Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis

  • Open access
  • Published: 20 January 2024
  • Volume 4 , article number  23 , ( 2024 )

Cite this article

You have full access to this open access article

financial services sector research papers

  • Salman Bahoo 1 ,
  • Marco Cucculelli   ORCID: orcid.org/0000-0003-0035-9454 2 ,
  • Xhoana Goga 2 &
  • Jasmine Mondolo 2  

15k Accesses

2 Citations

1 Altmetric

Explore all metrics

Over the past two decades, artificial intelligence (AI) has experienced rapid development and is being used in a wide range of sectors and activities, including finance. In the meantime, a growing and heterogeneous strand of literature has explored the use of AI in finance. The aim of this study is to provide a comprehensive overview of the existing research on this topic and to identify which research directions need further investigation. Accordingly, using the tools of bibliometric analysis and content analysis, we examined a large number of articles published between 1992 and March 2021. We find that the literature on this topic has expanded considerably since the beginning of the XXI century, covering a variety of countries and different AI applications in finance, amongst which Predictive/forecasting systems, Classification/detection/early warning systems and Big data Analytics/Data mining /Text mining stand out. Furthermore, we show that the selected articles fall into ten main research streams, in which AI is applied to the stock market, trading models, volatility forecasting, portfolio management, performance, risk and default evaluation, cryptocurrencies, derivatives, credit risk in banks, investor sentiment analysis and foreign exchange management, respectively. Future research should seek to address the partially unanswered research questions and improve our understanding of the impact of recent disruptive technological developments on finance.

Similar content being viewed by others

financial services sector research papers

Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis

financial services sector research papers

A Survey of Trendy Financial Sector Applications of Machine and Deep Learning

financial services sector research papers

Machine Learning and Finance

Avoid common mistakes on your manuscript.

Introduction

The first two decades of the twenty-first century have experienced an unprecedented way of technological progress, which has been driven by advances in the development of cutting-edge digital technologies and applications in Artificial Intelligence (AI). Artificial intelligence is a field of computer science that creates intelligent machines capable of performing cognitive tasks, such as reasoning, learning, taking action and speech recognition, which have been traditionally regarded as human tasks (Frankenfield 2021 ). AI comprises a broad and rapidly growing number of technologies and fields, and is often regarded as a general-purpose technology, namely a technology that becomes pervasive, improves over time and generates complementary innovation (Bresnahan and Trajtenberg 1995 ). As a result, it is not surprising that there is no consensus on the way AI is defined (Van Roy et al. 2020 ). An exhaustive definition has been recently proposed by Acemoglu and Restrepo ( 2020 , p.1), who assert that Artificial Intelligence is “(…) the study and development of intelligent (machine) agents, which are machines, software or algorithms that act intelligently by recognising and responding to their environment.” Even though it is often difficult to draw precise boundaries, this promising and rapidly evolving field mainly comprises machine learning, deep learning, NLP (natural language processing) platforms, predictive APIs (application programming interface), image recognition and speech recognition (Martinelli et al. 2021 ).

The term “Artificial intelligence” was first coined by John McCarthy in 1956 during a conference at Dartmouth College to describe “thinking machines” (Buchanan 2019 ). However, until 2000, the lack of storage capability and low computing power prevented any progress in the field. Accordingly, governments and investors lost their interest and AI fell short of financial support and funding in 1974–1980 and again in 1987–1993. These periods of funding shortage are also known as “AI winters Footnote 1 ”.

However, the most significant development and spread of AI-related technologies is much more recent, and has been prompted by the availability of large unstructured databases, the explosion of computing power, and the rise in venture capital intended to support innovative, technological projects (Ernst et al. 2018 ). One of the most distinctive The term AI winter first appeared in 1characteristics of AI technologies is that, unlike industrial robots, which need to receive specific instructions, generally provided by a software, before they perform any action, can learn for themselves how to map information about the environment, such as visual and tactile data from a robot’s sensors, into instructions sent to the robot’s actuators (Raj and Seamans 2019 ). Additionally, as remarked by Ernst et al. ( 2018 ), whilst industrial robots mostly perform manual tasks, AI technologies are able to carry out activities that, until some years ago, were still regarded as typically human, i.e. what Ernst and co-authors label as “mental tasks”.

The adoption of AI is likely to have remarkable implications for the subjects adopting them and, more in general, for the economy and the society. In particular, it is expected to contribute to the growth of the global GDP, which, according to a study conducted by Pricewater-house-Coopers (PwC) and published in 2017, is likely to increase by up to 14% by 2030. Moreover, companies adopting AI technologies sometimes report better performance (Van Roy et al. 2020 ). Concerning the geographic dimension of this field, North America and China are the leading investors and are expected to benefit the most from AI-driven economic returns. Europe and emerging markets in Asia and South America will follow, with moderate profits owing to fewer and later investments (PwC 2017 ). AI is going to affect labour markets as well. The demand for high-skilled employees is expected to increase, whilst the demand for low-skilled jobs is likely to shrink because of automation; the resulting higher unemployment rate, however, is going to be offset by the new job opportunities offered by AI (Ernst et al. 2018 ; Acemoglu and Restrepo 2020 ).

AI solutions have been introduced in every major sector of the economy; a sector that is witnessing a profound transformation led by the ongoing technological revolution is the financial one. Financial institutions, which rely heavily on Big Data and process automation, are indeed in a “unique position to lead the adoption of AI” (PwC 2020 ), which generates several benefits: for instance, it encourages automation of manufacturing processes which in turn enhances efficiency and productivity. Next, since machines are immune to human errors and psychological factors, it ensures accurate and unbiased predictive analytics and trading strategies. AI also fosters business model innovation and radically changes customer relationships by promoting customised digital finance, which, together with the automation of processes, results in better service efficiency and cost-saving (Cucculelli and Recanatini 2022 ). Furthermore, AI is likely to have substantial implications for financial conduct and prudential supervisors, and it also has the potential to help supervisors identify potential violations and help regulators better anticipate the impact of changes in regulation (Wall 2018 ). Additionally, complex AI/machine learning algorithms allow Fintech lenders to make fast (almost instantaneous) credit decisions, with benefits for both the lenders and the consumers (Jagtiani and John 2018 ). Intelligent devices in Finance are used in a number of areas and activities, including fraud detection, algorithmic trading and high-frequency trading, portfolio management, credit decisions based on credit scoring or credit approval models, bankruptcy prediction, risk management, behavioural analyses through sentiment analysis and regulatory compliance.

In recent years, the adoption of AI technologies in a broad range of financial applications has received increasing attention by scholars; however, the extant literature, which is reviewed in the next section, is quite broad and heterogeneous in terms of research questions, country and industry under scrutiny, level of analysis and method, making it difficult to draw robust conclusions and to understand which research areas require further investigation. In the light of these considerations, we conduct an extensive review of the research on the use of AI in Finance thorough which we aim to provide a comprehensive account of the current state of the art and, importantly, to identify a number of research questions that are still (partly) unanswered. This survey may serve as a useful roadmap for researchers who are not experts of this topic and could find it challenging to navigate the extensive and composite research on this subject. In particular, it may represent a useful starting point for future empirical contributions, as it provides an account of the state of the art and of the issues that deserve further investigation. In doing so, this study complements some previous systematic reviews on the topic, such as the ones recently conducted by Hentzen et al. ( 2022b ) and (Biju et al. 2020 ), which differ from our work in the following main respects: Hentzen and co-authors’ study focuses on customer-facing financial services, whilst the valuable contribution of Biju et al. poses particular attention to relevant technical aspects and the assessment of the effectiveness and the predictive capability of machine learning, AI and deep learning mechanisms within the financial sphere; in doing so, it covers an important issue which, however, is out of the scope of our work.

From our review, it emerges that, from the beginning of the XXI century, the literature on this topic has significantly expanded, and has covered a broad variety of countries, as well as several AI applications in finance, amongst which Predictive/forecasting systems, Classification /detection/early warning systems and Big data Analytics/Data mining /Text mining stand out. Additionally, we show that the selected articles can be grouped into ten main research streams, in which AI is applied to the stock market, trading models, volatility forecasting, portfolio management, performance, risk & default evaluation, cryptocurrencies, derivatives, credit risks in banks, investor sentiment analysis and foreign exchange management, respectively.

The balance of this paper is organised as follows: Sect. “ Methodology ” shortly presents the methodology. Sect. “ A detailed account of the literature on AI in Finance ” illustrates the main results of the bibliometric analysis and the content analysis. Sect. “ Issues that deserve further investigation ” draws upon the research streams described in the previous section to pinpoint several potential research avenues. Sect. “ Conclusions ” concludes. Finally, Appendix 1 clarifies some AI-related terms and definitions that appear several times throughout the paper, whilst Appendix 2 provides more information on some of the articles under scrutiny.

Methodology

To conduct a sound review of the literature on the selected topic, we resort to two well-known and extensively used approaches, namely bibliometric analysis and content analysis. Bibliometric analysis is a popular and rigorous method for exploring and analysing large volumes of scientific data which allows us to unpack the evolutionary nuances of a specific field whilst shedding light on the emerging areas in that field (Donthu et al. 2021 ). In this study, we perform bibliometric analysis using HistCite, a popular software package developed to support researchers in elaborating and visualising the results of literature searches in the Web of Science platform. Specifically, we employ HistCite to recover the annual number of publications, the number of forward citations (which we use to identify the most influential journals and articles) and the network of co-citations, namely, all the citations received and given by journals belonging to a certain field, which help us identify the major research streams described in Sect. “ Identification of the major research streams ”. After that, to delve into the contents of the most pertinent studies on AI in finance, we resort to traditional content analysis, a research method that provides a systematic and objective means to make valid inferences from verbal, visual, or written data which, in turn, permit to describe and quantify specific phenomena (Downe-Wambolt 1992 ).

In order to identify the sample of studies on which bibliometric and content analysis were performed, we proceeded as follows. First, we searched for pertinent articles published in English be-tween 1950 and March 2021. Specifically, we scrutinised the “Finance”, “Economics”, “Business Finance” and “Business” sections of the “Web of Science” (WoS) database using the keyword “finance” together with an array of keywords concerning Artificial Intelligence (i.e. “Finance” AND (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning” OR “Neural Networks*” OR “Natural Language Processing*” OR “Algorithmic Trading*” OR “Artificial Neural Network” OR “Robot*” OR “Automation” OR “Text Mining” OR “Data Mining” OR “Soft Computing” OR “Fuzzy Logic Analysis” OR “Biometrics*” OR “Geotagging” OR “Wearable*” OR “IoT” OR “Internet of Thing*” OR “digitalization” OR “Artificial Neutral Networks” OR “Big Data” OR “Industry 4.0″ OR “Smart products*” OR Cloud Computing” OR “Digital Technologies*”). In doing so, we ended up with 1,218 articles. Next, two researchers independently analysed the title, abstract and content of these papers and kept only those that address the topic under scrutiny in a non-marginal and non-trivial way. This second step reduced the number of eligible papers to 892, which were used to perform the first part of the bibliometric analysis. Finally, we delved into the contents of the previously selected articles and identified 110 contributions which specifically address the adoption and implications in Finance of AI tools focussing on the economic dimension of the topic, and which are employed in the second part of the bibliometric analysis and in the content analysis.

A detailed account of the literature on AI in Finance

In this section, we explore the patterns and trends in the literature on AI in Finance in order to obtain a compact but exhaustive account of the state of the art. Specifically, we identify some relevant bibliographic characteristics using the tools of bibliometric analysis. After that, focussing on a sub-sample of papers, we conduct a preliminary assessment of the selected studies through a content analysis and detect the main AI applications in Finance. Finally, we identify and briefly describe ten major research streams.

Main results of the bibliometric analysis

First, using HistCite and considering the sample of 892 studies, we computed, for each year, the number of publications related to the topic “AI in Finance”. The corresponding publication trend is shown in Fig.  1 , which plots both the annual absolute number of sampled papers (bar graph in blue) and the ratio between the latter and the annual overall amount of publications (indexed in Scopus) in the finance area (line graph in orange). We also compute relative numbers to see if the trend emerging from the selected studies is not significantly attributable to a “common trend” (i.e. to the fact that, in the meantime, also the total number of publications in the financial area has significantly increased). It can be noted that both graphs exhibit a strong upward trend from 2015 onwards; during the most recent years, the pace of growth and the degree of pervasiveness of AI adoption in the financial sphere have indeed remarkably strengthened, and have become the subject of a rapidly growing number of research articles.

figure 1

Publication Trend, 1992–2021

After that, focussing on the more pertinent (110) articles, we checked the journals in which these studies were published. Table 1 presents the top-ten list of journals reported in the Academic Journal Guide-ABS List 2020 and ranked on the basis of the total global citation score (TGCS), which captures the number of times an article is cited by other articles that deal with the same topic and are indexed in the WoS database. For each journal, we also report the total number of studies published in that journal. We can notice that the most influential journals in terms of TGCS are the Journal of Finance (with a TGCS equal to 1283) and the Journal of Banking and Finance (with a TGCS of 1253), whilst the journals containing the highest number of articles on the topic are Quantitative Finance (68 articles) and Intelligent Systems in Accounting, Finance and Management (43).

Finally, Fig.  2 provides a visual representation of the citation-based relationships amongst papers starting from the most-cited papers, which we obtained using the Java application CiteSpace.

figure 2

Source: authors’ elaboration of data from Web of Science; visualisation produced using CiteSpace

Citation Mapping and identification of the research streams.

Preliminary results of the content analysis

In this paragraph, we shortly illustrate some relevant characteristics of our sub-sample made up of 110 studies, including country and industry coverage, method and underpinning theoretical background. Table 2 comprises the list of countries under scrutiny, and, for each of them, a list of papers that perform their analysis on that country. We can see that our sample exhibits significant geographical heterogeneity, as it covers 74 countries across all continents; however, the most investigated areas are three, that is Europe, the US and China. These results corroborate the fact that the above-mentioned regions are the leaders of the AI-driven financial industry, as suggested by PwC ( 2017 ). The United States, in particular, are considered the “early adopters” of AI and are likely to benefit the most from this source of competitive advantage. More lately, emerging countries in Southeast Asia and the Middle East have received growing interest. Finally, a smaller number of papers address underdeveloped regions in Africa and various economies in South America.

The most investigated sectors are reported in Table  3 . We can notice that, although it primarily deals with banking and financial services, the extant research has addressed the topic in a vast array of industries. This confirms that the application potential of AI is very broad, and that any industry may benefit from it.

Through our analysis, we also detected the key theories and frameworks applied by researchers in the prior literature. As shown in Table  4 , 73 (out of 110) papers explicitly refer to some theoretical framework. Specifically, ten of them (14%) resort to computational learning theory; this theory, which is an extension of statistical learning, provides researchers with a theoretical guide for finding the most suitable learning model for a given problem, and is regarded as one of the most important and most used theories in the field. Specific theories concerning types of neural networks and learning methods are used too, such as the fuzzy set theory, which is mentioned in 8% of the sample, and to a lesser extent, the Naive Bayes theorem, the theory of neural networks, the theory of genetic programming and the TOPSIS analytical framework. Finance theories (e.g. Arbitrage Pricing Theory; Black and Scholes 1973 ) are jointly employed with portfolio management theories (e.g. modern portfolio theory), and the two of them account together for 21% (15) of the total number of papers. Finally, bankruptcy theories support business failure forecasts, whilst other theoretical underpinnings concern mathematical and probability concepts.

The content analysis also provides information on the main types of companies under scrutiny. Table 5 indicates that 30 articles (out of 110) focus on large companies listed on stock exchanges, whilst only 16 studies cover small and medium enterprises. Similarly, trading and digital platforms are examined in 16 papers that deal with derivatives and cryptocurrencies.

Furthermore, Table  6 summarises the key methods applied in the literature, which are divided by category (note that all the papers employ more than one method). Looking at the table, we see that machine learning and artificial neural networks are the most popular ones (they are employed in 41 and 51 articles, respectively). The majority of the papers resort to different approaches to compare their results with those obtained through autoregressive and regression models or conventional statistics, which are used as the benchmark; therefore, there may be some overlaps. Nevertheless, we notice that support vector machine and random forest are the most widespread machine learning methods. On the other hand, the use of artificial neural networks (ANNs) is highly fragmented. Backpropagation, Recurrent, and Feed-Forward NNs are considered basic neural nets and are commonly employed. Advanced NNs, such as Higher-Order Neural network (HONN) and Long Short-Term Memory Networks (LSTM), are more performing than their standard version but also much more complicated to apply. These methods are usually compared to autoregressive models and regressions, such as ARMA, ARIMA, and GARCH. Finally, we observe that almost all the sampled papers are quantitative, whilst only three of them are qualitative and four of them consist in literature reviews.

A taxonomy of AI applications in Finance

After scrutinising some relevant features of the papers, we make a step forward and outline a taxonomy of AI applications used in Finance and tackled by previous literature. The main uses of AI in Finance and the papers that address each of them are summarised in Table  7 .

Many research papers (39 out of 110) employ AI as a predictive instrument for forecasting stock prices, performance and volatility. In 23 papers, AI is employed in classification problems and warning systems to detect credit risk and frauds, as well as to monitor firm or bank performance. The former use of AI permits to classify firms into two categories based on qualitative and quantitative data; for example, we may have distressed or non-distressed, viable–nonviable, bankrupt–non-bankrupt, or financially healthy–not healthy, good–bad, and fraud–not fraud. Warning systems follow a similar principle: after analysing customers’ financial behaviour and classifying potential fraud issues in bank accounts, alert models signal to the bank unusual transactions. Additionally, we see that 14 articles employ text mining and data mining language recognition, i.e. natural language processing, as well as sentiment analysis. This may be the starting point of AI-driven behavioural analysis in Finance. Amongst others, trading models and algorithmic trading are further popular aspects of AI widely analysed in the literature. Moreover, interest in Robo-advisory is growing in the asset investment field. Finally, less studied AI applications concern the modelling capability of algorithms and traditional machine learning and neural networks.

Identification of the major research streams

Drawing upon the co-citation analysis mentioned in Sect. " Methodology ", we detected ten main research streams: (1) AI and the stock market; (2) AI and Trading Models; (3) AI and Volatility Forecasting; (4) AI and Portfolio Management; (5) AI and Performance, Risk, and Default Valuation; (6) AI and Bitcoin, Cryptocurrencies; (7) AI and Derivatives; (8) AI and Credit Risk in Banks; (9) AI and Investor Sentiments Analysis; (10) AI and Foreign Exchange Management. Some research streams can be further divided into sub-streams as they deal with various aspects of the same main topic. In this section, we provide a compact account for each of the aforementioned research streams. More detailed information on some of the papers fuelling them is provided in Appendix 2.

Stream 01: AI and the stock market

The stream “AI and the Stock Market” comprises two sub-streams, namely algorithmic trading and stock market, and AI and stock price prediction. The first sub-stream deals with the impact of algorithmic trading (AT) on financial markets. In this regard, Herdershott et al. ( 2011 ) argue that AT increases market liquidity by reducing spreads, adverse selection, and trade-related price discovery. This results in a lowered cost of equity for listed firms in the medium–long term, especially in emerging markets (Litzenberger et al. 2012 ). As opposed to human traders, algorithmic trading adjusts faster to information and generates higher profits around news announcements thanks to better market timing ability and rapid executions (Frino et al. 2017 ). Even though high-frequency trading (a subset of algorithmic trading) has sometimes increased volatility related to news or fundamentals, and transmitted it within and across industries, AT has overall reduced return volatility variance and improved market efficiency (Kelejian and Mukerji 2016 ; Litzenberger et al. 2012 ).

The second sub-stream investigates the use of neural networks and traditional methods to forecast stock prices and asset performance. ANNs are preferred to linear models because they capture the non-linear relationships between stock returns and fundamentals and are more sensitive to changes in variables relationships (Kanas 2001 ; Qi 1999 ). Dixon et al. ( 2017 ) argue that deep neural networks have strong predictive power, with an accuracy rate equal to 68%. Also, Zhang et al. ( 2021 ) propose a model, the Long Short-Term Memory Networks (LSTM), that outperforms all classical ANNs in terms of prediction accuracy and rational time cost, especially when various proxies of online investor attention (such as the internet search volume) are considered.

Stream 02: AI and trading models

From the review of the literature represented by this stream, it emerges that neural networks and machine learning algorithms are used to build intelligent automated trading systems. To give some examples, Creamer and Freund ( 2010 ) create a machine learning-based model that analyses stock price series and then selects the best-performing assets by suggesting a short or long position. The model is also equipped with a risk management overlayer preventing the transaction when the trading strategy is not profitable. Similarly, Creamer ( 2012 ) uses the above-mentioned logic in high-frequency trading futures: the model selects the most profitable and less risky futures by sending a long or short recommendation. To construct an efficient trading model, Trippi and DeSieno ( 1992 ) combine several neural networks into a single decision rule system that outperforms the single neural networks; Kercheval and Zhang ( 2015 ) use a supervised learning method (i.e. multi-class SVM) that automatically predicts mid-price movements in high-frequency limit order books by classifying them in low-stationary-up; these predictions are embedded in trading strategies and yield positive payoffs with controlled risk.

Stream 03: AI and volatility forecasting

The third stream deals with AI and the forecasting of volatility. The volatility index (VIX) from Chicago Board Options Exchange (CBOE) is a measure of market sentiment and expectations. Forecasting volatility is not a simple task because of its very persistent nature (Fernandes et al. 2014 ). According to Fernandes and co-authors, the VIX is negatively related to the SandP500 index return and positively related to its volume. The heterogeneous autoregressive (HAR) model yields the best predictive results as opposed to classical neural networks (Fernandes et al. 2014 ; Vortelinos 2017 ). Modern neural networks, such as LSTM and NARX (nonlinear autoregressive exogenous network), also qualify as valid alternatives (Bucci 2020 ). Another promising class of neural networks is the higher-order neural network (HONN) used to forecast the 21-day-ahead realised volatility of FTSE100 futures. Thanks to its ability to capture higher-order correlations within the dataset, HONN shows remarkable performance in terms of statistical accuracy and trading efficiency over multi-layer perceptron (MLP) and the recurrent neural network (RNN) (Sermpinis et al. 2013 ).

Stream 04: AI and portfolio management

This research stream analyses the use of AI in portfolio selection. As an illustration, Soleymani and Vasighi ( 2020 ) consider a clustering approach paired with VaR analysis to improve asset allocation: they group the least risky and more profitable stocks and allocate them in the portfolio. More elaborate asset allocation designs incorporate a bankruptcy detection model and an advanced utility performance system: before adding the stock to the portfolio, the sophisticated neural network estimates the default probability of the company and asset’s contribution to the optimal portfolio (Loukeris and Eleftheriadis 2015 ). Index-tracking powered by deep learning technology minimises tracking error and generates positive performance (Kim and Kim 2020 ). The asymmetric copula method for returns dependence estimates further promotes the portfolio optimization process (Zhao et al. 2018 ). To sum up, all papers show that AI-based prediction models improve the portfolio selection process by accurately forecasting stock returns (Zhao et al. 2018 ).

Stream 05: AI and performance, risk, default valuation

This research stream comprises three sub-streams, namely AI and Corporate Performance, Risk and Default Valuation; AI and Real Estate Investment Performance, Risk, and Default Valuation; AI and Banks Performance, Risk and Default Valuation.

The first sub-stream examines corporate financial conditions to predict financially distressed companies (Altman et al. 1994 ). As an illustration, Jones et al. ( 2017 ) and Gepp et al. ( 2010 ) determine the probability of corporate default. Sabău Popa et al. ( 2021 ) predict business performance based on a composite financial index. The findings of the aforementioned papers confirm that AI-powered classifiers are extremely accurate and easy to interpret, hence, superior to classic linear models. A quite interesting paper surveys the relationship between face masculinity traits in CEOs and firm riskiness through image processing (Kamiya et al. 2018 ). The results reveal that firms lead by masculine-faced CEO have higher risk and leverage ratios and are more frequent acquirers in MandA operations.

The second sub-stream focuses on mortgage and loan default prediction (Feldman and Gross 2005 ; Episcopos, Pericli, and Hu, 1998 ). For instance, Chen et al. ( 2013 ) evaluate real estate investment returns by forecasting the REIT index; they show that the industrial production index, the lending rate, the dividend yield and the stock index influence real estate investments. All the forecasting techniques adopted (i.e. supervised machine learning and ANNs) outperform linear models in terms of efficiency and precision.

The third sub-stream deals with banks’ performance. In contradiction with past research, a text mining study argues that the most important risk factors in banking are non-financial, i.e. regulation, strategy and management operation. However, the findings from text analysis are limited to what is disclosed in the papers (Wei et al. 2019 ). A highly performing NN-based study on the Malaysian and Islamic banking sector asserts that negative cost structure, cultural aspects and regulatory barriers (i.e. low competition) lead to inefficient banks compared to the U.S., which, on the contrary, are more resilient, healthier and well regulated (Wanke et al. 2016a, b, c, d; Papadimitriou et al. 2020 ).

Stream 06: AI and cryptocurrencies

Although algorithms and AI advisors are gaining ground, human traders still dominate the cryptocurrency market (Petukhina et al. 2021 ). For this reason, substantial arbitrage opportunities are available in the Bitcoin market, especially for USD–CNY and EUR–CNY currency pairs (Pichl and Kaizoji 2017 ). Concerning daily realised volatility, the HAR model delivers good results. Likewise, the feed-forward neural network effectively approximates the daily logarithmic returns of BTCUSD and the shape of their distribution (Pichl and Kaizoji 2017 ).

Additionally, the Hierarchical Risk Parity (HRP) approach, an asset allocation method based on machine learning, represents a powerful risk management tool able to manage the high volatility characterising Bitcoin prices, thereby helping cryptocurrency investors (Burggraf 2021 ).

Stream 07: AI and derivatives

ANNs and machine learning models are accurate predictors in pricing financial derivatives. Jang and Lee ( 2019 ) propose a machine learning model that outperforms traditional American option pricing models: the generative Bayesian NN; Culkin and Das ( 2017 ) use a feed-forward deep NN to reproduce Black and Scholes’ option pricing formula with a high accuracy rate. Similarly, Chen and Wan ( 2021 ) suggest a deep NN for American option and deltas pricing in high dimensions. Funahashi ( 2020 ), on the contrary, rejects deep learning for option pricing due to the instability of the prices, and introduces a new hybrid method that combines ANNs and asymptotic expansion (AE). This model does not directly predict the option price but measures instead, the difference between the target (i.e. derivative price) and its approximation. As a result, the ANN becomes faster, more accurate and “lighter” in terms of layers and training data volume. This innovative method mimics a human learning process when one learns about a new object by recognising its differences from a similar and familiar item (Funahashi 2020 ).

Stream 08: AI and credit risk in banks

The research stream labelled “AI and Credit Risk in Banks” Footnote 2 includes the following sub-streams: AI and Bank Credit Risk; AI and Consumer Credit Risk and Default; AI and Financial Fraud detection/ Early Warning System; AI and Credit Scoring Models.

The first sub-stream addresses bank failure prediction. Machine learning and ANNs significantly outperform statistical approaches, although they lack transparency (Le and Viviani 2018 ). To overcome this limitation, Durango‐Gutiérrez et al. ( 2021 ) combine traditional methods (i.e. logistic regression) with AI (i.e. Multiple layer perceptron -MLP), thus gaining valuable insights on explanatory variables. With the scope of preventing further global financial crises, the banking industry relies on financial decision support systems (FDSSs), which are strongly improved by AI-based models (Abedin et al. 2019 ).

The second sub-stream compares classic and advanced consumer credit risk models. Supervised learning tools, such as SVM, random forest, and advanced decision trees architectures, are powerful predictors of credit card delinquency: some of them can predict credit events up to 12 months in advance (Lahmiri 2016 ; Khandani et al. 2010 ; Butaru et al. 2016 ). Jagric et al. ( 2011 ) propose a learning vector quantization (LVQ) NN that better deals with categorical variables, achieving an excellent classification rate (i.e. default, non-default). Such methods overcome logit-based approaches and result in cost savings ranging from 6% up to 25% of total losses (Khadani et al. 2010 ).

The third group discusses the role of AI in early warning systems. On a retail level, advanced random forests accurately detect credit card fraud based on customer financial behaviour and spending pattern, and then flag it for investigation (Kumar et al. 2019 ). Similarly, Coats and Fant ( 1993 ) build a NN alert model for distressed firms that outperforms linear techniques. On a macroeconomic level, systemic risk monitoring models enhanced by AI technologies, i.e. k-nearest neighbours and sophisticated NNs, support macroprudential strategies and send alerts in case of global unusual financial activities (Holopainen, and Sarlin 2017 ; Huang and Guo 2021 ). However, these methods are still work-in-progress.

The last group studies intelligent credit scoring models, with machine learning systems, Adaboost and random forest delivering the best forecasts for credit rating changes. These models are robust to outliers, missing values and overfitting, and require minimal data intervention (Jones et al. 2015 ). As an illustration, combining data mining and machine learning, Xu et al. ( 2019 ) build a highly sophisticated model that selects the most important predictors and eliminates noisy variables, before performing the task.

Stream 09: AI and investor sentiment analysis

Investor sentiment has become increasingly important in stock prediction. For this purpose, sentiment analysis extracts investor sentiment from social media platforms (e.g. StockTwits, Yahoo-finance, eastmoney.com) through natural language processing and data mining techniques, and classifies it into negative or positive (Yin et al. 2020 ). The resulting sentiment is regarded either as a risk factor in asset pricing models, an input to forecast asset price direction, or an intraday stock index return (Houlihan and Creamer 2021 ; Renault 2017 ). In this respect, Yin et al. ( 2020 ) find that investor sentiment has a positive correlation with stock liquidity, especially in slowing markets; additionally, sensitivity to liquidity conditions tends to be higher for firms with larger size and a higher book-to-market ratio, and especially those operating in weakly regulated markets. As for predictions, daily news usually predicts stock returns for few days, whereas weekly news predicts returns for longer period, from one month to one quarter. This generates a return effect on stock prices, as much of the delayed response to news occurs around major events in company life, specifically earnings announcement, thus making investor sentiment a very important variable in assessing the impact of AI in financial markets. (Heston and Sinha 2017 ).

Stream 10: AI and foreign exchange management

The last stream addresses AI and the management of foreign exchange. Cost-effective trading or hedging activities in this market require accurate exchange rate forecasts (Galeshchuk and Mukherjee 2017 ). In this regard, the HONN model significantly outperforms traditional neural networks (i.e. multi-layer perceptron, recurrent NNs, Psi sigma-models) in forecasting and trading the EUR/USD currency pair using ECB daily fixing series as input data (Dunis et al. 2010 ). On the contrary, Galeshchuk and Mukherjee ( 2017 ) consider these methods as unable to predict the direction of change in the forex rates and, therefore, ineffective at supporting profitable trading. For this reason, they apply a deep NN (Convolution NNs) to forecast three main exchange rates (i.e. EUR/USD, GBP/USD, and JPY/USD). The model performs remarkably better than time series models (e.g. ARIMA: Autoregressive integrated moving average) and machine learning classifiers. To sum up, from this research stream it emerges that AI-based models, such as NARX and the above-mentioned techniques, achieve better prediction performance than statistical or time series models, as remarked by Amelot et al. ( 2021 ).

Issues that deserve further investigation

As shown in Sect. " A detailed account of the literature on AI in Finance ", the literature on Artificial Intelligence in Finance is vast and rapidly growing as technological progress advances. There are, however, some aspects of this subject that are unexplored yet or that require further investigation. In this section, we further scrutinise, through content analysis, the papers published between 2015 and 2021 (as we want to focus on the most recent research directions) in order to define a potential research agenda. Hence, for each of the ten research streams presented in Sect. " Identification of the major research streams ", we report a number of research questions that were put forward over time and are still at least partly unaddressed. The complete list of research questions is enclosed in Table  8 .

AI and the stock market

This research stream focuses on algorithmic trading (AT) and stock price prediction. Future research in the field could analyse more deeply alternative AI-based market predictors (e.g. clustering algorithms and similar learning methods) and draw up a regime clustering algorithm in order to get a clearer view of the potential applications and benefits of clustering methodologies (Law, and Shawe-Taylor 2017 ). In this regard, Litzenberger et al. ( 2012 ) and Booth et al. ( 2015 ) recommend broadening the study to market cycles and regulation policies that may affect AI models’ performance in stock prediction and algorithmic trading, respectively. Footnote 3 Furthermore, forecasting models should be evaluated with deeper order book information, which may lead to a higher prediction accuracy of stock prices (Tashiro et al. 2019 ).

AI and trading models

This research stream builds on the application of AI in trading models. Robo advisors are the evolution of basic trading models: they are easily accessible, cost-effective, profitable for investors and, unlike human traders, immune to behavioural biases. Robo advisory, however, is a recent phenomenon and needs further performance evaluations, especially in periods of financial distress, such as the post-COVID-19 one (Tao et al. 2021 ), or in the case of the so-called “Black swan” events. Conversely, trading models based on spatial neural networks (an advanced ANN) outperform all statistical techniques in modelling limit order books and suggest an extensive interpretation of the joint distribution of the best bid and best ask. Given the versatility of such a method, forthcoming research should resort to it with the aim of understanding whether neural networks with more order book information (i.e. order flow history) lead to better trading performance (Sirignano 2018 ).

AI and volatility forecasting

As previously mentioned, volatility forecasting is a challenging task. Although recent studies report solid results in the field (see Sermpinis et al. 2013 ; Vortelinos 2017 ), future work could deploy more elaborated recurrent NNs by modifying the activation function of the processing units composing the ANNs, or by adding hidden layers and then evaluate their performance (Bucci 2020 ). Since univariate time series are commonly used for realised volatility prediction, it would be interesting to also inquire about the performance of multivariate time series.

AI and portfolio management

This research stream examines the use of AI in portfolio selection strategies. Past studies have developed AI models that are capable of replicating the performance of stock indexes (known as index tracking strategy) and constructing efficient portfolios with no human intervention. In this regard, Kim and Kim ( 2020 ) suggest focussing on optimising AI algorithms to boost index-tracking performance. Soleymani and Vasighi ( 2020 ) recognise the importance of clustering algorithms in portfolio management and propose a clustering approach powered by a membership function, also known as fuzzy clustering, to further improve the selection of less risky and most profitable assets. For this reason, analysis of asset volatility through deep learning should be embedded in portfolio selection models (Chen and Ge 2021 ).

AI and performance, risk, default valuation

Bankruptcy and performance prediction models rely on binary classifiers that only provide two outcomes, e.g. risky–not risky, default–not default, good–bad performance. These methods may be restrictive as sometimes there is not a clear distinction between the two categories (Jones et al. 2017 ). Therefore, prospective research might focus on multiple outcome domains and extend the research area to other contexts, such as bond default prediction, corporate mergers, reconstructions, takeovers, and credit rating changes (Jones et al. 2017 ). Corporate credit ratings and social media data should be included as independent predictors in credit risk forecasts to evaluate their impact on the accuracy of risk-predicting models (Uddin et al. 2020 ). Moreover, it is worth evaluating the benefits of a combined human–machine approach, where analysts contribute to variables’ selection alongside data mining techniques (Jones et al. 2017 ). Forthcoming studies should also address black box and over-fitting biases (Sariev and Germano 2020 ), as well as provide solutions for the manipulation and transformation of missing input data relevant to the model (Jones et al. 2017 ).

AI and cryptocurrencies

The use of AI in the cryptocurrency market is in its infancy, and so are the policies regulating it. As the digital currency industry has become increasingly important in the financial world, future research should study the impact of regulations and blockchain progress on the performance of AI techniques applied in this field (Petukhina et al., 2021 ). Cryptocurrencies, and especially Bitcoins, are extensively used in financial portfolios. Hence, new AI approaches should be developed in order to optimise cryptocurrency portfolios (Burggraf 2021 ).

AI and derivatives

This research stream examines derivative pricing models based on AI. A valuable research area that should be further explored concerns the incorporation of text-based input data, such as tweets, blogs, and comments, for option price prediction (Jang and Lee 2019 ). Since derivative pricing is an utterly complicated task, Chen and Wan ( 2021 ) suggest studying advanced AI designs that minimise computational costs. Funahashi ( 2020 ) recognises a typical human learning process (i.e. recognition by differences) and applies it to the model, significantly simplifying the pricing problem. In the light of these considerations, prospective research may also investigate other human learning and reasoning paths that can improve AI reasoning skills.

AI and credit risk in banks

Bank default prediction models often rely solely on accounting information from banks’ financial statements. To enhance default forecast, future work should consider market data as well (Le and Viviani 2018 ). Credit risk includes bank account fraud and financial systemic risk. Fraud detection based on AI needs further experiments in terms of training speed and classification accuracy (Kumar et al. 2019 ). Early warning models, on the other hand, should be more sensitive to systemic risk. For this reason, subsequent studies ought to provide a common platform for modelling systemic risk and visualisation techniques enabling interaction with both model parameters and visual interfaces (Holopainen and Sarlin 2017 ).

AI and investor sentiment analysis

Sentiment analysis builds on text-based data from social networks and news to identify investor sentiment and use it as a predictor of asset prices. Forthcoming research may analyse the effect of investor sentiment on specific sectors (Houlihan and Creamer 2021 ), as well as the impact of diverse types of news on financial markets (Heston and Sinha 2017 ). This is important for understanding how markets process information. In this respect, Xu and Zhao ( 2022 ) propose a deeper analysis of how social networks’ sentiment affects individual stock returns. They also believe that the activity of financial influencers, such as financial analysts or investment advisors, potentially affects market returns and needs to be considered in financial forecasts or portfolio management.

AI and foreign exchange management

This research stream investigates the application of AI models to the Forex market. Deep networks, in particular, efficiently predict the direction of change in forex rates thanks to their ability to “learn” abstract features (i.e. moving averages) through hidden layers. Future work should study whether these abstract features can be inferred from the model and used as valid input data to simplify the deep network structure (Galeshchuk and Mukherjee 2017 ). Moreover, the performance of foreign exchange trading models should be assessed in financial distressed times. Further research may also compare the predictive performance of advanced times series models, such as genetic algorithms and hybrid NNs, for forex trading purposes (Amelot et al. 2021 ).

Conclusions

Despite its recent advent, Artificial Intelligence has revolutionised the entire financial system, thanks to advanced computer science and Big Data Analytics and the increasing outflow of data generated by consumers, investors, business, and governments’ activities. Therefore, it is not surprising that a growing strand of literature has examined the uses, benefits and potential of AI applications in Finance. This paper aims to provide an accurate account of the state of the art, and, in doing so, it would represent a useful guide for readers interested in this topic and, above all, the starting point for future research. To this purpose, we collected a large number of articles published in journals indexed in Web of Science (WoS), and then resorted to both bibliometric analysis and content analysis. In particular, we inspected several features of the papers under study, identified the main AI applications in Finance and highlighted ten major research streams. From this extensive review, it emerges that AI can be regarded as an excellent market predictor and contributes to market stability by minimising information asymmetry and volatility; this results in profitable investing systems and accurate performance evaluations. Additionally, in the risk management area, AI aids with bankruptcy and credit risk prediction in both corporate and financial institutions; fraud detection and early warning models monitor the whole financial system and raise expectations for future artificial market surveillance. This suggests that global financial crises or unexpected financial turmoil will be likely to be anticipated and prevented.

All in all, judging from the rapid widespread of AI applications in the financial sphere and across a large variety of countries, and, more in general, based on the growth rate exhibited by technological progress over time, we expect that the use of AI tools will further expand, both geographically, across sectors and across financial areas. Hence, firms that still struggle with coping with the latest wave of technological change should be aware of that, and try to overcome this burden in order to reap the potential benefits associated with the adoption of AI and remain competitive. In the light of these considerations, policymakers should motivate companies, especially those that have not adopted yet, or have just begun to introduce AI applications, to catch up, for instance by providing funding or training courses aimed to strengthen the complex skills required by employees dealing with these sophisticated systems and languages.

This study presents some limitations. For instance, it tackles a significant range of interrelated topics (in particular, the main financial areas affected by AI which have been the main object of past research), and then presents a concise description for each of them; other studies may decide to focus on only one or a couple of subjects and provide a more in-depth account of the chosen one(s). Also, we are aware that technological change has been progressing at an unprecedented fast and growing pace; even though we considered a significantly long time-frame and a relevant amount of studies have been released in the first two decades of the XXI century, we are aware that further advancements have been made from 2021 (the last year included in the time frame used to the select our sample); for instance, in the last few years, AI experts, policymakers, and also a growing number of scholars have been debating the potential and risks of AI-related devices, such as chatGBT and the broader and more elusive “metaverse” (see for instance Mondal et al. 2023 and Calzada 2023 , for an overview). Hence, future contributions may advance our understanding of the implications of these latest developments for finance and other important fields, such as education and health.

Data availability

Full data are available from authors upon request.

The term AI winter first appeared in 1984 as the topic of a public debate at the annual meeting of the American Association of Artificial Intelligence (AAAI). It referred to hype generated by over promises from developers, unrealistically high expectations from end users, and extensive media promotion.

Since credit risk in the banking industry remarkably differs from credit risk in firms, the two of them are treated separately.

As this issue has not been addressed in the latest papers, we include these two papers although their year of publication lies outside the established range period.

Abdou HA, Ellelly NN, Elamer AA, Hussainey K, Yazdifar H (2021) Corporate governance and earnings management Nexus: evidence from the UK and Egypt using neural networks. Int J Financ Econ 26(4):6281–6311. https://doi.org/10.1002/ijfe.2120

Article   Google Scholar  

Abedin MZ, Guotai C, Moula F, Azad AS, Khan MS (2019) Topological applications of multilayer perceptrons and support vector machines in financial decision support systems. Int J Financ Econ 24(1):474–507. https://doi.org/10.1002/ijfe.1675

Acemoglu D, Restrepo P (2020) The wrong kind of AI? Artificial intelligence and the future of labor demand. Cambr J Reg Econ Soc, Cambr Pol Econ Soc 13(1):25–35

Altman EI, Marco G, Varetto F (1994) Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience). J Bank Finance 18(3):505–529. https://doi.org/10.1016/0378-4266(94)90007-8

Amelot LM, Subadar Agathee U, Sunecher Y (2021) Time series modelling, narx neural network and HYBRID kpca–svr approach to forecast the foreign exchange market in Mauritius. Afr J Econ Manag Stud 12(1):18–54. https://doi.org/10.1108/ajems-04-2019-0161

Bekiros SD, Georgoutsos DA (2008) Non-linear dynamics in financial asset returns: The predictive power of the CBOE volatility index. Eur J Fin 14(5):397–408. https://doi.org/10.1080/13518470802042203

Biju AKVN, Thomas AS, Thasneem J (2020) Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis. Qual Quant Online First. https://doi.org/10.1007/s11135-023-01673-0

Black F, Scholes M (1973) The pricing of Options and corporate liabilities. J Pol Econ 81(3):637–654

Article   MathSciNet   Google Scholar  

Booth A, Gerding E, McGroarty F (2015) Performance-weighted ensembles of random forests for predicting price impact. Quant Finance 15(11):1823–1835. https://doi.org/10.1080/14697688.2014.983539

Bresnahan TF, Trajtenberg M (1995) General purpose technologies ‘Engines of growth’? J Econom 65(1):83–108. https://doi.org/10.1016/0304-4076(94)01598-T

Bucci A (2020) Realized volatility forecasting with neural networks. J Financ Econom 3:502–531. https://doi.org/10.1093/jjfinec/nbaa008

Buchanan, B. G. (2019). Artificial intelligence in finance - Alan Turing Institute. https://www.turing.ac.uk/sites/default/files/2019-04/artificial_intelligence_in_finance_-_turing_report_0.pdf .

Burggraf T (2021) Beyond risk parity – a machine learning-based hierarchical risk parity approach on cryptocurrencies. Finance Res Lett 38:101523. https://doi.org/10.1016/j.frl.2020.101523

Butaru F, Chen Q, Clark B, Das S, Lo AW, Siddique A (2016) Risk and risk management in the credit card industry. J Bank Finance 72:218–239. https://doi.org/10.1016/j.jbankfin.2016.07.015

Caglayan M, Pham T, Talavera O, Xiong X (2020) Asset mispricing in peer-to-peer loan secondary markets. J Corp Finan 65:101769. https://doi.org/10.1016/j.jcorpfin.2020.101769

Calomiris CW, Mamaysky H (2019) How news and its context drive risk and returns around the world. J Financ Econ 133(2):299–336. https://doi.org/10.1016/j.jfineco.2018.11.009

Calzada I (2023) Disruptive technologies for e-diasporas: blockchain, DAOs, data cooperatives, metaverse, and ChatGPT. Futures 154:103258. https://doi.org/10.1016/j.futures.2023.103258

Cao Y, Liu X, Zhai J, Hua S (2022) A Two-stage Bayesian network model for corporate bankruptcy prediction. Int J Financ Econ 27(1):455–472. https://doi.org/10.1002/ijfe.2162

Chaboud AP, Chiquoine B, Hjalmarsson E, Vega C (2014) Rise of the machines: Algorithmic trading in the foreign exchange market. J Financ 69(5):2045–2084. https://doi.org/10.1111/jofi.12186

Chen S, Ge L (2021) A learning-based strategy for portfolio selection. Int Rev Econ Financ 71:936–942. https://doi.org/10.1016/j.iref.2020.07.010

Chen Y, Wan JW (2021) Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions. Quant Finance 21(1):45–67. https://doi.org/10.1080/14697688.2020.1788219

Article   MathSciNet   CAS   Google Scholar  

Chen J, Chang T, Ho C, Diaz JF (2013) Grey relational analysis and neural Network forecasting of reit returns. Quantitative Finance 14(11):2033–2044. https://doi.org/10.1080/14697688.2013.816765

Coats PK, Fant LF (1993) Recognizing financial distress patterns using a neural network tool. Financ Manage 22(3):142. https://doi.org/10.2307/3665934

Corazza M, De March D, Di Tollo G (2021) Design of adaptive Elman networks for credit risk assessment. Quantitative Finance 21(2):323–340. https://doi.org/10.1080/14697688.2020.1778175

Cortés EA, Martínez MG, Rubio NG (2008) FIAMM return persistence analysis and the determinants of the fees charged. Span J Finance Account Revis Esp De Financ Y Contab 37(137):13–32. https://doi.org/10.1080/02102412.2008.10779637

Creamer G (2012) Model calibration and automated trading agent for euro futures. Quant Finance 12(4):531–545. https://doi.org/10.1080/14697688.2012.664921

Creamer G, Freund Y (2010) Automated trading with boosting and expert weighting. Quant Finance 10(4):401–420. https://doi.org/10.1080/14697680903104113

Cucculelli M, Recanatini M (2022) Distributed Ledger technology systems in securities post-trading services. Evid Eur Global Syst Banks Eur J Finance 28(2):195–218. https://doi.org/10.1080/1351847X.2021.1921002

Culkin R, Das SR (2017) Machine learning in finance: The case of deep learning for option pricing. J Invest Management 15(4):92–100

Google Scholar  

D’Hondt C, De Winne R, Ghysels E, Raymond S (2020) Artificial intelligence alter egos: Who might benefit from robo-investing? J Empir Financ 59:278–299. https://doi.org/10.1016/j.jempfin.2020.10.002

Deku SY, Kara A, Semeyutin A (2020) The predictive strength of mbs yield spreads during asset bubbles. Rev Quant Financ Acc 56(1):111–142. https://doi.org/10.1007/s11156-020-00888-8

Dixon M, Klabjan D, Bang JH (2017) Classification-based financial markets prediction using deep neural networks. Algorithmic Finance 6(3–4):67–77. https://doi.org/10.3233/af-170176

Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res 133:285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Downe-Wamboldt B (1992) Content analysis: method, applications, and issues. Health Care Women Int 13(3):313–321. https://doi.org/10.1080/07399339209516006

Article   CAS   PubMed   Google Scholar  

Dubey RK, Chauhan Y, Syamala SR (2017) Evidence of algorithmic trading from Indian equity Market: Interpreting the transaction velocity element of financialization. Res Int Bus Financ 42:31–38. https://doi.org/10.1016/j.ribaf.2017.05.014

Dunis CL, Laws J, Sermpinis G (2010) Modelling and trading the EUR/USD exchange rate at the ECB fixing. Eur J Finance 16(6):541–560. https://doi.org/10.1080/13518470903037771

Dunis CL, Laws J, Karathanasopoulos A (2013) Gp algorithm versus hybrid and mixed neural networks. Eur J Finance 19(3):180–205. https://doi.org/10.1080/1351847x.2012.679740

Durango-Gutiérrez MP, Lara-Rubio J, Navarro-Galera A (2021) Analysis of default risk in microfinance institutions under the Basel Iii framework. Int J Financ Econ. https://doi.org/10.1002/ijfe.2475

Episcopos A, Pericli A, Hu J (1998) Commercial mortgage default: A comparison of logit with radial basis function networks. J Real Estate Finance Econ 17(2):163–178

Ernst, E., Merola, R., and Samaan, D. (2018). The economics of artificial intelligence: Implications for the future of work. ILO Futur Work Res Paper Ser No. 5.

Feldman D, Gross S (2005) Mortgage default: classification trees analysis. J Real Estate Finance Econ 30(4):369–396. https://doi.org/10.1007/s11146-005-7013-7

Fernandes M, Medeiros MC, Scharth M (2014) Modeling and predicting the CBOE market volatility index. J Bank Finance 40:1–10. https://doi.org/10.1016/j.jbankfin.2013.11.004

Frankenfield, J. (2021). How Artificial Intelligence Works. Retrieved June 11, 2021, from https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp

Frino A, Prodromou T, Wang GH, Westerholm PJ, Zheng H (2017) An empirical analysis of algorithmic trading around earnings announcements. Pac Basin Financ J 45:34–51. https://doi.org/10.1016/j.pacfin.2016.05.008

Frino A, Garcia M, Zhou Z (2020) Impact of algorithmic trading on speed of adjustment to new information: Evidence from interest rate derivatives. J Futur Mark 40(5):749–760. https://doi.org/10.1002/fut.22104

Funahashi H (2020) Artificial neural network for option pricing with and without asymptotic correction. Quant Finance 21(4):575–592. https://doi.org/10.1080/14697688.2020.1812702

Galeshchuk S, Mukherjee S (2017) Deep networks for predicting direction of change in foreign exchange rates. Intell Syst Account Finance Manage 24(4):100–110. https://doi.org/10.1002/isaf.1404

Gao M, Liu Y, Wu W (2016) Fat-finger trade and market quality: the first evidence from China. J Futur Mark 36(10):1014–1025. https://doi.org/10.1002/fut.21771

Gepp A, Kumar K, Bhattacharya S (2010) Business failure prediction using decision trees. J Forecast 29(6):536–555. https://doi.org/10.1002/for.1153

Guotai C, Abedin MZ (2017) Modeling credit approval data with neural networks: an experimental investigation and optimization. J Bus Econ Manag 18(2):224–240. https://doi.org/10.3846/16111699.2017.1280844

Hamdi M, Aloui C (2015) Forecasting crude oil price using artificial neural networks: a literature survey. Econ Bull 35(2):1339–1359

Hendershott T, Jones CM, Menkveld AJ (2011) Does algorithmic trading improve liquidity? J Financ 66(1):1–33. https://doi.org/10.1111/j.1540-6261.2010.01624.x

Hentzen JK, Hoffmann A, Dolan R, Pala E (2022a) Artificial intelligence in customer-facing financial services: a systematic literature review and agenda for future research. Int J Bank Market 40(6):1299–1336. https://doi.org/10.1108/IJBM-09-2021-0417

Hentzen JK, Hoffmann AOI, Dolan RM (2022b) Which consumers are more likely to adopt a retirement app and how does it explain mobile technology-enabled retirement engagement? Int J Consum Stud 46:368–390. https://doi.org/10.1111/ijcs.12685

Heston SL, Sinha NR (2017) News vs sentiment: predicting stock returns from news stories. Financial Anal J 73(3):67–83. https://doi.org/10.2469/faj.v73.n3.3

Holopainen M, Sarlin P (2017) Toward robust early-warning models: a horse race, ensembles and model uncertainty. Quant Finance 17(12):1933–1963. https://doi.org/10.1080/14697688.2017.1357972

Houlihan P, Creamer GG (2021) Leveraging social media to predict continuation and reversal in asset prices. Comput Econ 57(2):433–453. https://doi.org/10.1007/s10614-019-09932-9

Huang X, Guo F (2021) A kernel fuzzy twin SVM model for early warning systems of extreme financial risks. Int J Financ Econ 26(1):1459–1468. https://doi.org/10.1002/ijfe.1858

Huang Y, Kuan C (2021) Economic prediction with the fomc minutes: an application of text mining. Int Rev Econ Financ 71:751–761. https://doi.org/10.1016/j.iref.2020.09.020

IBM Cloud Education. (2020). What are Neural Networks? Retrieved May 10, 2021, from https://www.ibm.com/cloud/learn/neural-networks

Jagric T, Jagric V, Kracun D (2011) Does non-linearity matter in retail credit risk modeling? Czech J Econ Finance Faculty Soc Sci 61(4):384–402

Jagtiani J, Kose J (2018) Fintech: the impact on consumers and regulatory responses. J Econ Bus 100:1–6. https://doi.org/10.1016/j.jeconbus.2018.11.002

Jain A, Jain C, Khanapure RB (2021) Do algorithmic traders improve liquidity when information asymmetry is high? Q J Financ 11(01):1–32. https://doi.org/10.1142/s2010139220500159

Article   CAS   Google Scholar  

Jang H, Lee J (2019) Generative Bayesian neural network model for risk-neutral pricing of American index options. Quant Finance 19(4):587–603. https://doi.org/10.1080/14697688.2018.1490807

Jiang Y, Jones S (2018) Corporate distress prediction in China: a machine learning approach. Account Finance 58(4):1063–1109. https://doi.org/10.1111/acfi.12432

Jones S, Wang T (2019) Predicting private company failure: a multi-class analysis. J Int Finan Markets Inst Money 61:161–188. https://doi.org/10.1016/j.intfin.2019.03.004

Jones S, Johnstone D, Wilson R (2015) An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. J Bank Finance 56:72–85. https://doi.org/10.1016/j.jbankfin.2015.02.006

Jones S, Johnstone D, Wilson R (2017) Predicting corporate bankruptcy: an evaluation of alternative statistical frameworks. J Bus Financ Acc 44(1–2):3–34. https://doi.org/10.1111/jbfa.12218

Kamiya S, Kim YH, Park S (2018) The face of risk: Ceo facial masculinity and firm risk. Eur Financ Manag 25(2):239–270. https://doi.org/10.1111/eufm.12175

Kanas A (2001) Neural network linear forecasts for stock returns. Int J Financ Econ 6(3):245–254. https://doi.org/10.1002/ijfe.156

Kelejian HH, Mukerji P (2016) Does high frequency algorithmic trading matter for non-at investors? Res Int Bus Financ 37:78–92. https://doi.org/10.1016/j.ribaf.2015.10.014

Kercheval AN, Zhang Y (2015) Modelling high-frequency limit order book dynamics with support vector machines. Quant Finance 15(8):1315–1329. https://doi.org/10.1080/14697688.2015.1032546

Khandani AE, Kim AJ, Lo AW (2010) Consumer credit-risk models via machine-learning algorithms. J Bank Finance 34(11):2767–2787. https://doi.org/10.1016/j.jbankfin.2010.06.001

Kim S, Kim D (2014) Investor sentiment from internet message postings and the predictability of stock returns. J Econ Behav Organ 107:708–729. https://doi.org/10.1016/j.jebo.2014.04.015

Kim S, Kim S (2020) Index tracking through deep latent representation learning. Quant Finance 20(4):639–652. https://doi.org/10.1080/14697688.2019.1683599

Kumar G, Muckley CB, Pham L, Ryan D (2019) Can alert models for fraud protect the elderly clients of a financial institution? Eur J Finance 25(17):1683–1707. https://doi.org/10.1080/1351847x.2018.1552603

Lahmiri S (2016) Features selection, data mining and financial risk classification: a comparative study. Intell Syst Account Finance Managed 23(4):265–275. https://doi.org/10.1002/isaf.1395

Lahmiri S, Bekiros S (2019) Can machine learning approaches predict corporate bankruptcy? evidence from a qualitative experimental design. Quant Finance 19(9):1569–1577. https://doi.org/10.1080/14697688.2019.1588468

Law T, Shawe-Taylor J (2017) Practical Bayesian support vector regression for financial time series prediction and market condition change detection. Quant Finance 17(9):1403–1416. https://doi.org/10.1080/14697688.2016.1267868

Le HH, Viviani J (2018) Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios. Res Int Bus Financ 44:16–25. https://doi.org/10.1016/j.ribaf.2017.07.104

Li J, Li G, Zhu X, Yao Y (2020) Identifying the influential factors of commodity futures prices through a new text mining approach. Quant Finance 20(12):1967–1981. https://doi.org/10.1080/14697688.2020.1814008

Litzenberger R, Castura J, Gorelick R (2012) The impacts of automation and high frequency trading on market quality. Annu Rev Financ Econ 4(1):59–98. https://doi.org/10.1146/annurev-financial-110311-101744

Loukeris N, Eleftheriadis I (2015) Further higher moments in portfolio Selection and a priori detection of bankruptcy, under multi-layer perceptron neural Networks, HYBRID Neuro-genetic MLPs, and the voted perceptron. Int J Financ Econ 20(4):341–361. https://doi.org/10.1002/ijfe.1521

Lu J, Ohta H (2003) A data and digital-contracts driven method for pricing complex derivatives. Quant Finance 3(3):212–219. https://doi.org/10.1088/1469-7688/3/3/307

Lu Y, Shen C, Wei Y (2013) Revisiting early warning signals of corporate credit default using linguistic analysis. Pac Basin Financ J 24:1–21. https://doi.org/10.1016/j.pacfin.2013.02.002

Martinelli A, Mina A, Moggi M (2021) The enabling technologies of industry 4.0: examining the seeds of the fourth industrial revolution. Ind Corp Chang 2021:1–28. https://doi.org/10.1093/icc/dtaa060

Mondal S, Das S, Vrana VG (2023) How to bell the cat? a theoretical review of generative artificial intelligence towards digital disruption in all walks of life. Technologies 11(2):44. https://doi.org/10.3390/technologies11020044

Moshiri S, Cameron N (2000) Neural network versus econometric models in forecasting inflation. J Forecast 19(3):201–217. https://doi.org/10.1002/(sici)1099-131x(200004)19:33.0.co;2-4

Mselmi N, Lahiani A, Hamza T (2017) Financial distress prediction: the case of French small and medium-sized firms. Int Rev Financ Anal 50:67–80. https://doi.org/10.1016/j.irfa.2017.02.004

Nag AK, Mitra A (2002) Forecasting daily foreign exchange rates using genetically optimized neural networks. J Forecast 21(7):501–511. https://doi.org/10.1002/for.838

Papadimitriou T, Goga P, Agrapetidou A (2020) The resilience of the US banking system. Int J Finance Econ. https://doi.org/10.1002/ijfe.2300

Parot A, Michell K, Kristjanpoller WD (2019) Using artificial neural networks to forecast exchange rate, including Var-vecm residual analysis and prediction linear combination. Intell Syst Account Finance Manage 26(1):3–15. https://doi.org/10.1002/isaf.1440

Petukhina AA, Reule RC, Härdle WK (2020) Rise of the machines? intraday high-frequency trading patterns of cryptocurrencies. Eur J Finance 27(1–2):8–30. https://doi.org/10.1080/1351847x.2020.1789684

Petukhina A, Trimborn S, Härdle WK, Elendner H (2021) Investing with cryptocurrencies – evaluating their potential for portfolio allocation strategies. Quant Finance 21(11):1825–1853. https://doi.org/10.1080/14697688.2021.1880023

Pichl L, Kaizoji T (2017) Volatility analysis of bitcoin price time series. Quant Finance Econ 1(4):474–485. https://doi.org/10.3934/qfe.2017.4.474

Pompe PP, Bilderbeek J (2005) The prediction of bankruptcy of small- and medium-sized industrial firms. J Bus Ventur 20(6):847–868. https://doi.org/10.1016/j.jbusvent.2004.07.003

PricewaterhouseCoopers-PwC (2017). PwC‘s global Artificial Intelligence Study: Sizing the prize. Retrieved May 10, 2021, from https://www.PwC.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html .

PricewaterhouseCoopers- PwC (2018). The macroeconomic impact of artificial intelligence. Retrieved May 17, 2021, from https://www.PwC.co.uk/economic-services/assets/macroeconomic-impact-of-ai-technical-report-feb-18.pdf .

PricewaterhouseCoopers- PwC (2020). How mature is AI adoption in financial services? Retrieved May 15, 2021, from https://www.PwC.de/de/future-of-finance/how-mature-is-ai-adoption-in-financial-services.pdf .

Qi M (1999) Nonlinear predictability of stock returns using financial and economic variables. J Bus Econ Stat 17(4):419. https://doi.org/10.2307/1392399

Qi M, Maddala GS (1999) Economic factors and the stock market: a new perspective. J Forecast 18(3):151–166. https://doi.org/10.1002/(sici)1099-131x(199905)18:33.0.co;2-v

Raj M, Seamans R (2019) Primer on artificial intelligence and robotics. J Organ Des 8(1):1–14. https://doi.org/10.1186/s41469-019-0050-0

Rasekhschaffe KC, Jones RC (2019) Machine learning for stock selection. Financ Anal J 75(3):70–88. https://doi.org/10.1080/0015198x.2019.1596678

Reber B (2014) Estimating the risk–return profile of new venture investments using a risk-neutral framework and ‘thick’ models. Eur J Finance 20(4):341–360. https://doi.org/10.1080/1351847x.2012.708471

Reboredo JC, Matías JM, Garcia-Rubio R (2012) Nonlinearity in forecasting of high-frequency stock returns. Comput Econ 40(3):245–264. https://doi.org/10.1007/s10614-011-9288-5

Renault T (2017) Intraday online investor sentiment and return patterns in the U.S. stock market. J Bank Finance 84:25–40. https://doi.org/10.1016/j.jbankfin.2017.07.002

Rodrigues BD, Stevenson MJ (2013) Takeover prediction using forecast combinations. Int J Forecast 29(4):628–641. https://doi.org/10.1016/j.ijforecast.2013.01.008

Van Roy V, Vertesy D, Damioli G (2020). AI and robotics innovation. In K. F., Zimmermann (ed.), Handbook of Labor, Human Resources and Population Economics (pp. 1–35) Springer Nature

Sabău Popa DC, Popa DN, Bogdan V, Simut R (2021) Composite financial performance index prediction – a neural networks approach. J Bus Econ Manag 22(2):277–296. https://doi.org/10.3846/jbem.2021.14000

Sariev E, Germano G (2020) Bayesian regularized artificial neural networks for the estimation of the probability of default. Quant Finance 20(2):311–328. https://doi.org/10.1080/14697688.2019.1633014

Scholtus M, Van Dijk D, Frijns B (2014) Speed, algorithmic trading, and market quality around macroeconomic news announcements. J Bank Finance 38:89–105. https://doi.org/10.1016/j.jbankfin.2013.09.016

Sermpinis G, Laws J, Dunis CL (2013) Modelling and trading the realised volatility of the ftse100 futures with higher order neural networks. Eur J Finance 19(3):165–179. https://doi.org/10.1080/1351847x.2011.606990

Sirignano JA (2018) Deep learning for limit order books. Quant Finance 19(4):549–570. https://doi.org/10.1080/14697688.2018.1546053

Soleymani F, Vasighi M (2020) Efficient portfolio construction by means OF CVaR and K -means++ CLUSTERING analysis: evidence from the NYSE. Int J Financ Econ. https://doi.org/10.1002/ijfe.2344

Sun T, Vasarhelyi MA (2018) Predicting credit card delinquencies: an application of deep neural networks. Intell Syst Account Finance Manage 25(4):174–189. https://doi.org/10.1002/isaf.1437

Szczepański, M. (2019). Economic impacts of artificial intelligence. Retrieved May 10, 2021, from https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/637967/EPRS_BRI(2019)637967_EN.pdf

Tao R, Su C, Xiao Y, Dai K, Khalid F (2021) Robo advisors, algorithmic trading and investment management: Wonders of fourth industrial revolution in financial markets. Technol Forecast Soc Chang 163:120421. https://doi.org/10.1016/j.techfore.2020.120421

Tashiro D, Matsushima H, Izumi K, Sakaji H (2019) Encoding of high-frequency order information and prediction of short-term stock price by deep learning. Quant Finance 19(9):1499–1506. https://doi.org/10.1080/14697688.2019.1622314

Trinkle BS, Baldwin AA (2016) Research opportunities for neural networks: the case for credit. Intell Syst Account Finance Manage 23(3):240–254. https://doi.org/10.1002/isaf.1394

Trippi RR, DeSieno D (1992) Trading equity index futures with a neural network. J Portf Manage 19(1):27–33. https://doi.org/10.3905/jpm.1992.409432

Uddin MS, Chi G, Al Janabi MA, Habib T (2020) Leveraging random forest in micro-enterprises credit risk modelling for accuracy and interpretability. Int J Financ Econ. https://doi.org/10.1002/ijfe.2346

Varetto F (1998) Genetic algorithms applications in the analysis of insolvency risk. J Bank Finance 22(10–11):1421–1439. https://doi.org/10.1016/s0378-4266(98)00059-4

Vortelinos DI (2017) Forecasting realized Volatility: HAR against principal components combining, neural networks and GARCH. Res Int Bus Financ 39:824–839. https://doi.org/10.1016/j.ribaf.2015.01.004

Wall LD (2018) Some financial regulatory implications of artificial intelligence. J Econ Bus 100:55–63. https://doi.org/10.1016/j.jeconbus.2018.05.003

Wanke P, Azad MA, Barros C (2016a) Predicting efficiency in Malaysian islamic banks: a two-stage TOPSIS and neural networks approach. Res Int Bus Financ 36:485–498. https://doi.org/10.1016/j.ribaf.2015.10.002

Wanke P, Azad MA, Barros CP, Hassan MK (2016c) Predicting efficiency in Islamic banks: an integrated multicriteria decision Making (MCDM) Approach. J Int Finan Markets Inst Money 45:126–141. https://doi.org/10.1016/j.intfin.2016.07.004

Wei L, Li G, Zhu X, Li J (2019) Discovering bank risk factors from financial statements based on a new semi-supervised text mining algorithm. Account Finance 59(3):1519–1552. https://doi.org/10.1111/acfi.12453

Xu Y, Zhao J (2022) Can sentiments on macroeconomic news explain stock returns? evidence from social network data. Int J Financ Econ 27(2):2073–2088. https://doi.org/10.1002/ijfe.2260

Xu D, Zhang X, Feng H (2019) Generalized fuzzy soft sets theory-based novel hybrid ensemble credit scoring model. Int J Financ Econ 24(2):903–921. https://doi.org/10.1002/ijfe.1698

Yang Z, Platt MB, Platt HD (1999) Probabilistic neural networks in bankruptcy prediction. J Bus Res 44(2):67–74. https://doi.org/10.1016/s0148-2963(97)00242-7

Yin H, Wu X, Kong SX (2020) Daily investor sentiment, order flow imbalance and stock liquidity: Evidence from the Chinese stock market. Int J Financ Econ. https://doi.org/10.1002/ijfe.2402

Zhang Y, Chu G, Shen D (2021) The role of investor attention in predicting stock prices: the long short-term memory networks perspective. Financ Res Lett 38:101484. https://doi.org/10.1016/j.frl.2020.101484

Zhao Y, Stasinakis C, Sermpinis G, Shi Y (2018) Neural network copula portfolio optimization for exchange traded funds. Quant Finance 18(5):761–775. https://doi.org/10.1080/14697688.2017.1414505

Zheng X, Zhu M, Li Q, Chen C, Tan Y (2019) Finbrain: When finance meets ai 2.0. Front Inform Technol Electr Eng 20(7):914–924. https://doi.org/10.1631/fitee.1700822

Download references

Open access funding provided by Università Politecnica delle Marche within the CRUI-CARE Agreement. This study has not received specific funding. We are granted with research funds by our institution which would allow us to cover the publication costs.

Author information

Authors and affiliations.

Department of Strategy and Management, EDC Paris Business School, 10074m, Puteaux Cedex, La Défense, 92807, Paris, France

Salman Bahoo

Department of Economics and Social Sciences, Marche Polytechnic University, Piazzale Martelli 8, 60100, Ancona, Italy

Marco Cucculelli, Xhoana Goga & Jasmine Mondolo

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: MC and SB. Methodology: SB. Investigation: MC, XG, SB. Writing: Marco Cucculelli, Xhoana Goga, Salman Bahoo and JM. Writing – Review and Editing: JM. Supervision: MC . Project Administration: MC.

Corresponding author

Correspondence to Marco Cucculelli .

Ethics declarations

Conflict of interest.

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 kb)

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Bahoo, S., Cucculelli, M., Goga, X. et al. Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis. SN Bus Econ 4 , 23 (2024). https://doi.org/10.1007/s43546-023-00618-x

Download citation

Received : 25 April 2023

Accepted : 13 December 2023

Published : 20 January 2024

DOI : https://doi.org/10.1007/s43546-023-00618-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Artificial intelligence
  • Machine learning
  • Bibliometric analysis
  • Content analysis

JEL Classification

  • Find a journal
  • Publish with us
  • Track your research

Fintech and the Future of Finance

Stay connected.

image

This report explores the implications of fintech and the digital transformation of financial services for market outcomes on one side, and regulation and supervision, on the other, and how these interact.

  • Full Report
  • Policy Summary
  • Executive Summaries of All Technical Notes
  • Overview Paper

Technical Notes

📖  Read the 2-page policy summary

Fintech, the application of digital technology to financial services, is reshaping the future of finance– a process that the COVID-19 pandemic has accelerated. The ongoing digitization of financial services and money creates opportunities to build more inclusive and efficient financial services and promote economic development. Fintech is transforming the financial sector landscape rapidly and is blurring the boundaries of both financial firms and the financial sector. This  presents a paradigm shift that has various policy implications, including:

  • Foster beneficial innovation and competition, while managing the risks.
  • Broaden monitoring horizons and re-assess regulatory perimeters as embedding of financial services blurs the boundaries of the financial sector.
  • Be mindful of evolving policy tradeoffs as fintech adoption deepens.
  • Review regulatory, supervisory, and oversight frameworks to ensure they remain fit for purpose and enable the authorities to foster a safe, efficient, and inclusive financial system.
  • Anticipate market structure tendencies and proactively shape them to foster competition and contestability in the financial sector.
  • Modernize and open up financial infrastructures to enable competition and contestability.
  • Ensure public money remains fit for the digital world amid rapid advances in private money solutions.
  • Pursue strong cross-border coordination and sharing of information and best practices, given the supra-national nature of fintech.

📖  Read the Full Overview Paper

Translations: Executive Summary

Arabic | Chinese | French | Portuguese (Brazil) |  Portuguese | Russian | Spanish

Fintech and the Future of Finance: Market and Policy Implications

Blog series.

  • Jul 13, 2023 Digital financial services bridging the SME financing gap
  • Apr 19, 2023 Central banks and innovation
  • Apr 17, 2023 Innovation in payments: Opportunities and challenges for EMDEs
  • Mar 07, 2023 Embracing the promise of Fintech responsibly through regulation and supervision
  • Feb 24, 2023 Fintech and financial services: Delivering for development

Future of Finance Techincal note image

Global Patterns of Fintech Activity and Enabling Factors

The Fintech Activity note takes stock of available fintech-related data, to document patterns of fintech activity across the world, and to help identify enabling factors.

  • 🠞 Executive Summary
  • 🠞 Full Technical Note

Future of Finance Digital Survey image

Global Market Survey: Digital Technology and the Future of Finance Survey

The Fintech Market Participants Survey discusses findings from the survey whose responses span 330 market participants from 109 countries.

Future of Finance Techincal note image

Fintech and the Digital Transformation of Financial Services

The Market Structure note draws on the underlying economics of financial services and their industrial organization to examine the implications of digital innovation for market structure and attendant policies.

Future of Finance Technical note image

Regulation and Supervision of Fintech

The Regulation note aims to provide regulators and supervisors in emerging markets and developing economies (EMDEs) with high-level guidance on how to approach the regulating and supervising of fintech.

Consumer Protection Technical Note Future of Finance

Consumer Protection Implications of Fintech

The Consumer Protection note provides an overview of new manifestations of consumer risks that are significant and cross-cutting across four key fintech products: digital microcredit, P2PL, investment-based crowdfunding, ...

Payments Technical Note Future of Finance.png

Innovation in Payments

The Payments note discusses the most significant innovations in payments and their key impacts and implications on users, banks and other payment service providers, regulators, and the overall structure of the payments ...

SME Technical Note Future of Finance

Fintech and SME Finance: Expanding Responsible Access

The SME note discusses policy and regulatory approaches that can facilitate access to finance for small and medium enterprises (SMEs) through digital financial services.

The World Bank

What Does Digital Money Mean for EMDEs?

The Digital Money note categorizes new digital money proposals including crypto-assets, stablecoins, and central bank digital currencies; assesses the supply and demand factors for their adoption; and lays out particular ...

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here .

Financial Markets and Institutions

B Trimester

Hamilton, Tauranga

This paper introduces students to the principal capital markets in Australasia, their associated institutions, markets, regulators and their financial functions.

Teaching Periods and Locations

This paper will be delivered to Tauranga via video-conference.

Timetabled lectures and tutorials

Indicative fees.

You will be sent an enrolment agreement which will confirm your fees. Tuition fees shown are indicative only and may change. There are additional fees and charges related to enrolment - please see the  Table of Fees and Charges for more information.

Available subjects

Additional information.

Subject regulations

  • Paper details current as of 31 May 2024 19:40pm
  • Indicative fees current as of 2 Jun 2024 01:20am

You’re viewing this website as a domestic student

You’re currently viewing the website as a domestic student, you might want to change to international.

You're a domestic student if you are:

  • A citizen of New Zealand or Australia
  • A New Zealand permanent resident

You're an International student if you are:

  • Intending to study on a student visa
  • Not a citizen of New Zealand or Australia

U.S. Department of the Treasury

U.s. department of treasury releases request for information on uses, opportunities, and risks of artificial intelligence in the financial services sector.

WASHINGTON – Today, the U.S. Department of the Treasury (Treasury) released a  request for information on the Uses, Opportunities, and Risks of Artificial Intelligence (AI) in the Financial Services Sector. Building on Treasury’s recent work on cybersecurity and fraud in AI and recent initiatives by other federal agencies, Treasury is seeking public comment on the uses of AI in the financial services sector and the opportunities and risks presented by developments and applications of AI within the sector. 

“Treasury is proud to be playing a key role in spurring responsible innovation, especially in relation to AI and financial institutions. Our ongoing stakeholder engagement allows us to improve our understanding of AI in financial services,” said Under Secretary for Domestic Finance Nellie Liang. “The Biden Administration is committed to fostering innovation in the financial sector while ensuring that we protect consumers, investors, and our financial system from risks that new technologies pose.”

Through this RFI, Treasury seeks to increase its understanding of how AI is being used within the financial services sector and the opportunities and risks presented by developments and applications of AI within the sector, including potential obstacles for facilitating responsible use of AI within financial institutions, the extent of impact on consumers, investors, financial institutions, businesses, regulators, end-users, and any other entity impacted by financial institutions’ use of AI, and recommendations for enhancements to legislative, regulatory, and supervisory frameworks applicable to AI in financial services. Treasury is seeking a broad range of perspectives on this topic and is particularly interested in understanding how AI innovations can help promote a financial system that delivers inclusive and equitable access to financial services. 

Members of the public are encouraged to submit comments within 60 days. Comments responding to this request for information will be publicly viewable  on www.regulations.gov .

US Treasury Seeks Public Comments on AI Use in Financial Services Sector

Reuters

FILE PHOTO: U.S. Treasury Secretary Janet Yellen holds a press conference ahead of the G7 Finance Minister and Central Bank Governors' Meeting in Stresa, Italy, May 23, 2024. REUTERS/Massimo Pinca/File Photo

(Reuters) - The U.S. Treasury Department said on Thursday it is seeking public comments on the use of artificial intelligence in the financial services sector.

The agency is looking to improve its understanding of the opportunities and risks presented by the development and application of AI within the sector.

Regulators have cautioned that the rapid adoption of AI could create new risks for the U.S. financial system if the technology is not adequately monitored.

U.S. Treasury Secretary Janet Yellen will warn that the use of AI in finance could lower transaction costs but comes with "significant risks," according to excerpts from a speech to be delivered to a Financial Stability Oversight Council and Brookings Institution AI conference on Thursday.

The Treasury said it is seeking inputs from a broad set of stakeholders and is particularly interested in understanding how AI innovations could help promote inclusive and equitable access to financial services.

The agency has encouraged members of the public to submit their comments within 60 days.

(Reporting by Arasu Kannagi Basil in Bengaluru: Editing by Tasim Zahid)

Copyright 2024 Thomson Reuters .

Join the Conversation

Tags: artificial intelligence , United States

America 2024

financial services sector research papers

U.S. News Live

financial services sector research papers

Health News Bulletin

Stay informed on the latest news on health and COVID-19 from the editors at U.S. News & World Report.

Sign in to manage your newsletters »

Sign up to receive the latest updates from U.S News & World Report and our trusted partners and sponsors. By clicking submit, you are agreeing to our Terms and Conditions & Privacy Policy .

You May Also Like

The 10 worst presidents.

U.S. News Staff Feb. 23, 2024

financial services sector research papers

Cartoons on President Donald Trump

Feb. 1, 2017, at 1:24 p.m.

financial services sector research papers

Photos: Obama Behind the Scenes

April 8, 2022

financial services sector research papers

Photos: Who Supports Joe Biden?

March 11, 2020

financial services sector research papers

What to Know About Joro Spiders

Cecelia Smith-Schoenwalder June 7, 2024

financial services sector research papers

Takeaways From the Hunter Biden Case

Laura Mannweiler June 7, 2024

financial services sector research papers

Trump’s Latest Campaign Pledge: Revenge

Lauren Camera June 7, 2024

financial services sector research papers

Surprise! 272K Jobs Added in May

Tim Smart June 7, 2024

financial services sector research papers

U.S. News Summit Focuses on Equity

Aneeta Mathur-Ashton June 6, 2024

financial services sector research papers

The Hunter Biden Trial, Explained

Laura Mannweiler June 6, 2024

financial services sector research papers

financial services sector research papers

Salesforce is closed for new business in your area.

Register For AI_dev Europe | 19-20 June - Paris, France REGISTER NOW

The 2024 State of Open Source in Financial Services Survey: Share your insights and receive a discount for the Open Source in Finance Forum!

Linux foundation research | 06 june 2024.

Do you work in the financial services sector? W e invite you to participate in the 2024 State of Open Source in Financial Services survey!

Led by the Fintech Open Source Foundation (FINOS) and Linux Foundation Research, and in collaboration with GitHub, Red Hat, Scott Logic, and Sonatype, this study aims to explore the opportunities and challenges of using and contributing to open source within the financial services sector. 

Last year’s report found that 94% of financial services organizations allow some open source consumption, increasing from 78% the previous year. How will this number trend this year? Beyond consumption, this survey also investigates contribution and participation trends, which specific areas of financial services are most likely to be impacted by open source technology, and barriers to open source adoption. The survey targets professionals from financial services organizations and fintechs to provide detailed insights to advance the use of open source in this sector. 

After completing the survey , respondents will receive a 20% discount on registration for the Open Source in Finance Forum, and a 30% discount on any Linux Foundation e-learning training course or certification exam. Thank you for your participation!

financial services sector research papers

Linux Foundation Research

About the author.

LF Research team

Similar Articles

Browse categories.

Open Source AI Financial Services data sharing developer open standards

Stay Connected with the Linux Foundation

  • Search Menu
  • Sign in through your institution
  • Advance articles
  • Author Guidelines
  • Submission Site
  • Open Access
  • Why Submit?
  • About Public Opinion Quarterly
  • About the American Association for Public Opinion Research
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Dispatch Dates
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

Anti-semitic attitudes of the mass public: estimates and explanations based on a survey of the moscow oblast.

  • Article contents
  • Figures & tables
  • Supplementary Data

JAMES L. GIBSON, RAYMOND M. DUCH, ANTI-SEMITIC ATTITUDES OF THE MASS PUBLIC: ESTIMATES AND EXPLANATIONS BASED ON A SURVEY OF THE MOSCOW OBLAST, Public Opinion Quarterly , Volume 56, Issue 1, SPRING 1992, Pages 1–28, https://doi.org/10.1086/269293

  • Permissions Icon Permissions

In this article we examine anti-Semitism as expressed by a sample of residents of the Moscow Oblast (Soviet Union). Based on a survey conducted in 1920, we begin by describing anti-Jewish prejudice and support for official discrimination against Jews. We discover a surprisingly low level of expressed anti-Semitism among these Soviet respondents and virtually no support for state policies that discriminate against Jews. At the same time, many of the conventional hypotheses predicting anti-Semitism are supported in the Soviet case. Anti-Semitism is concentrated among those with lower levels of education, those whose personal financial condition is deteriorating, and those who oppose further democratization of the Soviet Union. We do not take these findings as evidence that anti-Semitism is a trivial problem in the Soviet Union but, rather, suggest that efforts to combat anti-Jewish movements would likely receive considerable support from ordinary Soviet people.

Email alerts

Citing articles via.

  • Recommend to your Library

Affiliations

  • Online ISSN 1537-5331
  • Copyright © 2024 American Association for Public Opinion Research
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Saturday Jun 08, 2024

financial services sector research papers

Group News Sites

Dailymirror

Sunday Times

Tamil Mirror

Middleast Lankadeepa

Life Online

Home delivery

Advertise with us

financial services sector research papers

CA Sri Lanka’s public sector wing, APFASL, explores proposed Public Financial Management Act of 2024

Thursday, 6 June 2024 00:00 -     - {{hitsCtrl.values.hits}}

financial services sector research papers

The panel comprising V. Kanagasabapathy, Tishan Subasinghe, Committee on Public Accounts Consultant Lalith R. De Silva, and Ministry of Finance, Retired Additional Director General of Public Finance S.U. Chandrakumaran, while the session was moderated by APFASL Secretary Dr. Asela Athapathu

The Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka), together with its public sector wing, the Association of Public Finance Accountants of Sri Lanka (APFASL), organised an insightful session on the proposed Public Financial Management Act of 2024 last week. The session attracted a large number of public sector accountants, chartered accountants, and senior public officials. The session provided a comprehensive overview of the proposed Public Financial Management Act of 2024, highlighting its potential impact on fiscal discipline and public sector accountability in Sri Lanka.  The special invitees included CA Sri Lanka President Heshana Kuruppu and Vice President Tishan Subasinghe, while the keynote address was delivered by APFASL President V. Kanagasabapathy, whose speech focused on the proposed bill.  The bill aims to enhance fiscal discipline in Sri Lanka’s economic functions, emphasising the management of the budget deficit and debt sustainability. While the bill heavily focuses on controlling the fiscal deficit, it places less emphasis on revenue generation, instead prioritising primary expenditures and capital investments. It proposes the establishment of fiscal limit targets to be achieved through an annual fiscal strategy and a rolling medium-term fiscal framework, aligning the annual budget and budgets of budgetary entities with the fiscal strategy statement.  The bill mandates regular monitoring of mid-year and year-end fiscal position reports and requires entities to produce financial reports according to International Public Sector Accounting Standards (IPSAS), to be presented in parliament within 180 days. Additionally, the bill addresses non-compliance and wasteful expenditures by public sector entities and officers, proposing disciplinary actions and penalties, although these provisions currently lack clear definitions.  Following the keynote address, a panel discussion was held to delve deeper into topics of public interest and gather input for potential improvements of the bill. The panel comprised V. Kanagasabapathy, Tishan Subasinghe, Committee on Public Accounts Consultant Lalith R. De Silva, and Ministry of Finance Retired Additional Director General of Public Finance S.U. Chandrakumaran, while the session was moderated by APFASL Secretary Dr. Asela Athapathu. 

financial services sector research papers

The state of AI in early 2024: Gen AI adoption spikes and starts to generate value

If 2023 was the year the world discovered generative AI (gen AI) , 2024 is the year organizations truly began using—and deriving business value from—this new technology. In the latest McKinsey Global Survey  on AI, 65 percent of respondents report that their organizations are regularly using gen AI, nearly double the percentage from our previous survey just ten months ago. Respondents’ expectations for gen AI’s impact remain as high as they were last year , with three-quarters predicting that gen AI will lead to significant or disruptive change in their industries in the years ahead.

About the authors

This article is a collaborative effort by Alex Singla , Alexander Sukharevsky , Lareina Yee , and Michael Chui , with Bryce Hall , representing views from QuantumBlack, AI by McKinsey, and McKinsey Digital.

Organizations are already seeing material benefits from gen AI use, reporting both cost decreases and revenue jumps in the business units deploying the technology. The survey also provides insights into the kinds of risks presented by gen AI—most notably, inaccuracy—as well as the emerging practices of top performers to mitigate those challenges and capture value.

AI adoption surges

Interest in generative AI has also brightened the spotlight on a broader set of AI capabilities. For the past six years, AI adoption by respondents’ organizations has hovered at about 50 percent. This year, the survey finds that adoption has jumped to 72 percent (Exhibit 1). And the interest is truly global in scope. Our 2023 survey found that AI adoption did not reach 66 percent in any region; however, this year more than two-thirds of respondents in nearly every region say their organizations are using AI. 1 Organizations based in Central and South America are the exception, with 58 percent of respondents working for organizations based in Central and South America reporting AI adoption. Looking by industry, the biggest increase in adoption can be found in professional services. 2 Includes respondents working for organizations focused on human resources, legal services, management consulting, market research, R&D, tax preparation, and training.

Also, responses suggest that companies are now using AI in more parts of the business. Half of respondents say their organizations have adopted AI in two or more business functions, up from less than a third of respondents in 2023 (Exhibit 2).

Gen AI adoption is most common in the functions where it can create the most value

Most respondents now report that their organizations—and they as individuals—are using gen AI. Sixty-five percent of respondents say their organizations are regularly using gen AI in at least one business function, up from one-third last year. The average organization using gen AI is doing so in two functions, most often in marketing and sales and in product and service development—two functions in which previous research  determined that gen AI adoption could generate the most value 3 “ The economic potential of generative AI: The next productivity frontier ,” McKinsey, June 14, 2023. —as well as in IT (Exhibit 3). The biggest increase from 2023 is found in marketing and sales, where reported adoption has more than doubled. Yet across functions, only two use cases, both within marketing and sales, are reported by 15 percent or more of respondents.

Gen AI also is weaving its way into respondents’ personal lives. Compared with 2023, respondents are much more likely to be using gen AI at work and even more likely to be using gen AI both at work and in their personal lives (Exhibit 4). The survey finds upticks in gen AI use across all regions, with the largest increases in Asia–Pacific and Greater China. Respondents at the highest seniority levels, meanwhile, show larger jumps in the use of gen Al tools for work and outside of work compared with their midlevel-management peers. Looking at specific industries, respondents working in energy and materials and in professional services report the largest increase in gen AI use.

Investments in gen AI and analytical AI are beginning to create value

The latest survey also shows how different industries are budgeting for gen AI. Responses suggest that, in many industries, organizations are about equally as likely to be investing more than 5 percent of their digital budgets in gen AI as they are in nongenerative, analytical-AI solutions (Exhibit 5). Yet in most industries, larger shares of respondents report that their organizations spend more than 20 percent on analytical AI than on gen AI. Looking ahead, most respondents—67 percent—expect their organizations to invest more in AI over the next three years.

Where are those investments paying off? For the first time, our latest survey explored the value created by gen AI use by business function. The function in which the largest share of respondents report seeing cost decreases is human resources. Respondents most commonly report meaningful revenue increases (of more than 5 percent) in supply chain and inventory management (Exhibit 6). For analytical AI, respondents most often report seeing cost benefits in service operations—in line with what we found last year —as well as meaningful revenue increases from AI use in marketing and sales.

Inaccuracy: The most recognized and experienced risk of gen AI use

As businesses begin to see the benefits of gen AI, they’re also recognizing the diverse risks associated with the technology. These can range from data management risks such as data privacy, bias, or intellectual property (IP) infringement to model management risks, which tend to focus on inaccurate output or lack of explainability. A third big risk category is security and incorrect use.

Respondents to the latest survey are more likely than they were last year to say their organizations consider inaccuracy and IP infringement to be relevant to their use of gen AI, and about half continue to view cybersecurity as a risk (Exhibit 7).

Conversely, respondents are less likely than they were last year to say their organizations consider workforce and labor displacement to be relevant risks and are not increasing efforts to mitigate them.

In fact, inaccuracy— which can affect use cases across the gen AI value chain , ranging from customer journeys and summarization to coding and creative content—is the only risk that respondents are significantly more likely than last year to say their organizations are actively working to mitigate.

Some organizations have already experienced negative consequences from the use of gen AI, with 44 percent of respondents saying their organizations have experienced at least one consequence (Exhibit 8). Respondents most often report inaccuracy as a risk that has affected their organizations, followed by cybersecurity and explainability.

Our previous research has found that there are several elements of governance that can help in scaling gen AI use responsibly, yet few respondents report having these risk-related practices in place. 4 “ Implementing generative AI with speed and safety ,” McKinsey Quarterly , March 13, 2024. For example, just 18 percent say their organizations have an enterprise-wide council or board with the authority to make decisions involving responsible AI governance, and only one-third say gen AI risk awareness and risk mitigation controls are required skill sets for technical talent.

Bringing gen AI capabilities to bear

The latest survey also sought to understand how, and how quickly, organizations are deploying these new gen AI tools. We have found three archetypes for implementing gen AI solutions : takers use off-the-shelf, publicly available solutions; shapers customize those tools with proprietary data and systems; and makers develop their own foundation models from scratch. 5 “ Technology’s generational moment with generative AI: A CIO and CTO guide ,” McKinsey, July 11, 2023. Across most industries, the survey results suggest that organizations are finding off-the-shelf offerings applicable to their business needs—though many are pursuing opportunities to customize models or even develop their own (Exhibit 9). About half of reported gen AI uses within respondents’ business functions are utilizing off-the-shelf, publicly available models or tools, with little or no customization. Respondents in energy and materials, technology, and media and telecommunications are more likely to report significant customization or tuning of publicly available models or developing their own proprietary models to address specific business needs.

Respondents most often report that their organizations required one to four months from the start of a project to put gen AI into production, though the time it takes varies by business function (Exhibit 10). It also depends upon the approach for acquiring those capabilities. Not surprisingly, reported uses of highly customized or proprietary models are 1.5 times more likely than off-the-shelf, publicly available models to take five months or more to implement.

Gen AI high performers are excelling despite facing challenges

Gen AI is a new technology, and organizations are still early in the journey of pursuing its opportunities and scaling it across functions. So it’s little surprise that only a small subset of respondents (46 out of 876) report that a meaningful share of their organizations’ EBIT can be attributed to their deployment of gen AI. Still, these gen AI leaders are worth examining closely. These, after all, are the early movers, who already attribute more than 10 percent of their organizations’ EBIT to their use of gen AI. Forty-two percent of these high performers say more than 20 percent of their EBIT is attributable to their use of nongenerative, analytical AI, and they span industries and regions—though most are at organizations with less than $1 billion in annual revenue. The AI-related practices at these organizations can offer guidance to those looking to create value from gen AI adoption at their own organizations.

To start, gen AI high performers are using gen AI in more business functions—an average of three functions, while others average two. They, like other organizations, are most likely to use gen AI in marketing and sales and product or service development, but they’re much more likely than others to use gen AI solutions in risk, legal, and compliance; in strategy and corporate finance; and in supply chain and inventory management. They’re more than three times as likely as others to be using gen AI in activities ranging from processing of accounting documents and risk assessment to R&D testing and pricing and promotions. While, overall, about half of reported gen AI applications within business functions are utilizing publicly available models or tools, gen AI high performers are less likely to use those off-the-shelf options than to either implement significantly customized versions of those tools or to develop their own proprietary foundation models.

What else are these high performers doing differently? For one thing, they are paying more attention to gen-AI-related risks. Perhaps because they are further along on their journeys, they are more likely than others to say their organizations have experienced every negative consequence from gen AI we asked about, from cybersecurity and personal privacy to explainability and IP infringement. Given that, they are more likely than others to report that their organizations consider those risks, as well as regulatory compliance, environmental impacts, and political stability, to be relevant to their gen AI use, and they say they take steps to mitigate more risks than others do.

Gen AI high performers are also much more likely to say their organizations follow a set of risk-related best practices (Exhibit 11). For example, they are nearly twice as likely as others to involve the legal function and embed risk reviews early on in the development of gen AI solutions—that is, to “ shift left .” They’re also much more likely than others to employ a wide range of other best practices, from strategy-related practices to those related to scaling.

In addition to experiencing the risks of gen AI adoption, high performers have encountered other challenges that can serve as warnings to others (Exhibit 12). Seventy percent say they have experienced difficulties with data, including defining processes for data governance, developing the ability to quickly integrate data into AI models, and an insufficient amount of training data, highlighting the essential role that data play in capturing value. High performers are also more likely than others to report experiencing challenges with their operating models, such as implementing agile ways of working and effective sprint performance management.

About the research

The online survey was in the field from February 22 to March 5, 2024, and garnered responses from 1,363 participants representing the full range of regions, industries, company sizes, functional specialties, and tenures. Of those respondents, 981 said their organizations had adopted AI in at least one business function, and 878 said their organizations were regularly using gen AI in at least one function. To adjust for differences in response rates, the data are weighted by the contribution of each respondent’s nation to global GDP.

Alex Singla and Alexander Sukharevsky  are global coleaders of QuantumBlack, AI by McKinsey, and senior partners in McKinsey’s Chicago and London offices, respectively; Lareina Yee  is a senior partner in the Bay Area office, where Michael Chui , a McKinsey Global Institute partner, is a partner; and Bryce Hall  is an associate partner in the Washington, DC, office.

They wish to thank Kaitlin Noe, Larry Kanter, Mallika Jhamb, and Shinjini Srivastava for their contributions to this work.

This article was edited by Heather Hanselman, a senior editor in McKinsey’s Atlanta office.

Explore a career with us

Related articles.

One large blue ball in mid air above many smaller blue, green, purple and white balls

Moving past gen AI’s honeymoon phase: Seven hard truths for CIOs to get from pilot to scale

A thumb and an index finger form a circular void, resembling the shape of a light bulb but without the glass component. Inside this empty space, a bright filament and the gleaming metal base of the light bulb are visible.

A generative AI reset: Rewiring to turn potential into value in 2024

High-tech bees buzz with purpose, meticulously arranging digital hexagonal cylinders into a precisely stacked formation.

Implementing generative AI with speed and safety

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Land use changes in the environs of Moscow

Profile image of Grigory Ioffe

Related Papers

Eurasian Geography and Economics

Grigory Ioffe

financial services sector research papers

komal choudhary

This study illustrates the spatio-temporal dynamics of urban growth and land use changes in Samara city, Russia from 1975 to 2015. Landsat satellite imageries of five different time periods from 1975 to 2015 were acquired and quantify the changes with the help of ArcGIS 10.1 Software. By applying classification methods to the satellite images four main types of land use were extracted: water, built-up, forest and grassland. Then, the area coverage for all the land use types at different points in time were measured and coupled with population data. The results demonstrate that, over the entire study period, population was increased from 1146 thousand people to 1244 thousand from 1975 to 1990 but later on first reduce and then increase again, now 1173 thousand population. Builtup area is also change according to population. The present study revealed an increase in built-up by 37.01% from 1975 to 1995, than reduce -88.83% till 2005 and an increase by 39.16% from 2005 to 2015, along w...

Elena Milanova

Land use/Cover Change in Russia within the context of global challenges. The paper presents the results of a research project on Land Use/Cover Change (LUCC) in Russia in relations with global problems (climate change, environment and biodiversity degradation). The research was carried out at the Faculty of Geography, Moscow State University on the basis of the combination of remote sensing and in-field data of different spatial and temporal resolution. The original methodology of present-day landscape interpretation for land cover change study has been used. In Russia the major driver of land use/land cover change is agriculture. About twenty years ago the reforms of Russian agriculture were started. Agricultural lands in many regions were dramatically impacted by changed management practices, resulted in accelerated erosion and reduced biodiversity. Between the natural factors that shape agriculture in Russia, climate is the most important one. The study of long-term and short-ter...

Annals of The Association of American Geographers

Land use and land cover change is a complex process, driven by both natural and anthropogenic transformations (Fig. 1). In Russia, the major driver of land use / land cover change is agriculture. It has taken centuries of farming to create the existing spatial distribution of agricultural lands. Modernization of Russian agriculture started fifteen years ago. It has brought little change in land cover, except in the regions with marginal agriculture, where many fields were abandoned. However, in some regions, agricultural lands were dramatically impacted by changed management practices, resulting in accelerating erosion and reduced biodiversity. In other regions, federal support and private investments in the agricultural sector, especially those made by major oil and financial companies, has resulted in a certain land recovery. Between the natural factors that shape the agriculture in Russia, climate is the most important one. In the North European and most of the Asian part of the ...

Ekonomika poljoprivrede

Vasilii Erokhin

Journal of Rural Studies

judith pallot

In recent decades, Russia has experienced substantial transformations in agricultural land tenure. Post-Soviet reforms have shaped land distribution patterns but the impacts of these on agricultural use of land remain under-investigated. On a regional scale, there is still a knowledge gap in terms of knowing to what extent the variations in the compositions of agricultural land funds may be explained by changes in the acreage of other land categories. Using a case analysis of 82 of Russia’s territories from 2010 to 2018, the authors attempted to study the structural variations by picturing the compositions of regional land funds and mapping agricultural land distributions based on ranking “land activity”. Correlation analysis of centered log-ratio transformed compositional data revealed that in agriculture-oriented regions, the proportion of cropland was depressed by agriculture-to-urban and agriculture-to-industry land loss. In urbanized territories, the compositions of agricultura...

Open Geosciences

Alexey Naumov

Despite harsh climate, agriculture on the northern margins of Russia still remains the backbone of food security. Historically, in both regions studied in this article – the Republic of Karelia and the Republic of Sakha (Yakutia) – agricultural activities as dairy farming and even cropping were well adapted to local conditions including traditional activities such as horse breeding typical for Yakutia. Using three different sources of information – official statistics, expert interviews, and field observations – allowed us to draw a conclusion that there are both similarities and differences in agricultural development and land use of these two studied regions. The differences arise from agro-climate conditions, settlement history, specialization, and spatial pattern of economy. In both regions, farming is concentrated within the areas with most suitable natural conditions. Yet, even there, agricultural land use is shrinking, especially in Karelia. Both regions are prone to being af...

RELATED PAPERS

Clinical, Cosmetic and Investigational Dermatology

Shaheen Majeed

Revista De Psicologia De La Salud

Véronique Demarbre

BMC Immunology

Prof. Mohamed Labib Salem

DergiPark (Istanbul University)

Coşkun İŞÇİ

PAKISTAN LANGUAGES AND HUMANITIES REVIEW

Elad Yaakobi

IEEE Transactions on Industry Applications

Pierluigi Gallo

Journal of Acquired Immune Deficiency Syndromes

Felix Otieno

Molecular diversity

bushra nisar

AdMathEdu : Jurnal Ilmiah Pendidikan Matematika, Ilmu Matematika dan Matematika Terapan

musafa musafa

Journal of medicinal chemistry

Philip Rawlins

‘The Lord defends refugees, protects the orphans and widows’ (Psalm 146:9). Emerging Challenges in Supporting People after Loss and Traumatic Events

Piotr Krakowiak

Anais do XX Congresso Brasileiro de Engenharia Química

Thiago José Barbosa Mesquita

Alzheimer's & Dementia

Valentin Bragin

Viktor Rumpik

BMC Medicine

Gemma Binefa

仿制uofs毕业证书 范莎学院毕业证学位证书电子版原版一模一样

Kilmartin Regulski

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

IMAGES

  1. 🎉 Research paper on banking. Internet Banking Research Paper. 2019-02-20

    financial services sector research papers

  2. 💋 Research topics in financial services. 35 Finance Dissertation Topics

    financial services sector research papers

  3. (PDF) A Comparative Study on Public & Private Sector Banks : A Special

    financial services sector research papers

  4. Company Profile Report on PNC Financial Services| ABM Research Report

    financial services sector research papers

  5. (PDF) Financial Services Privatisation: Two Case Studies

    financial services sector research papers

  6. (PDF) A Comparative Study on Financial Performance of Selected Public

    financial services sector research papers

VIDEO

  1. Problems on FACTORING

  2. Everybody Try to Exploit You

  3. Keep Distance from Negative Characters By: Bilal Ahmad Sheikh

  4. Decoding Finance Degrees: Your Guide to Lucrative Careers

  5. What does the financial service industry want from budget 2024?

  6. INVEST IN 20 SECTOR LEADERS

COMMENTS

  1. Home

    The Journal of Financial Services Research publishes high quality empirical and theoretical research on the demand, supply, regulation, and pricing of financial services. Financial services are broadly defined to include banking, risk management, capital markets, mutual funds, insurance, venture capital, consumer and corporate finance, and the technologies used to produce, distribute, and ...

  2. The impact of the FinTech revolution on the future of banking

    1. Introduction. The financial technology (FinTech) revolution is in full swing globally. Although technology has been a part of the financial services industry since the 1850s, it is only during the past two decades that FinTech has become a term to customarily describe breakthroughs in technology that potentially have the power to transform the provision of financial services, drive the ...

  3. (PDF) Fintech Innovations in the Financial Service Industry

    School of Humanities, Arts and Applied Sciences, Amity University, Dubai 73000, United Arab Emirates; mbishnoi@amityuniversity .ae. Correspondence: sajal.kabiraj@hamk.fi. Abstract: Digital ...

  4. Financial technology and the future of banking

    This paper presents an analytical framework that describes the business model of banks. It draws on the classical theory of banking and the literature on digital transformation. It provides an explanation for existing trends and, by extending the theory of the banking firm, it illustrates how financial intermediation will be impacted by innovative financial technology applications. It further ...

  5. Fintech Innovations in the Financial Service Industry

    4. Discussion. The main aim of this literature review is to systematically review the papers published on the subject to enhance the understanding of the contextual aspects of fintech innovations in various financial services and regulations. Table 1 shows the analysis of fintech innovation in payment services.

  6. Fintech and financial sector: ADO analysis and future research agenda

    The financial services industry has undergone a seismic transformation in recent years, propelled by the emergence of financial technology or "Fintech." ... summarised the overarching growth trends of different fintech business models using bibliometric analysis of 629 research papers published between 2007 and 2017. The study's findings ...

  7. Information

    Digital transformation creates challenges in all industries and business sectors. The development of digital transformation has also clearly triggered the emergence of fintech (financial technology) initiatives, which are recognized as some of the most important innovations in the financial industry. These initiatives are developing rapidly, driven in part by the sharing economy, regulations ...

  8. Past, Present and Future of FinTech Research: A Bibliometric Analysis

    The study discusses disruptive innovation and fintech ecosystems and explains the impact that the FinTech ecosystem has on disrupting the financial services industry. Covers the views of: It is an exploratory and qualitative research based on the interview of industry experts. Palmié et al. (2020)

  9. Financial Services Insights

    One year in: Lessons learned in scaling up generative AI for financial services. The arrival of gen AI has been an intense ride. With a year of experimentation by financial institutions in hand, two of McKinsey's experts on gen AI in banking share key learnings to scale and deploy programs more effectively. Report.

  10. Artificial intelligence in Finance: a comprehensive review through

    Over the past two decades, artificial intelligence (AI) has experienced rapid development and is being used in a wide range of sectors and activities, including finance. In the meantime, a growing and heterogeneous strand of literature has explored the use of AI in finance. The aim of this study is to provide a comprehensive overview of the existing research on this topic and to identify which ...

  11. Fintech and the Future of Finance

    Fintech is transforming the financial sector landscape rapidly and is blurring the boundaries of both financial firms and the financial sector. This presents a paradigm shift that has various policy implications, including: Foster beneficial innovation and competition, while managing the risks. Broaden monitoring horizons and re-assess ...

  12. (PDF) DIGITAL TRANSFORMATION IN THE FINANCE SECTOR: FINTECH

    DOI 10.51582/interconf.7-8.11.2021.005. Hatice Özkurt Çokgüngör. Lecturer, Vocational School of Social Sciences, İstanbul University -Cerrahpaşa, Turkey. DIGITAL TRANSFORMATION IN THE ...

  13. PDF Fintech and the digital transformation of financial services

    The authors thank Giulio Cornelli for excellent research assistance. This paper is part of a ... Definitions of key terms used in this paper Digital financial services (DFS) are financial services which rely on digital technologies for their delivery and use by ... many of these companies are relatively new to the financial sector, others are ...

  14. The Impact of Fintech and Digital Financial Services on Financial

    India's financial inclusion has significantly improved during the last several years. In recent years, there has been a rise in the number of Indians who have bank accounts, with this figure believed to be close to 80% at present. Fintech businesses in India are progressively becoming more noticeable as the Government of India (GoI) continues to strive for expanding financial services to the ...

  15. Digital transformation and the emergence of the Fintech sector

    Fintech firms are start-up companies willing to disrupt the financial industry by providing services and products involving digital platforms and using advanced technology (Wang, Xiuping, & Zhang, 2021). ... For this research, academic papers dating from 2008 to 2020 will be used. This period range is considered because the Digital Finance ...

  16. Big Data Applications the Banking Sector: A Bibliometric Analysis

    Research papers have been sorted based on the citation rate, which depicts how other studies have referenced a study. ... It is evident from research on this topic that the financial services sector has been revolutionized because of an increased value generated by big data for fintech, that is, financial technology companies. Credit risk ...

  17. (PDF) Fintech, the new era of financial services

    The research aims to fill the gap in the current academic literature regarding the appearance of innovation-focused financial technology (fintech) companies. The analysis provides a conceptual ...

  18. Fintech Applications in Banking and Financial Services Industry in

    Financial Technologies have transformed banking and financial services operations worldwide over the last decade. It has simplified the customer's and banking authorities' lives significantly. The paper reviews briefly the most commonly used financial technologies (Fintech) - Artificial Intelligence, Machine Learning, Blockchain, Big Data and ...

  19. Artificial intelligence, machine learning, deep learning, and ...

    The research also points out the merging of AI and blockchain, which is driving the creation of new financial products and services and encouraging digital transformation in the industry. Moreover, the research delves into the possibilities of new technologies such as quantum computing in solving intricate computational problems in the ...

  20. Financial Markets and Institutions :: University of Waikato

    There are additional fees and charges related to enrolment - please see the Table of Fees and Charges for more information. 18B (HAM) $4,528. 18B (TGA) $4,528. You will be sent an enrolment agreement which will confirm your fees. Tuition fees shown are indicative only and may change. There are additional fees and charges related to enrolment ...

  21. U.S. Department of Treasury Releases Request for Information on Uses

    WASHINGTON - Today, the U.S. Department of the Treasury (Treasury) released a request for information on the Uses, Opportunities, and Risks of Artificial Intelligence (AI) in the Financial Services Sector. Building on Treasury's recent work on cybersecurity and fraud in AI and recent initiatives by other federal agencies, Treasury is seeking public comment on the uses of AI in the ...

  22. US Treasury Seeks Public Comments on AI Use in Financial Services Sector

    REUTERS/Massimo Pinca/File Photo. (Reuters) - The U.S. Treasury Department said on Thursday it is seeking public comments on the use of artificial intelligence in the financial services sector ...

  23. The Future of Financial Services

    Automation, coupled with real-time data and intelligence, helps companies be more efficient and offer better, more personalized customer experiences. In our latest edition of the Future of Financial Services, we heard one thing loud and clear. Customers want intuitive, custom digital experiences that emphasize their overall financial wellbeing.

  24. The 2024 State of Open Source in Financial Services Survey: Share your

    Led by the Fintech Open Source Foundation (FINOS) and Linux Foundation Research, and in collaboration with GitHub, Red Hat, Scott Logic, and Sonatype, this study aims to explore the opportunities and challenges of using and contributing to open source within the financial services sector.

  25. John Deere Officially Opens New Manufacturing Facility in Russia

    John Deere is a world leader in providing advanced products and services for agriculture, forestry, construction, lawn and turf care, landscaping and irrigation.

  26. Anti-semitic Attitudes of The Mass Public: Estimates and Explanations

    Navbar Search Filter ... Mobile Microsite Search Term Search

  27. CA Sri Lanka's public sector wing, APFASL, explores proposed Public

    The Institute of Chartered Accountants of Sri Lanka (CA Sri Lanka), together with its public sector wing, the Association of Public Finance Accountants of Sri Lanka (APFASL), organised an insightful session on the proposed Public Financial Management Act of 2024 last week. The session attracted a large number of public sector accountants, chartered accountants, and senior public officials. The ...

  28. The state of AI in early 2024: Gen AI adoption spikes and starts to

    Looking by industry, the biggest increase in adoption can be found in professional services. 2 Includes respondents working for organizations focused on human resources, legal services, ... About the research. The online survey was in the field from February 22 to March 5, 2024, and garnered responses from 1,363 participants representing the ...

  29. Land use changes in the environs of Moscow

    Academia.edu is a platform for academics to share research papers. Land use changes in the environs of Moscow (PDF) Land use changes in the environs of Moscow | Grigory Ioffe - Academia.edu