FSTA Logo

Start your free trial

Arrange a trial for your organisation and discover why FSTA is the leading database for reliable research on the sciences of food and health.

REQUEST A FREE TRIAL

  • Research Skills Blog

5 software tools to support your systematic review processes

By Dr. Mina Kalantar on 19-Jan-2021 13:01:01

4 software tools to support your systematic review processes | IFIS Publishing

Systematic reviews are a reassessment of scholarly literature to facilitate decision making. This methodical approach of re-evaluating evidence was initially applied in healthcare, to set policies, create guidelines and answer medical questions.

Systematic reviews are large, complex projects and, depending on the purpose, they can be quite expensive to conduct. A team of researchers, data analysts and experts from various fields may collaborate to review and examine incredibly large numbers of research articles for evidence synthesis. Depending on the spectrum, systematic reviews often take at least 6 months, and sometimes upwards of 18 months to complete.

The main principles of transparency and reproducibility require a pragmatic approach in the organisation of the required research activities and detailed documentation of the outcomes. As a result, many software tools have been developed to help researchers with some of the tedious tasks required as part of the systematic review process.

hbspt.cta._relativeUrls=true;hbspt.cta.load(97439, 'ccc20645-09e2-4098-838f-091ed1bf1f4e', {"useNewLoader":"true","region":"na1"});

The first generation of these software tools were produced to accommodate and manage collaborations, but gradually developed to help with screening literature and reporting outcomes. Some of these software packages were initially designed for medical and healthcare studies and have specific protocols and customised steps integrated for various types of systematic reviews. However, some are designed for general processing, and by extending the application of the systematic review approach to other fields, they are being increasingly adopted and used in software engineering, health-related nutrition, agriculture, environmental science, social sciences and education.

Software tools

There are various free and subscription-based tools to help with conducting a systematic review. Many of these tools are designed to assist with the key stages of the process, including title and abstract screening, data synthesis, and critical appraisal. Some are designed to facilitate the entire process of review, including protocol development, reporting of the outcomes and help with fast project completion.

As time goes on, more functions are being integrated into such software tools. Technological advancement has allowed for more sophisticated and user-friendly features, including visual graphics for pattern recognition and linking multiple concepts. The idea is to digitalise the cumbersome parts of the process to increase efficiency, thus allowing researchers to focus their time and efforts on assessing the rigorousness and robustness of the research articles.

This article introduces commonly used systematic review tools that are relevant to food research and related disciplines, which can be used in a similar context to the process in healthcare disciplines.

These reviews are based on IFIS' internal research, thus are unbiased and not affiliated with the companies.

ross-sneddon-sWlDOWk0Jp8-unsplash-1-2

This online platform is a core component of the Cochrane toolkit, supporting parts of the systematic review process, including title/abstract and full-text screening, documentation, and reporting.

The Covidence platform enables collaboration of the entire systematic reviews team and is suitable for researchers and students at all levels of experience.

From a user perspective, the interface is intuitive, and the citation screening is directed step-by-step through a well-defined workflow. Imports and exports are straightforward, with easy export options to Excel and CVS.

Access is free for Cochrane authors (a single reviewer), and Cochrane provides a free trial to other researchers in healthcare. Universities can also subscribe on an institutional basis.

Rayyan is a free and open access web-based platform funded by the Qatar Foundation, a non-profit organisation supporting education and community development initiative . Rayyan is used to screen and code literature through a systematic review process.

Unlike Covidence, Rayyan does not follow a standard SR workflow and simply helps with citation screening. It is accessible through a mobile application with compatibility for offline screening. The web-based platform is known for its accessible user interface, with easy and clear export options.

Function comparison of 5 software tools to support the systematic review process

Eppi-reviewer.

EPPI-Reviewer is a web-based software programme developed by the Evidence for Policy and Practice Information and Co-ordinating Centre  (EPPI) at the UCL Institute for Education, London .

It provides comprehensive functionalities for coding and screening. Users can create different levels of coding in a code set tool for clustering, screening, and administration of documents. EPPI-Reviewer allows direct search and import from PubMed. The import of search results from other databases is feasible in different formats. It stores, references, identifies and removes duplicates automatically. EPPI-Reviewer allows full-text screening, text mining, meta-analysis and the export of data into different types of reports.

There is no limit for concurrent use of the software and the number of articles being reviewed. Cochrane reviewers can access EPPI reviews using their Cochrane subscription details.

EPPI-Centre has other tools for facilitating the systematic review process, including coding guidelines and data management tools.

CADIMA is a free, online, open access review management tool, developed to facilitate research synthesis and structure documentation of the outcomes.

The Julius Institute and the Collaboration for Environmental Evidence established the software programme to support and guide users through the entire systematic review process, including protocol development, literature searching, study selection, critical appraisal, and documentation of the outcomes. The flexibility in choosing the steps also makes CADIMA suitable for conducting systematic mapping and rapid reviews.

CADIMA was initially developed for research questions in agriculture and environment but it is not limited to these, and as such, can be used for managing review processes in other disciplines. It enables users to export files and work offline.

The software allows for statistical analysis of the collated data using the R statistical software. Unlike EPPI-Reviewer, CADIMA does not have a built-in search engine to allow for searching in literature databases like PubMed.

DistillerSR

DistillerSR is an online software maintained by the Canadian company, Evidence Partners which specialises in literature review automation. DistillerSR provides a collaborative platform for every stage of literature review management. The framework is flexible and can accommodate literature reviews of different sizes. It is configurable to different data curation procedures, workflows and reporting standards. The platform integrates necessary features for screening, quality assessment, data extraction and reporting. The software uses Artificial Learning (AL)-enabled technologies in priority screening. It is to cut the screening process short by reranking the most relevant references nearer to the top. It can also use AL, as a second reviewer, in quality control checks of screened studies by human reviewers. DistillerSR is used to manage systematic reviews in various medical disciplines, surveillance, pharmacovigilance and public health reviews including food and nutrition topics. The software does not support statistical analyses. It provides configurable forms in standard formats for data extraction.

DistillerSR allows direct search and import of references from PubMed. It provides an add on feature called LitConnect which can be set to automatically import newly published references from data providers to keep reviews up to date during their progress.

The systematic review Toolbox is a web-based catalogue of various tools, including software packages which can assist with single or multiple tasks within the evidence synthesis process. Researchers can run a quick search or tailor a more sophisticated search by choosing their approach, budget, discipline, and preferred support features, to find the right tools for their research.

If you enjoyed this blog post, you may also be interested in our recently published blog post addressing the difference between a systematic review and a systematic literature review.

BLOG CTA

  • FSTA - Food Science & Technology Abstracts
  • IFIS Collections
  • Resources Hub
  • Diversity Statement
  • Sustainability Commitment
  • Company news
  • Frequently Asked Questions
  • Privacy Policy
  • Terms of Use for IFIS Collections

Ground Floor, 115 Wharfedale Road,  Winnersh Triangle, Wokingham, Berkshire RG41 5RB

Get in touch with IFIS

© International Food Information Service (IFIS Publishing) operating as IFIS – All Rights Reserved     |     Charity Reg. No. 1068176     |     Limited Company No. 3507902     |     Designed by Blend

systematic literature review website

  • Help Center

GET STARTED

Rayyan

COLLABORATE ON YOUR REVIEWS WITH ANYONE, ANYWHERE, ANYTIME

Rayyan for students

Save precious time and maximize your productivity with a Rayyan membership. Receive training, priority support, and access features to complete your systematic reviews efficiently.

Rayyan for Librarians

Rayyan Teams+ makes your job easier. It includes VIP Support, AI-powered in-app help, and powerful tools to create, share and organize systematic reviews, review teams, searches, and full-texts.

Rayyan for Researchers

RESEARCHERS

Rayyan makes collaborative systematic reviews faster, easier, and more convenient. Training, VIP support, and access to new features maximize your productivity. Get started now!

Over 1 billion reference articles reviewed by research teams, and counting...

Intelligent, scalable and intuitive.

Rayyan understands language, learns from your decisions and helps you work quickly through even your largest systematic literature reviews.

WATCH A TUTORIAL NOW

Solutions for Organizations and Businesses

systematic literature review website

Rayyan Enterprise and Rayyan Teams+ make it faster, easier and more convenient for you to manage your research process across your organization.

  • Accelerate your research across your team or organization and save valuable researcher time.
  • Build and preserve institutional assets, including literature searches, systematic reviews, and full-text articles.
  • Onboard team members quickly with access to group trainings for beginners and experts.
  • Receive priority support to stay productive when questions arise.
  • SCHEDULE A DEMO
  • LEARN MORE ABOUT RAYYAN TEAMS+

RAYYAN SYSTEMATIC LITERATURE REVIEW OVERVIEW

systematic literature review website

LEARN ABOUT RAYYAN’S PICO HIGHLIGHTS AND FILTERS

systematic literature review website

Join now to learn why Rayyan is trusted by already more than 500,000 researchers

Individual plans, teams plans.

For early career researchers just getting started with research.

Free forever

  • 3 Active Reviews
  • Invite Unlimited Reviewers
  • Import Directly from Mendeley
  • Industry Leading De-Duplication
  • 5-Star Relevance Ranking
  • Advanced Filtration Facets
  • Mobile App Access
  • 100 Decisions on Mobile App
  • Standard Support
  • Revoke Reviewer
  • Online Training
  • PICO Highlights & Filters
  • PRISMA (Beta)
  • Auto-Resolver 
  • Multiple Teams & Management Roles
  • Monitor & Manage Users, Searches, Reviews, Full Texts
  • Onboarding and Regular Training

Professional

For researchers who want more tools for research acceleration.

Per month billed annually

  • Unlimited Active Reviews
  • Unlimited Decisions on Mobile App
  • Priority Support
  • Auto-Resolver

For currently enrolled students with valid student ID.

Per month billed annually

Billed monthly

For a team that wants professional licenses for all members.

Per-user, per month, billed annually

  • Single Team
  • High Priority Support

For teams that want support and advanced tools for members.

  • Multiple Teams
  • Management Roles

For organizations who want access to all of their members.

Annual Subscription

Contact Sales

  • Organizational Ownership
  • For an organization or a company
  • Access to all the premium features such as PICO Filters, Auto-Resolver, PRISMA and Mobile App
  • Store and Reuse Searches and Full Texts
  • A management console to view, organize and manage users, teams, review projects, searches and full texts
  • Highest tier of support – Support via email, chat and AI-powered in-app help
  • GDPR Compliant
  • Single Sign-On
  • API Integration
  • Training for Experts
  • Training Sessions Students Each Semester
  • More options for secure access control

ANNUAL ONLY

Per-user, billed monthly

Rayyan Subscription

membership starts with 2 users. You can select the number of additional members that you’d like to add to your membership.

Total amount:

Click Proceed to get started.

Great usability and functionality. Rayyan has saved me countless hours. I even received timely feedback from staff when I did not understand the capabilities of the system, and was pleasantly surprised with the time they dedicated to my problem. Thanks again!

This is a great piece of software. It has made the independent viewing process so much quicker. The whole thing is very intuitive.

Rayyan makes ordering articles and extracting data very easy. A great tool for undertaking literature and systematic reviews!

Excellent interface to do title and abstract screening. Also helps to keep a track on the the reasons for exclusion from the review. That too in a blinded manner.

Rayyan is a fantastic tool to save time and improve systematic reviews!!! It has changed my life as a researcher!!! thanks

Easy to use, friendly, has everything you need for cooperative work on the systematic review.

Rayyan makes life easy in every way when conducting a systematic review and it is easy to use.

Living systematic review software, optimized for clinical literature. Scroll

Autolit + synthesis:.

Nested Knowledge ® offers a comprehensive software platform for systematic literature review and meta-analysis. The software is composed of two parts which work in tandem. Search, screen, extract data, and complete critical appraisal with AutoLit ® . Visualize, analyze, publish and share insights with Synthesis.

MA Extraction

Qualitative

Quantitative

Search, Import, or Bibliomine.

Literature search.

Create updatable searches of PubMed, or import studies from a variety of common databases.

Add studies by mining from existing reviews, or add individual studies of interest. No matter how you get studies, we’ll set them up to be included in your living review.

If you add studies to AutoLit, we’ll trace the path of studies from Search to Synthesis.

Use AI to find relevant concepts.

Automatic PICO highlighting, or your own keywords, directs your eye to the key phrases from any abstract.

Inclusion Prediction AI can anticipate which studies are most relevant to your research question.

Dual Screening can help you quality-control your decisions, so only the studies that actually contain data relevant to you make it through.

If you screen out irrelevant references in AutoLit, we’ll automatically generate your PRISMA diagram in Synthesis.

Connect concepts across the literature.

You understand how key concepts in your field relate to each other – but those ideas are stuck in your head unless you lay them out for your readers.

By building a tagging hierarchy, you structure your ideas. By applying those tags to the studies in your review, you capture the evidence to support each concept.

We help out by enabling you to borrow from past hierarchies, create tags ‘on the fly’ as you read studies, and by connecting your tags to the quantitative data you’ll extract.

If you build and apply your hierarchy in AutoLit, we’ll also create interactive, qualitative visuals in Synthesis.

Continuous. Dichotomous. Categorical.

Meta-analytical data extraction.

Turn your tags into data elements to connect your qualitative and quantitative concepts. 

Identify which part of your hierarchy contains your interventions of interest.

Then, you’re all set to gather continuous, dichotomous and categorical metrics across multiple arms and time points from the text and tables in your studies of interest.

If you gather data in AutoLit, we’ll summarize and analyze your quantitative findings in Synthesis.

Publish, Share, Visualize with Synthesis:

Catch a ray from the qualitative sunburst..

systematic literature review website

Qualitative Synthesis

Tagging in AutoLit continuously and automatically updates Qualitative Synthesis.

Each segment of the sunburst diagram represents a concept you tagged, and immediately directs your readers to the underlying studies.

Try it!  Select one or more of the segments in the sunburst to filter the studies from our sample review on strokes that impact the brain stem to those that report on your concept of interest. Then, select a study from the list to view the abstract and gathered data.

Was this published? Yes, as a part of our  Stanford collaboration .

What are the odds? Drill into the Data.

Quantitative synthesis.

Gathering data in AutoLit continuously and automatically updates Quantitative Synthesis.

We slice the data three ways. First, we summarize your findings at the intervention and study level in Summary. Then, we let you create scatter plots of findings in Distribution. Finally, we compute odds ratios and build forest plots in our Network Meta-Analysis.

Was this published? Yes, as a part of our  Stanford collaboration .

Excel beyond words.

Draft in Manuscript Editor, and you’ll never need to update your data manually. Whenever you add data to your review, we add it automatically to your tables!

Rich text, point-and-click citation tools, auto-updating tables, and embeddable Synthesis visuals.

Was this published? Yes, as a part of our  Stanford collaboration .

Living Systematic Reviews

Dive into nested knowledge:.

First review is free • No credit card required

Buying for a team? Contact Sales:

systematic literature review website

Have a question?

Send us an email and we’ll get back to you as quickly as we can!

Covidence website will be inaccessible as we upgrading our platform on Monday 23rd August at 10am AEST, / 2am CEST/1am BST (Sunday, 15th August 8pm EDT/5pm PDT) 

The World's #1 Systematic Review Tool

Covidence

See your systematic reviews like never before

Faster reviews.

An average 35% reduction in time spent per review, saving an average of 71 hours per review.

Expert, online support

Easy to learn and use, with 24/7 support from product experts who are also seasoned reviewers!

Seamless collaboration

Enable the whole review team to collaborate from anywhere.

Suits all levels of experience and sectors

Suitable for reviewers in a variety of sectors including health, education, social science and many others.

Supporting the world's largest systematic review community

See how it works.

Step inside Covidence to see a more intuitive, streamlined way to manage systematic reviews.

Unlimited use for every organization

With no restrictions on reviews and users, Covidence gets out of the way so you can bring the best evidence to the world, more quickly.

Covidence is used by world-leading evidence organizations

Whether you’re an academic institution, a hospital or society, Covidence is working for organizations like yours right now.

See a list of organizations already using Covidence →

Covidence Case Study 1 - Education

How Covidence has enabled living guidelines for Australians impacted by stroke

Clinical guidelines took 7 years to update prior to moving to a living evidence approach. Learn how Covidence streamlined workflows and created real time savings for the guidelines team.

University of Ottawa Drives Systematic Review Excellence Across Many Academic Disciplines

University of Ottawa

Covidence case study medical

Top Ranked U.S. Teaching Hospital Delivers Effective Systematic Review Management

Top Ranked U.S. Teaching Hospital

See more Case Studies

Logo Wiell Cornell Medicine

Better systematic review management

Head office, working for an institution or organisation.

Find out why over 350 of the world’s leading institutions are seeing a surge in publications since using Covidence!

Request a consultation with one of our team members and start empowering your researchers:

By using our site you consent to our use of cookies to measure and improve our site’s performance. Please see our Privacy Policy for more information. 

How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses

Affiliations.

  • 1 Behavioural Science Centre, Stirling Management School, University of Stirling, Stirling FK9 4LA, United Kingdom; email: [email protected].
  • 2 Department of Psychological and Behavioural Science, London School of Economics and Political Science, London WC2A 2AE, United Kingdom.
  • 3 Department of Statistics, Northwestern University, Evanston, Illinois 60208, USA; email: [email protected].
  • PMID: 30089228
  • DOI: 10.1146/annurev-psych-010418-102803

Systematic reviews are characterized by a methodical and replicable methodology and presentation. They involve a comprehensive search to locate all relevant published and unpublished work on a subject; a systematic integration of search results; and a critique of the extent, nature, and quality of evidence in relation to a particular research question. The best reviews synthesize studies to draw broad theoretical conclusions about what a literature means, linking theory to evidence and evidence to theory. This guide describes how to plan, conduct, organize, and present a systematic review of quantitative (meta-analysis) or qualitative (narrative review, meta-synthesis) information. We outline core standards and principles and describe commonly encountered problems. Although this guide targets psychological scientists, its high level of abstraction makes it potentially relevant to any subject area or discipline. We argue that systematic reviews are a key methodology for clarifying whether and how research findings replicate and for explaining possible inconsistencies, and we call for researchers to conduct systematic reviews to help elucidate whether there is a replication crisis.

Keywords: evidence; guide; meta-analysis; meta-synthesis; narrative; systematic review; theory.

  • Guidelines as Topic
  • Meta-Analysis as Topic*
  • Publication Bias
  • Review Literature as Topic
  • Systematic Reviews as Topic*
  • Oracle Mode
  • Oracle Mode – Advanced
  • Exploration Mode
  • Simulation Mode
  • Simulation Infrastructure

Join the movement towards fast, open, and transparent systematic reviews

ASReview LAB v1.5 is out!

YouTube

By loading the video, you agree to YouTube's privacy policy. Learn more

Always unblock YouTube

ASReview uses state-of-the-art active learning techniques to solve one of the most interesting challenges in systematically screening large amounts of text : there’s not enough time to read everything!  

The project has grown into a vivid worldwide community of researchers, users, and developers. ASReview is coordinated at Utrecht University and is part of the official AI-labs at the university.

systematic literature review website

Free, Open and Transparent

The software is installed on your device locally. This ensures that nobody else has access to your data, except when you share it with others. Nice, isn’t it?

  • Free and open source
  • Local or server installation
  • Full control over your data
  • Follows the Reproducibility and Data Storage Checklist for AI-Aided Systematic Reviews

In 2 minutes up and running

With the smart project setup features, you can start a new project in minutes. Ready, set, start screening!

  • Create as many projects as you want
  • Choose your own or an existing dataset
  • Select prior knowledge
  • Select your favorite active learning algorithm

systematic literature review website

Three modi to choose from

ASReview LAB can be used for:

  • Screening with the Oracle Mode , including advanced options
  • Teaching using the Exploration Mode
  • Validating algorithms using the Simulation Mode

We also offer an open-source research infrastructure to run large-scale simulation studies for validating newly developed AI algorithms.

Follow the development

Open-source means:

  • All annotated source code is available 
  • You can see the developers at work in open Pull Requests
  • Open Pull Request show in what direction the project is developing
  • Anyone can contribute!

Give a GitHub repo a star if you like our work.

systematic literature review website

Join the community

A community-driven project means:

  • The project is a joined endeavor  
  • Your contribution matters!

Join the movement towards transparent AI-aided reviewing

Beginner -> User -> Developer -> Maintainer

Organizations

Github stars

Join the ASReview Development Fund

Many users donate their time to continue the development of the different software tools that are part of the ASReview universe. Also, donations and research grants make innovations possible!

systematic literature review website

Navigating the Maze of Models in ASReview

Starting a systematic review can feel like navigating through a maze, with countless articles and endless…

systematic literature review website

ASReview LAB Class 101

ASReview LAB Class 101 Welcome to ASReview LAB class 101, an introduction to the most important…

systematic literature review website

Introducing the Noisy Label Filter (NLF) procedure in systematic reviews

The ASReview team developed a procedure to overcome replication issues in creating a dataset for simulation…

systematic literature review website

Seven ways to integrate ASReview in your systematic review workflow

Seven ways to integrate ASReview in your systematic review workflow Systematic reviewing using software implementing Active…

systematic literature review website

Active Learning Explained

Active Learning Explained The rapidly evolving field of artificial intelligence (AI) has allowed the development of…

The Zen of Elas

the Zen of Elas

The Zen of Elas Elas is the Mascotte of ASReview and your Electronic Learning Assistant who…

systematic literature review website

Five ways to get involved in ASReview

Five ways to get involved in ASReview ASReview LAB is open and free (Libre) software, maintained…

systematic literature review website

Connecting RIS import to export functionalities

What’s new in v0.19? Connecting RIS import to export functionalities Download ASReview LAB 0.19Update to ASReview…

systematic literature review website

Meet the new ASReview Maintainer: Yongchao Ma

Meet Front-End Developer and ASReview Maintainer Yongchao Ma As a user of ASReview, you are probably…

systematic literature review website

UPDATED: ASReview Hackathon for Follow the Money

This event has passed The winners of the hackathon were: Data pre-processing: Teamwork by: Raymon van…

What’s new in release 0.18?

More models more options, available now! Version 0.18 slowly opens ways to the soon to be…

systematic literature review website

Simulation Mode Class 101

Simulation Mode Class 101 Have you ever done a systematic review manually, but wondered how much…

Systematic Reviews and Meta Analysis

  • Getting Started
  • Guides and Standards
  • Review Protocols
  • Databases and Sources
  • Randomized Controlled Trials
  • Controlled Clinical Trials
  • Observational Designs
  • Tests of Diagnostic Accuracy
  • Software and Tools
  • Where do I get all those articles?
  • Collaborations
  • EPI 233/528
  • Countway Mediated Search
  • Risk of Bias (RoB)

Systematic review Q & A

What is a systematic review.

A systematic review is guided filtering and synthesis of all available evidence addressing a specific, focused research question, generally about a specific intervention or exposure. The use of standardized, systematic methods and pre-selected eligibility criteria reduce the risk of bias in identifying, selecting and analyzing relevant studies. A well-designed systematic review includes clear objectives, pre-selected criteria for identifying eligible studies, an explicit methodology, a thorough and reproducible search of the literature, an assessment of the validity or risk of bias of each included study, and a systematic synthesis, analysis and presentation of the findings of the included studies. A systematic review may include a meta-analysis.

For details about carrying out systematic reviews, see the Guides and Standards section of this guide.

Is my research topic appropriate for systematic review methods?

A systematic review is best deployed to test a specific hypothesis about a healthcare or public health intervention or exposure. By focusing on a single intervention or a few specific interventions for a particular condition, the investigator can ensure a manageable results set. Moreover, examining a single or small set of related interventions, exposures, or outcomes, will simplify the assessment of studies and the synthesis of the findings.

Systematic reviews are poor tools for hypothesis generation: for instance, to determine what interventions have been used to increase the awareness and acceptability of a vaccine or to investigate the ways that predictive analytics have been used in health care management. In the first case, we don't know what interventions to search for and so have to screen all the articles about awareness and acceptability. In the second, there is no agreed on set of methods that make up predictive analytics, and health care management is far too broad. The search will necessarily be incomplete, vague and very large all at the same time. In most cases, reviews without clearly and exactly specified populations, interventions, exposures, and outcomes will produce results sets that quickly outstrip the resources of a small team and offer no consistent way to assess and synthesize findings from the studies that are identified.

If not a systematic review, then what?

You might consider performing a scoping review . This framework allows iterative searching over a reduced number of data sources and no requirement to assess individual studies for risk of bias. The framework includes built-in mechanisms to adjust the analysis as the work progresses and more is learned about the topic. A scoping review won't help you limit the number of records you'll need to screen (broad questions lead to large results sets) but may give you means of dealing with a large set of results.

This tool can help you decide what kind of review is right for your question.

Can my student complete a systematic review during her summer project?

Probably not. Systematic reviews are a lot of work. Including creating the protocol, building and running a quality search, collecting all the papers, evaluating the studies that meet the inclusion criteria and extracting and analyzing the summary data, a well done review can require dozens to hundreds of hours of work that can span several months. Moreover, a systematic review requires subject expertise, statistical support and a librarian to help design and run the search. Be aware that librarians sometimes have queues for their search time. It may take several weeks to complete and run a search. Moreover, all guidelines for carrying out systematic reviews recommend that at least two subject experts screen the studies identified in the search. The first round of screening can consume 1 hour per screener for every 100-200 records. A systematic review is a labor-intensive team effort.

How can I know if my topic has been been reviewed already?

Before starting out on a systematic review, check to see if someone has done it already. In PubMed you can use the systematic review subset to limit to a broad group of papers that is enriched for systematic reviews. You can invoke the subset by selecting if from the Article Types filters to the left of your PubMed results, or you can append AND systematic[sb] to your search. For example:

"neoadjuvant chemotherapy" AND systematic[sb]

The systematic review subset is very noisy, however. To quickly focus on systematic reviews (knowing that you may be missing some), simply search for the word systematic in the title:

"neoadjuvant chemotherapy" AND systematic[ti]

Any PRISMA-compliant systematic review will be captured by this method since including the words "systematic review" in the title is a requirement of the PRISMA checklist. Cochrane systematic reviews do not include 'systematic' in the title, however. It's worth checking the Cochrane Database of Systematic Reviews independently.

You can also search for protocols that will indicate that another group has set out on a similar project. Many investigators will register their protocols in PROSPERO , a registry of review protocols. Other published protocols as well as Cochrane Review protocols appear in the Cochrane Methodology Register, a part of the Cochrane Library .

  • Next: Guides and Standards >>
  • Last Updated: Feb 26, 2024 3:17 PM
  • URL: https://guides.library.harvard.edu/meta-analysis

Newsletter Sign Up

Archie login.

  • Campbell Website Campbell Library -->

Welcome. What are you looking for?

Hide Main content block

Home Page News Section

The Campbell Collaboration is an international social science research network that produces high quality, open and policy-relevant evidence syntheses, plain language summaries and policy briefs.

Two children

New Campbell systematic review supports the criticism that school-based law enforcement criminalises students and schools. Plain language summary

Woman and bookshelf

New evidence and gap map is the first step towards identifying which digital interventions are effective in reducing social isolation and loneliness. Plain language summary

meeting in an office

Systematic review of 20 studies over 40 years finds chief executives' bonuses positively predict next year’s return on assets, but stock options do not. Plain language summary

Center Text

Campbell coordinating groups, resources for researchers, research evidence by topic, campbell systematic reviews journal.

Better evidence for a better world

What is a systematic review? A systematic review is an academic research paper that uses a method called ‘evidence synthesis’, which can include meta-analysis, to look for answers to a pre-defined question. The purpose of a systematic review is to sum up the best available research on that specific question. Reviews can also show when there has not been enough research carried out, and where more research is needed. A Campbell evidence and gap map (EGM) is an interactive visual presentation of the available rigorous research evidence for a particular policy domain. An EGM consolidates what we know and do not know about ‘what works’. It shows areas with strong, weak or non-existent research on the effect of interventions or initiatives.

  Donate to Campbell

Useful links

  • Evidence portals
  • Privacy policy
  • Terms of use

Lastest publications

  • New plain language summaries
  • About evidence and gap maps

Follow @campbellreviews

In order to provide you with the best online experience this website uses cookies.

We use cookies to improve our website. By continuing to use this website, you are giving consent to cookies being used by Google Analytics, and those social media channels you expressly select by clicking on buttons (links). Cookie policy . I accept cookies from this site.

GDPR compliance/Cookies

  • What are cookies?
  • How do we use cookies?
  • Cookies used on our site
  • How to delete cookies or control them

[divider type="stripes" margin="20px 0 20px 0" ]

At the top of our website we have displayed a message to warn you that our website makes use of cookies and that one has already been set. By displaying this message we hope that we are providing you with the information you require about our use of cookies, and presenting you with the option to consent to their use. This message will be displayed until such time as you agree to our site using cookies by clicking on the continue button. 

1.What is a cookie?

A cookie is a small amount of data, often including a unique identifier, sent to the browser of your computer or mobile phone (referred to here as a "device") from a website's computer. It is stored on your device's hard drive. Each website can send its own cookie to your browser if your browser's preferences allow it. To protect your privacy, your browser only permits a website to access the cookies it has already sent to you, and not the cookies sent to you by other websites. Many websites do this whenever a user visits them to track online traffic flows.

On the Channel Digital website, our cookies record information about your online preferences so we can tailor the site to your interests. You can set your device’s preferences to accept all cookies, notify you when a cookie is issued, or not receive cookies at all. Selecting the last option means you will not receive certain personalised features, which may result in you being unable to take full advantage of all the website's features. Each browser is different, so please check the "Help" menu of your browser to learn how to change your cookie preferences.

During the course of any visit to our website, every page you see, along with a cookie, is downloaded to your device. Many websites do this because cookies enable website publishers to do useful things like find out whether your device (and probably you) has visited the website before. On a repeat visit this is done by the website’s computer checking to see, and finding, the cookie left there on the last visit. 

2.How do we use cookies?

Information supplied by cookies can help us analyse the profile of our visitors, which helps us provide you with a better user experience. For example, if on a previous visit you went to our marketing pages, we might find this out from your cookie and highlight marketing information on subsequent visits.

Third party cookies on our pages

Please note that during your visits to our website you may notice some cookies which are unrelated to us. When you visit a page with content embedded from, for example, Twitter or YouTube, you may be presented with cookies from these websites. We do not control the dissemination of these cookies. You should check the third party websites for more information about these. 

3.Cookies used on our site

We only use cookies to help us continuously improve our website and maintain a nice browsing experience for our visitors. Here is a list of cookies used on this website:

  • Google Analytics - we use cookies to compile visitor statistics such as how many people have visited our website, what type of technology they are using (e.g. Mac or Windows which helps to identify when our site isn’t working as it should for particular technologies), how long they spend on the site, what page they look at etc.
  • Facebook, Twitter, LinkedIn, Google+  - social media share buttons that enable you to share our content
  • Session cookie - this is a standard cookie just to remember user preferences (like font size and saves you logging in every time you visit)

4.How to delete cookies or control them

This site will not use cookies to collect personally identifiable information about you. However, if you wish to restrict or block cookies set by this or any other website, you can do this through your browser settings. The Help function within your browser should tell you how.

Alternatively, you may wish to visit www.aboutcookies.org which contains comprehensive information on how to do this for a wide variety of browsers. You will also find details on how to clear cookies from your computer as well as more general information about cookies. For information on how to do this on your mobile phone’s browser, you will need to refer to your browser support information.

  • UNC Libraries
  • HSL Academic Process
  • Systematic Reviews

Systematic Reviews: Home

Created by health science librarians.

HSL Logo

  • Systematic review resources

What is a Systematic Review?

A simplified process map, how can the library help, publications by hsl librarians, systematic reviews in non-health disciplines, resources for performing systematic reviews.

  • Step 1: Complete Pre-Review Tasks
  • Step 2: Develop a Protocol
  • Step 3: Conduct Literature Searches
  • Step 4: Manage Citations
  • Step 5: Screen Citations
  • Step 6: Assess Quality of Included Studies
  • Step 7: Extract Data from Included Studies
  • Step 8: Write the Review

  Check our FAQ's

   Email us

   Call (919) 962-0800

   Make an appointment with a librarian

  Request a systematic or scoping review consultation

Sign up for a systematic review workshop or watch a recording

A systematic review is a literature review that gathers all of the available evidence matching pre-specified eligibility criteria to answer a specific research question. It uses explicit, systematic methods, documented in a protocol, to minimize bias , provide reliable findings , and inform decision-making.  ¹  

There are many types of literature reviews.

Before beginning a systematic review, consider whether it is the best type of review for your question, goals, and resources. The table below compares a few different types of reviews to help you decide which is best for you. 

  • Scoping Review Guide For more information about scoping reviews, refer to the UNC HSL Scoping Review Guide.

Systematic Reviews: A Simplified, Step-by-Step Process Map

  • UNC HSL's Simplified, Step-by-Step Process Map A PDF file of the HSL's Systematic Review Process Map.
  • Text-Only: UNC HSL's Systematic Reviews - A Simplified, Step-by-Step Process A text-only PDF file of HSL's Systematic Review Process Map.

Creative commons license applied to systematic reviews image requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.

The average systematic review takes 1,168 hours to complete. ¹   A librarian can help you speed up the process.

Systematic reviews follow established guidelines and best practices to produce high-quality research. Librarian involvement in systematic reviews is based on two levels. In Tier 1, your research team can consult with the librarian as needed. The librarian will answer questions and give you recommendations for tools to use. In Tier 2, the librarian will be an active member of your research team and co-author on your review. Roles and expectations of librarians vary based on the level of involvement desired. Examples of these differences are outlined in the table below.

  • Request a systematic or scoping review consultation

The following are systematic and scoping reviews co-authored by HSL librarians.

Only the most recent 15 results are listed. Click the website link at the bottom of the list to see all reviews co-authored by HSL librarians in PubMed

Researchers conduct systematic reviews in a variety of disciplines.  If your focus is on a topic outside of the health sciences, you may want to also consult the resources below to learn how systematic reviews may vary in your field.  You can also contact a librarian for your discipline with questions.

  • EPPI-Centre methods for conducting systematic reviews The EPPI-Centre develops methods and tools for conducting systematic reviews, including reviews for education, public and social policy.

Cover Art

Environmental Topics

  • Collaboration for Environmental Evidence (CEE) CEE seeks to promote and deliver evidence syntheses on issues of greatest concern to environmental policy and practice as a public service

Social Sciences

systematic literature review website

  • Siddaway AP, Wood AM, Hedges LV. How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annu Rev Psychol. 2019 Jan 4;70:747-770. doi: 10.1146/annurev-psych-010418-102803. A resource for psychology systematic reviews, which also covers qualitative meta-syntheses or meta-ethnographies
  • The Campbell Collaboration

Social Work

Cover Art

Software engineering

  • Guidelines for Performing Systematic Literature Reviews in Software Engineering The objective of this report is to propose comprehensive guidelines for systematic literature reviews appropriate for software engineering researchers, including PhD students.

Cover Art

Sport, Exercise, & Nutrition

Cover Art

  • Application of systematic review methodology to the field of nutrition by Tufts Evidence-based Practice Center Publication Date: 2009
  • Systematic Reviews and Meta-Analysis — Open & Free (Open Learning Initiative) The course follows guidelines and standards developed by the Campbell Collaboration, based on empirical evidence about how to produce the most comprehensive and accurate reviews of research

Cover Art

  • Systematic Reviews by David Gough, Sandy Oliver & James Thomas Publication Date: 2020

Cover Art

Updating reviews

  • Updating systematic reviews by University of Ottawa Evidence-based Practice Center Publication Date: 2007

Looking for our previous Systematic Review guide?

Our legacy guide was used June 2020 to August 2022

  • Systematic Review Legacy Guide
  • Next: Step 1: Complete Pre-Review Tasks >>
  • Last Updated: May 10, 2024 5:39 PM
  • URL: https://guides.lib.unc.edu/systematic-reviews

Search & Find

  • E-Research by Discipline
  • More Search & Find

Places & Spaces

  • Places to Study
  • Book a Study Room
  • Printers, Scanners, & Computers
  • More Places & Spaces
  • Borrowing & Circulation
  • Request a Title for Purchase
  • Schedule Instruction Session
  • More Services

Support & Guides

  • Course Reserves
  • Research Guides
  • Citing & Writing
  • More Support & Guides
  • Mission Statement
  • Diversity Statement
  • Staff Directory
  • Job Opportunities
  • Give to the Libraries
  • News & Exhibits
  • Reckoning Initiative
  • More About Us

UNC University Libraries Logo

  • Search This Site
  • Privacy Policy
  • Accessibility
  • Give Us Your Feedback
  • 208 Raleigh Street CB #3916
  • Chapel Hill, NC 27515-8890
  • 919-962-1053

Jump to navigation

  • Bahasa Malaysia

Home

What are systematic reviews?

Watch this video from   Cochrane Consumers and Communication to learn what systematic reviews are, how researchers prepare them, and why they’re an important part of making informed decisions about health - for everyone. 

Cochrane evidence, including our systematic reviews, provides a powerful tool to enhance your healthcare knowledge and decision making. This video from Cochrane Sweden explains a bit about how we create health evidence and what Cochrane does. 

  • Search our Plain Language Summaries of health evidence
  • Learn more about Cochrane and our work

Analyze research papers at superhuman speed

Search for research papers, get one sentence abstract summaries, select relevant papers and search for more like them, extract details from papers into an organized table.

systematic literature review website

Find themes and concepts across many papers

Don't just take our word for it.

systematic literature review website

Tons of features to speed up your research

Upload your own pdfs, orient with a quick summary, view sources for every answer, ask questions to papers, research for the machine intelligence age, pick a plan that's right for you, get in touch, enterprise and institutions, custom pricing, common questions. great answers., how do researchers use elicit.

Over 2 million researchers have used Elicit. Researchers commonly use Elicit to:

  • Speed up literature review
  • Find papers they couldn’t find elsewhere
  • Automate systematic reviews and meta-analyses
  • Learn about a new domain

Elicit tends to work best for empirical domains that involve experiments and concrete results. This type of research is common in biomedicine and machine learning.

What is Elicit not a good fit for?

Elicit does not currently answer questions or surface information that is not written about in an academic paper. It tends to work less well for identifying facts (e.g. “How many cars were sold in Malaysia last year?”) and theoretical or non-empirical domains.

What types of data can Elicit search over?

Elicit searches across 125 million academic papers from the Semantic Scholar corpus, which covers all academic disciplines. When you extract data from papers in Elicit, Elicit will use the full text if available or the abstract if not.

How accurate are the answers in Elicit?

A good rule of thumb is to assume that around 90% of the information you see in Elicit is accurate. While we do our best to increase accuracy without skyrocketing costs, it’s very important for you to check the work in Elicit closely. We try to make this easier for you by identifying all of the sources for information generated with language models.

What is Elicit Plus?

Elicit Plus is Elicit's subscription offering, which comes with a set of features, as well as monthly credits. On Elicit Plus, you may use up to 12,000 credits a month. Unused monthly credits do not carry forward into the next month. Plus subscriptions auto-renew every month.

What are credits?

Elicit uses a credit system to pay for the costs of running our app. When you run workflows and add columns to tables it will cost you credits. When you sign up you get 5,000 credits to use. Once those run out, you'll need to subscribe to Elicit Plus to get more. Credits are non-transferable.

How can you get in contact with the team?

Please email us at [email protected] or post in our Slack community if you have feedback or general comments! We log and incorporate all user comments. If you have a problem, please email [email protected] and we will try to help you as soon as possible.

What happens to papers uploaded to Elicit?

When you upload papers to analyze in Elicit, those papers will remain private to you and will not be shared with anyone else.

How accurate is Elicit?

Training our models on specific tasks, searching over academic papers, making it easy to double-check answers, save time, think more. try elicit for free..

systematic literature review website

 Bibliometric-Systematic Literature Review (B-SLR) Method

The Bibliometric-Systematic Literature Review (B-SLR) is a method for designing systematic literature reviews grounded on the findings of bibliometric analyses. The B-SLR method is anchored upon three core tenets: transparency in the research process, reproducibility of the findings, and the potential for making a novel scholarly contribution.

Presenting the B-SLR Method

The Bibliometric-Systematic Literature Review (B-SLR) is a novel toolbox consisting of a 10-step process for conducting rigorous literature reviews in the management field.

Via the B-SLR method, researchers could receive guidance on the critical choices, possible challenges, and best practices at every phase of the review procedure, from crafting the idea to refining the final document.

Why use the B-SLR method?

The exponential growth of academic literature presents challenges for scholars seeking to keep up-to-date with the latest developments. The Bibliometric-Systematic Literature Review (B-SLR) method provides a solution, combining bibliometric techniques with systematic literature review practices. It strikes a balance between breadth and depth, accommodating the multidisciplinary nature of contemporary research. Based on VOSviewer software, the B-SLR method is a versatile toolkit crafted to meet various research aims, from comprehensive reviews to formulating theories, plotting future directions in various fields, bridging knowledge gaps, or integrating findings from different disciplines. 

T he B-SLR method is grounded in the core principles of critical analysis, timeliness, broad coverage, rigour, coherence, and contributions to knowledge advancement.

Resources available for the B-SLR m ethod

Please find below additional resources available for the B-SLR m e thod.

Resources for Authors

Publications adopting the B-SLR method

Youtube Channel

YouTube

  • Open access
  • Published: 17 August 2023

Data visualisation in scoping reviews and evidence maps on health topics: a cross-sectional analysis

  • Emily South   ORCID: orcid.org/0000-0003-2187-4762 1 &
  • Mark Rodgers 1  

Systematic Reviews volume  12 , Article number:  142 ( 2023 ) Cite this article

3614 Accesses

13 Altmetric

Metrics details

Scoping reviews and evidence maps are forms of evidence synthesis that aim to map the available literature on a topic and are well-suited to visual presentation of results. A range of data visualisation methods and interactive data visualisation tools exist that may make scoping reviews more useful to knowledge users. The aim of this study was to explore the use of data visualisation in a sample of recent scoping reviews and evidence maps on health topics, with a particular focus on interactive data visualisation.

Ovid MEDLINE ALL was searched for recent scoping reviews and evidence maps (June 2020-May 2021), and a sample of 300 papers that met basic selection criteria was taken. Data were extracted on the aim of each review and the use of data visualisation, including types of data visualisation used, variables presented and the use of interactivity. Descriptive data analysis was undertaken of the 238 reviews that aimed to map evidence.

Of the 238 scoping reviews or evidence maps in our analysis, around one-third (37.8%) included some form of data visualisation. Thirty-five different types of data visualisation were used across this sample, although most data visualisations identified were simple bar charts (standard, stacked or multi-set), pie charts or cross-tabulations (60.8%). Most data visualisations presented a single variable (64.4%) or two variables (26.1%). Almost a third of the reviews that used data visualisation did not use any colour (28.9%). Only two reviews presented interactive data visualisation, and few reported the software used to create visualisations.

Conclusions

Data visualisation is currently underused by scoping review authors. In particular, there is potential for much greater use of more innovative forms of data visualisation and interactive data visualisation. Where more innovative data visualisation is used, scoping reviews have made use of a wide range of different methods. Increased use of these more engaging visualisations may make scoping reviews more useful for a range of stakeholders.

Peer Review reports

Scoping reviews are “a type of evidence synthesis that aims to systematically identify and map the breadth of evidence available on a particular topic, field, concept, or issue” ([ 1 ], p. 950). While they include some of the same steps as a systematic review, such as systematic searches and the use of predetermined eligibility criteria, scoping reviews often address broader research questions and do not typically involve the quality appraisal of studies or synthesis of data [ 2 ]. Reasons for conducting a scoping review include the following: to map types of evidence available, to explore research design and conduct, to clarify concepts or definitions and to map characteristics or factors related to a concept [ 3 ]. Scoping reviews can also be undertaken to inform a future systematic review (e.g. to assure authors there will be adequate studies) or to identify knowledge gaps [ 3 ]. Other evidence synthesis approaches with similar aims have been described as evidence maps, mapping reviews or systematic maps [ 4 ]. While this terminology is used inconsistently, evidence maps can be used to identify evidence gaps and present them in a user-friendly (and often visual) way [ 5 ].

Scoping reviews are often targeted to an audience of healthcare professionals or policy-makers [ 6 ], suggesting that it is important to present results in a user-friendly and informative way. Until recently, there was little guidance on how to present the findings of scoping reviews. In recent literature, there has been some discussion of the importance of clearly presenting data for the intended audience of a scoping review, with creative and innovative use of visual methods if appropriate [ 7 , 8 , 9 ]. Lockwood et al. suggest that innovative visual presentation should be considered over dense sections of text or long tables in many cases [ 8 ]. Khalil et al. suggest that inspiration could be drawn from the field of data visualisation [ 7 ]. JBI guidance on scoping reviews recommends that reviewers carefully consider the best format for presenting data at the protocol development stage and provides a number of examples of possible methods [ 10 ].

Interactive resources are another option for presentation in scoping reviews [ 9 ]. Researchers without the relevant programming skills can now use several online platforms (such as Tableau [ 11 ] and Flourish [ 12 ]) to create interactive data visualisations. The benefits of using interactive visualisation in research include the ability to easily present more than two variables [ 13 ] and increased engagement of users [ 14 ]. Unlike static graphs, interactive visualisations can allow users to view hierarchical data at different levels, exploring both the “big picture” and looking in more detail ([ 15 ], p. 291). Interactive visualizations are often targeted at practitioners and decision-makers [ 13 ], and there is some evidence from qualitative research that they are valued by policy-makers [ 16 , 17 , 18 ].

Given their focus on mapping evidence, we believe that scoping reviews are particularly well-suited to visually presenting data and the use of interactive data visualisation tools. However, it is unknown how many recent scoping reviews visually map data or which types of data visualisation are used. The aim of this study was to explore the use of data visualisation methods in a large sample of recent scoping reviews and evidence maps on health topics. In particular, we were interested in the extent to which these forms of synthesis use any form of interactive data visualisation.

This study was a cross-sectional analysis of studies labelled as scoping reviews or evidence maps (or synonyms of these terms) in the title or abstract.

The search strategy was developed with help from an information specialist. Ovid MEDLINE® ALL was searched in June 2021 for studies added to the database in the previous 12 months. The search was limited to English language studies only.

The search strategy was as follows:

Ovid MEDLINE(R) ALL

(scoping review or evidence map or systematic map or mapping review or scoping study or scoping project or scoping exercise or literature mapping or evidence mapping or systematic mapping or literature scoping or evidence gap map).ab,ti.

limit 1 to english language

(202006* or 202007* or 202008* or 202009* or 202010* or 202011* or 202012* or 202101* or 202102* or 202103* or 202104* or 202105*).dt.

The search returned 3686 records. Records were de-duplicated in EndNote 20 software, leaving 3627 unique records.

A sample of these reviews was taken by screening the search results against basic selection criteria (Table 1 ). These criteria were piloted and refined after discussion between the two researchers. A single researcher (E.S.) screened the records in EPPI-Reviewer Web software using the machine-learning priority screening function. Where a second opinion was needed, decisions were checked by a second researcher (M.R.).

Our initial plan for sampling, informed by pilot searching, was to screen and data extract records in batches of 50 included reviews at a time. We planned to stop screening when a batch of 50 reviews had been extracted that included no new types of data visualisation or after screening time had reached 2 days. However, once data extraction was underway, we found the sample to be richer in terms of data visualisation than anticipated. After the inclusion of 300 reviews, we took the decision to end screening in order to ensure the study was manageable.

Data extraction

A data extraction form was developed in EPPI-Reviewer Web, piloted on 50 reviews and refined. Data were extracted by one researcher (E. S. or M. R.), with a second researcher (M. R. or E. S.) providing a second opinion when needed. The data items extracted were as follows: type of review (term used by authors), aim of review (mapping evidence vs. answering specific question vs. borderline), number of visualisations (if any), types of data visualisation used, variables/domains presented by each visualisation type, interactivity, use of colour and any software requirements.

When categorising review aims, we considered “mapping evidence” to incorporate all of the six purposes for conducting a scoping review proposed by Munn et al. [ 3 ]. Reviews were categorised as “answering a specific question” if they aimed to synthesise study findings to answer a particular question, for example on effectiveness of an intervention. We were inclusive with our definition of “mapping evidence” and included reviews with mixed aims in this category. However, some reviews were difficult to categorise (for example where aims were unclear or the stated aims did not match the actual focus of the paper) and were considered to be “borderline”. It became clear that a proportion of identified records that described themselves as “scoping” or “mapping” reviews were in fact pseudo-systematic reviews that failed to undertake key systematic review processes. Such reviews attempted to integrate the findings of included studies rather than map the evidence, and so reviews categorised as “answering a specific question” were excluded from the main analysis. Data visualisation methods for meta-analyses have been explored previously [ 19 ]. Figure  1 shows the flow of records from search results to final analysis sample.

figure 1

Flow diagram of the sampling process

Data visualisation was defined as any graph or diagram that presented results data, including tables with a visual mapping element, such as cross-tabulations and heat maps. However, tables which displayed data at a study level (e.g. tables summarising key characteristics of each included study) were not included, even if they used symbols, shading or colour. Flow diagrams showing the study selection process were also excluded. Data visualisations in appendices or supplementary information were included, as well as any in publicly available dissemination products (e.g. visualisations hosted online) if mentioned in papers.

The typology used to categorise data visualisation methods was based on an existing online catalogue [ 20 ]. Specific types of data visualisation were categorised in five broad categories: graphs, diagrams, tables, maps/geographical and other. If a data visualisation appeared in our sample that did not feature in the original catalogue, we checked a second online catalogue [ 21 ] for an appropriate term, followed by wider Internet searches. These additional visualisation methods were added to the appropriate section of the typology. The final typology can be found in Additional file 1 .

We conducted descriptive data analysis in Microsoft Excel 2019 and present frequencies and percentages. Where appropriate, data are presented using graphs or other data visualisations created using Flourish. We also link to interactive versions of some of these visualisations.

Almost all of the 300 reviews in the total sample were labelled by review authors as “scoping reviews” ( n  = 293, 97.7%). There were also four “mapping reviews”, one “scoping study”, one “evidence mapping” and one that was described as a “scoping review and evidence map”. Included reviews were all published in 2020 or 2021, with the exception of one review published in 2018. Just over one-third of these reviews ( n  = 105, 35.0%) included some form of data visualisation. However, we excluded 62 reviews that did not focus on mapping evidence from the following analysis (see “ Methods ” section). Of the 238 remaining reviews (that either clearly aimed to map evidence or were judged to be “borderline”), 90 reviews (37.8%) included at least one data visualisation. The references for these reviews can be found in Additional file 2 .

Number of visualisations

Thirty-six (40.0%) of these 90 reviews included just one example of data visualisation (Fig.  2 ). Less than a third ( n  = 28, 31.1%) included three or more visualisations. The greatest number of data visualisations in one review was 17 (all bar or pie charts). In total, 222 individual data visualisations were identified across the sample of 238 reviews.

figure 2

Number of data visualisations per review

Categories of data visualisation

Graphs were the most frequently used category of data visualisation in the sample. Over half of the reviews with data visualisation included at least one graph ( n  = 59, 65.6%). The least frequently used category was maps, with 15.6% ( n  = 14) of these reviews including a map.

Of the total number of 222 individual data visualisations, 102 were graphs (45.9%), 34 were tables (15.3%), 23 were diagrams (10.4%), 15 were maps (6.8%) and 48 were classified as “other” in the typology (21.6%).

Types of data visualisation

All of the types of data visualisation identified in our sample are reported in Table 2 . In total, 35 different types were used across the sample of reviews.

The most frequently used data visualisation type was a bar chart. Of 222 total data visualisations, 78 (35.1%) were a variation on a bar chart (either standard bar chart, stacked bar chart or multi-set bar chart). There were also 33 pie charts (14.9% of data visualisations) and 24 cross-tabulations (10.8% of data visualisations). In total, these five types of data visualisation accounted for 60.8% ( n  = 135) of all data visualisations. Figure  3 shows the frequency of each data visualisation category and type; an interactive online version of this treemap is also available ( https://public.flourish.studio/visualisation/9396133/ ). Figure  4 shows how users can further explore the data using the interactive treemap.

figure 3

Data visualisation categories and types. An interactive version of this treemap is available online: https://public.flourish.studio/visualisation/9396133/ . Through the interactive version, users can further explore the data (see Fig.  4 ). The unit of this treemap is the individual data visualisation, so multiple data visualisations within the same scoping review are represented in this map. Created with flourish.studio ( https://flourish.studio )

figure 4

Screenshots showing how users of the interactive treemap can explore the data further. Users can explore each level of the hierarchical treemap ( A Visualisation category >  B Visualisation subcategory >  C Variables presented in visualisation >  D Individual references reporting this category/subcategory/variable permutation). Created with flourish.studio ( https://flourish.studio )

Data presented

Around two-thirds of data visualisations in the sample presented a single variable ( n  = 143, 64.4%). The most frequently presented single variables were themes ( n  = 22, 9.9% of data visualisations), population ( n  = 21, 9.5%), country or region ( n  = 21, 9.5%) and year ( n  = 20, 9.0%). There were 58 visualisations (26.1%) that presented two different variables. The remaining 21 data visualisations (9.5%) presented three or more variables. Figure  5 shows the variables presented by each different type of data visualisation (an interactive version of this figure is available online).

figure 5

Variables presented by each data visualisation type. Darker cells indicate a larger number of reviews. An interactive version of this heat map is available online: https://public.flourish.studio/visualisation/10632665/ . Users can hover over each cell to see the number of data visualisations for that combination of data visualisation type and variable. The unit of this heat map is the individual data visualisation, so multiple data visualisations within a single scoping review are represented in this map. Created with flourish.studio ( https://flourish.studio )

Most reviews presented at least one data visualisation in colour ( n  = 64, 71.1%). However, almost a third ( n  = 26, 28.9%) used only black and white or greyscale.

Interactivity

Only two of the reviews included data visualisations with any level of interactivity. One scoping review on music and serious mental illness [ 22 ] linked to an interactive bubble chart hosted online on Tableau. Functionality included the ability to filter the studies displayed by various attributes.

The other review was an example of evidence mapping from the environmental health field [ 23 ]. All four of the data visualisations included in the paper were available in an interactive format hosted either by the review management software or on Tableau. The interactive versions linked to the relevant references so users could directly explore the evidence base. This was the only review that provided this feature.

Software requirements

Nine reviews clearly reported the software used to create data visualisations. Three reviews used Tableau (one of them also used review management software as discussed above) [ 22 , 23 , 24 ]. Two reviews generated maps using ArcGIS [ 25 ] or ArcMap [ 26 ]. One review used Leximancer for a lexical analysis [ 27 ]. One review undertook a bibliometric analysis using VOSviewer [ 28 ], and another explored citation patterns using CitNetExplorer [ 29 ]. Other reviews used Excel [ 30 ] or R [ 26 ].

To our knowledge, this is the first systematic and in-depth exploration of the use of data visualisation techniques in scoping reviews. Our findings suggest that the majority of scoping reviews do not use any data visualisation at all, and, in particular, more innovative examples of data visualisation are rare. Around 60% of data visualisations in our sample were simple bar charts, pie charts or cross-tabulations. There appears to be very limited use of interactive online visualisation, despite the potential this has for communicating results to a range of stakeholders. While it is not always appropriate to use data visualisation (or a simple bar chart may be the most user-friendly way of presenting the data), these findings suggest that data visualisation is being underused in scoping reviews. In a large minority of reviews, visualisations were not published in colour, potentially limiting how user-friendly and attractive papers are to decision-makers and other stakeholders. Also, very few reviews clearly reported the software used to create data visualisations. However, 35 different types of data visualisation were used across the sample, highlighting the wide range of methods that are potentially available to scoping review authors.

Our results build on the limited research that has previously been undertaken in this area. Two previous publications also found limited use of graphs in scoping reviews. Results were “mapped graphically” in 29% of scoping reviews in any field in one 2014 publication [ 31 ] and 17% of healthcare scoping reviews in a 2016 article [ 6 ]. Our results suggest that the use of data visualisation has increased somewhat since these reviews were conducted. Scoping review methods have also evolved in the last 10 years; formal guidance on scoping review conduct was published in 2014 [ 32 ], and an extension of the PRISMA checklist for scoping reviews was published in 2018 [ 33 ]. It is possible that an overall increase in use of data visualisation reflects increased quality of published scoping reviews. There is also some literature supporting our findings on the wide range of data visualisation methods that are used in evidence synthesis. An investigation of methods to identify, prioritise or display health research gaps (25/139 included studies were scoping reviews; 6/139 were evidence maps) identified 14 different methods used to display gaps or priorities, with half being “more advanced” (e.g. treemaps, radial bar plots) ([ 34 ], p. 107). A review of data visualisation methods used in papers reporting meta-analyses found over 200 different ways of displaying data [ 19 ].

Only two reviews in our sample used interactive data visualisation, and one of these was an example of systematic evidence mapping from the environmental health field rather than a scoping review (in environmental health, systematic evidence mapping explicitly involves producing a searchable database [ 35 ]). A scoping review of papers on the use of interactive data visualisation in population health or health services research found a range of examples but still limited use overall [ 13 ]. For example, the authors noted the currently underdeveloped potential for using interactive visualisation in research on health inequalities. It is possible that the use of interactive data visualisation in academic papers is restricted by academic publishing requirements; for example, it is currently difficult to incorporate an interactive figure into a journal article without linking to an external host or platform. However, we believe that there is a lot of potential to add value to future scoping reviews by using interactive data visualisation software. Few reviews in our sample presented three or more variables in a single visualisation, something which can easily be achieved using interactive data visualisation tools. We have previously used EPPI-Mapper [ 36 ] to present results of a scoping review of systematic reviews on behaviour change in disadvantaged groups, with links to the maps provided in the paper [ 37 ]. These interactive maps allowed policy-makers to explore the evidence on different behaviours and disadvantaged groups and access full publications of the included studies directly from the map.

We acknowledge there are barriers to use for some of the data visualisation software available. EPPI-Mapper and some of the software used by reviews in our sample incur a cost. Some software requires a certain level of knowledge and skill in its use. However numerous online free data visualisation tools and resources exist. We have used Flourish to present data for this review, a basic version of which is currently freely available and easy to use. Previous health research has been found to have used a range of different interactive data visualisation software, much of which does not required advanced knowledge or skills to use [ 13 ].

There are likely to be other barriers to the use of data visualisation in scoping reviews. Journal guidelines and policies may present barriers for using innovative data visualisation. For example, some journals charge a fee for publication of figures in colour. As previously mentioned, there are limited options for incorporating interactive data visualisation into journal articles. Authors may also be unaware of the data visualisation methods and tools that are available. Producing data visualisations can be time-consuming, particularly if authors lack experience and skills in this. It is possible that many authors prioritise speed of publication over spending time producing innovative data visualisations, particularly in a context where there is pressure to achieve publications.

Limitations

A limitation of this study was that we did not assess how appropriate the use of data visualisation was in our sample as this would have been highly subjective. Simple descriptive or tabular presentation of results may be the most appropriate approach for some scoping review objectives [ 7 , 8 , 10 ], and the scoping review literature cautions against “over-using” different visual presentation methods [ 7 , 8 ]. It cannot be assumed that all of the reviews that did not include data visualisation should have done so. Likewise, we do not know how many reviews used methods of data visualisation that were not well suited to their data.

We initially relied on authors’ own use of the term “scoping review” (or equivalent) to sample reviews but identified a relatively large number of papers labelled as scoping reviews that did not meet the basic definition, despite the availability of guidance and reporting guidelines [ 10 , 33 ]. It has previously been noted that scoping reviews may be undertaken inappropriately because they are seen as “easier” to conduct than a systematic review ([ 3 ], p.6), and that reviews are often labelled as “scoping reviews” while not appearing to follow any established framework or guidance [ 2 ]. We therefore took the decision to remove these reviews from our main analysis. However, decisions on how to classify review aims were subjective, and we did include some reviews that were of borderline relevance.

A further limitation is that this was a sample of published reviews, rather than a comprehensive systematic scoping review as have previously been undertaken [ 6 , 31 ]. The number of scoping reviews that are published has increased rapidly, and this would now be difficult to undertake. As this was a sample, not all relevant scoping reviews or evidence maps that would have met our criteria were included. We used machine learning to screen our search results for pragmatic reasons (to reduce screening time), but we do not see any reason that our sample would not be broadly reflective of the wider literature.

Data visualisation, and in particular more innovative examples of it, is currently underused in published scoping reviews on health topics. The examples that we have found highlight the wide range of methods that scoping review authors could draw upon to present their data in an engaging way. In particular, we believe that interactive data visualisation has significant potential for mapping the available literature on a topic. Appropriate use of data visualisation may increase the usefulness, and thus uptake, of scoping reviews as a way of identifying existing evidence or research gaps by decision-makers, researchers and commissioners of research. We recommend that scoping review authors explore the extensive free resources and online tools available for data visualisation. However, we also think that it would be useful for publishers to explore allowing easier integration of interactive tools into academic publishing, given the fact that papers are now predominantly accessed online. Future research may be helpful to explore which methods are particularly useful to scoping review users.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Organisation formerly known as Joanna Briggs Institute

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Munn Z, Pollock D, Khalil H, Alexander L, McLnerney P, Godfrey CM, Peters M, Tricco AC. What are scoping reviews? Providing a formal definition of scoping reviews as a type of evidence synthesis. JBI Evid Synth. 2022;20:950–952.

Peters MDJ, Marnie C, Colquhoun H, Garritty CM, Hempel S, Horsley T, Langlois EV, Lillie E, O’Brien KK, Tunçalp Ӧ, et al. Scoping reviews: reinforcing and advancing the methodology and application. Syst Rev. 2021;10:263.

Article   PubMed   PubMed Central   Google Scholar  

Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol. 2018;18:143.

Sutton A, Clowes M, Preston L, Booth A. Meeting the review family: exploring review types and associated information retrieval requirements. Health Info Libr J. 2019;36:202–22.

Article   PubMed   Google Scholar  

Miake-Lye IM, Hempel S, Shanman R, Shekelle PG. What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Syst Rev. 2016;5:28.

Tricco AC, Lillie E, Zarin W, O’Brien K, Colquhoun H, Kastner M, Levac D, Ng C, Sharpe JP, Wilson K, et al. A scoping review on the conduct and reporting of scoping reviews. BMC Med Res Methodol. 2016;16:15.

Khalil H, Peters MDJ, Tricco AC, Pollock D, Alexander L, McInerney P, Godfrey CM, Munn Z. Conducting high quality scoping reviews-challenges and solutions. J Clin Epidemiol. 2021;130:156–60.

Lockwood C, dos Santos KB, Pap R. Practical guidance for knowledge synthesis: scoping review methods. Asian Nurs Res. 2019;13:287–94.

Article   Google Scholar  

Pollock D, Peters MDJ, Khalil H, McInerney P, Alexander L, Tricco AC, Evans C, de Moraes ÉB, Godfrey CM, Pieper D, et al. Recommendations for the extraction, analysis, and presentation of results in scoping reviews. JBI Evidence Synthesis. 2022;10:11124.

Google Scholar  

Peters MDJ GC, McInerney P, Munn Z, Tricco AC, Khalil, H. Chapter 11: Scoping reviews (2020 version). In: Aromataris E MZ, editor. JBI Manual for Evidence Synthesis. JBI; 2020. Available from https://synthesismanual.jbi.global . Accessed 1 Feb 2023.

Tableau Public. https://www.tableau.com/en-gb/products/public . Accessed 24 January 2023.

flourish.studio. https://flourish.studio/ . Accessed 24 January 2023.

Chishtie J, Bielska IA, Barrera A, Marchand J-S, Imran M, Tirmizi SFA, Turcotte LA, Munce S, Shepherd J, Senthinathan A, et al. Interactive visualization applications in population health and health services research: systematic scoping review. J Med Internet Res. 2022;24: e27534.

Isett KR, Hicks DM. Providing public servants what they need: revealing the “unseen” through data visualization. Public Adm Rev. 2018;78:479–85.

Carroll LN, Au AP, Detwiler LT, Fu T-c, Painter IS, Abernethy NF. Visualization and analytics tools for infectious disease epidemiology: a systematic review. J Biomed Inform. 2014;51:287–298.

Lundkvist A, El-Khatib Z, Kalra N, Pantoja T, Leach-Kemon K, Gapp C, Kuchenmüller T. Policy-makers’ views on translating burden of disease estimates in health policies: bridging the gap through data visualization. Arch Public Health. 2021;79:17.

Zakkar M, Sedig K. Interactive visualization of public health indicators to support policymaking: an exploratory study. Online J Public Health Inform. 2017;9:e190–e190.

Park S, Bekemeier B, Flaxman AD. Understanding data use and preference of data visualization for public health professionals: a qualitative study. Public Health Nurs. 2021;38:531–41.

Kossmeier M, Tran US, Voracek M. Charting the landscape of graphical displays for meta-analysis and systematic reviews: a comprehensive review, taxonomy, and feature analysis. BMC Med Res Methodol. 2020;20:26.

Ribecca, S. The Data Visualisation Catalogue. https://datavizcatalogue.com/index.html . Accessed 23 November 2021.

Ferdio. Data Viz Project. https://datavizproject.com/ . Accessed 23 November 2021.

Golden TL, Springs S, Kimmel HJ, Gupta S, Tiedemann A, Sandu CC, Magsamen S. The use of music in the treatment and management of serious mental illness: a global scoping review of the literature. Front Psychol. 2021;12: 649840.

Keshava C, Davis JA, Stanek J, Thayer KA, Galizia A, Keshava N, Gift J, Vulimiri SV, Woodall G, Gigot C, et al. Application of systematic evidence mapping to assess the impact of new research when updating health reference values: a case example using acrolein. Environ Int. 2020;143: 105956.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Jayakumar P, Lin E, Galea V, Mathew AJ, Panda N, Vetter I, Haynes AB. Digital phenotyping and patient-generated health data for outcome measurement in surgical care: a scoping review. J Pers Med. 2020;10:282.

Qu LG, Perera M, Lawrentschuk N, Umbas R, Klotz L. Scoping review: hotspots for COVID-19 urological research: what is being published and from where? World J Urol. 2021;39:3151–60.

Article   CAS   PubMed   Google Scholar  

Rossa-Roccor V, Acheson ES, Andrade-Rivas F, Coombe M, Ogura S, Super L, Hong A. Scoping review and bibliometric analysis of the term “planetary health” in the peer-reviewed literature. Front Public Health. 2020;8:343.

Hewitt L, Dahlen HG, Hartz DL, Dadich A. Leadership and management in midwifery-led continuity of care models: a thematic and lexical analysis of a scoping review. Midwifery. 2021;98: 102986.

Xia H, Tan S, Huang S, Gan P, Zhong C, Lu M, Peng Y, Zhou X, Tang X. Scoping review and bibliometric analysis of the most influential publications in achalasia research from 1995 to 2020. Biomed Res Int. 2021;2021:8836395.

Vigliotti V, Taggart T, Walker M, Kusmastuti S, Ransome Y. Religion, faith, and spirituality influences on HIV prevention activities: a scoping review. PLoS ONE. 2020;15: e0234720.

van Heemskerken P, Broekhuizen H, Gajewski J, Brugha R, Bijlmakers L. Barriers to surgery performed by non-physician clinicians in sub-Saharan Africa-a scoping review. Hum Resour Health. 2020;18:51.

Pham MT, Rajić A, Greig JD, Sargeant JM, Papadopoulos A, McEwen SA. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Methods. 2014;5:371–85.

Peters MDJ, Marnie C, Tricco AC, Pollock D, Munn Z, Alexander L, McInerney P, Godfrey CM, Khalil H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Synth. 2020;18:2119–26.

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73.

Nyanchoka L, Tudur-Smith C, Thu VN, Iversen V, Tricco AC, Porcher R. A scoping review describes methods used to identify, prioritize and display gaps in health research. J Clin Epidemiol. 2019;109:99–110.

Wolffe TAM, Whaley P, Halsall C, Rooney AA, Walker VR. Systematic evidence maps as a novel tool to support evidence-based decision-making in chemicals policy and risk management. Environ Int. 2019;130:104871.

Digital Solution Foundry and EPPI-Centre. EPPI-Mapper, Version 2.0.1. EPPI-Centre, UCL Social Research Institute, University College London. 2020. https://eppi.ioe.ac.uk/cms/Default.aspx?tabid=3790 .

South E, Rodgers M, Wright K, Whitehead M, Sowden A. Reducing lifestyle risk behaviours in disadvantaged groups in high-income countries: a scoping review of systematic reviews. Prev Med. 2022;154: 106916.

Download references

Acknowledgements

We would like to thank Melissa Harden, Senior Information Specialist, Centre for Reviews and Dissemination, for advice on developing the search strategy.

This work received no external funding.

Author information

Authors and affiliations.

Centre for Reviews and Dissemination, University of York, York, YO10 5DD, UK

Emily South & Mark Rodgers

You can also search for this author in PubMed   Google Scholar

Contributions

Both authors conceptualised and designed the study and contributed to screening, data extraction and the interpretation of results. ES undertook the literature searches, analysed data, produced the data visualisations and drafted the manuscript. MR contributed to revising the manuscript, and both authors read and approved the final version.

Corresponding author

Correspondence to Emily South .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1..

Typology of data visualisation methods.

Additional file 2.

References of scoping reviews included in main dataset.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

South, E., Rodgers, M. Data visualisation in scoping reviews and evidence maps on health topics: a cross-sectional analysis. Syst Rev 12 , 142 (2023). https://doi.org/10.1186/s13643-023-02309-y

Download citation

Received : 21 February 2023

Accepted : 07 August 2023

Published : 17 August 2023

DOI : https://doi.org/10.1186/s13643-023-02309-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Scoping review
  • Evidence map
  • Data visualisation

Systematic Reviews

ISSN: 2046-4053

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

systematic literature review website

Systematic Reviews in the Engineering Literature: A Scoping Review

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IMAGES

  1. systematic literature review steps

    systematic literature review website

  2. How to Conduct a Systematic Review

    systematic literature review website

  3. How to Write A Systematic Literature Review?

    systematic literature review website

  4. Systematic literature review phases.

    systematic literature review website

  5. Systematic Literature Review Methodology

    systematic literature review website

  6. Systematic Review Appraisal Training Course

    systematic literature review website

VIDEO

  1. Systematic Literature Review

  2. Systematic Literature Review (SLR)

  3. CONDUCTING SYSTEMATIC LITERATURE REVIEW

  4. What is Systematic Literature Review SLR

  5. Systematic Literature Review, by Prof. Ranjit Singh, IIIT Allahabad

  6. Systematic Literature Review Paper

COMMENTS

  1. 5 software tools to support your systematic review processes

    Covidence. This online platform is a core component of the Cochrane toolkit, supporting parts of the systematic review process, including title/abstract and full-text screening, documentation, and reporting. The Covidence platform enables collaboration of the entire systematic reviews team and is suitable for researchers and students at all ...

  2. Rayyan

    Rayyan Enterprise and Rayyan Teams+ make it faster, easier and more convenient for you to manage your research process across your organization. Accelerate your research across your team or organization and save valuable researcher time. Build and preserve institutional assets, including literature searches, systematic reviews, and full-text ...

  3. PRISMA statement

    Here you can access information about the PRISMA reporting guidelines, which are designed to help authors transparently report why their systematic review was done, what methods they used, and what they found. The main PRISMA reporting guideline (the PRISMA 2020 statement) primarily provides guidance for the reporting of systematic reviews ...

  4. Home page

    Aims and scope. Systematic Reviews encompasses all aspects of the design, conduct and reporting of systematic reviews. The journal publishes high quality systematic review products including systematic review protocols, systematic reviews related to a very broad definition of human health, rapid reviews, updates of already completed systematic ...

  5. Nested Knowledge

    Nested Knowledge offers a comprehensive software platform for systematic literature review and meta-analysis. The software is composed of two parts which work in tandem. Search, screen, tag and extract data with AutoLit. Visualize, analyze, publish and share insights with Synthesis.

  6. Covidence

    Covidence website will be inaccessible as we upgrading our platform on Monday 23rd August at 10am AEST, / 2am CEST/1am BST (Sunday, 15th August 8pm EDT/5pm PDT) The World's #1 Systematic Review Tool Reviewers

  7. Cochrane Reviews

    See more on using PICO in the Cochrane Handbook. The Cochrane Library is a collection of high-quality, independent evidence to inform healthcare decision-making, including the Cochrane Database of Systematic Reviews and the CENTRAL register of controlled trials.

  8. How-to conduct a systematic literature review: A quick guide for

    Method details Overview. A Systematic Literature Review (SLR) is a research methodology to collect, identify, and critically analyze the available research studies (e.g., articles, conference proceedings, books, dissertations) through a systematic procedure [12].An SLR updates the reader with current literature about a subject [6].The goal is to review critical points of current knowledge on a ...

  9. Cochrane Database of Systematic Reviews

    The Cochrane Database of Systematic Reviews ( CDSR) is the leading database for systematic reviews in health care. The CDSR includes Cochrane Reviews (systematic reviews) and protocols for Cochrane Reviews as well as editorials and supplements. The CDSR (ISSN 1469-493X) is owned and produced by Cochrane, a global, independent network of ...

  10. Systematic reviews: Structure, form and content

    Introduction. A systematic review collects secondary data, and is a synthesis of all available, relevant evidence which brings together all existing primary studies for review (Cochrane 2016).A systematic review differs from other types of literature review in several major ways.

  11. PDF Systematic Literature Reviews: an Introduction

    Systematic literature reviews (SRs) are a way of synthesising scientific evidence to answer a particular research question in a way that is transparent and reproducible, while seeking to include all published evidence on the topic and appraising the quality of th is evidence. SRs have become a major methodology

  12. About Cochrane Reviews

    Many Cochrane Reviews measure benefits and harms by collecting data from more than one trial, and combining them to generate an average result. This aims to provide a more precise estimate of the effects of an intervention and to reduce uncertainty. Not every review in the Cochrane Database of Systematic Reviews contains a meta-analysis.

  13. How to Do a Systematic Review: A Best Practice Guide for Conducting and

    The best reviews synthesize studies to draw broad theoretical conclusions about what a literature means, linking theory to evidence and evidence to theory. This guide describes how to plan, conduct, organize, and present a systematic review of quantitative (meta-analysis) or qualitative (narrative review, meta-synthesis) information.

  14. ASReview

    ASReview LAB can be used for: Screening with the Oracle Mode, including advanced options. Teaching using the Exploration Mode. Validating algorithms using the Simulation Mode. We also offer an open-source research infrastructure to run large-scale simulation studies for validating newly developed AI algorithms. Read the Docs.

  15. Systematic Review

    A systematic review is a type of review that uses repeatable methods to find, select, and synthesize all available evidence. ... Systematic review vs. literature review. A literature review is a type of review that uses a less systematic and formal approach than a systematic review. Typically, an expert in a topic will qualitatively summarize ...

  16. Systematic Reviews and Meta Analysis

    A systematic review is guided filtering and synthesis of all available evidence addressing a specific, focused research question, generally about a specific intervention or exposure. The use of standardized, systematic methods and pre-selected eligibility criteria reduce the risk of bias in identifying, selecting and analyzing relevant studies.

  17. Systematic reviews, evidence synthesis

    A systematic review is an academic research paper that uses a method called 'evidence synthesis', which can include meta-analysis, to look for answers to a pre-defined question. The purpose of a systematic review is to sum up the best available research on that specific question. Reviews can also show when there has not been enough research ...

  18. Home

    What is a Systematic Review? A systematic review is a literature review that gathers all of the available evidence matching pre-specified eligibility criteria to answer a specific research question. It uses explicit, systematic methods, documented in a protocol, to minimize bias, provide reliable findings, and inform decision-making. ¹.

  19. What are systematic reviews?

    What are systematic reviews? Watch on. Cochrane evidence, including our systematic reviews, provides a powerful tool to enhance your healthcare knowledge and decision making. This video from Cochrane Sweden explains a bit about how we create health evidence and what Cochrane does. About Cochrane.

  20. Elicit: The AI Research Assistant

    Speed up literature review; Find papers they couldn't find elsewhere; Automate systematic reviews and meta-analyses; Learn about a new domain; Elicit tends to work best for empirical domains that involve experiments and concrete results. This type of research is common in biomedicine and machine learning.

  21. Bibliometric-Systematic Literature Review (B-SLR) Method

    The Bibliometric-Systematic Literature Review (B-SLR) is a novel toolbox consisting of a 10-step process for conducting rigorous literature reviews in the management field. Via the B-SLR method, researchers could receive guidance on the critical choices, possible challenges, and best practices at every phase of the review procedure, from ...

  22. A systematic literature review on automatic website generation

    The systematic literature survey reviews research studies on automatic website generation conducted between 2015 and 2021 inclusively, that have used mock-ups, examples, and artificial intelligence as the technique to generate websites automatically. Visual designs of websites such as hand-drawn sketches, digital wireframes, and mock-up design ...

  23. Systematic literature review of schizophrenia clinical practice

    To provide an overview of schizophrenia CPGs, we conducted a systematic literature review of English-language CPGs and synthesized current recommendations for the acute and maintenance management with antipsychotics. Searches for schizophrenia CPGs were conducted in MEDLINE/Embase from 1/1/2004-12/19/2019 and in guideline websites until 06/01 ...

  24. How-to conduct a systematic literature review: A quick guide for

    Overview. A Systematic Literature Review (SLR) is a research methodology to collect, identify, and critically analyze the available research studies (e.g., articles, conference proceedings, books, dissertations) through a systematic procedure .An SLR updates the reader with current literature about a subject .The goal is to review critical points of current knowledge on a topic about research ...

  25. Data visualisation in scoping reviews and evidence maps on health

    Scoping reviews and evidence maps are forms of evidence synthesis that aim to map the available literature on a topic and are well-suited to visual presentation of results. A range of data visualisation methods and interactive data visualisation tools exist that may make scoping reviews more useful to knowledge users. The aim of this study was to explore the use of data visualisation in a ...

  26. Systematic Reviews in the Engineering Literature: A Scoping Review

    A systematic review is a specialized type of literature review used to collect and synthesize all the available evidence related to a research question. The methods for systematic reviews should be transparent and reproducible so that other researchers can use, replicate, and build upon the findings. Systematic reviews have been published for decades in medical literature where it is necessary ...

  27. Clinics and Practice

    A systematic review of the literature was performed following the guidelines of PRISMA recommendations using an electronic search strategy on four databases (PubMed, Scopus, Cochrane Library, and Embase) complemented by a manual search. Three independent authors were involved in study selection, data extraction, and bias assessment. ...

  28. A Primer for Increasing Competency in Forensic Psychiatry Research

    Empirical research is foundational to the discipline of forensic psychiatry. Candilis and Parker provide a cogent systematic review of the empirical literature on restoration of competence to stand trial using National Institutes of Health quality metrics. Components of the study methodology are highlighted, as they represent current best practices for conducting a systematic review.