Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Hypothesis Examples

Hypothesis Examples

A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method . A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation. Here are different hypothesis examples.

Null Hypothesis Examples

The null hypothesis (H 0 ) is also known as the zero-difference or no-difference hypothesis. It predicts that changing one variable ( independent variable ) will have no effect on the variable being measured ( dependent variable ). Here are null hypothesis examples:

  • Plant growth is unaffected by temperature.
  • If you increase temperature, then solubility of salt will increase.
  • Incidence of skin cancer is unrelated to ultraviolet light exposure.
  • All brands of light bulb last equally long.
  • Cats have no preference for the color of cat food.
  • All daisies have the same number of petals.

Sometimes the null hypothesis shows there is a suspected correlation between two variables. For example, if you think plant growth is affected by temperature, you state the null hypothesis: “Plant growth is not affected by temperature.” Why do you do this, rather than say “If you change temperature, plant growth will be affected”? The answer is because it’s easier applying a statistical test that shows, with a high level of confidence, a null hypothesis is correct or incorrect.

Research Hypothesis Examples

A research hypothesis (H 1 ) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it’s easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect. In other cases, the hypothesis shows a correlation between two variables. Here are some research hypothesis examples:

  • If you leave the lights on, then it takes longer for people to fall asleep.
  • If you refrigerate apples, they last longer before going bad.
  • If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower).
  • If you leave a bucket of water uncovered, then it evaporates more quickly.
  • Goldfish lose their color if they are not exposed to light.
  • Workers who take vacations are more productive than those who never take time off.

Is It Okay to Disprove a Hypothesis?

Yes! You may even choose to write your hypothesis in such a way that it can be disproved because it’s easier to prove a statement is wrong than to prove it is right. In other cases, if your prediction is incorrect, that doesn’t mean the science is bad. Revising a hypothesis is common. It demonstrates you learned something you did not know before you conducted the experiment.

Test yourself with a Scientific Method Quiz .

  • Mellenbergh, G.J. (2008). Chapter 8: Research designs: Testing of research hypotheses. In H.J. Adèr & G.J. Mellenbergh (eds.), Advising on Research Methods: A Consultant’s Companion . Huizen, The Netherlands: Johannes van Kessel Publishing.
  • Popper, Karl R. (1959). The Logic of Scientific Discovery . Hutchinson & Co. ISBN 3-1614-8410-X.
  • Schick, Theodore; Vaughn, Lewis (2002). How to think about weird things: critical thinking for a New Age . Boston: McGraw-Hill Higher Education. ISBN 0-7674-2048-9.
  • Tobi, Hilde; Kampen, Jarl K. (2018). “Research design: the methodology for interdisciplinary research framework”. Quality & Quantity . 52 (3): 1209–1225. doi: 10.1007/s11135-017-0513-8

Related Posts

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

'The most critically harmful fungi to humans': How the rise of C. auris was inevitable

Odd earthquake swarm in Central Europe hints at magma bubbling below the surface

James Webb telescope detects 1-of-a-kind atmosphere around 'Hell Planet' in distant star system

Most Popular

  • 2 32 of the most colorful birds on Earth
  • 3 Can mirrors facing each other create infinite reflections?
  • 4 See stunning reconstruction of ancient Egyptian mummy that languished at an Australian high school for a century
  • 5 New invention transforms any smartphone or TV display into a holographic projector
  • 2 'The most critically harmful fungi to humans': How the rise of C. auris was inevitable
  • 3 32 of the most colorful birds on Earth
  • 4 Roman-era skeletons buried in embrace, on top of a horse, weren't lovers, DNA analysis shows
  • 5 Stone with 1,600-year-old Irish inscription found in English garden

what is a hypothesis for science project

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 13 May 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what is a hypothesis for science project

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

what is a hypothesis for science project

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

How To Design a Science Fair Experiment

Design a Science Fair Experiment Using the Scientific Method

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A good science fair experiment applies the scientific method to answer a question or test an effect. Follow these steps to design an experiment that follows the approved procedure for science fair projects.

State an Objective

Science fair projects start with a purpose or objective. Why are you studying this? What do you hope to learn? What makes this topic interesting? An objective is a brief statement of the goal of an experiment, which you can use to help narrow down choices for a hypothesis.

Propose a Testable Hypothesis

The hardest part of experimental design may be the first step, which is deciding what to test and proposing a hypothesis you can use to build an experiment.

You could state the hypothesis as an if-then statement. Example: "If plants are not given light, then they will not grow."

You could state a null or no-difference hypothesis, which is an easy form to test. Example: There is no difference in the size of beans soaked in water compared with beans soaked in saltwater.

The key to formulating a good science fair hypothesis is to make sure you have the ability to test it, record data, and draw a conclusion. Compare these two hypotheses and decide which you could test:

Cupcakes sprinkled with colored sugar are better than plain frosted cupcakes.

People are more likely to choose cupcakes sprinkled with colored sugar than plain frosted cupcakes.

Once you have an idea for an experiment, it often helps to write out several different versions of a hypothesis and select the one that works best for you.

See Hypothesis Examples

Identify the Independent, Dependent, and Control Variable

To draw a valid conclusion from your experiment, you ideally want to test the effect of changing one factor, while holding all other factors constant or unchanged. There are several possible variables in an experiment, but be sure to identify the big three: independent , dependent , and control variables.

The independent variable is the one you manipulate or change to test its effect on the dependent variable. Controlled variables are other factors in your experiment you try to control or hold constant.

For example, let's say your hypothesis is: Duration of daylight has no effect on how long a cat sleeps. Your independent variable is duration of daylight (how many hours of daylight the cat sees). The dependent variable is how long the cat sleeps per day. Controlled variables might include amount of exercise and cat food supplied to the cat, how often it is disturbed, whether or not other cats are present, the approximate age of cats that are tested, etc.

Perform Enough Tests

Consider an experiment with the hypothesis: If you toss a coin, there is an equal chance of it coming up heads or tails. That is a nice, testable hypothesis, but you can't draw any sort of valid conclusion from a single coin toss. Neither are you likely to get enough data from 2-3 coin tosses, or even 10. It's important to have a large enough sample size that your experiment isn't overly influenced by randomness. Sometimes this means you need to perform a test multiple times on a single subject or small set of subjects. In other cases, you may want to gather data from a large, representative sample of population.

Gather the Right Data

There are two main types of data: qualitative and quantitative data. Qualitative data describes a quality, such as red/green, more/less, yes/no. Quantitative data is recorded as a number. If you can, gather quantitative data because it's much easier to analyze using mathematical tests.

Tabulate or Graph the Results

Once you have recorded your data, report it in a table and/or graph. This visual representation of the data makes it easier for you to see patterns or trends and makes your science fair project more appealing to other students, teachers, and judges.

Test the Hypothesis

Was the hypothesis accepted or rejected? Once you make this determination, ask yourself whether you met the objective of the experiment or whether further study is needed. Sometimes an experiment doesn't work out the way you expect. You may accept the experiment or decide to conduct a new experiment, based on what you learned.

Draw a Conclusion

Based on the experience you gained from the experiment and whether you accepted or rejected the hypothesis, you should be able to draw some conclusions about your subject. You should state these in your report.

  • Six Steps of the Scientific Method
  • What Is an Experiment? Definition and Design
  • What Is a Testable Hypothesis?
  • What Are the Elements of a Good Hypothesis?
  • Scientific Method Flow Chart
  • Scientific Method Vocabulary Terms
  • How to Do a Science Fair Project
  • How to Select a Science Fair Project Topic
  • 5 Types of Science Fair Projects
  • What Is a Hypothesis? (Science)
  • Understanding Simple vs Controlled Experiments
  • Examples of Independent and Dependent Variables
  • 6th Grade Science Fair Projects
  • Null Hypothesis Definition and Examples
  • Science Projects for Every Subject

icon of a magnifying glass

Steps in a Science Fair Project

What are the steps in a science fair project.

  • Pick a topic
  • Construct an exhibit for results
  • Write a report
  • Practice presenting

Cartoon of boy doing chemistry experiment in lab.

Some science fair projects are experiments to test a hypothesis . Other science fair projects attempt to answer a question or demonstrate how nature works or even invent a technology to measure something.

Before you start, find out which of these are acceptable kinds of science fair projects at your school. You can learn something and have fun using any of these approaches.

  • First, pick a topic. Pick something you are interested in, something you'd like to think about and know more about.
  • Then do some background research on the topic.
  • Decide whether you can state a hypothesis related to the topic (that is, a cause and effect statement that you can test), and follow the strict method listed above, or whether you will just observe something, take and record measurements, and report.
  • Design and carry out your research, keeping careful records of everything you do or see and your results or observations.
  • Construct an exhibit or display to show and explain to others what you hoped to test (if you had a hypothesis) or what question you wanted to answer, what you did, what your data showed, and your conclusions.
  • Write a short report that also states the same things as the exhibit or display, and also gives the sources of your initial background research.
  • Practice describing your project and results, so you will be ready for visitors to your exhibit at the science fair.

What is a hypothesis?

No.  A hypothesis is sometimes described as an educated guess.  That's not the same thing as a guess and not really a good description of a hypothesis either.  Let's try working through an example.

If you put an ice cube on a plate and place it on the table, what will happen?  A very young child might guess that it will still be there in a couple of hours.  Most people would agree with the hypothesis that:

An ice cube will melt in less than 30 minutes.

You could put sit and watch the ice cube melt and think you've proved a hypothesis.  But you will have missed some important steps.

For a good science fair project you need to do quite a bit of research before any experimenting.  Start by finding some information about how and why water melts.  You could read a book, do a bit of Google searching, or even ask an expert.  For our example, you could learn about how temperature and air pressure can change the state of water.  Don't forget that elevation above sea level changes air pressure too.

Now, using all your research, try to restate that hypothesis.

An ice cube will melt in less than 30 minutes in a room at sea level with a temperature of 20C or 68F.

But wait a minute.  What is the ice made from?  What if the ice cube was made from salt water, or you sprinkled salt on a regular ice cube?  Time for some more research.  Would adding salt make a difference?  Turns out it does.  Would other chemicals change the melting time?

Using this new information, let's try that hypothesis again.

An ice cube made with tap water will melt in less than 30 minutes in a room at sea level with a temperature of 20C or 68F.

Does that seem like an educated guess?  No, it sounds like you are stating the obvious.

At this point, it is obvious only because of your research.  You haven't actually done the experiment.  Now it's time to run the experiment to support the hypothesis.

A hypothesis isn't an educated guess.  It is a tentative explanation for an observation, phenomenon, or scientific problem that can be tested by further investigation.

Once you do the experiment and find out if it supports the hypothesis, it becomes part of scientific theory.

Notes to Parents:

  • Every parent must use their own judgment in choosing which activities are safe for their own children.  While Science Kids at Home makes every effort to provide activity ideas that are safe and fun for children it is your responsibility to choose the activities that are safe in your own home.
  • Science Kids at Home has checked the external web links on this page that we created.  We believe these links provide interesting information that is appropriate for kids.  However, the internet is a constantly changing place and these links may not work or the external web site may have changed.  We also have no control over the "Ads by Google" links, but these should be related to kids science and crafts.  You are responsible for supervising your own children.  If you ever find a link that you feel is inappropriate, please let us know.

Kids Science Gifts   Science Experiments   Science Fair Projects   Science Topics   Creative Kids Blog

Kids Crafts   Privacy Policy   Copyright © 2016 Science Kids at Home, all rights reserved.

' class=

Introduction

1. get your idea and do some research, 2. ask a testable question, 3. design and conduct your experiment, 4. examine your results, 5. communicate your experiment and results.

Learning Space

Teachable Moments

Stay Connected

twitter icon

How to Do a Science Fair Project

To get started on your science fair project, you'll learn to observe the world around you and ask questions about the things you observe.

Observe the world around you and ask questions about the things you observe.

Develop your idea into a question you can test. Your question should follow the format, "How does [input] affect [output]?"

Design your experiment and keep track of the results. Remember to only change one variable and conduct your experiment multiple times for each trial. Each trial should be repeated in exactly the same way.

Now that your experiment is done, it's time to examine your results. You want to look for trends in your results and draw conclusions from those trends. You also want to examine your data for possible influences from factors you didn't consider at first.

Make a poster display that summarizes your experiment so you can share your results. Be sure to include the question you were trying to answer (your hypothesis), the steps you took to answer that question, your results and any factors that may have influenced your results. Your poster should be visually appealing, but also clear about what you did and why people should care.

How to Write Up an Elementary Volcano Science Project

Jennifer tolbert, 27 jun 2018.

How to Write Up an Elementary Volcano Science Project

The baking soda and vinegar volcano is a favorite science experiment among elementary students. It is important to make your presentation stand out from the other students at the science fair with an exceptional presentation. Also be sure to follow the teacher's guidelines or science fair guidelines to ensure that your score is as high as possible.

Write an introduction. The introduction is your first impression. Be sure it is concise and accurately introduces exactly what you studied in the experiment. This is also an excellent place to include fun facts, background information or general volcano information. The reaction is due to the properties of bases and acids and would be important to include in your experiment. Identify the variable that you are testing, such as the ratio to vinegar and baking soda. Or maybe you would like to see what other base-acid combinations would produce similar eruptions.

Write a hypothesis. Remember a hypothesis is an educated guess or prediction. Explain what you believe will happen during the experiment based upon your previous knowledge or research. The hypothesis should be written in a declarative sentence.

List your materials. Provide a detailed list of all of the materials you used when you conducted the experiment. Be sure to also include how much of each material was used. Explain whether you made your own volcano or bought a kit.

Write your procedure. The procedure should be written step-by-step, in detail. If someone else could easily reproduce your experiment, you have probably written a fairly clear procedure. Be detailed, accurate and logical in your explanation. Procedures are usually written in a numerical list format.

Explain your results. Be sure your results reflect exactly what you were testing. You can provide observations or measurements. If applicable, you can create a chart or graph to describe any numerical data you may have taken. You may want to describe what the eruptions looked like, how long they lasted or how explosive the reactions were.

Write a conclusion. Basically, sum up what you learned during the experiment. Say whether or not your hypothesis was correct. Point out patterns in your data and explain if they were consistent with your previous knowledge of the subject. Also, do not forget to relate how that information can be used in the real world. This would also be a good spot to place recommendations if there are changes you would make to the experiment.

  • 1 Discovery Education: Science Fair Center
  • 2 Science Buddies: Science Fair Project Final Report

About the Author

Jennifer Tolbert currently resides in Magnolia, Texas. She holds a Bachelor of Science in agricultural communications from Texas Tech University and a Master of Science from Texas A&M University. She has written several award-winning special sections as a marketing writer and is currently a special education teacher.

Related Articles

How to Write a Grade 10 Lab Report

How to Write a Grade 10 Lab Report

How to Write an Essay Regarding a Science Experiment

How to Write an Essay Regarding a Science Experiment

How to Write a Research Report for a Science Fair

How to Write a Research Report for a Science Fair

What Do You Do if Your Hypothesis Is Wrong?

What Do You Do if Your Hypothesis Is Wrong?

Penny Cleaning Science Fair Project for Eighth-Graders

Penny Cleaning Science Fair Project for Eighth-Graders

How to Write a Math Report

How to Write a Math Report

How to Collect Data From a Science Project

How to Collect Data From a Science Project

How to Write a Discussion for an APA Style Paper

How to Write a Discussion for an APA Style Paper

How To Write a Graph Essay

How To Write a Graph Essay

How to Write an Analysis/Discussion for a Science Project

How to Write an Analysis/Discussion for a Science Project

How to Write Up a Science Experiment in 3rd Grade

How to Write Up a Science Experiment in 3rd Grade

How to Test for Bronze With a Magnet

How to Test for Bronze With a Magnet

How to Make a Good Presentation of a Case Study

How to Make a Good Presentation of a Case Study

How to Write a Summative Report

How to Write a Summative Report

What Kind of Human Errors Can Occur During Experiments?

What Kind of Human Errors Can Occur During Experiments?

How to Write an Evidence-Based Paper

How to Write an Evidence-Based Paper

How to Write a Fieldwork Report

How to Write a Fieldwork Report

How to Put Together an Ethnographic Research Paper

How to Put Together an Ethnographic Research Paper

How to Write the Introduction and Literature Review Section of a Research Paper

How to Write the Introduction and Literature Review...

Activities to Teach Students About Seashells

Activities to Teach Students About Seashells

Regardless of how old we are, we never stop learning. Classroom is the educational resource for people of all ages. Whether you’re studying times tables or applying to college, Classroom has the answers.

  • Accessibility
  • Terms of Use
  • Privacy Policy
  • Copyright Policy
  • Manage Preferences

© 2020 Leaf Group Ltd. / Leaf Group Media, All Rights Reserved. Based on the Word Net lexical database for the English Language. See disclaimer .

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅

Science Projects on Hypothesis for Volcanoes

Volcanoes are popular science projects.

How to Add a Variable to a Volcano Science Project

Volcanoes have captured the imaginations of science-fair participants for generations. The fun of simulating oozing lava and creating volcanic-like explosions is undeniable. Volcanoes play an important role in the topographical and meteorological patterns of Earth’s past, present and future. The complex science of volcanoes lends itself to a variety of science-project hypotheses.

Amateur Volcanologist

Volcanologists study both active and dormant volcanoes, how they formed, and their current and historic activity. According to the University of Oregon, most of the work of the volcanologist happens in the laboratory, not at the edge of a red-hot volcano writhing with molten lava. In fact, investigating data and coming up with hypotheses is one of the most important jobs of a volcanologist.

Hazardous Volcanoes

Volcanic eruptions have many hazards, from lava flows to spewing ash. Determining where the most hazardous volcanoes are located in the world is a good project hypothesis. First, students would need to determine the main hazards of a volcano and consider factors such as human life, plant and animal life, air quality and damage to property. Data would need to be collected on volcanoes in different parts of the world and students would need to form conclusions based on the same criteria for each volcano.

Effects on Earth System

Throughout history, volcanoes have had a profound effect on Earth’s systems. Volcanoes have changed the topography of the world and even destroyed civilizations. The effects on Earth’s systems by volcanoes that are currently active are more subtle, but they can still have an impact. Choosing an active volcano and hypothesizing about its impact on the environment around it would make an interesting project. Students can consider the impact to air quality, plant life and even the weather.

Chemistry and Volcanoes

A visually pleasing volcano project involves simulating an eruption. The intensity of volcanic eruptions varies widely and students can hypothesize which type of chemical reactions could cause the biggest eruptions. For example, a project could hypothesize that yeast combined with hydrogen peroxide would create a bigger explosion than vinegar combined with baking soda. Students, with adult supervision, can mix different components to demonstrate the power of volcanic eruptions.

Related Articles

Interesting science projects, solar system science fair projects for second grade, 5th grade projects on volcanoes, high school investigatory projects, 7th-grade science fair projects with sodas, the history of volcanology, what kind of volcanoes don't erupt anymore, similarities between the different types of volcanoes, animal adaptations around volcanoes, different topics for investigatory projects, how to build a model tornado, what happens after volcanoes erupt, facts on volcanology, mauna loa facts for kids, what are the results of a volcano eruption, about minor & major landforms, what will the first cities on mars look like, plants & animals around volcanoes, ib chemistry lab ideas.

  • Glencoe-McGraw Hill: Earth Science; “Ranking Hazardous Volcanoes”

About the Author

Beth Griesmer’s writing career started at a small weekly newspaper in Georgetown, Texas, in 1990. Her work has appeared in the “Austin-American Statesman,” “Inkwell” literary magazine and on numerous websites. Griesmer teaches middle school language arts and science in Austin, Texas.

Photo Credits

NA/AbleStock.com/Getty Images

Find Your Next Great Science Fair Project! GO

  • Grades 6-12
  • School Leaders

Free printable Mother's Day questionnaire 💐!

72 Easy Science Experiments Using Materials You Already Have On Hand

Because science doesn’t have to be complicated.

Easy science experiments including a "naked" egg and "leakproof" bag

If there is one thing that is guaranteed to get your students excited, it’s a good science experiment! While some experiments require expensive lab equipment or dangerous chemicals, there are plenty of cool projects you can do with regular household items. We’ve rounded up a big collection of easy science experiments that anybody can try, and kids are going to love them!

Easy Chemistry Science Experiments

Easy physics science experiments, easy biology and environmental science experiments, easy engineering experiments and stem challenges.

Skittles form a circle around a plate. The colors are bleeding toward the center of the plate. (easy science experiments)

1. Taste the Rainbow

Teach your students about diffusion while creating a beautiful and tasty rainbow! Tip: Have extra Skittles on hand so your class can eat a few!

Learn more: Skittles Diffusion

Colorful rock candy on wooden sticks

2. Crystallize sweet treats

Crystal science experiments teach kids about supersaturated solutions. This one is easy to do at home, and the results are absolutely delicious!

Learn more: Candy Crystals

3. Make a volcano erupt

This classic experiment demonstrates a chemical reaction between baking soda (sodium bicarbonate) and vinegar (acetic acid), which produces carbon dioxide gas, water, and sodium acetate.

Learn more: Best Volcano Experiments

4. Make elephant toothpaste

This fun project uses yeast and a hydrogen peroxide solution to create overflowing “elephant toothpaste.” Tip: Add an extra fun layer by having kids create toothpaste wrappers for plastic bottles.

Girl making an enormous bubble with string and wire

5. Blow the biggest bubbles you can

Add a few simple ingredients to dish soap solution to create the largest bubbles you’ve ever seen! Kids learn about surface tension as they engineer these bubble-blowing wands.

Learn more: Giant Soap Bubbles

Plastic bag full of water with pencils stuck through it

6. Demonstrate the “magic” leakproof bag

All you need is a zip-top plastic bag, sharp pencils, and water to blow your kids’ minds. Once they’re suitably impressed, teach them how the “trick” works by explaining the chemistry of polymers.

Learn more: Leakproof Bag

Several apple slices are shown on a clear plate. There are cards that label what they have been immersed in (including salt water, sugar water, etc.) (easy science experiments)

7. Use apple slices to learn about oxidation

Have students make predictions about what will happen to apple slices when immersed in different liquids, then put those predictions to the test. Have them record their observations.

Learn more: Apple Oxidation

8. Float a marker man

Their eyes will pop out of their heads when you “levitate” a stick figure right off the table! This experiment works due to the insolubility of dry-erase marker ink in water, combined with the lighter density of the ink.

Learn more: Floating Marker Man

Mason jars stacked with their mouths together, with one color of water on the bottom and another color on top

9. Discover density with hot and cold water

There are a lot of easy science experiments you can do with density. This one is extremely simple, involving only hot and cold water and food coloring, but the visuals make it appealing and fun.

Learn more: Layered Water

Clear cylinder layered with various liquids in different colors

10. Layer more liquids

This density demo is a little more complicated, but the effects are spectacular. Slowly layer liquids like honey, dish soap, water, and rubbing alcohol in a glass. Kids will be amazed when the liquids float one on top of the other like magic (except it is really science).

Learn more: Layered Liquids

Giant carbon snake growing out of a tin pan full of sand

11. Grow a carbon sugar snake

Easy science experiments can still have impressive results! This eye-popping chemical reaction demonstration only requires simple supplies like sugar, baking soda, and sand.

Learn more: Carbon Sugar Snake

12. Mix up some slime

Tell kids you’re going to make slime at home, and watch their eyes light up! There are a variety of ways to make slime, so try a few different recipes to find the one you like best.

Two children are shown (without faces) bouncing balls on a white table

13. Make homemade bouncy balls

These homemade bouncy balls are easy to make since all you need is glue, food coloring, borax powder, cornstarch, and warm water. You’ll want to store them inside a container like a plastic egg because they will flatten out over time.

Learn more: Make Your Own Bouncy Balls

Pink sidewalk chalk stick sitting on a paper towel

14. Create eggshell chalk

Eggshells contain calcium, the same material that makes chalk. Grind them up and mix them with flour, water, and food coloring to make your very own sidewalk chalk.

Learn more: Eggshell Chalk

Science student holding a raw egg without a shell

15. Make naked eggs

This is so cool! Use vinegar to dissolve the calcium carbonate in an eggshell to discover the membrane underneath that holds the egg together. Then, use the “naked” egg for another easy science experiment that demonstrates osmosis .

Learn more: Naked Egg Experiment

16. Turn milk into plastic

This sounds a lot more complicated than it is, but don’t be afraid to give it a try. Use simple kitchen supplies to create plastic polymers from plain old milk. Sculpt them into cool shapes when you’re done!

Student using a series of test tubes filled with pink liquid

17. Test pH using cabbage

Teach kids about acids and bases without needing pH test strips! Simply boil some red cabbage and use the resulting water to test various substances—acids turn red and bases turn green.

Learn more: Cabbage pH

Pennies in small cups of liquid labeled coca cola, vinegar + salt, apple juice, water, catsup, and vinegar. Text reads Cleaning Coins Science Experiment. Step by step procedure and explanation.

18. Clean some old coins

Use common household items to make old oxidized coins clean and shiny again in this simple chemistry experiment. Ask kids to predict (hypothesize) which will work best, then expand the learning by doing some research to explain the results.

Learn more: Cleaning Coins

Glass bottle with bowl holding three eggs, small glass with matches sitting on a box of matches, and a yellow plastic straw, against a blue background

19. Pull an egg into a bottle

This classic easy science experiment never fails to delight. Use the power of air pressure to suck a hard-boiled egg into a jar, no hands required.

Learn more: Egg in a Bottle

20. Blow up a balloon (without blowing)

Chances are good you probably did easy science experiments like this when you were in school. The baking soda and vinegar balloon experiment demonstrates the reactions between acids and bases when you fill a bottle with vinegar and a balloon with baking soda.

21 Assemble a DIY lava lamp

This 1970s trend is back—as an easy science experiment! This activity combines acid-base reactions with density for a totally groovy result.

Four colored cups containing different liquids, with an egg in each

22. Explore how sugary drinks affect teeth

The calcium content of eggshells makes them a great stand-in for teeth. Use eggs to explore how soda and juice can stain teeth and wear down the enamel. Expand your learning by trying different toothpaste-and-toothbrush combinations to see how effective they are.

Learn more: Sugar and Teeth Experiment

23. Mummify a hot dog

If your kids are fascinated by the Egyptians, they’ll love learning to mummify a hot dog! No need for canopic jars , just grab some baking soda and get started.

24. Extinguish flames with carbon dioxide

This is a fiery twist on acid-base experiments. Light a candle and talk about what fire needs in order to survive. Then, create an acid-base reaction and “pour” the carbon dioxide to extinguish the flame. The CO2 gas acts like a liquid, suffocating the fire.

I Love You written in lemon juice on a piece of white paper, with lemon half and cotton swabs

25. Send secret messages with invisible ink

Turn your kids into secret agents! Write messages with a paintbrush dipped in lemon juice, then hold the paper over a heat source and watch the invisible become visible as oxidation goes to work.

Learn more: Invisible Ink

26. Create dancing popcorn

This is a fun version of the classic baking soda and vinegar experiment, perfect for the younger crowd. The bubbly mixture causes popcorn to dance around in the water.

Students looking surprised as foamy liquid shoots up out of diet soda bottles

27. Shoot a soda geyser sky-high

You’ve always wondered if this really works, so it’s time to find out for yourself! Kids will marvel at the chemical reaction that sends diet soda shooting high in the air when Mentos are added.

Learn more: Soda Explosion

Empty tea bags burning into ashes

28. Send a teabag flying

Hot air rises, and this experiment can prove it! You’ll want to supervise kids with fire, of course. For more safety, try this one outside.

Learn more: Flying Tea Bags

Magic Milk Experiment How to Plus Free Worksheet

29. Create magic milk

This fun and easy science experiment demonstrates principles related to surface tension, molecular interactions, and fluid dynamics.

Learn more: Magic Milk Experiment

Two side-by-side shots of an upside-down glass over a candle in a bowl of water, with water pulled up into the glass in the second picture

30. Watch the water rise

Learn about Charles’s Law with this simple experiment. As the candle burns, using up oxygen and heating the air in the glass, the water rises as if by magic.

Learn more: Rising Water

Glasses filled with colored water, with paper towels running from one to the next

31. Learn about capillary action

Kids will be amazed as they watch the colored water move from glass to glass, and you’ll love the easy and inexpensive setup. Gather some water, paper towels, and food coloring to teach the scientific magic of capillary action.

Learn more: Capillary Action

A pink balloon has a face drawn on it. It is hovering over a plate with salt and pepper on it

32. Give a balloon a beard

Equally educational and fun, this experiment will teach kids about static electricity using everyday materials. Kids will undoubtedly get a kick out of creating beards on their balloon person!

Learn more: Static Electricity

DIY compass made from a needle floating in water

33. Find your way with a DIY compass

Here’s an old classic that never fails to impress. Magnetize a needle, float it on the water’s surface, and it will always point north.

Learn more: DIY Compass

34. Crush a can using air pressure

Sure, it’s easy to crush a soda can with your bare hands, but what if you could do it without touching it at all? That’s the power of air pressure!

A large piece of cardboard has a white circle in the center with a pencil standing upright in the middle of the circle. Rocks are on all four corners holding it down.

35. Tell time using the sun

While people use clocks or even phones to tell time today, there was a time when a sundial was the best means to do that. Kids will certainly get a kick out of creating their own sundials using everyday materials like cardboard and pencils.

Learn more: Make Your Own Sundial

36. Launch a balloon rocket

Grab balloons, string, straws, and tape, and launch rockets to learn about the laws of motion.

Steel wool sitting in an aluminum tray. The steel wool appears to be on fire.

37. Make sparks with steel wool

All you need is steel wool and a 9-volt battery to perform this science demo that’s bound to make their eyes light up! Kids learn about chain reactions, chemical changes, and more.

Learn more: Steel Wool Electricity

38. Levitate a Ping-Pong ball

Kids will get a kick out of this experiment, which is really all about Bernoulli’s principle. You only need plastic bottles, bendy straws, and Ping-Pong balls to make the science magic happen.

Colored water in a vortex in a plastic bottle

39. Whip up a tornado in a bottle

There are plenty of versions of this classic experiment out there, but we love this one because it sparkles! Kids learn about a vortex and what it takes to create one.

Learn more: Tornado in a Bottle

Homemade barometer using a tin can, rubber band, and ruler

40. Monitor air pressure with a DIY barometer

This simple but effective DIY science project teaches kids about air pressure and meteorology. They’ll have fun tracking and predicting the weather with their very own barometer.

Learn more: DIY Barometer

A child holds up a pice of ice to their eye as if it is a magnifying glass. (easy science experiments)

41. Peer through an ice magnifying glass

Students will certainly get a thrill out of seeing how an everyday object like a piece of ice can be used as a magnifying glass. Be sure to use purified or distilled water since tap water will have impurities in it that will cause distortion.

Learn more: Ice Magnifying Glass

Piece of twine stuck to an ice cube

42. String up some sticky ice

Can you lift an ice cube using just a piece of string? This quick experiment teaches you how. Use a little salt to melt the ice and then refreeze the ice with the string attached.

Learn more: Sticky Ice

Drawing of a hand with the thumb up and a glass of water

43. “Flip” a drawing with water

Light refraction causes some really cool effects, and there are multiple easy science experiments you can do with it. This one uses refraction to “flip” a drawing; you can also try the famous “disappearing penny” trick .

Learn more: Light Refraction With Water

44. Color some flowers

We love how simple this project is to re-create since all you’ll need are some white carnations, food coloring, glasses, and water. The end result is just so beautiful!

Square dish filled with water and glitter, showing how a drop of dish soap repels the glitter

45. Use glitter to fight germs

Everyone knows that glitter is just like germs—it gets everywhere and is so hard to get rid of! Use that to your advantage and show kids how soap fights glitter and germs.

Learn more: Glitter Germs

Plastic bag with clouds and sun drawn on it, with a small amount of blue liquid at the bottom

46. Re-create the water cycle in a bag

You can do so many easy science experiments with a simple zip-top bag. Fill one partway with water and set it on a sunny windowsill to see how the water evaporates up and eventually “rains” down.

Learn more: Water Cycle

Plastic zipper bag tied around leaves on a tree

47. Learn about plant transpiration

Your backyard is a terrific place for easy science experiments. Grab a plastic bag and rubber band to learn how plants get rid of excess water they don’t need, a process known as transpiration.

Learn more: Plant Transpiration

Students sit around a table that has a tin pan filled with blue liquid wiht a feather floating in it (easy science experiments)

48. Clean up an oil spill

Before conducting this experiment, teach your students about engineers who solve environmental problems like oil spills. Then, have your students use provided materials to clean the oil spill from their oceans.

Learn more: Oil Spill

Sixth grade student holding model lungs and diaphragm made from a plastic bottle, duct tape, and balloons

49. Construct a pair of model lungs

Kids get a better understanding of the respiratory system when they build model lungs using a plastic water bottle and some balloons. You can modify the experiment to demonstrate the effects of smoking too.

Learn more: Model Lungs

Child pouring vinegar over a large rock in a bowl

50. Experiment with limestone rocks

Kids  love to collect rocks, and there are plenty of easy science experiments you can do with them. In this one, pour vinegar over a rock to see if it bubbles. If it does, you’ve found limestone!

Learn more: Limestone Experiments

Plastic bottle converted to a homemade rain gauge

51. Turn a bottle into a rain gauge

All you need is a plastic bottle, a ruler, and a permanent marker to make your own rain gauge. Monitor your measurements and see how they stack up against meteorology reports in your area.

Learn more: DIY Rain Gauge

Pile of different colored towels pushed together to create folds like mountains

52. Build up towel mountains

This clever demonstration helps kids understand how some landforms are created. Use layers of towels to represent rock layers and boxes for continents. Then pu-u-u-sh and see what happens!

Learn more: Towel Mountains

Layers of differently colored playdough with straw holes punched throughout all the layers

53. Take a play dough core sample

Learn about the layers of the earth by building them out of Play-Doh, then take a core sample with a straw. ( Love Play-Doh? Get more learning ideas here. )

Learn more: Play Dough Core Sampling

Science student poking holes in the bottom of a paper cup in the shape of a constellation

54. Project the stars on your ceiling

Use the video lesson in the link below to learn why stars are only visible at night. Then create a DIY star projector to explore the concept hands-on.

Learn more: DIY Star Projector

Glass jar of water with shaving cream floating on top, with blue food coloring dripping through, next to a can of shaving cream

55. Make it rain

Use shaving cream and food coloring to simulate clouds and rain. This is an easy science experiment little ones will beg to do over and over.

Learn more: Shaving Cream Rain

56. Blow up your fingerprint

This is such a cool (and easy!) way to look at fingerprint patterns. Inflate a balloon a bit, use some ink to put a fingerprint on it, then blow it up big to see your fingerprint in detail.

Edible DNA model made with Twizzlers, gumdrops, and toothpicks

57. Snack on a DNA model

Twizzlers, gumdrops, and a few toothpicks are all you need to make this super-fun (and yummy!) DNA model.

Learn more: Edible DNA Model

58. Dissect a flower

Take a nature walk and find a flower or two. Then bring them home and take them apart to discover all the different parts of flowers.

DIY smartphone amplifier made from paper cups

59. Craft smartphone speakers

No Bluetooth speaker? No problem! Put together your own from paper cups and toilet paper tubes.

Learn more: Smartphone Speakers

Car made from cardboard with bottlecap wheels and powered by a blue balloon

60. Race a balloon-powered car

Kids will be amazed when they learn they can put together this awesome racer using cardboard and bottle-cap wheels. The balloon-powered “engine” is so much fun too.

Learn more: Balloon-Powered Car

Miniature Ferris Wheel built out of colorful wood craft sticks

61. Build a Ferris wheel

You’ve probably ridden on a Ferris wheel, but can you build one? Stock up on wood craft sticks and find out! Play around with different designs to see which one works best.

Learn more: Craft Stick Ferris Wheel

62. Design a phone stand

There are lots of ways to craft a DIY phone stand, which makes this a perfect creative-thinking STEM challenge.

63. Conduct an egg drop

Put all their engineering skills to the test with an egg drop! Challenge kids to build a container from stuff they find around the house that will protect an egg from a long fall (this is especially fun to do from upper-story windows).

Learn more: Egg Drop Challenge Ideas

Student building a roller coaster of drinking straws for a ping pong ball (Fourth Grade Science)

64. Engineer a drinking-straw roller coaster

STEM challenges are always a hit with kids. We love this one, which only requires basic supplies like drinking straws.

Learn more: Straw Roller Coaster

Outside Science Solar Oven Desert Chica

65. Build a solar oven

Explore the power of the sun when you build your own solar ovens and use them to cook some yummy treats. This experiment takes a little more time and effort, but the results are always impressive. The link below has complete instructions.

Learn more: Solar Oven

Mini Da Vinci bridge made of pencils and rubber bands

66. Build a Da Vinci bridge

There are plenty of bridge-building experiments out there, but this one is unique. It’s inspired by Leonardo da Vinci’s 500-year-old self-supporting wooden bridge. Learn how to build it at the link, and expand your learning by exploring more about Da Vinci himself.

Learn more: Da Vinci Bridge

67. Step through an index card

This is one easy science experiment that never fails to astonish. With carefully placed scissor cuts on an index card, you can make a loop large enough to fit a (small) human body through! Kids will be wowed as they learn about surface area.

Student standing on top of a structure built from cardboard sheets and paper cups

68. Stand on a pile of paper cups

Combine physics and engineering and challenge kids to create a paper cup structure that can support their weight. This is a cool project for aspiring architects.

Learn more: Paper Cup Stack

Child standing on a stepladder dropping a toy attached to a paper parachute

69. Test out parachutes

Gather a variety of materials (try tissues, handkerchiefs, plastic bags, etc.) and see which ones make the best parachutes. You can also find out how they’re affected by windy days or find out which ones work in the rain.

Learn more: Parachute Drop

Students balancing a textbook on top of a pyramid of rolled up newspaper

70. Recycle newspapers into an engineering challenge

It’s amazing how a stack of newspapers can spark such creative engineering. Challenge kids to build a tower, support a book, or even build a chair using only newspaper and tape!

Learn more: Newspaper STEM Challenge

Plastic cup with rubber bands stretched across the opening

71. Use rubber bands to sound out acoustics

Explore the ways that sound waves are affected by what’s around them using a simple rubber band “guitar.” (Kids absolutely love playing with these!)

Learn more: Rubber Band Guitar

Science student pouring water over a cupcake wrapper propped on wood craft sticks

72. Assemble a better umbrella

Challenge students to engineer the best possible umbrella from various household supplies. Encourage them to plan, draw blueprints, and test their creations using the scientific method.

Learn more: Umbrella STEM Challenge

Plus, sign up for our newsletters to get all the latest learning ideas straight to your inbox.

Science doesn't have to be complicated! Try these easy science experiments using items you already have around the house or classroom.

You Might Also Like

Magic Milk Experiment How to Plus Free Worksheet

Magic Milk Experiment: How-To Plus Free Worksheet

This classic experiment teaches kids about basic chemistry and physics. Continue Reading

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

Help | Advanced Search

Computer Science > Computer Vision and Pattern Recognition

Title: probablistic restoration with adaptive noise sampling for 3d human pose estimation.

Abstract: The accuracy and robustness of 3D human pose estimation (HPE) are limited by 2D pose detection errors and 2D to 3D ill-posed challenges, which have drawn great attention to Multi-Hypothesis HPE research. Most existing MH-HPE methods are based on generative models, which are computationally expensive and difficult to train. In this study, we propose a Probabilistic Restoration 3D Human Pose Estimation framework (PRPose) that can be integrated with any lightweight single-hypothesis model. Specifically, PRPose employs a weakly supervised approach to fit the hidden probability distribution of the 2D-to-3D lifting process in the Single-Hypothesis HPE model and then reverse-map the distribution to the 2D pose input through an adaptive noise sampling strategy to generate reasonable multi-hypothesis samples effectively. Extensive experiments on 3D HPE benchmarks (Human3.6M and MPI-INF-3DHP) highlight the effectiveness and efficiency of PRPose. Code is available at: this https URL .

Submission history

Access paper:.

  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. What is an Hypothesis

    what is a hypothesis for science project

  2. How to Write a Hypothesis in 12 Steps 2024

    what is a hypothesis for science project

  3. Hypothesis

    what is a hypothesis for science project

  4. 13 Different Types of Hypothesis (2024)

    what is a hypothesis for science project

  5. Science Project

    what is a hypothesis for science project

  6. Research Hypothesis: Definition, Types, Examples and Quick Tips

    what is a hypothesis for science project

VIDEO

  1. Misunderstanding The Null Hypothesis

  2. Continuum Hypothesis Project CS4510

  3. What Is A Hypothesis?

  4. Science Fair Friday Week 6: Hypothesis and Design Goal

  5. Writing a hypothesis

  6. the scientific method #short #new #physics #universe

COMMENTS

  1. Writing a Hypothesis for Your Science Fair Project

    A hypothesis is the best answer to a question based on what is known. Scientists take that best answer and do experiments to see if it still makes sense or if a better answer can be made. When a scientist has a question they want to answer, they research what is already known about the topic. Then, they come up with their best answer to the ...

  2. Writing a Hypothesis for Your Science Fair Project

    A hypothesis is a tentative, testable answer to a scientific question. Once a scientist has a scientific question she is interested in, the scientist reads up to find out what is already known on the topic. Then she uses that information to form a tentative answer to her scientific question. Sometimes people refer to the tentative answer as "an ...

  3. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  4. Hypothesis Examples

    A hypothesis proposes a relationship between the independent and dependent variable. A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method.A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation.

  5. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method. Many describe it as an "educated guess ...

  6. Scientific hypothesis

    Countless hypotheses have been developed and tested throughout the history of science.Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation, a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi, and later in 1859, with the experiments of French ...

  7. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  8. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  9. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  10. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  11. Scientific Hypothesis Examples

    Scientific Hypothesis Examples . Hypothesis: All forks have three tines. This would be disproven if you find any fork with a different number of tines. Hypothesis: There is no relationship between smoking and lung cancer.While it is difficult to establish cause and effect in health issues, you can apply statistics to data to discredit or support this hypothesis.

  12. How To Design a Science Fair Experiment

    Draw a Conclusion. Based on the experience you gained from the experiment and whether you accepted or rejected the hypothesis, you should be able to draw some conclusions about your subject. You should state these in your report. Cite this Article. Follow these steps to design and implement a science fair experiment using the scientific method.

  13. Hypothesis Testing

    Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories. There are 5 main steps in hypothesis testing: ... For some research projects, you might have to write several hypotheses that ...

  14. Steps in a Science Fair Project

    Hypothesis. Experiment. Construct an exhibit for results. Write a report. Practice presenting. Some science fair projects are experiments to test a hypothesis. Other science fair projects attempt to answer a question or demonstrate how nature works or even invent a technology to measure something. Before you start, find out which of these are ...

  15. 8 Parts of Science Fair Projects

    The hypothesis is your rough estimation of what you believe would happen in your experiment. The hypothesis must answer a specific question related to your project. For example, if you were trying to determine which bubble gum held its flavor the longest, your hypothesis would look something like "I predict that Bubbly Sue's Bubble Gum will ...

  16. science fair project

    An ice cube will melt in less than 30 minutes. You could put sit and watch the ice cube melt and think you've proved a hypothesis. But you will have missed some important steps. For a good science fair project you need to do quite a bit of research before any experimenting. Start by finding some information about how and why water melts.

  17. How to Do a Science Fair Project

    Introduction. To get started on your science fair project, you'll learn to observe the world around you and ask questions about the things you observe. 1. Get your idea and do some research. Observe the world around you and ask questions about the things you observe. 2. Ask a testable question. Develop your idea into a question you can test.

  18. How to Write Up an Elementary Volcano Science Project

    After creating a volcano science project, it's important to write a clear presentation. This should include an introduction, hypothesis, materials list, procedure description, results, and conclusion. > ... The hypothesis should be written in a declarative sentence. List your materials. Provide a detailed list of all of the materials you used ...

  19. PDF Writing a Hypothesis for Your Science Fair Project

    A hypothesis is a tentative, testable answer to a scientific question. Once a scientist has a scientific question she is interested in, the scientist reads up to find out what is already known on the topic. Then she uses that information to form a tentative answer to her scientific question. Sometimes people refer to the tentative answer as "an ...

  20. Science Projects on Hypothesis for Volcanoes

    Science Projects on Hypothesis for Volcanoes. Volcanoes have captured the imaginations of science-fair participants for generations. The fun of simulating oozing lava and creating volcanic-like explosions is undeniable. Volcanoes play an important role in the topographical and meteorological patterns of Earth's past, present and future.

  21. Hypothesis Testing Explained (How I Wish It Was Explained to Me)

    The curse of hypothesis testing is that we will never know if we are dealing with a True or a False Positive (Negative). All we can do is fill the confusion matrix with probabilities that are acceptable given our application. To be able to do that, we must start from a hypothesis. Step 1. Defining the hypothesis

  22. 70 Easy Science Experiments Using Materials You Already Have

    Go Science Kids. 43. "Flip" a drawing with water. Light refraction causes some really cool effects, and there are multiple easy science experiments you can do with it. This one uses refraction to "flip" a drawing; you can also try the famous "disappearing penny" trick.

  23. Probablistic Restoration with Adaptive Noise Sampling for 3D Human Pose

    The accuracy and robustness of 3D human pose estimation (HPE) are limited by 2D pose detection errors and 2D to 3D ill-posed challenges, which have drawn great attention to Multi-Hypothesis HPE research. Most existing MH-HPE methods are based on generative models, which are computationally expensive and difficult to train. In this study, we propose a Probabilistic Restoration 3D Human Pose ...

  24. Preparing Experimental Procedures for a Science Fair Project

    The first step of designing your experimental procedure involves planning how you will change your independent variable and how you will measure the impact that this change has on the dependent variable. To guarantee a fair test when you are conducting your experiment, you need to make sure that the only thing you change is the independent ...