1), 7-8.

Himmelfarb Health Sciences Library. (2019). Study design 101: case report. Retrieved from https://himmelfarb.gwu.edu/tutorials/studydesign101/casereports.cfm

Hoffmann T., Bennett S., Mar C. D. (2017). Evidence-based practice across the health professions. Chatswood, NSW: Elsevier.

Robinson, O. C., & McAdams, D. P. (2015). Four functional roles for case studies in emerging adulthood research. Emerging Adulthood, 3(6), 413-420.

  • << Previous: Cross-Sectional Studies
  • Next: Study Designs Home >>
  • Last Updated: May 15, 2024 11:37 AM
  • URL: https://deakin.libguides.com/quantitative-study-designs

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Case Study | Definition, Examples & Methods

Case Study | Definition, Examples & Methods

Published on 5 May 2022 by Shona McCombes . Revised on 30 January 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating, and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyse the case.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Prevent plagiarism, run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

Unlike quantitative or experimental research, a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

If you find yourself aiming to simultaneously investigate and solve an issue, consider conducting action research . As its name suggests, action research conducts research and takes action at the same time, and is highly iterative and flexible. 

However, you can also choose a more common or representative case to exemplify a particular category, experience, or phenomenon.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data .

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis, with separate sections or chapters for the methods , results , and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyse its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, January 30). Case Study | Definition, Examples & Methods. Scribbr. Retrieved 14 May 2024, from https://www.scribbr.co.uk/research-methods/case-studies/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, correlational research | guide, design & examples, a quick guide to experimental design | 5 steps & examples, descriptive research design | definition, methods & examples.

Academic Success Center

Research Writing and Analysis

  • NVivo Group and Study Sessions
  • SPSS This link opens in a new window
  • Statistical Analysis Group sessions
  • Using Qualtrics
  • Dissertation and Data Analysis Group Sessions
  • Defense Schedule - Commons Calendar This link opens in a new window
  • Research Process Flow Chart
  • Research Alignment Chapter 1 This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Literature Review This link opens in a new window
  • Systematic Reviews & Meta-Analyses
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • Problem Statement
  • Purpose Statement
  • Conceptual Framework
  • Theoretical Framework
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Trustworthiness of Qualitative Data
  • Analysis and Coding Example- Qualitative Data
  • Thematic Data Analysis in Qualitative Design
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Writing a Case Study

Hands holding a world globe

What is a case study?

A Map of the world with hands holding a pen.

A Case study is: 

  • An in-depth research design that primarily uses a qualitative methodology but sometimes​​ includes quantitative methodology.
  • Used to examine an identifiable problem confirmed through research.
  • Used to investigate an individual, group of people, organization, or event.
  • Used to mostly answer "how" and "why" questions.

What are the different types of case studies?

Man and woman looking at a laptop

Note: These are the primary case studies. As you continue to research and learn

about case studies you will begin to find a robust list of different types. 

Who are your case study participants?

Boys looking through a camera

What is triangulation ? 

Validity and credibility are an essential part of the case study. Therefore, the researcher should include triangulation to ensure trustworthiness while accurately reflecting what the researcher seeks to investigate.

Triangulation image with examples

How to write a Case Study?

When developing a case study, there are different ways you could present the information, but remember to include the five parts for your case study.

Man holding his hand out to show five fingers.

Was this resource helpful?

  • << Previous: Thematic Data Analysis in Qualitative Design
  • Next: Journal Article Reporting Standards (JARS) >>
  • Last Updated: May 3, 2024 8:12 AM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Political Methodology

  • < Previous chapter
  • Next chapter >

28 Case Selection for Case‐Study Analysis: Qualitative and Quantitative Techniques

John Gerring is Professor of Political Science, Boston University.

  • Published: 02 September 2009
  • Cite Icon Cite
  • Permissions Icon Permissions

This article presents some guidance by cataloging nine different techniques for case selection: typical, diverse, extreme, deviant, influential, crucial, pathway, most similar, and most different. It also indicates that if the researcher is starting from a quantitative database, then methods for finding influential outliers can be used. In particular, the article clarifies the general principles that might guide the process of case selection in case-study research. Cases are more or less representative of some broader phenomenon and, on that score, may be considered better or worse subjects for intensive analysis. The article then draws attention to two ambiguities in case-selection strategies in case-study research. The first concerns the admixture of several case-selection strategies. The second concerns the changing status of a case as a study proceeds. Some case studies follow only one strategy of case selection.

Case ‐study analysis focuses on one or several cases that are expected to provide insight into a larger population. This presents the researcher with a formidable problem of case selection: Which cases should she or he choose?

In large‐sample research, the task of case selection is usually handled by some version of randomization. However, in case‐study research the sample is small (by definition) and this makes random sampling problematic, for any given sample may be wildly unrepresentative. Moreover, there is no guarantee that a few cases, chosen randomly, will provide leverage into the research question of interest.

In order to isolate a sample of cases that both reproduces the relevant causal features of a larger universe (representativeness) and provides variation along the dimensions of theoretical interest (causal leverage), case selection for very small samples must employ purposive (nonrandom) selection procedures. Nine such methods are discussed in this chapter, each of which may be identified with a distinct case‐study “type:” typical, diverse, extreme, deviant, influential, crucial, pathway, most‐similar , and most‐different . Table 28.1 summarizes each type, including its general definition, a technique for locating it within a population of potential cases, its uses, and its probable representativeness.

While each of these techniques is normally practiced on one or several cases (the diverse, most‐similar, and most‐different methods require at least two), all may employ additional cases—with the proviso that, at some point, they will no longer offer an opportunity for in‐depth analysis and will thus no longer be “case studies” in the usual sense ( Gerring 2007 , ch. 2 ). It will also be seen that small‐ N case‐selection procedures rest, at least implicitly, upon an analysis of a larger population of potential cases (as does randomization). The case(s) identified for intensive study is chosen from a population and the reasons for this choice hinge upon the way in which it is situated within that population. This is the origin of the terminology—typical, diverse, extreme, et al. It follows that case‐selection procedures in case‐study research may build upon prior cross‐case analysis and that they depend, at the very least, upon certain assumptions about the broader population.

In certain circumstances, the case‐selection procedure may be structured by a quantitative analysis of the larger population. Here, several caveats must be satisfied. First, the inference must pertain to more than a few dozen cases; otherwise, statistical analysis is problematic. Second, relevant data must be available for that population, or a significant sample of that population, on key variables, and the researcher must feel reasonably confident in the accuracy and conceptual validity of these variables. Third, all the standard assumptions of statistical research (e.g. identification, specification, robustness) must be carefully considered, and wherever possible, tested. I shall not dilate further on these familiar issues except to warn the researcher against the unreflective use of statistical techniques. 1 When these requirements are not met, the researcher must employ a qualitative approach to case selection.

The point of this chapter is to elucidate general principles that might guide the process of case selection in case‐study research, building upon earlier work by Harry Eckstein, Arend Lijphart, and others. Sometimes, these principles can be applied in a quantitative framework and sometimes they are limited to a qualitative framework. In either case, the logic of case selection remains quite similar, whether practiced in small‐ N or large‐ N contexts.

Before we begin, a bit of notation is necessary. In this chapter “ N ” refers to cases, not observations. Here, I am concerned primarily with causal inference, rather than inferences that are descriptive or predictive in nature. Thus, all hypotheses involve at least one independent variable ( X ) and one dependent variable ( Y ). For convenience, I shall label the causal factor of special theoretical interest X   1 , and the control variable, or vector of controls (if there are any), X   2 . If the writer is concerned to explain a puzzling outcome, but has no preconceptions about its causes, then the research will be described as Y‐centered . If a researcher is concerned to investigate the effects of a particular cause, with no preconceptions about what these effects might be, the research will be described as X‐centered . If a researcher is concerned to investigate a particular causal relationship, the research will be described as X   1 / Y‐centered , for it connects a particular cause with a particular outcome. 2   X ‐ or Y ‐centered research is exploratory; its purpose is to generate new hypotheses. X   1 / Y‐centered research, by contrast, is confirmatory/disconfirmatory; its purpose is to test an existing hypothesis.

1 Typical Case

In order for a focused case study to provide insight into a broader phenomenon it must be representative of a broader set of cases. It is in this context that one may speak of a typical‐case approach to case selection. The typical case exemplifies what is considered to be a typical set of values, given some general understanding of a phenomenon. By construction, the typical case is also a representative case.

Some typical cases serve an exploratory role. Here, the author chooses a case based upon a set of descriptive characteristics and then probes for causal relationships. Robert and Helen Lynd (1929/1956) selected a single city “to be as representative as possible of contemporary American life.” Specifically, they were looking for a city with

1) a temperate climate; 2) a sufficiently rapid rate of growth to ensure the presence of a plentiful assortment of the growing pains accompanying contemporary social change; 3) an industrial culture with modern, high‐speed machine production; 4) the absence of dominance of the city's industry by a single plant (i.e., not a one‐industry town); 5) a substantial local artistic life to balance its industrial activity …; and 6) the absence of any outstanding peculiarities or acute local problems which would mark the city off from the midchannel sort of American community. ( Lynd and Lynd 1929/1956 , quoted in Yin 2004 , 29–30)

After examining a number of options the Lynds decided that Muncie, Indiana, was more representative than, or at least as representative as, other midsized cities in America, thus qualifying as a typical case.

This is an inductive approach to case selection. Note that typicality may be understood according to the mean, median, or mode on a particular dimension; there may be multiple dimensions (as in the foregoing example); and each may be differently weighted (some dimensions may be more important than others). Where the selection criteria are multidimensional and a large sample of potential cases is in play, some form of factor analysis may be useful in identifying the most‐typical case(s).

However, the more common employment of the typical‐case method involves a causal model of some phenomenon of theoretical interest. Here, the researcher has identified a particular outcome ( Y ), and perhaps a specific X   1 / Y hypothesis, which she wishes to investigate. In order to do so, she looks for a typical example of that causal relationship. Intuitively, one imagines that a case selected according to the mean values of all parameters must be a typical case relative to some causal relationship. However, this is by no means assured.

Suppose that the Lynds were primarily interested in explaining feelings of trust/distrust among members of different social classes (one of the implicit research goals of the Middletown study). This outcome is likely to be affected by many factors, only some of which are included in their six selection criteria. So choosing cases with respect to a causal hypothesis involves, first of all, identifying the relevant parameters. It involves, secondly, the selection of a case that has a “typical” value relative to the overall causal model; it is well explained. Cases with untypical scores on a particular dimension (e.g. very high or very low) may still be typical examples of a causal relationship. Indeed, they may be more typical than cases whose values lie close to the mean. Thus, a descriptive understanding of typicality is quite different from a causal understanding of typicality. Since it is the latter version that is more common, I shall adopt this understanding of typicality in the remainder of the discussion.

From a qualitative perspective, causal typicality involves the selection of a case that conforms to expectations about some general causal relationship. It performs as expected. In a quantitative setting, this notion is measured by the size of a case's residual in a large‐ N cross‐case model. Typical cases lie on or near the regression line; their residuals are small. Insofar as the model is correctly specified, the size of a case's residual (i.e. the number of standard deviations that separate the actual value from the fitted value) provides a helpful clue to how representative that case is likely to be. “Outliers” are unlikely to be representative of the target population.

Of course, just because a case has a low residual does not necessarily mean that it is a representative case (with respect to the causal relationship of interest). Indeed, the issue of case representativeness is an issue that can never be definitively settled. When one refers to a “typical case” one is saying, in effect, that the probability of a case's representativeness is high, relative to other cases. This test of typicality is misleading if the statistical model is mis‐specified. And it provides little insurance against errors that are purely stochastic. A case may lie directly on the regression line but still be, in some important respect, atypical. For example, it might have an odd combination of values; the interaction of variables might be different from other cases; or additional causal mechanisms might be at work. For this reason, it is important to supplement a statistical analysis of cases with evidence drawn from the case in question (the case study itself) and with our deductive knowledge of the world. One should never judge a case solely by its residual. Yet, all other things being equal, a case with a low residual is less likely to be unusual than a case with a high residual, and to this extent the method of case selection outlined here may be a helpful guide to case‐study researchers faced with a large number of potential cases.

By way of conclusion, it should be noted that because the typical case embodies a typical value on some set of causally relevant dimensions, the variance of interest to the researcher must lie within that case. Specifically, the typical case of some phenomenon may be helpful in exploring causal mechanisms and in solving identification problems (e.g. endogeneity between X   1 and Y , an omitted variable that may account for X   1   and Y , or some other spurious causal association). Depending upon the results of the case study, the author may confirm an existing hypothesis, disconfirm that hypothesis, or reframe it in a way that is consistent with the findings of the case study. These are the uses of the typical‐case study.

2 Diverse Cases

A second case‐selection strategy has as its primary objective the achievement of maximum variance along relevant dimensions. I refer to this as a diverse‐case method. For obvious reasons, this method requires the selection of a set of cases—at minimum, two—which are intended to represent the full range of values characterizing X   1 , Y , or some particular X   1 / Y relationship. 3

Where the individual variable of interest is categorical (on/off, red/black/blue, Jewish/Protestant/Catholic), the identification of diversity is readily apparent. The investigator simply chooses one case from each category. For a continuous variable, the choices are not so obvious. However, the researcher usually chooses both extreme values (high and low), and perhaps the mean or median as well. The researcher may also look for break‐points in the distribution that seem to correspond to categorical differences among cases. Or she may follow a theoretical hunch about which threshold values count, i.e. which are likely to produce different values on Y .

Another sort of diverse case takes account of the values of multiple variables (i.e. a vector), rather than a single variable. If these variables are categorical, the identification of causal types rests upon the intersection of each category. Two dichotomous variables produce a matrix with four cells. Three trichotomous variables produce a matrix of eight cells. And so forth. If all variables are deemed relevant to the analysis, the selection of diverse cases mandates the selection of one case drawn from within each cell. Let us say that an outcome is thought to be affected by sex, race (black/white), and marital status. Here, a diverse‐case strategy of case selection would identify one case within each of these intersecting cells—a total of eight cases. Things become slightly more complicated when one or more of the factors is continuous, rather than categorical. Here, the diversity of case values do not fall neatly into cells. Rather, these cells must be created by fiat—e.g. high, medium, low.

It will be seen that where multiple variables are under consideration, the logic of diverse‐case analysis rests upon the logic of typological theorizing—where different combinations of variables are assumed to have effects on an outcome that vary across types ( Elman 2005 ; George and Bennett 2005 , 235; Lazarsfeld and Barton 1951 ). George and Smoke, for example, wish to explore different types of deterrence failure—by “fait accompli,” by “limited probe,” and by “controlled pressure.” Consequently, they wish to find cases that exemplify each type of causal mechanism. 4

Diversity may thus refer to a range of variation on X or Y , or to a particular combination of causal factors (with or without a consideration of the outcome). In each instance, the goal of case selection is to capture the full range of variation along the dimension(s) of interest.

Since diversity can mean many things, its employment in a large‐ N setting is necessarily dependent upon how this key term is defined. If it is understood to pertain only to a single variable ( X   1 or Y ), then the task is fairly simple. A categorical variable mandates the choice of at least one case from each category—two if dichotomous, three if trichotomous, and so forth. A continuous variable suggests the choice of at least one “high” and “low” value, and perhaps one drawn from the mean or median. But other choices might also be justified, according to one's hunch about the underlying causal relationship or according to natural thresholds found in the data, which may be grouped into discrete categories. Single‐variable traits are usually easy to discover in a large‐ N setting through descriptive statistics or through visual inspection of the data.

Where diversity refers to particular combinations of variables, the relevant cross‐ case technique is some version of stratified random sampling (in a probabilistic setting) or Qualitative Comparative Analysis (in a deterministic setting) ( Ragin 2000 ). If the researcher suspects that a causal relationship is affected not only by combinations of factors but also by their sequencing , then the technique of analysis must incorporate temporal elements ( Abbott 2001 ; Abbott and Forrest 1986 ; Abbott and Tsay 2000 ). Thus, the method of identifying causal types rests upon whatever method of identifying causal relationships is employed in the large‐ N sample.

Note that the identification of distinct case types is intended to identify groups of cases that are internally homogeneous (in all respects that might affect the causal relationship of interest). Thus, the choice of cases within each group should not be problematic, and may be accomplished through random sampling or purposive case selection. However, if there is suspected diversity within each category, then measures should be taken to assure that the chosen cases are typical of each category. A case study should not focus on an atypical member of a subgroup.

Indeed, considerations of diversity and typicality often go together. Thus, in a study of globalization and social welfare systems, Duane Swank (2002) first identifies three distinctive groups of welfare states: “universalistic” (social democratic), “corporatist conservative,” and “liberal.” Next, he looks within each group to find the most‐typical cases. He decides that the Nordic countries are more typical of the universalistic model than the Netherlands since the latter has “some characteristics of the occupationally based program structure and a political context of Christian Democratic‐led governments typical of the corporatist conservative nations” ( Swank 2002 , 11; see also Esping‐Andersen 1990 ). Thus, the Nordic countries are chosen as representative cases within the universalistic case type, and are accompanied in the case‐study portion of his analysis by other cases chosen to represent the other welfare state types (corporatist conservative and liberal).

Evidently, when a sample encompasses a full range of variation on relevant parameters one is likely to enhance the representativeness of that sample (relative to some population). This is a distinct advantage. Of course, the inclusion of a full range of variation may distort the actual distribution of cases across this spectrum. If there are more “high” cases than “low” cases in a population and the researcher chooses only one high case and one low case, the resulting sample of two is not perfectly representative. Even so, the diverse‐case method probably has stronger claims to representativeness than any other small‐ N sample (including the standalone typical case). The selection of diverse cases has the additional advantage of introducing variation on the key variables of interest. A set of diverse cases is, by definition, a set of cases that encompasses a range of high and low values on relevant dimensions. There is, therefore, much to recommend this method of case selection. I suspect that these advantages are commonly understood and are applied on an intuitive level by case‐study researchers. However, the lack of a recognizable name—and an explicit methodological defense—has made it difficult for case‐study researchers to utilize this method of case selection, and to do so in an explicit and self‐conscious fashion. Neologism has its uses.

3 Extreme Case

The extreme‐case method selects a case because of its extreme value on an independent ( X   1 ) or dependent ( Y ) variable of interest. Thus, studies of domestic violence may choose to focus on extreme instances of abuse ( Browne 1987 ). Studies of altruism may focus on those rare individuals who risked their lives to help others (e.g. Holocaust resisters) ( Monroe 1996 ). Studies of ethnic politics may focus on the most heterogeneous societies (e.g. Papua New Guinea) in order to better understand the role of ethnicity in a democratic setting ( Reilly 2000–1 ). Studies of industrial policy often focus on the most successful countries (i.e. the NICS) ( Deyo 1987 ). And so forth. 5

Often an extreme case corresponds to a case that is considered to be prototypical or paradigmatic of some phenomena of interest. This is because concepts are often defined by their extremes, i.e. their ideal types. Italian Fascism defines the concept of Fascism, in part, because it offered the most extreme example of that phenomenon. However, the methodological value of this case, and others like it, derives from its extremity (along some dimension of interest), not its theoretical status or its status in the literature on a subject.

The notion of “extreme” may now be defined more precisely. An extreme value is an observation that lies far away from the mean of a given distribution. This may be measured (if there are sufficient observations) by a case's “Z score”—the number of standard deviations between a case and the mean value for that sample. Extreme cases have high Z scores, and for this reason may serve as useful subjects for intensive analysis.

For a continuous variable, the distance from the mean may be in either direction (positive or negative). For a dichotomous variable (present/absent), extremeness may be interpreted as unusual . If most cases are positive along a given dimension, then a negative case constitutes an extreme case. If most cases are negative, then a positive case constitutes an extreme case. It should be clear that researchers are not simply concerned with cases where something “happened,” but also with cases where something did not. It is the rareness of the value that makes a case valuable, in this context, not its positive or negative value. 6 Thus, if one is studying state capacity, a case of state failure is probably more informative than a case of state endurance simply because the former is more unusual. Similarly, if one is interested in incest taboos a culture where the incest taboo is absent or weak is probably more useful than a culture where it is present or strong. Fascism is more important than nonfascism. And so forth. There is a good reason, therefore, why case studies of revolution tend to focus on “revolutionary” cases. Theda Skocpol (1979) had much more to learn from France than from Austro‐Hungary since France was more unusual than Austro‐Hungary within the population of nation states that Skocpol was concerned to explain. The reason is quite simple: There are fewer revolutionary cases than nonrevolutionary cases; thus, the variation that we explore as a clue to causal relationships is encapsulated in these cases, against a background of nonrevolutionary cases.

Note that the extreme‐case method of case selection appears to violate the social science folk wisdom warning us not to “select on the dependent variable.” 7 Selecting cases on the dependent variable is indeed problematic if a number of cases are chosen, all of which lie on one end of a variable's spectrum (they are all positive or negative), and if the researcher then subjects this sample to cross‐case analysis as if it were representative of a population. 8 Results for this sort of analysis would almost assuredly be biased. Moreover, there will be little variation to explain since the values of each case are explicitly constrained.

However, this is not the proper employment of the extreme‐case method. (It is more appropriately labeled an extreme‐ sample method.) The extreme‐case method actually refers back to a larger sample of cases that lie in the background of the analysis and provide a full range of variation as well as a more representative picture of the population. It is a self‐conscious attempt to maximize variance on the dimension of interest, not to minimize it. If this population of cases is well understood— either through the author's own cross‐case analysis, through the work of others, or through common sense—then a researcher may justify the selection of a single case exemplifying an extreme value for within‐case analysis. If not, the researcher may be well advised to follow a diverse‐case method, as discussed above.

By way of conclusion, let us return to the problem of representativeness. It will be seen that an extreme case may be typical or deviant. There is simply no way to tell because the researcher has not yet specified an X   1 / Y causal proposition. Once such a causal proposition has been specified one may then ask whether the case in question is similar to some population of cases in all respects that might affect the X   1 / Y relationship of interest (i.e. unit homogeneous). It is at this point that it becomes possible to say, within the context of a cross‐case statistical model, whether a case lies near to, or far from, the regression line. However, this sort of analysis means that the researcher is no longer pursuing an extreme‐case method. The extreme‐case method is purely exploratory—a way of probing possible causes of Y , or possible effects of X , in an open‐ended fashion. If the researcher has some notion of what additional factors might affect the outcome of interest, or of what relationship the causal factor of interest might have with Y , then she ought to pursue one of the other methods explored in this chapter. This also implies that an extreme‐case method may transform into a different kind of approach as a study evolves; that is, as a more specific hypothesis comes to light. Useful extreme cases at the outset of a study may prove less useful at a later stage of analysis.

4 Deviant Case

The deviant‐case method selects that case(s) which, by reference to some general understanding of a topic (either a specific theory or common sense), demonstrates a surprising value. It is thus the contrary of the typical case. Barbara Geddes (2003) notes the importance of deviant cases in medical science, where researchers are habitually focused on that which is “pathological” (according to standard theory and practice). The New England Journal of Medicine , one of the premier journals of the field, carries a regular feature entitled Case Records of the Massachusetts General Hospital. These articles bear titles like the following: “An 80‐Year‐Old Woman with Sudden Unilateral Blindness” or “A 76‐Year‐Old Man with Fever, Dyspnea, Pulmonary Infiltrates, Pleural Effusions, and Confusion.” 9 Another interesting example drawn from the field of medicine concerns the extensive study now devoted to a small number of persons who seem resistant to the AIDS virus ( Buchbinder and Vittinghoff 1999 ; Haynes, Pantaleo, and Fauci 1996 ). Why are they resistant? What is different about these people? What can we learn about AIDS in other patients by observing people who have built‐in resistance to this disease?

Likewise, in psychology and sociology case studies may be comprised of deviant (in the social sense) persons or groups. In economics, case studies may consist of countries or businesses that overperform (e.g. Botswana; Microsoft) or underperform (e.g. Britain through most of the twentieth century; Sears in recent decades) relative to some set of expectations. In political science, case studies may focus on countries where the welfare state is more developed (e.g. Sweden) or less developed (e.g. the United States) than one would expect, given a set of general expectations about welfare state development. The deviant case is closely linked to the investigation of theoretical anomalies. Indeed, to say deviant is to imply “anomalous.” 10

Note that while extreme cases are judged relative to the mean of a single distribution (the distribution of values along a single variable), deviant cases are judged relative to some general model of causal relations. The deviant‐case method selects cases which, by reference to some (presumably) general relationship, demonstrate a surprising value. They are “deviant” in that they are poorly explained by the multivariate model. The important point is that deviant‐ness can only be assessed relative to the general (quantitative or qualitative) model. This means that the relative deviant‐ness of a case is likely to change whenever the general model is altered. For example, the United States is a deviant welfare state when this outcome is gauged relative to societal wealth. But it is less deviant—and perhaps not deviant at all—when certain additional (political and societal) factors are included in the model, as discussed in the epilogue. Deviance is model dependent. Thus, when discussing the concept of the deviant case it is helpful to ask the following question: Relative to what general model (or set of background factors) is Case A deviant?

Conceptually, we have said that the deviant case is the logical contrary of the typical case. This translates into a directly contrasting statistical measurement. While the typical case is one with a low residual (in some general model of causal relations), a deviant case is one with a high residual. This means, following our previous discussion, that the deviant case is likely to be an un representative case, and in this respect appears to violate the supposition that case‐study samples should seek to reproduce features of a larger population.

However, it must be borne in mind that the primary purpose of a deviant‐case analysis is to probe for new—but as yet unspecified—explanations. (If the purpose is to disprove an extant theory I shall refer to the study as crucial‐case, as discussed below.) The researcher hopes that causal processes identified within the deviant case will illustrate some causal factor that is applicable to other (more or less deviant) cases. This means that a deviant‐case study usually culminates in a general proposition, one that may be applied to other cases in the population. Once this general proposition has been introduced into the overall model, the expectation is that the chosen case will no longer be an outlier. Indeed, the hope is that it will now be typical , as judged by its small residual in the adjusted model. (The exception would be a circumstance in which a case's outcome is deemed to be “accidental,” and therefore inexplicable by any general model.)

This feature of the deviant‐case study should help to resolve questions about its representativeness. Even if it is not possible to measure the new causal factor (and thus to introduce it into a large‐ N cross‐case model), it may still be plausible to assert (based on general knowledge of the phenomenon) that the chosen case is representative of a broader population.

5 Influential Case

Sometimes, the choice of a case is motivated solely by the need to verify the assumptions behind a general model of causal relations. Here, the analyst attempts to provide a rationale for disregarding a problematic case or a set of problematic cases. That is to say, she attempts to show why apparent deviations from the norm are not really deviant, or do not challenge the core of the theory, once the circumstances of the special case or cases are fully understood. A cross‐case analysis may, after all, be marred by several classes of problems including measurement error, specification error, errors in establishing proper boundaries for the inference (the scope of the argument), and stochastic error (fluctuations in the phenomenon under study that are treated as random, given available theoretical resources). If poorly fitting cases can be explained away by reference to these kinds of problems, then the theory of interest is that much stronger. This sort of deviant‐case analysis answers the question, “What about Case A (or cases of type A)? How does that, seemingly disconfirming, case fit the model?”

Because its underlying purpose is different from the usual deviant‐case study, I offer a new term for this method. The influential case is a case that casts doubt upon a theory, and for that reason warrants close inspection. This investigation may reveal, after all, that the theory is validated—perhaps in some slightly altered form. In this guise, the influential case is the “case that proves the rule.” In other instances, the influential‐case analysis may contribute to disconfirming, or reconceptualizing, a theory. The key point is that the value of the case is judged relative to some extant cross‐case model.

A simple version of influential‐case analysis involves the confirmation of a key case's score on some critical dimension. This is essentially a question of measurement. Sometimes cases are poorly explained simply because they are poorly understood. A close examination of a particular context may reveal that an apparently falsifying case has been miscoded. If so, the initial challenge presented by that case to some general theory has been obviated.

However, the more usual employment of the influential‐case method culminates in a substantive reinterpretation of the case—perhaps even of the general model. It is not just a question of measurement. Consider Thomas Ertman's (1997) study of state building in Western Europe, as summarized by Gerardo Munck. This study argues

that the interaction of a) the type of local government during the first period of statebuilding, with b) the timing of increases in geopolitical competition, strongly influences the kind of regime and state that emerge. [Ertman] tests this hypothesis against the historical experience of Europe and finds that most countries fit his predictions. Denmark, however, is a major exception. In Denmark, sustained geopolitical competition began relatively late and local government at the beginning of the statebuilding period was generally participatory, which should have led the country to develop “patrimonial constitutionalism.” But in fact, it developed “bureaucratic absolutism.” Ertman carefully explores the process through which Denmark came to have a bureaucratic absolutist state and finds that Denmark had the early marks of a patrimonial constitutionalist state. However, the country was pushed off this developmental path by the influence of German knights, who entered Denmark and brought with them German institutions of local government. Ertman then traces the causal process through which these imported institutions pushed Denmark to develop bureaucratic absolutism, concluding that this development was caused by a factor well outside his explanatory framework. ( Munck 2004 , 118)

Ertman's overall framework is confirmed insofar as he has been able to show, by an in‐depth discussion of Denmark, that the causal processes stipulated by the general theory hold even in this apparently disconfirming case. Denmark is still deviant, but it is so because of “contingent historical circumstances” that are exogenous to the theory ( Ertman 1997 , 316).

Evidently, the influential‐case analysis is similar to the deviant‐case analysis. Both focus on outliers. However, as we shall see, they focus on different kinds of outliers. Moreover, the animating goals of these two research designs are quite different. The influential‐case study begins with the aim of confirming a general model, while the deviant‐case study has the aim of generating a new hypothesis that modifies an existing general model. The confusion stems from the fact that the same case study may fulfill both objectives—qualifying a general model and, at the same time, confirming its core hypothesis.

Thus, in their study of Roberto Michels's “iron law of oligarchy,” Lipset, Trow, and Coleman (1956) choose to focus on an organization—the International Typographical Union—that appears to violate the central presupposition. The ITU, as noted by one of the authors, has “a long‐term two‐party system with free elections and frequent turnover in office” and is thus anything but oligarchic ( Lipset 1959 , 70). As such, it calls into question Michels's grand generalization about organizational behavior. The authors explain this curious result by the extraordinarily high level of education among the members of this union. Michels's law is shown to be true for most organizations, but not all. It is true, with qualifications. Note that the respecification of the original model (in effect, Lipset, Trow, and Coleman introduce a new control variable or boundary condition) involves the exploration of a new hypothesis. In this instance, therefore, the use of an influential case to confirm an existing theory is quite similar to the use of a deviant case to explore a new theory.

In a quantitative idiom, influential cases are those that, if counterfactually assigned a different value on the dependent variable, would most substantially change the resulting estimates. They may or may not be outliers (high‐residual cases). Two quantitative measures of influence are commonly applied in regression diagnostics ( Belsey, Kuh, and Welsch 2004 ). The first, often referred to as the leverage of a case, derives from what is called the hat matrix . Based solely on each case's scores on the independent variables, the hat matrix tells us how much a change in (or a measurement error on) the dependent variable for that case would affect the overall regression line. The second is Cook's distance , a measure of the extent to which the estimates of all the parameters would change if a given case were omitted from the analysis. Cases with a large leverage or Cook's distance contribute quite a lot to the inferences drawn from a cross‐case analysis. In this sense, such cases are vital for maintaining analytic conclusions. Discovering a significant measurement error on the dependent variable or an important omitted variable for such a case may dramatically revise estimates of the overall relationships. Hence, it may be quite sensible to select influential cases for in‐depth study.

Note that the use of an influential‐case strategy of case selection is limited to instances in which a researcher has reason to be concerned that her results are being driven by one or a few cases. This is most likely to be true in small to moderate‐sized samples. Where N is very large—greater than 1,000, let us say—it is extremely unlikely that a small set of cases (much less an individual case) will play an “influential” role. Of course, there may be influential sets of cases, e.g. countries within a particular continent or cultural region, or persons of Irish extraction. Sets of influential observations are often problematic in a time‐series cross‐section data‐set where each unit (e.g. country) contains multiple observations (through time), and hence may have a strong influence on aggregate results. Still, the general rule is: the larger the sample, the less important individual cases are likely to be and, hence, the less likely a researcher is to use an influential‐case approach to case selection.

6 Crucial Case

Of all the extant methods of case selection perhaps the most storied—and certainly the most controversial—is the crucial‐case method, introduced to the social science world several decades ago by Harry Eckstein. In his seminal essay, Eckstein (1975 , 118) describes the crucial case as one “that must closely fit a theory if one is to have confidence in the theory's validity, or, conversely, must not fit equally well any rule contrary to that proposed.” A case is crucial in a somewhat weaker—but much more common—sense when it is most, or least, likely to fulfill a theoretical prediction. A “most‐likely” case is one that, on all dimensions except the dimension of theoretical interest, is predicted to achieve a certain outcome, and yet does not. It is therefore used to disconfirm a theory. A “least‐likely” case is one that, on all dimensions except the dimension of theoretical interest, is predicted not to achieve a certain outcome, and yet does so. It is therefore used to confirm a theory. In all formulations, the crucial‐case offers a most‐difficult test for an argument, and hence provides what is perhaps the strongest sort of evidence possible in a nonexperimental, single‐case setting.

Since the publication of Eckstein's influential essay, the crucial‐case approach has been claimed in a multitude of studies across several social science disciplines and has come to be recognized as a staple of the case‐study method. 11 Yet the idea of any single case playing a crucial (or “critical”) role is not widely accepted among most methodologists (e.g. Sekhon 2004 ). (Even its progenitor seems to have had doubts.)

Let us begin with the confirmatory (a.k.a. least‐likely) crucial case. The implicit logic of this research design may be summarized as follows. Given a set of facts, we are asked to contemplate the probability that a given theory is true. While the facts matter, to be sure, the effectiveness of this sort of research also rests upon the formal properties of the theory in question. Specifically, the degree to which a theory is amenable to confirmation is contingent upon how many predictions can be derived from the theory and on how “risky” each individual prediction is. In Popper's (1963 , 36) words, “Confirmations should count only if they are the result of risky predictions ; that is to say, if, unenlightened by the theory in question, we should have expected an event which was incompatible with the theory—and event which would have refuted the theory. Every ‘good’ scientific theory is a prohibition; it forbids certain things to happen. The more a theory forbids, the better it is” (see also Popper 1934/1968 ). A risky prediction is therefore one that is highly precise and determinate, and therefore unlikely to be achieved by the product of other causal factors (external to the theory of interest) or through stochastic processes. A theory produces many such predictions if it is fully elaborated, issuing predictions not only on the central outcome of interest but also on specific causal mechanisms, and if it is broad in purview. (The notion of riskiness may also be conceptualized within the Popperian lexicon as degrees of falsifiability .)

These points can also be articulated in Bayesian terms. Colin Howson and Peter Urbach explain: “The degree to which h [a hypothesis] is confirmed by e [a set of evidence] depends … on the extent to which P(eČh) exceeds P (e) , that is, on how much more probable e is relative to the hypothesis and background assumptions than it is relative just to background assumptions.” Again, “confirmation is correlated with how much more probable the evidence is if the hypothesis is true than if it is false” ( Howson and Urlbach 1989 , 86). Thus, the stranger the prediction offered by a theory—relative to what we would normally expect—the greater the degree of confirmation that will be afforded by the evidence. As an intuitive example, Howson and Urbach (1989 , 86) offer the following:

If a soothsayer predicts that you will meet a dark stranger sometime and you do in fact, your faith in his powers of precognition would not be much enhanced: you would probably continue to think his predictions were just the result of guesswork. However, if the prediction also gave the correct number of hairs on the head of that stranger, your previous scepticism would no doubt be severely shaken.

While these Popperian/Bayesian notions 12 are relevant to all empirical research designs, they are especially relevant to case‐study research designs, for in these settings a single case (or, at most, a small number of cases) is required to bear a heavy burden of proof. It should be no surprise, therefore, that Popper's idea of “riskiness” was to be appropriated by case‐study researchers like Harry Eckstein to validate the enterprise of single‐case analysis. (Although Eckstein does not cite Popper the intellectual lineage is clear.) Riskiness, here, is analogous to what is usually referred to as a “most‐ difficult” research design, which in a case‐study research design would be understood as a “least‐likely” case. Note also that the distinction between a “must‐fit” case and a least‐likely case—that, in the event, actually does fit the terms of a theory—is a matter of degree. Cases are more or less crucial for confirming theories. The point is that, in some circumstances, a paucity of empirical evidence may be compensated by the riskiness of the theory.

The crucial‐case research design is, perforce, a highly deductive enterprise; much depends on the quality of the theory under investigation. It follows that the theories most amenable to crucial‐case analysis are those which are lawlike in their precision, degree of elaboration, consistency, and scope. The more a theory attains the status of a causal law, the easier it will be to confirm, or to disconfirm, with a single case. Indeed, risky predictions are common in natural science fields such as physics, which in turn served as the template for the deductive‐nomological (“covering‐law”) model of science that influenced Eckstein and others in the postwar decades (e.g. Hempel 1942 ).

A frequently cited example is the first important empirical demonstration of the theory of relativity, which took the form of a single‐event prediction on the occasion of the May 29, 1919, solar eclipse ( Eckstein 1975 ; Popper 1963 ). Stephen Van Evera (1997 , 66–7) describes the impact of this prediction on the validation of Einstein's theory.

Einstein's theory predicted that gravity would bend the path of light toward a gravity source by a specific amount. Hence it predicted that during a solar eclipse stars near the sun would appear displaced—stars actually behind the sun would appear next to it, and stars lying next to the sun would appear farther from it—and it predicted the amount of apparent displacement. No other theory made these predictions. The passage of this one single‐case‐study test brought the theory wide acceptance because the tested predictions were unique—there was no plausible competing explanation for the predicted result—hence the passed test was very strong.

The strength of this test is the extraordinary fit between the theory and a set of facts found in a single case, and the corresponding lack of fit between all other theories and this set of facts. Einstein offered an explanation of a particular set of anomalous findings that no other existing theory could make sense of. Of course, one must assume that there was no—or limited—measurement error. And one must assume that the phenomenon of interest is largely invariant; light does not bend differently at different times and places (except in ways that can be understood through the theory of relativity). And one must assume, finally, that the theory itself makes sense on other grounds (other than the case of special interest); it is a plausible general theory. If one is willing to accept these a priori assumptions, then the 1919 “case study” provides a very strong confirmation of the theory. It is difficult to imagine a stronger proof of the theory from within an observational (nonexperimental) setting.

In social science settings, by contrast, one does not commonly find single‐case studies offering knockout evidence for a theory. This is, in my view, largely a product of the looseness (the underspecification) of most social science theories. George and Bennett point out that while the thesis of the democratic peace is as close to a “law” as social science has yet seen, it cannot be confirmed (or refuted) by looking at specific causal mechanisms because the causal pathways mandated by the theory are multiple and diverse. Under the circumstances, no single‐case test can offer strong confirmation of the theory ( George and Bennett 2005 , 209).

However, if one adopts a softer version of the crucial‐case method—the least‐likely (most difficult) case—then possibilities abound. Indeed, I suspect that, implicitly , most case‐study work that makes a positive argument focusing on a single case (without a corresponding cross‐case analysis) relies largely on the logic of the least‐ likely case. Rarely is this logic made explicit, except perhaps in a passing phrase or two. Yet the deductive logic of the “risky” prediction is central to the case‐study enterprise. Whether a case study is convincing or not often rests on the reader's evaluation of how strong the evidence for an argument might be, and this in turn—wherever cross‐ case evidence is limited and no manipulated treatment can be devised—rests upon an estimation of the degree of “fit” between a theory and the evidence at hand, as discussed.

Lily Tsai's (2007) investigation of governance at the village level in China employs several in‐depth case studies of villages which are chosen (in part) because of their least‐likely status relative to the theory of interest. Tsai's hypothesis is that villages with greater social solidarity (based on preexisting religious or familial networks) will develop a higher level of social trust and mutual obligation and, as a result, will experience better governance. Crucial cases, therefore, are villages that evidence a high level of social solidarity but which, along other dimensions, would be judged least likely to develop good governance, e.g. they are poor, isolated, and lack democratic institutions or accountability mechanisms from above. “Li Settlement,” in Fujian province, is such a case. The fact that this impoverished village nonetheless boasts an impressive set of infrastructural accomplishments such as paved roads with drainage ditches (a rarity in rural China) suggests that something rather unusual is going on here. Because her case is carefully chosen to eliminate rival explanations, Tsai's conclusions about the special role of social solidarity are difficult to gainsay. How else is one to explain this otherwise anomalous result? This is the strength of the least‐likely case, where all other plausible causal factors for an outcome have been minimized. 13

Jack Levy (2002 , 144) refers to this, evocatively, as a “Sinatra inference:” if it can make it here, it can make it anywhere (see also Khong 1992 , 49; Sagan 1995 , 49; Shafer 1988 , 14–6). Thus, if social solidarity has the hypothesized effect in Li Settlement it should have the same effect in more propitious settings (e.g. where there is greater economic surplus). The same implicit logic informs many case‐study analyses where the intent of the study is to confirm a hypothesis on the basis of a single case.

Another sort of crucial case is employed for the purpose of dis confirming a causal hypothesis. A central Popperian insight is that it is easier to disconfirm an inference than to confirm that same inference. (Indeed, Popper doubted that any inference could be fully confirmed, and for this reason preferred the term “corroborate.”) This is particularly true of case‐study research designs, where evidence is limited to one or several cases. The key proviso is that the theory under investigation must take a consistent (a.k.a. invariant, deterministic) form, even if its predictions are not terrifically precise, well elaborated, or broad.

As it happens, there are a fair number of invariant propositions floating around the social science disciplines (Goertz and Levy forthcoming; Goertz and Starr 2003 ). It used to be argued, for example, that political stability would occur only in countries that are relatively homogeneous, or where existing heterogeneities are mitigated by cross‐cutting cleavages ( Almond 1956 ; Bentley 1908/1967 ; Lipset 1960/1963 ; Truman 1951 ). Arend Lijphart's (1968) study of the Netherlands, a peaceful country with reinforcing social cleavages, is commonly viewed as refuting this theory on the basis of a single in‐depth case analysis. 14

Granted, it may be questioned whether presumed invariant theories are really invariant; perhaps they are better understood as probabilistic. Perhaps, that is, the theory of cross‐cutting cleavages is still true, probabilistically, despite the apparent Dutch exception. Or perhaps the theory is still true, deterministically, within a subset of cases that does not include the Netherlands. (This sort of claim seems unlikely in this particular instance, but it is quite plausible in many others.) Or perhaps the theory is in need of reframing; it is true, deterministically, but applies only to cross‐ cutting ethnic/racial cleavages, not to cleavages that are primarily religious. One can quibble over what it means to “disconfirm” a theory. The point is that the crucial case has, in all these circumstances, provided important updating of a theoretical prior.

Heretofore, I have treated causal factors as dichotomous. Countries have either reinforcing or cross‐cutting cleavages and they have regimes that are either peaceful or conflictual. Evidently, these sorts of parameters are often matters of degree. In this reading of the theory, cases are more or less crucial. Accordingly, the most useful—i.e. most crucial—case for Lijphart's purpose is one that has the most segregated social groups and the most peaceful and democratic track record. In these respects, the Netherlands was a very good choice. Indeed, the degree of disconfirmation offered by this case study is probably greater than the degree of disconfirmation that might have been provided by other cases such as India or Papua New Guinea—countries where social peace has not always been secure. The point is that where variables are continuous rather than dichotomous it is possible to evaluate potential cases in terms of their degree of crucialness .

Note that the crucial‐case method of case‐selection, whether employed in a confirmatory or disconfirmatory mode, cannot be employed in a large‐ N context. This is because an explicit cross‐case model would render the crucial‐case study redundant. Once one identifies the relevant parameters and the scores of all cases on those parameters, one has in effect constructed a cross‐case model that confirms or disconfirms the theory in question. The case study is thenceforth irrelevant, at least as a means of decisive confirmation or disconfirmation. 15 It remains highly relevant as a means of exploring causal mechanisms, of course. Yet, because this objective is quite different from that which is usually associated with the term, I enlist a new term for this technique.

7 Pathway Case

One of the most important functions of case‐study research is the elucidation of causal mechanisms. But which sort of case is most useful for this purpose? Although all case studies presumably shed light on causal mechanisms, not all cases are equally transparent. In situations where a causal hypothesis is clear and has already been confirmed by cross‐case analysis, researchers are well advised to focus on a case where the causal effect of X   1 on Y can be isolated from other potentially confounding factors ( X   2 ). I shall call this a pathway case to indicate its uniquely penetrating insight into causal mechanisms. In contrast to the crucial case, this sort of method is practicable only in circumstances where cross‐case covariational patterns are well studied and where the mechanism linking X   1 and Y remains dim. Because the pathway case builds on prior cross‐case analysis, the problem of case selection must be situated within that sample. There is no standalone pathway case.

The logic of the pathway case is clearest in situations of causal sufficiency—where a causal factor of interest, X   1 , is sufficient by itself (though perhaps not necessary) to account for Y 's value (0 or 1). The other causes of Y , about which we need make no assumptions, are designated as a vector, X   2 .

Note that wherever various causal factors are substitutable for one another, each factor is conceptualized (individually) as sufficient ( Braumoeller 2003 ). Thus, situations of causal equifinality presume causal sufficiency on the part of each factor or set of conjoint factors. An example is provided by the literature on democratization, which stipulates three main avenues of regime change: leadership‐initiated reform, a controlled opening to opposition, or the collapse of an authoritarian regime ( Colomer 1991 ). The case‐study format constrains us to analyze one at a time, so let us limit our scope to the first one—leadership‐initiated reform. So considered, a causal‐pathway case would be one with the following features: (a) democratization, (b) leadership‐initiated reform, (c) no controlled opening to the opposition, (d) no collapse of the previous authoritarian regime, and (e) no other extraneous factors that might affect the process of democratization. In a case of this type, the causal mechanisms by which leadership‐initiated reform may lead to democratization will be easiest to study. Note that it is not necessary to assume that leadership‐initiated reform always leads to democratization; it may or may not be a deterministic cause. But it is necessary to assume that leadership‐initiated reform can sometimes lead to democratization on its own (given certain background features).

Now let us move from these examples to a general‐purpose model. For heuristic purposes, let us presume that all variables in that model are dichotomous (coded as 0 or 1) and that the model is complete (all causes of Y are included). All causal relationships will be coded so as to be positive: X   1 and Y covary as do X   2 and Y . This allows us to visualize a range of possible combinations at a glance.

Recall that the pathway case is always focused, by definition, on a single causal factor, denoted X   1 . (The researcher's focus may shift to other causal factors, but may only focus on one causal factor at a time.) In this scenario, and regardless of how many additional causes of Y there might be (denoted X   2 , a vector of controls), there are only eight relevant case types, as illustrated in Table 28.2 . Identifying these case types is a relatively simple matter, and can be accomplished in a small‐ N sample by the construction of a truth‐table (modeled after Table 28.2 ) or in a large‐ N sample by the use of cross‐tabs.

Notes : X   1 = the variable of theoretical interest. X   2 = a vector of controls (a score of 0 indicates that all control variables have a score of 0, while a score of 1 indicates that all control variables have a score of 1). Y = the outcome of interest. A–H = case types (the N for each case type is indeterminate). G, H = possible pathway cases. Sample size = indeterminate.

Assumptions : (a) all variables can be coded dichotomously (a binary coding of the concept is valid); (b) all independent variables are positively correlated with Y in the general case; ( c ) X   1 is (at least sometimes) a sufficient cause of Y .

Note that the total number of combinations of values depends on the number of control variables, which we have represented with a single vector, X   2 . If this vector consists of a single variable then there are only eight case types. If this vector consists of two variables ( X   2a , X   2b ) then the total number of possible combinations increases from eight (2 3 ) to sixteen (2 4 ). And so forth. However, none of these combinations is relevant for present purposes except those where X   2a and X   2b have the same value (0 or 1). “Mixed” cases are not causal pathway cases, for reasons that should become clear.

The pathway case, following the logic of the crucial case, is one where the causal factor of interest, X   1 , correctly predicts Y while all other possible causes of Y (represented by the vector, X   2 ) make “wrong” predictions. If X   1 is—at least in some circumstances—a sufficient cause of Y , then it is these sorts of cases that should be most useful for tracing causal mechanisms. There are only two such cases in Ta b l e 28.2—G and H. In all other cases, the mechanism running from X   1 to Y would be difficult to discern either because X   1 and Y are not correlated in the usual way (constituting an unusual case, in the terms of our hypothesis) or because other confounding factors ( X   2 ) intrude. In case A, for example, the positive value on Y could be a product of X   1 or X   2 . An in‐depth examination of this case is not likely to be very revealing.

Keep in mind that because the researcher already knows from her cross‐case examination what the general causal relationships are, she knows (prior to the case‐ study investigation) what constitutes a correct or incorrect prediction. In the crucial‐ case method, by contrast, these expectations are deductive rather than empirical. This is what differentiates the two methods. And this is why the causal pathway case is useful principally for elucidating causal mechanisms rather than verifying or falsifying general propositions (which are already more or less apparent from the cross‐case evidence). Of course, we must leave open the possibility that the investigation of causal mechanisms would invalidate a general claim, if that claim is utterly contingent upon a specific set of causal mechanisms and the case study shows that no such mechanisms are present. However, this is rather unlikely in most social science settings. Usually, the result of such a finding will be a reformulation of the causal processes by which X   1 causes Y —or, alternatively, a realization that the case under investigation is aberrant (atypical of the general population of cases).

Sometimes, the research question is framed as a unidirectional cause: one is interested in why 0 becomes 1 (or vice versa) but not in why 1 becomes 0. In our previous example, we asked why democracies fail, not why countries become democratic or authoritarian. So framed, there can be only one type of causal‐pathway case. (Whether regime failure is coded as 0 or 1 is a matter of taste.) Where researchers are interested in bidirectional causality—a movement from 0 to 1 as well as from 1 to 0—there are two possible causal‐pathway cases, G and H. In practice, however, one of these case types is almost always more useful than the other. Thus, it seems reasonable to employ the term “pathway case” in the singular. In order to determine which of these two case types will be more useful for intensive analysis the researcher should look to see whether each case type exhibits desirable features such as: (a) a rare (unusual) value on X   1 or Y (designated “extreme” in our previous discussion), (b) observable temporal variation in X   1 , ( c ) an X   1 / Y relationship that is easier to study (it has more visible features; it is more transparent), or (d) a lower residual (thus indicating a more typical case, within the terms of the general model). Usually, the choice between G and H is intuitively obvious.

Now, let us consider a scenario in which all (or most) variables of concern to the model are continuous, rather than dichotomous. Here, the job of case selection is considerably more complex, for causal “sufficiency” (in the usual sense) cannot be invoked. It is no longer plausible to assume that a given cause can be entirely partitioned, i.e. rival factors eliminated. However, the search for a pathway case may still be viable. What we are looking for in this scenario is a case that satisfies two criteria: (1) it is not an outlier (or at least not an extreme outlier) in the general model and (2) its score on the outcome ( Y ) is strongly influenced by the theoretical variable of interest ( X   1 ), taking all other factors into account ( X   2 ). In this sort of case it should be easiest to “see” the causal mechanisms that lie between X   1 and Y .

Achieving the second desiderata requires a bit of manipulation. In order to determine which (nonoutlier) cases are most strongly affected by X   1 , given all the other parameters in the model, one must compare the size of the residuals for each case in a reduced form model, Y = Constant + X   2 + Res reduced , with the size of the residuals for each case in a full model, Y = Constant + X   2 + X   1 + Res full . The pathway case is that case, or set of cases, which shows the greatest difference between the residual for the reduced‐form model and the full model (ΔResidual). Thus,

Note that the residual for a case must be smaller in the full model than in the reduced‐ form model; otherwise, the addition of the variable of interest ( X   1 ) pulls the case away from the regression line. We want to find a case where the addition of X   1 pushes the case towards the regression line, i.e. it helps to “explain” that case.

As an example, let us suppose that we are interested in exploring the effect of mineral wealth on the prospects for democracy in a society. According to a good deal of work on this subject, countries with a bounty of natural resources—particularly oil—are less likely to democratize (or once having undergone a democratic transition, are more likely to revert to authoritarian rule) ( Barro 1999 ; Humphreys 2005 ; Ross 2001 ). The cross‐country evidence is robust. Yet as is often the case, the causal mechanisms remain rather obscure. In order to better understand this phenomenon it may be worthwhile to exploit the findings of cross‐country regression models in order to identify a country whose regime type (i.e. its democracy “score” on some general index) is strongly affected by its natural‐research wealth, all other things held constant. An analysis of this sort identifies two countries— the United Arab Emirates and Kuwait—with high Δ Residual values and modest residuals in the full model (signifying that these cases are not outliers). Researchers seeking to explore the effect of oil wealth on regime type might do well to focus on these two cases since their patterns of democracy cannot be well explained by other factors—e.g. economic development, religion, European influence, or ethnic fractionalization. The presence of oil wealth in these countries would appear to have a strong independent effect on the prospects for democratization in these cases, an effect that is well modeled by general theory and by the available cross‐case evidence.

To reiterate, the logic of causal “elimination” is much more compelling where variables are dichotomous and where causal sufficiency can be assumed ( X   1 is sufficient by itself, at least in some circumstances, to cause Y ). Where variables are continuous, the strategy of the pathway case is more dubious, for potentially confounding causal factors ( X   2 ) cannot be neatly partitioned. Even so, we have indicated why the selection of a pathway case may be a logical approach to case‐study analysis in many circumstances.

The exceptions may be briefly noted. Sometimes, where all variables in a model are dichotomous, there are no pathway cases, i.e. no cases of type G or H (in Table 28.2 ). This is known as the “empty cell” problem, or a problem of severe causal multicollinearity. The universe of observational data does not always oblige us with cases that allow us to independently test a given hypothesis. Where variables are continuous, the analogous problem is that of a causal variable of interest ( X   1 ) that has only minimal effects on the outcome of interest. That is, its role in the general model is quite minor. In these situations, the only cases that are strongly affected by X   1 —if there are any at all—may be extreme outliers, and these sorts of cases are not properly regarded as providing confirmatory evidence for a proposition, for reasons that are abundantly clear by now.

Finally, it should be clarified that the identification of a causal pathway case does not obviate the utility of exploring other cases. One might, for example, want to compare both sorts of potential pathway cases—G and H—with each other. Many other combinations suggest themselves. However, this sort of multi‐case investigation moves beyond the logic of the causal‐pathway case.

8 Most‐similar Cases

The most‐similar method employs a minimum of two cases. 16 In its purest form, the chosen pair of cases is similar in all respects except the variable(s) of interest. If the study is exploratory (i.e. hypothesis generating), the researcher looks for cases that differ on the outcome of theoretical interest but are similar on various factors that might have contributed to that outcome, as illustrated in Table 28.3 (A) . This is a common form of case selection at the initial stage of research. Often, fruitful analysis begins with an apparent anomaly: two cases are apparently quite similar, and yet demonstrate surprisingly different outcomes. The hope is that intensive study of these cases will reveal one—or at most several—factors that differ across these cases. These differing factors ( X   1 ) are looked upon as putative causes. At this stage, the research may be described by the second diagram in Table 28.3 (B) . Sometimes, a researcher begins with a strong hypothesis, in which case her research design is confirmatory (hypothesis testing) from the get‐go. That is, she strives to identify cases that exhibit different outcomes, different scores on the factor of interest, and similar scores on all other possible causal factors, as illustrated in the second (hypothesis‐testing) diagram in Table 28.3 (B) .

The point is that the purpose of a most‐similar research design, and hence its basic setup, often changes as a researcher moves from an exploratory to a confirmatory mode of analysis. However, regardless of where one begins, the results, when published, look like a hypothesis‐testing research design. Question marks have been removed: (A) becomes (B) in Table 28.3 .

As an example, let us consider Leon Epstein's classic study of party cohesion, which focuses on two “most‐similar” countries, the United States and Canada. Canada has highly disciplined parties whose members vote together on the floor of the House of Commons while the United States has weak, undisciplined parties, whose members often defect on floor votes in Congress. In explaining these divergent outcomes, persistent over many years, Epstein first discusses possible causal factors that are held more or less constant across the two cases. Both the United States and Canada inherited English political cultures, both have large territories and heterogeneous populations, both are federal, and both have fairly loose party structures with strong regional bases and a weak center. These are the “control” variables. Where they differ is in one constitutional feature: Canada is parliamentary while the United States is presidential. And it is this institutional difference that Epstein identifies as the crucial (differentiating) cause. (For further examples of the most‐similar method see Brenner 1976 ; Hamilton 1977 ; Lipset 1968 ; Miguel 2004 ; Moulder 1977 ; Posner 2004 .)

X   1 = the variable of theoretical interest. X   2 = a vector of controls. Y = the outcome of interest.

Several caveats apply to any most‐similar analysis (in addition to the usual set of assumptions applying to all case‐study analysis). First, each causal factor is understood as having an independent and additive effect on the outcome; there are no “interaction” effects. Second, one must code cases dichotomously (high/low, present/absent). This is straightforward if the underlying variables are also dichotomous (e.g. federal/unitary). However, it is often the case that variables of concern in the model are continuous (e.g. party cohesion). In this setting, the researcher must “dichotomize” the scoring of cases so as to simplify the two‐case analysis. (Some flexibility is admissible on the vector of controls ( X   2 ) that are “held constant” across the cases. Nonidentity is tolerable if the deviation runs counter to the predicted hypothesis. For example, Epstein describes both the United States and Canada as having strong regional bases of power, a factor that is probably more significant in recent Canadian history than in recent American history. However, because regional bases of power should lead to weaker parties, rather than stronger parties, this element of nonidentity does not challenge Epstein's conclusions. Indeed, it sets up a most‐difficult research scenario, as discussed above.)

In one respect the requirements for case control are not so stringent. Specifically, it is not usually necessary to measure control variables (at least not with a high degree of precision) in order to control for them. If two countries can be assumed to have similar cultural heritages one needn't worry about constructing variables to measure that heritage. One can simply assert that, whatever they are, they are more or less constant across the two cases. This is similar to the technique employed in a randomized experiment, where the researcher typically does not attempt to measure all the factors that might affect the causal relationship of interest. She assumes, rather, that these unknown factors have been neutralized across the treatment and control groups by randomization or by the choice of a sample that is internally homogeneous.

The most useful statistical tool for identifying cases for in‐depth analysis in a most‐ similar setting is probably some variety of matching strategy—e.g. exact matching, approximate matching, or propensity‐score matching. 17 The product of this procedure is a set of matched cases that can be compared in whatever way the researcher deems appropriate. These are the “most‐similar” cases. Rosenbaum and Silber (2001 , 223) summarize:

Unlike model‐based adjustments, where [individuals] vanish and are replaced by the coefficients of a model, in matching, ostensibly comparable patterns are compared directly, one by one. Modern matching methods involve statistical modeling and combinatorial algorithms, but the end result is a collection of pairs or sets of people who look comparable, at least on average. In matching, people retain their integrity as people, so they can be examined and their stories can be told individually.

Matching, conclude the authors, “facilitates, rather than inhibits, thick description” ( Rosenbaum and Silber 2001 , 223).

In principle, the same matching techniques that have been used successfully in observational studies of medical treatments might also be adapted to the study of nation states, political parties, cities, or indeed any traditional paired cases in the social sciences. Indeed, the current popularity of matching among statisticians—relative, that is, to garden‐variety regression models—rests upon what qualitative researchers would recognize as a “case‐based” approach to causal analysis. If Rosenbaum and Silber are correct, it may be perfectly reasonable to appropriate this large‐ N method of analysis for case‐study purposes.

As with other methods of case selection, the most‐similar method is prone to problems of nonrepresentativeness. If employed in a qualitative fashion (without a systematic cross‐case selection strategy), potential biases in the chosen case must be addressed in a speculative way. If the researcher employs a matching technique of case selection within a large‐ N sample, the problem of potential bias can be addressed by assuring the choice of cases that are not extreme outliers, as judged by their residuals in the full model. Most‐similar cases should also be “typical” cases, though some scope for deviance around the regression line may be acceptable for purposes of finding a good fit among cases.

X   1 = the variable of theoretical interest. X   2a–d = a vector of controls. Y = the outcome of interest.

9 Most‐different Cases

A final case‐selection method is the reverse image of the previous method. Here, variation on independent variables is prized, while variation on the outcome is eschewed. Rather than looking for cases that are most‐similar, one looks for cases that are most‐ different . Specifically, the researcher tries to identify cases where just one independent variable ( X   1 ), as well as the dependent variable ( Y ), covary, while all other plausible factors ( X   2a–d ) show different values. 18

The simplest form of this two‐case comparison is illustrated in Table 28.4 . Cases A and B are deemed “most different,” though they are similar in two essential respects— the causal variable of interest and the outcome.

As an example, I follow Marc Howard's (2003) recent work, which explores the enduring impact of Communism on civil society. 19 Cross‐national surveys show a strong correlation between former Communist regimes and low social capital, controlling for a variety of possible confounders. It is a strong result. Howard wonders why this relationship is so strong and why it persists, and perhaps even strengthens, in countries that are no longer socialist or authoritarian. In order to answer this question, he focuses on two most‐different cases, Russia and East Germany. These two countries were quite different—in all ways other than their Communist experience— prior to the Soviet era, during the Soviet era (since East Germany received substantial subsidies from West Germany), and in the post‐Soviet era, as East Germany was absorbed into West Germany. Yet, they both score near the bottom of various cross‐ national indices intended to measure the prevalence of civic engagement in the current era. Thus, Howard's (2003 , 6–9) case selection procedure meets the requirements of the most‐different research design: Variance is found on all (or most) dimensions aside from the key factor of interest (Communism) and the outcome (civic engagement).

What leverage is brought to the analysis from this approach? Howard's case studies combine evidence drawn from mass surveys and from in‐depth interviews of small, stratified samples of Russians and East Germans. (This is a good illustration, incidentally, of how quantitative and qualitative evidence can be fruitfully combined in the intensive study of several cases.) The product of this analysis is the identification of three causal pathways that, Howard (2003 , 122) claims, help to explain the laggard status of civil society in post‐Communist polities: “the mistrust of communist organizations, the persistence of friendship networks, and the disappointment with post‐communism.” Simply put, Howard (2003 , 145) concludes, “a great number of citizens in Russia and Eastern Germany feel a strong and lingering sense of distrust of any kind of public organization, a general satisfaction with their own personal networks (accompanied by a sense of deteriorating relations within society overall), and disappointment in the developments of post‐communism.”

The strength of this most‐different case analysis is that the results obtained in East Germany and Russia should also apply in other post‐Communist polities (e.g. Lithuania, Poland, Bulgaria, Albania). By choosing a heterogeneous sample, Howard solves the problem of representativeness in his restricted sample. However, this sample is demonstrably not representative across the population of the inference, which is intended to cover all countries of the world.

More problematic is the lack of variation on key causal factors of interest— Communism and its putative causal pathways. For this reason, it is difficult to reach conclusions about the causal status of these factors on the basis of the most‐different analysis alone. It is possible, that is, that the three causal pathways identified by Howard also operate within polities that never experienced Communist rule.

Nor does it seem possible to conclusively eliminate rival hypotheses on the basis of this most‐different analysis. Indeed, this is not Howard's intention. He wishes merely to show that whatever influence on civil society might be attributed to economic, cultural, and other factors does not exhaust this subject.

My considered judgment is that the most‐different research design provides minimal leverage into the problem of why Communist systems appear to suppress civic engagement, years after their disappearance. Fortunately, this is not the only research design employed by Howard in his admirable study. Indeed, the author employs two other small‐ N cross‐case methods, as well as a large‐ N cross‐country statistical analysis. These methods do most of the analytic work. East Germany may be regarded as a causal pathway case (see above). It has all the attributes normally assumed to foster civic engagement (e.g. a growing economy, multiparty competition, civil liberties, a free press, close association with Western European culture and politics), but nonetheless shows little or no improvement on this dimension during the post‐ transition era ( Howard 2003 , 8). It is plausible to attribute this lack of change to its Communist past, as Howard does, in which case East Germany should be a fruitful case for the investigation of causal mechanisms. The contrast between East and West Germany provides a most‐similar analysis since the two polities share virtually everything except a Communist past. This variation is also deftly exploited by Howard.

I do not wish to dismiss the most‐different research method entirely. Surely, Howard's findings are stronger with the intensive analysis of Russia than they would be without. Yet his book would not stand securely on the empirical foundation provided by most‐different analysis alone. If one strips away the pathway‐case (East Germany) and the most‐similar analysis (East/West Germany) there is little left upon which to base an analysis of causal relations (aside from the large‐ N cross‐national analysis). Indeed, most scholars who employ the most‐different method do so in conjunction with other methods. 20 It is rarely, if ever, a standalone method. 21

Generalizing from this discussion of Marc Howard's work, I offer the following summary remarks on the most‐different method of case analysis. (I leave aside issues faced by all case‐study analyses, issues that are explored in Gerring 2007 .)

Let us begin with a methodological obstacle that is faced by both Millean styles of analysis—the necessity of dichotomizing every variable in the analysis. Recall that, as with most‐similar analysis, differences across cases must generally be sizeable enough to be interpretable in an essentially dichotomous fashion (e.g. high/low, present/absent) and similarities must be close enough to be understood as essentially identical (e.g. high/high, present/present). Otherwise the results of a Millean style analysis are not interpretable. The problem of “degrees” is deadly if the variables under consideration are, by nature, continuous (e.g. GDP). This is a particular concern in Howard's analysis, where East Germany scores somewhat higher than Russia in civic engagement; they are both low, but Russia is quite a bit lower. Howard assumes that this divergence is minimal enough to be understood as a difference of degrees rather than of kinds, a judgment that might be questioned. In these respects, most‐different analysis is no more secure—but also no less—than most‐similar analysis.

In one respect, most‐different analysis is superior to most‐similar analysis. If the coding assumptions are sound, the most‐different research design may be quite useful for eliminating necessary causes . Causal factors that do not appear across the chosen cases—e.g. X   2a–d in Table 28.4 —are evidently unnecessary for the production of Y . However, it does not follow that the most‐different method is the best method for eliminating necessary causes. Note that the defining feature of this method is the shared element across cases— X   1 in Table 28.4 . This feature does not help one to eliminate necessary causes. Indeed, if one were focused solely on eliminating necessary causes one would presumably seek out cases that register the same outcomes and have maximum diversity on other attributes. In Table 28.4 , this would be a set of cases that satisfy conditions X   2a–d , but not X   1 . Thus, even the presumed strength of the most‐different analysis is not so strong.

Usually, case‐study analysis is focused on the identification (or clarification) of causal relations, not the elimination of possible causes. In this setting, the most‐ different technique is useful, but only if assumptions of causal uniqueness hold. By “causal uniqueness,” I mean a situation in which a given outcome is the product of only one cause: Y cannot occur except in the presence of X . X is necessary, and in some situations (given certain background conditions) sufficient, to cause Y . 22

Consider the following hypothetical example. Suppose that a new disease, about which little is known, has appeared in Country A. There are hundreds of infected persons across dozens of affected communities in that country. In Country B, located at the other end of the world, several new cases of the disease surface in a single community. In this setting, we can imagine two sorts of Millean analyses. The first examines two similar communities within Country A, one of which has developed the disease and the other of which has not. This is the most‐similar style of case comparison, and focuses accordingly on the identification of a difference between the two cases that might account for variation across the sample. A second approach focuses on communities where the disease has appeared across the two countries and searches for any similarities that might account for these similar outcomes. This is the most‐different research design.

Both are plausible approaches to this particular problem, and we can imagine epidemiologists employing them simultaneously. However, the most‐different design demands stronger assumptions about the underlying factors at work. It supposes that the disease arises from the same cause in any setting. This is often a reasonable operating assumption when one is dealing with natural phenomena, though there are certainly many exceptions. Death, for example, has many causes. For this reason, it would not occur to us to look for most‐different cases of high mortality around the world. In order for the most‐different research design to effectively identify a causal factor at work in a given outcome, the researcher must assume that X   1 —the factor held constant across the diverse cases—is the only possible cause of Y (see Table 28.4 ). This assumption rarely holds in social‐scientific settings. Most outcomes of interest to anthropologists, economists, political scientists, and sociologists have multiple causes. There are many ways to win an election, to build a welfare state, to get into a war, to overthrow a government, or—returning to Marc Howard's work—to build a strong civil society. And it is for this reason that most‐different analysis is rarely applied in social science work and, where applied, is rarely convincing.

If this seems a tad severe, there is a more charitable way of approaching the most‐different method. Arguably, this is not a pure “method” at all but merely a supplement, a way of incorporating diversity in the sub‐sample of cases that provide the unusual outcome of interest. If the unusual outcome is revolutions, one might wish to encompass a wide variety of revolutions in one's analysis. If the unusual outcome is post‐Communist civil society, it seems appropriate to include a diverse set of post‐Communist polities in one's sample of case studies, as Marc Howard does. From this perspective, the most‐different method (so‐called) might be better labeled a diverse‐case method, as explored above.

10 Conclusions

In order to be a case of something broader than itself, the chosen case must be representative (in some respects) of a larger population. Otherwise—if it is purely idiosyncratic (“unique”)—it is uninformative about anything lying outside the borders of the case itself. A study based on a nonrepresentative sample has no (or very little) external validity. To be sure, no phenomenon is purely idiosyncratic; the notion of a unique case is a matter that would be difficult to define. One is concerned, as always, with matters of degree. Cases are more or less representative of some broader phenomenon and, on that score, may be considered better or worse subjects for intensive analysis. (The one exception, as noted, is the influential case.)

Of all the problems besetting case‐study analysis, perhaps the most persistent— and the most persistently bemoaned—is the problem of sample bias ( Achen and Snidal 1989 ; Collier and Mahoney 1996 ; Geddes 1990 ; King, Keohane, and Verba 1994 ; Rohlfing 2004 ; Sekhon 2004 ). Lisa Martin (1992 , 5) finds that the overemphasis of international relations scholars on a few well‐known cases of economic sanctions— most of which failed to elicit any change in the sanctioned country—“has distorted analysts view of the dynamics and characteristics of economic sanctions.” Barbara Geddes (1990) charges that many analyses of industrial policy have focused exclusively on the most successful cases—primarily the East Asian NICs—leading to biased inferences. Anna Breman and Carolyn Shelton (2001) show that case‐study work on the question of structural adjustment is systematically biased insofar as researchers tend to focus on disaster cases—those where structural adjustment is associated with very poor health and human development outcomes. These cases, often located in sub‐Saharan Africa, are by no means representative of the entire population. Consequently, scholarship on the question of structural adjustment is highly skewed in a particular ideological direction (against neoliberalism) (see also Gerring, Thacker, and Moreno 2005) .

These examples might be multiplied many times. Indeed, for many topics the most‐studied cases are acknowledged to be less than representative. It is worth reflecting upon the fact that our knowledge of the world is heavily colored by a few “big” (populous, rich, powerful) countries, and that a good portion of the disciplines of economics, political science, and sociology are built upon scholars' familiarity with the economics, political science, and sociology of one country, the United States. 23 Case‐study work is particularly prone to problems of investigator bias since so much rides on the researcher's selection of one (or a few) cases. Even if the investigator is unbiased, her sample may still be biased simply by virtue of “random” error (which may be understood as measurement error, error in the data‐generation process, or as an underlying causal feature of the universe).

There are only two situations in which a case‐study researcher need not be concerned with the representativeness of her chosen case. The first is the influential case research design, where a case is chosen because of its possible influence on a cross‐case model, and hence is not expected to be representative of a larger sample. The second is the deviant‐case method, where the chosen case is employed to confirm a broader cross‐case argument to which the case stands as an apparent exception. Yet even here the chosen case is expected to be representative of a broader set of cases—those, in particular, that are poorly explained by the extant model.

In all other circumstances, cases must be representative of the population of interest in whatever ways might be relevant to the proposition in question. Note that where a researcher is attempting to disconfirm a deterministic proposition the question of representativeness is perhaps more appropriately understood as a question of classification: Is the chosen case appropriately classified as a member of the designated population? If so, then it is fodder for a disconfirming case study.

If the researcher is attempting to confirm a deterministic proposition, or to make probabilistic arguments about a causal relationship, then the problem of representativeness is of the more usual sort: Is case A unit‐homogeneous relative to other cases in the population? This is not an easy matter to test. However, in a large‐ N context the residual for that case (in whatever model the researcher has greatest confidence in) is a reasonable place to start. Of course, this test is only as good as the model at hand. Any incorrect specifications or incorrect modeling procedures will likely bias the results and give an incorrect assessment of each case's “typicality.” In addition, there is the possibility of stochastic error, errors that cannot be modeled in a general framework. Given the explanatory weight that individual cases are asked to bear in a case‐study analysis, it is wise to consider more than just the residual test of representativeness. Deductive logic and an in‐depth knowledge of the case in question are often more reliable tools than the results of a cross‐case model.

In any case, there is no dispensing with the question. Case studies (with the two exceptions already noted) rest upon an assumed synecdoche: The case should stand for a population. If this is not true, or if there is reason to doubt this assumption, then the utility of the case study is brought severely into question.

Fortunately, there is some safety in numbers. Insofar as case‐study evidence is combined with cross‐case evidence the issue of sample bias is mitigated. Indeed, the suspicion of case‐study work that one finds in the social sciences today is, in my view, a product of a too‐literal interpretation of the case‐study method. A case study tout court is thought to mean a case study tout seul . Insofar as case studies and cross‐case studies can be enlisted within the same investigation (either in the same study or by reference to other studies in the same subfield), problems of representativeness are less worrisome. This is the virtue of cross‐level work, a.k.a. “triangulation.”

11 Ambiguities

Before concluding, I wish to draw attention to two ambiguities in case‐selection strategies in case‐study research. The first concerns the admixture of several case‐ selection strategies. The second concerns the changing status of a case as a study proceeds.

Some case studies follow only one strategy of case selection. They are typical , diverse , extreme , deviant , influential , crucial , pathway , most‐similar , or most‐different research designs, as discussed. However, many case studies mix and match among these case‐selection strategies. Indeed, insofar as all case studies seek representative samples, they are always in search of “typical” cases. Thus, it is common for writers to declare that their case is, for example, both extreme and typical; it has an extreme value on X   1 or Y but is not, in other respects, idiosyncratic. There is not much that one can say about these combinations of strategies except that, where the cases allow for a variety of empirical strategies, there is no reason not to pursue them. And where the same cases can serve several functions at once (without further effort on the researcher's part), there is little cost to a multi‐pronged approach to case analysis.

The second issue that deserves emphasis is the changing status of a case during the course of a researcher's investigation—which may last for years, if not decades. The problem is acute wherever a researcher begins in an exploratory mode and proceeds to hypothesis‐testing (that is, she develops a specific X   1 / Y proposition) or where the operative hypothesis or key control variable changes (a new causal factor is discovered or another outcome becomes the focus of analysis). Things change. And it is the mark of a good researcher to keep her mind open to new evidence and new insights. Too often, methodological discussions give the misleading impression that hypotheses are clear and remain fixed over the course of a study's development. Nothing could be further from the truth. The unofficial transcripts of academia— accessible in informal settings, where researchers let their guards down (particularly if inebriated)—are filled with stories about dead‐ends, unexpected findings, and drastically revised theory chapters. It would be interesting, in this vein, to compare published work with dissertation prospectuses and fellowship applications. I doubt if the correlation between these two stages of research is particularly strong.

Research, after all, is about discovery, not simply the verification or falsification of static hypotheses. That said, it is also true that research on a particular topic should move from hypothesis generating to hypothesis‐testing. This marks the progress of a field, and of a scholar's own work. As a rule, research that begins with an open‐ended ( X ‐ or Y ‐centered) analysis should conclude with a determinate X   1 / Y hypothesis.

The problem is that research strategies that are ideal for exploration are not always ideal for confirmation. The extreme‐case method is inherently exploratory since there is no clear causal hypothesis; the researcher is concerned merely to explore variation on a single dimension ( X or Y ). Other methods can be employed in either an open‐ ended (exploratory) or a hypothesis‐testing (confirmatory/disconfirmatory) mode. The difficulty is that once the researcher has arrived at a determinate hypothesis the originally chosen research design may no longer appear to be so well designed.

This is unfortunate, but inevitable. One cannot construct the perfect research design until (a) one has a specific hypothesis and (b) one is reasonably certain about what one is going to find “out there” in the empirical world. This is particularly true of observational research designs, but it also applies to many experimental research designs: Usually, there is a “good” (informative) finding, and a finding that is less insightful. In short, the perfect case‐study research design is usually apparent only ex post facto .

There are three ways to handle this. One can explain, straightforwardly, that the initial research was undertaken in an exploratory fashion, and therefore not constructed to test the specific hypothesis that is—now—the primary argument. Alternatively, one can try to redesign the study after the new (or revised) hypothesis has been formulated. This may require additional field research or perhaps the integration of additional cases or variables that can be obtained through secondary sources or through consultation of experts. A final approach is to simply jettison, or de‐emphasize, the portion of research that no longer addresses the (revised) key hypothesis. A three‐case study may become a two‐case study, and so forth. Lost time and effort are the costs of this downsizing.

In the event, practical considerations will probably determine which of these three strategies, or combinations of strategies, is to be followed. (They are not mutually exclusive.) The point to remember is that revision of one's cross‐case research design is normal and perhaps to be expected. Not all twists and turns on the meandering trail of truth can be anticipated.

12 Are There Other Methods of Case Selection?

At the outset of this chapter I summarized the task of case selection as a matter of achieving two objectives: representativeness (typicality) and variation (causal leverage). Evidently, there are other objectives as well. For example, one wishes to identify cases that are independent of each other. If chosen cases are affected by each other (sometimes known as Galton's problem or a problem of diffusion), this problem must be corrected before analysis can take place. I have neglected this issue because it is usually apparent to the researcher and, in any case, there are no simple techniques that might be utilized to correct for such biases. (For further discussion of this and other factors impinging upon case selection see Gerring 2001 , 178–81.)

I have also disregarded pragmatic/logistical issues that might affect case selection. Evidently, case selection is often influenced by a researcher's familiarity with the language of a country, a personal entrée into that locale, special access to important data, or funding that covers one archive rather than another. Pragmatic considerations are often—and quite rightly—decisive in the case‐selection process.

A final consideration concerns the theoretical prominence of a particular case within the literature on a subject. Researchers are sometimes obliged to study cases that have received extensive attention in previous studies. These are sometimes referred to as “paradigmatic” cases or “exemplars” ( Flyvbjerg 2004 , 427).

However, neither pragmatic/logistical utility nor theoretical prominence qualifies as a methodological factor in case selection. That is, these features of a case have no bearing on the validity of the findings stemming from a study. As such, it is appropriate to grant these issues a peripheral status in this chapter.

One final caveat must be issued. While it is traditional to distinguish among the tasks of case selection and case analysis, a close look at these processes shows them to be indistinct and overlapping. One cannot choose a case without considering the sort of analysis that it might be subjected to, and vice versa. Thus, the reader should consider choosing cases by employing the nine techniques laid out in this chapter along with any considerations that might be introduced by virtue of a case's quasi‐experimental qualities, a topic taken up elsewhere ( Gerring 2007 , ch. 6 ).

Abadie, A. , Drukker, D. , Herr, J. L. , and Imbens, G. W.   2001 . Implementing matching estimators for average treatment effects in Stata.   Stata Journal , 1: 1–18.

Google Scholar

Abbott, A.   2001 . Time Matters: On Theory and Method . Chicago: University of Chicago Press.

Google Preview

——  and Tsay, A.   2000 . Sequence analysis and optimal matching methods in sociology.   Sociological Methods and Research , 29: 3–33. 10.1177/0049124100029001001

——  and Forrest, J.   1986 . Optimal matching methods for historical sequences.   Journal of Interdisciplinary History , 16: 471–94. 10.2307/204500

Achen, C. H. , and Snidal, D.   1989 . Rational deterrence theory and comparative case studies.   World Politics , 41: 143–69. 10.2307/2010405

Allen, W. S.   1965 . The Nazi Seizure of Power: The Experience of a Single German Town, 1930–1935 . New York: Watts.

Almond, G. A.   1956 . Comparative political systems.   Journal of Politics , 18: 391–409.

Amenta, E.   1991 . Making the most of a case study: theories of the welfare state and the American experience. Pp. 172–94 in Issues and Alternatives in Comparative Social Research ed. C. C. Ragin . Leiden: E. J. Brill.

Barro, R. J.   1999 . Determinants of democracy.   Journal of Political Economy , 107: 158–83. 10.1086/250107

Belsey, D. A. , Kuh, E. , and Welsch, R. E.   2004 . Regression Diagnostics: Identifying Influential Data and Sources of Collinearity . New York: Wiley.

Bennett, A. , Lepgold, J. , and Unger, D.   1994 . Burden‐sharing in the Persian Gulf War.   International Organization , 48: 39–75. 10.1017/S0020818300000813

Bentley, A. 1908/ 1967 . The Process of Government . Cambridge, Mass.: Harvard University Press.

Brady, H. E. , and Collier, D. (eds.) 2004 . Rethinking Social Inquiry: Diverse Tools, Shared Standards . Lanham, Md.: Rowman and Littlefield.

Braumoeller, B. F.   2003 . Causal complexity and the study of politics.   Political Analysis , 11: 209–33. 10.1093/pan/mpg012

Breman, A. , and Shelton, C. 2001. Structural adjustment and health: a literature review of the debate, its role‐players and presented empirical evidence. CMH Working Paper Series, Paper No. WG6: 6. WHO, Commission on Macroeconomics and Health.

Brenner, R.   1976 . Agrarian class structure and economic development in pre‐industrial Europe.   Past and Present , 70: 30–75. 10.1093/past/70.1.30

Browne, A.   1987 . When Battered Women Kill . New York: Free Press.

Buchbinder, S. , and Vittinghoff, E.   1999 . HIV‐infected long‐term nonprogressors: epidemiology, mechanisms of delayed progression, and clinical and research implications.   Microbes Infect , 1: 1113–20. 10.1016/S1286-4579(99)00204-X

Cohen, M. R. , and Nagel, E.   1934 . An Introduction to Logic and Scientific Method . New York: Harcourt, Brace and Company.

Collier, D. , and Mahoney, J.   1996 . Insights and pitfalls: selection bias in qualitative research.   World Politics , 49: 56–91. 10.1353/wp.1996.0023

Collier, R. B. , and Collier, D. 1991/ 2002 . Shaping the Political Arena: Critical Junctures, the Labor Movement, and Regime Dynamics in Latin America . Notre Dame, Ind.: University of Notre Dame Press.

Colomer, J. M.   1991 . Transitions by agreement: modeling the Spanish way.   American Political Science Review , 85: 1283–302. 10.2307/1963946

Converse, P. E. , and Dupeux, G.   1962 . Politicization of the electorate in France and the United States.   Public Opinion Quarterly , 16: 1–23. 10.1086/267067

Coppedge, M. J. 2004. The conditional impact of the economy on democracy in Latin America. Presented at the conference “Democratic Advancements and Setbacks: What Have We Learnt?”, Uppsala University, June 11–13.

De Felice, E. G.   1986 . Causal inference and comparative methods.   Comparative Political Studies , 19: 415–37. 10.1177/0010414086019003005

Desch, M. C.   2002 . Democracy and victory: why regime type hardly matters.   International Security , 27: 5–47. 10.1162/016228802760987815

Deyo, F. (ed.) 1987 . The Political Economy of the New Asian Industrialism . Ithaca, NY: Cornell University Press.

Dion, D.   1998 . Evidence and inference in the comparative case study.   Comparative Politics , 30: 127–45. 10.2307/422284

Eckstein, H.   1975 . Case studies and theory in political science. In Handbook of Political Science , vii: Political Science: Scope and Theory , ed. F. I. Greenstein and N. W. Polsby . Reading, Mass.: Addison‐Wesley.

Eggan, F.   1954 . Social anthropology and the method of controlled comparison.   American Anthropologist , 56: 743–63. 10.1525/aa.1954.56.5.02a00020

Elman, C.   2003 . Lessons from Lakatos. In Progress in International Relations Theory: Appraising the Field , ed. C. Elman and M. F. Elman . Cambridge, Mass.: MIT Press.

——  2005 . Explanatory typologies in qualitative studies of international politics.   International Organization , 59: 293–326.

Emigh, R.   1997 . The power of negative thinking: the use of negative case methodology in the development of sociological theory.   Theory and Society , 26: 649–84. 10.1023/A:1006896217647

Epstein, L. D.   1964 . A comparative study of Canadian parties.   American Political Science Review , 58: 46–59. 10.2307/1952754

Ertman, T.   1997 . Birth of the Leviathan: Building States and Regimes in Medieval and Early Modern Europe . Cambridge: Cambridge University Press.

Esping‐Andersen, G.   1990 . The Three Worlds of Welfare Capitalism . Princeton, NJ: Princeton University Press.

Flyvbjerg, B.   2004 . Five misunderstandings about case‐study research. Pp. 420–34 in Qualitative Research Practice , ed. C. Seale , G. Gobo , J. F. Gubrium , and D. Silverman . London: Sage.

Geddes, B.   1990 . How the cases you choose affect the answers you get: selection bias in comparative politics. In Political Analysis , vol. ii, ed. J. A. Stimson . Ann Arbor: University of Michigan Press.

——  2003 . Paradigms and Sand Castles: Theory Building and Research Design in Comparative Politics . Ann Arbor: University of Michigan Press.

George, A. L. , and Bennett, A.   2005 . Case Studies and Theory Development . Cambridge, Mass.: MIT Press.

——  and Smoke, R.   1974 . Deterrence in American Foreign Policy: Theory and Practice . New York: Columbia University Press.

Gerring, J.   2001 . Social Science Methodology: A Criterial Framework . Cambridge: Cambridge University Press.

——  2007 . Case Study Research: Principles and Practices . Cambridge: Cambridge University Press.

——  Thacker, S. and Moreno, C. 2005. Do neoliberal policies save lives? Unpublished manuscript.

Goertz, G. and Starr, H. (eds.) 2003 . Necessary Conditions: Theory, Methodology and Applications . New York: Rowman and Littlefield.

——  and Levy, J. (eds.) forthcoming. Causal explanations, necessary conditions, and case studies: World War I and the end of the Cold War. Manuscript.

Goodin, R. E. and Smitsman, A.   2000 . Placing welfare states: the Netherlands as a crucial test case.   Journal of Comparative Policy Analysis , 2: 39–64. 10.1080/13876980008412635

Gujarati, D. N.   2003 . Basic Econometrics , 4th edn. New York: McGraw‐Hill.

Hamilton, G. G.   1977 . Chinese consumption of foreign commodities: a comparative perspective.   American Sociological Review , 42: 877–91. 10.2307/2094574

Haynes, B. F.   Pantaleo, G. and Fauci, A. S.   1996 . Toward an understanding of the correlates of protective immunity to HIV infection.   Science , 271: 324–8. 10.1126/science.271.5247.324

Hempel, C. G.   1942 . The function of general laws in history.   Journal of Philosophy , 39: 35–48. 10.2307/2017635

Ho, D. E.   Imai, K.   King, G. and Stuart, E. A. 2004. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Manuscript.

Howard, M. M.   2003 . The Weakness of Civil Society in Post‐Communist Europe . Cambridge: Cambridge University Press.

Howson, C. and Urbach, P.   1989 . Scientific Reasoning: The Bayesian Approach . La Salle, Ill.: Open Court.

Humphreys, M.   2005 . Natural resources, conflict, and conflict resolution: uncovering the mechanisms.   Journal of Conflict Resolution , 49: 508–37. 10.1177/0022002705277545

Jenicek, M.   2001 . Clinical Case Reporting in Evidence‐Based Medicine , 2nd edn. Oxford: Oxford University Press.

Karl, T. L.   1997 . The Paradox of Plenty: Oil Booms and Petro‐states . Berkeley: University of California Press.

Kazancigil, A.   1994 . The deviant case in comparative analysis: high stateness in comparative analysis. Pp. 213–38 in Comparing Nations: Concepts, Strategies, Substance , ed. M. Dogan and A. Kazancigil . Cambridge: Blackwell.

Kemp, K. A.   1986 . Race, ethnicity, class and urban spatial conflict: Chicago as a crucial case   Urban Studies , 23: 197–208. 10.1080/00420988620080231

Kendall, P. L. and Wolf, K. M. 1949/ 1955 . The analysis of deviant cases in communications research. In Communications Research, 1948–1949 , ed. P. F. Lazarsfeld and F. N. Stanton. New York: Harper and Brothers. Reprinted as pp. 167–70 in The Language of Social Research , ed. P. F. Lazarsfeld and M. Rosenberg . New York: Free Press.

Kennedy, C. H.   2005 . Single‐case Designs for Educational Research . Boston: Allyn and Bacon.

Kennedy, P.   2003 . A Guide to Econometrics , 5th edn. Cambridge, Mass.: MIT Press.

Khong, Y. F.   1992 . Analogies at War: Korea, Munich, Dien Bien Phu, and the Vietnam Decisions of 1965 . Princeton, NJ: Princeton University Press.

King, G.   Keohane, R. O. and Verba, S.   1994 . Designing Social Inquiry: Scientific Inference in Qualitative Research . Princeton, NJ: Princeton University Press.

Lakatos, I.   1978 . The Methodology of Scientific Research Programmes . Cambridge: Cambridge University Press.

Lazarsfeld, P. F. and Barton, A. H.   1951 . Qualitative measurement in the social sciences: classification, typologies, and indices. In The Policy Sciences , ed. D. Lerner and H. D. Lass‐ well. Stanford, Calif.: Stanford University Press.

Levy, J. S.   2002 . Qualitative methods in international relations. In Evaluating Methodology in International Studies , ed. F. P. Harvey and M. Brecher. Ann Arbor: University of Michigan Press.

Lijphart, A.   1968 . The Politics of Accommodation: Pluralism and Democracy in the Netherlands . Berkeley: University of California Press.

——  1969 . Consociational democracy.   World Politics , 21: 207–25. 10.2307/2009820

——  1971 . Comparative politics and the comparative method. American Political Science Review , 65: 682–93.

——  1975 . The comparable cases strategy in comparative research.   Comparative Political Studies , 8: 158–77.

Lipset, S. M.   1959 . Some social requisites of democracy: economic development and political development.   American Political Science Review , 53: 69–105. 10.2307/1951731

——  1960/ 1963 . Political Man: The Social Bases of Politics . Garden City, NY: Anchor.

——  1968 . Agrarian Socialism: The Cooperative Commonwealth Federation in Saskatchewan. A Study in Political Sociology . Garden City, NY: Doubleday.

——  Trow, M. A. and Coleman, J. S.   1956 . Union Democracy: The Internal Politics of the International Typographical Union . New York: Free Press.

Lynd, R. S. and Lynd, H. M. 1929/ 1956 . Middletown: A Study in American Culture . New York: Harcourt, Brace.

Mahoney, J. and Goertz, G.   2004 . The possibility principle: choosing negative cases in comparative research.   American Political Science Review , 98: 653–69.

Martin, L. L.   1992 . Coercive Cooperation: Explaining Multilateral Economic Sanctions .Princeton, NJ: Princeton University Press.

Mayo, D. G.   1996 . Error and the Growth of Experimental Knowledge . Chicago: University of Chicago Press.

Meckstroth, T.   1975 . “Most different systems” and “most similar systems:” a study in the logic of comparative inquiry.   Comparative Political Studies , 8: 133–77.

Miguel, E.   2004 . Tribe or nation: nation‐building and public goods in Kenya versus Tanzania.   World Politics , 56: 327–62. 10.1353/wp.2004.0018

Mill, J. S. 1843/ 1872 . The System of Logic , 8th edn. London: Longmans, Green.

Monroe, K. R.   1996 . The Heart of Altruism: Perceptions of a Common Humanity . Princeton, NJ: Princeton University Press.

Moore, B., Jr.   1966 . Social Origins of Dictatorship and Democracy: Lord and Peasant in the Making of the Modern World . Boston: Beacon Press.

Morgan, S. L. and Harding, D. J. 2005. Matching estimators of causal effects: from stratification and weighting to practical data analysis routines. Manuscript.

Moulder, F. V.   1977 . Japan, China and the Modern World Economy: Toward a Reinterpretation of East Asian Development ca. 1600 to ca. 1918 . Cambridge: Cambridge University Press.

Munck, G. L.   2004 . Tools for qualitative research. Pp. 105–21 in Rethinking Social Inquiry: Diverse Tools, Shared Standards , ed. H. E. Brady and D. Collier . Lanham, Md. : Rowman and Littlefield.

Njolstad, O.   1990 . Learning from history? Case studies and the limits to theory‐building. Pp. 220–46 in Arms Races: Technological and Political Dynamics , ed. O. Njolstad . Thousand Oaks, Calif.: Sage.

Patton, M. Q.   2002 . Qualitative Evaluation and Research Methods . Newbury Park, Calif.: Sage.

Popper, K. 1934/ 1968 . The Logic of Scientific Discovery . New York: Harper and Row.

——  1963 . Conjectures and Refutations . London: Routledge and Kegan Paul.

Posner, D.   2004 . The political salience of cultural difference: why Chewas and Tumbukas are allies in Zambia and adversaries in Malawi.   American Political Science Review , 98: 529–46.

Przeworski, A. and Teune, H.   1970 . The Logic of Comparative Social Inquiry . New York: John Wiley.

Queen, S.   1928 . Round table on the case study in sociological research.   Publications of the American Sociological Society, Papers and Proceedings , 22: 225–7.

Ragin, C. C.   2000 . Fuzzy‐set Social Science . Chicago: University of Chicago Press.

——  2004 . Turning the tables. Pp. 123–38 in Rethinking Social Inquiry: Diverse Tools, Shared Standards , ed. H. E. Brady and D. Collier.   Lanham, Md. : Rowman and Littlefield.

Reilly, B.   2000 –1. Democracy, ethnic fragmentation, and internal conflict: confused theories, faulty data, and the “crucial case” of Papua New Guinea.   International Security , 25: 162–85. 10.1162/016228800560552

——  and Phillpot, R.   2003 . “Making democracy work” in Papua New Guinea: social capital and provincial development in an ethnically fragmented society.   Asian Survey , 42: 906–27. 10.1525/as.2002.42.6.906

Rogowski, R.   1995 . The role of theory and anomaly in social‐scientific inference.   American Political Science Review , 89: 467–70. 10.2307/2082443

Rohlfing, I. 2004. Have you chosen the right case? Uncertainty in case selection for single case studies. Working Paper, International University, Bremen.

Rosenbaum, P. R.   2004 . Matching in observational studies. In Applied Bayesian Modeling and Causal Inference from an Incomplete‐data Perspective , ed. A. Gelman and X.‐L. Meng . New York: John Wiley.

——  and Silber, J. H.   2001 . Matching and thick description in an observational study of mortality after surgery.   Biostatistics , 2: 217–32. 10.1093/biostatistics/2.2.217

Ross, M.   2001 . Does oil hinder democracy?   World Politics , 53: 325–61. 10.1353/wp.2001.0011

Sagan, S. D.   1995 . Limits of Safety: Organizations, Accidents, and Nuclear Weapons . Princeton, NJ: Princeton University Press.

Sekhon, J. S.   2004 . Quality meets quantity: case studies, conditional probability and counter‐ factuals.   Perspectives in Politics , 2: 281–93.

Shafer, M. D.   1988 . Deadly Paradigms: The Failure of U.S. Counterinsurgency Policy . Princeton, NJ: Princeton University Press.

Skocpol, T.   1979 . States and Social Revolutions: A Comparative Analysis of France, Russia, and China . Cambridge: Cambridge University Press.

——  and Somers, M.   1980 . The uses of comparative history in macrosocial inquiry.   Comparative Studies in Society and History , 22: 147–97.

Stinchcombe, A. L.   1968 . Constructing Social Theories . New York: Harcourt, Brace.

Swank, D. H.   2002 . Global Capital, Political Institutions, and Policy Change in Developed Welfare States . Cambridge: Cambridge University Press.

Tendler, J.   1997 . Good Government in the Tropics . Baltimore: Johns Hopkins University Press.

Truman, D. B.   1951 . The Governmental Process . New York: Alfred A. Knopf.

Tsai, L.   2007 . Accountability without Democracy: How Solidary Groups Provide Public Goods in Rural China . Cambridge: Cambridge University Press.

Van Evera, S.   1997 . Guide to Methods for Students of Political Science . Ithaca, NY: Cornell University Press.

Wahlke, J. C.   1979 . Pre‐behavioralism in political science. American Political Science Review , 73: 9–31. 10.2307/1954728

Yashar, D. J.   2005 . Contesting Citizenship in Latin America: The Rise of Indigenous Movements and the Postliberal Challenge . Cambridge: Cambridge University Press.

Yin, R. K.   2004 . Case Study Anthology . Thousand Oaks, Calif.: Sage.

Gujarati (2003) ; Kennedy (2003) . Interestingly, the potential of cross‐case statistics in helping to choose cases for in‐depth analysis is recognized in some of the earliest discussions of the case‐study method (e.g. Queen 1928 , 226).

This expands on Mill (1843/1872 , 253), who wrote of scientific enquiry as twofold: “either inquiries into the cause of a given effect or into the effects or properties of a given cause.”

This method has not received much attention on the part of qualitative methodologists; hence, the absence of a generally recognized name. It bears some resemblance to J. S. Mill's Joint Method of Agreement and Difference ( Mill 1843/1872 ), which is to say a mixture of most‐similar and most‐different analysis, as discussed below. Patton (2002 , 234) employs the concept of “maximum variation (heterogeneity) sampling.”

More precisely, George and Smoke (1974 , 534, 522–36, ch. 18 ; see also discussion in Collier and Mahoney 1996 , 78) set out to investigate causal pathways and discovered, through the course of their investigation of many cases, these three causal types. Yet, for our purposes what is important is that the final sample includes at least one representative of each “type.”

For further examples see Collier and Mahoney (1996) ; Geddes (1990) ; Tendler (1997) .

Traditionally, methodologists have conceptualized cases as having “positive” or “negative” values (e.g. Emigh 1997 ; Mahoney and Goertz 2004 ; Ragin 2000 , 60; 2004 , 126).

Geddes (1990) ; King, Keohane, and Verba (1994) . See also discussion in Brady and Collier (2004) ; Collier and Mahoney (1996) ; Rogowski (1995) .

The exception would be a circumstance in which the researcher intends to disprove a deterministic argument ( Dion 1998 ).

Geddes (2003 , 131). For other examples of casework from the annals of medicine see “Clinical reports” in the Lancet , “Case studies” in Canadian Medical Association Journal , and various issues of the Journal of Obstetrics and Gynecology , often devoted to clinical cases (discussed in Jenicek 2001 , 7). For examples from the subfield of comparative politics see Kazancigil (1994) .

For a discussion of the important role of anomalies in the development of scientific theorizing see Elman (2003) ; Lakatos (1978) . For examples of deviant‐case research designs in the social sciences see Amenta (1991) ; Coppedge (2004) ; Eckstein (1975) ; Emigh (1997) ; Kendall and Wolf (1949/1955) .

For examples of the crucial‐case method see Bennett, Lepgold, and Unger (1994) ; Desch (2002) ; Goodin and Smitsman (2000) ; Kemp (1986) ; Reilly and Phillpot (2003) . For general discussion see George and Bennett (2005) ; Levy (2002) ; Stinchcombe (1968 , 24–8).

A third position, which purports to be neither Popperian or Bayesian, has been articulated by Mayo (1996 , ch. 6 ). From this perspective, the same idea is articulated as a matter of “severe tests.”

It should be noted that Tsai's conclusions do not rest solely on this crucial case. Indeed, she employs a broad range of methodological tools, encompassing case‐study and cross‐case methods.

See also the discussion in Eckstein (1975) and Lijphart (1969) . For additional examples of case studies disconfirming general propositions of a deterministic nature see Allen (1965); Lipset, Trow, and Coleman (1956) ; Njolstad (1990) ; Reilly (2000–1) ; and discussion in Dion (1998) ; Rogowski (1995) .

Granted, insofar as case‐study analysis provides a window into causal mechanisms, and causal mechanisms are integral to a given theory, a single case may be enlisted to confirm or disconfirm a proposition. However, if the case study upholds a posited pattern of X/Y covariation, and finds fault only with the stipulated causal mechanism, it would be more accurate to say that the study forces the reformulation of a given theory, rather than its confirmation or disconfirmation. See further discussion in the following section.

Sometimes, the most‐similar method is known as the “method of difference,” after its inventor ( Mill 1843/1872 ). For later treatments see Cohen and Nagel (1934) ; Eggan (1954) ; Gerring (2001 , ch. 9 ); Lijphart (1971 ; 1975) ; Meckstroth (1975) ; Przeworski and Teune (1970) ; Skocpol and Somers (1980) .

For good introductions see Ho et al. (2004) ; Morgan and Harding (2005) ; Rosenbaum (2004) ; Rosenbaum and Silber (2001) . For a discussion of matching procedures in Stata see Abadie et al. (2001) .

The most‐different method is also sometimes referred to as the “method of agreement,” following its inventor, J. S. Mill (1843/1872) . See also De Felice (1986) ; Gerring (2001 , 212–14); Lijphart (1971 ; 1975) ; Meckstroth (1975) ; Przeworski and Teune (1970) ; Skocpol and Somers (1980) . For examples of this method see Collier and Collier (1991/2002) ; Converse and Dupeux (1962) ; Karl (1997) ; Moore (1966) ; Skocpol (1979) ; Yashar (2005 , 23). However, most of these studies are described as combining most‐similar and most‐different methods.

In the following discussion I treat the terms social capital, civil society, and civic engagement interchangeably.

E.g. Collier and Collier (1991/2002) ; Karl (1997) ; Moore (1966) ; Skocpol (1979) ; Yashar (2005 , 23). Karl (1997) , which affects to be a most‐different system analysis (20), is a particularly clear example of this. Her study, focused ostensibly on petro‐states (states with large oil reserves), makes two sorts of inferences. The first concerns the (usually) obstructive role of oil in political and economic development. The second sort of inference concerns variation within the population of petro‐states, showing that some countries (e.g. Norway, Indonesia) manage to avoid the pathologies brought on elsewhere by oil resources. When attempting to explain the constraining role of oil on petro‐states, Karl usually relies on contrasts between petro‐states and nonpetro‐states (e.g. ch. 10 ). Only when attempting to explain differences among petro‐states does she restrict her sample to petro‐states. In my opinion, very little use is made of the most‐different research design.

This was recognized, at least implicitly, by Mill (1843/1872 , 258–9). Skepticism has been echoed by methodologists in the intervening years (e.g. Cohen and Nagel 1934 , 251–6; Gerring 2001 ; Skocpol and Somers 1980 ). Indeed, explicit defenses of the most‐different method are rare (but see De Felice 1986 ).

Another way of stating this is to say that X is a “nontrivial necessary condition” of Y .

Wahlke (1979 , 13) writes of the failings of the “behavioralist” mode of political science analysis: “It rarely aims at generalization; research efforts have been confined essentially to case studies of single political systems, most of them dealing …with the American system.”

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

case studies quantitative research

The Ultimate Guide to Qualitative Research - Part 1: The Basics

case studies quantitative research

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

case studies quantitative research

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

case studies quantitative research

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

case studies quantitative research

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

case studies quantitative research

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

case studies quantitative research

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

case studies quantitative research

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

case studies quantitative research

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

Quantitative Research

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

case studies quantitative research

  • Leigh A. Wilson 2 , 3  

4352 Accesses

4 Citations

Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. High-quality quantitative research is characterized by the attention given to the methods and the reliability of the tools used to collect the data. The ability to critique research in a systematic way is an essential component of a health professional’s role in order to deliver high quality, evidence-based healthcare. This chapter is intended to provide a simple overview of the way new researchers and health practitioners can understand and employ quantitative methods. The chapter offers practical, realistic guidance in a learner-friendly way and uses a logical sequence to understand the process of hypothesis development, study design, data collection and handling, and finally data analysis and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Babbie ER. The practice of social research. 14th ed. Belmont: Wadsworth Cengage; 2016.

Google Scholar  

Descartes. Cited in Halverston, W. (1976). In: A concise introduction to philosophy, 3rd ed. New York: Random House; 1637.

Doll R, Hill AB. The mortality of doctors in relation to their smoking habits. BMJ. 1954;328(7455):1529–33. https://doi.org/10.1136/bmj.328.7455.1529 .

Article   Google Scholar  

Liamputtong P. Research methods in health: foundations for evidence-based practice. 3rd ed. Melbourne: Oxford University Press; 2017.

McNabb DE. Research methods in public administration and nonprofit management: quantitative and qualitative approaches. 2nd ed. New York: Armonk; 2007.

Merriam-Webster. Dictionary. http://www.merriam-webster.com . Accessed 20th December 2017.

Olesen Larsen P, von Ins M. The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics. 2010;84(3):575–603.

Pannucci CJ, Wilkins EG. Identifying and avoiding bias in research. Plast Reconstr Surg. 2010;126(2):619–25. https://doi.org/10.1097/PRS.0b013e3181de24bc .

Petrie A, Sabin C. Medical statistics at a glance. 2nd ed. London: Blackwell Publishing; 2005.

Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 3rd ed. New Jersey: Pearson Publishing; 2009.

Sheehan J. Aspects of research methodology. Nurse Educ Today. 1986;6:193–203.

Wilson LA, Black DA. Health, science research and research methods. Sydney: McGraw Hill; 2013.

Download references

Author information

Authors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Leigh A. Wilson

Faculty of Health Science, Discipline of Behavioural and Social Sciences in Health, University of Sydney, Lidcombe, NSW, Australia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Leigh A. Wilson .

Editor information

Editors and affiliations.

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Wilson, L.A. (2019). Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_54

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_54

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Maben J, Griffiths P, Penfold C, et al. Evaluating a major innovation in hospital design: workforce implications and impact on patient and staff experiences of all single room hospital accommodation. Southampton (UK): NIHR Journals Library; 2015 Feb. (Health Services and Delivery Research, No. 3.3.)

Cover of Evaluating a major innovation in hospital design: workforce implications and impact on patient and staff experiences of all single room hospital accommodation

Evaluating a major innovation in hospital design: workforce implications and impact on patient and staff experiences of all single room hospital accommodation.

Chapter 5 case study quantitative data findings.

  • Introduction

This chapter provides the results of the analysis of quantitative data from three different sources:

  • Staff activity: task time distribution. Observations of staff activities were undertaken in each study ward to understand the types of tasks undertaken by staff and the proportion of time spent on each. Staff were shadowed by a researcher who logged their activities.
  • Staff travel distances. These were collected by staff wearing pedometers. These data were collected before and after the shadowing sessions.
  • Staff experience surveys. Staff surveys on each ward were conducted before and after the move to the new hospital and these data provide a comparison of perceptions of the ward environment in the old and new wards.

The survey probed perceptions of many aspects of the ward environment before and after the move. As discussed in Chapter 3 , the trust, the designers and stakeholders held various expectations about the benefits of the 100% single room design. We examined whether or not these expectations (or hypotheses about the effect of the move) were fulfilled. Specifically, the new hospital was designed to increase patient comfort, prevent infections, reduce numbers of patient falls, reduce patient stress, increase patient-centred care and increase the time spent by nurses on direct care (see Appendix 16 ). Concerns were raised about the possible reduction in staff observing and monitoring patients, increased travel distances and patient isolation.

This chapter primarily addresses the following two research questions:

  • What are the advantages and disadvantages of a move to all single rooms for staff?
  • Does the move to all single rooms affect staff experience and well-being and their ability to deliver effective and high-quality care?
  • Staff activity: task time distribution results

Preliminary analysis showed that five activity categories accounted for 78% of observation data before the move and 83% of observation data after the move. This meant that numbers in the remaining categories were too low for analysis, so all subsequent analyses were confined to these five categories: direct care, indirect care, professional communication, medication tasks and ward-related activities. Proportion of time was derived by calculating the duration of each event from its start and end time, and then aggregating duration by activity for each observation session. The number of events for each activity was also counted ( Table 23 ).

TABLE 23

Observations (events) per session before and after new build

Proportion of time spent in each type of activity was analysed using a general linear model with proportion of time as the dependent variable. The first model consisted of a single independent variable for before and after the new build and was used to ascertain the effect of the move to a new build, prior to adjusting for other variables. To this model were added ward (maternity, surgical, older people, AAU), staff group (midwife, RN, HCA) and day of the week. This second model was used to ascertain the effect of the move to the new build having adjusted for these variables.

Events were defined as a switch of activity (either to a new activity or to continue a previously interrupted activity) and were captured by a new entry in the PDA. The number of events (new or continuation of a previous activity) per hour was modelled in the same way except that a generalised linear model with a Poisson distribution and shift length in hours specified as offset (equivalent to modelling the hourly rate) was fitted to the data. An unadjusted analysis (before and after the new build only) and adjusted analysis (before and after the new build, ward, staff group and day of week) were performed.

Analysis of medication tasks was confined to RNs only. The fact that RMs work only on the postnatal ward means that it would not be possible to interpret whether any obtained results were due to the effect of the professional group or the ward. Therefore, staff group (i.e. midwives) was dropped from this model. On average the number of events (either new or continuations of previous activities) observed per session was higher before the move than after (177 vs. 153).

However, the move to the new build did not result in a significant change to the proportion of time spent on different activities ( Table 24 ). Although there was an increase in the proportion of direct care, indirect care, professional communication and medication tasks and a decrease in ward-related activities such as cleaning, bed making and stocking the utility room in adjusted analyses, none of these changes was statistically significant (see Table 24 ).

TABLE 24

Mean proportion of time spent in each type of activity before and after move

Table 25 shows results for the analysis of the number of events per hour. The adjusted number of recorded events per hour decreased significantly for direct care ( p  = 0.039) and professional communication ( p  = 0.002), and increased significantly for medication tasks. A decrease in the number of events per hour for an activity, and no change in the proportion of time spent on that activity, suggests that there were fewer interruptions during these tasks and work was, therefore, less fragmented. This interpretation is supported by qualitative data showing that nurses could focus on direct care and communication tasks more easily in the single room environment. Staff had difficulty locating each other and also felt reluctant to interrupt a colleague providing direct care in a single room, and there were more frequent structured opportunities for professional communication within the small nursing teams.

TABLE 25

Number of events per hour by type of activity before and after move

The number of events per hour increased significantly for medication tasks ( p  = 0.001), showing increased fragmentation for this task. Again, this interpretation is supported by the qualitative data showing that when staff entered a patient room to administer medication they were likely to engage in other direct care activities; thus medication administration was not carried out in a single medication round, but integrated into patient care activities generally.

We also assessed the changes in patients’ contact time per patient-day to check if nurses spent more time with the patient instead of doing other activities. The analysis draws on day shift observation data (based on 118.5 hours of staff shadowing before the move and 254.5 hours after the move). The proportion of contact time was applied to the total NHPPD to provide an estimate of the patients’ contact time per patient-day (see Table 26 ).

TABLE 26

Patients’ contact time per patient-day before and after move in the case study wards

After the move, the contact time per patient-days increased in all units, apart from surgery, where there was a decrease in direct care and an increase in indirect care activities, for example medication activities and professional communication, and essential ward/patient care activities.

These changes are the result of a combination of two factors: a change in the proportion of care (i.e. an increase/decrease in the time spent with the patient) and a change in NHPPD (i.e. an increase/decrease in the number of nurses working full-time during a day).

  • Staff travel distances results

Statistical analysis

The data were analysed using a repeated measures general linear mixed model (GLMM) with steps per hour as the dependent variable and pre/post new build, ward (maternity, surgical, older people, AAU), observation session (repeated measure), staff group (midwife, RN, HCA) and day of the week as independent variables. The first GLMM analysis investigated the main effects of ward, pre/post move, staff group and day of the week. The second GLMM analysis investigated the interactions between pre/post move and ward, and between pre/post move and staff group. Because midwives were employed only on the maternity ward, there was potential confounding between the effects of ward and staff type. Initial analyses confirmed that removing maternity from the analyses improved the fit of the models. The first sensitivity analysis added a variable to the model that indicated whether or not a member of staff contributed to both the pre- and post-build samples. Only five staff contributed to both. The effect on the overall results was minor. A second sensitivity analysis fitted a model to first observation session data only, but allowed data to repeat across individual staff before and after the build. We report the results below, including where sensitivity analyses identified differences.

The data set contains information on 140 sessions collected on 53 staff (49%) prior to and 56 staff (51%) after the new build. A number of staff contributed more than one observation session: 85 provided one session, 18 provided two sessions, five provided three sessions and one provided four sessions. There were 73 sessions (52%) collected prior to the new build and 67 sessions (48%) after the new build. The average numbers of sessions per member of staff were 1.38 and 1.20, respectively. A small number of staff ( n  = 5, 4%) were observed at both times (one RN and four HCAs). Table 27 shows descriptive data for ward and staff group.

TABLE 27

Steps per hour before and after new build

The unadjusted means (see Table 27 ) show an increase in the number of steps per hour for all wards and staff groups. Staff working on the older people’s ward (from 664 to 845) and RNs (from 639 to 827) have seen the biggest increases.

Table 28 shows results for the main effects of ward, pre/post move, staff group and day of the week. The number of steps per hour increased significantly from a mean of 715 before the move to a mean of 839 [ F (1,83) = 10.36; p  = 0.002] after the move. HCAs took significantly more steps per hour than nurses [ F (1,83) = 8.01; p  = 0.006]. There were also significant differences between days of the week [ F (4,21) = 3.40; p  = 0.027]. There was no significant difference between wards in the distances travelled ( Table 29 ).

TABLE 28

F -tests on main effects

TABLE 29

Mean steps per hour by wards, pre-/post move, staff group and day of the week

Table 30 shows results for the interactions between pre/post move and ward, and between pre/post move and staff group. Neither of the two interactions was statistically significant.

TABLE 30

F -tests on interaction effects

The estimated marginal means ( Table 31 ) showed that there was an increase from pre to post build across all wards. Although the size of this increase did not differ significantly between wards, the increases in the surgical and older people’s wards were larger than for the AAU. RNs experienced a larger increase (from 624 to 811) in the number of steps per hour (from 3.74 to 4.86 miles) than HCAs (from 828 to 862 steps; from 4.96 to 5.17 miles).

TABLE 31

Mean steps per hour for the interactions

The estimated marginal means from the second sensitivity analysis suggested a decrease in the number of steps per hour for the AAU from 901 to 836 and for HCAs from 876 to 855, rather than an increase as shown in Table 31 . The change in means for the remaining two wards and for RNs, from pre to post build, were in the same direction, and of the same order of magnitude (see Table 31 ).

  • Staff experience survey

Because of staff leave, shift patterns and staff turnover during the course of the study, it was not possible to use a completely within-subjects design, in which the pre- and post-move surveys were completed by the same people. Despite this, 19 participants did complete surveys at both times, which meant a mixed within- and between-subjects design. One potential problem with this is that the subgroup who completed both surveys could have been sensitised to the research questions and, therefore, could have been more likely to report differences after the move than those who completed only one survey; that would bias our results. We addressed this by treating the design as a between-subjects design and checking for bias by comparing the results of our analyses for the whole group with separate within-subjects analyses on the subgroup who completed both surveys. The results were identical except for a small difference: perceptions of the effect of the accommodation on the delivery of care approached significance (0.099) in the within-subjects analysis whereas for the whole group this effect was significant (0.011). This can be attributed to lack of power in the subsample of 19. On this basis we proceeded with the analysis by treating the ‘before’ and ‘after’ samples as independent groups.

There were 152 items in the staff survey. Our approach to analysis was multifaceted. First, we explored the potential for grouping questions into subscales that would summarise a topic area. We thematically analysed the questions to determine those that were likely to be measuring attitudes to related aspects of the ward design, and then tested these subscales using statistical reliability analysis. Where reliability was not adequate we revised the items in the subscales until we had identified coherent subscales. These were then analysed using independent sample t -tests to determine if post-move responses were significantly different from the pre-move scores for each subscale. Similar analyses were undertaken for the teamwork and safety climate scales. Qualitative open-ended questions were analysed thematically using a content analytic approach. The well-being and stress items were compared before and after the move using the Pearson chi-squared test and Fisher’s exact test when expected frequencies were less than 5.

One of the aims of the study was to investigate if there were differences between the case study wards in their perceptions of the positives and negatives of the new single room accommodation. However, the relatively small number of staff in each of the case study wards meant that it was not possible to explore this question statistically. We therefore used correspondence analysis and perceptual mapping to examine the interaction between ward attributes and case study wards. Correspondence analysis is an exploratory mapping tool that allows visualisation of relationships in the data that would be difficult to identify if presented in a table. 114 It is related to other techniques such as factor analysis and multidimensional scaling. It does not rely on significance testing and is best viewed as an exploratory technique that provides insights into the similarities and differences between two variables. 115 Correspondence analysis does not address questions of whether or not there were differences in ratings between the attributes (e.g. whether or not privacy for patients was rated more highly than staff teamwork). Instead, it focuses on the differences between case study wards and the interaction between ratings and wards. It allows an examination of to what extent which wards are associated with particular ratings. In this way it allows us to qualitatively explore the quantitative data.

Ward environment survey subscales

Ten reliable subscales were formed. Table 32 shows the subscales and example items from each.

TABLE 32

Description of subscales

Appendix 19 contains a complete list of all items used for each subscale.

Table 33 summarises the statistical analysis of the subscales showing means, Cronbach’s alpha and the number of items for each subscale before and after the move. According to accepted criteria, 115 alpha above 0.60 is acceptable for exploratory analyses, above 0.70 is acceptable for confirmatory purposes and above 0.80 is good for confirmatory purposes. Obtained coefficients were generally good, ranging mostly between 0.67 and 0.92. The lowest alpha, of 0.53, was obtained for the family/visitors subscale after the move, suggesting that this subscale is not internally consistent. However, the pre-move alpha was good (0.70), so it was decided to retain this subscale for exploratory purposes.

TABLE 33

Mean subscale scores and reliability analysis before and after the move

Table 34 shows the results of independent sample t -tests comparing subscale scores before and after the move. Staff perceived significant improvements in the efficiency of the physical environment, the patient amenity, the effect of the environment on infection control, patient privacy, and family and visitors. The largest increases were found for perceptions of infection control and patient privacy. Perceptions of the effect of the ward environment on teamwork and care delivery were significantly more negative after the move. There were no significant differences in staff perceptions of staff facilities, patient safety and staff safety.

TABLE 34

Results of t -tests comparing perceptions of the ward environment before and after the move

Although all subscales showed moderate to very good reliability, changes were not uniform for all items in every subscale; there were some exceptions to the overall trend. Overall ratings for the subscale ‘efficiency of physical environment’ increased, but ratings for the item ‘ward design/layout minimises walking distances for staff’ decreased. These perceptions were confirmed by our findings from the analysis of travel distances showing that staff took significantly more steps after than before the move. Some aspects of the design increased the amenity of the ward for staff but others did not. For example, staff toilet facilities, locker facilities and space at staff bases were rated more highly but ratings for social interaction and natural light decreased. These positive and negative aspects meant there was no significant difference in staff amenity before and after the move. The new ward was rated as much more positive for patients but there were reduced scores for three items after the move: social contact between patients, ability of patients to see staff and way finding. All aspects of teamwork and training were rated less positively, except for the item ‘discussing patient care with colleagues’, which increased. This finding is supported by our analysis of observation data showing that professional communication activities were less fragmented.

Although there were no significant differences in the effect of the ward layout on perceptions of patient safety, examination of the items showed that ratings for two items increased (‘minimising risk to patients of physical/verbal abuse from other patients/visitors’ and ‘minimising the risk of medication errors’) while ratings for two items decreased (‘responding to patient calls for assistance’ and ‘minimising the risk of falls/injury to patients’). This suggests that, although staff thought some risks to safety were reduced, they perceived an increased risk of falls and delays in responding to calls for assistance. Staff perceptions of a rise in risk of falls are detailed in Chapter 6 . Staff also reported being unable to hear calls for assistance when in a single room with a patient.

There were five items that did not fit into any of the subscales. These items were analysed singly using Fisher’s exact test and the results are shown in Table 35 . There was a significant relationship between the move and ratings for the number and location of hand basins, ease of keeping patient areas clean and quiet, and the overall comfort of patients, which all increased after the move. There was no relationship between the move and judgements of whether or not the location of the dirty utility room (where bedpans are stored and disposed of) reduces cross-contamination.

TABLE 35

Results of single-item analyses

The distribution of responses for the four significant items showed that significantly more staff rated these aspects of single room accommodation as more positive after the move than before ( Tables 36 – 39 ).

TABLE 36

Distribution of responses for the item ‘Number and location of CHWBs supports good hand hygiene’

TABLE 39

Distribution of responses for the item ‘Easy to keep patient care areas clean’

TABLE 37

Distribution of responses for the item ‘Overall comfort of patients’

TABLE 38

Distribution of responses for the item ‘Easy to keep patient care areas quiet’

Expectations before the move and reality after the move

Before the move, staff were asked to rate on a five-point scale whether they thought single rooms would be better or worse for different aspects of clinical work (e.g. minimising the risk of patient falls, maintaining patient confidentiality, knowing when other staff might need help). After the move they again rated whether single rooms were better or worse for clinical work, thus providing a measure of whether or not their expectations about single rooms were met in reality. The questions were a subset of 23 questions from the first part of the survey and were analysed using Fisher’s exact test.

Results ( Table 40 ) showed that staff perceptions of whether or not single rooms were better than multibedded wards changed after the move for five items. Staff perceptions of whether or not single rooms were better for responding to calls for assistance, knowing when other staff might need help and minimising walking distances were rated as worse or much worse by significantly more staff after than before the move. Staff rated single rooms as positive for patient sleep and rest and for interactions between patients and visitors after the move.

TABLE 40

Relationship between expectations before the move and reality after the move

Tables 41 – 45 show the distribution of significant responses.

TABLE 41

Distribution of responses for the item ‘Responding to patient calls for assistance’

TABLE 45

Distribution of responses for the item ‘Minimising staff walking distances’

TABLE 42

Distribution of responses for the item ‘Patient sleep and rest’

TABLE 43

Distribution of responses for the item ‘Knowing when other staff might need a helping hand’

TABLE 44

Distribution of responses for the item ‘Patient interaction with visitors’

Teamwork and safety climate survey

To take into account our changes to the survey, we combined the four items about the quality of communication with doctors, nurses, nursing assistants and AHPs with the items in the information handover subscale to form a new subscale of seven items. Although this is different from the scales reported by Hutchinson et al. , 98 reliability analysis confirmed the original factor structure of the survey. There were two teamwork subscales and three safety climate subscales with good to high reliability ( Table 46 ). See Appendix 20 for a list of the items contained in each subscale.

TABLE 46

Mean scores for all subscales decreased following the move. Independent sample t -tests showed that ratings for information handover and communication decreased significantly following the move [ t  = 3.23, degrees of freedom (df) = 108, p  = 0.002], indicating that information exchange and sharing within teams was perceived to be worse after the move. There were no other significant differences.

Correspondence analysis

Correspondence analysis transforms cross-tabulated data into a biplot showing distances between variables. In this study, case study ward was a column variable and mean questionnaire subscale score was a row variable (see Table 33 ). As appropriate when analysing mean scores, Euclidean distance was used and standardisation by removing row means was used. 114 , 116 This means that differences between the subscale means were not represented in the perceptual map, as we were not interested in whether or not, for example, infection control was rated more highly than privacy. Differences between wards, contained in the columns, were of interest and are represented in the perceptual map. Separate analyses were conducted for before and after the move and for the ward attributes and teamwork/safety climate survey.

Figure 11 shows perceptual maps of the association between ward attributes and wards before and after the move. The pre-move map shows that the points on the map were dispersed, indicating that the ratings were not strongly associated with particular wards. There was one exception in that ratings for the efficiency of the physical environment, privacy and infection control were higher for the older people’s ward than for the other wards. The post-move map shows that the highest ratings for the efficiency of the physical environment, the delivery of care, the staff facilities and teamwork were obtained in the older people’s and surgical wards, indicated by proximity on the map. Ratings for patient amenity, infection control, privacy and family/visitors were highest for the surgical ward. High ratings for patient safety were obtained in maternity and the surgical ward. Ratings for staff safety were similar in the older people’s, surgical and maternity wards. The acute assessment ward was not associated with any particular ward attributes, as was the case before the move.

Perceptual maps of (a) pre- and (b) post-move ward attributes by ward.

Figure 12 shows perceptual maps before and after the move of the association between teamwork/safety climate ratings and wards. The teamwork/safety climate survey consisted of two teamwork subscales – team input into decisions, and information handover and communication – and three safety climate subscales – attitudes to safety within own team, overall confidence in safety of organisation and perceptions of management attitudes to safety. The pre-move map shows that ratings of input into decisions, information and handover, and overall confidence in safety of the organisation were highest for the acute assessment ward. Ratings of safety attitudes within the team and management attitudes to safety were highest for the surgical ward. After the move, the surgical ward had the highest ratings for safety attitudes within the team, overall attitudes to safety and management; ratings for team input into decisions and information handover and communication were highest for the older people’s ward. Ratings for all safety climate subscales decreased in the acute assessment ward, which is indicated on the perceptual map by its location in a quadrant by itself. Maternity scores did not show a consistent pattern.

Perceptual map of (a) pre- and (b) post-move ratings of teamwork/safety climate by ward. Att., attitude; mgt., management.

These maps reveal some differences between wards in perceptions of the ward environment and show that perceptions were different before and after the move.

Staff ward preferences

Nursing staff were asked to indicate whether they would prefer single rooms, multibedded accommodation or a combination. There was a range of views ( Figure 13 ). In each phase, fewer than 18% of staff indicated a preference for 100% single rooms. The most common preference in each phase was a combination of 50% of beds in single rooms and 50% in bays (see Figure 13 ). In the pre-move survey, more staff reported a preference for more beds in bays ( n  = 20) than in the post-move phase ( n  = 12).

Nurse preferences for single room or multibedded accommodation.

Staff stress and well-being

There were five categorical questions about staff well-being that investigated whether or not they had experienced injuries and harassment in the previous 12 months ( Table 47 ). There were three items about job stress that asked participants to rate their stress on a five-point Likert scale ( Table 48 ) . Results showed no differences in staff well-being and stress before and after the move.

TABLE 47

Relationship between move and staff well-being

TABLE 48

Relationship between move and staff stress

Staff were asked 10 questions about their satisfaction with their own performance of various tasks during their last shift, and one question about their overall job satisfaction. Results ( Table 49 ) showed no significant effect for any of the job satisfaction items.

TABLE 49

Relationship between job satisfaction and move

Qualitative survey data

Four open-ended questions were used to gain qualitative data about staff attitudes. The questions were:

  • What two things do you think would most improve the current ward environment for staff?
  • What two things do you think would most improve the current ward environment for patients?
  • What two things are you most looking forward to in relation to the move to 100% single rooms in the new hospital?
  • What two things are you most concerned about in relation to the move to 100% single rooms in the new hospital?
  • What two things do you like the most about single room wards in the new hospital?
  • What two things do you dislike most about single room wards in the new hospital?

In the following sections we present the results of the thematic analysis with frequency data (almost equal numbers of staff responded before and after the move, n  = 55 and n  = 54 respectively) and examples from participants’ written responses where appropriate. Table 50 shows that staff identified a number of things that would improve the ward accommodation for patients. The need for more space, improved patient facilities, privacy, and rest and sleep were largely met, since there were fewer people identifying these as needs after the move. However, the need for improved patient–staff ratios and a day room to provide patient social interaction were still reported after the move.

TABLE 50

What would improve the current ward environment for patients ? Response frequencies

The need that staff perceived before the move for space around patient beds and staffing levels had decreased after the move ( Table 51 ). However, ventilation/heating/lighting, access to equipment and supplies and facilities for staff, including staff bases, were identified as needing improvement after move. In addition there was a need for improvements in monitoring patients, keeping track of colleagues, reducing isolation and reducing walking distances. These have all been identified by other parts of our results (see Chapter 6 ).

TABLE 51

What would improve the current ward environment for staff ? Response frequencies

Staff were asked about the features of the ward they were most looking forward to in the pre-move phase, and most liked in the post-move phase ( Table 52 ). Results showed that staff most liked the increased patient privacy, patient sleep and rest, increased space, working in a modern environment and improved patient bathroom facilities.

TABLE 52

What are you most looking forward to/do you most like about 100% single room accommodation? Response frequencies

Table 53 shows that staff were most concerned about being able to monitor patients, patient isolation and the risk of falls. Being unable to find staff and increased walking distances also emerged as features staff disliked about single rooms.

TABLE 53

What are you most concerned about/do you most dislike about 100% single room accommodation? Response frequencies

  • Most staff would prefer a mix of single rooms and multibedded rooms on wards.
  • Staff activity events observed per session were higher after the move and direct care and professional communication events per hour decreased significantly, suggesting fewer interruptions and less fragmented care.
  • A significant increase in medication tasks among recorded events suggests medication administration was integrated into patient care activities and was not undertaken as a medication ‘round’.
  • Travel distances increased for all staff, with highest increases for staff in the older people’s ward and surgical wards and for RNs/RMs.
  • efficiency in carrying out tasks
  • patient amenity, including comfort, space, sleep, light and ventilation
  • infection control
  • patient privacy
  • patient interaction with family/visitors and their involvement in care.
  • In open comments, staff most liked the increased patient privacy, working in a modern environment, improved patient sleep and rest, and space around the bedside.
  • delivery of care, including factors such as spending time with patients, communication with patients, monitoring patients and remaining close to patients, responding to calls for assistance, minimising the risks to staff, minimising walking distances and staff spending time with patients
  • teamwork, including being able to locate staff, obtain assistance from colleagues, informal learning, keeping team members updated, discussing care with colleagues and knowing when other staff might need help.
  • In addition, in open comments staff were most concerned about patient isolation, the risk of falls and staff isolation.
  • There were no perceived differences in staff amenity and patient and staff safety.
  • Ratings for information handover and communication decreased significantly following the move. This suggests that information exchange and sharing within teams – and between professions – was perceived to be worse after the move.
  • Different wards valued different aspects of the ward environment.
  • Ratings for staff toilet facilities, locker facilities and space at staff bases were rated more highly but ratings for social interaction and natural light decreased.
  • No differences were found in staff job satisfaction, well-being or stress before and after the move.
  • The need for improved patient–staff ratios and a day room to provide patient social interaction was still reported after the move.

Included under terms of UK Non-commercial Government License .

  • Cite this Page Maben J, Griffiths P, Penfold C, et al. Evaluating a major innovation in hospital design: workforce implications and impact on patient and staff experiences of all single room hospital accommodation. Southampton (UK): NIHR Journals Library; 2015 Feb. (Health Services and Delivery Research, No. 3.3.) Chapter 5, Case study quantitative data findings.
  • PDF version of this title (96M)

In this Page

Other titles in this collection.

  • Health Services and Delivery Research

Recent Activity

  • Case study quantitative data findings - Evaluating a major innovation in hospita... Case study quantitative data findings - Evaluating a major innovation in hospital design: workforce implications and impact on patient and staff experiences of all single room hospital accommodation

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

  • Privacy Policy

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

U.S. flag

An official website of the Department of Health and Human Services

AHRQ: Agency for Healthcare Research and Quality

Browse Topics

Priority populations.

  • Children/Adolescents
  • Racial/Ethnic Minorities
  • Rural/Inner-City Residents
  • Special Healthcare Needs
  • Clinicians & Providers
  • Data & Measures
  • Digital Healthcare Research
  • Education & Training
  • Hospitals & Health Systems
  • Prevention & Chronic Care
  • Quality & Patient Safety

Publications & Products

  • AHRQ Publishing and Communications Guidelines
  • Search Publications

Research Findings & Reports

  • Evidence-based Practice Center (EPC) Reports
  • Fact Sheets
  • Grantee Final Reports: Patient Safety
  • Making Healthcare Safer Report
  • National Healthcare Quality and Disparities Reports
  • Technology Assessment Program
  • AHRQ Research Studies

National Healthcare Quality and Disparities Report

Latest available findings on quality of and access to health care

  • Data Infographics
  • Data Visualizations
  • Data Innovations
  • All-Payer Claims Database
  • Healthcare Cost and Utilization Project (HCUP)
  • Medical Expenditure Panel Survey (MEPS)
  • AHRQ Quality Indicator Tools for Data Analytics
  • State Snapshots
  • United States Health Information Knowledgebase (USHIK)
  • Data Sources Available from AHRQ

Funding & Grants

Notice of funding opportunities, research policies.

  • Notice of Funding Opportunity Guidance
  • AHRQ Grants Policy Notices
  • AHRQ Informed Consent & Authorization Toolkit for Minimal Risk Research
  • HHS Grants Policy Statement
  • Federal Regulations & Authorities
  • Federal Register Notices
  • AHRQ Public Access Policy
  • Protection of Human Subjects

Funding Priorities

  • Special Emphasis Notices
  • Staff Contacts

Training & Education Funding

Grant application, review & award process.

  • Grant Application Basics
  • Application Forms
  • Application Deadlines & Important Dates
  • AHRQ Tips for Grant Applicants
  • Grant Mechanisms & Descriptions
  • Application Receipt & Review
  • Study Sections for Scientific Peer Review
  • Award Process

Post-Award Grant Management

  • AHRQ Grantee Profiles
  • Getting Recognition for Your AHRQ-Funded Study
  • Grants by State
  • No-Cost Extensions (NCEs)

AHRQ Grants by State

Searchable database of AHRQ Grants

AHRQ Projects funded by the Patient-Centered Outcomes Research Trust Fund.

  • Press Releases
  • AHRQ Social Media
  • Impact Case Studies
  • AHRQ News Now
  • AHRQ Research Summit on Diagnostic Safety
  • AHRQ Research Summit on Learning Health Systems
  • National Advisory Council Meetings
  • AHRQ Research Conferences
  • AHRQ's 35th Anniversary
  • Mission and Budget
  • AHRQ's Core Competencies
  • National Advisory Council
  • Careers at AHRQ
  • Maps and Directions
  • Other AHRQ Web Sites
  • Other HHS Agencies
  • Testimonials

Organization & Contacts

  • Centers and Offices
  • Organization Chart
  • Key Contacts

Facebook

AHRQ Seeks Examples of Impact for Development of Impact Case Studies

Has your organization used an AHRQ tool to improve patient care, make a culture change or save costs? 

The agency would like to learn more about your use of AHRQ resources to develop Impact Case Studies. Since 2004, the agency has developed more than 400 Impact Case Studies that illustrate AHRQ’s contributions to healthcare improvement. Available online and searchable via an interactive map , the Impact Case Studies help to tell the story of how AHRQ-funded research findings, data and tools have made an impact on the lives of millions of American patients. 

To help us share your impact story, send a short description of how and where AHRQ resources were used, along with your contact information, to [email protected] .

Internet Citation: AHRQ Seeks Examples of Impact for Development of Impact Case Studies. Content last reviewed May 2024. Agency for Healthcare Research and Quality, Rockville, MD. https://www.ahrq.gov/news/case-study-examples.html

Click to copy citation

  • Open access
  • Published: 27 June 2011

The case study approach

  • Sarah Crowe 1 ,
  • Kathrin Cresswell 2 ,
  • Ann Robertson 2 ,
  • Guro Huby 3 ,
  • Anthony Avery 1 &
  • Aziz Sheikh 2  

BMC Medical Research Methodology volume  11 , Article number:  100 ( 2011 ) Cite this article

779k Accesses

1040 Citations

37 Altmetric

Metrics details

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Peer Review reports

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables 1 , 2 , 3 and 4 ) and those of others to illustrate our discussion[ 3 – 7 ].

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables 2 , 3 and 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 – 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables 2 and 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 – 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table 8 )[ 8 , 18 – 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table 9 )[ 8 ].

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Yin RK: Case study research, design and method. 2009, London: Sage Publications Ltd., 4

Google Scholar  

Keen J, Packwood T: Qualitative research; case study evaluation. BMJ. 1995, 311: 444-446.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J, et al: Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009, 6 (10): 1-11.

Article   Google Scholar  

Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, et al: The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO). 2008, [ http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf ]

Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T, et al: Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010, 41: c4564-

Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P, the Patient Safety Education Study Group: Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010, 15: 4-10. 10.1258/jhsrp.2009.009052.

Article   PubMed   Google Scholar  

van Harten WH, Casparie TF, Fisscher OA: The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002, 60 (1): 17-37. 10.1016/S0168-8510(01)00187-7.

Stake RE: The art of case study research. 1995, London: Sage Publications Ltd.

Sheikh A, Smeeth L, Ashcroft R: Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002, 52 (482): 746-51.

PubMed   PubMed Central   Google Scholar  

King G, Keohane R, Verba S: Designing Social Inquiry. 1996, Princeton: Princeton University Press

Doolin B: Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998, 13: 301-311. 10.1057/jit.1998.8.

George AL, Bennett A: Case studies and theory development in the social sciences. 2005, Cambridge, MA: MIT Press

Eccles M, the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG): Designing theoretically-informed implementation interventions. Implementation Science. 2006, 1: 1-8. 10.1186/1748-5908-1-1.

Article   PubMed Central   Google Scholar  

Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A: Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005, 365 (9456): 312-7.

Sheikh A, Panesar SS, Lasserson T, Netuveli G: Recruitment of ethnic minorities to asthma studies. Thorax. 2004, 59 (7): 634-

CAS   PubMed   PubMed Central   Google Scholar  

Hellström I, Nolan M, Lundh U: 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005, 4: 7-22. 10.1177/1471301205049188.

Som CV: Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005, 18: 463-477. 10.1108/09513550510608903.

Lincoln Y, Guba E: Naturalistic inquiry. 1985, Newbury Park: Sage Publications

Barbour RS: Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?. BMJ. 2001, 322: 1115-1117. 10.1136/bmj.322.7294.1115.

Mays N, Pope C: Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000, 320: 50-52. 10.1136/bmj.320.7226.50.

Mason J: Qualitative researching. 2002, London: Sage

Brazier A, Cooke K, Moravan V: Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008, 7: 5-17. 10.1177/1534735407313395.

Miles MB, Huberman M: Qualitative data analysis: an expanded sourcebook. 1994, CA: Sage Publications Inc., 2

Pope C, Ziebland S, Mays N: Analysing qualitative data. Qualitative research in health care. BMJ. 2000, 320: 114-116. 10.1136/bmj.320.7227.114.

Cresswell KM, Worth A, Sheikh A: Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010, 10 (1): 67-10.1186/1472-6947-10-67.

Article   PubMed   PubMed Central   Google Scholar  

Malterud K: Qualitative research: standards, challenges, and guidelines. Lancet. 2001, 358: 483-488. 10.1016/S0140-6736(01)05627-6.

Article   CAS   PubMed   Google Scholar  

Yin R: Case study research: design and methods. 1994, Thousand Oaks, CA: Sage Publishing, 2

Yin R: Enhancing the quality of case studies in health services research. Health Serv Res. 1999, 34: 1209-1224.

Green J, Thorogood N: Qualitative methods for health research. 2009, Los Angeles: Sage, 2

Howcroft D, Trauth E: Handbook of Critical Information Systems Research, Theory and Application. 2005, Cheltenham, UK: Northampton, MA, USA: Edward Elgar

Book   Google Scholar  

Blakie N: Approaches to Social Enquiry. 1993, Cambridge: Polity Press

Doolin B: Power and resistance in the implementation of a medical management information system. Info Systems J. 2004, 14: 343-362. 10.1111/j.1365-2575.2004.00176.x.

Bloomfield BP, Best A: Management consultants: systems development, power and the translation of problems. Sociological Review. 1992, 40: 533-560.

Shanks G, Parr A: Positivist, single case study research in information systems: A critical analysis. Proceedings of the European Conference on Information Systems. 2003, Naples

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/11/100/prepub

Download references

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

Author information

Authors and affiliations.

Division of Primary Care, The University of Nottingham, Nottingham, UK

Sarah Crowe & Anthony Avery

Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Kathrin Cresswell, Ann Robertson & Aziz Sheikh

School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah Crowe .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Crowe, S., Cresswell, K., Robertson, A. et al. The case study approach. BMC Med Res Methodol 11 , 100 (2011). https://doi.org/10.1186/1471-2288-11-100

Download citation

Received : 29 November 2010

Accepted : 27 June 2011

Published : 27 June 2011

DOI : https://doi.org/10.1186/1471-2288-11-100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case Study Approach
  • Electronic Health Record System
  • Case Study Design
  • Case Study Site
  • Case Study Report

BMC Medical Research Methodology

ISSN: 1471-2288

case studies quantitative research

Learn / Guides / Quantitative data analysis guide

Back to guides

The ultimate guide to quantitative data analysis

Numbers help us make sense of the world. We collect quantitative data on our speed and distance as we drive, the number of hours we spend on our cell phones, and how much we save at the grocery store.

Our businesses run on numbers, too. We spend hours poring over key performance indicators (KPIs) like lead-to-client conversions, net profit margins, and bounce and churn rates.

But all of this quantitative data can feel overwhelming and confusing. Lists and spreadsheets of numbers don’t tell you much on their own—you have to conduct quantitative data analysis to understand them and make informed decisions.

Last updated

Reading time.

case studies quantitative research

This guide explains what quantitative data analysis is and why it’s important, and gives you a four-step process to conduct a quantitative data analysis, so you know exactly what’s happening in your business and what your users need .

Collect quantitative customer data with Hotjar

Use Hotjar’s tools to gather the customer insights you need to make quantitative data analysis a breeze.

What is quantitative data analysis? 

Quantitative data analysis is the process of analyzing and interpreting numerical data. It helps you make sense of information by identifying patterns, trends, and relationships between variables through mathematical calculations and statistical tests. 

With quantitative data analysis, you turn spreadsheets of individual data points into meaningful insights to drive informed decisions. Columns of numbers from an experiment or survey transform into useful insights—like which marketing campaign asset your average customer prefers or which website factors are most closely connected to your bounce rate. 

Without analytics, data is just noise. Analyzing data helps you make decisions which are informed and free from bias.

What quantitative data analysis is not

But as powerful as quantitative data analysis is, it’s not without its limitations. It only gives you the what, not the why . For example, it can tell you how many website visitors or conversions you have on an average day, but it can’t tell you why users visited your site or made a purchase.

For the why behind user behavior, you need qualitative data analysis , a process for making sense of qualitative research like open-ended survey responses, interview clips, or behavioral observations. By analyzing non-numerical data, you gain useful contextual insights to shape your strategy, product, and messaging. 

Quantitative data analysis vs. qualitative data analysis 

Let’s take an even deeper dive into the differences between quantitative data analysis and qualitative data analysis to explore what they do and when you need them.

case studies quantitative research

The bottom line: quantitative data analysis and qualitative data analysis are complementary processes. They work hand-in-hand to tell you what’s happening in your business and why.  

💡 Pro tip: easily toggle between quantitative and qualitative data analysis with Hotjar Funnels . 

The Funnels tool helps you visualize quantitative metrics like drop-off and conversion rates in your sales or conversion funnel to understand when and where users leave your website. You can break down your data even further to compare conversion performance by user segment.

Spot a potential issue? A single click takes you to relevant session recordings , where you see user behaviors like mouse movements, scrolls, and clicks. With this qualitative data to provide context, you'll better understand what you need to optimize to streamline the user experience (UX) and increase conversions .

Hotjar Funnels lets you quickly explore the story behind the quantitative data

4 benefits of quantitative data analysis

There’s a reason product, web design, and marketing teams take time to analyze metrics: the process pays off big time. 

Four major benefits of quantitative data analysis include:

1. Make confident decisions 

With quantitative data analysis, you know you’ve got data-driven insights to back up your decisions . For example, if you launch a concept testing survey to gauge user reactions to a new logo design, and 92% of users rate it ‘very good’—you'll feel certain when you give the designer the green light. 

Since you’re relying less on intuition and more on facts, you reduce the risks of making the wrong decision. (You’ll also find it way easier to get buy-in from team members and stakeholders for your next proposed project. 🙌)

2. Reduce costs

By crunching the numbers, you can spot opportunities to reduce spend . For example, if an ad campaign has lower-than-average click-through rates , you might decide to cut your losses and invest your budget elsewhere. 

Or, by analyzing ecommerce metrics , like website traffic by source, you may find you’re getting very little return on investment from a certain social media channel—and scale back spending in that area.

3. Personalize the user experience

Quantitative data analysis helps you map the customer journey , so you get a better sense of customers’ demographics, what page elements they interact with on your site, and where they drop off or convert . 

These insights let you better personalize your website, product, or communication, so you can segment ads, emails, and website content for specific user personas or target groups.

4. Improve user satisfaction and delight

Quantitative data analysis lets you see where your website or product is doing well—and where it falls short for your users . For example, you might see stellar results from KPIs like time on page, but conversion rates for that page are low. 

These quantitative insights encourage you to dive deeper into qualitative data to see why that’s happening—looking for moments of confusion or frustration on session recordings, for example—so you can make adjustments and optimize your conversions by improving customer satisfaction and delight.

💡Pro tip: use Net Promoter Score® (NPS) surveys to capture quantifiable customer satisfaction data that’s easy for you to analyze and interpret. 

With an NPS tool like Hotjar, you can create an on-page survey to ask users how likely they are to recommend you to others on a scale from 0 to 10. (And for added context, you can ask follow-up questions about why customers selected the rating they did—rich qualitative data is always a bonus!)

case studies quantitative research

Hotjar graphs your quantitative NPS data to show changes over time

4 steps to effective quantitative data analysis 

Quantitative data analysis sounds way more intimidating than it actually is. Here’s how to make sense of your company’s numbers in just four steps:

1. Collect data

Before you can actually start the analysis process, you need data to analyze. This involves conducting quantitative research and collecting numerical data from various sources, including: 

Interviews or focus groups 

Website analytics

Observations, from tools like heatmaps or session recordings

Questionnaires, like surveys or on-page feedback widgets

Just ensure the questions you ask in your surveys are close-ended questions—providing respondents with select choices to choose from instead of open-ended questions that allow for free responses.

case studies quantitative research

Hotjar’s pricing plans survey template provides close-ended questions

 2. Clean data

Once you’ve collected your data, it’s time to clean it up. Look through your results to find errors, duplicates, and omissions. Keep an eye out for outliers, too. Outliers are data points that differ significantly from the rest of the set—and they can skew your results if you don’t remove them.

By taking the time to clean your data set, you ensure your data is accurate, consistent, and relevant before it’s time to analyze. 

3. Analyze and interpret data

At this point, your data’s all cleaned up and ready for the main event. This step involves crunching the numbers to find patterns and trends via mathematical and statistical methods. 

Two main branches of quantitative data analysis exist: 

Descriptive analysis : methods to summarize or describe attributes of your data set. For example, you may calculate key stats like distribution and frequency, or mean, median, and mode.

Inferential analysis : methods that let you draw conclusions from statistics—like analyzing the relationship between variables or making predictions. These methods include t-tests, cross-tabulation, and factor analysis. (For more detailed explanations and how-tos, head to our guide on quantitative data analysis methods.)

Then, interpret your data to determine the best course of action. What does the data suggest you do ? For example, if your analysis shows a strong correlation between email open rate and time sent, you may explore optimal send times for each user segment.

4. Visualize and share data

Once you’ve analyzed and interpreted your data, create easy-to-read, engaging data visualizations—like charts, graphs, and tables—to present your results to team members and stakeholders. Data visualizations highlight similarities and differences between data sets and show the relationships between variables.

Software can do this part for you. For example, the Hotjar Dashboard shows all of your key metrics in one place—and automatically creates bar graphs to show how your top pages’ performance compares. And with just one click, you can navigate to the Trends tool to analyze product metrics for different segments on a single chart. 

Hotjar Trends lets you compare metrics across segments

Discover rich user insights with quantitative data analysis

Conducting quantitative data analysis takes a little bit of time and know-how, but it’s much more manageable than you might think. 

By choosing the right methods and following clear steps, you gain insights into product performance and customer experience —and you’ll be well on your way to making better decisions and creating more customer satisfaction and loyalty.

FAQs about quantitative data analysis

What is quantitative data analysis.

Quantitative data analysis is the process of making sense of numerical data through mathematical calculations and statistical tests. It helps you identify patterns, relationships, and trends to make better decisions.

How is quantitative data analysis different from qualitative data analysis?

Quantitative and qualitative data analysis are both essential processes for making sense of quantitative and qualitative research .

Quantitative data analysis helps you summarize and interpret numerical results from close-ended questions to understand what is happening. Qualitative data analysis helps you summarize and interpret non-numerical results, like opinions or behavior, to understand why the numbers look like they do.

 If you want to make strong data-driven decisions, you need both.

What are some benefits of quantitative data analysis?

Quantitative data analysis turns numbers into rich insights. Some benefits of this process include: 

Making more confident decisions

Identifying ways to cut costs

Personalizing the user experience

Improving customer satisfaction

What methods can I use to analyze quantitative data?

Quantitative data analysis has two branches: descriptive statistics and inferential statistics. 

Descriptive statistics provide a snapshot of the data’s features by calculating measures like mean, median, and mode. 

Inferential statistics , as the name implies, involves making inferences about what the data means. Dozens of methods exist for this branch of quantitative data analysis, but three commonly used techniques are: 

Cross tabulation

Factor analysis

  • How to recruit?
  • Internship calendars
  • Post an offer
  • How to give
  • Ways to give
  • 2019-2024 campaign
  • News and publications
  • Annual Report
  • Build your brand
  • Work with our students
  • Become a partner
  • Our corporate partners

HEC Partners Harvard Business Publishing Education for Case Studies

HEC Paris and Harvard Business Publishing Education (HBP Education) have signed a new collaboration to increase the school’s visibility through its case studies. HEC joins an elite group of institutions distributing cases globally through the HBP Education catalog .

HEC Partners with Harvard Business Publishing Education_cover

HEC Paris Partners with Harvard Business Publishing Education to distribute quality cases

HBP Education, which celebrates its 30th anniversary this year, serves as a bridge between academia and enterprises through its reach into academic, corporate, and consumer markets. " This is just the beginning of a most fruitful relationship ,” said HBP co-president Ellen Desmarais at the April 23 signing ceremony in the HEC Alumni Association headquarters. " Our partnership provides so many opportunities to work together, to innovate together, and to think about this future together ,” she continued. HEC Paris is one of the very few case partners providing both French and English cases, which is helping HBP Education better serve its global audience of students and educators. Other major business schools partnering HBP include Wharton and INSEAD.   HEC Dean of Research Andrea Masini declared: “ This partnership tells our professors that writing case studies is absolutely vital not only because it has an impact on the pedagogy but also on the international visibility of the school .”    Associate Dean for Pedagogy, Anne Michaut thanked HBP Education for their help in the past two years: “ Collaboration between the two has been instrumental in refining case methodologies and identifying relevant topics. The partnership continues to unveil new opportunities for collaboration and growth .”

The collaboration between HEC and Harvard will continue to be instrumental in helping academics in case methodologies and identifying topics deemed relevant for students on all continents. The Co-president of the American not-for-profit organization, Ellen Desmarais, cited the example of cases in citizenship: “ One of the things we are hearing more and more from deans around the world is that they believe it's important for students to learn how to be true citizens of the world and think about the global context and global environment. Case studies on this subject can have a huge impact ." Professor Michaut praised the quality of dialogue between her business school and HBP Education: “ I want to thank you for pushing us to put in place a process to support our faculty in case writing for publication . As Andrea Masini said, it increases our visibility tremendously and encourages quality exchange between faculty members .” Michaut went on to thank the work achieved in instigating the partnership by HEC’s Ioana Helou and Mala Banerjee . 

Also present at the ceremony were HBP Education’s senior director EMEA & Asia Pacific, Gabriela Allmi, and the publication editors Stefaan Van Waes and David Champion. HEC’s 50 case studies are scheduled to go online before the 2024 summer break.

Research: Quantifying GitHub Copilot’s impact in the enterprise with Accenture

We conducted research with developers at Accenture to understand GitHub Copilot’s real-world impact in enterprise organizations.

An image showing the Accenture and GitHub logos with text that reads “The enterprise impact of GitHub Copilot”

Since bringing GitHub Copilot to market, we’ve conducted several lab studies to discover its impact on developer efficiency, developer satisfaction, and overall code quality. We found that our AI pair programmer helps developers code up to 55% faster and that it made 85% of developers feel more confident in their code quality. With the introduction of our first GitHub Copilot offering for businesses and organizations in 2023 —and more recently GitHub Copilot Enterprise —it’s become increasingly important for us to measure the impact of GitHub Copilot across real-world, large engineering organizations.

To learn more, we partnered with Accenture to study how developers integrated GitHub Copilot into their daily workflows , and we found significant improvements in several areas, including:

  • Improved developer satisfaction. 90% of developers found they were more fulfilled with their job when using GitHub Copilot, and 95% said they enjoyed coding more with Copilot’s help.
  • Quickly adopted by developers. Over 80% of Accenture participants successfully adopted GitHub Copilot with a 96% success rate among initial users. 43% found it “extremely easy to use.” Additionally, 67% of total participants used GitHub Copilot at least 5 days per week, averaging 3.4 days of usage weekly.

Methodology

In this study, we collaborated with Accenture to conduct an extensive, randomized controlled trial (RCT). Participants included developers who engage in a variety of software development tasks daily, including engineering, design, and testing across a spectrum of software products and services. They hold various positions within their organizations from entry-level roles to team management positions, and may work collaboratively or independently depending on the project and team dynamics.

For the trial, developers were randomly assigned to two groups. One group of developers was given access to GitHub Copilot, while the other group was not. Our objective was to assess the influence of GitHub Copilot on developers’ experience within the enterprise setting, where they collaborate on multifaceted projects. We collected DevOps telemetry on several output performance metrics that reflect insights into developers’ regular coding activity.

Beyond the initial experiment, we conducted a company-wide adoption analysis, which explored installation rates, generated code acceptance rates, and the time it took developers to accept GitHub Copilot’s first coding suggestion. Success was determined by whether they accepted a suggestion from GitHub Copilot or not.

In addition, we surveyed the GitHub Copilot users at Accenture to gain a better understanding of how developers perceived the impact of GitHub Copilot on their workflows. Not only did this survey uncover insights into how and when developers are using GitHub Copilot, but it also indicated an overwhelming improvement in developer satisfaction, which we know to be a key component of the developer experience (DevEx) . The combination of both telemetry data and the information from the survey provides a full picture for us to understand GitHub Copilot’s impact at the enterprise level.

Our findings

Developers quickly found value in github copilot and adopted it as part of their daily toolkit.

More than 50,000 organizations have adopted GitHub Copilot so far , but we haven’t yet had a clear view into what those adoption rates look like on the individual level. When we dug deeper into the usage patterns of GitHub Copilot among Accenture developers, 67% of respondents reported utilizing GitHub Copilot at least 5 days per week , with an average usage frequency of 3.4 days per week. Moreover, a substantial 70% of respondents relied on GitHub Copilot for coding tasks in a familiar programming language. This indicates a high level of integration of GitHub Copilot into developers’ daily workflows, highlighting its importance as a valuable engineering tool and resource.

We also observed that developers were excited to use GitHub Copilot. 81.4% of developers installed the GitHub Copilot IDE extension on the same day that they received a license. And not only were they excited to use it, but getting started was simple and did not provide a barrier to entry.

In fact, 96% of those who installed the IDE extension started receiving and accepting suggestions on the same day. On average, developers took just one minute from seeing their first suggestion to accepting one, too. This was further validated in user surveys, with 43% finding GitHub Copilot “extremely easy to use” and 51% rating it as “extremely useful.”

A chart showing how developers at Accenture gauged the ease of using GitHub Copilot. 42.8% of developers at Accenture deem it

Developers improved code quality using GitHub Copilot

By convention, pull requests represent a ready-to-deploy code change (for example, a new feature, bug fix, or code refactoring). When measured in aggregate, the number of pull requests per developer can be used to measure a team’s throughput or velocity. Ultimately, an increase in pull requests represents an increase in value delivered, and Accenture developers saw an 8.69% increase in pull requests. Because each pull request must pass through a code review, the pull request merge rate is an excellent measure of code quality as seen through the eyes of a maintainer or coworker. Accenture saw a 15% increase to the pull request merge rate, which means that as the volume of pull requests increased, so did the number of pull requests passing code review.

But we don’t want to just shift issues downstream and overburden the system with low-quality code. It’s one thing for a teammate to assess quality and yet another for new code to successfully complete CI runs where test automation evaluates code quality against deterministic measures. At Accenture, we saw an 84% increase in successful builds suggesting not only that more pull requests were passing through the system, but they were also of higher quality as assessed by both human reviewers and test automation.

By enabling developers to maintain focus and stay in the flow, GitHub Copilot doesn’t sacrifice quality for speed. And our findings provide evidence for exactly that.

In our study, developers accepted around 30% of GitHub Copilot’s suggestions . And 90% of the developers reported that they committed code suggested by GitHub Copilot, while 91% of the developers reported that their teams had merged pull requests containing code suggested by GitHub Copilot . Analysis also showed high usage rates with the accepted code—for example, developers retained 88% of GitHub Copilot-generated characters in their editor .

A chart showing how developers at Accenture gauged GitHub Copilot’s impact on production code, also outlined in the preceding paragraph.

By experiencing improved success rates in builds, developers can reduce the likelihood of errors.

GitHub Copilot improved the overall developer experience

Our survey among Accenture developers unveiled compelling findings indicating a significant boost in overall developer satisfaction with GitHub Copilot. An impressive 90% of developers expressed feeling more fulfilled with their jobs when utilizing GitHub Copilot, and a staggering 95% of developers reported enjoying coding more when leveraging GitHub Copilot’s capabilities .

This enhancement in job satisfaction could allow developers to allocate their focus toward tasks most fulfilling to them, like solutions design or collaboration. Furthermore, our analysis revealed that developers’ heightened fulfillment correlated directly with their engagement with GitHub Copilot. When using GitHub Copilot less than two days per week, fulfillment only increased “a little.” But when using GitHub Copilot more than 2 days per week, fulfillment increases “quite a bit.”

70% of developers also reported quite a bit less mental effort was expended on repetitive tasks, and 54% spent less time searching for information or examples when utilizing GitHub Copilot. This reduction in cognitive load could enable developers to allocate their cognitive resources more efficiently, reducing burnout. GitHub Copilot also allowed developers to maintain uninterrupted focus, with a majority indicating that they could maintain flow state while using the tool, a hallmark of good DevEx. These impacts extend beyond mere task optimization, which offers enterprises a competitive edge by maximizing developer resources and fostering a conducive environment for innovation and growth.

A chart showing how developers at Accenture grew more fulfilled the more they used GitHub Copilot.

From the lab to the real world

After conducting multiple lab studies on the impact of GitHub Copilot, we are now working to understand how GitHub Copilot affected developers’ workdays in real-world environments—and that’s been made possible by the tremendous adoption we’ve seen among businesses and enterprise organizations alike.

With this study, we have uncovered compelling evidence that GitHub Copilot significantly enhances developer experience, satisfaction, and overall job fulfillment in real-world enterprise settings. With GitHub Copilot in their toolkits, developers can also enhance their skill sets and gain greater proficiency in their organization’s codebase, which ultimately leads to heightened contribution levels across teams, all without sacrificing the quality of code.

Acknowledgments

We are very grateful to all the developers who participated in the GitHub Copilot adoption experiment and survey. Ya Gao from GitHub Customer Research led the experiment in partnership with Accenture, the Microsoft Office of the Chief Economist, and the GitHub Copilot Quality Measurement team, specifically in collaboration with Phillip Coppney and Daniel A. Schocke at Accenture; Sida Peng, Dan Tetrick, and Jeff Wilcox at Microsoft; and Erik Polzin and Lizzie Redford at GitHub.

  • GitHub Copilot , 

Related posts

How we’re building more inclusive and accessible components at GitHub

How we’re building more inclusive and accessible components at GitHub

We've made improvements to the way users of assistive technology can interact with and navigate lists of issues and pull requests and tables across GitHub.com.

GitHub Copilot Chat in GitHub Mobile is now generally available

GitHub Copilot Chat in GitHub Mobile is now generally available

With GitHub Copilot Chat in GitHub Mobile, developers can collaborate, ask coding questions, and gain insights into both public and private repositories anywhere, anytime–all in natural language for users on all GitHub Copilot plans.

Dependabot on GitHub Actions and self-hosted runners is now generally available

Dependabot on GitHub Actions and self-hosted runners is now generally available

A quick guide on the advantages of Dependabot as a GitHub Actions workflow and the benefits this unlocks, including self-hosted runner support.

Explore more from GitHub

Github universe 2024, github copilot, work at github, subscribe to our newsletter.

Code with confidence. Discover tips, technical guides, and best practices in our biweekly newsletter just for devs.

case studies quantitative research

Get Started Here:

  • Homeowners & Homebuyers

Search

  • Leadership & Organization
  • Reports & Plans
  • Do Business with Us
  • Diversity, Equity, and Inclusion
  • Equal Employment Opportunity / No FEAR Act
  • FOIA & Privacy
  • Information Quality
  • Budget, Finances, and Performance
  • Workforce Ombuds
  • FHFA Policies
  • Fannie Mae & Freddie Mac
  • Federal Home Loan Bank System
  • Examiner Resources
  • Legal Documents & Suspensions
  • Rulemaking & Federal Register
  • Advisory Bulletins
  • Dodd-Frank Act Stress Tests
  • LIBOR Transition
  • History of Fannie Mae & Freddie Mac Conservatorships
  • Senior Preferred Stock Purchase Agreements

2023 Scorecard ​

  • FHFA Stats Blog
  • Meet the Experts
  • Mortgage Translations Home
  • Search or Browse Documents
  • COVID-19 Resources
  • Borrower Education Materials
  • Interpretive Services
  • Language Translation Disclosure

Skip Navigation Links.

Working Paper 24-04: Measuring Price Effects from Disasters Using Public Data: A Case Study of Hurricane Ian

​Justin C. Contat, William M. Doerner, Robert N. Renner, and Malcolm J. Rogers

​​Ab​stract:

Natural disasters can disrupt housing markets, causing destruction to communities and distress to economic activity. To estimate the effects of disasters on home prices, publicly-available data on property damages are often used to classify “treated” properties. However, by design these data lack precise geospatial information, leading to measurement error in the treatment variable as aggregate measures must be used. We leverage leading difference-in-differences and synthetic control methodologies across various treatments and levels of geography to measure price effects with such data following Hurricane Ian’s unexpected landfall in southwest Florida during September 2022, coinciding with the state’s initial recovery from the COVID-19 pandemic. Empirical results suggest positive, time-varying price effects, though we place caveats on these results as there may be many mechanisms underway; our results should be interpreted as descriptive correlations and not causal effects for various reasons. Our main contribution is methodological, highlighting the importance of robustness checks, functional form, statistical techniques, and testing across different samples. Additionally, quicker access to high quality public data could enhance quantitatively-informed conversations on natural disaster effects.​

Want to Subscribe?

Federal Housing Finance Agency Text

© 2024 Federal Housing Finance Agency

COMMENTS

  1. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  2. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  3. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table.

  4. Case Studies/ Case Report/ Case Series

    A case study, also known as a case report, is an in depth or intensive study of a single individual or specific group, while a case series is a grouping of similar case studies / case reports together. A case study / case report can be used in the following instances: where there is atypical or abnormal behaviour or development.

  5. Case Study

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  6. LibGuides: Research Writing and Analysis: Case Study

    A Case study is: An in-depth research design that primarily uses a qualitative methodology but sometimes includes quantitative methodology. Used to examine an identifiable problem confirmed through research. Used to investigate an individual, group of people, organization, or event. Used to mostly answer "how" and "why" questions.

  7. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  8. Case Study Method: A Step-by-Step Guide for Business Researchers

    First is to provide a step-by-step guideline to research students for conducting case study. Second, an analysis of authors' multiple case studies is presented in order to provide an application of step-by-step guideline. This article has been divided into two sections. First section discusses a checklist with four phases that are vital for ...

  9. Case Selection for Case‐Study Analysis: Qualitative and Quantitative

    While each of these techniques is normally practiced on one or several cases (the diverse, most‐similar, and most‐different methods require at least two), all may employ additional cases—with the proviso that, at some point, they will no longer offer an opportunity for in‐depth analysis and will thus no longer be "case studies" in the usual sense (Gerring 2007, ch. 2).

  10. What is a Case Study?

    What is a case study? Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue.

  11. What Is Quantitative Research?

    Quantitative research methods. You can use quantitative research methods for descriptive, correlational or experimental research. In descriptive research, you simply seek an overall summary of your study variables.; In correlational research, you investigate relationships between your study variables.; In experimental research, you systematically examine whether there is a cause-and-effect ...

  12. Quantitative Research

    Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. . High-quality quantitative research is ...

  13. Case Survey Methodology: Quantitative

    The basic. case survey is (1) select a group of existing case studies. chosen research questions, (2) design a coding scheme for. version of the qualitative case descriptions into quantified variables, (3) use multiple raters to code the cases and measure their interrater reliability, and.

  14. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research. Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and assumptions.

  15. Case study quantitative data findings

    The survey probed perceptions of many aspects of the ward environment before and after the move. As discussed in Chapter 3, the trust, the designers and stakeholders held various expectations about the benefits of the 100% single room design. We examined whether or not these expectations (or hypotheses about the effect of the move) were fulfilled. Specifically, the new hospital was designed to ...

  16. Quantitative Research

    Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships. ... Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student ...

  17. AHRQ Seeks Examples of Impact for Development of Impact Case Studies

    Since 2004, the agency has developed more than 400 Impact Case Studies that illustrate AHRQ's contributions to healthcare improvement. Available online and searchable via an interactive map , the Impact Case Studies help to tell the story of how AHRQ-funded research findings, data and tools have made an impact on the lives of millions of ...

  18. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  19. Quantitative Data Analysis: A Complete Guide

    Quantitative data analysis is the process of analyzing and interpreting numerical data. It helps you make sense of information by identifying patterns, trends, and relationships between variables through mathematical calculations and statistical tests. With quantitative data analysis, you turn spreadsheets of individual data points into ...

  20. JRFM

    This paper proposes a method for conducting quantitative inductive research on survey data when the variable of interest follows an ordinal distribution. A methodology based on novel and traditional penalising models is described. The main aim of this study is to pedagogically present the method utilising the new penalising methods in a new application. A case was employed to outline the ...

  21. HEC Partners Harvard Business Publishing Education for Case Studies

    HEC Paris is one of the very few case partners providing both French and English cases, which is helping HBP Education better serve its global audience of students and educators. Other major business schools partnering HBP include Wharton and INSEAD. HEC Dean of Research Andrea Masini declared: " This partnership tells our professors that ...

  22. Quantitative Evaluation of Sustainable Marketing Effectiveness: A

    This research investigates the sustainable marketing effectiveness of Poland's fruit and vegetable industry using a seminal approach to analyze the interconnected dynamics among all factors and highlight pivotal elements through a structural model. Methodologically, the research used a sample of 216 companies utilizing a comprehensive survey to gauge various dimensions of sustainable ...

  23. Automatic segmentation of dura for quantitative analysis of lumbar

    For example, the spinal cord toolbox is an automatic ROI contouring tool with quantitative analysis for the cervical dura or spinal cord on MRI, which has been implemented in many studies 16, 17 and widely acknowledged in research communities as a reliable method to analyze images of cervical spondylotic myelopathy and spinal cord injury.

  24. Research: Quantifying GitHub Copilot's impact in the enterprise with

    Acknowledgments. We are very grateful to all the developers who participated in the GitHub Copilot adoption experiment and survey. Ya Gao from GitHub Customer Research led the experiment in partnership with Accenture, the Microsoft Office of the Chief Economist, and the GitHub Copilot Quality Measurement team, specifically in collaboration with Phillip Coppney and Daniel A. Schocke at ...

  25. Working Paper 24-04: Measuring Price Effects from Disasters Using

    FHFA economists and policy experts provide reliable research and policy analysis about critical topics impacting the nation's housing finance sector. ... Measuring Price Effects from Disasters Using Public Data: A Case Study of Hurricane Ian. Working Papers Working Paper 24-04: Measuring Price Effects from Disasters Using Public Data: A Case ...