U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Supporting Early Scientific Thinking Through Curiosity

Curiosity and curiosity-driven questioning are important for developing scientific thinking and more general interest and motivation to pursue scientific questions. Curiosity has been operationalized as preference for uncertainty ( Jirout and Klahr, 2012 ), and engaging in inquiry-an essential part of scientific reasoning-generates high levels of uncertainty ( Metz, 2004 ; van Schijndel et al., 2018 ). This perspective piece begins by discussing mechanisms through which curiosity can support learning and motivation in science, including motivating information-seeking behaviors, gathering information in response to curiosity, and promoting deeper understanding through connection-making related to addressing information gaps. In the second part of the article, a recent theory of how to promote curiosity in schools is discussed in relation to early childhood science reasoning. Finally, potential directions for research on the development of curiosity and curiosity-driven inquiry in young children are discussed. Although quite a bit is known about the development of children’s question asking specifically, and there are convincing arguments for developing scientific curiosity to promote science reasoning skills, there are many important areas for future research to address how to effectively use curiosity to support science learning.

Scientific Thinking and Curiosity

Scientific thinking is a type of knowledge seeking involving intentional information seeking, including asking questions, testing hypotheses, making observations, recognizing patterns, and making inferences ( Kuhn, 2002 ; Morris et al., 2012 ). Much research indicates that children engage in this information-seeking process very early on through questioning behaviors and exploration. In fact, children are quite capable and effective in gathering needed information through their questions, and can reason about the effectiveness of questions, use probabilistic information to guide their questioning, and evaluate who they should question to get information, among other related skills (see Ronfard et al., 2018 for review). Although formal educational contexts typically give students questions to explore or steps to follow to “do science,” young children’s scientific thinking is driven by natural curiosity about the world around them, and the desire to understand it and generate their own questions about the world ( Chouinard et al., 2007 ; Duschl et al., 2007 ; French et al., 2013 ; Jirout and Zimmerman, 2015 ).

What Does Scientific Curiosity Look Like?

Curiosity is defined here as the desire to seek information to address knowledge gaps resulting from uncertainty or ambiguity ( Loewenstein, 1994 ; Jirout and Klahr, 2012 ). Curiosity is often seen as ubiquitous within early childhood. Simply observing children can provide numerous examples of the bidirectional link between curiosity and scientific reasoning, such as when curiosity about a phenomenon leads to experimentation, which, in turn, generates new questions and new curiosities. For example, an infant drops a toy to observe what will happen. When an adult stoops to pick it up, the infant becomes curious about how many times an adult will hand it back before losing interest. Or, a child might observe a butterfly over a period of time, and wonder why it had its wings folded or open at different points, how butterflies fly, why different butterflies are different colors, and so on (see Figure 1 ). Observations lead to theories, which may be immature, incomplete, or even inaccurate, but so are many early scientific theories. Importantly, theories can help identify knowledge gaps, leading to new instances of curiosity and motivating children’s information seeking to acquire new knowledge and, gradually, correct misconceptions. Like adults, children learn from their experiences and observations and use information about the probability of events to revise their theories ( Gopnik, 2012 ).

An external file that holds a picture, illustration, etc.
Object name is fpsyg-11-01717-g001.jpg

A child looks intently at a butterfly, becoming curious about the many things she wonders based on her observations.

Although this type of reasoning is especially salient in science, curiosity can manifest in many different types of information seeking in response to uncertainty, and is similar to critical thinking in other domains of knowledge and to active learning and problem solving more generally ( Gopnik, 2012 ; Klahr et al., 2013 ; Saylor and Ganea, 2018 ). The development of scientific thinking begins as the senses develop and begin providing information about the world ( Inhelder and Piaget, 1958 ; Gopnik et al., 1999 ). When they are not actively discouraged, children need no instruction to ask questions and explore, and the information they get often leads to further information seeking. In fact, observational research suggests that children can ask questions at the rate of more than 100 per hour ( Chouinard et al., 2007 )! Although the adults in a child’s life might tire of what seems like relentless questioning ( Turgeon, 2015 ), even young children can modify their beliefs and learn from the information they receive ( Ronfard et al., 2018 ). More generally, children seek to understand their world through active exploration, especially in response to recognizing a gap in their understanding ( Schulz and Bonawitz, 2007 ). The active choice of what to learn, driven by curiosity, can provide motivation and meaning to information and instill a lasting positive approach to learning in formal educational contexts.

How Does Curiosity Develop and Support Scientific Thinking?

There are several mechanisms through which children’s curiosity can support the development and persistence of scientific thinking. Three of these are discussed below, in sequence: that curiosity can (1) motivate information-seeking behavior, which leads to (2) question-asking and other information-seeking behaviors, which can (3) activate related previous knowledge and support deeper learning. Although we discuss these as independent, consecutive steps for the sake of clarity, it is much more likely that curiosity, question asking and information seeking, and cognitive processing of information and learning are all interrelated processes that support each other ( Oudeyer et al., 2016 ). For example, information seeking that is not a result of curiosity can lead to new questions, and as previous knowledge is activated it may influence the ways in which a child seeks information.

Curiosity as a Motivation for Information Seeking

Young children’s learning is driven by exploration to make sense of the world around them (e.g., Piaget, 1926 ). This exploration can result from curiosity ( Loewenstein, 1994 ; Jirout and Klahr, 2012 ) and lead to active engagement in learning ( Saylor and Ganea, 2018 ). In the example given previously, the child sees that some butterflies have open wings and some have closed wings, and may be uncertain about why, leading to more careful observations that provide potential for learning. Several studies demonstrate that the presence of uncertainty or ambiguity leads to higher engagement ( Howard-Jones and Demetriou, 2009 ) and more exploration and information seeking ( Berlyne, 1954 ; Lowry and Johnson, 1981 ; Loewenstein, 1994 ; Litman et al., 2005 ; Jirout and Klahr, 2012 ). For example, when children are shown ambiguous demonstrations for how a novel toy works, they prefer and play longer with that toy than with a new toy that was demonstrated without ambiguity ( Schulz and Bonawitz, 2007 ). Similar to ambiguity, surprising or unexpected observations can create uncertainty and lead to curiosity-driven questions or explanations through adult–child conversations ( Frazier et al., 2009 ; Danovitch and Mills, 2018 ; Jipson et al., 2018 ). This curiosity can promote lasting effects; Shah et al. (2018) show that young children’s curiosity, reported by parents at the start of kindergarten, relates to academic school readiness. In one of the few longitudinal studies including curiosity, research shows that parents’ promotion of curiosity early in childhood leads to science intrinsic motivation years later and science achievement in high school ( Gottfried et al., 2016 ). More generally, curiosity can provide a remedy to boredom, giving children a goal to direct their behavior and the motivation to act on their curiosity ( Litman and Silvia, 2006 ).

Curiosity as Support for Directing Information-Seeking Behavior

Gopnik et al. (2015) suggest that adults are efficient in their attention allocation, developed through extensive experience, but this attentional control comes at the cost of missing much of what is going on around them unrelated to their goals. Children have less experience and skill in focusing their attention, and more exploration-oriented goals, resulting in more open-ended exploratory behavior but also more distraction. Curiosity can help focus children’s attention on the specific information being sought (e.g., Legare, 2014 ). For example, when 7–9-year-old children completed a discovery-learning task in a museum, curiosity was related to more efficient learning-more curious children were quicker and learned more from similar exploration than less-curious children ( van Schijndel et al., 2018 ). Although children are quite capable of using questions to express curiosity and request specific information ( Berlyne, 1954 ; Chin and Osborne, 2010 ; Jirout and Zimmerman, 2015 ; Kidd and Hayden, 2015 ; Luce and Hsi, 2015 ), these skills can and should be strategically supported, as question asking plays a fundamental role in science and is important to develop ( Chouinard et al., 2007 ; Dewey, 1910 ; National Governors Association, 2010 ; American Association for the Advancement of Science [AAAS], 1993 ; among others). Indeed, the National Resource Council (2012) National Science Education Standards include question asking as the first of eight scientific and engineering practices that span all grade levels and content areas.

Children are proficient in requesting information from quite early ages ( Ronfard et al., 2018 ). Yet, there are limitations to children’s question asking; it can be “inefficient.” For example, to identify a target object from an array, young children often ask confirmation questions or make guesses rather than using more efficient “constraint-seeking” questions ( Mills et al., 2010 ; Ruggeri and Lombrozo, 2015 ). However, this behavior is observed in highly structured problem-solving tasks, during which children likely are not very curious. In fact, if the environment contains other things that children are curious about, it could be more efficient to use a simplistic strategy, freeing up cognitive resources for the true target of their curiosity. More research is needed to better understand children’s use of curiosity-driven questioning behavior as well as exploration, but naturalistic observations show that children do ask questions spontaneously to gain information, and that their questions (and follow-up questions) are effective in obtaining desired information ( Nelson et al., 2004 ; Kelemen et al., 2005 ; Chouinard et al., 2007 ).

Curiosity as Support for Deeper Learning

Returning to the definition of curiosity as information seeking to address knowledge gaps, becoming curious-by definition-involves the activation of previous knowledge, which enhances learning ( VanLehn et al., 1992 ; Conati and Carenini, 2001 ). The active learning that results from curiosity-driven information seeking involves meaningful cognitive engagement and constructive processing that can support deeper learning ( Bonwell and Eison, 1991 ; King, 1994 ; Loyens and Gijbels, 2008 ). The constructive process of seeking information to generate new thinking or new knowledge in response to curiosity is a more effective means of learning than simply receiving information ( Chi and Wylie, 2014 ). Even if information is simply given to a child as a result of their asking a question, the mere process of recognizing the gap in one’s knowledge to have a question activates relevant previous knowledge and leads to more effective storage of the new information within a meaningful mental representation; the generation of the question is a constructive process in itself. Further, learning more about a topic allows children to better recognize their related knowledge and information gaps ( Danovitch et al., 2019 ). This metacognitive reasoning supports learning through the processes of activating, integrating, and inferring involved in the constructive nature of curiosity-drive information seeking ( Chi and Wylie, 2014 ). Consistent with this theory, Lamnina and Chase (2019) showed that higher curiosity, which increased with the amount of uncertainty in a task, related to greater transfer of middle school students’ learning about specific science topics.

Promoting Curiosity in Young Children

Curiosity is rated by early childhood educators as “very important” or “essential” for school readiness and considered to be even more important than discrete academic skills like counting and knowing the alphabet ( Heaviside et al., 1993 ; West et al., 1993 ), behind only physical health and communication skills in importance ( Harradine and Clifford, 1996 ). Engel (2011 , 2013) finds that curiosity declines with development and suggests that understanding how to promote or at least sustain it is important. Although children’s curiosity is considered a natural characteristic that is present at birth, interactions with and responses from others can likely influence curiosity, both at a specific moment and context and as a more stable disposition ( Jirout et al., 2018 ). For example, previous work suggests that curiosity can be promoted by encouraging children to feel comfortable with and explore uncertainty ( Jirout et al., 2018 ); experiences that create uncertainty lead to higher levels of curious behavior (e.g., Bonawitz et al., 2011 ; Engel and Labella, 2011 ; Gordon et al., 2015 ).

One strategy for promoting curiosity is through classroom climate; children should feel safe and be encouraged to be curious and exploration and questions should be valued ( Pianta et al., 2008 ). This is accomplished by de-emphasizing being “right” or all-knowing, and instead embracing uncertainty and gaps in one’s own knowledge as opportunities to learn. Another strategy to promote curiosity is to provide support for the information-seeking behaviors that children use to act on their curiosity. There are several specific strategies that may promote children’s curiosity (see Jirout et al., 2018 , for additional strategies), including:

  • 1. Encourage and provide opportunities for children to explore and “figure out,” emphasizing the value of the process (exploration) over the outcome (new knowledge or skills). Children cannot explore if opportunities are not provided to them, and they will not ask questions if they do not feel that their questions are welcomed. Even if opportunities and encouragement are provided, the fear of being wrong can keep children from trying to learn new things ( Martin and Marsh, 2003 ; Martin, 2011 ). Active efforts to discover or “figure out” are more effective at supporting learning than simply telling children something or having them practice learned procedures ( Schwartz and Martin, 2004 ). Children can explore when they have guidance and support to engage in think-aloud problem solving, instead of being told what to try or getting questions answered directly ( Chi et al., 1994 ).
  • 2. Model curiosity for children, allowing them to see that others have things that they do not know and want to learn about, and that others also enjoy information-seeking activities like asking questions and researching information. Technology makes information seeking easier than it has ever been. For example, children are growing up surrounded by internet-connected devices (more than 8 per capita in 2018), and asking questions is reported to be one of the most frequent uses of smart speakers ( NPR-Edison Research Spring, 2019 ). Observing others seeking information as a normal routine can encourage children’s own question asking ( McDonald, 1992 ).
  • 3. Children spontaneously ask questions, but adults can encourage deeper questioning by using explicit prompts and then supporting children to generate questions ( King, 1994 ; Rosenshine et al., 1996 ). This is different from asking “Do you have any questions?,” which may elicit a simple “yes” or “no” response from the child. Instead, asking, “What questions do you have?” is more likely to provide a cue for children to practice analyzing what they do not know and generating questions. The ability to evaluate one’s knowledge develops through practice, and scaffolding this process by helping children recognize questions to ask can effectively support development ( Kuhn and Pearsall, 2000 ; Chin and Brown, 2002 ).
  • 4. Other methods to encourage curiosity include promoting and reinforcing children’s thinking about alternative ideas, which could also support creativity. Part of being curious is recognizing questions that can be asked, and if children understand that there are often multiple solutions or ways to do something they will be more likely to explore to learn “ how we know and why we believe; e.g., to expose science as a way of knowing” ( Duschl and Osborne, 2002 , p. 40). Children who learn to “think outside the box” will question what they and others know and better understand the dynamic nature of knowledge, supporting a curious mindset ( Duschl and Osborne, 2002 ).

Although positive interactions can promote and sustain curiosity in young children, curiosity can also be suppressed or discouraged through interactions that emphasize performance or a focus on explicit instruction ( Martin and Marsh, 2003 ; Martin, 2011 ; Hulme et al., 2013 ). Performance goals, which are goals that are focused on demonstrating the attainment of a skill, can lead to lower curiosity to avoid distraction or risk to achieving the goal ( Hulme et al., 2013 ). Mastery goals, which focus on understanding and the learning process, support learning for its own sake ( Ames, 1993 ). When children are older and attend school, they experience expectations that prioritize performance metrics over academic and intellectual exploration, such as through tests and state-standardized assessments, which discourages curiosity ( Engel, 2011 ; Jirout et al., 2018 ). In my own recent research, we observed a positive association between teachers’ use of mastery-focused language and their use of curiosity-promoting instructional practices in preschool math and science lessons ( Jirout and Vitiello, 2019 ). Among 5th graders, student ratings of teacher emphasis on standardized testing was associated with lower observed curiosity-promotion by teachers ( Jirout and Vitiello, 2019 ). It is likely that learning orientations influence children’s curiosity even before children begin formal schooling, and de-emphasizing performance is a way to support curiosity.

In summary, focusing on the process of “figuring out” something children do not know, modeling and explicitly prompting exploration and question asking, and supporting metacognitive and creative thinking are all ways to promote curiosity and support effective cognitive engagement during learning. These methods are consistent with inquiry-based and active learning, which both are grounded in constructivism and information gaps similar to the current operationalization of curiosity ( Jirout and Klahr, 2012 ; Saylor and Ganea, 2018 ; van Schijndel et al., 2018 ). Emphasizing performance, such as academic climates focused on teaching rote procedures and doing things the “correct” way to get the right answer, can suppress or discourage curiosity. Instead, creating a supportive learning climate and responding positively to curiosity are likely to further reinforce children’s information seeking, and to sustain their curiosity so that it can support scientific thinking and learning.

Conclusion: a Call for Research

In this article, I describe evidence from the limited existing research showing that curiosity is important and relates to science learning, and I suggest several mechanisms through which curiosity can support science learning. The general perspective presented here is that science learning can and should be supported by promoting curiosity, and I provide suggestions for promoting (and avoiding the suppression of) curiosity in early childhood. However, much more research is needed to address the complex challenge of educational applications of this work. Specifically, the suggested mechanisms through which curiosity promotes learning need to be studied to tease apart questions of directionality, the influence of related factors such as interest, the impact of context and learning domain on these relations, and the role of individual differences. Both the influence of curiosity on learning and effective ways to promote it likely change in interesting and important ways across development, and research is needed to understand this development-especially through studying change in individuals over time. Finally, it is important to acknowledge that learning does not happen in isolation, and one’s culture and environment have important roles in shaping one’s development. Thus, application of research on curiosity and science learning must include studies of the influence of social factors such as socioeconomic status and contexts, the influence of peers, teachers, parents, and others in children’s environments, and the many ways that culture may play a role, both in the broad values and beliefs instilled in children and the adults interacting with them, and in the influences of behavior expectations and norms. For example, parents across cultures might respond differently to children’s questions, so cross-cultural differences in questions likely indicate something other than differences in curiosity ( Ünlütabak et al., 2019 ). Although curiosity likely promotes science learning across cultures and contexts, the ways in which it does so and effective methods of promoting it may differ, which is an important area for future research to explore. Despite the benefits I present, curiosity seems to be rare or even absent from formal learning contexts ( Engel, 2013 ), even as children show curiosity about things outside of school ( Post and Walma van der Molen, 2018 ). Efforts to promote science learning should focus on the exciting potential for curiosity in supporting children’s learning, as promoting young children’s curiosity in science can start children on a positive trajectory for later learning.

Ethics Statement

Written informed consent was obtained from the individual(s) and/or minor(s)’ legal guardian/next of kin publication of any potentially identifiable images or data included in this article.

Author Contributions

JJ conceived of the manuscript topic and wrote the manuscript.

Conflict of Interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding. This publication was made possible through the support of grants from the John Templeton Foundation, the Spencer Foundation, and the Center for Curriculum Redesign. The opinions expressed in this publication are those of the author and do not necessarily reflect the views of the John Templeton Foundation or other funders.

  • American Association for the Advancement of Science [AAAS] (1993). Benchmarks for Science Literacy. Oxford: Oxford University Press. [ Google Scholar ]
  • Ames C. (1993). Classrooms: goals, structures, and student motivation. J. Educ. Psychol. 84 261–271. 10.1037/0022-0663.84.3.261 [ CrossRef ] [ Google Scholar ]
  • Berlyne D. E. (1954). An experimental study of human curiosity. Br. J. Psychol. 45 256–265. 10.1111/j.2044-8295.1954.tb01253.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bonawitz E., Shafto P., Gweon H., Goodman N. D., Spelke E., Schulz L. (2011). The double-edged sword of pedagogy: instruction limits spontaneous exploration and discovery. Cognition 120 322–330. 10.1016/j.cognition.2010.10.001 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bonwell C. C., Eison J. A. (1991). Active Learning: Creating Excitement in the Classroom. 1991 ASHE-ERIC Higher Education Reports. ERIC Clearinghouse on Higher Education. Washington, DC: The George Washington University. [ Google Scholar ]
  • Chi M. T. H., Leeuw N. D., Chiu M.-H., Lavancher C. (1994). Eliciting self-explanations improves understanding. Cogn. Sci. 18 439–477. 10.1207/s15516709cog1803_3 [ CrossRef ] [ Google Scholar ]
  • Chi M. T. H., Wylie R. (2014). The ICAP framework: linking cognitive engagement to active learning outcomes. Educ. Psychol. 49 219–243. 10.1080/00461520.2014.965823 [ CrossRef ] [ Google Scholar ]
  • Chin C., Brown D. E. (2002). Student-generated questions: a meaningful aspect of learning in science. Int. J. Sci. Educ. 24 521–549. 10.1080/09500690110095249 [ CrossRef ] [ Google Scholar ]
  • Chin C., Osborne J. (2010). Supporting argumentation through students’. Questions: case studies in science classrooms. J. Learn. Sci. 19 230–284. 10.1080/10508400903530036 [ CrossRef ] [ Google Scholar ]
  • Chouinard M. M., Harris P. L., Maratsos M. P. (2007). Children’s questions: a mechanism for cognitive development. Monogr. Soc. Res. Child Dev. 72 i–129. [ PubMed ] [ Google Scholar ]
  • Conati C., Carenini G. (2001). “ Generating tailored examples to support learning via self-explanation ,” in Proceedings of IJCAI’01, 17th International Joint Conference on Artificial Intelligence , Seattle, WA, 1301–1306. [ Google Scholar ]
  • Danovitch J. H., Fisher M., Schroder H., Hambrick D. Z., Moser J. (2019). Intelligence and neurophysiological markers of error monitoring relate to Children’s intellectual humility. Child Dev. 90 924–939. 10.1111/cdev.12960 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Danovitch J. H., Mills C. M. (2018). “ Understanding when and how explanation promotes exploration ,” in Active Learning from Infancy to Childhood: Social Motivation, Cognition, and Linguistic Mechanisms , eds Saylor M. M., Ganea P. A. (Berlin: Springer; ), 95–112. 10.1007/978-3-319-77182-3_6 [ CrossRef ] [ Google Scholar ]
  • Dewey J. (1910). How We Think. Lexington, MA: D.C. Heath and Company; 10.1037/10903-000 [ CrossRef ] [ Google Scholar ]
  • Duschl R. A., Osborne J. (2002). Supporting and promoting argumentation discourse in science education. Stud. Sci. Educ. 38 39–72. 10.1080/03057260208560187 [ CrossRef ] [ Google Scholar ]
  • Duschl R. A., Schweingruber H. A., Shouse A. W. (eds) (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Washington, DC: The National Academies Press; 10.17226/11625 [ CrossRef ] [ Google Scholar ]
  • Engel S. (2011). Children’s need to know: curiosity in schools. Harv. Educ. Rev. 81 625–645. 10.17763/haer.81.4.h054131316473115 [ CrossRef ] [ Google Scholar ]
  • Engel S. (2013). The Case for CURIOSITY. Educ. Leadersh. 70 36–40. [ Google Scholar ]
  • Engel S., Labella M. (2011). Encouraging exploration: the effects of teaching behavior on student expressions of curiosity, as cited in Engel, S. (2011). Children’s Need to Know: curiosity in Schools. Harv. Educ. Rev. 81 625–645. 10.17763/haer.81.4.h054131316473115 [ CrossRef ] [ Google Scholar ]
  • Frazier B. N., Gelman S. A., Wellman H. M. (2009). Preschoolers’ search for explanatory information within adult–child conversation. Child Dev. 80 1592–1611. 10.1111/j.1467-8624.2009.01356.x [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • French L. A., Woodring S. D., Woodring S. D. (2013). Science Education in the Early Years. Handbook of Research on the Education of Young Children. Available online at: http://www.taylorfrancis.com/ (accessed February 29, 2020). [ Google Scholar ]
  • Gopnik A. (2012). Scientific thinking in young children: theoretical advances, empirical research, and policy implications. Science 337 1623–1627. 10.1126/science.1223416 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gopnik A., Griffiths T. L., Lucas C. G. (2015). When younger learners can be better (or at least more open-minded) than older ones. Curr. Dir. Psychol. Sci. 24 87–92. 10.1177/0963721414556653 [ CrossRef ] [ Google Scholar ]
  • Gopnik A., Meltzoff A. N., Kuhl P. K. (1999). The Scientist in the Crib: Minds, Brains, and How Children Learn. New York, NY: William Morrow & Co. [ Google Scholar ]
  • Gordon G., Breazeal C., Engel S. (2015). Can children catch curiosity from a social robot? Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction , New York, NY, 91–98. 10.1145/2696454.2696469 [ CrossRef ] [ Google Scholar ]
  • Gottfried A. E., Preston K. S. J., Gottfried A. W., Oliver P. H., Delany D. E., Ibrahim S. M. (2016). Pathways from parental stimulation of children’s curiosity to high school science course accomplishments and science career interest and skill. Int. J. Sci. Educ. 38 1972–1995. 10.1080/09500693.2016.1220690 [ CrossRef ] [ Google Scholar ]
  • Harradine C. C., Clifford R. M. (1996). When are children ready for kindergarten? Views of families, kindergarten teachers, and child care providers. Paper Presented at the Annual Meeting of the American Educational Research Association , New York, NY. [ Google Scholar ]
  • Howard-Jones P. A., Demetriou S. (2009). Uncertainty and engagement with learning games. Inst. Sci. 37 519–536. 10.1007/s11251-008-9073-6 [ CrossRef ] [ Google Scholar ]
  • Heaviside S., Farris E., Carpenter J. M. (1993). Public School Kindergarten Teachers’ Views on Children’s Readiness for School. US Department of Education, Office of Educational Research and Improvement, National Center for Education Statistics. [ Google Scholar ]
  • Hulme E., Green D. T., Ladd K. S. (2013). Fostering student engagement by cultivating curiosity: fostering student engagement by cultivating curiosity. New Dir. Stud. Serv. 2013 53–64. 10.1002/ss.20060 [ CrossRef ] [ Google Scholar ]
  • Inhelder B., Piaget J. (1958). The Growth of Logical Thinking from Childhood to Adolescence: An Essay on the Construction of Formal Operational Structures. London: Routledge. [ Google Scholar ]
  • Jipson J. L., Labotka D., Callanan M. A., Gelman S. A. (2018). “ How conversations with parents may help children learn to separate the sheep from the goats (and the Robots) ,” in Active Learning from Infancy to Childhood: Social Motivation, Cognition, and Linguistic Mechanisms , eds Saylor M. M., Ganea P. A. (Berlin: Springer; ), 189–212. 10.1007/978-3-319-77182-3_11 [ CrossRef ] [ Google Scholar ]
  • Jirout J., Klahr D. (2012). Children’s scientific curiosity: in search of an operational definition of an elusive concept. Dev. Rev. 32 125–160. 10.1016/j.dr.2012.04.002 [ CrossRef ] [ Google Scholar ]
  • Jirout J., Vitiello V. (2019). “ uriosity in the classroom through supportive instruction. Paper Presented at the SRCD Biennial Meeting , Baltimore, MD. [ Google Scholar ]
  • Jirout J., Vitiello V., Zumbrunn S. (2018). “ Curiosity in schools ,” in The New Science of Curiosity , ed. Gordon G. (Hauppauge, NY: Nova; ). [ Google Scholar ]
  • Jirout J., Zimmerman C. (2015). “ Development of science process skills in the early childhood years ,” in Research in Early Childhood Science Education , eds Cabe Trundle K., Saçkes M. (Berlin: Springer; ), 143–165. 10.1007/978-94-017-9505-0_7 [ CrossRef ] [ Google Scholar ]
  • Kelemen D., Callanan M. A., Casler K., Pérez-Granados D. R. (2005). Why things happen: teleological explanation in parent-child conversations. Dev. Psychol. 41 251–264. 10.1037/0012-1649.41.1.251 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kidd C., Hayden B. Y. (2015). The psychology and neuroscience of curiosity. Neuron 88 449–460. 10.1016/j.neuron.2015.09.010 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • King A. (1994). Guiding knowledge construction in the classroom: effects of teaching children how to question and how to explain. Am. Educ. Res. J. 31 338–368. 10.2307/1163313 [ CrossRef ] [ Google Scholar ]
  • Klahr D., Matlen B., Jirout J. (2013). “ Children as scientific thinkers ,” in Handbook of the Psychology of Science , eds Feist G., Gorman M. (New York, NY: Springer; ), 223–248. [ Google Scholar ]
  • Kuhn D. (2002). “ What is scientific thinking, and how does it develop? ” in Blackwell Handbook of Childhood Cognitive Development , ed. Goswami U. (Oxford: Blackwell Publishing.), 371–393. 10.1002/9780470996652.ch17 [ CrossRef ] [ Google Scholar ]
  • Kuhn D., Pearsall S. (2000). Developmental Origins of Scientific Thinking. J. Cogn. Dev. 1 113–129. 10.1207/S15327647JCD0101N_11 [ CrossRef ] [ Google Scholar ]
  • Lamnina M., Chase C. C. (2019). Developing a thirst for knowledge: how uncertainty in the classroom influences curiosity, affect, learning, and transfer. Contemp. Educ. Psychol. 59 : 101785 10.1016/j.cedpsych.2019.101785 [ CrossRef ] [ Google Scholar ]
  • Legare C. H. (2014). The contributions of explanation and exploration to children’s scientific reasoning. Child Dev. Perspect. 8 101–106. 10.1111/cdep.12070 [ CrossRef ] [ Google Scholar ]
  • Litman J., Hutchins T., Russon R. (2005). Epistemic curiosity, feeling-of-knowing, and exploratory behaviour. Cogn. Emot. 19 559–582. 10.1080/02699930441000427 [ CrossRef ] [ Google Scholar ]
  • Litman J. A., Silvia P. J. (2006). The latent structure of trait curiosity: evidence for interest and deprivation curiosity dimensions. J. Pers. Assess. 86 318–328. 10.1207/s15327752jpa8603_07 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Loewenstein G. (1994). The psychology of curiosity: a review and reinterpretation. Psychol. Bull. 116 75–98. 10.1037/0033-2909.116.1.75 [ CrossRef ] [ Google Scholar ]
  • Lowry N., Johnson D. W. (1981). Effects of controversy on epistemic curiosity, achievement, and attitudes. J. Soc. Psychol. 115 31–43. 10.1080/00224545.1981.9711985 [ CrossRef ] [ Google Scholar ]
  • Loyens S. M., Gijbels D. (2008). Understanding the effects of constructivist learning environments: introducing a multi-directional approach. Inst. Sci. 36 351–357. 10.1007/s11251-008-9059-4 [ CrossRef ] [ Google Scholar ]
  • Luce M. R., Hsi S. (2015). Science-relevant curiosity expression and interest in science: an exploratory study: CURIOSITY AND SCIENCE INTEREST. Sci. Educ. 99 70–97. 10.1002/sce.21144 [ CrossRef ] [ Google Scholar ]
  • Martin A. J. (2011). Courage in the classroom: exploring a new framework predicting academic performance and engagement. Sch. Psychol. Q. 26 145–160. 10.1037/a0023020 [ CrossRef ] [ Google Scholar ]
  • Martin A. J., Marsh H. W. (2003). Fear of Failure: Friend or Foe? Aust. Psychol. 38 31–38. 10.1080/00050060310001706997 [ CrossRef ] [ Google Scholar ]
  • McDonald J. P. (1992). Teaching: Making Sense of an Uncertain Craft. New York, NY: Teachers College Press. [ Google Scholar ]
  • Metz K. E. (2004). Children’s understanding of scientific inquiry: their conceptualization of uncertainty in investigations of their own design. Cogn. Instr. 22 219–290. 10.1207/s1532690xci2202_3 [ CrossRef ] [ Google Scholar ]
  • Mills C. M., Legare C. H., Bills M., Mejias C. (2010). Preschoolers use questions as a tool to acquire knowledge from different sources. J. Cogn. Dev. 11 533–560. 10.1080/15248372.2010.516419 [ CrossRef ] [ Google Scholar ]
  • Morris B. J., Croker S., Masnick A., Zimmerman C. (2012). “ The emergence of scientific reasoning ,” in Current Topics in Children’s Learning and Cognition , eds Kloos H., Morris B. J., Amaral J. L. (Rijeka: IntechOpen; ). 10.5772/53885 [ CrossRef ] [ Google Scholar ]
  • National Governors Association (2010). Common Core State Standards. Washington, DC: National Governors Association. [ Google Scholar ]
  • National Resource Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: National Academy Press. [ Google Scholar ]
  • Nelson D. G. K., Chan L. E., Holt M. B. (2004). When Children Ask, “What Is It? “What Do They Want to Know About Artifacts? Psychol. Sci. 15 384–389. 10.1111/j.0956-7976.2004.00689.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • NPR-Edison Research Spring (2019). The Smart Audio Report. Available online at: https://www.nationalpublicmedia.com/uploads/2019/10/The_Smart_Audio_Report_Spring_2019.pdf (accessed February 23, 2020). [ Google Scholar ]
  • Oudeyer P.-Y., Gottlieb J., Lopes M. (2016). Intrinsic motivation, curiosity, and learning: theory and applications in educational technologies. Prog. Brain Res. 229 257–284. 10.1016/bs.pbr.2016.05.005 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Piaget J. (1926). The Thought and Language of the Child. New York, NY: Harcourt, Brace, and Company. [ Google Scholar ]
  • Pianta R. C., La Paro K. M., Hamre B. K. (2008). Classroom Assessment Scoring SystemTM: Manual K-3. Baltimore, MD: Paul H Brookes Publishing. [ Google Scholar ]
  • Post T., Walma van der Molen J. H. (2018). Do children express curiosity at school? Exploring children’s experiences of curiosity inside and outside the school context. Learn. Cult. Soc. Interact. 18 60–71. 10.1016/j.lcsi.2018.03.005 [ CrossRef ] [ Google Scholar ]
  • Ronfard S., Zambrana I. M., Hermansen T. K., Kelemen D. (2018). Question-asking in childhood: a review of the literature and a framework for understanding its development. Dev. Rev. 49 101–120. 10.1016/j.dr.2018.05.002 [ CrossRef ] [ Google Scholar ]
  • Rosenshine B., Meister C., Chapman S. (1996). Teaching students to generate questions: a review of the intervention studies. Rev. Educ. Res. 66 181–221. 10.2307/1170607 [ CrossRef ] [ Google Scholar ]
  • Ruggeri A., Lombrozo T. (2015). Children adapt their questions to achieve efficient search. Cognition 143 203–216. 10.1016/j.cognition.2015.07.004 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Saylor M. M., Ganea P. A. (eds) (2018). Active Learning from Infancy to Childhood: Social Motivation, Cognition, and Linguistic Mechanisms. Berlin: Springer; 10.1007/978-3-319-77182-3 [ CrossRef ] [ Google Scholar ]
  • Schulz L. E., Bonawitz E. B. (2007). Serious fun: preschoolers engage in more exploratory play when evidence is confounded. Dev. Psychol. 43 1045–1050. 10.1037/0012-1649.43.4.1045 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schwartz D. L., Martin T. (2004). Inventing to prepare for future learning: the hidden efficiency of encouraging original student production in statistics instruction. Cogn. Inst. 22 129–184. 10.1207/s1532690xci2202_1 [ CrossRef ] [ Google Scholar ]
  • Shah P. E., Weeks H. M., Richards B., Kaciroti N. (2018). Early childhood curiosity and kindergarten reading and math academic achievement. Pediatr. Res. 84 380–386. 10.1038/s41390-018-0039-3 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Turgeon W. C. (2015). The art and danger of the question: its place within philosophy for children and its philosophical history. Mind Cult. Act. 22 284–298. 10.1080/10749039.2015.1079919 [ CrossRef ] [ Google Scholar ]
  • Ünlütabak B., Nicolopoulou A., Aksu-Koç A. (2019). Questions asked by Turkish preschoolers from middle-SES and low-SES families. Cogn. Dev. 52 : 100802 10.1016/j.cogdev.2019.100802 [ CrossRef ] [ Google Scholar ]
  • van Schijndel T. J. P., Jansen B. R. J., Raijmakers M. E. J. (2018). Do individual differences in children’s curiosity relate to their inquiry-based learning? Int. J. Sci. Educ. 40 996–1015. 10.1080/09500693.2018.1460772 [ CrossRef ] [ Google Scholar ]
  • VanLehn K., Jones R. M., Chi M. T. H. (1992). A model of the self-explanation effect. J. Learn. Sci. 2 1–59. 10.1207/s15327809jls0201_1 [ CrossRef ] [ Google Scholar ]
  • West J., Hausken E. G., Collins M. (1993). Readiness for Kindergarten: Parent and Teacher Beliefs. Statistics in Brief. Available online at: https://eric.ed.gov/?id=ED363429 (accessed February 29, 2020). [ Google Scholar ]

Enhancing Scientific Thinking Through the Development of Critical Thinking in Higher Education

  • First Online: 22 September 2019

Cite this chapter

scientific attitude encourages critical thinking

  • Heidi Hyytinen 3 ,
  • Auli Toom 3 &
  • Richard J. Shavelson 4  

24 Citations

Contemporary higher education is committed to enhancing students’ scientific thinking in part by improving their capacity to think critically, a competence that forms a foundation for scientific thinking. We introduce and evaluate the characteristic elements of critical thinking (i.e. cognitive skills, affective dispositions, knowledge), problematising the domain-specific and general aspects of critical thinking and elaborating justifications for teaching critical thinking. Finally, we argue that critical thinking needs to be integrated into curriculum, learning goals, teaching practices and assessment. The chapter emphasises the role of constructive alignment in teaching and use of a variety of teaching methods for teaching students to think critically in order to enhance their capacity for scientific thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Fostering scientific literacy and critical thinking in elementary science education.

scientific attitude encourages critical thinking

Critical Thinking

scientific attitude encourages critical thinking

A Model of Critical Thinking in Higher Education

Abrami, P. C., Bernard, R. M., Borokhovski, E., Wade, A., Surkes, M. A., Tamim, R., et al. (2008). Instructional interventions affecting critical thinking skills and dispositions: A stage 1 meta-analysis. Review of Educational Research, 78 (4), 1102–1134. https://doi.org/10.3102/0034654308326084 .

Article   Google Scholar  

Arum, R., & Roksa, J. (2011). Academically adrift: Limited learning on college campuses . Chicago, IL: The University of Chicago Press.

Google Scholar  

Ayala, C. C., Shavelson, R. J., Araceli Ruiz-Primo, M., Brandon, P. R., Yin, Y., Furtak, E. M., et al. (2008). From formal embedded assessments to reflective lessons: The development of formative assessment studies. Applied Measurement in Education, 21 (4), 315–334. https://doi.org/10.1080/08957340802347787 .

Badcock, P. B. T., Pattison, P. E., & Harris, K.-L. (2010). Developing generic skills through university study: A study of arts, science and engineering in Australia. Higher Education, 60 (4), 441–458. https://doi.org/10.1007/s10734-010-9308-8 .

Bailin, S., Case, R., Coombs, J. R., & Daniels, L. B. (1999). Conceptualizing critical thinking. Journal of Curriculum Studies, 31 (3), 285–302. https://doi.org/10.1080/002202799183133 .

Bailin, S., & Siegel, H. (2003). Critical thinking. In N. Blake, P. Smeyers, R. Smith, & P. Standish (Eds.), The Blackwell guide to the philosophy of education (pp. 181–193). Oxford: Blackwell Publishing.

Banta, T., & Pike, G. (2012). Making the case against—One more time . Occasional Paper #15. National Institute for Learning Outcomes Assessment. Retrieved from http://learningoutcomesassessment.org/documents/HerringPaperFINAL.pdf .

Barrie, S. C. (2006). Understanding what we mean by the generic attributes of graduates. Higher Education, 51 (2), 215–241. https://doi.org/10.1007/s10734-004-6384-7 .

Barrie, S. C. (2007). A conceptual framework for the teaching and learning of generic graduate attributes. Studies in Higher Education, 3 (4), 439–458. https://doi.org/10.1080/03075070701476100 .

Bell, S. (2010). Project-based learning for the 21st century: Skills for the future. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 83 (2), 39–43. https://doi.org/10.1080/00098650903505415 .

Bereiter, C. (2002). Education and mind in the knowledge age . Hillsdale: Erlbaum.

Biggs, J., & Tang, C. (2009). Teaching for quality learning at university: What the student does (3rd ed.). Berkshire, England: SRHE and Open University Press.

Bok, D. (2006). Our underachieving colleges. A candid look at how much students learn and why they should be learning more . Princeton, NJ: Princeton University Press.

Brooks, R., & Everett, G. (2009). Post-graduation reflections on the value of a degree. British Educational Research Journal, 35 (3), 333–349. https://doi.org/10.1080/01411920802044370 .

Denton, H., & McDonagh, D. (2005). An exercise in symbiosis: Undergraduate designers and a company product development team working together. The Design Journal, 8 (1), 41–51. https://doi.org/10.2752/146069205789338315 .

Dewey, J. (1910). How we think . Boston, MA: D. C. Heath & Co.

Book   Google Scholar  

Dewey, J. (1941). Propositions, warranted assertibility, and truth. The Journal of Philosophy, 38 (7), 169–186. https://doi.org/10.2307/2017978 .

Dunlap, J. (2005). Problem-based learning and self-efficacy: How a capstone course prepares students for a profession. Educational Technology Research and Development, 53 (1), 65–83. https://doi.org/10.1007/BF02504858 .

Ennis, R. (1991). Critical thinking: A streamlined conception. Teaching Philosophy, 14 (1), 5–24. https://doi.org/10.5840/teachphil19911412 .

Ennis, R. (1993). Critical thinking assessment. Theory into practice, 32 (3), 179–186. https://doi.org/10.1080/00405849309543594 .

Evens, M., Verburgh, A., & Elen, J. (2013). Critical thinking in college freshmen: The impact of secondary and higher education. International Journal of Higher Education, 2 (3), 139–151. https://doi.org/10.5430/ijhe.v2n3p139 .

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations (ERIC Document Reproduction Service No. ED315423). Newark, DE: American Philosophical Association.

Fischer, F., Chinn, C. A., Engelmann, K., & Osborne, J. (Eds.). (2018). Scientific reasoning and argumentation: The roles of domain-specific and domain-general knowledge . New York, NY: Routledge.

Fisher, A. (2011). Critical thinking: An introduction . Cambridge: Cambridge University Press.

Gillies, R. (2004). The effects of cooperative learning on junior high school students during small group learning. Learning and Instruction, 14 (2), 197–213. https://doi.org/10.1016/S0959-4752(03)00068-9 .

Greiff, S., Wüstenberg, S., Csapó, B., Demetriou, A., Hautamäki, J., Graesser, A., et al. (2014). Domain-general problem solving skills and education in the 21st century. Educational Research Review, 13, 74–83. https://doi.org/10.1016/j.edurev.2014.10.002 .

Halpern, D. F. (2014). Thought and knowledge (5th ed.). New York, NY: Psychology Press.

Healy, A. (Ed.). (2008). Multiliteracies and diversity in education . Melbourne, VIC, Australia: Oxford University Press.

Helle, L., Tynjälä, P., & Olkinuora, E. (2006). Project-based learning in post-secondary education—Theory, practice and rubber sling shots. Higher Education, 51 (2), 287–314. https://doi.org/10.1007/s10734-004-6386-5 .

Hmelo-Silver, C. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16 (3), 235–266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3 .

Hofstein, A., Shore, R., & Kipnis, M. (2004). Providing high school chemistry students with opportunities to develop learning skills in an inquiry-type laboratory—A case study. International Journal of Science Education, 26 (1), 47–62. https://doi.org/10.1080/0950069032000070342 .

Holma, K. (2015). The critical spirit: Emotional and moral dimensions of critical thinking. Studier I Pædagogisk Filosofi, 4 (1), 17–28. https://doi.org/10.7146/spf.v4i1.18280 .

Holma, K., & Hyytinen, H. (equal contribution) (2015). The philosophy of personal epistemology. Theory and Research in Education , 13 (3), 334 – 350. https://doi.org/10.1177/1477878515606608 .

Hopmann, S. (2007). Restrained teaching: The common core of Didaktik. European Educational Research Journal, 6 (2), 109–124. https://doi.org/10.2304/eerj.2007.6.2.109 .

Hyytinen, H. (2015). Looking beyond the obvious: Theoretical, empirical and methodological insights into critical thinking (Doctoral dissertation). University of Helsinki, Studies in Educational Sciences 260. https://helda.helsinki.fi/bitstream/handle/10138/154312/LOOKINGB.pdf?sequence=1 .

Hyytinen, H., Löfström, E., & Lindblom-Ylänne, S. (2017). Challenges in argumentation and paraphrasing among beginning students in educational science. Scandinavian Journal of Educational Research, 61 (4), 411–429. https://doi.org/10.1080/00313831.2016.1147072 .

Hyytinen, H., Nissinen, K., Ursin, J., Toom, A., & Lindblom-Ylänne, S. (2015). Problematising the equivalence of the test results of performance-based critical thinking tests for undergraduate students. Studies in Educational Evaluation, 44, 1–8. https://doi.org/10.1016/j.stueduc.2014.11.001 .

Hyytinen, H., & Toom, A. (2019). Developing a performance assessment task in the Finnish higher education context: Conceptual and empirical insights. British Journal of Educational Psychology , 89 (3), 551–563. https://doi.org/10.1111/bjep.12283 .

Hyytinen, H., Toom, A., & Postareff, L. (2018). Unraveling the complex relationship in critical thinking, approaches to learning and self-efficacy beliefs among first-year educational science students. Learning and Individual Differences, 67, 132–142. https://doi.org/10.1016/j.lindif.2018.08.004 .

Jenert, T. (2014). Implementing-oriented study programmes at university: The challenge of academic culture. Zeitschrift für Hochschulentwicklung , 9 (2), 1–12. Retrieved from https://www.alexandria.unisg.ch/publications/230455 .

Krolak-Schwerdt, S., Pitten Cate, I. M., & Hörstermann, T. (2018). Teachers’ judgments and decision-making: studies concerning the transition from primary to secondary education and their implications for teacher education. In O. Zlatkin-Troitschanskaia, M. Toepper, H. A. Pant, C. Lautenbach, & C. Kuhn (Eds.), Assessment of learning outcomes in higher education—Cross-national comparisons and perspectives (pp. 73–101). Wiesbaden: Springer. https://doi.org/10.1007/978-3-319-74338-7_5 .

Chapter   Google Scholar  

Kuhn, D. (2005). Education for thinking . Cambridge, MA: Harvard University Press.

Marton, F., & Trigwell, K. (2000). Variatio est mater studiorum. Higher Education Research & Development, 19 (3), 381–395. https://doi.org/10.1080/07294360020021455 .

Mills-Dick, K., & Hull, J. M. (2011). Collaborative research: Empowering students and connecting to community. Journal of Public Health Management & Practice, 17 (4), 381–387. https://doi.org/10.1097/PHH.0b013e3182140c2f .

Muukkonen, H., Lakkala, M., Toom, A., & Ilomäki, L. (2017). Assessment of competences in knowledge work and object-bound collaboration during higher education courses. In E. Kyndt, V. Donche, K. Trigwell, & S. Lindblom-Ylänne (Eds.), Higher education transitions: Theory and research (pp. 288–305). London: Routledge.

Neisser, U. (1967). Cognitive psychology . New York, NY: Appleton-Century-Crofts.

Niiniluoto, I. (1980). Johdatus tieteenfilosofiaan . Helsinki: Otava.

Niiniluoto, I. (1984). Tieteellinen päättely ja selittäminen . Helsinki: Otava.

Niiniluoto, I. (1999). Critical scientific realism . Oxford: Oxford University Press.

Oljar, E., & Koukal, D. R. (2019, February 3). How to make students better thinkers. The Chronicle of Higher Education. Retrieved from https://www.chronicle.com/article/How-to-Make-Students-Better/245576 .

Paul, R., & Elder, L. (2008). The thinker’s guide to scientific thinking: Based on critical thinking concepts and principles . Foundation for Critical Thinking.

Phielix, C., Prins, F. J., Kirschner, P. A., Erkens, G., & Jaspers, J. (2011). Group awareness of social and cognitive performance in a CSCL environment: Effects of a peer feedback and reflection tool. Computers in Human Behavior, 27 (3), 1087–1102. https://doi.org/10.1016/j.chb.2010.06.024 .

Rapanta, C., Garcia-Mila, M., & Gilabert, S. (2013). What is meant by argumentative competence? An integrative review of methods of analysis and assessment in education. Review of Educational Research, 83 (4), 483–520. https://doi.org/10.3102/0034654313487606 .

Ruiz-Primo, M., Schultz, S. E., Li, M., & Shavelson, R. J. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of Research in Science Teaching, 38 (2), 260–278. https://doi.org/10.1002/1098-2736(200102)38:2%3c260:AID-TEA1005%3e3.0.CO;2-F .

Samarapungavan, A. (2018). Construing scientific evidence: The role of disciplinary knowledge in reasoning with and about evidence in scientific practice. In F. Fischer, C. A. Chinn, K. Engelmann, & J. Osborne (Eds.), Scientific reasoning and argumentation: The roles of domain-specific and domain-general knowledge (pp. 56–76). New York, NY: Routledge.

Segalàs, J., Mulder, K. F., & Ferrer-Balas, D. (2012). What do EESD “experts” think sustainability is? Which pedagogy is suitable to learn it? Results from interviews and Cmaps analysis gathered at EESD 2008. International Journal of Sustainability in Higher Education, 13 (3), 293–304. https://doi.org/10.1108/14676371211242599 .

Shavelson, R. J. (2010a). On the measurement of competency. Empirical Research in Vocational Education and Training , 2 (1), 41–63. Retrieved from http://ervet.ch/pdf/PDF_V2_Issue1/shavelson.pdf .

Shavelson, R. J. (2010b). Measuring college learning responsibly: Accountability in a new era . Stanford, CA: Stanford University Press.

Shavelson, R. J. (2018). Discussion of papers and reflections on “exploring the limits of domain-generality”. In F. Fischer, C. A. Chinn, K. Engelmann, & J. Osborne (Eds.), Scientific reasoning and argumentation: The roles of domain-specific and domain-general knowledge (pp. 112–118). New York, NY: Routledge.

Shavelson, R. J., Zlatkin-Troitschanskaia, O., & Mariño, J. (2018). International performance assessment of learning in higher education (iPAL): Research and development. In O. Zlatkin-Troitschanskaia, M. Toepper, H. A. Pant, C. Lautenbach, & C. Kuhn (Eds.). Assessment of learning outcomes in higher education—Cross-national comparisons and perspectives (pp. 193–214). Wiesbaden: Springer. https://doi.org/10.1007/978-3-319-74338-7_10 .

Siegel, H. (1991). The generalizability of critical thinking. Educational Philosophy and Theory, 23 (1), 18–30. https://doi.org/10.1111/j.1469-5812.1991.tb00173.x .

Strijbos, J., Engels, N., & Struyven, K. (2015). Criteria and standards of generic competences at bachelor degree level: A review study. Educational Research Review, 14, 18–32. https://doi.org/10.1016/j.edurev.2015.01.001 .

Tomperi, T. (2017). Kriittisen ajattelun opettaminen ja filosofia. Pedagogisia perusteita. Niin & Näin , 4 (17), 95–112. Retrieved from https://netn.fi/artikkeli/kriittisen-ajattelun-opettaminen-ja-filosofia-pedagogisia-perusteita .

Toom, A. (2017). Teacher’s professional competencies: A complex divide between teacher’s work, teacher knowledge and teacher education. In D. J. Clandinin & J. Husu (Eds.), The SAGE handbook of research on teacher education (pp. 803–819). London: Sage.

Tremblay, K., Lalancette, D., & Roseveare, D. (2012). Assessment of higher education learning outcomes. In Feasibility study report. Design and implementation (Vol. 1) . OECD. Retrieved from http://www.oecd.org/edu/skills-beyond-school/AHELOFSReportVolume1.pdf .

Trigg, R. (2001). Understanding social science: A philosophical introduction to the social sciences . Oxford: Blackwell publishing.

Utriainen, J., Marttunen, M., Kallio, E., & Tynjälä, P. (2016). University applicants’ critical thinking skills: The case of the Finnish educational sciences. Scandinavian Journal of Educational Research, 61, 629–649. https://doi.org/10.1080/00313831.2016.1173092 .

Vartiainen, H., Liljeström, A., & Enkenberg, J. (2012). Design-oriented pedagogy for technology-enhanced learning to cross over the borders between formal and informal environments. Journal of Universal Computer Science, 18 (15), 2097–2119. https://doi.org/10.3217/jucs-018-15-2097 .

Virtanen, A., & Tynjälä, P. (2018). Factors explaining the learning of generic skills: a study of university students’ experiences. Teaching in Higher Education , https://doi.org/10.1080/13562517.2018.1515195 .

Zahner, D., & Ciolfi, A. (2018). International comparison of a performance-based assessment in higher education. In O. Zlatkin-Troitschanskaia, M. Toepper, H. A. Pant, C. Lautenbach, & C. Kuhn (Eds.). Assessment of learning outcomes in higher education—Cross-national comparisons and perspectives (pp. 215–244). Wiesbaden: Springer. https://doi.org/10.1007/978-3-319-74338-7_11 .

Download references

Author information

Authors and affiliations.

University of Helsinki, Helsinki, Finland

Heidi Hyytinen & Auli Toom

Stanford University, Stanford, CA, USA

Richard J. Shavelson

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Heidi Hyytinen .

Editor information

Editors and affiliations.

Faculty of Education and Culture, Tampere University, Tampere, Finland

Mari Murtonen

Department of Higher Education, University of Surrey, Guildford, UK

Kieran Balloo

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Hyytinen, H., Toom, A., Shavelson, R.J. (2019). Enhancing Scientific Thinking Through the Development of Critical Thinking in Higher Education. In: Murtonen, M., Balloo, K. (eds) Redefining Scientific Thinking for Higher Education. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-24215-2_3

Download citation

DOI : https://doi.org/10.1007/978-3-030-24215-2_3

Published : 22 September 2019

Publisher Name : Palgrave Macmillan, Cham

Print ISBN : 978-3-030-24214-5

Online ISBN : 978-3-030-24215-2

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

jamiefosterscience logo

The Importance Of A Skeptical Attitude In Science

Science is built on skepticism. Asking probing questions, demanding evidence, and doubting accepted ideas is central to the scientific method. But why is a skeptical attitude so essential to doing good science?

If you’re short on time, here’s a quick answer: A skeptical attitude in science is critical because it compels researchers to question assumptions, rigorously test hypotheses, and ensure conclusions are supported by ample empirical evidence . Science advances by challenging what we think we know.

In this article, we’ll explore why skepticism underpins the scientific pursuit of knowledge and truth.

Skepticism Drives Questioning and Inquiry

Skepticism plays a crucial role in the scientific process, as it encourages researchers to ask probing questions and engage in rigorous inquiry. By approaching scientific claims with a skeptical attitude, scientists are able to challenge assumptions, scrutinize evidence, and seek alternative explanations.

This skepticism is what drives scientific progress and ensures that conclusions are based on solid evidence rather than mere speculation.

Skeptics ask probing questions

Skeptics are not afraid to question the status quo and challenge established beliefs. They seek to uncover inconsistencies, biases, and flaws in scientific research, driving the pursuit of truth. By asking probing questions, skeptics prompt scientists to reevaluate their methods, theories, and conclusions, leading to more robust and reliable results.

Without skepticism, scientific knowledge would stagnate, as researchers would simply accept the prevailing wisdom without critically examining it.

Healthy skepticism spurs scientific investigation

Healthy skepticism is the catalyst for scientific investigation, prompting researchers to dig deeper and explore new avenues of inquiry. When faced with conflicting evidence or controversial findings, skeptics drive the scientific community to conduct further experiments, gather more data, and refine existing theories.

This process not only enhances our understanding of the natural world but also pushes the boundaries of scientific knowledge.

For example, in the field of medicine, skepticism has led to groundbreaking discoveries and advancements. Skeptical scientists questioned the effectiveness of certain drugs or treatments, leading to rigorous clinical trials and subsequent revelations regarding their true efficacy.

This skepticism has saved lives and improved patient outcomes by ensuring that medical interventions are based on solid evidence.

It is important to note that skepticism does not mean outright rejection or denial of scientific findings. Instead, it encourages critical thinking, scrutiny, and a healthy dose of skepticism. By fostering an environment of open inquiry and rigorous examination, skepticism helps to separate fact from fiction and promotes scientific integrity.

Skepticism Demands Empirical Evidence

One of the key principles of skepticism is the demand for empirical evidence to support claims. In science, empirical evidence refers to information that is obtained through observation or experimentation. It is the foundation upon which scientific theories and knowledge are built.

Without empirical evidence, ideas and claims cannot be considered reliable or trustworthy.

Extraordinary claims require extraordinary evidence

When it comes to extraordinary claims, skepticism plays a crucial role in ensuring that they are thoroughly evaluated before being accepted. Extraordinary claims are those that go against well-established scientific principles or have far-reaching implications.

These claims require more than just anecdotal evidence or personal testimonies to be considered credible. Skeptics demand robust and repeatable empirical evidence to support such claims.

For example, if someone were to claim that they have discovered a magical potion that can grant eternal youth, skepticism would be necessary to critically examine and evaluate such a claim. Without empirical evidence, skepticism reminds us to approach such claims with caution and not readily accept them as truth.

Skepticism prevents acceptance of unsupported claims

Skepticism acts as a barrier against the acceptance of unsupported claims that lack empirical evidence. In a world where misinformation and fake news can easily spread, skepticism helps to separate fact from fiction.

It encourages individuals to question and critically analyze the information they come across.

By fostering a skeptical attitude, people are less likely to fall for pseudoscience, conspiracy theories, or misleading claims. They become more discerning and are able to distinguish between credible information and baseless assertions.

This is especially crucial in fields like medicine, where unsupported claims can have serious consequences for individuals’ health and well-being.

For example, when a new medical treatment or therapy is proposed, skeptics play a crucial role in evaluating the evidence behind it. They carefully examine the research methodology, the statistical significance of the results, and whether the findings have been independently replicated.

This skepticism ensures that only treatments with solid empirical evidence make their way into mainstream medicine.

Skepticism Combats Confirmation Bias

People tend to favor evidence supporting pre-existing views.

Confirmation bias is a cognitive bias that affects everyone to some degree. It refers to the tendency of individuals to search for, interpret, favor, and recall information in a way that confirms their pre-existing beliefs or hypotheses.

In other words, we often seek out evidence that supports what we already believe and ignore or downplay evidence that contradicts it. This bias can hinder scientific progress and lead to flawed conclusions.

Research has shown that confirmation bias is pervasive across various domains, including politics, religion, and even scientific research. For example, a study conducted by psychologist Peter Ditto and his colleagues at the University of California, Irvine, found that individuals were more likely to believe in the effectiveness of a policy intervention when it aligned with their political ideology, regardless of the actual evidence supporting its effectiveness.

This tendency to favor evidence that supports pre-existing views can be detrimental to the scientific process. It can prevent researchers from considering alternative explanations, exploring different hypotheses, or critically evaluating their own findings.

This is where skepticism plays a crucial role.

Skepticism challenges biases in thinking

Skepticism, in the context of science, refers to a critical and questioning attitude towards claims, ideas, and evidence. It involves actively seeking out alternative explanations, examining evidence objectively, and being open to revising one’s beliefs in the face of new information.

Skepticism helps combat confirmation bias by challenging biases in thinking and promoting a more objective and rigorous approach to scientific inquiry.

When scientists approach a study with skepticism, they are less likely to be influenced by preconceived notions or personal biases. They actively seek out evidence that contradicts their hypotheses and consider alternative explanations before drawing conclusions.

This rigorous and critical approach helps ensure that scientific findings are based on solid evidence rather than personal beliefs or biases.

Skeptical scientists also play a crucial role in peer review processes, where they carefully scrutinize research methods, data analysis, and conclusions. Their skeptical mindset helps identify flaws, biases, and potential sources of error that may have been overlooked by the researchers themselves.

This ensures that only high-quality, reliable, and unbiased research gets published and contributes to the advancement of scientific knowledge.

It is important to note that skepticism does not mean being dismissive or skeptical of everything. It is about questioning and critically evaluating the evidence, even when it goes against our pre-existing beliefs.

By embracing skepticism, scientists can overcome confirmation bias and contribute to the growth and progress of scientific understanding.

Skepticism Drives Rigorous Testing

Scientists design robust experiments to test hypotheses.

One of the key aspects of science is the rigorous testing of hypotheses. Scientists understand the importance of questioning and challenging ideas in order to arrive at valid and reliable conclusions. This is where skepticism plays a crucial role.

Skepticism encourages scientists to design experiments that are robust and able to withstand scrutiny. By questioning assumptions, considering alternative explanations, and demanding evidence, scientists can ensure that their experiments are thorough and well-designed.

For example, when researchers are investigating a new drug, they will design experiments that include control groups, double-blind procedures, and statistical analysis to ensure that the results are not influenced by biases or confounding variables.

This rigorous approach helps to eliminate the possibility of false positives or misleading conclusions.

Skepticism weeds out weak or poorly controlled studies

Skepticism also serves as a filter to separate the strong studies from the weak ones. In the scientific community, studies that lack proper controls, have small sample sizes, or fail to replicate results are often met with skepticism.

This critical evaluation ensures that only the most reliable and credible studies are accepted and build the foundation of scientific knowledge.

For instance, if a study claims to have found a groundbreaking cure for a disease but fails to provide sufficient evidence or includes flawed methodology, skeptical scientists will scrutinize the study and question its validity.

This skepticism acts as a safeguard against misleading or inaccurate information from being widely accepted.

By subjecting studies to rigorous scrutiny, skepticism helps to maintain the integrity and credibility of scientific research. It ensures that only the most robust and well-designed experiments contribute to the body of scientific knowledge.

Skepticism Allows Accepted Ideas to Be Questioned

Scientific knowledge is provisional and open to revision.

In the world of science, knowledge is not set in stone. It is constantly evolving and being refined based on new evidence and discoveries. This is why skepticism plays a crucial role in the scientific process.

By questioning accepted ideas, scientists are able to explore new possibilities and push the boundaries of our understanding. Without skepticism, scientific progress would stagnate, and we would be limited in our pursuit of knowledge.

For example, let’s consider the case of the heliocentric model of the solar system, which states that the Earth and other planets revolve around the Sun. This idea was initially met with skepticism and faced strong opposition from the prevailing geocentric model, which placed the Earth at the center of the universe.

However, through rigorous observation and experimentation, scientists such as Nicolaus Copernicus and Galileo Galilei were able to provide evidence supporting the heliocentric model. Their skepticism led to a paradigm shift in our understanding of the universe.

Skepticism allows re-evaluating even long-held theories

Skepticism allows scientists to challenge even long-held theories that have been accepted as truth for many years. It is through this skepticism that scientific progress is made. By questioning the validity of existing theories, scientists can uncover gaps in knowledge and identify areas that require further investigation.

One example of this is the theory of continental drift, proposed by Alfred Wegener in the early 20th century. Initially met with skepticism and criticism, Wegener’s theory suggested that the continents were once joined together in a supercontinent called Pangaea and have since drifted apart.

It wasn’t until decades later, with the advent of modern technology and more evidence, that the theory of continental drift was widely accepted and became the foundation for our understanding of plate tectonics.

It is important to note that skepticism does not mean dismissing ideas without evidence. It is about approaching scientific claims with a critical mindset and demanding evidence to support them. Skepticism allows scientists to challenge the status quo and encourages a healthy exchange of ideas and perspectives, ultimately leading to a better understanding of the world around us.

Skepticism Promotes Civil Scientific Discourse

A skeptical attitude is crucial in scientific discussions as it promotes civil discourse and allows for the advancement of knowledge. Skepticism in this context refers to the critical evaluation of ideas and theories, rather than simply dismissing them without consideration.

By subjecting theories to rigorous scrutiny, scientists can identify flaws, inconsistencies, or unsupported claims, leading to a more robust understanding of the subject matter.

Criticism targets ideas, not people

One of the primary benefits of skepticism in scientific discourse is that it focuses on critiquing ideas and theories, rather than attacking individuals. This approach fosters an environment where scientists can challenge each other’s work without personal animosity.

By directing criticism towards ideas, scientists can engage in healthy debate and encourage intellectual growth.

For example, imagine a researcher proposes a new hypothesis in a scientific conference. Instead of immediately accepting or rejecting the idea, skeptics will critically analyze the evidence, ask probing questions, and offer alternative explanations.

This process allows for the identification of potential errors or gaps in reasoning, leading to a more refined understanding of the topic.

Healthy debate allows the best ideas to prevail

Scientific progress relies on healthy debate and the rigorous testing of ideas. Skepticism plays a vital role in this process as it encourages scientists to question assumptions, challenge established theories, and propose alternative explanations.

By subjecting ideas to scrutiny, weaker or flawed concepts can be discarded, while stronger and more supported ideas can emerge.

Through this process, scientists can refine their theories, strengthen their arguments, and contribute to the collective knowledge of their respective fields. This continuous cycle of skepticism and debate is what drives scientific progress and ensures that the best ideas prevail.

By embracing skepticism, scientists can engage in civil discourse, where ideas are rigorously evaluated and critiqued. This approach allows for the growth and refinement of scientific knowledge. So, the next time you encounter a scientific claim, remember the importance of a skeptical attitude in promoting robust and meaningful scientific discussions.

A skeptical attitude drives scientists to dig deeper, question assumptions, and demand solid proof. Skepticism forces researchers to conduct rigorous studies and prevents premature conclusions. By promoting inquiry, evidenced-based claims, and impartiality, scientific skepticism is indispensable for testing theories and advancing human knowledge.

Similar Posts

What Is Flammability In Science?

What Is Flammability In Science?

Flammability refers to how easily a material can be ignited and sustain burning. If you’re short on time, here’s a quick answer: Flammability is the measure of a substance’s ability to catch fire, determined by its chemical composition, structure, and interactions with oxygen. In this comprehensive guide, we explain the science behind flammability, factors that…

What Language Is Ap Computer Science?

What Language Is Ap Computer Science?

AP Computer Science teaches high school students the fundamentals of coding and programming through analyzing problems, developing algorithms, and writing code. But what language do students use to implement their solutions? If you’re short on time, here’s a quick answer to your question: AP Computer Science A is taught using Java, while AP Computer Science…

How Computer Science Majors Sleep: A Comprehensive Guide

How Computer Science Majors Sleep: A Comprehensive Guide

In the busy and competitive world of tech and computer science, sleep often takes a back seat. As assignments, projects, and deadlines pile up, computer science majors may find themselves burning the midnight oil more often than not. But sufficient and quality sleep is crucial for productivity, focus, memory, and overall health. If you’re short…

Is Psychology A Life Science? Examining The Classification

Is Psychology A Life Science? Examining The Classification

Psychology’s focus on human behavior and mental processes raises questions around whether it qualifies as a life science. If you’re short on time, here’s a quick answer: While not formally categorized as a life science, psychology studies diverse phenomena intrinsically tied to human life, so it significantly overlaps with areas of life science research. In…

Master Of Engineering Vs Master Of Science: How To Choose

Master Of Engineering Vs Master Of Science: How To Choose

Earning a graduate degree is an important step for advancing your engineering or science career. But should you pursue a Master of Engineering (MEng) or Master of Science (MS)? This choice can be confusing, but it’s an important one. If you’re short on time, here’s a quick answer: MEng degrees tend to be more application-focused,…

Examples Of Science And Technology: An In-Depth Overview

Examples Of Science And Technology: An In-Depth Overview

Science and technology play an integral role in our daily lives. From the alarm that wakes us up to the phones we use to stay connected, technology powered by science is ubiquitous. If you’re short on time, here’s a quick answer to your question: Examples of science and technology include computers, smartphones, renewable energy, genetic…

PERSPECTIVE article

Supporting early scientific thinking through curiosity.

\r\nJamie J. Jirout*

  • Curry School of Education and Human Development, University of Virginia, Charlottesville, VA, United States

Curiosity and curiosity-driven questioning are important for developing scientific thinking and more general interest and motivation to pursue scientific questions. Curiosity has been operationalized as preference for uncertainty ( Jirout and Klahr, 2012 ), and engaging in inquiry-an essential part of scientific reasoning-generates high levels of uncertainty ( Metz, 2004 ; van Schijndel et al., 2018 ). This perspective piece begins by discussing mechanisms through which curiosity can support learning and motivation in science, including motivating information-seeking behaviors, gathering information in response to curiosity, and promoting deeper understanding through connection-making related to addressing information gaps. In the second part of the article, a recent theory of how to promote curiosity in schools is discussed in relation to early childhood science reasoning. Finally, potential directions for research on the development of curiosity and curiosity-driven inquiry in young children are discussed. Although quite a bit is known about the development of children’s question asking specifically, and there are convincing arguments for developing scientific curiosity to promote science reasoning skills, there are many important areas for future research to address how to effectively use curiosity to support science learning.

Scientific Thinking and Curiosity

Scientific thinking is a type of knowledge seeking involving intentional information seeking, including asking questions, testing hypotheses, making observations, recognizing patterns, and making inferences ( Kuhn, 2002 ; Morris et al., 2012 ). Much research indicates that children engage in this information-seeking process very early on through questioning behaviors and exploration. In fact, children are quite capable and effective in gathering needed information through their questions, and can reason about the effectiveness of questions, use probabilistic information to guide their questioning, and evaluate who they should question to get information, among other related skills (see Ronfard et al., 2018 for review). Although formal educational contexts typically give students questions to explore or steps to follow to “do science,” young children’s scientific thinking is driven by natural curiosity about the world around them, and the desire to understand it and generate their own questions about the world ( Chouinard et al., 2007 ; Duschl et al., 2007 ; French et al., 2013 ; Jirout and Zimmerman, 2015 ).

What Does Scientific Curiosity Look Like?

Curiosity is defined here as the desire to seek information to address knowledge gaps resulting from uncertainty or ambiguity ( Loewenstein, 1994 ; Jirout and Klahr, 2012 ). Curiosity is often seen as ubiquitous within early childhood. Simply observing children can provide numerous examples of the bidirectional link between curiosity and scientific reasoning, such as when curiosity about a phenomenon leads to experimentation, which, in turn, generates new questions and new curiosities. For example, an infant drops a toy to observe what will happen. When an adult stoops to pick it up, the infant becomes curious about how many times an adult will hand it back before losing interest. Or, a child might observe a butterfly over a period of time, and wonder why it had its wings folded or open at different points, how butterflies fly, why different butterflies are different colors, and so on (see Figure 1 ). Observations lead to theories, which may be immature, incomplete, or even inaccurate, but so are many early scientific theories. Importantly, theories can help identify knowledge gaps, leading to new instances of curiosity and motivating children’s information seeking to acquire new knowledge and, gradually, correct misconceptions. Like adults, children learn from their experiences and observations and use information about the probability of events to revise their theories ( Gopnik, 2012 ).

www.frontiersin.org

Figure 1. A child looks intently at a butterfly, becoming curious about the many things she wonders based on her observations.

Although this type of reasoning is especially salient in science, curiosity can manifest in many different types of information seeking in response to uncertainty, and is similar to critical thinking in other domains of knowledge and to active learning and problem solving more generally ( Gopnik, 2012 ; Klahr et al., 2013 ; Saylor and Ganea, 2018 ). The development of scientific thinking begins as the senses develop and begin providing information about the world ( Inhelder and Piaget, 1958 ; Gopnik et al., 1999 ). When they are not actively discouraged, children need no instruction to ask questions and explore, and the information they get often leads to further information seeking. In fact, observational research suggests that children can ask questions at the rate of more than 100 per hour ( Chouinard et al., 2007 )! Although the adults in a child’s life might tire of what seems like relentless questioning ( Turgeon, 2015 ), even young children can modify their beliefs and learn from the information they receive ( Ronfard et al., 2018 ). More generally, children seek to understand their world through active exploration, especially in response to recognizing a gap in their understanding ( Schulz and Bonawitz, 2007 ). The active choice of what to learn, driven by curiosity, can provide motivation and meaning to information and instill a lasting positive approach to learning in formal educational contexts.

How Does Curiosity Develop and Support Scientific Thinking?

There are several mechanisms through which children’s curiosity can support the development and persistence of scientific thinking. Three of these are discussed below, in sequence: that curiosity can (1) motivate information-seeking behavior, which leads to (2) question-asking and other information-seeking behaviors, which can (3) activate related previous knowledge and support deeper learning. Although we discuss these as independent, consecutive steps for the sake of clarity, it is much more likely that curiosity, question asking and information seeking, and cognitive processing of information and learning are all interrelated processes that support each other ( Oudeyer et al., 2016 ). For example, information seeking that is not a result of curiosity can lead to new questions, and as previous knowledge is activated it may influence the ways in which a child seeks information.

Curiosity as a Motivation for Information Seeking

Young children’s learning is driven by exploration to make sense of the world around them (e.g., Piaget, 1926 ). This exploration can result from curiosity ( Loewenstein, 1994 ; Jirout and Klahr, 2012 ) and lead to active engagement in learning ( Saylor and Ganea, 2018 ). In the example given previously, the child sees that some butterflies have open wings and some have closed wings, and may be uncertain about why, leading to more careful observations that provide potential for learning. Several studies demonstrate that the presence of uncertainty or ambiguity leads to higher engagement ( Howard-Jones and Demetriou, 2009 ) and more exploration and information seeking ( Berlyne, 1954 ; Lowry and Johnson, 1981 ; Loewenstein, 1994 ; Litman et al., 2005 ; Jirout and Klahr, 2012 ). For example, when children are shown ambiguous demonstrations for how a novel toy works, they prefer and play longer with that toy than with a new toy that was demonstrated without ambiguity ( Schulz and Bonawitz, 2007 ). Similar to ambiguity, surprising or unexpected observations can create uncertainty and lead to curiosity-driven questions or explanations through adult–child conversations ( Frazier et al., 2009 ; Danovitch and Mills, 2018 ; Jipson et al., 2018 ). This curiosity can promote lasting effects; Shah et al. (2018) show that young children’s curiosity, reported by parents at the start of kindergarten, relates to academic school readiness. In one of the few longitudinal studies including curiosity, research shows that parents’ promotion of curiosity early in childhood leads to science intrinsic motivation years later and science achievement in high school ( Gottfried et al., 2016 ). More generally, curiosity can provide a remedy to boredom, giving children a goal to direct their behavior and the motivation to act on their curiosity ( Litman and Silvia, 2006 ).

Curiosity as Support for Directing Information-Seeking Behavior

Gopnik et al. (2015) suggest that adults are efficient in their attention allocation, developed through extensive experience, but this attentional control comes at the cost of missing much of what is going on around them unrelated to their goals. Children have less experience and skill in focusing their attention, and more exploration-oriented goals, resulting in more open-ended exploratory behavior but also more distraction. Curiosity can help focus children’s attention on the specific information being sought (e.g., Legare, 2014 ). For example, when 7–9-year-old children completed a discovery-learning task in a museum, curiosity was related to more efficient learning-more curious children were quicker and learned more from similar exploration than less-curious children ( van Schijndel et al., 2018 ). Although children are quite capable of using questions to express curiosity and request specific information ( Berlyne, 1954 ; Chin and Osborne, 2010 ; Jirout and Zimmerman, 2015 ; Kidd and Hayden, 2015 ; Luce and Hsi, 2015 ), these skills can and should be strategically supported, as question asking plays a fundamental role in science and is important to develop ( Chouinard et al., 2007 ; Dewey, 1910 ; National Governors Association, 2010 ; American Association for the Advancement of Science [AAAS], 1993 ; among others). Indeed, the National Resource Council (2012) National Science Education Standards include question asking as the first of eight scientific and engineering practices that span all grade levels and content areas.

Children are proficient in requesting information from quite early ages ( Ronfard et al., 2018 ). Yet, there are limitations to children’s question asking; it can be “inefficient.” For example, to identify a target object from an array, young children often ask confirmation questions or make guesses rather than using more efficient “constraint-seeking” questions ( Mills et al., 2010 ; Ruggeri and Lombrozo, 2015 ). However, this behavior is observed in highly structured problem-solving tasks, during which children likely are not very curious. In fact, if the environment contains other things that children are curious about, it could be more efficient to use a simplistic strategy, freeing up cognitive resources for the true target of their curiosity. More research is needed to better understand children’s use of curiosity-driven questioning behavior as well as exploration, but naturalistic observations show that children do ask questions spontaneously to gain information, and that their questions (and follow-up questions) are effective in obtaining desired information ( Nelson et al., 2004 ; Kelemen et al., 2005 ; Chouinard et al., 2007 ).

Curiosity as Support for Deeper Learning

Returning to the definition of curiosity as information seeking to address knowledge gaps, becoming curious-by definition-involves the activation of previous knowledge, which enhances learning ( VanLehn et al., 1992 ; Conati and Carenini, 2001 ). The active learning that results from curiosity-driven information seeking involves meaningful cognitive engagement and constructive processing that can support deeper learning ( Bonwell and Eison, 1991 ; King, 1994 ; Loyens and Gijbels, 2008 ). The constructive process of seeking information to generate new thinking or new knowledge in response to curiosity is a more effective means of learning than simply receiving information ( Chi and Wylie, 2014 ). Even if information is simply given to a child as a result of their asking a question, the mere process of recognizing the gap in one’s knowledge to have a question activates relevant previous knowledge and leads to more effective storage of the new information within a meaningful mental representation; the generation of the question is a constructive process in itself. Further, learning more about a topic allows children to better recognize their related knowledge and information gaps ( Danovitch et al., 2019 ). This metacognitive reasoning supports learning through the processes of activating, integrating, and inferring involved in the constructive nature of curiosity-drive information seeking ( Chi and Wylie, 2014 ). Consistent with this theory, Lamnina and Chase (2019) showed that higher curiosity, which increased with the amount of uncertainty in a task, related to greater transfer of middle school students’ learning about specific science topics.

Promoting Curiosity in Young Children

Curiosity is rated by early childhood educators as “very important” or “essential” for school readiness and considered to be even more important than discrete academic skills like counting and knowing the alphabet ( Heaviside et al., 1993 ; West et al., 1993 ), behind only physical health and communication skills in importance ( Harradine and Clifford, 1996 ). Engel (2011 , 2013) finds that curiosity declines with development and suggests that understanding how to promote or at least sustain it is important. Although children’s curiosity is considered a natural characteristic that is present at birth, interactions with and responses from others can likely influence curiosity, both at a specific moment and context and as a more stable disposition ( Jirout et al., 2018 ). For example, previous work suggests that curiosity can be promoted by encouraging children to feel comfortable with and explore uncertainty ( Jirout et al., 2018 ); experiences that create uncertainty lead to higher levels of curious behavior (e.g., Bonawitz et al., 2011 ; Engel and Labella, 2011 ; Gordon et al., 2015 ).

One strategy for promoting curiosity is through classroom climate; children should feel safe and be encouraged to be curious and exploration and questions should be valued ( Pianta et al., 2008 ). This is accomplished by de-emphasizing being “right” or all-knowing, and instead embracing uncertainty and gaps in one’s own knowledge as opportunities to learn. Another strategy to promote curiosity is to provide support for the information-seeking behaviors that children use to act on their curiosity. There are several specific strategies that may promote children’s curiosity (see Jirout et al., 2018 , for additional strategies), including:

1. Encourage and provide opportunities for children to explore and “figure out,” emphasizing the value of the process (exploration) over the outcome (new knowledge or skills). Children cannot explore if opportunities are not provided to them, and they will not ask questions if they do not feel that their questions are welcomed. Even if opportunities and encouragement are provided, the fear of being wrong can keep children from trying to learn new things ( Martin and Marsh, 2003 ; Martin, 2011 ). Active efforts to discover or “figure out” are more effective at supporting learning than simply telling children something or having them practice learned procedures ( Schwartz and Martin, 2004 ). Children can explore when they have guidance and support to engage in think-aloud problem solving, instead of being told what to try or getting questions answered directly ( Chi et al., 1994 ).

2. Model curiosity for children, allowing them to see that others have things that they do not know and want to learn about, and that others also enjoy information-seeking activities like asking questions and researching information. Technology makes information seeking easier than it has ever been. For example, children are growing up surrounded by internet-connected devices (more than 8 per capita in 2018), and asking questions is reported to be one of the most frequent uses of smart speakers ( NPR-Edison Research Spring, 2019 ). Observing others seeking information as a normal routine can encourage children’s own question asking ( McDonald, 1992 ).

3. Children spontaneously ask questions, but adults can encourage deeper questioning by using explicit prompts and then supporting children to generate questions ( King, 1994 ; Rosenshine et al., 1996 ). This is different from asking “Do you have any questions?,” which may elicit a simple “yes” or “no” response from the child. Instead, asking, “What questions do you have?” is more likely to provide a cue for children to practice analyzing what they do not know and generating questions. The ability to evaluate one’s knowledge develops through practice, and scaffolding this process by helping children recognize questions to ask can effectively support development ( Kuhn and Pearsall, 2000 ; Chin and Brown, 2002 ).

4. Other methods to encourage curiosity include promoting and reinforcing children’s thinking about alternative ideas, which could also support creativity. Part of being curious is recognizing questions that can be asked, and if children understand that there are often multiple solutions or ways to do something they will be more likely to explore to learn “ how we know and why we believe; e.g., to expose science as a way of knowing” ( Duschl and Osborne, 2002 , p. 40). Children who learn to “think outside the box” will question what they and others know and better understand the dynamic nature of knowledge, supporting a curious mindset ( Duschl and Osborne, 2002 ).

Although positive interactions can promote and sustain curiosity in young children, curiosity can also be suppressed or discouraged through interactions that emphasize performance or a focus on explicit instruction ( Martin and Marsh, 2003 ; Martin, 2011 ; Hulme et al., 2013 ). Performance goals, which are goals that are focused on demonstrating the attainment of a skill, can lead to lower curiosity to avoid distraction or risk to achieving the goal ( Hulme et al., 2013 ). Mastery goals, which focus on understanding and the learning process, support learning for its own sake ( Ames, 1993 ). When children are older and attend school, they experience expectations that prioritize performance metrics over academic and intellectual exploration, such as through tests and state-standardized assessments, which discourages curiosity ( Engel, 2011 ; Jirout et al., 2018 ). In my own recent research, we observed a positive association between teachers’ use of mastery-focused language and their use of curiosity-promoting instructional practices in preschool math and science lessons ( Jirout and Vitiello, 2019 ). Among 5th graders, student ratings of teacher emphasis on standardized testing was associated with lower observed curiosity-promotion by teachers ( Jirout and Vitiello, 2019 ). It is likely that learning orientations influence children’s curiosity even before children begin formal schooling, and de-emphasizing performance is a way to support curiosity.

In summary, focusing on the process of “figuring out” something children do not know, modeling and explicitly prompting exploration and question asking, and supporting metacognitive and creative thinking are all ways to promote curiosity and support effective cognitive engagement during learning. These methods are consistent with inquiry-based and active learning, which both are grounded in constructivism and information gaps similar to the current operationalization of curiosity ( Jirout and Klahr, 2012 ; Saylor and Ganea, 2018 ; van Schijndel et al., 2018 ). Emphasizing performance, such as academic climates focused on teaching rote procedures and doing things the “correct” way to get the right answer, can suppress or discourage curiosity. Instead, creating a supportive learning climate and responding positively to curiosity are likely to further reinforce children’s information seeking, and to sustain their curiosity so that it can support scientific thinking and learning.

Conclusion: a Call for Research

In this article, I describe evidence from the limited existing research showing that curiosity is important and relates to science learning, and I suggest several mechanisms through which curiosity can support science learning. The general perspective presented here is that science learning can and should be supported by promoting curiosity, and I provide suggestions for promoting (and avoiding the suppression of) curiosity in early childhood. However, much more research is needed to address the complex challenge of educational applications of this work. Specifically, the suggested mechanisms through which curiosity promotes learning need to be studied to tease apart questions of directionality, the influence of related factors such as interest, the impact of context and learning domain on these relations, and the role of individual differences. Both the influence of curiosity on learning and effective ways to promote it likely change in interesting and important ways across development, and research is needed to understand this development-especially through studying change in individuals over time. Finally, it is important to acknowledge that learning does not happen in isolation, and one’s culture and environment have important roles in shaping one’s development. Thus, application of research on curiosity and science learning must include studies of the influence of social factors such as socioeconomic status and contexts, the influence of peers, teachers, parents, and others in children’s environments, and the many ways that culture may play a role, both in the broad values and beliefs instilled in children and the adults interacting with them, and in the influences of behavior expectations and norms. For example, parents across cultures might respond differently to children’s questions, so cross-cultural differences in questions likely indicate something other than differences in curiosity ( Ünlütabak et al., 2019 ). Although curiosity likely promotes science learning across cultures and contexts, the ways in which it does so and effective methods of promoting it may differ, which is an important area for future research to explore. Despite the benefits I present, curiosity seems to be rare or even absent from formal learning contexts ( Engel, 2013 ), even as children show curiosity about things outside of school ( Post and Walma van der Molen, 2018 ). Efforts to promote science learning should focus on the exciting potential for curiosity in supporting children’s learning, as promoting young children’s curiosity in science can start children on a positive trajectory for later learning.

Ethics Statement

Written informed consent was obtained from the individual(s) and/or minor(s)’ legal guardian/next of kin publication of any potentially identifiable images or data included in this article.

Author Contributions

JJ conceived of the manuscript topic and wrote the manuscript.

This publication was made possible through the support of grants from the John Templeton Foundation, the Spencer Foundation, and the Center for Curriculum Redesign. The opinions expressed in this publication are those of the author and do not necessarily reflect the views of the John Templeton Foundation or other funders.

Conflict of Interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

American Association for the Advancement of Science [AAAS] (1993). Benchmarks for Science Literacy. Oxford: Oxford University Press.

Google Scholar

Ames, C. (1993). Classrooms: goals, structures, and student motivation. J. Educ. Psychol. 84, 261–271. doi: 10.1037/0022-0663.84.3.261

CrossRef Full Text | Google Scholar

Berlyne, D. E. (1954). An experimental study of human curiosity. Br. J. Psychol. 45, 256–265. doi: 10.1111/j.2044-8295.1954.tb01253.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D., Spelke, E., and Schulz, L. (2011). The double-edged sword of pedagogy: instruction limits spontaneous exploration and discovery. Cognition 120, 322–330. doi: 10.1016/j.cognition.2010.10.001

Bonwell, C. C., and Eison, J. A. (1991). Active Learning: Creating Excitement in the Classroom. 1991 ASHE-ERIC Higher Education Reports. ERIC Clearinghouse on Higher Education. Washington, DC: The George Washington University.

Chi, M. T. H., Leeuw, N. D., Chiu, M.-H., and Lavancher, C. (1994). Eliciting self-explanations improves understanding. Cogn. Sci. 18, 439–477. doi: 10.1207/s15516709cog1803_3

Chi, M. T. H., and Wylie, R. (2014). The ICAP framework: linking cognitive engagement to active learning outcomes. Educ. Psychol. 49, 219–243. doi: 10.1080/00461520.2014.965823

Chin, C., and Brown, D. E. (2002). Student-generated questions: a meaningful aspect of learning in science. Int. J. Sci. Educ. 24, 521–549. doi: 10.1080/09500690110095249

Chin, C., and Osborne, J. (2010). Supporting argumentation through students’. Questions: case studies in science classrooms. J. Learn. Sci. 19, 230–284. doi: 10.1080/10508400903530036

Chouinard, M. M., Harris, P. L., and Maratsos, M. P. (2007). Children’s questions: a mechanism for cognitive development. Monogr. Soc. Res. Child Dev. 72, i–129.

Conati, C., and Carenini, G. (2001). “Generating tailored examples to support learning via self-explanation,” in Proceedings of IJCAI’01, 17th International Joint Conference on Artificial Intelligence , Seattle, WA, 1301–1306.

Danovitch, J. H., Fisher, M., Schroder, H., Hambrick, D. Z., and Moser, J. (2019). Intelligence and neurophysiological markers of error monitoring relate to Children’s intellectual humility. Child Dev. 90, 924–939. doi: 10.1111/cdev.12960

Danovitch, J. H., and Mills, C. M. (2018). “Understanding when and how explanation promotes exploration,” in Active Learning from Infancy to Childhood: Social Motivation, Cognition, and Linguistic Mechanisms , eds M. M. Saylor and P. A. Ganea (Berlin: Springer), 95–112. doi: 10.1007/978-3-319-77182-3_6

Dewey, J. (1910). How We Think. Lexington, MA: D.C. Heath and Company. doi: 10.1037/10903-000

Duschl, R. A., and Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Stud. Sci. Educ. 38, 39–72. doi: 10.1080/03057260208560187

Duschl, R. A., Schweingruber, H. A., and Shouse, A. W. (eds) (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Washington, DC: The National Academies Press. doi: 10.17226/11625

Engel, S. (2011). Children’s need to know: curiosity in schools. Harv. Educ. Rev. 81, 625–645. doi: 10.17763/haer.81.4.h054131316473115

Engel, S. (2013). The Case for CURIOSITY. Educ. Leadersh. 70, 36–40.

Engel, S., and Labella, M. (2011). Encouraging exploration: the effects of teaching behavior on student expressions of curiosity, as cited in Engel, S. (2011). Children’s Need to Know: curiosity in Schools. Harv. Educ. Rev. 81, 625–645. doi: 10.17763/haer.81.4.h054131316473115

Frazier, B. N., Gelman, S. A., and Wellman, H. M. (2009). Preschoolers’ search for explanatory information within adult–child conversation. Child Dev. 80, 1592–1611. doi: 10.1111/j.1467-8624.2009.01356.x

French, L. A., Woodring, S. D., and Woodring, S. D. (2013). Science Education in the Early Years. Handbook of Research on the Education of Young Children. Available online at: http://www.taylorfrancis.com/ (accessed February 29, 2020).

Gopnik, A. (2012). Scientific thinking in young children: theoretical advances, empirical research, and policy implications. Science 337, 1623–1627. doi: 10.1126/science.1223416

Gopnik, A., Griffiths, T. L., and Lucas, C. G. (2015). When younger learners can be better (or at least more open-minded) than older ones. Curr. Dir. Psychol. Sci. 24, 87–92. doi: 10.1177/0963721414556653

Gopnik, A., Meltzoff, A. N., and Kuhl, P. K. (1999). The Scientist in the Crib: Minds, Brains, and How Children Learn. New York, NY: William Morrow & Co.

Gordon, G., Breazeal, C., and Engel, S. (2015). Can children catch curiosity from a social robot? Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction , New York, NY, 91–98. doi: 10.1145/2696454.2696469

Gottfried, A. E., Preston, K. S. J., Gottfried, A. W., Oliver, P. H., Delany, D. E., and Ibrahim, S. M. (2016). Pathways from parental stimulation of children’s curiosity to high school science course accomplishments and science career interest and skill. Int. J. Sci. Educ. 38, 1972–1995. doi: 10.1080/09500693.2016.1220690

Harradine, C. C., and Clifford, R. M. (1996). When are children ready for kindergarten? Views of families, kindergarten teachers, and child care providers. Paper Presented at the Annual Meeting of the American Educational Research Association , New York, NY.

Howard-Jones, P. A., and Demetriou, S. (2009). Uncertainty and engagement with learning games. Inst. Sci. 37, 519–536. doi: 10.1007/s11251-008-9073-6

Heaviside, S., Farris, E., and Carpenter, J. M. (1993). Public School Kindergarten Teachers’ Views on Children’s Readiness for School. US Department of Education, Office of Educational Research and Improvement, National Center for Education Statistics.

Hulme, E., Green, D. T., and Ladd, K. S. (2013). Fostering student engagement by cultivating curiosity: fostering student engagement by cultivating curiosity. New Dir. Stud. Serv. 2013, 53–64. doi: 10.1002/ss.20060

Inhelder, B., and Piaget, J. (1958). The Growth of Logical Thinking from Childhood to Adolescence: An Essay on the Construction of Formal Operational Structures. London: Routledge.

Jipson, J. L., Labotka, D., Callanan, M. A., and Gelman, S. A. (2018). “How conversations with parents may help children learn to separate the sheep from the goats (and the Robots),” in Active Learning from Infancy to Childhood: Social Motivation, Cognition, and Linguistic Mechanisms , eds M. M. Saylor and P. A. Ganea (Berlin: Springer), 189–212. doi: 10.1007/978-3-319-77182-3_11

Jirout, J., and Klahr, D. (2012). Children’s scientific curiosity: in search of an operational definition of an elusive concept. Dev. Rev. 32, 125–160. doi: 10.1016/j.dr.2012.04.002

Jirout, J., and Vitiello, V. (2019). “uriosity in the classroom through supportive instruction. Paper Presented at the SRCD Biennial Meeting , Baltimore, MD.

Jirout, J., Vitiello, V., and Zumbrunn, S. (2018). “Curiosity in schools,” in The New Science of Curiosity , ed. G. Gordon (Hauppauge, NY: Nova).

Jirout, J., and Zimmerman, C. (2015). “Development of science process skills in the early childhood years,” in Research in Early Childhood Science Education , eds K. Cabe Trundle and M. Saçkes (Berlin: Springer), 143–165. doi: 10.1007/978-94-017-9505-0_7

Kelemen, D., Callanan, M. A., Casler, K., and Pérez-Granados, D. R. (2005). Why things happen: teleological explanation in parent-child conversations. Dev. Psychol. 41, 251–264. doi: 10.1037/0012-1649.41.1.251

Kidd, C., and Hayden, B. Y. (2015). The psychology and neuroscience of curiosity. Neuron 88, 449–460. doi: 10.1016/j.neuron.2015.09.010

King, A. (1994). Guiding knowledge construction in the classroom: effects of teaching children how to question and how to explain. Am. Educ. Res. J. 31, 338–368. doi: 10.2307/1163313

Klahr, D., Matlen, B., and Jirout, J. (2013). “Children as scientific thinkers,” in Handbook of the Psychology of Science , eds G. Feist and M. Gorman (New York, NY: Springer), 223–248.

Kuhn, D. (2002). “What is scientific thinking, and how does it develop?” in Blackwell Handbook of Childhood Cognitive Development , ed. U. Goswami (Oxford: Blackwell Publishing.), 371–393. doi: 10.1002/9780470996652.ch17

Kuhn, D., and Pearsall, S. (2000). Developmental Origins of Scientific Thinking. J. Cogn. Dev. 1, 113–129. doi: 10.1207/S15327647JCD0101N_11

Lamnina, M., and Chase, C. C. (2019). Developing a thirst for knowledge: how uncertainty in the classroom influences curiosity, affect, learning, and transfer. Contemp. Educ. Psychol. 59:101785. doi: 10.1016/j.cedpsych.2019.101785

Legare, C. H. (2014). The contributions of explanation and exploration to children’s scientific reasoning. Child Dev. Perspect. 8, 101–106. doi: 10.1111/cdep.12070

Litman, J., Hutchins, T., and Russon, R. (2005). Epistemic curiosity, feeling-of-knowing, and exploratory behaviour. Cogn. Emot. 19, 559–582. doi: 10.1080/02699930441000427

Litman, J. A., and Silvia, P. J. (2006). The latent structure of trait curiosity: evidence for interest and deprivation curiosity dimensions. J. Pers. Assess. 86, 318–328. doi: 10.1207/s15327752jpa8603_07

Loewenstein, G. (1994). The psychology of curiosity: a review and reinterpretation. Psychol. Bull. 116, 75–98. doi: 10.1037/0033-2909.116.1.75

Lowry, N., and Johnson, D. W. (1981). Effects of controversy on epistemic curiosity, achievement, and attitudes. J. Soc. Psychol. 115, 31–43. doi: 10.1080/00224545.1981.9711985

Loyens, S. M., and Gijbels, D. (2008). Understanding the effects of constructivist learning environments: introducing a multi-directional approach. Inst. Sci. 36, 351–357. doi: 10.1007/s11251-008-9059-4

Luce, M. R., and Hsi, S. (2015). Science-relevant curiosity expression and interest in science: an exploratory study: CURIOSITY AND SCIENCE INTEREST. Sci. Educ. 99, 70–97. doi: 10.1002/sce.21144

Martin, A. J. (2011). Courage in the classroom: exploring a new framework predicting academic performance and engagement. Sch. Psychol. Q. 26, 145–160. doi: 10.1037/a0023020

Martin, A. J., and Marsh, H. W. (2003). Fear of Failure: Friend or Foe? Aust. Psychol. 38, 31–38. doi: 10.1080/00050060310001706997

McDonald, J. P. (1992). Teaching: Making Sense of an Uncertain Craft. New York, NY: Teachers College Press.

Metz, K. E. (2004). Children’s understanding of scientific inquiry: their conceptualization of uncertainty in investigations of their own design. Cogn. Instr. 22, 219–290. doi: 10.1207/s1532690xci2202_3

Mills, C. M., Legare, C. H., Bills, M., and Mejias, C. (2010). Preschoolers use questions as a tool to acquire knowledge from different sources. J. Cogn. Dev. 11, 533–560. doi: 10.1080/15248372.2010.516419

Morris, B. J., Croker, S., Masnick, A., and Zimmerman, C. (2012). “The emergence of scientific reasoning,” in Current Topics in Children’s Learning and Cognition , eds H. Kloos, B. J. Morris, and J. L. Amaral (Rijeka: IntechOpen). doi: 10.5772/53885

National Governors Association (2010). Common Core State Standards. Washington, DC: National Governors Association.

National Resource Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: National Academy Press.

Nelson, D. G. K., Chan, L. E., and Holt, M. B. (2004). When Children Ask, “What Is It? “What Do They Want to Know About Artifacts? Psychol. Sci. 15, 384–389. doi: 10.1111/j.0956-7976.2004.00689.x

NPR-Edison Research Spring (2019). The Smart Audio Report. Available online at: https://www.nationalpublicmedia.com/uploads/2019/10/The_Smart_Audio_Report_Spring_2019.pdf (accessed February 23, 2020).

Oudeyer, P.-Y., Gottlieb, J., and Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: theory and applications in educational technologies. Prog. Brain Res. 229, 257–284. doi: 10.1016/bs.pbr.2016.05.005

Piaget, J. (1926). The Thought and Language of the Child. New York, NY: Harcourt, Brace, and Company.

Pianta, R. C., La Paro, K. M., and Hamre, B. K. (2008). Classroom Assessment Scoring SystemTM: Manual K-3. Baltimore, MD: Paul H Brookes Publishing.

Post, T., and Walma van der Molen, J. H. (2018). Do children express curiosity at school? Exploring children’s experiences of curiosity inside and outside the school context. Learn. Cult. Soc. Interact. 18, 60–71. doi: 10.1016/j.lcsi.2018.03.005

Ronfard, S., Zambrana, I. M., Hermansen, T. K., and Kelemen, D. (2018). Question-asking in childhood: a review of the literature and a framework for understanding its development. Dev. Rev. 49, 101–120. doi: 10.1016/j.dr.2018.05.002

Rosenshine, B., Meister, C., and Chapman, S. (1996). Teaching students to generate questions: a review of the intervention studies. Rev. Educ. Res. 66, 181–221. doi: 10.2307/1170607

Ruggeri, A., and Lombrozo, T. (2015). Children adapt their questions to achieve efficient search. Cognition 143, 203–216. doi: 10.1016/j.cognition.2015.07.004

Saylor, M. M., and Ganea, P. A. (eds) (2018). Active Learning from Infancy to Childhood: Social Motivation, Cognition, and Linguistic Mechanisms. Berlin: Springer. doi: 10.1007/978-3-319-77182-3

Schulz, L. E., and Bonawitz, E. B. (2007). Serious fun: preschoolers engage in more exploratory play when evidence is confounded. Dev. Psychol. 43, 1045–1050. doi: 10.1037/0012-1649.43.4.1045

Schwartz, D. L., and Martin, T. (2004). Inventing to prepare for future learning: the hidden efficiency of encouraging original student production in statistics instruction. Cogn. Inst. 22, 129–184. doi: 10.1207/s1532690xci2202_1

Shah, P. E., Weeks, H. M., Richards, B., and Kaciroti, N. (2018). Early childhood curiosity and kindergarten reading and math academic achievement. Pediatr. Res. 84, 380–386. doi: 10.1038/s41390-018-0039-3

Turgeon, W. C. (2015). The art and danger of the question: its place within philosophy for children and its philosophical history. Mind Cult. Act. 22, 284–298. doi: 10.1080/10749039.2015.1079919

Ünlütabak, B., Nicolopoulou, A., and Aksu-Koç, A. (2019). Questions asked by Turkish preschoolers from middle-SES and low-SES families. Cogn. Dev. 52:100802. doi: 10.1016/j.cogdev.2019.100802

van Schijndel, T. J. P., Jansen, B. R. J., and Raijmakers, M. E. J. (2018). Do individual differences in children’s curiosity relate to their inquiry-based learning? Int. J. Sci. Educ. 40, 996–1015. doi: 10.1080/09500693.2018.1460772

VanLehn, K., Jones, R. M., and Chi, M. T. H. (1992). A model of the self-explanation effect. J. Learn. Sci. 2, 1–59. doi: 10.1207/s15327809jls0201_1

West, J., Hausken, E. G., and Collins, M. (1993). Readiness for Kindergarten: Parent and Teacher Beliefs. Statistics in Brief. Available online at: https://eric.ed.gov/?id=ED363429 (accessed February 29, 2020).

Keywords : curiosity, scientific reasoning, scientific thinking, information seeking, exploration, learning

Citation: Jirout JJ (2020) Supporting Early Scientific Thinking Through Curiosity. Front. Psychol. 11:1717. doi: 10.3389/fpsyg.2020.01717

Received: 28 February 2020; Accepted: 23 June 2020; Published: 05 August 2020.

Reviewed by:

Copyright © 2020 Jirout. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Jamie J. Jirout, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

IMAGES

  1. Critical Thinking Skills: Definitions, Examples, and How to Improve

    scientific attitude encourages critical thinking

  2. PPT

    scientific attitude encourages critical thinking

  3. 6 Main Types of Critical Thinking Skills (With Examples)

    scientific attitude encourages critical thinking

  4. Critical_Thinking_Skills_Diagram_svg

    scientific attitude encourages critical thinking

  5. Critical Thinking Skills Chart

    scientific attitude encourages critical thinking

  6. PPT

    scientific attitude encourages critical thinking

VIDEO

  1. Your attitude is critical to success.💆‍♂️| #motivation| #music

  2. Scientific Attitudes

  3. Your attitude is critical to success.#paramedical #education #study #motivation #success #studygram

  4. When science becomes ideology

  5. Scientific Attitude

  6. Immersive Critical Thinking Activities: Think Like A Scientist

COMMENTS

  1. Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate.

  2. Scientific Thinking and Critical Thinking in Science Education

    Scientific thinking and critical thinking are two intellectual processes that are considered keys in the basic and comprehensive education of citizens. For this reason, their development is also contemplated as among the main objectives of science education. However, in the literature about the two types of thinking in the context of science education, there are quite frequent allusions to one ...

  3. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  4. Supporting Early Scientific Thinking Through Curiosity

    Scientific thinking is a type of knowledge seeking involving intentional information seeking, including asking questions, testing hypotheses, making observations, recognizing patterns, and making inferences ( Kuhn, 2002; Morris et al., 2012 ). Much research indicates that children engage in this information-seeking process very early on through ...

  5. PDF The Nature of Scientific Thinking

    means for their own scientific thinking. The lesson encourages a constructivist approach to learning; instead of telling students what some of the patterns are in scientists' thinking, it encourages students to identify the patterns on their own. After reviewing the case studies, students should try to come up with the common

  6. Enhancing Scientific Thinking Through the Development of Critical

    The same kind of open-minded attitude is required from university students. ... Critical thinking also goes with inquiry and encourages thinking rather than accepting what told. ... Critical thinking captures the essential thinking and reasoning skills and thus forms a basis for scientific thinking. Critical thinking has also been found to be ...

  7. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  8. Chapter 12

    When the stakes are sufficiently high, we can engage in more critical thinking. We conceptualize critical thinking as scientific reasoning, an array of human inventions specifically designed to overcome the limitations and biases inherent to the efficient but error-prone System 1 thinking. We organize this discussion of critical thinking around ...

  9. PDF PBLPOE: A Learning Model to Enhance Students' Critical Thinking ...

    INTRODUCTION. Rapid scientific and technological advances in the globalization era encourage students to acquire various skills, knowledge, and attitudes. The advancement of science also assigns teachers into various essential roles in facilitating learning, such as in contextual learning in Biology.

  10. [PDF] Scientific Attitude In Relation To Critical Thinkin g among

    Scientific attitude helps to tackle problem objecti vely without bias promoting logical thinking. It is the "scientific spirit" or "scienticism" whic h creates rational outlook. A person accepts whatever is based on scientific background. Scienti fic approach is progressive, such a person is never too certain of his facts and ready to acce pt truth on the basis of empirical data ...

  11. How does critical thinking feed a scientific attitude, and ...

    How does critical thinking feed a scientific attitude, and smarter thinking for everyday life? The scientific attitude—curiosity + skepticism + humility—prepares us to think smarter. Smart thinking, called critical thinking, examines assumptions, appraises the source, discerns hidden biases, evaluates evidence, and assesses conclusions.

  12. PDF Thinking Critically With Psychological Science

    Explain how the three main components of the scientific attitude relate to critical thinking. The scientific attitude reflects a hard-headed curiosity to explore and understand the world with-out being fooled by it. The eagerness to skeptically scrutinize competing claims requires humility because it means we may have to reject our own ideas ...

  13. PDF Psychology's Roots, The Need for Psychological Science Critical

    CRITICAL THINKING AND THE SCIENTIFIC ATTITUDE Psychology asks similar questions. But today's psychologists search for answers differently, by scientifically studying how we act, think, and feel. They do so with critical thinking and the scientific attitude. Critical thinking2 is smart thinking. Whether reading a research report or

  14. Active learning tools improve the learning outcomes, scientific ...

    Active learning tools improve the learning outcomes, scientific attitude, and critical thinking in higher education: Experiences in an online course during the COVID-19 pandemic. Izadora Volpato Rossi, ... The absence of adequate working conditions encourages teachers to adopt an old-fashioned type of education, in which passive teaching ...

  15. The Relationship Between Scientific Method & Critical Thinking

    Critical thinking initiates the act of hypothesis. In the scientific method, the hypothesis is the initial supposition, or theoretical claim about the world, based on questions and observations. If critical thinking asks the question, then the hypothesis is the best attempt at the time to answer the question using observable phenomenon.

  16. (PDF) PBLPOE: A Learning Model to Enhance Students' Critical Thinking

    Critical thinking skills and scientific attitudes are among the essential skills and knowledge that should be prioritized by 21 st -century students (Duran & Şendağ , 2012; Ennis, 2013).

  17. The Importance Of A Skeptical Attitude In Science

    Instead, it encourages critical thinking, scrutiny, and a healthy dose of skepticism. By fostering an environment of open inquiry and rigorous examination, skepticism helps to separate fact from fiction and promotes scientific integrity. ... A skeptical attitude is crucial in scientific discussions as it promotes civil discourse and allows for ...

  18. (PDF) Effect of 3D Visualization on Students' Critical Thinking Skills

    The Comparison of Students' Critical Thinking Skills and Scientific Attitude Based on Figure 8, every class used in this study shows the results that students' critical thinking skills and ...

  19. Frontiers

    Scientific thinking is a type of knowledge seeking involving intentional information seeking, including asking questions, testing hypotheses, making observations, recognizing patterns, and making inferences ( Kuhn, 2002; Morris et al., 2012 ). Much research indicates that children engage in this information-seeking process very early on through ...

  20. Chapter 1 Learning Outcomes: Thinking Critically with ...

    Scientific inquiry begins with an attitude—a curious eagerness to skeptically scrutinize competing ideas and an open-minded humility before nature. This attitude carries into everyday life as critical thinking, which examines assumptions, discerns hidden values, evaluates evidence, and assesses outcomes. Putting ideas, even crazy-sounding ...

  21. AP Psychology- Unit 1 Study Guide Flashcards

    The scientific attitude- curiosity, skepticism, and humility- prepares us to think harder and smarter. This thinking style, critical thinking, examines assumptions, appraises the source, discerns hidden biases, evaluates evidence, and assesses conclusions. Critical thinking asks questions.

  22. Physcology 1 Flashcards

    Study with Quizlet and memorize flashcards containing terms like The scientific attitude encourages us to think harder and smarter, a thinking style known as _____., Curiosity (Does it work?), Skepticism (How do you know?), Humility (Psychologist must be willing to be surprised and follow new ideas.), Who founded the first psychology laboratory? and more.