Developing Critical Thinking

  • Posted January 10, 2018
  • By Iman Rastegari

Critical Thinking

In a time where deliberately false information is continually introduced into public discourse, and quickly spread through social media shares and likes, it is more important than ever for young people to develop their critical thinking. That skill, says Georgetown professor William T. Gormley, consists of three elements: a capacity to spot weakness in other arguments, a passion for good evidence, and a capacity to reflect on your own views and values with an eye to possibly change them. But are educators making the development of these skills a priority?

"Some teachers embrace critical thinking pedagogy with enthusiasm and they make it a high priority in their classrooms; other teachers do not," says Gormley, author of the recent Harvard Education Press release The Critical Advantage: Developing Critical Thinking Skills in School . "So if you are to assess the extent of critical-thinking instruction in U.S. classrooms, you’d find some very wide variations." Which is unfortunate, he says, since developing critical-thinking skills is vital not only to students' readiness for college and career, but to their civic readiness, as well.

"It's important to recognize that critical thinking is not just something that takes place in the classroom or in the workplace, it's something that takes place — and should take place — in our daily lives," says Gormley.

In this edition of the Harvard EdCast, Gormley looks at the value of teaching critical thinking, and explores how it can be an important solution to some of the problems that we face, including "fake news."

About the Harvard EdCast

The Harvard EdCast is a weekly series of podcasts, available on the Harvard University iT unes U page, that features a 15-20 minute conversation with thought leaders in the field of education from across the country and around the world. Hosted by Matt Weber and co-produced by Jill Anderson, the Harvard EdCast is a space for educational discourse and openness, focusing on the myriad issues and current events related to the field.

EdCast logo

An education podcast that keeps the focus simple: what makes a difference for learners, educators, parents, and communities

Related Articles

HGSE shield on blue background

The Case for Homework

Finding passion in learning, roots of the school gardening movement.

The Importance of Critical Thinking Skills for Students

Link Copied

Share on Facebook

Share on Twitter

Share on LinkedIn

The Importance of Critical Thinking Skills for Students

Brains at Work!

If you’re moving toward the end of your high school career, you’ve likely heard a lot about college life and how different it is from high school. Classes are more intense, professors are stricter, and the curriculum is more complicated. All in all, it’s very different compared to high school.

Different doesn’t have to mean scary, though. If you’re nervous about beginning college and you’re worried about how you’ll learn in a place so different from high school, there are steps you can take to help you thrive in your college career.

If you’re wondering how to get accepted into college and how to succeed as a freshman in such a new environment, the answer is simple: harness the power of critical thinking skills for students.

What is critical thinking?

Critical thinking entails using reasoning and the questioning of assumptions to address problems, assess information, identify biases, and more. It's a skillset crucial for students navigating their academic journey and beyond, including how to get accepted into college . At its crux, critical thinking for students has everything to do with self-discipline and making active decisions to 'think outside the box,' allowing individuals to think beyond a concept alone in order to understand it better.

Critical thinking skills for students is a concept highly encouraged in any and every educational setting, and with good reason. Possessing strong critical thinking skills will make you a better student and, frankly, help you gain valuable life skills. Not only will you be more efficient in gathering knowledge and processing information, but you will also enhance your ability to analyse and comprehend it.

Importance of critical thinking for students

Developing critical thinking skills for students is essential for success at all academic levels, particularly in college. It introduces reflection and perspective while encouraging you to question what you’re learning! Even if you’ve seen solid facts. Asking questions, considering other perspectives, and self-reflection cultivate resilient students with endless potential for learning, retention, and personal growth.A well-developed set of critical thinking skills for students will help them excel in many areas. Here are some critical thinking examples for students:

1. Decision-making

If you’re thinking critically, you’re not making impulse decisions or snap judgments; you’re taking the time to weigh the pros and cons. You’re making informed decisions. Critical thinking skills for students can make all the difference.

2. Problem-solving

Students with critical thinking skills are more effective in problem-solving. This reflective thinking process helps you use your own experiences to ideate innovations, solutions, and decisions.

3. Communication

Strong communication skills are a vital aspect of critical thinking for students, helping with their overall critical thinking abilities. How can you learn without asking questions? Critical thinking for students is what helps them produce the questions they may not have ever thought to ask. As a critical thinker, you’ll get better at expressing your ideas concisely and logically, facilitating thoughtful discussion, and learning from your teachers and peers.

4. Analytical skills

Developing analytical skills is a key component of strong critical thinking skills for students. It goes beyond study tips on reviewing data or learning a concept. It’s about the “Who? What? Where? Why? When? How?” When you’re thinking critically, these questions will come naturally, and you’ll be an expert learner because of it.

How can students develop critical thinking skills

Although critical thinking skills for students is an important and necessary process, it isn’t necessarily difficult to develop these observational skills. All it takes is a conscious effort and a little bit of practice. Here are a few tips to get you started:

1. Never stop asking questions

This is the best way to learn critical thinking skills for students. As stated earlier, ask questions—even if you’re presented with facts to begin with. When you’re examining a problem or learning a concept, ask as many questions as you can. Not only will you be better acquainted with what you’re learning, but it’ll soon become second nature to follow this process in every class you take and help you improve your GPA .

2. Practice active listening

As important as asking questions is, it is equally vital to be a good listener to your peers. It is astounding how much we can learn from each other in a collaborative environment! Diverse perspectives are key to fostering critical thinking skills for students. Keep an open mind and view every discussion as an opportunity to learn.

3. Dive into your creativity

Although a college environment is vastly different from high school classrooms, one thing remains constant through all levels of education: the importance of creativity. Creativity is a guiding factor through all facets of critical thinking skills for students. It fosters collaborative discussion, innovative solutions, and thoughtful analyses.

4. Engage in debates and discussions

Participating in debates and discussions helps you articulate your thoughts clearly and consider opposing viewpoints. It challenges the critical thinking skills of students about the evidence presented, decoding arguments, and constructing logical reasoning. Look for debates and discussion opportunities in class, online forums, or extracurricular activities.

5. Look out for diverse sources of information 

In today's digital age, information is easily available from a variety of sources. Make it a habit to explore different opinions, perspectives, and sources of information. This not only broadens one's understanding of a subject but also helps in distinguishing between reliable and biased sources, honing the critical thinking skills of students.

Unlock the power of critical thinking skills while enjoying a seamless student living experience!

Book through amber today!

6. Practice problem-solving

Try engaging in challenging problems, riddles or puzzles that require critical thinking skills for students to solve. Whether it's solving mathematical equations, tackling complex scenarios in literature, or analysing data in science experiments, regular practice of problem-solving tasks sharpens your analytical skills. It enhances your ability to think critically under pressure.

Nurturing critical thinking skills helps students with the tools to navigate the complexities of academia and beyond. By learning active listening, curiosity, creativity, and problem-solving, students can create a sturdy foundation for lifelong learning. By building upon all these skills, you’ll be an expert critical thinker in no time—and you’ll be ready to conquer all that college has to offer! 

Frequently Asked Questions

What questions should i ask to be a better critical thinker, how can i sharpen critical thinking skills for students, how do i avoid bias, can i use my critical thinking skills outside of school, will critical thinking skills help students in their future careers.

Your ideal student home & a flight ticket awaits

Follow us on :

cta

Related Posts

does critical thinking help students

International Day of Happiness 20 March 2024

does critical thinking help students

Tune Your Ears In 2024: The 20 Best Student Podcasts

does critical thinking help students

Top 10 Part Time Jobs In USA For students In 2024

does critical thinking help students

Planning to Study Abroad ?

does critical thinking help students

Your ideal student accommodation is a few steps away! Please fill in your details below so we can find you a new home!

We have got your response

Thanksgiving Decor Ideas

amber © 2024. All rights reserved.

4.8/5 on Trustpilot

Rated as "Excellent" • 4800+ Reviews by students

Rated as "Excellent" • 4800+ Reviews by Students

play store

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

Integrating Critical Thinking Into the Classroom

does critical thinking help students

  • Share article

(This is the second post in a three-part series. You can see Part One here .)

The new question-of-the-week is:

What is critical thinking and how can we integrate it into the classroom?

Part One ‘s guests were Dara Laws Savage, Patrick Brown, Meg Riordan, Ph.D., and Dr. PJ Caposey. Dara, Patrick, and Meg were also guests on my 10-minute BAM! Radio Show . You can also find a list of, and links to, previous shows here.

Today, Dr. Kulvarn Atwal, Elena Quagliarello, Dr. Donna Wilson, and Diane Dahl share their recommendations.

‘Learning Conversations’

Dr. Kulvarn Atwal is currently the executive head teacher of two large primary schools in the London borough of Redbridge. Dr. Atwal is the author of The Thinking School: Developing a Dynamic Learning Community , published by John Catt Educational. Follow him on Twitter @Thinkingschool2 :

In many classrooms I visit, students’ primary focus is on what they are expected to do and how it will be measured. It seems that we are becoming successful at producing students who are able to jump through hoops and pass tests. But are we producing children that are positive about teaching and learning and can think critically and creatively? Consider your classroom environment and the extent to which you employ strategies that develop students’ critical-thinking skills and their self-esteem as learners.

Development of self-esteem

One of the most significant factors that impacts students’ engagement and achievement in learning in your classroom is their self-esteem. In this context, self-esteem can be viewed to be the difference between how they perceive themselves as a learner (perceived self) and what they consider to be the ideal learner (ideal self). This ideal self may reflect the child that is associated or seen to be the smartest in the class. Your aim must be to raise students’ self-esteem. To do this, you have to demonstrate that effort, not ability, leads to success. Your language and interactions in the classroom, therefore, have to be aspirational—that if children persist with something, they will achieve.

Use of evaluative praise

Ensure that when you are praising students, you are making explicit links to a child’s critical thinking and/or development. This will enable them to build their understanding of what factors are supporting them in their learning. For example, often when we give feedback to students, we may simply say, “Well done” or “Good answer.” However, are the students actually aware of what they did well or what was good about their answer? Make sure you make explicit what the student has done well and where that links to prior learning. How do you value students’ critical thinking—do you praise their thinking and demonstrate how it helps them improve their learning?

Learning conversations to encourage deeper thinking

We often feel as teachers that we have to provide feedback to every students’ response, but this can limit children’s thinking. Encourage students in your class to engage in learning conversations with each other. Give as many opportunities as possible to students to build on the responses of others. Facilitate chains of dialogue by inviting students to give feedback to each other. The teacher’s role is, therefore, to facilitate this dialogue and select each individual student to give feedback to others. It may also mean that you do not always need to respond at all to a student’s answer.

Teacher modelling own thinking

We cannot expect students to develop critical-thinking skills if we aren’t modeling those thinking skills for them. Share your creativity, imagination, and thinking skills with the students and you will nurture creative, imaginative critical thinkers. Model the language you want students to learn and think about. Share what you feel about the learning activities your students are participating in as well as the thinking you are engaging in. Your own thinking and learning will add to the discussions in the classroom and encourage students to share their own thinking.

Metacognitive questioning

Consider the extent to which your questioning encourages students to think about their thinking, and therefore, learn about learning! Through asking metacognitive questions, you will enable your students to have a better understanding of the learning process, as well as their own self-reflections as learners. Example questions may include:

  • Why did you choose to do it that way?
  • When you find something tricky, what helps you?
  • How do you know when you have really learned something?

itseemskul

‘Adventures of Discovery’

Elena Quagliarello is the senior editor of education for Scholastic News , a current events magazine for students in grades 3–6. She graduated from Rutgers University, where she studied English and earned her master’s degree in elementary education. She is a certified K–12 teacher and previously taught middle school English/language arts for five years:

Critical thinking blasts through the surface level of a topic. It reaches beyond the who and the what and launches students on a learning journey that ultimately unlocks a deeper level of understanding. Teaching students how to think critically helps them turn information into knowledge and knowledge into wisdom. In the classroom, critical thinking teaches students how to ask and answer the questions needed to read the world. Whether it’s a story, news article, photo, video, advertisement, or another form of media, students can use the following critical-thinking strategies to dig beyond the surface and uncover a wealth of knowledge.

A Layered Learning Approach

Begin by having students read a story, article, or analyze a piece of media. Then have them excavate and explore its various layers of meaning. First, ask students to think about the literal meaning of what they just read. For example, if students read an article about the desegregation of public schools during the 1950s, they should be able to answer questions such as: Who was involved? What happened? Where did it happen? Which details are important? This is the first layer of critical thinking: reading comprehension. Do students understand the passage at its most basic level?

Ask the Tough Questions

The next layer delves deeper and starts to uncover the author’s purpose and craft. Teach students to ask the tough questions: What information is included? What or who is left out? How does word choice influence the reader? What perspective is represented? What values or people are marginalized? These questions force students to critically analyze the choices behind the final product. In today’s age of fast-paced, easily accessible information, it is essential to teach students how to critically examine the information they consume. The goal is to equip students with the mindset to ask these questions on their own.

Strike Gold

The deepest layer of critical thinking comes from having students take a step back to think about the big picture. This level of thinking is no longer focused on the text itself but rather its real-world implications. Students explore questions such as: Why does this matter? What lesson have I learned? How can this lesson be applied to other situations? Students truly engage in critical thinking when they are able to reflect on their thinking and apply their knowledge to a new situation. This step has the power to transform knowledge into wisdom.

Adventures of Discovery

There are vast ways to spark critical thinking in the classroom. Here are a few other ideas:

  • Critical Expressionism: In this expanded response to reading from a critical stance, students are encouraged to respond through forms of artistic interpretations, dramatizations, singing, sketching, designing projects, or other multimodal responses. For example, students might read an article and then create a podcast about it or read a story and then act it out.
  • Transmediations: This activity requires students to take an article or story and transform it into something new. For example, they might turn a news article into a cartoon or turn a story into a poem. Alternatively, students may rewrite a story by changing some of its elements, such as the setting or time period.
  • Words Into Action: In this type of activity, students are encouraged to take action and bring about change. Students might read an article about endangered orangutans and the effects of habitat loss caused by deforestation and be inspired to check the labels on products for palm oil. They might then write a letter asking companies how they make sure the palm oil they use doesn’t hurt rain forests.
  • Socratic Seminars: In this student-led discussion strategy, students pose thought-provoking questions to each other about a topic. They listen closely to each other’s comments and think critically about different perspectives.
  • Classroom Debates: Aside from sparking a lively conversation, classroom debates naturally embed critical-thinking skills by asking students to formulate and support their own opinions and consider and respond to opposing viewpoints.

Critical thinking has the power to launch students on unforgettable learning experiences while helping them develop new habits of thought, reflection, and inquiry. Developing these skills prepares students to examine issues of power and promote transformative change in the world around them.

criticalthinkinghasthepower

‘Quote Analysis’

Dr. Donna Wilson is a psychologist and the author of 20 books, including Developing Growth Mindsets , Teaching Students to Drive Their Brains , and Five Big Ideas for Effective Teaching (2 nd Edition). She is an international speaker who has worked in Asia, the Middle East, Australia, Europe, Jamaica, and throughout the U.S. and Canada. Dr. Wilson can be reached at [email protected] ; visit her website at www.brainsmart.org .

Diane Dahl has been a teacher for 13 years, having taught grades 2-4 throughout her career. Mrs. Dahl currently teaches 3rd and 4th grade GT-ELAR/SS in Lovejoy ISD in Fairview, Texas. Follow her on Twitter at @DahlD, and visit her website at www.fortheloveofteaching.net :

A growing body of research over the past several decades indicates that teaching students how to be better thinkers is a great way to support them to be more successful at school and beyond. In the book, Teaching Students to Drive Their Brains , Dr. Wilson shares research and many motivational strategies, activities, and lesson ideas that assist students to think at higher levels. Five key strategies from the book are as follows:

  • Facilitate conversation about why it is important to think critically at school and in other contexts of life. Ideally, every student will have a contribution to make to the discussion over time.
  • Begin teaching thinking skills early in the school year and as a daily part of class.
  • As this instruction begins, introduce students to the concept of brain plasticity and how their brilliant brains change during thinking and learning. This can be highly motivational for students who do not yet believe they are good thinkers!
  • Explicitly teach students how to use the thinking skills.
  • Facilitate student understanding of how the thinking skills they are learning relate to their lives at school and in other contexts.

Below are two lessons that support critical thinking, which can be defined as the objective analysis and evaluation of an issue in order to form a judgment.

Mrs. Dahl prepares her 3rd and 4th grade classes for a year of critical thinking using quote analysis .

During Native American studies, her 4 th grade analyzes a Tuscarora quote: “Man has responsibility, not power.” Since students already know how the Native Americans’ land had been stolen, it doesn’t take much for them to make the logical leaps. Critical-thought prompts take their thinking even deeper, especially at the beginning of the year when many need scaffolding. Some prompts include:

  • … from the point of view of the Native Americans?
  • … from the point of view of the settlers?
  • How do you think your life might change over time as a result?
  • Can you relate this quote to anything else in history?

Analyzing a topic from occupational points of view is an incredibly powerful critical-thinking tool. After learning about the Mexican-American War, Mrs. Dahl’s students worked in groups to choose an occupation with which to analyze the war. The chosen occupations were: anthropologist, mathematician, historian, archaeologist, cartographer, and economist. Then each individual within each group chose a different critical-thinking skill to focus on. Finally, they worked together to decide how their occupation would view the war using each skill.

For example, here is what each student in the economist group wrote:

  • When U.S.A. invaded Mexico for land and won, Mexico ended up losing income from the settlements of Jose de Escandon. The U.S.A. thought that they were gaining possible tradable land, while Mexico thought that they were losing precious land and resources.
  • Whenever Texas joined the states, their GDP skyrocketed. Then they went to war and spent money on supplies. When the war was resolving, Texas sold some of their land to New Mexico for $10 million. This allowed Texas to pay off their debt to the U.S., improving their relationship.
  • A detail that converged into the Mexican-American War was that Mexico and the U.S. disagreed on the Texas border. With the resulting treaty, Texas ended up gaining more land and economic resources.
  • Texas gained land from Mexico since both countries disagreed on borders. Texas sold land to New Mexico, which made Texas more economically structured and allowed them to pay off their debt.

This was the first time that students had ever used the occupations technique. Mrs. Dahl was astonished at how many times the kids used these critical skills in other areas moving forward.

explicitlyteach

Thanks to Dr. Auwal, Elena, Dr. Wilson, and Diane for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

  • This Year’s Most Popular Q&A Posts
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Facing Gender Challenges in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech in the Classroom
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • Entering the Teaching Profession
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

Kid Characters Observe Sky with Moon, Milky Way and Reach for the stars!

Sign Up & Sign In

module image 9

Critical Thinking: Facilitating and Assessing the 21st Century Skills in Education

So many times we hear our students say, “Why am I learning this?”

Illustration of varied colorful figures with varied word balloons

I believe that Critical Thinking is the spark that begins the process of authentic learning. Before going further, we must first develop an idea of what learning is… and what learning is not.  So many times we hear our students say, “Why am I learning this?” The reason they ask is because they have not really experienced the full spectrum of learning, and because of this are actually not learning to a full rewarding  extent! We might say they are being exposed to surface learning and not authentic (real) learning. The act of authentic learning is actually an exciting and engaging concept. It allows students to see real meaning and begin to construct their own knowledge.  Critical Thinking is core to learning. It is rewarding, engaging, and life long. Without critical thinking students are left to a universe of concepts and memorization.  Yes… over twelve years of mediocrity! When educators employ critical thinking in their classrooms, a whole new world of understanding is opened up.   What are some reasons to facilitate critical thinking with our students? Let me begin:

Ten Reasons For Student Critical Thinking in the classroom

  • Allows for necessary inquiry that makes learning exciting
  • Provides a method to go beyond memorization to promote understanding.
  • Allows students to visualize thoughts, concepts, theories, models & possibilities.
  • Promotes curriculum standards, trans-disciplinary ideas & real world connections.
  • Encourages a classroom culture of collaboration that promotes deeper thinking.
  • Builds skills of problem solving, making implications, & determining consequences.
  • Facilitates goal setting, promotion of process, and perseverance to achieve.
  • Teaches self reflection and critique, and the ability to listen to others’ thoughts.
  • Encourages point of view  while developing persuasive skills.
  • Guides interpretation while developing a skill to infer and draw conclusions.

I am excited by the spark that critical thinking ignites to support real and authentic learning in the classroom. I often wonder how much time students spend in the process of critical thinking in the classroom. I ask you to reflect on your typical school day. Are your students spending time in area of surface learning , or are they plunging into the engaging culture of deeper (real) learning?  At the same time … how are you assessing your students? So many times as educators, we are bound by the standards, and we forget the importance of promoting that critical thinking process that makes our standards come alive with understanding. A culture of critical thinking is not automatic, though with intentional planning  it can become a reality. Like the other 21st century skills, it must be built and continuously facilitated. Let’s take a look at how, we as educators, can do this.

Ten Ways to Facilitate Student Critical Thinking in the Classroom and School

  • Design Critical Thinking Activities.  (This might include mind mapping, making thinking visible, Socratic discussions, meta-cognitive mind stretches, Build an inquiry wall with students and talk about the process of thinking”
  • Provide time for students to collaborate.  (Collaboration can be the button that starts critical thinking. It provides group thinking that builds on the standards. Have students work together while solving multi-step and higher order thinking problems. Sometimes this might mean slow down to increase the learning.)
  • Provide students with a Critical Thinking rubric.  (Have them look at the rubric before a critical thinking activity, and once again when they are finished)
  • Make assessment of Critical Thinking an ongoing effort.  (While the teacher can assess, have students assess themselves. Self assessment can be powerful)
  • Concentrate on specific indicators in a rubric.  (There are various indicators such as; provides inquiry, answers questions, builds an argument etc. Concentrate on just one indicator while doing a lesson. There can even be an exit ticket reflection)
  • Integrate the idea of Critical Thinking in any lesson.  ( Do not teach this skill in isolation. How does is work with a lesson, stem activity, project built, etc. What does Critical Thinking look like in the online or blended environment? Think of online discussions.)
  • Post a Critical Thinking Poster in the room.  (This poster could be a copy of a rubric or even a list of “I Can Statements”. Point it out before a critical thinking activity.
  • Make Critical Thinking part of your formative  and summative assessment.   (Move around the room, talk to groups and students, stop the whole group to make adjustments.)
  • Point out Critical Thinking found in the content standards.  (Be aware that content standards often have words like; infer, debate, conclude, solve, prioritize, compare and contrast, hypothesize, and research. Critical Thinking has always been part of the standards. Show your students Bloom’s Taxonomy and post in the room. Where are they in their learning?
  • Plan for a school wide emphasis.  (A culture that builds Critical Thinking is usually bigger then one classroom. Develop school-wide vocabulary, posters, and initiatives.)

I keep talking about the idea of surface learning and deeper learning. This can best be seen in  Bloom’s Taxonomy. Often we start with Remembering.  This might be essential in providing students the map to the further areas of Bloom’s. Of course, we then find the idea of Understanding. This is where I believe critical thinking begins. Sometimes we need to critically think in order to understand. In fact, you might be this doing right now. I believe that too much time might be spent in Remembering, which is why students get a false idea of what learning really is. As we look at the rest of Bloom’s ( Apply, Analyze, Evaluate, and Create) we can see the deeper learning take place. and even steps toward the transfer and internalization of the learning. Some educators even tip Bloom’s upside down, stating that the Creating at the top will build an understanding. This must be done with careful facilitation and intentional scaffold to make sure there is some surface learning. After-all, Critical Thinking will need this to build on.

I have been mentioning rubrics and assessment tools through out this post. To me, these are essential in building that culture of critical thinking in the classroom. I want to provide you with some great resources that will give your some powerful tools to assess the skill of Critical Thinking.  Keep in mind that students can also self assess and journal using prompts from a Critical Thinking Rubric.

Seven Resources to Help with Assessment and Facilitation of Critical Thinking

  • Habits of Mind  – I think this is an awesome place to help teachers facilitate and assess critical thinking and more. Check out the  free resources page  which even has some wonderful posters. One of my favorites is the rubrics found on this  research page . Decide on spending some time because there are a lot of great resources.
  • PBLWorks  – The number one place for PBL in the world is at PBLWorks. You may know it as the BUCK Institute or BIE. I am fortunate to be part of their National Faculty which is probably why I rank it as number one. I encourage you to visit their site for everything PBL.  This link brings you to the resource area where you will discover some amazing  rubrics to facilitate Critical Thinking. You will find rubrics for grade bands K-2, 3-5, and 6-12. This really is a great place to start. You will need to sign up to be a member of PBLWorks. This is a wonderful idea, after-all it is free!
  • Microsoft Innovative Learning  – This   website  contains some powerful rubrics for assessing the 21st Century skills. The link will bring you to a PDF file with Critical Thinking rubrics you can use tomorrow for any grade level. Check out this  two page document  defining the 4 C’s and a  movie  giving you even more of an explanation.
  • New Tech School  – This amazing PBL group of schools provide some wonderful Learning Rubrics in their free area.  Here you will find an interesting collection of rubrics that assesses student learning in multiple areas. These are sure to get you off and started.
  • Foundation for Critical Thinking  –  Check out this  amazing page  to help give you descriptors.
  • Project Zero  – While it is not necessarily assessment based, you will find some powerful  routines for making thinking visible . As you conduct these types of activities you will find yourself doing some wonderful formative assessment of critical thinking.
  • Education Week  – Take a look at this resource that provides some great reasoning and some interesting links that provide a glimpse of critical thinking in the classroom.

Critical Thinking “I Can Statements”

As you can see, I believe that Critical Thinking is key to PBL, STEM, and Deeper Learning. It improves Communication and Collaboration, while promoting Creativity.  I believe every student should have these following “I Can Statements” as part of their learning experience. Feel free to copy and use in your classroom. Perhaps this is a great starting place as you promote collaborative and powerful learning culture!

  • I can not only answer questions, but can also think of new questions to ask 
  • I can take time to see what I am thinking to promote even better understanding 
  • I can attempt to see other peoples’ thinking while explaining my own 
  • I can look at a problem and determine needed steps to find a solution 
  • I can use proper collaboration skills to work with others productively to build solutions 
  • I can set a goal, design a plan, and persevere to accomplish the goal. 
  • I can map out strategies and processes that shows the action involved in a task. 
  • I can define and show my understanding of a concept, model, theory, or process. 
  • I can take time to reflect and productively critique my work and the work of others 
  • I can understand, observe, draw inferences, hypothesize and see implications.

cross-posted at  21centuryedtech.wordpress.com

Michael Gorman oversees one-to-one laptop programs and digital professional development for Southwest Allen County Schools near Fort Wayne, Indiana. He is a consultant for Discovery Education, ISTE, My Big Campus, and November Learning and is on the National Faculty for The Buck Institute for Education. His awards include district Teacher of the Year, Indiana STEM Educator of the Year and Microsoft’s 365 Global Education Hero. Read more at  21centuryedtech.wordpress.com .

Tech & Learning Newsletter

Tools and ideas to transform education. Sign up below.

GPT-4o: What Educators Need to Know

AI, Absenteeism, Cybersecurity, and More at the Tech & Learning Regional Leadership Summit in New England

What Is Canva And How Does It Work?

Most Popular

does critical thinking help students

  • International edition
  • Australia edition
  • Europe edition

Man playing basketball

Critical thinking: how to help your students become better learners

Want your class to make the most out of learning opportunities? Try focusing not just on the task itself, but how they approach it

Encouraging students to build awareness, understanding and control of their thought processes – also known as metacognition – has been identified by the Education Endowment Foundation (EEF) Toolkit as one of the most cost-effective ways to improve learning. It’s also thought to help boost performance in subjects such as maths , science and English .

It’s all about about getting students to think critically about their own learning. As the EEF explains, learners can be given “specific strategies to set goals and monitor and evaluate their own academic development … the intention is often to give pupils a repertoire of strategies to choose from during learning activities”.

To help pupils begin to think in this way, you can divide the process into three parts: before a task (effective planning), during (self-monitoring) and after (evaluation and reflection). Work on setting goalsHelp students understand the importance of preparation and an effective approach to setting goals. For good goal setting, you need to include a combination of both short-term and long-term goals, focus on developing skills (instead of just desired outcomes) and consider potential obstacles. If students know what challenges may come their way, they should be better equipped to overcome them when the time comes.

Encourage self-awareness

It’s hard to manage our emotions and thoughts if we aren’t aware of what we’re thinking and feeling. Self-awareness doesn’t always come easily for students because their brains are going through a range of changes during their teenage years.

Research shows, however, that self-awareness can be developed by encouraging students to keep a diary . Evidence also suggests that writing a diary can actually improve physical health and mental wellbeing . It can help students to spot any trends and patterns, making it easier to manage emotions and choose effective thought processes before they get stressed about more difficult tasks.

Prompt self-questioning

If a task can be divided into the three stages of before, during and after then it’s possible to help students improve their metacognition by getting them to ask themselves good questions at each stage.

Before a task, this includes questions such as “Is this similar to previous tasks I’ve done?” and “What should I do first?” During a task, questions such as “Am I on the right track?’ and “Who can I ask for help?” ensure students monitor their performance and make adjustments if necessary. Finally, after a task, students can reflect and learn on their experiences by asking “What went well?”, “What do I need to improve on?” and “What would I do differently next time?”

Model your thought processes

Being exposed to a range of different thought processes gives students a larger variety of potential thinking strategies. Try modelling or talking through your thoughts when going through questions in a past exam paper, for example.

Evidence suggests that this strategy is currently under-used, with one study finding that “in 170 hours of observation, only one instance of a teacher modelling her thinking about reading or writing was recorded, and this was unplanned”. The approach may be effective because it avoids any ambiguity and allows students to tap into your expert knowledge and experience.

Bradley Busch is a registered psychologist, director at InnerDrive and author of Release Your Inner Drive . Follow @Inner_Drive on Twitter.

Follow us on Twitter via @GuardianTeach , like us on Facebook , and join the Guardian Teacher Network for the latest articles direct to your inbox

Looking for a teaching job? Or perhaps you need to recruit school staff? Take a look at Guardian Jobs , the education specialist

  • Teacher Network
  • The science of teaching and learning

Comments (…)

Most viewed.

The University of Edinburgh

  • Schools & departments

does critical thinking help students

Critical thinking

Advice and resources to help you develop your critical voice.

Developing critical thinking skills is essential to your success at University and beyond.  We all need to be critical thinkers to help us navigate our way through an information-rich world. 

Whatever your discipline, you will engage with a wide variety of sources of information and evidence.  You will develop the skills to make judgements about this evidence to form your own views and to present your views clearly.

One of the most common types of feedback received by students is that their work is ‘too descriptive’.  This usually means that they have just stated what others have said and have not reflected critically on the material.  They have not evaluated the evidence and constructed an argument.

What is critical thinking?

Critical thinking is the art of making clear, reasoned judgements based on interpreting, understanding, applying and synthesising evidence gathered from observation, reading and experimentation. Burns, T., & Sinfield, S. (2016)  Essential Study Skills: The Complete Guide to Success at University (4th ed.) London: SAGE, p94.

Being critical does not just mean finding fault.  It means assessing evidence from a variety of sources and making reasoned conclusions.  As a result of your analysis you may decide that a particular piece of evidence is not robust, or that you disagree with the conclusion, but you should be able to state why you have come to this view and incorporate this into a bigger picture of the literature.

Being critical goes beyond describing what you have heard in lectures or what you have read.  It involves synthesising, analysing and evaluating what you have learned to develop your own argument or position.

Critical thinking is important in all subjects and disciplines – in science and engineering, as well as the arts and humanities.  The types of evidence used to develop arguments may be very different but the processes and techniques are similar.  Critical thinking is required for both undergraduate and postgraduate levels of study.

What, where, when, who, why, how?

Purposeful reading can help with critical thinking because it encourages you to read actively rather than passively.  When you read, ask yourself questions about what you are reading and make notes to record your views.  Ask questions like:

  • What is the main point of this paper/ article/ paragraph/ report/ blog?
  • Who wrote it?
  • Why was it written?
  • When was it written?
  • Has the context changed since it was written?
  • Is the evidence presented robust?
  • How did the authors come to their conclusions?
  • Do you agree with the conclusions?
  • What does this add to our knowledge?
  • Why is it useful?

Our web page covering Reading at university includes a handout to help you develop your own critical reading form and a suggested reading notes record sheet.  These resources will help you record your thoughts after you read, which will help you to construct your argument. 

Reading at university

Developing an argument

Being a university student is about learning how to think, not what to think.  Critical thinking shapes your own values and attitudes through a process of deliberating, debating and persuasion.   Through developing your critical thinking you can move on from simply disagreeing to constructively assessing alternatives by building on doubts.

There are several key stages involved in developing your ideas and constructing an argument.  You might like to use a form to help you think about the features of critical thinking and to break down the stages of developing your argument.

Features of critical thinking (pdf)

Features of critical thinking (Word rtf)

Our webpage on Academic writing includes a useful handout ‘Building an argument as you go’.

Academic writing

You should also consider the language you will use to introduce a range of viewpoints and to evaluate the various sources of evidence.  This will help your reader to follow your argument.  To get you started, the University of Manchester's Academic Phrasebank has a useful section on Being Critical. 

Academic Phrasebank

Developing your critical thinking

Set yourself some tasks to help develop your critical thinking skills.  Discuss material presented in lectures or from resource lists with your peers.  Set up a critical reading group or use an online discussion forum.  Think about a point you would like to make during discussions in tutorials and be prepared to back up your argument with evidence.

For more suggestions:

Developing your critical thinking - ideas (pdf)

Developing your critical thinking - ideas (Word rtf)

Published guides

For further advice and more detailed resources please see the Critical Thinking section of our list of published Study skills guides.

Study skills guides  

This article was published on 2024-02-26

The Importance of Critical Thinking For A Student 2024

does critical thinking help students

What is the significance of critical thinking? Critical thinking is at the core of learning because it allows students to reflect on and comprehend their perspectives. Based on personal reflection and understanding, this skill assists a student in determining how to understand the world around them.

What Is Critical Thinking?

Many assume that being critical means being typical, a negative approach to thinking about it.  To lay it off, individuals can analyse their thinking and present evidence for their ideas instead of accepting personal opinions as substantial proof. When students develop critical thinking skills, they gain various benefits, including improved learning abilities and compassion for the perspectives of others. A person with strong critical thinking will challenge the given information, dismiss any untrustworthy or unscientific logic, and scrutinise the information's sources. They are knowledgeable and can assess the value of discussion and deduce careful but evidence-based conclusions. It is precious for students because it allows them to write essays and assignments without social or personal prejudice.

How Critical Thinking Skills Help Students in Their Careers and Personal Life?

Below is a list of ways critical thinking helps students in their careers and personal life. This list will show the importance of critical thinking for students. 

Key To Career Success

Numerous career paths require critical thinking. Not only scientists but also litigators, doctors, media professionals, engineers, accounting professionals, and analysts (to name a few) must use critical thinking in their jobs. Indeed, critical thinking is among the most relevant skills to possess in the workforce, as stated by the World Economic Forum. Because it helps analyse data, think out of the box, resolve issues with creative solutions, and plan methodically.

Enhances Creativity & Curiosity

Critical thinkers are always curious about everything in life and possess diverse interests. ‍

Critical thinking entails continuously asking questions and wanting to learn more about why, who, what, when, and where, as well as everything else that can assist them in making sense of a circumstance or notion. They will never accept anything at face value. They are incredibly creative thinkers who see themselves as having endless potential. ‍

Critical thinkers are always looking for ways to improve, which is essential in the workplace.

Enhances Research Skills

Critical thinking will help you improve your research abilities by observing, analysing, synthesising, and conducting detailed experiments with every element for effective results.

Elevates Autonomous Learning

If we think deeply, we believe more independently because we trust ourselves more. Critical thinking is essential for empowering learners to make choices and develop views.

Be a Good Communicator

While you may believe being a critical thinker will cause relationship problems, this could not be further from the truth! Being a critical thinker can assist you in better comprehending the perspectives of others and becoming more open-minded to different points of view. You learn how to communicate your feelings. 

Solve Problems

Problem-solving is a basic reflex for those with the ability to think critically. Critical thinkers are attentive and dedicated to solving problems. As Albert Einstein stated, "It's not that I'm so intelligent; it's just that I stay with issues longer." Critical thinkers' advanced problem-solving abilities enable them to excel at their jobs and fix the world's most challenging problems. They can transform the world for the better. 

Make Sense of Information 

Being a critical thinker means dealing with data more seriously than the rest. Hence you would learn how to evaluate information. It will help you separate the crucial information from the redundant ones. 

Make Decisions

There's no denying that critical thinkers make the best decisions. Critical thinking helps us cope with daily issues, and this method is often achieved subconsciously. ‍

It teaches us to think for ourselves and to trust our instincts. This will further help you in your career and life in general. 

Helps in Analysing Arguments

Analysing arguments is not an easy skill to hone. But when you think critically, you are open-minded. You see things from more than one perspective, which helps you to analyse the argument better than the rest.

Make Students Ask the Right Questions

Another excellent way to improve critical thinking is to pose as many questions as possible; this will necessitate the student to be curious about various topics. When a person develops the practice of asking questions, it improves their knowledge of the subject and eliminates any doubts they may have had. This also enhances the student's ability to analyse situations. Thinking critically will improve dramatically as each topic is examined from various angles.

Students Learn to Think Out-of-the-Box

Once you start thinking critically, you will have a wide set of ideas. You will be forced to think out of the box in challenging situations, which will also help you think faster. 

Importance of Critical Thinking

1. Enhanced Decision Making : Critical thinking enables individuals to evaluate all available information and make well-informed decisions rather than making choices based on emotion or limited data.

2. Problem Solving : It aids in approaching problems methodically and logically, allowing for the development of viable solutions based on thorough evaluation.

3. Independence of Thought : Critical thinkers are less reliant on others to tell them what to believe, as they possess the skills to evaluate information on their own.

4. Discernment of Information : In our age of information overload, it's vital to distinguish between credible sources and misinformation or biases.

5. Improved Communication : Critical thinkers can clearly articulate their thoughts, understanding, and the reasons behind their beliefs, leading to more productive discussions and debates.

6. Broadened Perspective : It encourages open-mindedness and the ability to view issues and scenarios from multiple angles and perspectives.

7. Academic Success : Critical thinking is crucial for understanding complex concepts, evaluating arguments, and weaving together information from various sources.

8. Personal Growth : It helps in self-reflection, aiding individuals in understanding their beliefs, values, and actions better.

9. Adaptability : Critical thinkers are better equipped to adapt to changing environments or circumstances, as they can evaluate new information and understand its implications.

10. Ethical Considerations : Critical thinking often involves considering the ethical implications of decisions, leading to more morally sound choices.

11. Prevention of Problems : By anticipating potential challenges and assessing various solutions, critical thinkers can prevent certain issues from arising.

12. Enhanced Creativity : While critical thinking and creativity might seem opposed, the former can actually enhance the latter by encouraging a deeper understanding of problems, which can lead to innovative solutions.

Why is critical thinking important for students?

Critical thinking is paramount for students because it equips them with the ability to independently analyse, evaluate, and form logical conclusions from the vast information they encounter. In our rapidly changing and information-saturated world, students are often bombarded with diverse perspectives, data, and arguments. Possessing the skill of critical thinking allows students to discern the validity and relevance of this information, differentiating between mere opinion and evidence-based facts. Moreover, it fosters problem-solving abilities, encouraging them to approach challenges with an open and investigative mindset rather than resorting to rote memorisation or passive acceptance. As students venture into higher education and the professional world, these critical thinking skills set the foundation for lifelong learning and ensure they contribute to discussions and decision-making processes in their respective fields.

Importance of critical thinking in academic life

In academic life, critical thinking plays a pivotal role in bolstering the depth and quality of learning. The academic realm is characterised by complex ideas, competing theories, and a vast array of data. To navigate this environment effectively, students must be able to evaluate evidence, recognise logical connections, discern biases, and challenge assumptions. Engaging critically with academic materials allows learners to comprehend subjects at a profound level, rather than merely absorbing information superficially. This not only enhances their retention but also allows them to integrate new knowledge with prior understanding, fostering a richer academic experience. Additionally, a well-honed critical thinking ability prepares students for advanced studies where independent research, thesis formulation, and nuanced discussions become paramount. 

How does critical thinking help students?

Critical thinking empowers students by equipping them with the tools necessary to evaluate, analyse, and synthesise information, paving the way for informed decision-making and problem-solving. Rather than passively accepting information, students with honed critical thinking skills actively interrogate content, seeking to understand its relevance, validity, and implications. This ability enhances comprehension and ensures that the knowledge acquired is both meaningful and applicable. Additionally, critical thinking aids students in identifying biases, avoiding fallacies, and navigating the complexities of multifaceted arguments. This skillset not only bolsters their academic performance but also prepares them for real-world challenges where they must sift through vast amounts of information and make informed decisions. 

How Can Students Develop Their Critical Thinking Skills?

Below are some practical ways to enhance critical thinking skills with any topic or subject. Teachers and students must be creative to incorporate critical thinking better.

Make Inquiries

It is essential to raise more questions to improve critical thinking skills. The more queries you ask, your curiosity and desire to learn increase. The questions will help you clarify your thoughts and make conceptualising and analysing easier.

Identify a Topic Objectively

When a specific topic arises in mind, no matter what the subject, the student should think about that objectively. The first step is to cognitively draw a table with the advantages and disadvantages of each side. This will assist a student in gaining better knowledge of the subject. Any subsequent decisions will be based on logical discourse.

Examine the Ramifications

You can access a variety of options by posing questions. But you should not make a rash decision. As a result, it will help in resolving your issues.

Learn to Listen Actively

You must be an effective listener before being a critical thinker. A student may ask many questions to accomplish their quest, but they must also be a good listener to get the answers. Listen to other people's ideas, points of view, and thoughts; these should help you make your own choices. Thus it shows the importance of critical thinking for students.

Keep Reading

Only limited data can be gathered through discussion and observation. If students incorporate reading into their daily routine, their minds will be exposed to various concepts and theories. Great books contain the thoughts and opinions of a few of the world's greatest brains. Students will have differing opinions on some of the material they will read. ‍

But that is the point of reading; it develops critical thinking while also giving a better appreciation of how philosophies and ideas are thought from a different perspective, thereby improving the subject's comprehension.

Discussions with Classmates

Simply knowing about a subject is insufficient. A student should always remember that learning is an ongoing process that will gradually lead to beneficial and perpetual change. One must constantly participate in conversations and debates with peers to accomplish this. Students will notice that they are becoming more intrigued by new topics and understanding. It also teaches the student how to understand different points of view. This will also help you comprehend how other children understand a given topic. 

Conclusion 

To conclude, critical thinking is far more than necessary! This article talks about the importance of critical thinking for students. It represents one of the most significant cognitive abilities to cultivate. 

By practising well-thought-out thinking, you can have a positive impact on your life on personal and professional levels. Continuing to work on your critical thinking skills as frequently as possible can significantly enrich your life.

1. Why is critical thinking necessary for students?  ‍

They assist us in making sound decisions, comprehending the implications of our actions, and resolving problems. These crucial abilities are used for everything from putting together mysteries to determining the best path to work.

2. Why is critical thinking important in teaching? ‍

Critical thinking is at the frontline of learning since it is a handy tool for students to reflect on and comprehend their opinion. As they progress, this skill helps the student to identify how to understand the world around them using personal observation and understanding.

3. How do you improve your critical thinking skills? ‍

Critical thinking can be improved through metacognitive training, urging kids to respectfully challenge authority, creating learning societies, and incorporating critical thinking into early childhood education. ‍ ‍

4. What is the most essential aspect of critical thinking? ‍

Critical thinking skills are identifying prejudices, implications, research, identification, curiosity, and judging significance. The most important aspect is identifying the problem. ‍ ‍

5. How is critical thinking used in everyday life? ‍

The capacity to investigate the consequences and implications of a conviction or action is one of the fundamental critical thinking skills you require daily.

does critical thinking help students

Sign up for a trial class and let your child explore the world of coding!

does critical thinking help students

Want a trial coding class for your child?

STEM Robotics: The Key to Your Child's Success (2024)

does critical thinking help students

How to Choose the Best Robotic Kits for Your Child 2024

does critical thinking help students

Parents' Guide to Coding for Kids: The Success Mantra 2024

Start learning with us, teach your child coding, ai and robotics.

Give your child the gift of a bright future by providing them with in-demand tech skills. Take a trial class today.

Sign up for a free trial class

does critical thinking help students

Introduce your child to the exciting world of Coding, Artificial Intelligence and Robotics with our interactive free trial class. Unlock their potential and ignite their curiosity.

My 8 year old son is coding independently! With JetLearn, he has developed increased concentration, computer & english language skills, and logical reasoning abilities.

does critical thinking help students

University of the People Logo

Tips for Online Students , Tips for Students

Why Is Critical Thinking Important? A Survival Guide

Updated: December 7, 2023

Published: April 2, 2020

Why-Is-Critical-Thinking-Important-a-Survival-Guide

Why is critical thinking important? The decisions that you make affect your quality of life. And if you want to ensure that you live your best, most successful and happy life, you’re going to want to make conscious choices. That can be done with a simple thing known as critical thinking. Here’s how to improve your critical thinking skills and make decisions that you won’t regret.

What Is Critical Thinking?

You’ve surely heard of critical thinking, but you might not be entirely sure what it really means, and that’s because there are many definitions. For the most part, however, we think of critical thinking as the process of analyzing facts in order to form a judgment. Basically, it’s thinking about thinking.

How Has The Definition Evolved Over Time?

The first time critical thinking was documented is believed to be in the teachings of Socrates , recorded by Plato. But throughout history, the definition has changed.

Today it is best understood by philosophers and psychologists and it’s believed to be a highly complex concept. Some insightful modern-day critical thinking definitions include :

  • “Reasonable, reflective thinking that is focused on deciding what to believe or do.”
  • “Deciding what’s true and what you should do.”

The Importance Of Critical Thinking

Why is critical thinking important? Good question! Here are a few undeniable reasons why it’s crucial to have these skills.

1. Critical Thinking Is Universal

Critical thinking is a domain-general thinking skill. What does this mean? It means that no matter what path or profession you pursue, these skills will always be relevant and will always be beneficial to your success. They are not specific to any field.

2. Crucial For The Economy

Our future depends on technology, information, and innovation. Critical thinking is needed for our fast-growing economies, to solve problems as quickly and as effectively as possible.

3. Improves Language & Presentation Skills

In order to best express ourselves, we need to know how to think clearly and systematically — meaning practice critical thinking! Critical thinking also means knowing how to break down texts, and in turn, improve our ability to comprehend.

4. Promotes Creativity

By practicing critical thinking, we are allowing ourselves not only to solve problems but also to come up with new and creative ideas to do so. Critical thinking allows us to analyze these ideas and adjust them accordingly.

5. Important For Self-Reflection

Without critical thinking, how can we really live a meaningful life? We need this skill to self-reflect and justify our ways of life and opinions. Critical thinking provides us with the tools to evaluate ourselves in the way that we need to.

Woman deep into thought as she looks out the window, using her critical thinking skills to do some self-reflection.

6. The Basis Of Science & Democracy

In order to have a democracy and to prove scientific facts, we need critical thinking in the world. Theories must be backed up with knowledge. In order for a society to effectively function, its citizens need to establish opinions about what’s right and wrong (by using critical thinking!).

Benefits Of Critical Thinking

We know that critical thinking is good for society as a whole, but what are some benefits of critical thinking on an individual level? Why is critical thinking important for us?

1. Key For Career Success

Critical thinking is crucial for many career paths. Not just for scientists, but lawyers , doctors, reporters, engineers , accountants, and analysts (among many others) all have to use critical thinking in their positions. In fact, according to the World Economic Forum, critical thinking is one of the most desirable skills to have in the workforce, as it helps analyze information, think outside the box, solve problems with innovative solutions, and plan systematically.

2. Better Decision Making

There’s no doubt about it — critical thinkers make the best choices. Critical thinking helps us deal with everyday problems as they come our way, and very often this thought process is even done subconsciously. It helps us think independently and trust our gut feeling.

3. Can Make You Happier!

While this often goes unnoticed, being in touch with yourself and having a deep understanding of why you think the way you think can really make you happier. Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life.

4. Form Well-Informed Opinions

There is no shortage of information coming at us from all angles. And that’s exactly why we need to use our critical thinking skills and decide for ourselves what to believe. Critical thinking allows us to ensure that our opinions are based on the facts, and help us sort through all that extra noise.

5. Better Citizens

One of the most inspiring critical thinking quotes is by former US president Thomas Jefferson: “An educated citizenry is a vital requisite for our survival as a free people.” What Jefferson is stressing to us here is that critical thinkers make better citizens, as they are able to see the entire picture without getting sucked into biases and propaganda.

6. Improves Relationships

While you may be convinced that being a critical thinker is bound to cause you problems in relationships, this really couldn’t be less true! Being a critical thinker can allow you to better understand the perspective of others, and can help you become more open-minded towards different views.

7. Promotes Curiosity

Critical thinkers are constantly curious about all kinds of things in life, and tend to have a wide range of interests. Critical thinking means constantly asking questions and wanting to know more, about why, what, who, where, when, and everything else that can help them make sense of a situation or concept, never taking anything at face value.

8. Allows For Creativity

Critical thinkers are also highly creative thinkers, and see themselves as limitless when it comes to possibilities. They are constantly looking to take things further, which is crucial in the workforce.

9. Enhances Problem Solving Skills

Those with critical thinking skills tend to solve problems as part of their natural instinct. Critical thinkers are patient and committed to solving the problem, similar to Albert Einstein, one of the best critical thinking examples, who said “It’s not that I’m so smart; it’s just that I stay with problems longer.” Critical thinkers’ enhanced problem-solving skills makes them better at their jobs and better at solving the world’s biggest problems. Like Einstein, they have the potential to literally change the world.

10. An Activity For The Mind

Just like our muscles, in order for them to be strong, our mind also needs to be exercised and challenged. It’s safe to say that critical thinking is almost like an activity for the mind — and it needs to be practiced. Critical thinking encourages the development of many crucial skills such as logical thinking, decision making, and open-mindness.

11. Creates Independence

When we think critically, we think on our own as we trust ourselves more. Critical thinking is key to creating independence, and encouraging students to make their own decisions and form their own opinions.

12. Crucial Life Skill

Critical thinking is crucial not just for learning, but for life overall! Education isn’t just a way to prepare ourselves for life, but it’s pretty much life itself. Learning is a lifelong process that we go through each and every day.

How to Think Critically

Now that you know the benefits of thinking critically, how do you actually do it?

How To Improve Your Critical Thinking

  • Define Your Question: When it comes to critical thinking, it’s important to always keep your goal in mind. Know what you’re trying to achieve, and then figure out how to best get there.
  • Gather Reliable Information: Make sure that you’re using sources you can trust — biases aside. That’s how a real critical thinker operates!
  • Ask The Right Questions: We all know the importance of questions, but be sure that you’re asking the right questions that are going to get you to your answer.
  • Look Short & Long Term: When coming up with solutions, think about both the short- and long-term consequences. Both of them are significant in the equation.
  • Explore All Sides: There is never just one simple answer, and nothing is black or white. Explore all options and think outside of the box before you come to any conclusions.

How Is Critical Thinking Developed At School?

Critical thinking is developed in nearly everything we do. However, much of this important skill is encouraged to be practiced at school, and rightfully so! Critical thinking goes beyond just thinking clearly — it’s also about thinking for yourself.

When a teacher asks a question in class, students are given the chance to answer for themselves and think critically about what they learned and what they believe to be accurate. When students work in groups and are forced to engage in discussion, this is also a great chance to expand their thinking and use their critical thinking skills.

How Does Critical Thinking Apply To Your Career?

Once you’ve finished school and entered the workforce, your critical thinking journey only expands and grows from here!

Impress Your Employer

Employers value employees who are critical thinkers, ask questions, offer creative ideas, and are always ready to offer innovation against the competition. No matter what your position or role in a company may be, critical thinking will always give you the power to stand out and make a difference.

Careers That Require Critical Thinking

Some of many examples of careers that require critical thinking include:

  • Human resources specialist
  • Marketing associate
  • Business analyst

Truth be told however, it’s probably harder to come up with a professional field that doesn’t require any critical thinking!

Photo by  Oladimeji Ajegbile  from  Pexels

What is someone with critical thinking skills capable of doing.

Someone with critical thinking skills is able to think rationally and clearly about what they should or not believe. They are capable of engaging in their own thoughts, and doing some reflection in order to come to a well-informed conclusion.

A critical thinker understands the connections between ideas, and is able to construct arguments based on facts, as well as find mistakes in reasoning.

The Process Of Critical Thinking

The process of critical thinking is highly systematic.

What Are Your Goals?

Critical thinking starts by defining your goals, and knowing what you are ultimately trying to achieve.

Once you know what you are trying to conclude, you can foresee your solution to the problem and play it out in your head from all perspectives.

What Does The Future Of Critical Thinking Hold?

The future of critical thinking is the equivalent of the future of jobs. In 2020, critical thinking was ranked as the 2nd top skill (following complex problem solving) by the World Economic Forum .

We are dealing with constant unprecedented changes, and what success is today, might not be considered success tomorrow — making critical thinking a key skill for the future workforce.

Why Is Critical Thinking So Important?

Why is critical thinking important? Critical thinking is more than just important! It’s one of the most crucial cognitive skills one can develop.

By practicing well-thought-out thinking, both your thoughts and decisions can make a positive change in your life, on both a professional and personal level. You can hugely improve your life by working on your critical thinking skills as often as you can.

Related Articles

Why STEM? Success Starts With Critical Thinking, Problem-Solving Skills

  • Partner Content
  • Author: Stephen F. DeAngelis, Enterra Solutions. Stephen F. DeAngelis, Enterra Solutions

The robot lab at the University of Illinois at Urbana-Champaign's Department of Computer Science. Image: joefutrelle/Flickr

Our educational system is tasked with preparing the next-generation to succeed in life. That’s a tall order and it will substantially fail if it doesn’t teach children how to think critically and solve problems. In a post entitled “ STEM Education: Why All the Fuss? ,” I wrote, “Educating students in STEM subjects (if taught correctly) prepares students for life, regardless of the profession they choose to follow. Those subjects teach students how to think critically and how to solve problems — skills that can be used throughout life to help them get through tough times and take advantage of opportunities whenever they appear.”

I’m not alone in making this assessment. Vince Bertram, President and CEO of Project Lead The Way, Inc., feels the same way. “The United States can no longer excuse its poor academic performance by asserting that students in other nations excel in rote learning, while ours are better at problem solving. Recent test results clearly tell a different story.” [“ We Have to Get Serious About Creativity and Problem Solving ,” Huffington Post The Blog , 7 May 2014] Naveen Jain, Entrepreneur and Founder of the World Innovation Institute, adds, “Please don’t get me started on ‘No Child Left Behind.’ It might as well be called ‘All Children Left Behind.’ This system of standardized, rote learning that teaches to a test is exactly the type of education our children don’t need in this world that is plagued by systemic, pervasive and confounding global challenges. Today’s education system does not focus enough on teaching children to solve real world problems and is not interdisciplinary, nor collaborative enough in its approach.” [“ School’s Out for Summer: Rethinking Education for the 21st Century ,” Wall Street Journal , 27 June 2013] He continues:

“Imagine education that is as entertaining and addictive as video games. Sound far-fetched? I believe that this is exactly the idea — driven by dynamic innovation and entrepreneurism — that will help bring our education system out of the stone ages.”

There a numerous examples of how teachers have involved students in problem-solving activities and, as a result, have excited them about education while teaching them how to better cope with the world around them. As Bertram noted above, Americans can no longer boast that we are teaching our children how to solve problems better than the rest of the world. He explains:

“The latest round of international standardized test results showed American students are lagging behind the rest of the developed world not just in math, science and reading , but in problem solving as well. The 2012 Program for International Student Assessment (PISA) test examined 44 countries’ students’ problem-solving abilities — American students landed just above the average, but they still scored below many other developed countries, including Britain, Singapore, Korea, Japan, China and Canada.”

Jeevan Vasagar insists that the data shows that countries that teach their children how to solve problems are more successful than those who don’t. It sounds both obvious and sensible; yet, America seems to have turned its back on that approach. “Education is under pressure to respond to a changing world,” writes Vasagar. “As repetitive tasks are eroded by technology and outsourcing, the ability to solve novel problems has become increasingly vital.” [“ Countries that excel at problem-solving encourage critical thinking ,” Financial Times , 19 May 2014] He continues:

“Students from the main western European countries — England, France, Germany, Italy, the Netherlands and Belgium — all performed above the average, as did pupils from the Czech Republic and Estonia. In the rest of the rich world, the US, Canada and Australia also performed above average. But the laurels were taken by east Asian territories; Singapore and South Korea performed best, followed by Japan, and the Chinese regions of Macau and Hong Kong. That result poses a challenge to schools in the west. Critics of east Asian education systems attribute their success at maths and science to rote learning. But the OECD’s assessment suggests that schools in east Asia are developing thinking skills as well as providing a solid grounding in core subjects. Across the world, the OECD study found a strong and positive correlation between performance in problem solving and performance in maths, reading and science. In general, the high-performing students were also the ones best able to cope with unfamiliar situations.”

The lesson that needs to be learned here is that, if you want your child to succeed in life, teach him or her how to think critically and solve problems. The best way to do that is to provide them with a good foundation in science, technology, engineering, and mathematics (STEM). As I noted at the beginning of this article, grounding student in STEM subjects doesn’t mean that other social or liberal arts subjects aren’t important , only that STEM subjects teach life-skills that other disciplines don’t. Bertram explains:

“In America, we must make core subjects like math and science relevant for students, and at the same time, foster creativity, curiosity and a passion for problem solving. That’s what STEM education does. STEM is about using math and science to solve real-world challenges and problems. This applied, project-based way of teaching and learning allows students to understand and appreciate the relevancy of their work to their own lives and the world around them. Once they grasp core concepts, students are able to choose a problem and use their own creativity and curiosity to research, design, test and improve a viable solution.”

One of the reasons that I, along with a few colleagues, founded The Project for STEM Competitiveness , was to help get a project-based, problem-solving approach into schools. As an employer of people with technical skills, I am naturally interested in ensuring that, in the future, I will have an adequate employee pool from which to draw; but, as a parent, I want to ensure that our children are equipped to succeed in a changing world. As I’ve noted in previous articles, many of the jobs our children will asked to fill don’t even exist today. Daisy Christodoulou, an educationalist and the author of Seven Myths about Education , explains that students need exposure to a broad array of disciplines so that they are exposed to the problem-solving skills required in each area. She “argues that such skills are domain specific – they cannot be transferred to an area where our knowledge is limited.” She also believes this will help teach students to think more critically. Vasagar explains:

“Critical thinking is a skill that is impossible to teach directly but must be intertwined with content, Christodoulou argues. … Some argue that placing too strong an emphasis on children acquiring knowledge alone leaves them struggling when faced with more complex problems. Tim Taylor, a former primary school teacher who now trains teachers, says: ‘If you front-load knowledge and leave all the thinking and critical questioning until later, children don’t develop as effective learners.’ There are some generic tools that transfer across disciplines, Taylor argues. ‘What is reading if not a cognitive tool? And that is clearly “transferable”.’ … The way to teach generic skills is to be ‘mindful of it as a teacher’, Taylor suggests. ‘You create opportunities to keep that in the forefront of what you are doing – how is this helping us? How can we use this in another context? That is the point of education, to develop a “growth mindset”,’ he states.”

I agree with Bertram that we must foster educational approaches that appeal to a child’s natural sense of curiosity. He explains:

“Children are born with a natural curiosity. Give a child a toy and watch him or her play for hours. Listen to the questions a child asks. Children have a thirst to understand things. But then they go to school. They are taught how to take tests, how to respond to questions — how to do school. At our own peril, we teach them compliance. We teach them that school isn’t a place for creativity. That must change.”

We are all familiar with the adage “give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime.” Too often we are feeding our students instead of teaching them how to feed themselves. The disciplines that do that best are STEM-related.

Stephen F. DeAngelis is President and CEO of the cognitive computing firm Enterra Solutions.

does critical thinking help students

Get The Magazine

Subscribe now to get 6 months for $5 - plus a free portable phone charger., get our newsletter, wired's biggest stories, delivered to your inbox., follow us on twitter.

Wired Twitter

Visit WIRED Photo for our unfiltered take on photography, photographers, and photographic journalism wrd.cm/1IEnjUH

Follow Us On Facebook

Don't miss our latest news, features and videos., we’re on pinterest, see what's inspiring us., follow us on youtube, don't miss out on wired's latest videos..

Back Home

  • Search Search Search …
  • Search Search …

Critical Thinking Skills and the Academic Performance of Students

Critical Thinking Skills and the Academic Performance of Students

Critical thinking skills are essential for children to develop and can be used in any area of life. By encouraging children to ask questions, explore different viewpoints, and think critically, parents and educators can help their children become successful, lifelong learners. With a critical eye, students can even go on to outperform their peers at school and university.

This article will dive into critical thinking and how it can benefit students of all ages. We’ll take a look at some of the research compiled on the topic and explain how you can improve your critical thinking skills regardless of your age or background. Use this information for your own benefit and become a smart, higher-performing student today.

What Do We Mean by Critical Thinking?

Critical thinking is the ability to think clearly and rationally about a given topic. It includes the ability to engage in open-minded inquiry, to assess evidence, to identify and assess assumptions, and to reason to a conclusion.

Without these skills, students would be incapable of developing their own ideas or pursuing their own interests. For this reason, critical thinking is one of the most important lessons a teacher can share with their class.

Some of the specific ways that educators teach critical thinking skills include lessons on:

  • Analyzing data
  • Drawing logical conclusions
  • Evaluating arguments
  • Identifying bias
  • Considering different points of view
  • Weighing the pros and cons of a situation
  • Developing and testing hypotheses
  • Identifying logical fallacies
  • Making informed decisions

As you can see, these skills apply to the full range of academic discourses. Whether it be a science experiment, a history assignment, a literature review, or a philosophical debate, students are guided to develop critical thinking skills in all areas of their education.

How Does Critical Thinking Affect Academic Performance?

Critical thinking is essential for academic success because it allows students to analyze and evaluate information, ideas, and arguments. These skills act as essential tools for students to accurately evaluate information and arguments critically, and to make informed decisions based on evidence.

Second, critical thinking skills help students to think logically and to reason through complex problems. When educators teach critical thinking, they push their students to ask the right questions, carefully investigate data, and come to an informed conclusion. This transforms them into better problem-solvers and more independent thinkers.

Finally, critical thinking skills give students the power and knowledge needed to question their own preconceived assumptions and biases. It forces students to think outside of their own points of view, placing them in a position to learn from what they’ve previously been afraid of or avoided. This prepares them for university, where they’ll have to consider bigger ideas than they’ve previously encountered.

What Does the Research Say?

Considering that critical thinking skills play such a huge role in how students develop their own academic interests and understandings, researchers have justifiably spent many years studying the long-term effects of critical thinking on academic performance. Much of this research supports what we already assumed—stronger critical thinking skills improve students’ academic outlooks in the long run.

A longitudinal study conducted by joint researchers from the University of Texas, Austin, Huazhong University of Science ; Technology, and Zhejiang University found that children with high critical thinking skills went on to perform better in academic environments. Their findings suggest that critical thinking can, in fact, act as a better predictor than even cognitive ability.

A similar longitudinal study conducted by researchers from Pontificia Universidad Católica del Perú found that critical thinking had a positive impact on four-year MBA students’ overall academic performance. Students with higher critical thinking skills were more likely to have passed and completed the course than students with lower critical thinking skills.

These findings corroborate what educators have known for centuries—students who can think independently and formulate their own analyses go on to perform better in rigorous academic environments.

Where Critical Thinking Skills Matter Most for Academic Success

Although there’s no denying that critical thinking skills play a major role in students’ academic performances, they can literally make or break a high schooler’s dreams of attending university. This may sound hyperbolic but keep in mind the process that high schoolers go through to apply for university.

Beyond submitting letters of recommendation and school transcripts, high schoolers must also take one of two standardized tests—the SAT or the ACT. Both of these tests are designed to measure a student’s ability to think critically and at a level on par with a university’s rigor.

Although the tests may appear to be structured around rote content, the final scores denote how prepared a teenager is for higher-level thinking. If they lack the critical thinking skills needed to develop thought-out arguments or analyze texts critically, they’ll fail to achieve the scores they need to get into a university.

They might not be perfect measures of critical capacity but most universities in the U.S. still require these scores. Therefore, critical thinking skills can literally influence whether an American student can earn a higher education. This is exactly why high school teachers put so much effort into teaching students to think critically and analyze information.

How Can Students Improve Their Critical Thinking Skills?

With an understanding that more rigorous critical thinking skills can prepare you for better academic performance, you are likely wondering how you can build stronger, more critical critical thinking skills. Fortunately, there are many different techniques that you can use to improve these skills.

One of the easiest and fastest ways to improve your critical thinking skills is to ask questions . Whenever you are faced with a problem or a new situation, simply ask yourself questions such as

  • “What is happening?”
  • “What are the possible causes?”
  • “What are the possible solutions?”
  • “What are the risks and benefits of each possible solution?”
  • “What are the possible consequences of each possible solution?”
  • “What is the best solution?”

By forcing yourself to think outside of your comfort zone, you’ll quickly learn the skills needed to find answers to your own questions.

Another way to improve critical thinking skills is to practice problem-solving . When faced with a problem, try to break it down into smaller parts, and then brainstorm possible solutions to each part of the problem. Once a solution has been found for each part of the problem, try to put the solutions together to find a final solution.

Critical thinking skills can also be improved by reading and discussing articles, books, and other materials that require critical thinking. If you’re not sure what read, we recommend starting with:

  • Scientific research or books based on research
  • Anything based on historical findings
  • Literary and philosophical analyses

In addition to reading, your critical thinking skills can also be improved by participating in discussions and debates about what you’ve read. Joining or creating a book club is an excellent way to share your new knowledge and glean from what others have found through their own readings.

During book club, try to engage in critical thinking exercises by analyzing the author’s assumptions and reasoning, as well as each other’s arguments, assumptions, and evidence. At the end of the day, questioning and analyzing everything will help you develop stronger critical thinking skills.

For more rigorous discussions, you can also attend lectures and seminars that focus on critical thinking or join a class. Participating in classroom discussions encourages debate and furthers understanding by providing new perspectives that you may have missed. After class, think reflectively and consider how your own beliefs and assumptions may have been challenged.

Is it Too Late to Develop Critical Thinking Skills?

If you’re an adult hoping to go back to university or complete your GED, you may be worried that you’ve aged out of critical thinking. While there is some research to suggest that, as we age, our brains lose critical capacity when brain cells die, the brain is an amazingly complex structure. Thanks to neuroplasticity , it’s capable of developing new neural pathways regardless of your age.

Even if you are well into middle age, you can still continue to develop new critical thinking skills. Don’t let your age keep you from pursuing the education you always wanted!

Simply put your head into a book and don’t be afraid to get out and strike up a conversation with a stranger or two. The more you question and analyze the world around you, the more you’ll continue to learn and grow.

Final Thoughts

Critical thinking is one of the most important skills you can develop. It allows you to carefully assess information, question your own biases, and formulate your own ideas. It can help you in your personal life, work life, and—most importantly—improve your academic performance.

Regardless of your age, you can continue to grow, learn, and become a more critical thinker. By simply reading actively, striking up debates, and questioning the world around you, you can give your brain the power it needs to break free of its own perspectives.

https://www.sciencedirect.com/science/article/abs/pii/S1871187117301931?via%3Dihub

https://www.sciencedirect.com/science/article/abs/pii/S0160289620300659?via%3Dihub

SAT – skills tested
How to question your assumptions

https://www.topuniversities.com/blog/how-improve-your-problem-solving-skills

https://www.tandfonline.com/doi/abs/10.1080/08963568.2012.712635?journalCode=wbfl20

https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01657/full#:~:text=Neuroplasticity%20can%20be%20viewed%20as,and%20in%20response%20to%20experience.

https://www.nbcnews.com/health/aging/want-keep-your-brain-sharp-old-age-go-back-school-n1030326

You may also like

Thinking vs Critical thinking

Thinking Vs. Critical Thinking: What’s the Difference?

Thinking and critical thinking do not sound that different in nature. After all, they both include the verb thinking, and therefore, imply […]

Top 20 Best Critical Thinking Books

What are the Top 20 Best Critical Thinking Books?

There are many great books on critical thinking, including but not limited to Thinknetic’s “The Habit of Critical Thinking,” Rebecca Stobaugh’s “50 […]

board games to improve your critical thinking skills

5 Board Games to Develop Critical Thinking Skills

Do you know why board games are called that way? It’s because you only play them when you’re bored. Lousy puns aside, […]

47 Critical Thinking Questions for High School Students

47 Critical Thinking Questions for High School Students

Critical thinking is defined as analyzing and thinking objectively about an issue to form a judgment. Critical thinking skills are important for […]

The Importance of Critical Thinking in Students & How To Improve It

The Importance of Critical Thinking in Students & How To Improve It

Providing a well-rounded education to our students involves not only academic subjects but also the development of critical thinking skills. In today's world, critical thinking is an essential skill for success, not just in academics but in all aspects of life. In this blog, we'll discuss why critical thinking is important and how parents and carers can help improve their child's critical thinking skills.

What is Critical Thinking?

Critical thinking is the ability to analyse information, evaluate it and draw conclusions. It involves the use of skills such as reasoning, problem-solving and decision-making to examine and understand complex ideas and concepts. Critical thinking is not just about being able to memorise information, but about being able to think critically about it and apply it to real-life situations.

Why is Critical Thinking Important?

There are many reasons why critical thinking is important for students. It helps them to:

  • Analyse & evaluate information effectively
  • Make informed decisions based on evidence
  • Develop innovative & creative ideas
  • Solve complex problems
  • Understand & evaluate arguments
  • Communicate effectively

In short, critical thinking is a fundamental skill that helps students become independent and analytical thinkers who can adapt to changing situations and contribute positively to society.

Critical Thinkers Make Great Leaders

Critical thinking is an essential ingredient in the recipe for effective leadership. Leaders are often faced with complex challenges that require them to make difficult decisions and solve intricate problems.

The ability to think critically enables leaders to analyse information, evaluate evidence and draw logical conclusions. Critical thinking also allows leaders to approach problems creatively and consider alternative viewpoints, paving the way for innovative solutions. Additionally, ethical leadership requires informed decision-making based on evidence and critical thinking plays a critical role in this process.

Developing strong critical thinking skills is a must for anyone seeking to become a successful leader in today's dynamic world. It provides leaders with the tools to navigate the complexities of the modern landscape and make ethical decisions that positively impact their organisations and communities.

How to Improve Critical Thinking Skills in Students?

As parents and carers, you can play a vital role in improving your child's critical thinking skills. Here are some tips that can help:

Encourage Curiosity: Encourage your child to ask questions, explore ideas and seek answers. This will help them to develop an inquisitive mindset and a thirst for knowledge.

Challenge Assumptions: Encourage your child to challenge assumptions and think outside the box. This will help them to develop a critical mindset and consider alternative perspectives.

Analyse Information: Teach your child how to analyse information, evaluate evidence and draw logical conclusions. This helps develop strong analytical and problem-solving skills.

Encourage Creativity: Encourage your child to use their imagination and come up with innovative ideas. This will help them to develop a unique perspective and approach problems in a novel way.

Practice Reflection: Encourage your child to reflect on their thoughts and actions and to consider alternative viewpoints. This helps them to develop self-awareness and to understand the impact of their decisions.

A Critical Thinking Mindset

As parents and carers, you have a crucial role to play in helping your child develop their critical thinking skills. By encouraging curiosity, challenging assumptions, analysing information, encouraging creativity and practicing reflection, you can help your child to become independent and analytical thinkers, who can adapt to changing situations and contribute positively to society.

At Medowie Christian School, we believe critical thinking is a fundamental part of a well-rounded education. We are committed to helping our students develop this essential skill, not only in their academic pursuits but also in their personal and professional lives.

To learn more about critical thinking and other ways to support your child in their learning and personal lives, please get in touch with us via our contact form. For prospective students, fill in our application form or book a private tour with our principal . For further information, speak with one of our staff during school hours by calling (02) 4052 3300 .

Enhancing students’ critical thinking and creative thinking: An integrated mind mapping and robot-based learning approach

  • Published: 16 May 2024

Cite this article

does critical thinking help students

  • Min-Chi Chiu 1 , 2 &
  • Gwo-Jen Hwang   ORCID: orcid.org/0000-0001-5155-276X 3 , 4  

67 Accesses

Explore all metrics

Fostering students’ critical thinking and creative thinking is an important aim in education. For example, art courses not only focus on artwork creation, but also on theoretical knowledge for identifying artworks. In the conventional lecture-based instruction mode for theoretical knowledge delivery, students’ learning outcomes could be affected owing to the lack of student-teacher interactions, and hence researchers have started to employ interactive learning technologies, such as robots, to cope with this problem. However, without proper guidance and support, students’ learning outcomes in such an interactive learning mode could be limited. To improve students’ learning effectiveness, this study proposed a mind mapping-assisted robot (MM-R) approach for an art course. A quasi-experimental design was adopted to explore the effects of the proposed learning approach on students’ performance in art appreciation, digital painting creation, creative thinking tendency, and critical thinking awareness. A total of 48 students from two classes in a university in central Taiwan were recruited to participate in this study. One class was the experimental group ( n  = 25) adopting the MM-R approach, while the other class was the control group ( n  = 23) adopting the conventional robot (C-R) approach. The results indicated that the integration of the MM-R approach improved students’ learning achievement, performance in digital painting creation, creative thinking tendency, and critical thinking awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

does critical thinking help students

Similar content being viewed by others

does critical thinking help students

Arts and crafts robots or LEGO® MINDSTORMS robots? A comparative study in educational robotics

does critical thinking help students

A Learning Environment for Geography and History Using Mixed Reality, Tangible Interfaces and Educational Robotics

does critical thinking help students

Learning Robotics in a Science Museum Theatre Play: Investigation of Learning Outcomes, Contexts and Experiences

Data availability.

The data and materials are available upon request to the corresponding author.

Code availability

Not applicable.

Abd Karim, R., & Abu, A. G. (2018). Using mobile-assisted mind mapping technique (mammat) to improve writing skills of esl students. Journal of Social Science and Humanities, 1 (2), 1–6. https://doi.org/10.26666/rmp.jssh.2018.2.1

Article   Google Scholar  

Abd Karim, R., & Mustapha, R. (2022). TVET student’s perception on digital mind map to stimulate learning of technical skills in Malaysia. Journal of Technical Education and Training, 14 (1), 1–13.

Afari, E., & Khine, M. S. (2017). Robotics as an educational tool: Impact of Lego mindstorms. International Journal of Information and Education Technology, 7 (6), 437–442. https://doi.org/10.18178/ijiet.2017.7.6.908

Alam, A. (2022). Employing adaptive learning and intelligent tutoring robots for virtual classrooms and smart campuses: Reforming education in the age of artificial intelligence. In Advanced Computing and Intelligent Technologies , 395–406. https://doi.org/10.1007/978-981-19-2980-9_32

Alkhatib, O. J. (2019, March 1–8). A framework for implementing higher-order thinking skills (problem-solving, critical thinking, creative thinking, and decision-making) in engineering & humanities . In 2019 Advances in Science and Engineering Technology International Conferences (ASET), IEEE.

An, J. S., & Huh, Y. J. (2019). Effect of creative thinking through art collaboration class. Journal of the Korea Convergence Society, 10 (7), 121–131. https://doi.org/10.15207/JKCS.2019.10.7.121

Andrews, R. (2015). Critical thinking and/or argumentation in higher education. The Palgrave handbook of critical thinking in higher education (pp. 49–62). Palgrave Macmillan US.

Chapter   Google Scholar  

Astrodjojo, D. R. (2018). The development of teaching materials using learning cycle 5E to increase critical thinking skills and students learning outcome of high school students on the subject of reaction rate. JPPS (Jurnal Penelitian Pendidikan Sains), 8 (1). https://doi.org/10.26740/jpps.v8n1.p%25p

Aykac, V. (2015). An application regarding the availability of mind maps in visual art education based on active learning method. Procedia-Social and Behavioral Sciences, 174 , 1859–1866. https://doi.org/10.1016/j.sbspro.2015.01.848

Bezanilla, M. J., Domínguez, H. G., & Ruiz, M. P. (2021). Importance and possibilities of development of critical thinking in the university: The teacher’s perspective. REMIE: Multidisciplinary Journal of Educational Research, 11 (1), 20–48.

Bhuvaneswari, T., & Beh, S. L. (2013). Changes in teaching and learning through digital media for higher education institutions. International Journal of Mobile Learning and Organisation, 2 (3), 201–215. https://doi.org/10.1504/IJMLO.2008.020315

Bonk, C. J., & Cunningham, D. J. (2012). Searching for learner-centered, constructivist, and sociocultural components of collaborative educational learning tools. Electronic collaborators (pp. 25–50). Routledge.

Bravo, F. A., Hurtado, J. A., & González, E. (2021). Using robots with storytelling and drama activities in science education. Education Sciences, 11 (7), 329.

Bravo Sánchez, F. Á, González Correal, A. M., & Guerrero, E. G. (2017). Interactive drama with robots for teaching non-technical subjects. Journal of Human-Robot Interaction, 6 (2), 48–69.

Brown, G. T., & Wang, Z. (2013). Illustrating assessment: How Hong Kong university students conceive of the purposes of assessment. Studies in Higher Education, 38 (7), 1037–1057. https://doi.org/10.1080/03075079.2011.616955

Buzan, T., & Buzan, B. (2002). How to mind map . Thorsons.

Google Scholar  

Buzan, T., & Buzan, B. (2006). The mind map book . Pearson Education.

Bybee, R. W., & Trowbridge, J. H. (1990). Applying standards-based constructivism: A two-step guide for motivating students . Cambridge University Press.

Carless, D., & Lam, R. (2014). The examined life: Perspectives of lower primary school students in Hong Kong. Education 3–13, 42 (3), 313–329. https://doi.org/10.1080/03004279.2012.689988

Chai, C. S., Deng, F., Tsai, P. S., Koh, J. H. L., & Tsai, C. C. (2015). Assessing multidimensional students’ perceptions of twenty-first-century learning practices. Asia Pacific Education Review, 16 (3), 389–398. https://doi.org/10.1007/s12564-015-9379-4

Chang, C. W., Lee, J. H., Wang, C. Y., & Chen, G. D. (2010). Improving the authentic learning experience by integrating robots into the mixed-reality environment. Computers & Education, 55 (4), 1572–1578. https://doi.org/10.1016/j.compedu.2010.06.023

Chang, C. Y., Panjaburee, P., Lin, H. C., Lai, C. L., & Hwang, G. H. (2022). Effects of online strategies on students’ learning performance, self-efficacy, self-regulation and critical thinking in university online courses. Educational Technology Research and Development, 70 (1), 185–204. https://doi.org/10.1007/s11423-021-10071-y

Chao, J. Y., Liu, C. H., & Kao, H. C. (2023). Science, Technology, Engineering, and Mathematics Curriculum Design for Teaching Mathematical Concept of Perspective at Indigenous Elementary School using Robots. Sensors and Materials, 35 (5), 1547–1556.

Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: A narrative overview. Procedia Computer Science, 136 , 16–24. https://doi.org/10.1016/j.procs.2018.08.233

Chen, C. H., & Chung, H. Y. (2023). Fostering computational thinking and problem-solving in programming: Integrating Concept maps into Robot Block-based programming. Journal of Educational Computing Research . https://doi.org/10.1177/07356331231205052

Chen, X., Cheng, G., Zou, D., Zhong, B., & Xie, H. (2023). Artificial Robots for Precision Education. Educational Technology & Society, 26 (1), 171–186.

Chen Hsieh, J. (2022). Multimodal Digital Storytelling Presentations among Middle-School learners of English as a Foreign Language: Emotions, grit and perceptions. RELC Journal . https://doi.org/10.1177/00336882221102233

Chin, K. Y., Hong, Z. W., & Chen, Y. L. (2014). Impact of using an educational robot-based learning system on students’ motivation in elementary education. IEEE Transactions on Learning Technologies, 7 (4), 333–345.

Chiu, M. C., Hwang, G. J., & Tu, Y. F. (2022). Roles, applications, and research designs of robots in science education: a systematic review and bibliometric analysis of journal publications from 1996 to 2020. Interactive Learning Environments, 1–26. https://doi.org/10.1080/10494820.2022.2129392

Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). SAGE Publications.

Cristea, A. D., Berdie, A. D., Osaci, M., & Chirtoc, D. (2011). The advantages of using mind map for learning web dynpro. Computer Applications in Engineering Education, 19 (1), 201–207.

Cruickshank, D. (1996). The ‘art’of reflection: Using drawing to uncover knowledge development in student nurses. Nurse Education Today, 16 (2), 127–130. https://doi.org/10.1016/S0260-6917(96)80069-4

Davies, M. (2011). Concept mapping, mind mapping and argument mapping: What are the differences and do they matter? Higher Education, 62 (3), 279–301. https://doi.org/10.1007/s10734-010-9387-6

Deaver, S. P. (2012). Art-based learning strategies in art therapy graduate education. Art Therapy, 29 (4), 158–165. https://doi.org/10.1080/07421656.2012.730029

Debbag, M., Cukurbasi, B., & Fidan, M. (2021). Use of digital mind maps in technology education: A pilot study with pre-service science teachers. Informatics in Education, 20 (1), 47–68.

Dewey, J. (1934). In J. Boydston (Ed.), Art as experience, reprinted in 1989, John dewey: The later works, 1925–1953. (Vol. 10). Southern Illinois University.

Dong, Y., Zhu, S., & Li, W. (2021). Promoting sustainable creativity: An empirical study on the application of mind mapping tools in graphic design education. Sustainability, 13 (10), 5373. https://doi.org/10.3390/su13105373

Dorouka, P., Papadakis, S., & Kalogiannakis, M. (2020). Tablets and apps for promoting robotics, mathematics, STEM education and literacy in early childhood education. International Journal of Mobile Learning and Organisation, 14 (2), 255–274.

Dumitru, D. (2019). Creating meaning. The importance of arts, humanities and Culture for critical thinking development. Studies in Higher Education, 44 (5), 870–879. https://doi.org/10.1080/03075079.2019.1586345

Edwards, S., & Cooper, N. (2010). Mind mapping as a teaching resource. The Clinical Teacher, 7 (4), 236–239. https://doi.org/10.1111/j.1743-498X.2010.00395.x

Edwards, C., Edwards, A., Spence, P. R., & Lin, X. (2018). I, teacher: Using artificial intelligence (AI) and social robots in communication and instruction. Communication Education, 67 (4), 473–480. https://doi.org/10.1080/03634523.2018.1502459

Eppler, M. J. (2006). A comparison between concept maps, mind maps, conceptual diagrams, and visual metaphors as complementary tools for knowledge construction and sharing. Information Visualization, 5 (3), 202–210.

Evripidou, S., Amanatiadis, A., Christodoulou, K., & Chatzichristofis, S. A. (2021). Introducing algorithmic thinking and sequencing using tangible robots. IEEE Transactions on Learning Technologies, 14 (1), 93–105. https://doi.org/10.1109/TLT.2021.3058060

Fadillah, R. (2019). STUDENTS’perception on the use of mind mapping application software in learning writing. Celtic: A Journal of Culture English Language Teaching Literature and Linguistics, 6 (1), 58–64.

Fan, X., & Zhong, X. (2022). Artificial intelligence-based creative thinking skill analysis model using human–computer interaction in art design teaching. Computers and Electrical Engineering, 100 , 107957. https://doi.org/10.1016/j.compeleceng.2022.107957

Fish, B. J. (2019). Response art in art therapy: Historical and contemporary overview. Art Therapy, 36 (3), 122–132. https://doi.org/10.1080/07421656.2019.1648915

Freire, P. (1973). Education for critical consciousness (Vol. 1). Bloomsbury Publishing.

Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive learning in preschool education. Computers & Education, 70 , 53–64. https://doi.org/10.1016/j.compedu.2013.07.043

Fu, Q. K., Lin, C. J., Hwang, G. J., & Zhang, L. (2019). Impacts of a mind mapping-based contextual gaming approach on EFL students’ writing performance, learning perceptions and generative uses in an English course. Computers & Education, 137 , 59–77. https://doi.org/10.1016/j.compedu.2019.04.005

Gerecke, U., & Wagner, B. (2007). The challenges and benefits of using robots in higher education. Intelligent Automation & Soft Computing, 13 (1), 29–43. https://doi.org/10.1080/10798587.2007.10642948

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research . Routledge.

Goldstain, O. H., Ben-Gal, I., & Bukchin, Y. (2011). Evaluation of telerobotic interface components for teaching robot operation. IEEE Transactions on Learning Technologies, 4 (4), 365–376. https://doi.org/10.1109/TLT.2011.19

Goldston, M. J., Day, J. B., Sundberg, C., & Dantzler, J. (2010). Psychometric analysis of a 5E learning cycle lesson plan assessment instrument. International Journal of Science and Mathematics Education, 8 (4), 633–648. https://doi.org/10.1007/s10763-009-9178-7

Hardiman, M. M., JohnBull, R. M., Carran, D. T., & Shelton, A. (2019). The effects of arts-integrated instruction on memory for science content. Trends in Neuroscience and Education, 14 , 25–32. https://doi.org/10.1016/j.tine.2019.02.002

Hayadi, B. H., Bastian, A., Rukun, K., Jalius, N., Lizar, Y., & Guci, A. (2018). Expert system in the application of learning models with forward chaining method. International Journal of Engineering Technology, 7 (2.29), 845–848.

Heyvaert, M., Maes, B., & Onghena, P. (2013). Mixed methods research synthesis: Definition, framework, and potential. Quality & Quantity, 47 , 659–676.

Hidayati, N., Zubaidah, S., Suarsini, E., & Praherdhiono, H. (2019). Examining the relationship between creativity and critical thinking through integrated problem-based learning and digital mind maps. Universal Journal of Education Research , 7 (9A), 171–179. https://doi.org/10.13189/ujer.2019.071620

Ho, T. K. L., & Lin, H. S. (2015). A web-based painting tool for enhancing student attitudes toward learning art creation. Computers & Education, 89 , 32–41. https://doi.org/10.1016/j.compedu.2015.08.015

Howitt, C. (2009). 3-D mind maps: Placing young children in the centre of their own learning. Teaching Science: The Journal of the Australian Science Teachers Association , 55 (2).

Hölling, H. (2016). The aesthetics of change: on the relative durations of the impermanent and critical thinking in conservation. Authenticity in Transition: Changing Practices in Art Making and Conservation, 13–24.

Hsu, T. C., & Chen, M. S. (2022). The engagement of students when learning to use a personal audio classifier to control robot cars in a computational thinking board game. Research and Practice in Technology Enhanced Learning, 17 (1), 1–17. https://doi.org/10.1186/s41039-022-00202-1

Article   MathSciNet   Google Scholar  

Huang, Z. M. (2021). Exploring imagination as a methodological source of knowledge: Painting students’ intercultural experience at a UK university. International Journal of Research & Method in Education, 44 (4), 366–378. https://doi.org/10.1080/1743727X.2020.1796958

Hutson, J., & Olsen, T. (2022). Virtual reality and art history: A case study of digital humanities and immersive learning environments. Journal of Higher Education Theory and Practice, 22 (2).

Hwang, G. J., Yang, T. C., Tsai, C. C., & Yang, S. J. H. (2009). A context-aware ubiquitous learning environment for conducting complex science experiments. Computers & Education, 53 (2), 402–413. https://doi.org/10.1016/j.compedu.2009.02.016

Hwang, G. J., Lee, H. Y., & Chen, C. H. (2019). Lessons learned from integrating concept mapping and gaming approaches into learning scenarios using mobile devices: Analysis of an activity for a geology course. International Journal of Mobile Learning and Organisation, 13 (3), 286–308.

Ishiguro, C., & Okada, T. (2022). How can inspiration be encouraged in art learning? Arts-based methods in education around the world (pp. 205–230). River.

Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10 (4), 905. https://doi.org/10.3390/su10040905

Kalaitzidou, M., & Pachidis, T. P. (2023). Recent robots in STEAM Education. Education Sciences, 13 (3), 272. https://doi.org/10.3390/educsci13030272

Kokotovich, V. (2008). Problem analysis and thinking tools: an empirical study of non-hierarchical mind mapping. Design studies, 29 (1), 49–69. https://doi.org/10.1016/j.destud.2007.09.001

Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and peer tutors for children: A field trial. Human–Computer Interaction, 19 (1–2), 61–84.

Köhler, C., Hartig, J., & Naumann, A. (2021). Detecting instruction effects-deciding between covariance analytical and change-score approach. Educational Psychology Review, 33 , 1191–1211. https://doi.org/10.1007/s10648-020-09590-6

Kotcherlakota, S., Zimmerman, L., & Berger, A. M. (2013). Developing scholarly thinking using mind maps in graduate nursing education. Nurse educator , 27 (6), 252–255. https://doi.org/10.1097/01.NNE.0000435264.15495.51

Konijn , E. A., & Hoorn, J. F. (2020). Robot tutor and pupils’ educational ability: Teaching the times tables. Computers & Education , 157 , 103970. https://doi.org/10.1016/j.compedu.2020.103970

Kuo, Y. T., Garcia Bravo, E., Whittinghill, D. M., & Kuo, Y. C. (2023). Walking into a modern painting: The impacts of using virtual reality on student learning performance and experiences in art appreciation. International Journal of Human–Computer Interaction, 1–22. https://doi.org/10.1080/10447318.2023.2278929

Lai, C. L., & Hwang, G. J. (2014). Effects of mobile learning time on students’ conception of collaboration, communication, complex problem-solving, meta-cognitive awareness and creativity. International Journal of Mobile Learning and Organisation, 8 (3), 276–291. https://doi.org/10.1504/IJMLO.2014.067029

Lai, C. L., & Hwang, G. J. (2015). An interactive peer-assessment criteria development approach to improving students’ art design performance using handheld devices. Computers & Education, 85 , 149–159. https://doi.org/10.1016/j.compedu.2015.02.011

Lee, C. S., Wang, M. H., Kuan, W. K., Huang, S. H., Tsai, Y. L., Ciou, Z. H., Yang, C. K., & Kubota, N. (2021). BCI-based hit-loop agent for human and AI robot co-learning with AIoT application. Journal of Ambient Intelligence and Humanized Computing, 1–25. https://doi.org/10.1007/s12652-021-03487-0

Liang, J. C., & Hwang, G. J. (2023). A robot-based digital storytelling approach to enhancing EFL learners’ multimodal storytelling ability and narrative engagement. Computers & Education, 201 , 104827. https://doi.org/10.1016/j.compedu.2023.104827

Lin, C. J., Hwang, G. J., Fu, Q. K., & Chen, J. F. (2018). A flipped contextual game-based learning approach to enhancing EFL students’ English business writing performance and reflective behaviors. Journal of Educational Technology & Society, 21 (3), 117–131.

Lin, H. C., Hwang, G. J., & Hsu, Y. D. (2019). Effects of ASQ-based flipped learning on nurse practitioner learners’ nursing skills, learning achievement and learning perceptions. Computers & Education, 139 , 207–221. https://doi.org/10.1016/j.compedu.2019.05.014

Liu, H., Sheng, J., & Zhao, L. (2022). Innovation of teaching tools during robot programming learning to promote middle school students’ critical thinking. Sustainability, 14 (11), 6625. https://doi.org/10.3390/su14116625

Malycha, C. P., & Maier, G. W. (2017). Enhancing creativity on different complexity levels by eliciting mental models. Psychology of Aesthetics Creativity and the Arts, 11 (2), 187. https://doi.org/10.1037/aca0000080

Mernick, A. (2021). Critical arts pedagogy: Nurturing critical consciousness and self-actualization through art education. Art Education, 74 (5), 19–24. https://doi.org/10.1080/00043125.2021.1928468

Meyer, T. (2017). Next art education: Eight theses future art educators should think about. International Journal of Education through Art, 13 (3), 369–384. https://doi.org/10.1386/eta.13.3.369_1

Mijwil, M. M., Aggarwal, K., Mutar, D. S., Mansour, N., & Singh, R. (2022). The position of artificial intelligence in the future of education: an overview. Journal of Applied Sciences, 10 (2).

Miles, M. B., Huberman, A. M., & Saldaña, J. (2013). Qualitative data analysis: A methods sourcebook (3rd ed.). SAGE Publications, Inc.

Moraiti, I., Fotoglou, A., & Drigas, A. (2022). Coding with block programming languages in educational robotics and mobiles, improve problem solving, creativity & critical thinking skills. International Journal of Interactive Mobile Technologies , 16 (20). https://doi.org/10.3991/ijim.v16i20.34247

 Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J. J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning , 1 (209 – 0015), 13. https://doi.org/10.2316/Journal.209.2013.1.209-0015

Nurkhin, A., & Pramusinto, H. (2020). Problem-based learning strategy: Its impact on students’ critical and creative thinking skills. European Journal of Educational Research, 9 (3), 1141–1150.

O’Connell, R. M. (2014). Mind mapping for critical thinking. In Cases on teaching critical thinking through visual representation strategies , 354–386. https://doi.org/10.4018/978-1-4666-5816-5.ch014

Oreck, B. (2004). The artistic and professional development of teachers: A study of teachers’ attitudes toward and use of the arts in teaching. Journal of Teacher Education, 55 (1), 55–69. https://doi.org/10.1177/0022487103260072

Otukile-Mongwaketse, M. (2018). Teacher centered approaches: Their implications for today’s inclusive classrooms. International Journal of Psychoogy and Counseling, 10 (2), 11–21. https://doi.org/10.5897/IJPC2016.0393

Park, Y. S. (2023). Creative and critical entanglements with AI in Art Education. Studies in Art Education, 64 (4), 406–425. https://doi.org/10.1080/00393541.2023.2255084

Patton, R. M., & Buffington, M. L. (2016). Keeping up with our students: The evolution of technology and standards in art education. Arts Education Policy Review, 117 (3), 1–9. https://doi.org/10.1080/10632913.2014.944961

Ramdani, A., Jufri, A. W., Gunawan, G., Fahrurrozi, M., & Yustiqvar, M. (2021). Analysis of students’ critical thinking skills in terms of gender using Science Teaching materials based on the 5E learning cycle Integrated with local Wisdom. Jurnal Pendidikan IPA Indonesia, 10 (2), 187–199. https://doi.org/10.15294/jpii.v10i2.29956

Rim, H., Choi, I., & Noh, S. (2014). A study on the application of robotic programming to promote logical and critical thinking in mathematics education. The Mathematical Education, 53 (3), 413–434. https://doi.org/10.7468/mathedu.2014.53.3.413

Ryu, H. J., Kwak, S. S., & KIM, M. S. (2008). Design factors for external form of robots as elementary school teaching assistants. Bulletin of Japanese Society for the Science of Design, 54 (6), 39–48. https://doi.org/10.11247/jssdj.54.39_3

Sajnani, N., Mayor, C., & Tillberg-Webb, H. (2020). Aesthetic presence: The role of the arts in the education of creative arts therapists in the classroom and online. The Arts in Psychotherapy, 69 , 101. https://doi.org/10.1016/j.aip.2020.101668

Sari, R., Sumarmi, S., Astina, I., Utomo, D., & Ridhwan, R. (2021). Increasing students critical thinking skills and learning motivation using inquiry mind map. International Journal of Emerging Technologies in Learning (iJET), 16 (3), 4–19. https://doi.org/10.3991/ijet.v16i03.16515

Saunders, G., & Klemming, F. (2003). Integrating technology into a traditional learning environment: Reasons for and risks of success. Active Learning in Higher Education, 4 (1), 74–86. https://doi.org/10.1177/1469787403004001006

Setiawan, I. W. P., Suartama, I. K., & Putri, D. A. W. M. (2017). Pengaruh Model Pembelajaran Learning Cycle 5e Berbantuan Mind Mapping Terhadap Hasil Belajar Matematika. Mimbar PGSD Undiksha, 5 (2). https://doi.org/10.23887/jjpgsd.v5i2.10841

Štuikys, V., & Burbaitė, R. (2018). Smart devices and educational robotics as technology for STEM knowledge. Springer , 57–67. https://doi.org/10.1007/978-3-319-78485-4_3

Sun, M., Wang, M., & Wegerif, R. (2019). Using computer-based cognitive mapping to improve students’ divergent thinking for creativity development. British Journal of Educational Technology, 50 (5), 2217–2233. https://doi.org/10.1111/bjet.12825

Sun, Q., Lu, Z., & Ren, X. (2023). The influence of humanities on art and design learning performance: An empirical study. International Journal of Art & Design Education . https://doi.org/10.1111/jade.12474

Ulger, K. (2018). The effect of problem-based learning on the creative thinking and critical thinking disposition of students in visual arts education. Interdisciplinary Journal of Problem-Based Learning, 12 (1).

Usengül, L., & Bahçeci, F. (2020). The Effect of LEGO WeDo 2.0 education on academic achievement and attitudes and computational thinking skills of Learners toward Science. World Journal of Education, 10 (4), 83–93. https://doi.org/10.5430/wje.v10n4p83

Utami, D., & Subali, B. (2019, October). The effectiveness of 5E learning cycle accompanied by mind mapping on creative thinking. In Proceeding of the 2nd International Conference Education Culture and Technology, ICONECT 2019, 20–21 August 2019, Kudus, Indonesia .

Van den Berghe, R., Verhagen, J., Oudgenoeg-Paz, O., Van der Ven, S., & Leseman, P. (2019). Social robots for language learning: A review. Review of Educational Research, 89 (2), 259–295. https://doi.org/10.3102/0034654318821286

Ververi, C., Koufou, T., Moutzouris, A., & Andreou, L. V. (2020, April 20–21). Introducing robotics to an English for academic purposes curriculum in higher education: The student experience . In 2020 IEEE Global Engineering Education Conference (EDUCON), Porto, Portugal.

Walia, D. N. (2012). Traditional teaching methods vs. CLT: A study. Frontiers of Language and Teaching, 3 (1), 125–131.

Westlund, J. K., & Breazeal, C. (2015, March 65–66). The interplay of robot language level with children’s language learning during storytelling. In Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction extended abstracts, New York, United States.

Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., & Picard, R. (2009). Affect-aware tutors: Recognising and responding to student affect. International Journal of Learning Technology, 4 (3–4), 129–164. https://doi.org/10.1504/IJLT.2009.028804

Wu, H. Z., & Wu, Q. T. (2020). Impact of mind mapping on the critical thinking ability of clinical nursing students and teaching application. Journal of International Medical Research, 48 (3). https://doi.org/10.1177/0300060519893225

Wu, W. L., Hsu, Y., Yang, Q. F., Chen, J. J., & Jong, M. S. Y. (2021). Effects of the self-regulated strategy within the context of spherical video-based virtual reality on students’ learning performances in an art history class. Interactive Learning Environments, 1–24. https://doi.org/10.1080/10494820.2021.1878231

Yang, J., & Zhang, B. (2019). Artificial intelligence in intelligent tutoring robots: A systematic review and design guidelines. Applied Sciences , 9 (10), 2078. https://doi.org/10.3390/app9102078

Yang, Q. F., Lian, L. W., & Zhao, J. H. (2023). Developing a gamified artificial intelligence educational robot to promote learning effectiveness and behavior in laboratory safety courses for undergraduate students. International Journal of Educational Technology in Higher Education, 20 (1), 18. https://doi.org/10.1186/s41239-023-00391-9

Yu, F. Y., & Liu, Y. H. (2005). Potential values of incorporating a multiple-choice question construction in physics experimentation instruction. International Journal of Science Education, 27 (11), 1319–1335. https://doi.org/10.1080/09500690500102854

Yuliyanto, A., Basit, R. A., Muqodas, I., Wulandari, H., & Mifta, D. (2020). Alternative learning of the future based on Verbal-Linguistic, and visual-spatial intelligence through Youtube-based mind map when Pandemic Covid-19. Jurnal JPSD (Jurnal Pendidikan Sekolah Dasar), 7 (2), 132–141. https://doi.org/10.12928/jpsd.v7i2.16925

Zampetakis, L. A., Tsironis, L., & Moustakis, V. (2007). Creativity development in engineering education: The case of mind mapping. Journal of Management Development, 26 (4), 370–380. https://doi.org/10.1108/02621710710740110

Zhang, X., Chen, Y., Li, D., Hu, L., Hwang, G. J., & Tu, Y. F. (2023). Engaging young students in effective robotics education: an embodied learning-based computer programming approach. Journal of Educational Computing Research, 62 (2), 532–558. https://doi.org/10.1177/07356331231213548

Download references

This study is supported in part by the National Science and Technology Council of Taiwan under contract numbers NSTC 112-2410-H-011-012-MY3 and MOST 111-2410-H-011 -007 -MY3. The study is also supported by the “Empower Vocational Education Research Center” of National Taiwan University of Science and Technology (NTUST) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and affiliations.

Department of Information Management, Ling Tung University, Taichung, Taiwan

Min-Chi Chiu

Department of Multimedia Design, National Taichung University of Science and Technology, Taichung, Taiwan

Graduate Institute of Educational Information and Measurement, National Taichung University of Education, Taichung, Taiwan

Gwo-Jen Hwang

Graduate Institute of Digital Learning and Education, National Taiwan University of Science and Technology, Taipei, Taiwan

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Min-Chi Chiu. Project administration were performed by Gwo-Jen Hwang and Min-Chi Chiu. Methodology and supervision were performed Gwo-Jen Hwang and Min-Chi Chiu. The first draft of the manuscript was written by Min-Chi Chiu. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gwo-Jen Hwang .

Ethics declarations

Ethics approval.

The ethical requirements for research in this selected university were followed.

Consent to participate

The participants all agreed to take part in this study.

Consent for publication

The publication of this study has been approved by all authors.

Conflicts of interest/Competing interests

There is no potential conflict of interest in this study.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Chiu, MC., Hwang, GJ. Enhancing students’ critical thinking and creative thinking: An integrated mind mapping and robot-based learning approach. Educ Inf Technol (2024). https://doi.org/10.1007/s10639-024-12752-6

Download citation

Received : 14 August 2023

Accepted : 29 April 2024

Published : 16 May 2024

DOI : https://doi.org/10.1007/s10639-024-12752-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Mind mapping
  • Intelligent robot
  • 5E instructional model
  • Artwork appreciation
  • Creative thinking tendency
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. 7 Methods to Develop Creative Thinking Skills for Students

    does critical thinking help students

  2. The benefits of critical thinking for students and how to develop it

    does critical thinking help students

  3. How to promote Critical Thinking Skills

    does critical thinking help students

  4. why is Importance of Critical Thinking Skills in Education

    does critical thinking help students

  5. Critical Thinking in the Classroom

    does critical thinking help students

  6. 6 Main Types of Critical Thinking Skills (With Examples)

    does critical thinking help students

VIDEO

  1. Critical Thinking Skills to Get Us Through a Pandemic with Author Jonathan Haber (5-13-20)

  2. Teacher De-Wokefies Student By Teaching Critical Thinking

  3. Critical thinking and deferring to experts

  4. Introduction to Critical Thinking

  5. Critical Thinking

  6. What is critical thinking?

COMMENTS

  1. What is critical thinking?

    Critical thinking is a kind of thinking in which you question, analyse, interpret , evaluate and make a judgement about what you read, hear, say, or write. The term critical comes from the Greek word kritikos meaning "able to judge or discern". Good critical thinking is about making reliable judgements based on reliable information.

  2. Why critical thinking skills are (urgently) important for students

    The information environments we move through in our daily lives are fundamentally communal experiences - and the critical thinking skills most likely to help us are primarily about who or what to trust, how to ask for help, and what it means to formulate the best possible questions. Misinformation, disinformation and fake news are the dark side ...

  3. Developing Critical Thinking

    In a time where deliberately false information is continually introduced into public discourse, and quickly spread through social media shares and likes, it is more important than ever for young people to develop their critical thinking. That skill, says Georgetown professor William T. Gormley, consists of three elements: a capacity to spot ...

  4. Helping Students Hone Their Critical Thinking Skills

    Teach Reasoning Skills. Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems.

  5. Eight Instructional Strategies for Promoting Critical Thinking

    Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care ...

  6. The Importance of Critical Thinking Skills for Students

    Importance of critical thinking for students 1. Decision-making 2. Problem-solving 3. Communication 4. Analytical skills How can students develop critical thinking skills 1. Never stop asking questions 2. Practice active listening 3. Dive into your creativity 4. Engage in debates and discussions 5.

  7. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  8. Bridging critical thinking and transformative learning: The role of

    Such readings can help students to expand their cognitive frameworks, which is necessary for effective critical thinking and can even initiate a process of transformative learning. Conclusion Perspective-taking is a critical skill to help individuals come to recognize intrinsic problems.

  9. Integrating Critical Thinking Into the Classroom (Opinion)

    Critical thinking has the power to launch students on unforgettable learning experiences while helping them develop new habits of thought, reflection, and inquiry. Developing these skills prepares ...

  10. Fostering and assessing student critical thinking: From theory to

    Critical thinking does not necessarily end in a critique of the most widely accepted position on a topic—which may indeed be the strongest one, based on existing evidence. ... These comprise conceptual rubrics that help teachers and students identify the critical thinking sub-skills students should develop, and teachers to reflect on whether ...

  11. Ten Ways to Facilitate Student Critical Thinking in the Classroom and

    Ten Ways to Facilitate Student Critical Thinking in the Classroom and School. Design Critical Thinking Activities. (This might include mind mapping, making thinking visible, Socratic discussions, meta-cognitive mind stretches, Build an inquiry wall with students and talk about the process of thinking". Provide time for students to collaborate.

  12. Critical thinking: how to help your students become better learners

    To help pupils begin to think in this way, you can divide the process into three parts: before a task (effective planning), during (self-monitoring) and after (evaluation and reflection). Work on ...

  13. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  14. Critical and Creative Thinking: An Essential Skill for Every Student

    This involves thinking out-of-the-box and coming up with innovative solutions. Core Skills: Key skills for critical and creative thinking include analysis, brainstorming, lateral thinking, interpretation, and problem-solving. Students need to approach problems with curiosity, risk-taking, and structured reasoning.

  15. Why is critical thinking important for Psychology students?

    Showing your critical thinking is not just a box to be ticked on your assignment marksheet: it is a life skill that helps us to really understand and interpret the world around us. Critical thinking is objective and requires you to analyse and evaluate information to form a sound judgement. It is a cornerstone of evidence-based arguments and ...

  16. Does College Teach Critical Thinking? A Meta-Analysis

    Even without explicit attempts to foster critical thinking, there is certainly a widespread perception that college breeds critical thinkers. Tsui (1998) reported that 92% of students in a large multi-institution study believed they had made some gains in critical thinking, and 39.3% thought their critical thinking had grown much stronger. Only 8.9% believed it had not changed or had grown weaker.

  17. Critical thinking

    Critical thinking is the art of making clear, reasoned judgements based on interpreting, understanding, applying and synthesising evidence gathered from observation, reading and experimentation. Essential Study Skills: The Complete Guide to Success at University (4th ed.) London: SAGE, p94. Being critical does not just mean finding fault.

  18. The Importance of Critical Thinking For A Student 2024

    7. Academic Success: Critical thinking is crucial for understanding complex concepts, evaluating arguments, and weaving together information from various sources. ‍. 8. Personal Growth: It helps in self-reflection, aiding individuals in understanding their beliefs, values, and actions better. ‍. 9.

  19. The Importance Of Critical Thinking, and how to improve it

    Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life. 4. Form Well-Informed Opinions.

  20. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  21. Why STEM? Success Starts With Critical Thinking, Problem ...

    She also believes this will help teach students to think more critically. Vasagar explains: "Critical thinking is a skill that is impossible to teach directly but must be intertwined with ...

  22. Critical Thinking Skills and the Academic Performance of Students

    Critical thinking is essential for academic success because it allows students to analyze and evaluate information, ideas, and arguments. These skills act as essential tools for students to accurately evaluate information and arguments critically, and to make informed decisions based on evidence. Second, critical thinking skills help students ...

  23. The Importance of Critical Thinking in Students & How To Improve It

    Critical thinking is the ability to analyse information, evaluate it and draw conclusions. It involves the use of skills such as reasoning, problem-solving and decision-making to examine and understand complex ideas and concepts. Critical thinking is not just about being able to memorise information, but about being able to think critically ...

  24. The Link between Critical Reading, Thinking and Writing

    Critical thinking is a term you have probably come across a great deal in your academic journey at college, or even before you start college. Being critical is indeed a key skill you will need for your assessments, whether this be an essay, exam or oral presentation. But thinking critically is only the second step in a three-step process.

  25. Do IB students have higher critical thinking? A comparison of IB with

    1.Introduction. Critical thinking plays an important role in many aspects of society, employment opportunities, and in the classroom (Butler, 2012).Education has been highlighted as an important avenue for developing and fostering critical thinking skills and policymakers have developed new frameworks to measure and improve students' critical thinking skills (Rotherham & Willingham, 2010 ...

  26. Enhancing students' critical thinking and creative thinking: An

    Fostering students' critical thinking and creative thinking is an important aim in education. For example, art courses not only focus on artwork creation, but also on theoretical knowledge for identifying artworks. In the conventional lecture-based instruction mode for theoretical knowledge delivery, students' learning outcomes could be affected owing to the lack of student-teacher ...

  27. How Technology Bolsters Critical Thinking in Students

    By leveraging technology, students can engage with complex problems, analyze data, and develop solutions, all of which are essential components of critical thinking.