• How it works

Published by Robert Bruce at August 29th, 2023 , Revised On September 5, 2023

Biology Research Topics

Are you in need of captivating and achievable research topics within the field of biology? Your quest for the best biology topics ends right here as this article furnishes you with 100 distinctive and original concepts for biology research, laying the groundwork for your research endeavor.

Table of Contents

Our proficient researchers have thoughtfully curated these biology research themes, considering the substantial body of literature accessible and the prevailing gaps in research.

Should none of these topics elicit enthusiasm, our specialists are equally capable of proposing tailor-made research ideas in biology, finely tuned to cater to your requirements. 

Thus, without further delay, we present our compilation of biology research topics crafted to accommodate students and researchers.

Research Topics in Marine Biology

  • Impact of climate change on coral reef ecosystems.
  • Biodiversity and adaptation of deep-sea organisms.
  • Effects of pollution on marine life and ecosystems.
  • Role of marine protected areas in conserving biodiversity.
  • Microplastics in marine environments: sources, impacts, and mitigation.

Biological Anthropology Research Topics

  • Evolutionary implications of early human migration patterns.
  • Genetic and environmental factors influencing human height variation.
  • Cultural evolution and its impact on human societies.
  • Paleoanthropological insights into human dietary adaptations.
  • Genetic diversity and population history of indigenous communities.

Biological Psychology Research Topics 

  • Neurobiological basis of addiction and its treatment.
  • Impact of stress on brain structure and function.
  • Genetic and environmental influences on mental health disorders.
  • Neural mechanisms underlying emotions and emotional regulation.
  • Role of the gut-brain axis in psychological well-being.

Cancer Biology Research Topics 

  • Targeted therapies in precision cancer medicine.
  • Tumor microenvironment and its influence on cancer progression.
  • Epigenetic modifications in cancer development and therapy.
  • Immune checkpoint inhibitors and their role in cancer immunotherapy.
  • Early detection and diagnosis strategies for various types of cancer.

Also read: Cancer research topics

Cell Biology Research Topics

  • Mechanisms of autophagy and its implications in health and disease.
  • Intracellular transport and organelle dynamics in cell function.
  • Role of cell signaling pathways in cellular response to external stimuli.
  • Cell cycle regulation and its relevance to cancer development.
  • Cellular mechanisms of apoptosis and programmed cell death.

Developmental Biology Research Topics 

  • Genetic and molecular basis of limb development in vertebrates.
  • Evolution of embryonic development and its impact on morphological diversity.
  • Stem cell therapy and regenerative medicine approaches.
  • Mechanisms of organogenesis and tissue regeneration in animals.
  • Role of non-coding RNAs in developmental processes.

Also read: Education research topics

Human Biology Research Topics

  • Genetic factors influencing susceptibility to infectious diseases.
  • Human microbiome and its impact on health and disease.
  • Genetic basis of rare and common human diseases.
  • Genetic and environmental factors contributing to aging.
  • Impact of lifestyle and diet on human health and longevity.

Molecular Biology Research Topics 

  • CRISPR-Cas gene editing technology and its applications.
  • Non-coding RNAs as regulators of gene expression.
  • Role of epigenetics in gene regulation and disease.
  • Mechanisms of DNA repair and genome stability.
  • Molecular basis of cellular metabolism and energy production.

Research Topics in Biology for Undergraduates

  • 41. Investigating the effects of pollutants on local plant species.
  • Microbial diversity and ecosystem functioning in a specific habitat.
  • Understanding the genetics of antibiotic resistance in bacteria.
  • Impact of urbanization on bird populations and biodiversity.
  • Investigating the role of pheromones in insect communication.

Synthetic Biology Research Topics 

  • Design and construction of synthetic biological circuits.
  • Synthetic biology applications in biofuel production.
  • Ethical considerations in synthetic biology research and applications.
  • Synthetic biology approaches to engineering novel enzymes.
  • Creating synthetic organisms with modified functions and capabilities.

Animal Biology Research Topics 

  • Evolution of mating behaviors in animal species.
  • Genetic basis of color variation in butterfly wings.
  • Impact of habitat fragmentation on amphibian populations.
  • Behavior and communication in social insect colonies.
  • Adaptations of marine mammals to aquatic environments.

Also read: Nursing research topics

Best Biology Research Topics 

  • Unraveling the mysteries of circadian rhythms in organisms.
  • Investigating the ecological significance of cryptic coloration.
  • Evolution of venomous animals and their prey.
  • The role of endosymbiosis in the evolution of eukaryotic cells.
  • Exploring the potential of extremophiles in biotechnology.

Biological Psychology Research Paper Topics

  • Neurobiological mechanisms underlying memory formation.
  • Impact of sleep disorders on cognitive function and mental health.
  • Biological basis of personality traits and behavior.
  • Neural correlates of emotions and emotional disorders.
  • Role of neuroplasticity in brain recovery after injury.

Biological Science Research Topics: 

  • Role of gut microbiota in immune system development.
  • Molecular mechanisms of gene regulation during development.
  • Impact of climate change on insect population dynamics.
  • Genetic basis of neurodegenerative diseases like Alzheimer’s.
  • Evolutionary relationships among vertebrate species based on DNA analysis.

Biology Education Research Topics 

  • Effectiveness of inquiry-based learning in biology classrooms.
  • Assessing the impact of virtual labs on student understanding of biology concepts.
  • Gender disparities in science education and strategies for closing the gap.
  • Role of outdoor education in enhancing students’ ecological awareness.
  • Integrating technology in biology education: challenges and opportunities.

Biology-Related Research Topics

  • The intersection of ecology and economics in conservation planning.
  • Molecular basis of antibiotic resistance in pathogenic bacteria.
  • Implications of genetic modification of crops for food security.
  • Evolutionary perspectives on cooperation and altruism in animal behavior.
  • Environmental impacts of genetically modified organisms (GMOs).

Biology Research Proposal Topics

  • Investigating the role of microRNAs in cancer progression.
  • Exploring the effects of pollution on aquatic biodiversity.
  • Developing a gene therapy approach for a genetic disorder.
  • Assessing the potential of natural compounds as anti-inflammatory agents.
  • Studying the molecular basis of cellular senescence and aging.

Biology Research Topic Ideas

  • Role of pheromones in insect mate selection and behavior.
  • Investigating the molecular basis of neurodevelopmental disorders.
  • Impact of climate change on plant-pollinator interactions.
  • Genetic diversity and conservation of endangered species.
  • Evolutionary patterns in mimicry and camouflage in organisms.

Biology Research Topics for Undergraduates 

  • Effects of different fertilizers on plant growth and soil health.
  • Investigating the biodiversity of a local freshwater ecosystem.
  • Evolutionary origins of a specific animal adaptation.
  • Genetic diversity and disease susceptibility in human populations.
  • Role of specific genes in regulating the immune response.

Cell and Molecular Biology Research Topics 

  • Molecular mechanisms of DNA replication and repair.
  • Role of microRNAs in post-transcriptional gene regulation.
  • Investigating the cell cycle and its control mechanisms.
  • Molecular basis of mitochondrial diseases and therapies.
  • Cellular responses to oxidative stress and their implications in ageing.

These topics cover a broad range of subjects within biology, offering plenty of options for research projects. Remember that you can further refine these topics based on your specific interests and research goals.

Frequently Asked Questions 

What are some good research topics in biology?

A good research topic in biology will address a specific problem in any of the several areas of biology, such as marine biology, molecular biology, cellular biology, animal biology, or cancer biology.

A topic that enables you to investigate a problem in any area of biology will help you make a meaningful contribution. 

How to choose a research topic in biology?

Choosing a research topic in biology is simple. 

Follow the steps:

  • Generate potential topics. 
  • Consider your areas of knowledge and personal passions. 
  • Conduct a thorough review of existing literature.
  •  Evaluate the practicality and viability. 
  • Narrow down and refine your research query. 
  • Remain receptive to new ideas and suggestions.

Who Are We?

For several years, Research Prospect has been offering students around the globe complimentary research topic suggestions. We aim to assist students in choosing a research topic that is both suitable and feasible for their project, leading to the attainment of their desired grades. Explore how our services, including research proposal writing , dissertation outline creation, and comprehensive thesis writing , can contribute to your college’s success.

You May Also Like

To cite a TED Talk in APA style, include speaker’s name, publication year, talk title, “TED Conferences,” and URL for clarity and accuracy.

The central idea of this excerpt revolves around the exploration of key themes, offering insights that illuminate the concepts within the text.

What is a manuscript? A manuscript is a written or typed document, often the original draft of a book or article, before publication, undergoing editing and revisions.

Ready to place an order?

USEFUL LINKS

Learning resources, company details.

  • How It Works

Automated page speed optimizations for fast site performance

Biology Research Projects for High School Students: 20 Ideas To Try This Summer

Photo of Janos Perczel

By János Perczel

Co-founder of Polygence, PhD from MIT

16 minute read

Biology and biomedical research are two of the most popular academic disciplines among high schoolers. If you’re someone who’s interested in those fields and you’re looking for research opportunities this summer, you’ve come to the right place! With the study of biology, not only can you gain a better understanding of the natural world, but your research can have practical applications in fields like medicine, agriculture, and environmental science. Whether you’re just starting out in your exploration of biology, have taken a biology class in school, or you’re looking to do some advanced research to submit to your state’s science fair , we have level-appropriate ideas for you!

With a variety of topics like cancer treatment, genetics, neurodegenerative diseases, and marine life, we’ve got you covered. Here is a curated list of 20 different research project ideas to get those creative juices flowing. If you’re hungry for more, head over to our comprehensive Project Ideas database here and browse over 2800 more ideas!  

Research YOUR fave areas of Biology and Medicine

Polygence pairs you with an expert mentor in to create a passion project around biology and medicine. Together, you work to create a high quality research project that is uniquely your own. We also offer options to explore multiple topics, or to showcase your final product!

Human Body Project Ideas

Rate of cognitive decline in different elevations.

Oxygen partial pressure decreases with altitude, challenging blood oxygenation which may affect brain function. If you’ve ever felt some altitude sickness, then this is exactly what’s happening. This is because the atmospheric pressure decreases at higher elevations, leading to a decrease in the partial pressures of the gasses in the air, including oxygen. And of course, oxygen is needed for us to function. What is the effect on brain health/ cognition in sudden increased elevation: say, climbing Mount Everest? Does chronic exposure to high elevations increase the likelihood of dementia? In this project, a meta-analysis of published works examining the effects of altitude on cognition would be conducted.

Idea by mentor Alyssa

Building a Blood Vessel

Use online graphics to illustrate how a blood vessel forms. Blood vessels are structures that carry blood and are responsible for transporting nutrients and oxygen throughout the body. There are three main types of blood vessels: arteries, veins, and capillaries. For this project, complete a literature search to understand what is known about blood vessel growth. Then, utilize this information to generate a graphic with no words to demonstrate how the vasculature (network of blood vessels) forms. The goal of this project is to explain science without using text and therefore make it more available to a larger community.

Idea by mentor Natalie

Examining the bacterial profile of various households

As of late, bacterial microbiomes have been a huge and interesting topic in the field of bacteriology as they play an important role in human health. Bacterial microbiomes are communities of bacteria that live on or outside organisms. They’re found in various parts of the human body, and help us to digest food and regulate our immune system. In this project, you will seek to understand how skin microbiomes can differ between different  individuals of different households. This project will require making different bacterial media that can be made at home selecting for various microorganisms. If you’re new to preparing bacterial media, check out this resource here!

Idea by mentor Hamilton

Regulation of Circadian Clocks

Sleep is known to be governed by two distinct processes: a circadian clock that aligns sleep and wakefulness to the solar day and the sleep homeostat that encodes for sleep debt as a compensatory mechanism against sleep loss. You’ve most likely heard about circadian rhythm and our body’s internal clock, and circadian regulation of sleep is a fundamental process that allows animals to anticipate sleepiness or wakefulness consistently every day. These mechanisms can be regulated in multiple ways: at the gene, protein, gene, and clock neuronal level. In this project, we will focus on 1) how to efficiently digest primary and review articles to compile and condense information, 2) investigate how circadian clocks are regulated at these different genetic levels, and 3) try to effectively summarize the information we've gathered. We can present this information in a variety of ways, and what the final product looks like is up to you.

Idea by mentor Oscar

The Biology of Aging

Aging is the number one risk factor for a variety of diseases including cancer, neurodegenerative disease, and loss of hearing/sight. We are only now beginning to truly understand the process of aging and have even started to uncover ways that we could stop, or potentially reverse, the effects of aging. What are the hallmarks/signs of aging? How do researchers study 'aging'? How does human lifespan and aging compare to the rest of the animal kingdom? Is it possible to stop or reverse the effects of aging? What advancements are being made related to this? We could explore these questions or brainstorm others you might have about the biology of aging.

Idea by mentor Emily

Animals, Plants, and Nature Project Ideas

How genetically engineered mosquitoes are reducing rates of vector-borne diseases such as zika.

Many countries are already releasing millions of genetically engineered mosquitoes into the wild every week. These mosquitoes have been modified to reduce their ability to transmit disease-causing pathogens like dengue fever, Zika, and malaria, and are sent into the wild to mate with disease-carrying mosquitoes. However, this is still controversial as some people are concerned about the unintended consequences on the environment. What could be the potential pros and cons for this? The project will mainly focus on doing meta analysis of articles and watching informative videos to understand how/why genetically engineered mosquitoes can be used to reduce rates of different diseases. Students will have the chance to use critical thinking and do in-depth research on genetic engineering techniques, how scientists determine breeding rates and number of insects released, and epidemiology of different bloodborne diseases.

Idea by mentor Vanessa

Efficacy of Marine Protected Areas

Marine protected areas (MPAs) are areas of ocean or coastal waters that are set aside for the conservation and sustainable use of marine resources. These areas are established by governments, NGOs, or other organizations, and they can take different forms, from fully protected "no-take" zones to areas with regulated fishing or other activities. Marine protected areas have the potential to guide sustainable resource management and protect biodiversity, but have a host of reasons for why they are not currently effective. Explore reasons for why MPAs may not be effective. Then develop a framework for mapping, modeling, and implementing an effective Marine Protected Area.

Bioinspiration: Do animals hold the answers?

Can the toxins produced by frogs help us fight antibiotic resistant bacteria strains? How can understanding how lizards and newts regrow their limbs help us improve wound treatment? Why do tilapia skins help with burns? Discover the role of animals in the development of modern medicine as well as its potential. Are there any ethical concerns with these developments and findings? If so, what are they and do they matter? Share your findings in a research proposal, article, or presentation.

Idea by mentor Cheyenne

How Climate Change Can Affect Future Distributions of Rare Species

Climate change, such as global warming and longer drought, can threaten the existence of some of the rarest plants on earth. It is important to understand how future suitable habitats will change for these rare species so that we can target our conservation efforts in specific areas. In this project, you will identify a rare species that you like (it can be animals, plants, or fungi!), and gather the data online on its current occurrences. Then you will learn how to perform species distribution modeling to map its current and future suitable habitat areas. To get you started on learning species distribution modeling, check out this Youtube resource here. The changes in the amount or location of future suitable habitats can significantly affect the destiny of a rare species. By doing this project, you will not only learn skills in data analyses but also become the best ambassador for this rare species that you love. 

Idea by mentor Yingtong

A Reef’s Best Frenemies

Coral reefs are in global decline. A primary cause of this is "coral bleaching" which results in the white reefs we often see in the news. Coral bleaching is actually the breakdown in the partnership between the coral animal and tiny, symbiotic algae that live within its cells. Corals and algae have a variety of thermal tolerances which are likely decided by genetic and environmental factors. However, despite how important this relationship is, it's currently very poorly understood. This project would review existing literature on the symbiotic partnernship and try to identify factors that predict bleaching and thermal resilience.

Idea by mentor Carly

Dive in to BioMed NOW!

Register to get paired with one of our expert mentors and to get started on exploring your passions today! You have agency in setting up your schedule for this research. Dive in now!

Diseases and Treatments Project Ideas

The understanding of a new and upcoming treatment: immunotherapy.

Immunotherapies have been growing in the past few years as alternative treatments for many types of cancer. These treatments work by boosting the patient's immune system to fight the disease, however it is not always effective. There are many types of immunotherapies with various nuances, but they all work to attack specific cells that are causing the disease. For this project, pick one of a few types of immunotherapy and deeply understand the mechanism of action and what is the current effectiveness against the cancer it treats.

Idea by mentor Hannah

Exploring The Cancer Genome Atlas data 

There has been an explosion of publicly available data for cancer. The Cancer Genome Atlas was a research program with the purpose of creating a comprehensive catalog of genomic and molecular information about different types of cancer, with the aim of improving our understanding of the disease and developing new treatments. The dataset has been used to identify new cancer subtypes, develop diagnostic tests, and discover potential targets for new cancer therapies. Explore the implications and impact of The Cancer Genome Atlas data, and why it’s become so important.

Idea by mentor Hersh

Systematic Review and Meta-Analysis of Physiological Benefits of Fasting-induced Autophagy

Autophagy, meaning "self-eating", is a cellular process where damaged or unwanted components are disposed. Autophagy has been linked to various diseased pathologies, including cancer and heart disease. Fasting or specific dietary lifestyles may induce levels of autophagy in the human body. In this project, we will perform and systematic review and meta-analysis of fasting or diet-induced autophagy and its benefits on the body. You will gain skills in 1) searching and reviewing primary literature, 2) computational skills for performing data analysis (R language), and 3) writing your scientific findings.

Idea by mentor Jose 

The Amyloid Hypothesis: Sifting through the controversy

For many years, scientists have thought that amyloid beta was the protein responsible for a patient developing Alzheimer's Disease symptoms. This "Amyloid Hypothesis" is now being questioned in light of current clinical data. Recently, drugs have been developed that reduce amyloid beta in patients. Surprisingly, the drugs worked in reducing amyloid beta, but it did not result in the slowing of disease pathology. Does this mean that the amyloid hypothesis is incorrect? Is amyloid beta less important in the progression of disease then what we once thought? This research project aims to explore the issues with the amyloid hypothesis and to assess where we stand in our understanding of amyloid beta's contribution to Alzheimer’s.

Idea by mentor Patrick

How do vaccines work?

During the COVID pandemic, vaccines have been all over the news! But how do they actually work? What’s the science behind them? Through this project, you will explore how vaccines work and the history of science behind vaccine development. While the final product of the projectwill be up to you, the ultimate goal of this project is for you to be a true public health advocate for vaccines and to be able to communicate why vaccines are so important in a way that the general public can understand.

Idea by mentor Helen

Sleep Disruption Profiles in Various Mouse Models of Alzheimer’s

Alzheimer's disease (AD) has been studied for decades but we are no closer to understanding the mechanisms of the disease. Because of the vast number of researchers studying AD, there are numerous models used to study the disease. All these models have different sleep profiles, phenotypes, disease onsets, sex differences etc. Therefore, in this project we will compile a document based on extensive literature review about the various models there are. We will focus on sleep profiles in these animals with an emphasis on male and female differences. This information is valuable because it is important to know which model is best to use to answer your scientific questions and there is a lot of criticism (by other scientists) that can be brought on by the model chosen so you need to be able to justify your choice. This project will also introduce you to the world of AD research and some of the gaps in knowledge in the field.

Idea by mentor Shenee

Rethinking The Treatment Of Neurodegenerative Diseases

Neurodegenerative diseases affect millions of people worldwide. They are conditions that affect the nervous system, particularly the brain and spinal cord, and examples include Alzheimer’s and Parkinson’s. While billions of dollars have been spent trying to find treatments for the disease, very few drugs and therapies have had a meaningful impact on slowing down disease progression. This is often because by the time someone is diagnosed with a disease, it has progressed too far for a treatment to have a substantial effect. Some recent approaches to treatment have turned to looking for early indications of the disease (termed "biomarkers") that can occur before the onset of symptoms. By diagnosing disease and beginning treatment before symptoms arise, these treatments could have a more profound effect in slowing down the progression of disease. Students could review the recent progress being made on identifying biomarkers for neurodegenerative diseases, and either write a paper or even record a podcast on their findings!

Idea by mentor David

Genetics Project Ideas

Height and genetics: nature or nurture.

How much do your genes determine your height? How much do nutrition and environmental factors play a role? What gene variants are implicated in height differences and what is the role of epigenetics? Epigenetics is the study of heritable changes in gene expression or cellular phenotype that occur without changes to the underlying DNA sequence. These changes can be influenced by diet and lifestyle. We will access and analyze an open dataset on twins to estimate the correlation between monozygotic twins (who have the exact same DNA) and height. You will learn to use R to open a dataset, analyze data with statistical methods such the student’s t-test, and display your data as graphs and charts. Finally, you will learn how to make a research presentation on height and genetics, describe the research methods, and present the data in a compelling and thorough way.

Idea by mentor Adeoluwa

The World of Personalized Medicine

Similar to our fingerprints, our genetic code is also unique to each individual person. Our genetic code is what determines our hair color, height, eye color, skin tone...just about everything! For those that develop diseases such as cancer, their genetic code found inside the malignant cells that comprise a tumor may also be unique to them or to certain groups of people with similar mutations (the drivers of disease). So why is it that we treat each person the same way even though the genetic drivers of that disease may be disparate? The world of Personalized Medicine is new and exciting and looks to circumvent this problem. Personalized Medicine (also known as precision medicine) uses the genetic code of a patients disease to guide treatment options that prove to be highly efficacious. Together, lets write a review on a disease of your choice that could benefit from Personalized Medicine based on current literature and research.

Idea by mentor Somer

General Biology Project Ideas

Teach a biology concept two ways: to your fellow students and to the general public.

One of the best ways to learn is to teach. Choose a biological concept that interests you and prepare a lesson and or demo on it. The format should be a video recording of yourself teaching (a la Khan Academy or a Zoom class), but the other details are up to you. Consider incorporating a demonstration (e.g. how can you use items from your kitchen to illustrate properties of mixtures?) or animation (e.g. to illustrate molecular motion). Also consider how you will check that your students understand the concept(s) and/or skill(s) you have taught them. Prepare and record two versions of your lesson: one intended for your peers and one for the general public. How will the versions differ to reflect these different audiences? You will learn what it's like to teach, gain a much greater understanding of your chosen concept(s)/skill(s), and learn how to communicate science to different audiences.

Idea by mentor Alexa

Once you’ve picked a project idea, check out some of our resources to help you progress with your project! Whether you’re stuck on how to cite sources , how to come up with a great thesis statement , or how to showcase your work once it’s finished , we’ve created blog posts to help you out. If you’re interested in doing one of the biology research projects with the help of an amazing mentor at Polygence, apply now ! If you would like some help with coming up with your own idea, book a complimentary consultation call with our admissions team here ! For more biology and science research information, check out our comprehensive list of research opportunities for high school students .

Feeling Inspired?

Interested in doing an exciting research project? Click below to get matched with one of our expert mentors!

StatAnalytica

200+ Unique And Interesting Biology Research Topics For Students In 2023

Biology Research Topics

Are you curious about the fascinating world of biology and its many research possibilities? Well, you are in the right place! In this blog, we will explore biology research topics, exploring what biology is, what constitutes a good research topic, and how to go about selecting the perfect one for your academic journey.

So, what exactly is biology? Biology is the study of living organisms and their interactions with the environment. It includes everything from the tiniest cells to the largest ecosystems, making it a diverse and exciting field of study.

Stay tuned to learn more about biology research topics as we present over 200 intriguing research ideas for students, emphasizing the importance of selecting the right one. In addition, we will also share resources to make your quest for the perfect topic a breeze. Let’s embark on this scientific journey together!

If you are having trouble with any kind of assignment or task, do not worry—we can give you the best microbiology assignment help at a value price. Additionally, you may look at nursing project ideas .

What Is Biology?

Table of Contents

Biology is the study of living things, like animals, plants, and even tiny organisms too small to see. It helps us understand how these living things work and how they interact with each other and their environment. Biologists, or scientists who study biology, explore topics like how animals breathe, how plants grow, and how our bodies function. By learning about biology, we can better care for the Earth and all its living creatures.

What Is A Good Biology Research Topic?

A good biology research topic is a question or problem in the field of biology that scientists want to investigate and learn more about. It should be interesting and important, like studying how a new medicine can treat a disease or how animals adapt to changing environments. The topic should also be specific and clear, so researchers can focus on finding answers. Additionally, it’s helpful if the topic hasn’t been studied extensively before, so the research can contribute new knowledge to the field of biology and help us better understand the natural world.

Tips For Choosing A Biology Research Topics

Here are some tips for choosing a biology research topics:

1. Choose What Interests You

When picking a biology research topic, go for something that you personally find fascinating and enjoyable. When you’re genuinely curious about it, you’ll be more motivated to study and learn.

2. Select a Significant Topic

Look for a subject in biology that has real-world importance. Think about whether your research can address practical issues, like finding cures for diseases or understanding environmental problems. Research that can make a positive impact is usually a good choice.

3. Check If It’s Doable

Consider if you have the necessary tools and time to carry out your research. It’s essential to pick a topic that you can actually study with the resources available to you.

4. Add Your Unique Perspective

Try to find a fresh or different angle for your research. While you can build upon existing knowledge, bringing something new or unique to the table can make your research more exciting and valuable.

5. Seek Guidance

Don’t hesitate to ask for advice from your teachers or experienced researchers. They can provide you with valuable insights and help you make a smart decision when choosing your research topic in biology.

Biology Research Topics For College Students

1. Investigating the role of genetic mutations in cancer development.

2. Analyzing the impact of climate changes on wildlife populations.

3. Studying the ecology of invasive species in urban environments.

4. Investigating the microbiome of the human gut and its relationship to health.

5. Analyzing the genetic diversity of endangered species for conservation.

6. Studying the evolution of antibiotic resistance in bacteria.

7. Investigating the ecological consequences of deforestation.

8. Analyzing the behavior and communication of social insects like ants and bees.

9. Studying the physiology of extreme environments, such as deep-sea hydrothermal vents.

10. Investigating the molecular mechanisms of cell division and mitosis.

Plant Biology Research Topics For College Students

11. Studying the impact of different fertilizers on crop yields and soil health.

12. Analyzing the genetics of plant resistance to pests and diseases.

13. Investigating the role of plant hormones in growth and development.

14. Studying the adaptation of plants to drought conditions.

15. Analyzing the ecological interactions between plants and pollinators.

16. Investigating the use of biotechnology to enhance crop traits.

17. Studying the genetics of plant breeding for improved varieties.

18. Analyzing the physiology of photosynthesis and carbon fixation in plants.

19. Investigating the effects of soil microbiota on plant health.

20. Studying the evolution of plant species in response to changing environments.

Biotechnology Research Topics For College Students

21. Investigating the use of CRISPR-Cas9 technology for genome editing.

22. Analyzing the production of biofuels from microorganisms.

23. Studying the application of biotechnology in medicine, such as gene therapy.

24. Investigating the use of bioplastics as a sustainable alternative to conventional plastics.

25. Analyzing the role of biotechnology in food production, including GMOs.

26. Studying the development of biopharmaceuticals and monoclonal antibodies.

27. Investigating the use of bioremediation to clean up polluted environments.

28. Studying the potential of synthetic biology for creating novel organisms.

29. Analyzing the ethical and social implications of biotechnological advancements.

30. Investigating the use of biotechnology in forensic science, such as DNA analysis.

Molecular Biology Research Topics For Undergraduates

31. Studying the structure and function of DNA and RNA molecules.

32. Analyzing the regulation of gene expression in eukaryotic cells.

33. Investigating the mechanisms of DNA replication and repair.

34. Studying the role of non-coding RNAs in gene regulation.

35. Analyzing the molecular basis of genetic diseases like cystic fibrosis.

36. Investigating the epigenetic modifications that control gene activity.

37. Studying the molecular mechanisms of protein folding and misfolding.

38. Analyzing the molecular pathways involved in cancer progression.

39. Investigating the molecular basis of neurodegenerative diseases.

40. Studying the use of molecular markers in genetic diversity analysis.

Life Science Research Topics For High School Students

41. Investigating the effects of different diets on human health.

42. Analyzing the impact of exercise on cardiovascular fitness.

43. Studying the genetics of inherited traits and diseases.

44. Investigating the ecological interactions in a local ecosystem.

45. Analyzing the diversity of microorganisms in soil or water samples.

46. Studying the anatomy and physiology of a specific organ or system.

47. Investigating the life cycle of a local plant or animal species.

48. Studying the effects of environmental pollutants on aquatic organisms.

49. Analyzing the behavior of a specific animal species in its habitat.

50. Investigating the process of photosynthesis in plants.

Biology Research Topics For Grade 12

51. Investigating the genetic basis of a specific inherited disorder.

52. Analyzing the impact of climate change on a local ecosystem.

53.Studying the biodiversity of a particular rainforest region.

54. Investigating the physiological adaptations of animals to extreme temperatures.

55. Analyzing the effects of pollution on aquatic ecosystems.

56. Studying the life history and conservation status of an endangered species.

57. Investigating the molecular mechanisms of a specific disease.

58. Studying the ecological interactions within a coral reef ecosystem.

59. Analyzing the genetics of plant hybridization and speciation.

60. Investigating the behavior and communication of a particular bird species.

Marine Biology Research Topics

61. Studying the impact of ocean acidification on coral reefs.

62. Analyzing the migration patterns of marine mammals.

63. Investigating the physiology of deep-sea creatures under high pressure.

64. Studying the ecology of phytoplankton and their role in the marine food web.

65. Analyzing the behavior of different species of sharks.

66. Investigating the conservation of sea turtle populations.

67. Studying the biodiversity of deep-sea hydrothermal vent communities.

68. Analyzing the effects of overfishing on marine ecosystems.

69. Investigating the adaptation of marine organisms to extreme cold in polar regions.

70. Studying the bioluminescence and communication in marine organisms.

AP Biology Research Topics

71. Investigating the role of specific enzymes in cellular metabolism.

72. Analyzing the genetic variation within a population.

73. Studying the mechanisms of hormonal regulation in animals.

74. Investigating the principles of Mendelian genetics through trait analysis.

75. Analyzing the ecological succession in a local ecosystem.

76. Studying the physiology of the human circulatory system.

77. Investigating the molecular biology of a specific virus.

78. Studying the principles of natural selection through evolutionary simulations.

79. Analyzing the genetic diversity of a plant species in different habitats.

80. Investigating the effects of different environmental factors on plant growth.

Cell Biology Research Topics

81. Investigating the role of mitochondria in cellular energy production.

82. Analyzing the mechanisms of cell division and mitosis.

83. Studying the function of cell membrane proteins in signal transduction.

84. Investigating the cellular processes involved in apoptosis (cell death).

85. Analyzing the role of endoplasmic reticulum in protein synthesis and folding.

86. Studying the dynamics of the cytoskeleton and cell motility.

87. Investigating the regulation of cell cycle checkpoints.

88. Analyzing the structure and function of cellular organelles.

89. Studying the molecular mechanisms of DNA replication and repair.

90. Investigating the impact of cellular stress on cell health and function.

Human Biology Research Topics

91. Analyzing the genetic basis of inherited diseases in humans.

92. Investigating the physiological responses to exercise and physical activity.

93. Studying the hormonal regulation of the human reproductive system.

94. Analyzing the impact of nutrition on human health and metabolism.

95. Investigating the role of the immune system in disease prevention.

96. Studying the genetics of human evolution and migration.

97. Analyzing the neural mechanisms underlying human cognition and behavior.

98. Investigating the molecular basis of aging and age-related diseases.

99. Studying the impact of environmental toxins on human health.

100. Analyzing the genetics of organ transplantation and tissue compatibility.

Molecular Biology Research Topics

101. Investigating the role of microRNAs in gene regulation.

102. Analyzing the molecular basis of genetic disorders like cystic fibrosis.

103. Studying the epigenetic modifications that control gene expression.

104. Investigating the molecular mechanisms of RNA splicing.

105. Analyzing the role of telomeres in cellular aging.

106. Studying the molecular pathways involved in cancer metastasis.

107. Investigating the molecular basis of neurodegenerative diseases.

108. Studying the molecular interactions in protein-protein networks.

109. Analyzing the molecular mechanisms of DNA damage and repair.

110. Investigating the use of CRISPR-Cas9 for genome editing.

Animal Biology Research Topics

111. Studying the behavior and communication of social insects like ants.

112. Analyzing the physiology of hibernation in mammals.

113. Investigating the ecological interactions in a predator-prey relationship.

114. Studying the adaptations of animals to extreme environments.

115. Analyzing the genetics of inherited traits in animal populations.

116. Investigating the impact of climate change on animal migration patterns.

117. Studying the diversity of marine life in coral reef ecosystems.

118. Analyzing the physiology of flight in birds and bats.

119. Investigating the molecular basis of animal coloration and camouflage.

120. Studying the behavior and conservation of endangered species.

  • Neuroscience Research Topics
  • Mental Health Research Topics

Plant Biology Research Topics

121. Investigating the role of plant hormones in growth and development.

122. Analyzing the genetics of plant resistance to pests and diseases.

123. Climate change and plant phenology are being examined.

124. Investigating the ecology of mycorrhizal fungi and their symbiosis with plants.

125. Investigating plant photosynthesis and carbon fixing.

126. Molecular analysis of plant stress responses.

127. Investigating the adaptation of plants to drought conditions.

128. Studying the role of plants in phytoremediation of polluted environments.

129. Analyzing the genetics of plant hybridization and speciation.

130. Investigating the molecular basis of plant-microbe interactions.

Environmental Biology Research Topics

131. Analyzing the effects of pollution on aquatic ecosystems.

132. Investigating the biodiversity of a particular ecosystem.

133. Studying the ecological consequences of deforestation.

134. Analyzing the impact of climate change on wildlife populations.

135. Investigating the use of bioremediation to clean up polluted sites.

136. Studying the environmental factors influencing species distribution.

137. Analyzing the effects of habitat fragmentation on wildlife.

138. Investigating the ecology of invasive species in new environments.

139. Studying the conservation of endangered species and habitats.

140. Analyzing the interactions between humans and urban ecosystems.

Chemical Biology Research Topics

141. Investigating the design and synthesis of new drug compounds.

142. Analyzing the molecular mechanisms of enzyme catalysis.

143.Studying the role of small molecules in cellular signaling pathways.

144. Investigating the development of chemical probes for biological research.

145. Studying the chemistry of protein-ligand interactions.

146. Analyzing the use of chemical biology in cancer therapy.

147. Investigating the synthesis of bioactive natural products.

148. Studying the role of chemical compounds in microbial interactions.

149. Analyzing the chemistry of DNA-protein interactions.

150. Investigating the chemical basis of drug resistance in pathogens.

Medical Biology Research Topics

151. Investigating the genetic basis of specific diseases like diabetes.

152. Analyzing the mechanisms of drug resistance in bacteria.

153. Studying the molecular mechanisms of autoimmune diseases.

154. Investigating the development of personalized medicine approaches.

155. Studying the role of inflammation in chronic diseases.

156. Analyzing the genetics of rare diseases and genetic syndromes.

157. Investigating the molecular basis of viral infections and vaccines.

158. Studying the mechanisms of organ transplantation and rejection.

159. Analyzing the molecular diagnostics of cancer.

160. Investigating the biology of stem cells and regenerative medicine.

Evolutionary Biology Research Topics

161. Studying the evolution of human ancestors and early hominids.

162. The genetic variety of species and between species is being looked at.

163. Investigating the role of sexual selection in animal evolution.

164. Studying the co-evolutionary relationships between parasites and hosts.

165. Analyzing the evolutionary adaptations of extremophiles.

166. Investigating the evolution of developmental processes (evo-devo).

167. Studying the biogeography and distribution of species.

168. Analyzing the evolution of mimicry in animals and plants.

169. Investigating the genetics of speciation and hybridization.

170. Studying the evolutionary history of domesticated plants and animals.

Cellular Biology Research Topics

171. Investigating the role of autophagy in cellular homeostasis.

172. Analyzing the mechanisms of cellular transport and trafficking.

173. Studying the regulation of cell adhesion & migration.

174. Investigating the cellular responses to DNA damage.

175. Analyzing the dynamics of cellular membrane structures.

176. Studying the role of cellular organelles in lipid metabolism.

177. Investigating the molecular mechanisms of cell-cell communication.

178. Studying the physiology of cellular respiration and energy production.

179. Analyzing the cellular mechanisms of viral entry and replication.

180. Investigating the role of cellular senescence in aging and disease.

Good Biology Research Topics Related To Brain Injuries

181. Analyzing the molecular mechanisms of traumatic brain injury.

182. Investigating the role of neuroinflammation in brain injury recovery.

183. Studying the impact of concussions on long-term brain health.

184. Analyzing the use of neuroimaging in diagnosing brain injuries.

185. Investigating the development of neuroprotective therapies.

186. Studying the genetics of susceptibility to brain injuries.

187. Analyzing the cognitive and behavioral effects of brain trauma.

188. Investigating the role of rehabilitation in brain injury recovery.

189. Studying the cellular and molecular changes in axonal injury.

190. Looking into how stem cell therapy might be used to help brain injuries.

Biology Quantitative Research Topics

191. Investigating the mathematical modeling of population dynamics.

192. Analyzing the statistical methods for biodiversity assessment.

193. Studying the use of bioinformatics in genomics research.

194. Investigating the quantitative analysis of gene expression data.

195. Studying the mathematical modeling of enzyme kinetics.

196. Analyzing the statistical approaches for epidemiological studies.

197. Investigating the use of computational tools in phylogenetics.

198. Studying the mathematical modeling of ecological systems.

199. Analyzing the quantitative analysis of protein-protein interactions.

200. Investigating the statistical methods for analyzing genetic variation.

Importance Of Choosing The Right Biology Research Topics

Here are some importance of choosing the right biology research topics: 

1. Relevance to Your Interests and Goals

Choosing the right biology research topic is important because it should align with your interests and goals. Studying something you’re passionate about keeps you motivated and dedicated to your research.

2. Contribution to Scientific Knowledge

Your research should contribute something valuable to the world of science. Picking the right topic means you have the chance to discover something new or solve a problem, advancing our understanding of the natural world.

3. Availability of Resources

Consider the resources you have or can access. If you pick a topic that demands resources you don’t have, your research may hit a dead end. Choosing wisely means you can work efficiently.

4. Feasibility and Manageability

A good research topic should be manageable within your time frame and capabilities. If it’s too broad or complex, you might get overwhelmed. Picking the right topic ensures your research is doable.

5. Real-World Impact

Think about how your research might benefit the real world. Biology often has implications for health, the environment, or society. Choosing a topic with practical applications can make your work meaningful and potentially change lives.

Resources For Finding Biology Research Topics

There are numerous resources for finding biology research topics:

1. Online Databases

Look on websites like PubMed and Google Scholar. They have lots of biology articles. Type words about what you like to find topics.

2. Academic Journals

Check biology magazines. They talk about new research. You can find ideas and see what’s important.

3. University Websites

Colleges show what their teachers study. Find teachers who like what you like. Ask them about ideas for your own study.

4. Science News and Magazines

Read science news. They tell you about new things in biology. It helps you think of research ideas.

5. Join Biology Forums and Communities

Talk to other people who like biology online. You can ask for ideas and find friends to help you. Use websites like ResearchGate and Reddit for this.

Conclusion 

Biology Research Topics offer exciting opportunities for exploration and learning. We’ve explained what biology is and stressed the importance of picking a good research topic. Our tips and extensive list of over 200 biology research topics provide valuable guidance for students.

Selecting the right topic is more than just getting good grades; it’s about making meaningful contributions to our understanding of life. We’ve also shared resources to help you discover even more topics. So, embrace the world of biology research, embark on a journey of discovery, and be part of the ongoing effort to unravel the mysteries of the natural world.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Custom Essay, Term Paper & Research paper writing services

  • testimonials

Toll Free: +1 (888) 354-4744

Email: [email protected]

Writing custom essays & research papers since 2008

Top 100 biology research topics for high school and college.

biology research topics

Writing a biology essay may not sound like a very difficult thing to do. In fact, most students really like this subject. The problem is not that you can’t write a good paper on a topic in biology. The problem is with finding excellent biology research topics. Now, you may be wondering why you would want to invest so much time into finding great biology research paper topics. After all, what you write in the essay matters more than the topic, right? Wrong! We are here to tell you that professors really appreciate interesting and unique topics.

And it makes a lot of sense, if you think about it. If you simply pick one of the most popular biology research topics, you will never be able to pique the interest of your teacher. He has read dozens, if not hundreds, or papers on that exact same topic. What you want to do is come up with interesting biology research topics. You want to find topics that none of your classmates are thinking of writing an academic paper about. You will shortly see why this is important. And we will also give you 100 biology topics for research projects that you can use for free – right now!

Biology Research Paper Topics Really Are Important!

It doesn’t matter what area of biology you need to write about. This information applies to everything from zoology and botany to anatomy. The reality is that your professor will really appreciate good topics. And you can rest assured that he or she knows how to spot them. The moment the professor starts to read your paper, he or she will immediately realize that you really did your best to find an excellent topic. And if you write a good introduction paragraph (which contains a captivating thesis statement as well), you are in the best position to earn bonus points.

You may not be aware of it, but teachers are willing to treat great papers with more leniency. This means that you will not get penalized for minor mistakes if you come up with a great topic. In other words, you will get a better grade on your papers if you manage to come up with good research topics for biology. This is a fact and it is based on thousands of pieces of feedback from our readers.

How Do You Choose Good Biology Research Topics?

Choosing research topics for biology can be a daunting task. Frankly, the research paper topics biology students are looking for are not easy to come by. The first thing you want to avoid is going to the first website that pops up in Google and getting your ideas from there. Most of your peers will do the same. Also, avoid topics that are extremely simple. You will simply not have enough ideas to write about. Of course, you should avoid overly complex topics because finding information about them may be extremely difficult.

The best way to find a good topic, in our opinion, is to get in touch with an academic writing company. You will get access to a professional writer who knows exactly what professors are looking for. A writer will quickly give you an amazing research topic in biology.

Eloquent Examples of Popular Biology Research Topics

To make things as simple as possible for you, we’ve put together a list of biology research project ideas. You will find 100 topics on various subjects below. Of course, you can use any of our topics for free. However, keep in mind that even though we are doing our best to maintain this list fresh, other students will find it as well. If you need new topics for your next biology essay, we recommend you to get in touch with us. We monitor our email address, so we can help you right away. Also, you can buy a research paper from our service.

Biology Research Topics for High School

Are you looking for biology research topics for high school? These are relatively simple when compared to college-level topics. Here are a couple of topic ideas that high school students will surely appreciate:

  • Identifying Three Dead Branches of Evolution.
  • What Is Sleep?
  • How Does Physical Exercise Affect the Metabolism?
  • A Behavioral Study of Birds.
  • How Does Music Affect Your Brain?
  • Climate Change and Biodiversity.
  • Are Bees Really Becoming Extinct?
  • Rainforest Extinction Is Dangerous.
  • The Benefits of Organic Farming.
  • Can the Brain Repair Itself?
  • The Effect of Bacteria on Depression.
  • How Do Sea Animals Camouflage?

Research Topics in Biology for Undergraduates

Research topics in biology for undergraduates are more complex than high school or college topics. Our researchers did their best to find topics that are relatively complex. However, each one of the following topics has plenty of information about it online:

  • What Is the Mechanism of Metastasis in Cancer Patients?
  • How Do Tumor Suppressor Genes Appear?
  • How Can We Destroy Cancer Cells Without Damaging Other Cells?
  • The Benefits of Gene Therapy.
  • Analyzing the Huntington’s Disease (the HTT Gene).
  • How Does the down Syndrome (Trisomy of 21st Chromosome) Appear?
  • Analyzing the Brain Activity During an Epileptic Seizure.
  • How Are Our Memories Formed and Preserved?
  • The Effect of Probiotics on Infections.
  • Analyzing Primate Language.
  • Analyzing Primate Cognitive Functions.
  • The Link Between Darwin’s Theory and Biology.

Biology Research Topics for College Students

Biology research topics for college students are of moderate difficulty. They are easier than undergrad topics and more complex than high school topics. While compiling this list, we made sure you have more than enough information online to write the paper quickly:

  • Using DNA Technology in the Field of Medical Genetics.
  • The Effect of Drinking on Embryonic Development.
  • How Are Genes Mapped and Cloned?
  • Explain What Genetic Polymorphism Is.
  • What Is a Hereditary Disease?
  • The Effect of Drugs on Embryonic Development.
  • Describing Oligogenic Diseases (like Hirschsprung Disease)
  • What Is the Mendelian Inheritance?
  • How Transcriptomics and Proteomics Changed Modern Medicine.
  • The Risk Factors of Infertility Explained.
  • How Does Aging Effect Infertility?
  • What Do Ash Elements Do in a Plant?
  • Explaining the Pigments in a Plant Cell.
  • How Is Photosynthesis Done?
  • The Role of Fats in Plant Cells.
  • The Effect of Smoking on Embryonic Development.

Cell Biology Research Topics

Some of the best biology topics are cell biology research topics. The scientific community is constantly making progress in this area, so there is always something new to write about. Here are some of the best examples:

  • What Is Regenerative Medicine?
  • A Closer Look at Tissue Engineering.
  • Discuss the Future of Regenerative Medicine.
  • Analyzing Therapeutic Cloning.
  • The Pros and Cons of Creating Artificial Organs.
  • How Do Cell Age?
  • Can We Reverse Cell Aging?
  • Advances in Cell Therapy.
  • What Is Cell Adhesion?
  • Explaining Cell Division.
  • What Is Cellular Metabolism?
  • Describe Active and Passive Transport in Cells.
  • What Are Cell Plastids?

Evolutionary Biology Research Paper Topics

If you want something more complex, you can try your hand at writing on evolutionary biology research paper topics. As with all our topics, you will be able to find a lot of ideas and information online. Here are our picks:

  • Where Did Plants Come From? (The Evolutionary Theory)
  • Explaining the Host-parasite Coevolution.
  • How Did Parasites Evolve over Time?
  • What Is Natural Selection and How Does It Work?
  • Explain Sexual Selection.
  • Explain Sexual Conflict.
  • How Did Our Immune Systems Evolve?
  • How Do New Species Appear in the Wild?
  • The Evolution of Cell Respiration.
  • What Is the Hippo Pathway? (Developmental Biology)

Various Topics

Antibiotics resistance, agriculture and cloning are hot subjects nowadays. Your professor will surely be interested to learn more about biology research topics. Here is a mix of topic ideas from our established community of academic writers:

  • The Problem of Using Antibiotics on Large Scale.
  • Examining the Effects of Salt on Plants.
  • What Is DNA Technology?
  • The Effects of GMOs on the Human Body.
  • How Is the Quality of Antibiotics Controlled?
  • How Are GMO Food Crops Created?
  • The Effect of Veterinary Antibiotics on Humans.
  • The Allergic Reactions to Specific Antibiotics.
  • A Look at How Penicillin Works in the Human Body.
  • How Are Antibiotics Obtained?
  • What Are Natural Biochemicals with Pest-repellent Properties?
  • The 3 Most Toxic Effects of Antibiotics
  • How the Human Body Develops Resistance to Antibiotics.
  • The Impact of Biology on the Us Agriculture.
  • What Is the Green Revolution?
  • Analyzing the Minerals in the Plant Cell.
  • Analyzing Muscle Development and Regeneration
  • The Uses of Cancer Stem Cells.

Marine Biology Research Topics

There is a lot of talk about global warming, about microplastics in our oceans, and about endangered marine species. This means that marine biology research topics are a very hot topic today. Here are some of our best ideas:

  • Can GMO Organisms Break down Oil after Maritime Accidents?
  • Pollution-absorbing Bio-films.
  • Microbes That Can Absorb Toxic Compounds in the Water.
  • Can We Really Use Bioluminescence?
  • How Is Bio-diesel Created?
  • Analyzing the Coral Reef Biology.
  • Why Is the Lobster Population Dwindling?
  • The Effect of Mass Fishing on the World’s Oceans.
  • Global Warming and Its Effect on Marine Microorganisms.

Molecular Biology Research Topics

Writing about molecular biology research topics is not easy. However, it’s a foolproof way to get a top grade. Your professor will really appreciate your willingness to write an essay about a complex topic. Just make sure you know what you are talking about. Below you can find some of the best topics:

  • How Is Insulin Produced?
  • How Is the Growth Hormone Produced?
  • Analyzing the Repropagation of Translation.
  • What Is DNA-telomerase?
  • The Process of Sequencing Nucleotides in DNA.
  • What Is Telomerase?
  • The Link Between Telomerase and Cancer.
  • The Link Between Telomerase and Aging.
  • How Does DNA Forensics Work?
  • Describe the Process of Protein Metabolism.

There is no such thing as easy biology research topics. When the topic is too simple, you end up getting penalized. You can’t write 500 words about it without straying away from the subject. Also, no matter how interesting the topic may be, you should make sure that the essay is written perfectly. This means that not even interesting biology research topics can save you from a bad grade if you fail to follow all applicable academic writing standards.

Find it hard to cope with your college paper? Great news! Use promo “ mypaper20 ” and enjoy 20% discount on a biology writing assignment from our profs!

environmental science topics

Are you seeking one-on-one college counseling and/or essay support? Limited spots are now available. Click here to learn more.

49 Most Interesting Biology Research Topics

August 21, 2023

In need of the perfect biology research topics—ideas that can both showcase your intellect and fuel your academic success? Lost in the boundless landscape of possible biology topics to research? And afraid you’ll never get a chance to begin writing your paper, let alone finish writing? Whether you’re a budding biologist hoping for a challenge or a novice seeking easy biology research topics to wade into, this blog offers curated and comprehensible options.

And if you’re a high school or transfer student looking for opportunities to immerse yourself in biology, consider learning more about research opportunities for high school students , top summer programs for high school students , best colleges for studying biomedical engineering , and best colleges for studying biology .

What is biology?

Well, biology explores the web of life that envelops our planet, from the teeny-tiny microbes to the big complex ecosystems. Biology investigates the molecular processes that define existence, deciphers the interplay of genes, and examines all the dynamic ways organisms interact with their environments. And through biology, you can gain not only knowledge, but a deeper appreciation for the interconnectedness of all living things. Pretty cool!

There are lots and lots of sub-disciplines within biology, branching out in all directions. Throughout this list, we won’t follow all of those branches, but we will follow many. And while none of these branches are truly simple or easy, some might be easier than others. Now we’ll take a look at a few various biology research topics and example questions that could pique your curiosity.

Climate change and ecosystems

The first of our potentially easy biology research topics: climate change and ecosystems. Investigate how ecosystems respond and adapt to the changing climate. And learn about shifts in species distributions , phenology , and ecological interactions .

1) How are different ecosystems responding to temperature changes and altered precipitation patterns?2) What are the implications of shifts in species distributions for ecosystem stability and functioning?

2) Or how does phenology change in response to climate shifts? And how do those changes impact species interactions?

3) Which underlying genetic and physiological mechanisms enable certain species to adapt to changing climate conditions?

4) And how do changing climate conditions affect species’ abilities to interact and form mutualistic relationships within ecosystems?

Microbiome and human health

Intrigued by the relationship between the gut and the rest of the body? Study the complex microbiome . You could learn how gut microbes influence digestion, immunity, and even mental health.

5) How do specific gut microbial communities impact nutrient absorption?

6) What are the connections between the gut microbiome, immune system development, and susceptibility to autoimmune diseases?

7) What ethical considerations need to be addressed when developing personalized microbiome-based therapies? And how can these therapies be safely and equitably integrated into clinical practice?

8) Or how do variations in the gut microbiome contribute to mental health conditions such as anxiety and depression?

9) How do changes in diet and lifestyle affect the composition and function of the gut microbiome? And what are the subsequent health implications?

Urban biodiversity conservation

Next, here’s another one of the potentially easy biology research topics. Examine the challenges and strategies for conserving biodiversity in urban environments. Consider the impact of urbanization on native species and ecosystem services. Then investigate the decline of pollinators and its implications for food security or ecosystem health.

10) How does urbanization influence the abundance and diversity of native plant and animal species in cities?

11) Or what are effective strategies for creating and maintaining green spaces that support urban biodiversity and ecosystem services?

12) How do different urban design and planning approaches impact the distribution of wildlife species and their interactions?

13) What are the best practices for engaging urban communities in biodiversity conservation efforts?

14) And how can urban agriculture and rooftop gardens contribute to urban biodiversity conservation while also addressing food security challenges?

Bioengineering

Are you a problem solver at heart? Then try approaching the intersection of engineering, biology, and medicine. Delve into the field of synthetic biology , where researchers engineer biological systems to create novel organisms with useful applications.

15) How can synthetic biology be harnessed to develop new, sustainable sources of biofuels from engineered microorganisms?

16) And what ethical considerations arise when creating genetically modified organisms for bioremediation purposes?

17) Can synthetic biology techniques be used to design plants that are more efficient at withdrawing carbon dioxide from the atmosphere?

18) How can bioengineering create organisms capable of producing valuable pharmaceutical compounds in a controlled and sustainable manner?

19) But what are the potential risks and benefits of using engineered organisms for large-scale environmental cleanup projects?

Neurobiology

Interested in learning more about what makes creatures tick? Then this might be one of your favorite biology topics to research. Explore the neural mechanisms that underlie complex behaviors in animals and humans. Shed light on topics like decision-making, social interactions, and addiction. And investigate how brain plasticity and neurogenesis help the brain adapt to learning, injury, and aging.

20) How does the brain’s reward circuitry influence decision-making processes in situations involving risk and reward?

21) What neural mechanisms underlie empathy and social interactions in both humans and animals?

22) Or how do changes in neural plasticity contribute to age-related cognitive decline and neurodegenerative diseases?

23) Can insights from neurobiology inform the development of more effective treatments for addiction and substance abuse?

24) What are the neural correlates of learning and memory? And how can our understanding of these processes be applied to educational strategies?

Plant epigenomics

While this might not be one of the easy biology research topics, it will appeal to plant enthusiasts. Explore how epigenetic modifications in plants affect their ability to respond and adapt to changing environmental conditions.

25) How do epigenetic modifications influence the expression of stress-related genes in plants exposed to temperature fluctuations?

26) Or what role do epigenetic changes play in plants’ abilities to acclimate to changing levels of air pollution?

27) Can certain epigenetic modifications be used as indicators of a plant’s adaptability to new environments?

28) How do epigenetic modifications contribute to the transgenerational inheritance of traits related to stress resistance?

29) And can targeted manipulation of epigenetic marks enhance crop plants’ ability to withstand changing environmental conditions?

Conservation genomics

Motivated to save the planet? Conservation genomics stands at the forefront of modern biology, merging the power of genetics with the urgent need to protect Earth’s biodiversity. Study genetic diversity, population dynamics, and how endangered species adapt in response to environmental changes.

30) How does genetic diversity within endangered species influence their ability to adapt to changing environmental conditions?

31) What genetic factors contribute to the susceptibility of certain populations to diseases, and how can this knowledge inform conservation strategies?

32) How can genomic data be used to inform captive breeding and reintroduction programs for endangered species?

33) And what are the genomic signatures of adaptation in response to human-induced environmental changes, such as habitat fragmentation and pollution?

34) Or how can genomics help identify “hotspots” of biodiversity that are particularly important for conservation efforts?

Zoonotic disease transmission

And here’s one of the biology research topics that’s been on all our minds in recent years. Investigate the factors contributing to the transmission of zoonotic diseases , like COVID-19. Then posit strategies for prevention and early detection.

35) What are the ecological and genetic factors that facilitate the spillover of zoonotic pathogens from animals to humans?

36) Or how do changes in land use, deforestation, and urbanization impact the risk of zoonotic disease emergence?

37) Can early detection and surveillance systems be developed to predict and mitigate the spread of zoonotic diseases?

38) How do social and cultural factors influence human behaviors that contribute to zoonotic disease transmission?

39) And can strategies be implemented to improve global pandemic preparedness?

Bioinformatics

Are you a data fanatic? Bioinformatics involves developing computational tools and techniques to analyze and interpret large biological datasets. This enables advancements in genomics, proteomics, and systems biology. So delve into the world of bioinformatics to learn how large-scale genomic and molecular data are revolutionizing biological research.

40) How can machine learning algorithms predict the function of genes based on their DNA sequences?

41) And what computational methods can identify potential drug targets by analyzing protein-protein interactions in large biological datasets?

42) Can bioinformatics tools be used to identify potential disease-causing mutations in human genomes and guide personalized medicine approaches?

43) What are the challenges and opportunities in analyzing “omics” data (genomics, proteomics, transcriptomics) to uncover novel biological insights?

44) Or how can bioinformatics contribute to our understanding of microbial diversity, evolution, and interactions within ecosystems?

Regenerative medicine

While definitely not one of the easy biology research topics, regenerative medicine will appeal to those interested in healthcare. Research innovative approaches to stimulate tissue and organ regeneration, using stem cells, tissue engineering, and biotechnology. And while you’re at it, discover the next potential medical breakthrough.

45) How can stem cells be directed to differentiate into specific cell types for tissue regeneration, and what factors influence this process?

46) Or what are the potential applications of 3D bioprinting in creating functional tissues and organs for transplantation?

47) How can bioengineered scaffolds enhance tissue regeneration and integration with host tissues?

48) What are the ethical considerations surrounding the use of stem cells and regenerative therapies in medical treatments?

49) And can regenerative medicine approaches be used to treat neurodegenerative disorders and restore brain function?

Biology Research Topics – Final thoughts

So as you take your next steps, try not to feel overwhelmed. And instead, appreciate the vast realm of possibilities that biology research topics offer. Because the array of biology topics to research is as diverse as the ecosystems it seeks to understand. And no matter if you’re only looking for easy biology research topics, or you’re itching to unravel the mysteries of plant-microbe interactions, your exploration will continue to deepen what we know of the world around us.

  • High School Success

Mariya holds a BFA in Creative Writing from the Pratt Institute and is currently pursuing an MFA in writing at the University of California Davis. Mariya serves as a teaching assistant in the English department at UC Davis. She previously served as an associate editor at Carve Magazine for two years, where she managed 60 fiction writers. She is the winner of the 2015 Stony Brook Fiction Prize, and her short stories have been published in Mid-American Review , Cutbank , Sonora Review , New Orleans Review , and The Collagist , among other magazines.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • College Success
  • Costs & Financial Aid
  • Data Visualizations
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Private High School Spotlight
  • Summer Program Spotlight
  • Summer Programs
  • Teacher Tools
  • Test Prep Provider Spotlight

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

The Complete Guide to Independent Research Projects for High School Students

 alt=

Indigo Research Team

independent research project ideas biology

If you want to get into top universities, an independent research project will give your application the competitive edge it needs.

Writing and publishing independent research during high school lets you demonstrate to top colleges and universities that you can deeply inquire into a topic, think critically, and produce original analysis. In fact, MIT features "Research" and "Maker" portfolio sections in its application, highlighting the value it places on self-driven projects.

Moreover, successfully executing high-quality research shows potential employers that you can rise to challenges, manage your time, contribute new ideas, and work independently. 

This comprehensive guide will walk you through everything you need to know to take on independent study ideas and succeed. You’ll learn how to develop a compelling topic, conduct rigorous research, and ultimately publish your findings.

independent research project ideas biology

What is an Independent Research Project?

An independent research project is a self-directed investigation into an academic question or topic that interests you. Unlike projects assigned by teachers in class, independent research will allow you to explore your curiosity and passions.

These types of projects can vary widely between academic disciplines and scientific fields, but what connects them is a step-by-step approach to answering a research question. Specifically, you will have to collect and analyze data and draw conclusions from your analysis.

For a high school student, carrying out quality research may still require some mentorship from a teacher or other qualified scholar. But the project research ideas should come from you, the student. The end goal is producing original research and analysis around a topic you care about.

Some key features that define an independent study project include:

● Formulating your own research question

● Designing the methodology

● Conducting a literature review of existing research

● Gathering and analyzing data, and

● Communicating your findings.

The topic and scope may be smaller than a professional college academic project, but the process and skills learned have similar benefits.

Why Should High School Students Do Independent Research?

High school students who engage in independent study projects gain valuable skills and experiences that benefit and serve them well in their college and career pursuits. Here's a breakdown of what you will typically acquire:

Develop Critical Thinking and Problem-Solving Skills

Research and critical thinking are among the top 10 soft skills in demand in 2024 . They help you solve new challenges quickly and come up with alternative solutions

An independent project will give you firsthand experience with essential research skills like forming hypotheses, designing studies, collecting and analyzing data, and interpreting results. These skills will serve you well in college and when employed in any industry.

Stand Out for College Applications

With many applicants having similar GPAs and test scores, an Independent research study offer a chance to stand out from the crowd. Completing a research study in high school signals colleges that you are self-motivated and capable of high-level work. Showcasing your research process, findings, and contributions in your application essays or interviews can boost your application's strengths in top-level colleges and universities.

Earn Scholarship Opportunities

Completing an independent research project makes you a more preferred candidate for merit-based scholarships, especially in STEM fields. Many scholarships reward students who show initiative by pursuing projects outside of class requirements. Your research project ideas will demonstrate your skills and motivation to impress scholarship committees. For example, the Siemens Competition in Math, Science & Technology rewards students with original independent research projects in STEM fields. Others include the Garcia Summer Program and the BioGENEius challenge for life sciences.

independent research project ideas biology

Gain Subject Area Knowledge

Independent projects allow you to immerse yourself in a topic you genuinely care about beyond what is covered in the classroom. It's a chance to become an expert in something you're passionate about . You will build deep knowledge in the topic area you choose to research, which can complement what you're learning in related classes. This expertise can even help inform your career interests and goals.

Develop Time Management Skills

Time Management is the skill that lets you effectively plan and prioritize tasks and avoid procrastination. With no teacher guiding you step-by-step, independent study projects require strong time management, self-discipline, and personal responsibility – skills critical in college and adulthood.

Types of Independent Research Projects for High School Students

Understanding the different types and categories can spark inspiration if you need help finding an idea for an independent study. Topics for independent research generally fall into a few main buckets:

Science Experiments

For students interested in STEM fields, designing and carrying out science experiments is a great option. Test a hypothesis, collect data, and draw conclusions. Experiments in physics, chemistry, biology, engineering, and psychology are common choices. Science experiment is best for self-motivated students with access to lab equipment.

Science Experiments Independent Research Projects

Social Science Surveys and Studies  

Use research methods from sociology, political science, anthropology, economics, and psychology to craft a survey study or field observation around a high school research project idea that interests you. Collect data from peers, your community, and online sources, and compile findings. Strong fit for students interested in social studies.

Literary Analysis Paper

This research category involves analyzing existing research papers, books, and articles on a specific topic. Imagine exploring the history of robots, examining the impact of social media on mental health, or comparing different interpretations of a classic novel. If you are an English enthusiast, this is an easy chance to showcase your analytical writing skills.

Programming or Engineering Project

For aspiring programmers or engineers, you can take on practical student projects that develop software programs, apps, websites, robots, electronic gadgets, or other hands-on engineering projects. This type of project will easily highlight your technical skills and interest in computer science or engineering fields in your college applications

Historical Research

History research projects will allow you to travel back and uncover the past to inform the future. This research involves analyzing historical documents, artifacts, and records to shed light on a specific event or period. For example, you can conduct independent research on the impact of a local historical figure or the evolution of fashion throughout the decades. Check to explore even more history project ideas for high school students .

Artistic and Creative Works

If you are artistic and love creating art,  you can explore ideas for independent study to produce an original film, musical composition, sculpture, painting series, fashion line, or other creative work. Alongside the tangible output, document your creative process and inspirations.

Bonus Tip: Feel free to mix different ideas for your project. For example, you could conduct a literature review on a specific historical event and follow it up with field research that interviewed people who experienced the event firsthand.

How To Conduct an Independent Research Project

Now that you have ideas for project topics that match your interests and strengths, here are the critical steps you must follow to move from mere concept to completed study.

1. Get Expert Guidance and Mentorship

As a high school student just starting out in research, it is advised to collaborate with more experienced mentors who will help you learn the ropes of research projects easily. Mentors are usually professors, post-doctoral researchers, or graduate students with significant experience in conducting independent project research and can guide you through the process. 

Specifically, your mentor will advise you on formulating research questions, designing methodologies, analyzing data, and communicating findings effectively. To quickly find mentors in your research project area of interest, enroll in an online academic research mentorship program that targets high school students. You’d be exposed to one-on-one sessions with professors and graduate students that will help you develop your research and publish your findings.

The right mentor can also help transform your independent project ideas into a study suitable for publication in relevant research journals. With their experience, mentors will guide you to follow the proper research methods and best practices. This ensures your work meets the standards required, avoiding rejection from journals. 

2. Develop a Compelling Research Question

Once you are familiar with the type of independent research best suited to your strengths and interests, as explained in the previous section, the next step is to develop a question you want to answer in that field. This is called a research question and will serve as the foundation for your entire project.

The research question will drive your entire project, so it needs to be complex enough to merit investigation but clear enough to study. Here are some ts for crafting your research question:

●  Align your research question(s) with topics you are passionate about and have some background knowledge. You will spend a significant amount of time on this question.

●  Consult with your mentor teacher or professor to get feedback and guidance on developing a feasible, meaningful question

●  Avoid overly broad questions better suited for doctoral dissertations. Narrow your focus to something manageable, but that still intrigues you.

●  Pose your research question as an actual question, like "How does social media usage affect teen mental health?" The question should lay out the key variables you'll be investigating.

●  Ensure your question and desired approach are ethically sound. You may need permission to study human subjects.

●  Conduct preliminary research to ensure your question hasn't already been answered. You want to contribute something new to your field.

With a compelling research question as your compass, you're ready to start your independent study project. Remember to stay flexible; you may need to refine the question further as your research develops.

3. Set a Timeline and Write a Proposal

After defining your research question, the next step is to map out a timeline for completing your research project. This will keep you organized and help you develop strong time management skills.

Start by creating a schedule that outlines all major milestones from start to finish. In your schedule, allow plenty of time for research, experimentation, data analysis, and compiling your report. Always remember to build in some cushion for unexpected delays.

Moreover, you can use tools like Gantt charts to design a timeline for an independent research project . Gantt charts help you visualize your research project timeline at a glance. See the video below for a tutorial on designing a Gantt chart to plan your project schedule:

[YouTube Video on How to Make a Gantt Chart: https://youtu.be/un8j6QqpYa0?si=C2_I0C_ZBXS73kZy ]

Research Proposal

To have a clear direction of the step-by-step process for your independent study, write a 1-2 page research proposal to outline your question, goals, methodology, timeline, resources, and desired outcomes. Get feedback from your mentor to improve the proposal before starting your research. 

Sticking to your timeline requires self-discipline. But strive to meet your goals and deadlines; it will build invaluable real-world skills in time and project management. With a plan in place, it's time to move forward with your research.

4. Do Your Research

This is the active phase where a student is conducting a research project. The specific method you will follow varies enormously based on your project type and field. You should have your methodology outlined in your approved research proposal already. However, most independent research has a similar basic process:

  • Review existing studies : Perform a literature review to understand current knowledge on your topic and inform your own hypothesis/framework. Read relevant studies, articles, and papers.
  • Create methodology materials : Design your independent research methodology for gathering data. This may involve experiments, surveys, interviews, field observations, or analysis of existing artifacts like texts or datasets.
  • Permissions and Equipment :  Secure any necessary equipment and permissions. For example, if doing interviews, you'll need a recording device and consent from participants.
  • Collect your data : For science projects, perform experiments and record results. For surveys, recruit respondents and compile responses. Gather enough data to draw valid conclusions.
  • Analyze the data using appropriate techniques : Quantitative data may involve statistical analysis, while qualitative data requires coding for themes. Consult your mentor for direction.
  • Interpret the findings : Take care not to overstate conclusions. Look for patterns and relationships that shed light on your research question. Always maintain rigorous objectivity.

While a student's project methodology and its execution are unique, ensure you follow the standard practices in your field of interest to ensure high-quality acceptable results. You can always refer to the plan in your research proposal as you diligently carry out the steps required to execute your study. Ensure you have detailed records that document all your processes.  

independent research project ideas biology

5. Write Your Final Paper and Presentation

Once you've completed your research, it's time to summarize and share your findings with the world by writing the final paper and designing its presentation. This involves synthesizing your work into clear, compelling reporting.

Drafting the paper will likely involve extensive writing and editing. Be prepared to go through multiple revisions to get the paper polished. Follow the standard format used in academic papers in your field;  your mentor can provide you with examples of independent study related to yours. The final product should include: 

  • Abstract : A short summary of your project and conclusions.
  • Introduction : Background on your topic, goals, and research questions.
  • Literature Review : Summary of relevant existing research in your field.
  • Methods : Detailed explanation of the methodology and process of your study.
  • Results : Presentation of the data and main findings from your research. Using visual representations like charts was helpful.
  • Discussion : Objective interpretation and analysis of the results and their significance.
  • Conclusion : Summary of your research contributions, limitations, and suggestions for future work.
  • References/Bibliography : Full citations for all sources referenced.

Adhere to clear academic writing principles to keep your writing objective and straightforward. Generally, stick to a 10-15 page length limit appropriate for student work. However, you may need to write more depending on your project type.

6. Research Presentation

After writing your research project report, you should prepare a presentation to share your research orally. Moreover, a research presentation is a tangible opportunity to practice public speaking and visual communication skills. Your presentation will include slides, handouts, demonstrations, or other aids to engage your audience and highlight key points in your independent study project.

Once you have written your final paper, you will likely want to publish it in relevant journals and publications. For detailed tips see our guide on how to publish your student research paper . Some options you have to formally publish your high school-level independent research include:

  • Submitting your paper to academic journals and competitions
  • Presenting at symposiums and science fairs
  • Sharing on online research databases
  • Adding your work to college applications

Publishing your independent project allows you to share your findings with broader scholarly and student audiences. It also helps amplify the impact of all your hard work.

Independent Research Project Examples

To spark creative ideas for independent research projects, it can be helpful to read through and examine examples of successful projects completed by other high school students in recent years. Here are some inspiring examples:

●  Using machine learning to diagnose cancer based on blood markers (bioinformatics)

●  Applying feature engineering and natural language processing to analyze Twitter data (data science)

●  Investigating connections between stress levels and HIV/AIDS progression (health science)

●  The Relationship between Color and Human Experience

These published i ndependent research project examples demonstrate the impressive research high schoolers take on using the Indigo research service with mentors from different fields. Let these case studies motivate your creative investigation and analysis of the best ideas for your project.

Need Mentorship for Your Independent Research Project?

As outlined in this guide, conducting a rigorous independent research study can be challenging without proper guidance from experts, especially for high school students. This is why partnering with an experienced research mentor is so crucial if your goal is to produce publishable research work.

With Indigo's structured research programs and ongoing expert feedback, you can elevate your high school independent study to a professional level. To get matched with the perfect research mentor aligned with your academic interests and passions, apply to Indigo Research now.

Indigo Research connects high school students with PhD-level researchers and professors who provide one-on-one mentorship through the entire research process - from refining your initial topic idea all the way through analyzing data, writing up results, and finalizing your findings.

independent research project ideas biology

Department of Biological Sciences

independent research project ideas biology

Examples of Undergraduate Research Projects

Fall 2021 projects, previous projects.

Education During Coronavirus

A Smithsonian magazine special report

Science | June 15, 2020

Seventy-Five Scientific Research Projects You Can Contribute to Online

From astrophysicists to entomologists, many researchers need the help of citizen scientists to sift through immense data collections

Citizen science (mobile)

Rachael Lallensack

Former Assistant Editor, Science and Innovation

If you find yourself tired of streaming services, reading the news or video-chatting with friends, maybe you should consider becoming a citizen scientist. Though it’s true that many field research projects are paused , hundreds of scientists need your help sifting through wildlife camera footage and images of galaxies far, far away, or reading through diaries and field notes from the past.

Plenty of these tools are free and easy enough for children to use. You can look around for projects yourself on Smithsonian Institution’s citizen science volunteer page , National Geographic ’s list of projects and CitizenScience.gov ’s catalog of options. Zooniverse is a platform for online-exclusive projects , and Scistarter allows you to restrict your search with parameters, including projects you can do “on a walk,” “at night” or “on a lunch break.”

To save you some time, Smithsonian magazine has compiled a collection of dozens of projects you can take part in from home.

A blue heron caught on a trail cam.

American Wildlife

If being home has given you more time to look at wildlife in your own backyard, whether you live in the city or the country, consider expanding your view, by helping scientists identify creatures photographed by camera traps. Improved battery life, motion sensors, high-resolution and small lenses have made camera traps indispensable tools for conservation.These cameras capture thousands of images that provide researchers with more data about ecosystems than ever before.

Smithsonian Conservation Biology Institute’s eMammal platform , for example, asks users to identify animals for conservation projects around the country. Currently, eMammal is being used by the Woodland Park Zoo ’s Seattle Urban Carnivore Project, which studies how coyotes, foxes, raccoons, bobcats and other animals coexist with people, and the Washington Wolverine Project, an effort to monitor wolverines in the face of climate change. Identify urban wildlife for the Chicago Wildlife Watch , or contribute to wilderness projects documenting North American biodiversity with The Wilds' Wildlife Watch in Ohio , Cedar Creek: Eyes on the Wild in Minnesota , Michigan ZoomIN , Western Montana Wildlife and Snapshot Wisconsin .

"Spend your time at home virtually exploring the Minnesota backwoods,” writes the lead researcher of the Cedar Creek: Eyes on the Wild project. “Help us understand deer dynamics, possum populations, bear behavior, and keep your eyes peeled for elusive wolves!"

A baby elephant stands between the legs of an adult elephant.

If being cooped up at home has you daydreaming about traveling, Snapshot Safari has six active animal identification projects. Try eyeing lions, leopards, cheetahs, wild dogs, elephants, giraffes, baobab trees and over 400 bird species from camera trap photos taken in South African nature reserves, including De Hoop Nature Reserve and Madikwe Game Reserve .

With South Sudan DiversityCam , researchers are using camera traps to study biodiversity in the dense tropical forests of southwestern South Sudan. Part of the Serenegeti Lion Project, Snapshot Serengeti needs the help of citizen scientists to classify millions of camera trap images of species traveling with the wildebeest migration.

Classify all kinds of monkeys with Chimp&See . Count, identify and track giraffes in northern Kenya . Watering holes host all kinds of wildlife, but that makes the locales hotspots for parasite transmission; Parasite Safari needs volunteers to help figure out which animals come in contact with each other and during what time of year.

Mount Taranaki in New Zealand is a volcanic peak rich in native vegetation, but native wildlife, like the North Island brown kiwi, whio/blue duck and seabirds, are now rare—driven out by introduced predators like wild goats, weasels, stoats, possums and rats. Estimate predator species compared to native wildlife with Taranaki Mounga by spotting species on camera trap images.

The Zoological Society of London’s (ZSL) Instant Wild app has a dozen projects showcasing live images and videos of wildlife around the world. Look for bears, wolves and lynx in Croatia ; wildcats in Costa Rica’s Osa Peninsula ; otters in Hampshire, England ; and both black and white rhinos in the Lewa-Borana landscape in Kenya.

An image featuring marine life from Invader ID.

Under the Sea

Researchers use a variety of technologies to learn about marine life and inform conservation efforts. Take, for example, Beluga Bits , a research project focused on determining the sex, age and pod size of beluga whales visiting the Churchill River in northern Manitoba, Canada. With a bit of training, volunteers can learn how to differentiate between a calf, a subadult (grey) or an adult (white)—and even identify individuals using scars or unique pigmentation—in underwater videos and images. Beluga Bits uses a “ beluga boat ,” which travels around the Churchill River estuary with a camera underneath it, to capture the footage and collect GPS data about the whales’ locations.

Many of these online projects are visual, but Manatee Chat needs citizen scientists who can train their ear to decipher manatee vocalizations. Researchers are hoping to learn what calls the marine mammals make and when—with enough practice you might even be able to recognize the distinct calls of individual animals.

Several groups are using drone footage to monitor seal populations. Seals spend most of their time in the water, but come ashore to breed. One group, Seal Watch , is analyzing time-lapse photography and drone images of seals in the British territory of South Georgia in the South Atlantic. A team in Antarctica captured images of Weddell seals every ten minutes while the seals were on land in spring to have their pups. The Weddell Seal Count project aims to find out what threats—like fishing and climate change—the seals face by monitoring changes in their population size. Likewise, the Año Nuevo Island - Animal Count asks volunteers to count elephant seals, sea lions, cormorants and more species on a remote research island off the coast of California.

With Floating Forests , you’ll sift through 40 years of satellite images of the ocean surface identifying kelp forests, which are foundational for marine ecosystems, providing shelter for shrimp, fish and sea urchins. A project based in southwest England, Seagrass Explorer , is investigating the decline of seagrass beds. Researchers are using baited cameras to spot commercial fish in these habitats as well as looking out for algae to study the health of these threatened ecosystems. Search for large sponges, starfish and cold-water corals on the deep seafloor in Sweden’s first marine park with the Koster seafloor observatory project.

The Smithsonian Environmental Research Center needs your help spotting invasive species with Invader ID . Train your eye to spot groups of organisms, known as fouling communities, that live under docks and ship hulls, in an effort to clean up marine ecosystems.

If art history is more your speed, two Dutch art museums need volunteers to start “ fishing in the past ” by analyzing a collection of paintings dating from 1500 to 1700. Each painting features at least one fish, and an interdisciplinary research team of biologists and art historians wants you to identify the species of fish to make a clearer picture of the “role of ichthyology in the past.”

Pictured is a Zerene eurydice specimen, or California dogface butterfly, caught in 1951.

Interesting Insects

Notes from Nature is a digitization effort to make the vast resources in museums’ archives of plants and insects more accessible. Similarly, page through the University of California Berkeley’s butterfly collection on CalBug to help researchers classify these beautiful critters. The University of Michigan Museum of Zoology has already digitized about 300,000 records, but their collection exceeds 4 million bugs. You can hop in now and transcribe their grasshopper archives from the last century . Parasitic arthropods, like mosquitos and ticks, are known disease vectors; to better locate these critters, the Terrestrial Parasite Tracker project is working with 22 collections and institutions to digitize over 1.2 million specimens—and they’re 95 percent done . If you can tolerate mosquito buzzing for a prolonged period of time, the HumBug project needs volunteers to train its algorithm and develop real-time mosquito detection using acoustic monitoring devices. It’s for the greater good!

Pelicans coming in for landing on PELIcam.

For the Birders

Birdwatching is one of the most common forms of citizen science . Seeing birds in the wilderness is certainly awe-inspiring, but you can birdwatch from your backyard or while walking down the sidewalk in big cities, too. With Cornell University’s eBird app , you can contribute to bird science at any time, anywhere. (Just be sure to remain a safe distance from wildlife—and other humans, while we social distance ). If you have safe access to outdoor space—a backyard, perhaps—Cornell also has a NestWatch program for people to report observations of bird nests. Smithsonian’s Migratory Bird Center has a similar Neighborhood Nest Watch program as well.

Birdwatching is easy enough to do from any window, if you’re sheltering at home, but in case you lack a clear view, consider these online-only projects. Nest Quest currently has a robin database that needs volunteer transcribers to digitize their nest record cards.

You can also pitch in on a variety of efforts to categorize wildlife camera images of burrowing owls , pelicans , penguins (new data coming soon!), and sea birds . Watch nest cam footage of the northern bald ibis or greylag geese on NestCams to help researchers learn about breeding behavior.

Or record the coloration of gorgeous feathers across bird species for researchers at London’s Natural History Museum with Project Plumage .

A pressed Wister's coralroot below a letter and sketch of the flower found in Oct. 1937

Pretty Plants

If you’re out on a walk wondering what kind of plants are around you, consider downloading Leafsnap , an electronic field guide app developed by Columbia University, the University of Maryland and the Smithsonian Institution. The app has several functions. First, it can be used to identify plants with its visual recognition software. Secondly, scientists can learn about the “ the ebb and flow of flora ” from geotagged images taken by app users.

What is older than the dinosaurs, survived three mass extinctions and still has a living relative today? Ginko trees! Researchers at Smithsonian’s National Museum of Natural History are studying ginko trees and fossils to understand millions of years of plant evolution and climate change with the Fossil Atmospheres project . Using Zooniverse, volunteers will be trained to identify and count stomata, which are holes on a leaf’s surface where carbon dioxide passes through. By counting these holes, or quantifying the stomatal index, scientists can learn how the plants adapted to changing levels of carbon dioxide. These results will inform a field experiment conducted on living trees in which a scientist is adjusting the level of carbon dioxide for different groups.

Help digitize and categorize millions of botanical specimens from natural history museums, research institutions and herbaria across the country with the Notes from Nature Project . Did you know North America is home to a variety of beautiful orchid species? Lend botanists a handby typing handwritten labels on pressed specimens or recording their geographic and historic origins for the New York Botanical Garden’s archives. Likewise, the Southeastern U.S. Biodiversity project needs assistance labeling pressed poppies, sedums, valerians, violets and more. Groups in California , Arkansas , Florida , Texas and Oklahoma all invite citizen scientists to partake in similar tasks.

A group of Harvard computers and astronomers.

Historic Women in Astronomy

Become a transcriber for Project PHaEDRA and help researchers at the Harvard-Smithsonian Center for Astrophysics preserve the work of Harvard’s women “computers” who revolutionized astronomy in the 20th century. These women contributed more than 130 years of work documenting the night sky, cataloging stars, interpreting stellar spectra, counting galaxies, and measuring distances in space, according to the project description .

More than 2,500 notebooks need transcription on Project PhaEDRA - Star Notes . You could start with Annie Jump Cannon , for example. In 1901, Cannon designed a stellar classification system that astronomers still use today. Cecilia Payne discovered that stars are made primarily of hydrogen and helium and can be categorized by temperature. Two notebooks from Henrietta Swan Leavitt are currently in need of transcription. Leavitt, who was deaf, discovered the link between period and luminosity in Cepheid variables, or pulsating stars, which “led directly to the discovery that the Universe is expanding,” according to her bio on Star Notes .

Volunteers are also needed to transcribe some of these women computers’ notebooks that contain references to photographic glass plates . These plates were used to study space from the 1880s to the 1990s. For example, in 1890, Williamina Flemming discovered the Horsehead Nebula on one of these plates . With Star Notes, you can help bridge the gap between “modern scientific literature and 100 years of astronomical observations,” according to the project description . Star Notes also features the work of Cannon, Leavitt and Dorrit Hoffleit , who authored the fifth edition of the Bright Star Catalog, which features 9,110 of the brightest stars in the sky.

A microscopic image of white blood cells

Microscopic Musings

Electron microscopes have super-high resolution and magnification powers—and now, many can process images automatically, allowing teams to collect an immense amount of data. Francis Crick Institute’s Etch A Cell - Powerhouse Hunt project trains volunteers to spot and trace each cell’s mitochondria, a process called manual segmentation. Manual segmentation is a major bottleneck to completing biological research because using computer systems to complete the work is still fraught with errors and, without enough volunteers, doing this work takes a really long time.

For the Monkey Health Explorer project, researchers studying the social behavior of rhesus monkeys on the tiny island Cayo Santiago off the southeastern coast of Puerto Rico need volunteers to analyze the monkeys’ blood samples. Doing so will help the team understand which monkeys are sick and which are healthy, and how the animals’ health influences behavioral changes.

Using the Zooniverse’s app on a phone or tablet, you can become a “ Science Scribbler ” and assist researchers studying how Huntington disease may change a cell’s organelles. The team at the United Kingdom's national synchrotron , which is essentially a giant microscope that harnesses the power of electrons, has taken highly detailed X-ray images of the cells of Huntington’s patients and needs help identifying organelles, in an effort to see how the disease changes their structure.

Oxford University’s Comprehensive Resistance Prediction for Tuberculosis: an International Consortium—or CRyPTIC Project , for short, is seeking the aid of citizen scientists to study over 20,000 TB infection samples from around the world. CRyPTIC’s citizen science platform is called Bash the Bug . On the platform, volunteers will be trained to evaluate the effectiveness of antibiotics on a given sample. Each evaluation will be checked by a scientist for accuracy and then used to train a computer program, which may one day make this process much faster and less labor intensive.

12 images from the platform showcasing different galactic formations

Out of This World

If you’re interested in contributing to astronomy research from the comfort and safety of your sidewalk or backyard, check out Globe at Night . The project monitors light pollution by asking users to try spotting constellations in the night sky at designated times of the year . (For example, Northern Hemisphere dwellers should look for the Bootes and Hercules constellations from June 13 through June 22 and record the visibility in Globe at Night’s app or desktop report page .)

For the amateur astrophysicists out there, the opportunities to contribute to science are vast. NASA's Wide-field Infrared Survey Explorer (WISE) mission is asking for volunteers to search for new objects at the edges of our solar system with the Backyard Worlds: Planet 9 project .

Galaxy Zoo on Zooniverse and its mobile app has operated online citizen science projects for the past decade. According to the project description, there are roughly one hundred billion galaxies in the observable universe. Surprisingly, identifying different types of galaxies by their shape is rather easy. “If you're quick, you may even be the first person to see the galaxies you're asked to classify,” the team writes.

With Radio Galaxy Zoo: LOFAR , volunteers can help identify supermassive blackholes and star-forming galaxies. Galaxy Zoo: Clump Scout asks users to look for young, “clumpy” looking galaxies, which help astronomers understand galaxy evolution.

If current events on Earth have you looking to Mars, perhaps you’d be interested in checking out Planet Four and Planet Four: Terrains —both of which task users with searching and categorizing landscape formations on Mars’ southern hemisphere. You’ll scroll through images of the Martian surface looking for terrain types informally called “spiders,” “baby spiders,” “channel networks” and “swiss cheese.”

Gravitational waves are telltale ripples in spacetime, but they are notoriously difficult to measure. With Gravity Spy , citizen scientists sift through data from Laser Interferometer Gravitational­-Wave Observatory, or LIGO , detectors. When lasers beamed down 2.5-mile-long “arms” at these facilities in Livingston, Louisiana and Hanford, Washington are interrupted, a gravitational wave is detected. But the detectors are sensitive to “glitches” that, in models, look similar to the astrophysical signals scientists are looking for. Gravity Spy teaches citizen scientists how to identify fakes so researchers can get a better view of the real deal. This work will, in turn, train computer algorithms to do the same.

Similarly, the project Supernova Hunters needs volunteers to clear out the “bogus detections of supernovae,” allowing researchers to track the progression of actual supernovae. In Hubble Space Telescope images, you can search for asteroid tails with Hubble Asteroid Hunter . And with Planet Hunters TESS , which teaches users to identify planetary formations, you just “might be the first person to discover a planet around a nearby star in the Milky Way,” according to the project description.

Help astronomers refine prediction models for solar storms, which kick up dust that impacts spacecraft orbiting the sun, with Solar Stormwatch II. Thanks to the first iteration of the project, astronomers were able to publish seven papers with their findings.

With Mapping Historic Skies , identify constellations on gorgeous celestial maps of the sky covering a span of 600 years from the Adler Planetarium collection in Chicago. Similarly, help fill in the gaps of historic astronomy with Astronomy Rewind , a project that aims to “make a holistic map of images of the sky.”

Get the latest Science stories in your inbox.

Rachael Lallensack

Rachael Lallensack | READ MORE

Rachael Lallensack is the former assistant web editor for science and innovation at Smithsonian .

Secondary Menu

Independent study, independent study projects provide research experience and academic credit for laboratory, field work, or theoretical research..

Biology majors are encouraged to engage in independent study projects in areas of their interest. Independent study projects may be done with any faculty in the biological sciences. Eligible students may use their independent research as the basis for an honors thesis, leading to graduation with distinction.

Up to 2 course credits (cc) of approved Independent Study will count as upper-level elective courses for the biology major, and one for the minor. Independent Study will also satisfy one of the two laboratory course requirements for the major, as well as the Small Group Learning Experience (SGLE) requirement for graduation. Additionally, Independent Study can satisfy the general education requirement for a Research Course (R). The second semester, if it is a continuation in the same lab, will count toward the 400-level 'capstone' requirement of the biology major (for students registering outside of the Biology Dept, that will be programmed in manually, contact the DUS Office once you're enrolled in the 2nd term). Students may also request Writing (W) credit for one independent study, typically the second semester, with approval of their Research Supervisor and the DUS of the Department where the Independent Study is registered. No credit can be awarded for paid work.

All students should submit an Independent Study Form for Research in the Biological Sciences and register for Independent Study under the Department of their research supervisor wherever possible. Registrations in many bioscience departments will count towards Biology major requirements.

INDEPENDENT STUDY FORM

  • Duke Biology’s Mission Statement
  • AJED Annual and Semester Reports
  • AJED Meeting Notes
  • Biology Cultural Association (BCA)
  • Inclusion, Diversity, Equity, and Antiracism Committee (IDEA)
  • Learning from Baboons: Dr. Susan Alberts
  • Extremophiles and Systems Biology: Dr. Amy Schmid
  • How Cells Manage Stress: Dr. Gustavo Silva
  • Predator-Prey Interactions in a Changing World: Dr. Jean Philippe Gibert
  • Exploring the Extracellular Matrix: Dr. David Sherwood
  • Cell Division's Missing Link: Dr. Masayuki Onishi
  • Listening in to Birdsong: Dr. Steve Nowicki
  • Biogeochemistry as Ecosystem Accounting: Dr. Emily Bernhardt
  • Building a Dynamic Nervous System: Dr. Pelin Volkan
  • Investigating a Key Plant Hormone: Dr. Lucia Strader
  • Imagining Visual Ecology: Dr. Sönke Johnsen
  • Outreach Opportunities Across the Triangle
  • Job Opportunities
  • Location & Contact
  • Frequently Asked Questions
  • Learning Outcomes
  • Major Requirements
  • Anatomy, Physiology & Biomechanics
  • Animal Behavior
  • Biochemistry
  • Cell & Molecular Biology
  • Evolutionary Biology
  • Marine Biology
  • Neurobiology
  • Pharmacology
  • Plant Biology
  • Minor Requirements
  • Biology IDM
  • List of Biology Advisors
  • Guide for First-Year Students
  • Transfer Credit
  • Application & Deadlines
  • Supervisor & Faculty Reader
  • Thesis Guidelines
  • Honors Poster
  • Past Student Projects
  • Study Away Opportunities
  • Finding a Research Mentor
  • Project Guidelines
  • Getting Registered
  • Writing Intensive Study
  • Independent Study Abroad
  • Summer Opportunities
  • Departmental Awards
  • Biology Majors Union
  • Commencement 2024
  • Trinity Ambassadors
  • Degree Programs
  • Ph.D. Requirements
  • How to Apply
  • Financial Aid
  • Living in Durham
  • Where Our Students Go
  • Milestones Toward Ph.D.
  • Graduate School Fellowships
  • Useful Resources
  • Concurrent Biology Master of Science
  • En Route Biology Masters of Science
  • Form Library
  • Mentorship Expectations
  • On Campus Resources
  • Fellowships & Jobs
  • Meet Our Postdocs
  • Department Research Areas
  • Research Facilities
  • Duke Postdoctoral Association
  • All Courses
  • Biological Structure & Function Courses
  • Ecology Courses
  • Organismal Diversity Courses
  • Alternate Elective Courses
  • Primary Faculty
  • Secondary Faculty
  • Graduate Faculty
  • Emeritus Faculty
  • Graduate Students
  • Department Staff
  • Faculty Research Labs
  • Developmental Biology
  • Ecology & Population Biology
  • Neuroscience
  • Organismal Biology & Behavior
  • Systematics
  • Research Articles & Papers
  • Botany Plot
  • Field Station
  • Pest Management Protocols
  • Research Greenhouses
  • Centers/Research Groups
  • Biology Writes
  • Alumni Profiles
  • For Current Students
  • Assisting Duke Students

Main navigation

  • Undergraduate
  • Why Biology?
  • About our Programs
  • B.Sc. to M.Sc. Thesis Track
  • Concentrations & Courses
  • Advising & Planning
  • Honours Program in Biology
  • Non-Biology Students
  • Field Courses
  • Field Semesters
  • Undergraduate Summer Research 2024
  • Additional Course Information (Bluebook)

students in lab coats pipetting at a bench

Independent Research

The Biology Department offers several Independent Research Projects to provide students with opportunities to experience biological research. These projects can be initiated at any time during your undergraduate degree and may count toward complementary credits for your program.

Independent Research Projects can be undertaken with any professor in the Biology Department. To identify potential supervisors, browse our Faculty Profiles and connect with professors whose research expertise aligns with your own interests.

In order to register for an Independent Research Project, you must complete an Independent Research Project Application and submit it to nancy.nelson [at] mcgill.ca (Nancy Nelson) at least 3 working days before the end of the add/drop period. Following approval, register on Minerva using the quick add/drop menu.

Upon completion of an Independent Research Project, you must prepare a written report on your research and submit it to your project supervisor(s) for evaluation by the last day of lectures, or by August 15 for summer courses. Your final course grade is a combination of the evaluated written report and an assessment of any laboratory/field work you conducted. The Supervisor must then submit an Independent Research Project Mark Sheet to nancy.nelson [at] mcgill.ca (Nancy Nelson) 5 days after the last day of classes, or by August 20 for summer courses.

For information regarding the eligibility criteria, the expected workload and the responsibilities of the student and supervisor(s), please see Guidelines for Taking and Supervising Independent Studies .

BIOL 377: Independent Reading Project (3 credits)

Terms: Fall, Winter or Summer.

Coordinator: nancy.nelson [at] mcgill.ca (Nancy Nelson) .

Instructor(s): Any faculty member of the Biology Department.

Restrictions: Open to U2 or U3 Biology students ONLY.

Prerequisites: BIOL 200, BIOL 201 or ANAT/BIOC 212; or BIOL 215; or BIOL 219; or permission of instructor.

Overview & Outcomes: Literature survey under the direction of the Instructor(s).

Method of Evaluation: Please see Suggested Criteria for Independent Reading Projects for guidelines on writing your dissertation.

BIOL 413: Directed Reading (1 credit)

Terms: Fall, Winter or Summer

Instructor(s): Any faculty member of the Biology Department

Prerequisites: BIOL 200, BIOL 201 or ANAT/BIOC 212; or BIOL 219; BIOL 202, BIOL 205, BIOL 215

Overview & Outcomes: Special topics paper under the guidance of the Instructor(s). This course is intended as an opportunity to improve scientific writing skills.

Method of Evaluation: A review written in scientific format. Please see Suggested Criteria for Independent Reading Projects for guidelines on writing your dissertation.

BIOL 466: Independent Research Project 1 (3 credits)

Restrictions: Open to U3 Biology students ONLY.

Prerequisites: BIOL 206 or BIOL 301, or another suitable 300-level laboratory course.

Expected Workload: Students are expected to work a minimum of 9 hours per week for 13 weeks for a 3-credit project. Honours Biology students may include a maximum of 3 credits of independent research as complementary credits. Liberal and Major Biology students may include a maximum of 6 credits of independent research as complementary courses.

Overview & Outcomes: The project is to be carried out independently by the student under the guidance of the Instructor(s). The project may include experimental work or concentrate on a study of published data and theories. Emphasis is on the acquisition of technical, analytical and communication skills relevant to the process of generating a scientific report.

Method of Evaluation: The Instructor(s) supervising the project will evaluate the overall performance in the various stages of the project, including the final written report. The work performed and the report will receive separate marks, summarized in a final mark with weighting (70/30, 60/40, 50/50) at the discretion of the supervisor. An electronic copy of the marked report must be submitted to Nancy Nelson.

BIOL 467: Independent Research Project 2 (3 credits)

Biol 468: independent research project 3 (6 credits), biol 469: independent research project 4 (9 credits).

Terms: Fall or Winter

Instructors: Any faculty member of the Biology Department

Related Content

Undergraduate advising.

Nancy Nelson Stewart Biology Building 1205 ave Docteur Penfield Room N7/9B

Email: nancy.nelson [at] mcgill.ca

Department and University Information

Department of biology.

  • Chair's Welcome
  • Room booking
  • Department History
  • Research Centres
  • Faculty of Science
  • Undergraduate Studies - e Calendar
  • Graduate Studies - eCalendar
  • Graduate & Postdoctoral Studies
  • McGill Equity

Introductory Biology 152 Independent Research Project Overview

The Introductory Biology 152 Independent Research Project (IP) is designed to help our students gain real insight into what biologists actually do by involving them in either:

  • Mentored experimental research: Working with a researcher on campus, students propose a research question, learn and execute the experimental techniques required to examine the question, analyze data and draw conclusions. The experience includes writing a scientific-journal-like publication and participating in a campus-wide poster session.*

Poster Display

  • Critical analysis of existing research or literature-based research: Students conduct a meta-analysis of existing literature to address an open biology-based question, problem or issue. To do this they interpret, organize and analyze existing data in the area in order to determine what we currently know as well as what we don’t know. Based on the analysis, students propose research designed to advance our knowledge in the field. **
  • What do undergraduates gain from mentored research?   (Windows Media File, 316 MB)

*This option requires extra out-of-class time; 10 hours/week is recommended. For this, students are eligible to register for 2 credits of independent or directed study with their faculty mentor.

** Introductory Biology 152 is writing intensive and is designated a Communications B course .

  • Departments and Units
  • Majors and Minors
  • LSA Course Guide
  • LSA Gateway

Search: {{$root.lsaSearchQuery.q}}, Page {{$root.page}}

  • News and Events
  • EEB Department
  • MCDB Department
  • Undergraduates
  • Faculty and Staff
  • Alumni and Friends

Program in Biology

  • Majors & Minors
  • Honors & Research Thesis Program
  • Graduation Information
  • Student Resources
  • Undergraduate Teaching Assistant (UTA) Position
  • Student Groups
  • Prospective Students
  • Frequently Asked Questions (FAQs)
  • Student Events, Job Opportunities, & Newsletter Archive
  • Student Research
  • Undergraduate Awards & Fellowships
  • Study Abroad
  • Peer Advisor Application
  • Transfer Information
  • Preparing for a Course
  • Teaching & Grading
  • Course Support Staffing
  • Services for Students
  • Information for GSIs
  • Need a Staff Member?
  • Giving Opportunities

independent research project ideas biology

Independent research is an opportunity to take an active role in studying what you enjoy!  Students participate in a lab, field, or modeling project in which they themselves have a say in the design, implementation, and interpretation of experiments.  It is expected that the student will meet regularly with his or her mentor as well as gain exposure to the scientific literature of the field.  Follow the instructions below to get started. Please email  [email protected]  with questions!

Independent Study Enrollment Request Process

1.     Read the policies below! You are responsible for knowing and abiding by them .

2.     Make sure you have the following before requesting enrollment:  

  • A lab where you’re conducting / supporting biological research (neuroscience students should review the neuro research page ).
  • A specific project description that details the work you’ll be doing for credit.
  • A faculty Co-Sponsor (if your lab PI is not in the department) – see below for more information.
  • A plan for how many credits you’ll be taking. We expect 50 hours of work per term per credit, which amounts to 4-5 hours per week per credit. Some courses must be taken for a set number of credits in order to count towards your major (see policies).

3.     Complete the  Independent Research Enrollment Request Form  below. The form may take 10-15 minutes to complete. If your PI is not an active-research, full teaching faculty member of the department, then on the form you’ll mark their department as “other”. You will then be prompted for your Co-Sponsor’s information.  Please do not mark any Lab Techs, Grad Students, PhD Students/Candidates, or Fellows/Post-Docs in place of your PI  even if they're who you're technically working under.

4.     After you submit the form, we will request written approval from your PI and Co-Sponsor (if you have one). Once we’ve received these approvals we will issue your override to enroll in the course.

Note:  Some requests can take a substantial amount of time to process ( 6-8 weeks ). Please submit the form as far in advance as possible to ensure timely enrollment.

Please do not submit duplicate requests. If you have a concern regarding your submission, please email us before submitting again.

Policy Information

Fulfilling Major Requirements with Research: Review the Policies for Students page (linked above) for detailed information on which independent study course(s) can be used to satisfy your major requirements. In most cases, unless stated otherwise you will need to take 3 credits of independent study in a single term to fulfill a specific major requirement (research requirements vary by major). We expect you to complete 50 hours of work per term per credit, which amounts to 12-15 hours per week for 3 credits in the fall or winter terms, and twice that weekly amount during the spring or summer half-terms. If you are at all unsure, please ask! We're happy to help you navigate this process.

What is a Co-Sponsor? Do I need one?

If your lab PI is not an active-research, full-faculty member of the EEB or MCDB department (whichever you’re enrolling under) then you must obtain approval from someone who is. They must agree to serve as your Co-Sponsor before you begin the project.

You Co-Sponsor will review your research project to decide the appropriateness of the work and confirm that it 1) is biological in nature, 2) will help you develop independence, and 3) is not simply a technical training exercise. Your Co-Sponsor will also be the one assigning your grade for the work. The parameters for this grade are up to each individual Co-Sponsor.

Microbiology majors who elect to take MICRBIOL 399 do not need to find a Co-Sponsor, nor does a Neuroscience major who elects to take Psych independent study elections. Neuroscience majors should consult the neuroscience research page.

Research must be conducted on the U-M Ann Arbor Campus or its properties with a UM research-active faculty member.

Finding a Research Project & Mentor

Exploring your interests.

There are hundreds of biology-related research areas at U-M!  The first step is to consider what really interests you and start to narrow down your possible research areas.  Consider what you liked about certain classes, social issues that interest you, or journal articles or news items that sparked your interest.  Explore the broad research areas of U-M Biological Sciences faculty.

Try to think broadly when you are looking for labs – don’t just look at the "cool-sounding" areas. Drill down to the faculty member’s name and specific lab and you will get a more detailed description of his or her research and contact information (email address). You can even go to their lab website for more detail about their research.

Contacting Faculty

Contact faculty by email - one by one. Make sure your spelling and grammar are correct. Use professional language.  Do not call them by their first name, call them “Doctor” or “Professor."  Ask to meet with them (give them a few times that are good times for you to meet).  Be clear in your email message what you are looking for – paid position, volunteer, academic credit -  and when you want to start.  Let them know if you are considering an Honors thesis project, if you would like to work there multiple semesters, etc.

Do not get discouraged by rejections. Many faculty members have limited space and funding in their lab. You may have to contact at least 20 different labs to find the right fit.

Remember if you wish to receive credit toward your major for research done under the direction of a faculty member in another department or unit of the University, you must obtain approval from a faculty member in EEB or MCDB who agrees to serve as co-sponsor before beginning the project.

independent research project ideas biology

EEB RESEARCH  spans the full range of biological diversity and includes understanding the diversity of organisms, discerning their history, accounting for their characteristics (evolutionary processes), analyzing the function of their features (functional organismal biology), and understanding how organisms affect and are affected by environmental factors.  Take a look at the broad research areas of the faculty in Ecology & Evolutionary Biology  and check in to see which EEB faculty are accepting students !

Nisha Gopal & Ann Miller

MCDB RESEARCH  strives to develop new knowledge through basic research about how living organisms function with a focus on the molecular and cellular levels of all branches of life—bacteria, plants, and animals. Areas of particular research strength are animal physiology and neurobiology, biochemistry, cell biology, developmental biology, microbiology, and plant molecular biology.  If you are looking for a molecular or cellular lab, explore the broad areas of research in MCDB  and the research themes of MCDB faculty .

PIBS

THE PROGRAM IN BIOMEDICAL SCIENCES  website is another resource for MCDB-related areas.  This is a PhD program, but they do a good job of lisiting research areas and faculty !  Note that this resource lists non-MCDB faculty as well, for which you would need an MCDB department faculty co-sponsor (see FAQs below).

UROP

UNDERGRAD. RESEARCH OPPORTUNITY PROGRAM (UROP)  is open to 1st- and 2nd-year students only, but it's a great way to get connected with research and faculty in a variety of fields.  Review their website for additional information and application.

Field Research Facilities

independent research project ideas biology

Our modern teaching and research laboratories house electron microscopes, controlled environment rooms, analytical and preparative centrifuges, spectrophotometers, and other tools essential for modern research in all areas of the biological sciences.

But in addition to classrooms and labs, students have access to a variety of other facilities:  The Herbarium, the  Museum of Paleontology , the Museum of Anthropology's Archaeobiology Laboratories , the  Museum of Zoology , and the  Matthaei Botanical Gardens  supplement the instructional and research programs. University-owned research facilities in the vicinity of Ann Arbor include  Saginaw Forest ,  Edwin S. George Reserve ,  Stinchfield Woods , and  Mud Lake Bog !

Additionally, the  Biological Station  provides off-site facilities for instruction and research in Northern Michigan!

independent research project ideas biology

  • Information For
  • Current Students
  • More about LSA
  • How Do I Apply?
  • LSA Magazine
  • Academic Advising
  • Global Studies
  • LSA Opportunity Hub
  • Social Media
  • Update Contact Info
  • Privacy Statement
  • Report Feedback
  • High School
  • College Search
  • College Admissions
  • Financial Aid
  • College Life

Your Guide to Conducting Independent Research Projects

A dense textbook lays open. Dispersed through the pages are red, blue, and yellow tabs.

For me, asking questions is the best way to stay curious and inspire others.

I am currently earning my undergraduate degree in Dance and minor in Modern Languages – French at Point Park University . I am a part of their honors program in which I have been given various opportunities to do research that has been published and presented at national conferences.

I want to note that you do not have to do research through an organization. The project I’m currently working on is for a conference and will not receive any academic credit for it.

You probably have already done a research project and did not even realize it. I was first introduced to how to do research in high school, so after finding what worked best for me, I wanted to share my process to make the project less daunting and more fun. 

Step 1: Define the project 

What is your subject?

Normally the subject is related to your major, but if you are interested in a subject, your project can be based on something you have no previous knowledge about.

When applying to conferences, my research typically fit under a certain category and theme. When choosing a subject, look at the requirements closely to determine if the subject will work. 

What is its purpose? 

Answer the question: Why do I want to do this research project?  Is it to forward your academic goals, spread awareness, inform or persuade a group of people, or to learn more about a subject you are passionate about?

Having a purpose behind your work can fuel your passion and help with motivation. Whatever your research entails will make an impact, so recognizing this could also help you feel more fulfilled after it is finished. 

If you have to do it as a requirement, try to reframe your mindset to a more positive one where you can find something positive to gain from your research. This could be a new skill acquired or improved upon.

What format will it be in?  

Some examples of different formats could be an essay, poster, speech, or an artistic piece.

Depending on the format, there could be different requirements for the information or an element incorporated that is not included in the other formats. 

If you have a choice of format, be sure to assess your strengths and weaknesses. I pride myself on being a good public speaker and performer, so I prefer giving a speech rather than writing an essay. 

However, if you want to improve a certain skill, you could choose a format that challenges a skill you want to work on.

What question is being answered? 

I have been taught that good research answers a complex but specific question. Therefore, create a question that requires critical thinking and is focused enough to be answered by a comprehensive thesis statement.

Step 2: Gather information

This may be self-explanatory, but it’s time to research! H ave a variety of primary, secondary, and tertiary sources.

  • Examples: Journals/Diaries, Speeches, Photographs, Raw Data 
  • Examples: Journal Articles, Biographies, Textbooks / Encyclopedias / Dictionaries 
  • Examples: Manuals, Textbooks / Encyclopedias / Dictionaries, Bibliographies

Good places to find sources are your local library, school databases, or Google Scholar .  Since not everything on the internet is true, vetting your source is crucial.  Some things to keep in mind before using a source are the author, time period, peer-review status, publisher, and intended audience.  

Step 3: Compile findings and provide a takeaway

Using the data you have collected to support your thesis, answer your initial question. This article explains how different kinds of theses are used in different research contexts. 

The thesis is generally at the end of the first introductory paragraph. Coming up with a thesis is easier said than done, but finally reaching an answer should be gratifying.

Make sure all the points in your paper answer the initial question and support the amazing thesis you just created.  You may need to write a proposal or abstract for your research. 

Try to focus on the main ideas in your work and provide a bit of context that would make the reader or listener more interested to learn additional information.

Be sure to proofread your work, double check it meets all the requirements, and verify your citations are in the correct citation style.

A service I find useful to check my grammar is Grammarly . You can also get your friends to look over it and get their thoughts. 

Step 4: *Optional* Peer / Advisor Review

On my research projects, I have had the privilege of having an advisor to give me advice who is an expert in the field of research I am interested in. This advisor offered great advice when I got stuck or needed a push in the right direction.

Some tips on finding an advisor are to:

  • See if their past research aligns with what you are interested in
  • Investigate how other’s experiences were if they have been an advisor in the past
  • Reach out through email or attend their office hours to see if they would be interested in helping you
  • Keep your options open because you never know who you could have the potential to connect to

Starting an independent research project can be scary. Whether your research is formal or informal, I encourage you to keep learning and asking questions.

In the words of author, anthropologist, and filmmaker Zora Neale Hurston, “Research is formalized curiosity. It is poking and prying with a purpose.”

Good luck! You got this. We would love to hear your experiences and how you found where you belong , so direct message us on Instagram for a chance to be featured.

' src=

Author: Rosalie Anthony

Rosalie is currently attending Point Park University earning her Dance- B.F.A degree with a minor in French. Previously, she attended and graduated from the Alabama School of Fine Arts in dance. She is passionate about learning, teaching and mentoring. In her spare time, she enjoys working out, chatting with friends, and discovering new places to go in Pittsburgh.

More Articles By Niche

When it comes to extracurricular activities, there’s no set rule concerning how many you should be involved in or how involved you must be.

It may seem like a daunting task, but securing an internship as a high school student is a realistic and possible thing.

Here you’ll find information about how best to be prepared to meet with your college/career counselor so that they can help you achieve your goals. They were really helpful when I was going through the college application process.

Final Summer I 2024 Application Deadline is June 2, 2024.  

Click here to apply.

One__3_-removebg-preview.png

Featured Posts

independent research project ideas biology

10 Reasons Why You Should Apply to APA’s Internship for High School Students

Stanford STaRS Internship Program - Is It Worth It?

Stanford STaRS Internship Program - Is It Worth It?

independent research project ideas biology

How to Show Demonstrated Interest - 8 Tips for College Admissions

10 Free Summer Math Programs for High School Students

10 Free Summer Math Programs for High School Students

10 Online Summer Camps for Middle School Students

10 Online Summer Camps for Middle School Students

6 Entrepreneurship Internships that You Should Check out as a High School Student

6 Entrepreneurship Internships that You Should Check out as a High School Student

10 Free Biology Summer Programs for High School Students

10 Free Biology Summer Programs for High School Students

independent research project ideas biology

10 Free Programs for High School Students in California

NASA's High School Aerospace Scholars - 7 Reasons Why You Should Apply

NASA's High School Aerospace Scholars - 7 Reasons Why You Should Apply

independent research project ideas biology

10 Film Internships for High School Students

25+ Best Science Research Ideas for High School Students

If you’re an ambitious high school student looking for opportunities to build your college profile and learn new skills, consider undertaking a research project. You do not need to be sure about what you want to major in, but having a general idea aligned with your interests helps! Conducting research shows demonstrated interest in a subject, aids critical thinking and problem-solving, provides laboratory experience, and helps you gain analytical and communication skills. 

What makes a good research idea?

There are a few key components you need to keep in mind when thinking about a research topic:

What is your project trying to achieve? For your research to be relevant, it needs to identify a knowledge gap and be significant. Your research findings should add to existing literature and help future researchers.

It is important to state what will be included in your research explicitly.  Clearly defined boundaries help estimate a realistic timeline and allocate any necessary resources.  

The easiest way to be dedicated throughout your research project is by choosing a topic you are passionate about!  This will make sure you remain motivated throughout, and it will reflect in your work. Do not choose a topic for the sake of it — you will find the project difficult to complete and your disinterest will reflect in the quality of your work.

Feasibility:

You may have a grand idea for your research topic, but can you execute it? It’s important to consider any constraints you may have — time, money, etc. — and choose a topic that can be completed with your given resources.  If you are working independently, choose a topic that isn't resource-intensive. For example, research that requires you use advanced telescopes to examine cosmological patterns may not be feasible if you do not already have access to one. 

What do I do once I have a research idea?

Great job, you have found a topic that interests you, is relevant to the field, and is feasible in scope and resources! Next step, you need to find a mentor who can guide and advise you through the research process.  They could be a working researcher, a college professor, a graduate student, or a Ph.D. candidate.

If you’re looking for a mentor, we’d recommend applying to the Lumiere Research Scholar Program  which connects students with world-class researchers, offers one-on-one mentorship, and guides you through the research and writing process, even helping you get your paper published!

Chemistry research ideas for high school students:

Chemistry can be a great field to undertake independent research in — chemical reactions form the basis of life and can give you a deeper understanding of the world.  Moreover, chemistry is directly related to important issues that affect us, like climate change, drug discovery, nanotechnology, and more. Research in these domains can lead to life-changing benefits for society! 

Some topics you can research include:

1. Using green chemistry to achieve sustainability targets in the fields of energy, water remediation, agriculture, and sensing

2. Analyzing different energy storage options and comparing and contrasting different technologies' chemistries, performance, lifetime, cost, geographic and resource constraints, and more

3. Investigating how startups and the private sector’s newest technologies are critical to the transition to a green future and how products are commercialized from lab to market

4. Understanding how material nano-structure can create specific properties and take advantage of "structure-property" understanding to engineer new materials

5. Determining the role small molecules play in imaging, labeling, target identification, inhibiting native protein functions, and facilitating foreign ones, especially in new techniques used to understand disease pathways

6. Investigating how molecules are made in nature, such as the reactions performed by enzymes to make natural products

Suggested by Lumiere PhD mentors at Harvard University, University of California, Berkeley, Yale University, University of Cambridge, Technical University of Munich, Georgia Institute of Technology, Duke University, University of Leeds, Cornell University, and John Hopkins University

Biology research ideas for high school students:

Research in biology can contribute to humans’ understanding of living organisms, lead to medical breakthroughs and advancements in healthcare, contribute to cancer research and treatment, deepen our understanding of genetics, improve sustainability by helping develop biofuels and biodegradable materials, and more. 

7. Tumor progression and how cancer cells invade and interact with other cells

8. Cancer immunotherapy: the study of how cancer cells evade the immune system and how we can harness the immune system to battle cancer

9. Researching past and current technologies used in gene editing. Identify challenges and weigh the ethical and social implications of these technologies

10. Identifying technical challenges in mass vaccination campaigns. Review existing data from public health organizations and current scientific literature on new vaccine delivery technologies

11. Analyzing the effects of alcohol and drug addiction on the brain

12. Discovering different theories of learning and memory. You can design and use different  clinical studies here

Suggested by Lumiere Ph.D. mentors at Stanford University, UC Berkeley, Cornell University,  Duke University, and Yale University   

Physics research ideas for high school students:

Have space, quantum physics, nuclear science, and other such subjects always fascinated you? If so, a research project in physics is a great way to dig deeper and understand why different phenomena occur. Physics is a broad and interconnected discipline; research in the subject can cover topics like mechanical and electrical engineering, quantum computing, nuclear energy, astrophysical and cosmological phenomena, and computational technologies.

13. The features and limitations of augmented and virtual reality technologies, current industry standards of performance, and solutions to address challenges

14. Cosmological mysteries (like dark energy, inflation, and dark matter) and their hypothesized explanations

15. Physical processes that shape galaxies through cosmic time in the context of extragalactic astronomy and the current issues and frontiers in galaxy evolution

16. Radiation or radiation measurement in applications of nuclear physics (such as reactors, nuclear batteries, and sensors/detectors)

17. The electrical and thermodynamic properties of Boson particles, whose quantum nature is responsible for laser radiation

18. Mathematical derivation of the dynamics of particles from fundamental laws (such as special relativity, general relativity, and quantum mechanics)

19. The theoretical and experimental advances in quantum computing. Explore current high-impact research directions for quantum computing from a hardware or theoretical perspective

20. Nuclear fission or nuclear fusion energy as a possible solution to mitigate climate change

Suggested by Lumiere Ph.D. mentors at Northwestern University, Princeton University, Stanford University, Cornell University, University of Cambridge, Harvard University, University of California, Irvine, and University of Southampton.

Marine biology research ideas for high school students:

Contributing to research in marine biology can be extremely important given the diversity of marine ecosystems, the life they support, and their importance in combating climate change and preventing extreme weather events.  Understanding how oceans work directly relates to water pollution and the quality of seafood, contributes to coastal protection and carbon sequestration (the process of capturing and storing excess carbon dioxide), and helps educate the public on the importance of protecting marine habitats.

 If this interests you, here are some research topics to consider:

21. Examine how corals are responding to climate change, how the change in oceanic temperatures affects their reef-building capabilities, and the knock-on effects

22. Examine how marine conservation and tourism can go coexist. Suggest ways to ensure the sustainable development of coastal economies

23. Study how marine pollution impacts coastal areas, marine biodiversity, and communities’ livelihoods

24. Study how human activity (like pollution, fishing, and habitat destruction) has impacted marine genomes and how other anthropogenic factors have influenced adaptation and genetic diversity in marine organisms

25. Study the effect of plastic pollution on marine life and examine the benefits of adopting more eco-friendly and biodegradable packaging materials. Develop new methods to remove plastic from the ocean

26. Study carbon sequestration. Investigate how coastal ecosystems like mangroves, saltmarshes, seagrasses, etc. can help mitigate C02 emissions

27. Study the effect of plastic pollution on marine life and examine the benefits of adopting more eco-friendly and biodegradable packaging materials. Develop new methods to remove plastic from the ocean

If you’re serious about conducting independent research, you may want to consider the Lumiere Research Scholar Program , a selective online high school program for students founded by researchers at Harvard and Oxford. Last year, we had over 4000 students apply for 500 spots in the program! You can find the application form here . You can also reach out to us at [email protected] to know more, or to have a chat about possible collaborations!

Also check out the Lumiere Research Inclusion Foundation , a non-profit research program for talented, low-income students. Last year, we had 150 students on full need-based financial aid!

Kieran Lobo is a freelance writer from India, who currently teaches English in Spain.

  • research ideas

independent research project ideas biology

Grab your FREE RADAR Signs

Project-based learning in high school science.

project-based learning in high school scienc

Several years ago my district encouraged us to really start moving towards project-based learning in high school science especially – but really in every department at my school. At first, it just felt like ANOTHER new initiative being forced on us, if I am honest. But the more I studied and learned about PBL (project-based learning) the more I really fell in love with so many of the basic principles behind it.

I have ALWAYS been very passionate about providing a variety of assessments – particularly summative ones – for my students. I truly believe that some students’ brains aren’t wired to show their knowledge and understanding well in a traditional testing environment. Because of this, I started intentionally including nontraditional summative assessments every quarter, and eventually, every unit, in my curricula. You can read more about using nontraditional summative assessments in secondary classrooms here .

The more I learned about using project-based learning in high school science, the more excited I got because it felt REALLY aligned to what I wanted to accomplish in my classroom anyway. So what really is PBL? What is the difference between project-based vs. problem-based learning? Why do I think using project-based learning in high school science is so effective? And most importantly, HOW do you do it and do it well?

What is project-based learning?

project-based learning in high school science

Project-based learning really is fundamentally about creating new opportunities for students to both learn AND demonstrate their learning. It is student-centered and collaborative to the core. I am ALWAYS looking for more ways to build student autonomy and have THEM be at the center of their learning rather than me, and PBL is a great way to naturally do that.

Project-based learning is different from problem-based learning (despite having the same acronym PBL – of course, we have to make things as complicated as possible in the education world, right? 🤪 ). They are similar in that they both involve student choice, finding topics/problems for students to study that really interest them, analysis, and research. They differ mainly in their goals. The goal of project-based is to learn through a process to ultimately complete a product whereas the goal of problem-based is to create a solution to a problem.

My main motivations in incorporating more project-based learning in high school science were to:

  • Create more opportunities for nontraditional assessments
  • Increase student autonomy
  • Allow students to investigate something meaningful to them so that they could truly see the relevance of what they were learning in the classroom

Project-based learning is really focused on the process and the product . True PBL is done in groups and is multidisciplinary. PBL also has a community component; students share their findings with a “community audience” and reflect on their feedback.

Why use project-based learning in high school science?

project-based learning in high school science

While PBL is great for all subjects, I especially love how it can be used in high school science. Research is an essential part of science and is essential to the PBL process. Science is also naturally interdisciplinary, as scientific writing brings in ELA components, mathematical analysis, and computational thinking which are both central to all scientific research.

Additionally, science is arguably the most relevant subject our students take in high school (don’t come at me other secondary teachers – I am obviously biased and think science is the best 🤣 ) It is so easy to take what students are learning in our classes and apply it to what they experience in the real world.

I love giving my students projects that don’t have a “right answer” and allowing them to research ethical considerations and societal implications. Both of these things naturally come up with pretty much any research-based science project our students will do.

As you can see, I love so many things about projects and specifically PBL, but especially that PBL is student-led , multidisciplinary , and relevant . I love how PBL incorporates student choice, community relevance, and communicating findings of the learning process through multiple products.

Because this type of learning engages students and gives them essential practice with critical skills they will use their entire lives , including researching, synthesizing ideas, asking questions, collaborating, revising, managing time, project planning, making community and cross-curricular connections, varying communication formats, and reflecting.

** If you’ve been looking for a different way to summatively assess your students at the end of the year, or a way to challenge students to see the relevance and interconnectedness of every topic covered in your content area all year long,  PBL is a great way to do this – and I have resources to help you with it!**

Looking for project-based learning resources to use in your high school science classes?

project-based learning in high school science

I’ve got you! Recently, I made three new resources that are PBL-style that I absolutely love. They are yearlong independent research projects for biology , physical science , and anatomy & physiology .

These were designed as yearlong (or semester-long) extension projects for advanced students to do outside of class to really reinforce (1) real-world application of everything covered in your biology/PS/anatomy classes, and (2) the connections between all of the content you cover

However, they can also be adapted and used entirely in class, as a partner or group project, or as a PBL-style final assessment for your course.

Why do I say “PBL-style”?

I have always LOVED so many of the characteristics of project-based learning, as I’ve mentioned above. I especially love the emphasis on student voice and choice, student autonomy, and the value of the investigative process to create products that communicate an answer to the original essential/driving question.

However, these resources aren’t 100% true to PBL in that the focus is more on the long-term nature of investigating the topic independently, rather than working collaboratively with peers to learn about a unit through the completion of a project. Throughout the pages in the resource, you will see where I have pulled in my favorite components from PBL to create my vision for these independent research projects, but know that this resource wasn’t designed to be 100% PBL. However, I have included a list of suggestions for a few changes you can make  (and additional rubrics you can use)  to make it truly qualify as PBL.

If you are required to start incorporating project-based learning in your high school science course, I hope you find these resources helpful!!

More Grading and Assessment Posts

alternative-midterm-exam

5 Alternatives to Traditional Midterm Exams [Episode 51]

alternative final exams

Alternative Final Exams for High School Science

manage-grading

Balancing Multiple Preps: How to Manage Grading [episode 10]

decrease grading time

Decrease Grading Time: How to Stop Grading Everything

Grab your free classroom reset challenge.

Not sure where to begin simplifying your teaching life? Start by reseting your classroom! Get the step-by-step checklist you need here!

independent research project ideas biology

Submit your email address to receive your FREE Classroom Reset Challenge from INRS!

Use these signs to equip your students to take on any question - and never say "I don't know where to begin" again!

Submit your email address to receive your FREE RADAR Signs from INRS!

independent research project ideas biology

9 Undergraduate Research Projects That Wowed Us This Year

The telegraph. The polio vaccine. The bar code. Light beer. Throughout its history, NYU has been known for innovation, with faculty and alumni in every generation contributing to some of the most notable inventions and scientific breakthroughs of their time. But you don’t wind up in the history books—or peer-reviewed journals—by accident; academic research, like any specialized discipline, takes hard work and lots of practice. 

And at NYU, for students who are interested, that training can start early—including during an undergraduate's first years on campus. Whether through assistantships in faculty labs, summer internships, senior capstones, or independent projects inspired by coursework, undergrad students have many opportunities to take what they’re learning in the classroom and apply it to create original scholarship throughout their time at NYU. Many present their work at research conferences, and some even co-author work with faculty and graduate students that leads to publication. 

As 2023-2024 drew to a close, the NYU News team coordinated with the Office of the Provost to pull together a snapshot of the research efforts that students undertook during this school year. The nine featured here represent just a small fraction of the impressive work we encountered in fields ranging from biology, chemistry, and engineering to the social sciences, humanities, and the arts. 

These projects were presented at NYU research conferences for undergrads, including Migration and Im/Mobility , Pathways for Discovery: Undergraduate Research and Writing Symposium , Social Impact: NYU’s Applied Undergraduate Research Conference , Arts-Based Undergraduate Research Conference , Gallatin Student Research Conference ,  Dreammaker’s Summit , Tandon’s Research Excellence Exhibit , and Global Engagement Symposium . Learn more about these undergrad research opportunities and others.

Jordan Janowski (CAS '24)

Sade Chaffatt (NYU Abu Dhabi '24)

Elsa Nyongesa (GPH, CAS ’24 )

Anthony Offiah (Gallatin ’26)

Kimberly Sinchi (Tandon ’24) and Sarah Moughal (Tandon ’25)

Rohan Bajaj (Stern '24)

Lizette Saucedo (Liberal Studies ’24)

Eva Fuentes (CAS '24)

Andrea Durham (Tandon ’26)

Jordan Janowski (CAS ’24) Major: Biochemistry Thesis title: “Engineering Chirality for Functionality in Crystalline DNA”

Jordan Janowski (CAS '24). Photo by Tracey Friedman

I work in the Structural DNA Nanotechnology Lab, which was founded by the late NYU professor Ned Seeman, who is known as the father of the field. My current projects are manipulating DNA sequences to self-assemble into high order structures.

Essentially, we’re using DNA as a building material, instead of just analyzing it for its biological functions. It constantly amazes me that this is possible.

I came in as a pre-med student, but when I started working in the lab I realized that I was really interested in continuing my research there. I co-wrote a paper with postdoc Dr. Simon Vecchioni who has been a mentor to me and helped me navigate applying to grad school. I’m headed to Scripps Research in the fall. This research experience has led me to explore some of the molecules that make up life and how they could be engineered into truly unnatural curiosities and technologies.

My PI, Prof. Yoel Ohayon , has been super supportive of my place on the  NYU women’s basketball team, which I’m a  member of. He’s been coming to my games since sophomore year, and he’ll text me with the score and “great game!”— it’s been so nice to have that support for my interests beyond the lab.

Anthony Offiah (Gallatin ’26) Concentration: Fashion design and business administration MLK Scholars research project title: “project: DREAMER”

Anthony Offiah (Gallatin '26). Photo by Tracey Friedman

In “project: DREAMER,” I explored how much a person’s sense of fashion is a result of their environment or societal pressures based on their identity. Certain groups are pressured or engineered to present a certain way, and I wanted to see how much of the opposing force—their character, their personality—affected their sense of style. 

This was a summer research project through the MLK Scholars Program . I did ethnographic interviews with a few people, and asked them to co-design their ideal garments with me. They told me who they are, how they identify, and what they like in fashion, and we synthesized that into their dream garments. And then we had a photo shoot where they were empowered to make artistic choices. 

Some people told me they had a hard time conveying their sense of style because they were apprehensive about being the center of attention or of being dissimilar to the people around them. So they chose to conform to protect themselves. And then others spoke about wanting to safeguard the artistic or vulnerable—or one person used the word “feminine”—side of them so they consciously didn’t dress how they ideally would. 

We ended the interviews by stating an objective about how this co-designing process didn’t end with them just getting new clothes—it was about approaching fashion differently than how they started and unlearning how society might put them in a certain box without their approval.  

My concentration in Gallatin is fashion design and business administration. In the industry some clothing is critiqued and some clothing is praised—and navigating that is challenging, because what you like might not be well received. So doing bespoke fashion for just one person is freeing in a sense because you don’t have to worry about all that extra stuff. It’s just the art. And I like being an artist first and thinking about the business second.

Lizette Saucedo (Global Liberal Studies ’24) Major: Politics, rights, and development Thesis title: “Acknowledging and Remembering Deceased Migrants Crossing the U.S.-Mexican Border”

Lizette Saucedo (Global Liberal Studies '24). Photo by Tracey Friedman

My thesis project is on commemorating migrants who are dying on their journey north to cross the U.S.–Mexican border. I look at it through different theoretical lenses, and one of the terms is necropolitics—how politics shapes the way the State governs life and especially death. And then of the main issues aside from the deaths is that a lot of people in the U.S. don’t know about them, due to the government trying to eschew responsibility for migrant suffering. In the final portion of the thesis, I argue for presenting what some researchers call “migrant artifacts”—the personal belongings left behind by people trying to cross over—to the public, so that people can become aware and have more of a human understanding of what’s going on. 

This is my senior thesis for Liberal Studies, but the idea for it started in an International Human Rights course I took with professor Joyce Apsel . We read a book by Jason De León called The Land of the Open Graves , which I kept in the back of my mind. And then when I studied abroad in Germany during my junior year, I noticed all the different memorials and museums, and wondered why we didn’t have the equivalent in the U.S. My family comes from Mexico—my parents migrated—and ultimately all of these interests came together.

I came into NYU through the Liberal Studies program and I loved it. It’s transdisciplinary, which shaped how I view my studies. My major is politics, rights, and development and my minor is social work, but I’ve also studied museum studies, and I’ve always loved the arts. The experience of getting to work one-on-one on this thesis has really fortified my belief that I can combine all those things.

Sade Chaffatt (Abu Dhabi ’24) Major: Biology Thesis title: “The Polycomb repressive component, EED in mouse hepatocytes regulates liver homeostasis and survival following partial hepatectomy.”

Sade Chaffatt (NYU Abu Dhabi '24). Photo courtesy of NYUAD

Imagine your liver as a room. Within the liver there are epigenetic mechanisms that control gene expression. Imagine these epigenetic mechanisms as a dimmer switch, so that you could adjust the light in the room. If we remove a protein that is involved in regulating these mechanisms, there might be dysregulation—as though the light is too bright or too dim. One such protein, EED, plays a crucial role in regulating gene expression. And so my project focuses on investigating whether EED is required in mouse hepatocytes to regulate liver homeostasis and to regulate survival following surgical resection.

Stepping into the field of research is very intimidating when you’re an undergraduate student and know nothing. But my capstone mentor, Dr. Kirsten Sadler , encourages students to present their data at lab meetings and to speak with scientists. Even though this is nerve-wracking, it helps to promote your confidence in communicating science to others in the field.

If you’d asked 16-year-old me, I never would’ve imagined that I’d be doing research at this point. Representation matters a lot, and you often don't see women—especially not Black women—in research. Being at NYUAD has really allowed me to see more women in these spaces. Having had some experience in the medical field through internships, I can now say I’m more interested in research and hope to pursue a PhD in the future.

Kimberly Sinchi (Tandon ’24) Major: Computer Science Sarah Moughal (Tandon ’25) Major: Computer Science Project: Robotic Design Team's TITAN

Sarah Moughal (Tandon '25, left) and Kimberly Sinchi (Tandon '24). Photo by Tracey Friedman

Kimberly: The Robotic Design Team has been active at NYU for at least five years. We’re 60-plus undergrad and grad students majoring in electrical engineering, mechanical engineering, computer science, and integrated design. We’ve named our current project TITAN because of how huge it is. TITAN stands for “Tandon’s innovation in terraforming and autonomous navigation.”

Sarah: We compete in NASA’s lunatics competition every year, which means we build a robot from scratch to be able to compete in lunar excavation and construction. We make pretty much everything in house in the Tandon MakerSpace, and everyone gets a little experience with machining, even if you're not mechanical. A lot of it is about learning how to work with other people—communicating across majors and disciplines and learning how to explain our needs to someone who may not be as well versed in particular technologies as we are. 

Kimberly: With NYU’s Vertically Integrated Project I’ve been able to take what I was interested in and actually have a real world impact with it. NASA takes notes on every Rover that enters this competition. What worked and what didn’t actually influences their designs for rovers they send to the moon and to Mars.

Eva Fuentes (CAS ’24) Major: Anthropology Thesis title: “Examining the relationship between pelvic shape and numbers of lumbar vertebrae in primates”

Eva Fuentes (CAS '24). Photo by Tracey Friedman

I came into NYU thinking I wanted to be an art history major with maybe an archeology minor. To do the archeology minor, you have to take the core classes in anthropology, and so I had to take an intro to human evolution course. I was like, this is the coolest thing I’ve learned—ever. So I emailed people in the department to see if I could get involved. 

Since my sophomore year, I’ve been working in the Evolutionary Morphology Lab with Scott Williams, who is primarily interested in the vertebral column of primates in the fossil record because of how it can inform the evolution of posture and locomotion in humans.

For my senior thesis, I’m looking at the number of lumbar vertebrae—the vertebrae that are in the lower back specifically—and aspects of pelvic shape to see if it is possible to make inferences about the number of lumbar vertebrae a fossil may have had. The bones of the lower back are important because they tell us about posture and locomotion.

I committed to a PhD program at Washington University in St. Louis a few weeks ago to study biological anthropology. I never anticipated being super immersed in the academic world. I don’t come from an academic family. I had no idea what I was doing when I started, but Scott Williams, and everyone in the lab, is extremely welcoming and easy to talk to. It wasn't intimidating to come into this lab at all.

Elsa Nyongesa (GPH, CAS ’24 ) Major: Global Public Health and Biology Project: “Diversity in Breast Oncological Studies: Impacts on Black Women’s Health Outcomes”

Elsa Nyongesa (GPH, CAS '24). Photo by Tracey Friedman

I interned at Weill Cornell Medicine through their Travelers Summer Research Fellowship Program where I worked with my mentor, Dr. Lisa Newman, who is the head of the International Center for the Study of Breast Cancer Subtypes. I analyzed data on the frequency of different types of breast cancer across racial and ethnic groups in New York. At the same time, I was also working with Dr. Rachel Kowolsky to study minority underrepresentation in clinical research. 

In an experiential learning course taught by Professor Joyce Moon Howard in the GPH department, I created a research question based on my internship experience. I thought about how I could combine my experiences from the program which led to my exploration of the correlation between minority underrepresentation in breast oncological studies, and how it affects the health outcomes of Black women with breast cancer.

In my major, we learn about the large scope of health disparities across different groups. This opportunity allowed me to learn more about these disparities in the context of breast cancer research. As a premedical student, this experience broadened my perspective on health. I learned more about the social, economic, and environmental factors influencing health outcomes. It also encouraged me to examine literature more critically to find gaps in knowledge and to think about potential solutions to health problems. Overall, this experience deepened my philosophy of service, emphasizing the importance of health equity and advocacy at the research and clinical level.

Rohan Bajaj (Stern ’24) Major: Finance and statistics Thesis title: “Measuring Socioeconomic Changes and Investor Attitude in Chicago’s Post-Covid Economic Recovery”

Rohan Bajaj (Stern '24). Photo by Tracey Friedman

My thesis is focused on understanding the effects of community-proposed infrastructure on both the socioeconomic demographics of cities and on fiscal health. I’m originally from Chicago, so it made a lot of sense to pay tribute back to the place that raised me. I’m compiling a list of characteristics of infrastructure that has been developed since 2021 as a part of the Chicago Recovery Plan and then assessing how neighborhoods have changed geographically and economically. 

I’m looking at municipal bond yields in Chicago as a way of evaluating the fiscal health of the city. Turns out a lot of community-proposed infrastructure is focused in lower income areas within Chicago rather than higher income areas. So that makes the research question interesting, to see if there’s a correlation between the proposed and developed infrastructure projects, and if these neighborhoods are being gentrified alongside development.

I kind of stumbled into the impact investing industry accidentally from an internship I had during my time at NYU. I started working at a renewable energies brokerage in midtown, where my main job was collecting a lot of market research trends and delivering insights on how these different energy markets would come into play. I then worked with the New York State Insurance Fund, where I helped construct and execute their sustainable investment strategy from the ground up. 

I also took a class called “Design with Climate Change” with Peter Anker in Gallatin during my junior year, and a lot of that class was focused on how to have climate resilient and publicly developed infrastructure, and understanding the effects it has on society. It made me start thinking about the vital role that physical surroundings play in steering communities.

In the short term I want to continue diving into impact-focused investing and help identify urban planners and city government to develop their communities responsibly and effectively.

Andrea Durham (Tandon, ’26)  Major: Biomolecular science Research essay title: “The Rise and Fall of Aduhelm”

Andrea Durham (Tandon '26). Photo by Tracey Friedman

This is an essay I wrote last year in an advanced college essay writing class with Professor Lorraine Doran on the approval of a drug for Alzheimer’s disease called Aduhelm—a monoclonal antibody therapy developed by Biogen in 2021, which was described as being momentous and groundbreaking. But there were irregularities ranging from the design of its clinical trials to government involvement that led to the resignation of three scientists on an advisory panel, because not everybody in the scientific community agreed that it should be approved.

When I was six years old, my grandmother was diagnosed. Seeing the impact that it had over the years broke my heart and ignited a passion in me to pursue research. 

When I started at NYU, I wasn’t really sure what I was going to do in the future, or what opportunities I would go after. This writing class really gave me an opportunity to reflect on the things that were important to me in my life. The September after I wrote this paper, I started volunteering in a lab at Mount Sinai for Alzheimer's disease research, and that’s what I’m doing now—working as a volunteer at the Center for Molecular Integrative Neuroresilience under Dr. Giulio Pasinetti. I have this opportunity to be at the forefront, and because of the work I did in my writing class I feel prepared going into these settings with an understanding of the importance of conducting ethical research and working with integrity.

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Alert: Due to extended maintenance, NSF.gov will be unavailable from 11:00 PM on 5/31 to 2:00 AM on 6/1. Most other NSF systems, including Research.gov, will be unavailable from 11:00 PM on 5/31 to 1:00 PM on 6/1. We apologize for any inconvenience.

Silhouettes of researchers inside a research ship.

Innovation Anywhere, Opportunity Everywhere

Get the latest news on topics you choose, right in your inbox..

Facebook

What's new

Cicadas and the double-brood emergence

Billions of cicadas will emerge this year, including Brood XIX and Brood XIII. Allen Moore, division director for the Division of Environmental Biology at the U.S. National Science Foundation, discusses these mysterious insects on the latest episode of NSF's Discovery Files podcast.

May 20, 2024

Dr. Panch, alongside House AI Caucus co-chair Rep. Anna Eshoo (D-CA) and Rep. Bill Foster (D-IL) at the National Artificial Intelligence Research Resource (NAIRR) Pilot demo day.

This week with NSF Director Panchanathan

Dr. Thiagarajan Soundappan leads a class at Navajo Technical University. The university’s NSF-funded partnership with Harvard is creating new research opportunities for students and offering paths to graduate study.

Navajo Technical University partners with NSF center, creating new opportunities in materials research and education

banner for the expeditions in computing award

NSF invests $36M in computing projects that promise to maximize performance, reduce energy demands

Our priorities.

Promote discovery in science & engineering

America's economic and national security depend on our ability to invest heavily in the technologies of today while making the discoveries that are the foundation for the technologies of tomorrow.

NSF by the numbers

NSF’s Fiscal Year 2023 enacted budget

Percent of budget supporting research, education and related activities

Organizations supported by NSF across every state and U.S. territory

Researchers, entrepreneurs, students and teachers supported by NSF

Faculty of Health and Medical Sciences

  • DKK 36 million from DF...

DKK 36 million from DFF for Innovative Research Projects

Six SUND researchers receive funding from the Independent Research Fund Denmark for groundbreaking research projects within areas such as antibiotic resistance, heart diseases, and gut bacteria.

researchers

Six SUND researchers have been granted funding from the Independent Research Fund Denmark, which aims to give excellent researchers the opportunity to pursue their most innovative ideas and to promote pioneering Danish research.

The grants are part of DFF-Research Project2. In total, 570 researchers applied for the DFF-Research Project2 funding in this round, and 52 researchers received a grant. DFF-Research Project2 typically spans up to 4.5 years.

The SUND research projects:

Dorte Frees, Department of Veterinary and Animal Sciences: Breaking antimicrobial resistance by targeting potentiators, DKK 6.163.069

Rikke Buhl, Department of Veterinary Clinical Sciences : Anti-inflammatory effects of metformin in obesity-induced atrial remodeling, DKK 6.190.631

Manimozhiyan Arumugam, Novo Nordisk Foundation Center for Basic Metabolic Research : Towards machine learning-based dietary modulation of immature infant gut microbiomes, DKK 6.108.835

Maja Arendt, Department of Veterinary Clinical Sciences : Can self-resolving canine neoplasia provide a breakthrough for cancer immunotherapy?, DKK 6.191.592

Anders Lund, Biotech Research & Innovation Centre: Deciphering pathological translation programs in colorectal cancer, DKK 5.938.069

Bo Torben Porse, Biotech Research & Innovation Centre : Identification and targeting of Leukemic Stem Cell regulators, DKK 6.186.324

Read the project descriptions here (in Danish)

There may be other SUND researchers among the 52 grants from the DFF-Research Project2, which are allocated to another recipient institution. Find an overview of all the exciting projects here .

Press Officer Sascha Kael Rasmussen [email protected] +45 93 56 51 68

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Study explains why the brain can robustly recognize images, even without color

Press contact :, media download.

Pawan Sinha looks at a wall of about 50 square photos. The photos are pictures of children with vision loss who have been helped by Project Prakash.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Pawan Sinha looks at a wall of about 50 square photos. The photos are pictures of children with vision loss who have been helped by Project Prakash.

Previous image Next image

Even though the human visual system has sophisticated machinery for processing color, the brain has no problem recognizing objects in black-and-white images. A new study from MIT offers a possible explanation for how the brain comes to be so adept at identifying both color and color-degraded images.

Using experimental data and computational modeling, the researchers found evidence suggesting the roots of this ability may lie in development. Early in life, when newborns receive strongly limited color information, the brain is forced to learn to distinguish objects based on their luminance, or intensity of light they emit, rather than their color. Later in life, when the retina and cortex are better equipped to process colors, the brain incorporates color information as well but also maintains its previously acquired ability to recognize images without critical reliance on color cues.

The findings are consistent with previous work showing that initially degraded visual and auditory input can actually be beneficial to the early development of perceptual systems.

“This general idea, that there is something important about the initial limitations that we have in our perceptual system, transcends color vision and visual acuity. Some of the work that our lab has done in the context of audition also suggests that there’s something important about placing limits on the richness of information that the neonatal system is initially exposed to,” says Pawan Sinha, a professor of brain and cognitive sciences at MIT and the senior author of the study.

The findings also help to explain why children who are born blind but have their vision restored later in life, through the removal of congenital cataracts, have much more difficulty identifying objects presented in black and white. Those children, who receive rich color input as soon as their sight is restored, may develop an overreliance on color that makes them much less resilient to changes or removal of color information.

MIT postdocs Marin Vogelsang and Lukas Vogelsang, and Project Prakash research scientist Priti Gupta, are the lead authors of the study, which appears today in Science . Sidney Diamond, a retired neurologist who is now an MIT research affiliate, and additional members of the Project Prakash team are also authors of the paper.

Seeing in black and white

The researchers’ exploration of how early experience with color affects later object recognition grew out of a simple observation from a study of children who had their sight restored after being born with congenital cataracts. In 2005, Sinha launched Project Prakash (the Sanskrit word for “light”), an effort in India to identify and treat children with reversible forms of vision loss.

Many of those children suffer from blindness due to dense bilateral cataracts. This condition often goes untreated in India, which has the world’s largest population of blind children, estimated between 200,000 and 700,000.

Children who receive treatment through Project Prakash may also participate in studies of their visual development, many of which have helped scientists learn more about how the brain's organization changes following restoration of sight, how the brain estimates brightness, and other phenomena related to vision.

In this study, Sinha and his colleagues gave children a simple test of object recognition, presenting both color and black-and-white images. For children born with normal sight, converting color images to grayscale had no effect at all on their ability to recognize the depicted object. However, when children who underwent cataract removal were presented with black-and-white images, their performance dropped significantly.

This led the researchers to hypothesize that the nature of visual inputs children are exposed to early in life may play a crucial role in shaping resilience to color changes and the ability to identify objects presented in black-and-white images. In normally sighted newborns, retinal cone cells are not well-developed at birth, resulting in babies having poor visual acuity and poor color vision. Over the first years of life, their vision improves markedly as the cone system develops.

Because the immature visual system receives significantly reduced color information, the researchers hypothesized that during this time, the baby brain is forced to gain proficiency at recognizing images with reduced color cues. Additionally, they proposed, children who are born with cataracts and have them removed later may learn to rely too much on color cues when identifying objects, because, as they experimentally demonstrated in the paper, with mature retinas, they commence their post-operative journeys with good color vision.

To rigorously test that hypothesis, the researchers used a standard convolutional neural network, AlexNet, as a computational model of vision. They trained the network to recognize objects, giving it different types of input during training. As part of one training regimen, they initially showed the model grayscale images only, then introduced color images later on. This roughly mimics the developmental progression of chromatic enrichment as babies’ eyesight matures over the first years of life.

Another training regimen comprised only color images. This approximates the experience of the Project Prakash children, because they can process full color information as soon as their cataracts are removed.

The researchers found that the developmentally inspired model could accurately recognize objects in either type of image and was also resilient to other color manipulations. However, the Prakash-proxy model trained only on color images did not show good generalization to grayscale or hue-manipulated images.

“What happens is that this Prakash-like model is very good with colored images, but it’s very poor with anything else. When not starting out with initially color-degraded training, these models just don’t generalize, perhaps because of their over-reliance on specific color cues,” Lukas Vogelsang says.

The robust generalization of the developmentally inspired model is not merely a consequence of it having been trained on both color and grayscale images; the temporal ordering of these images makes a big difference. Another object-recognition model that was trained on color images first, followed by grayscale images, did not do as well at identifying black-and-white objects.

“It’s not just the steps of the developmental choreography that are important, but also the order in which they are played out,” Sinha says.

The advantages of limited sensory input

By analyzing the internal organization of the models, the researchers found that those that begin with grayscale inputs learn to rely on luminance to identify objects. Once they begin receiving color input, they don’t change their approach very much, since they’ve already learned a strategy that works well. Models that began with color images did shift their approach once grayscale images were introduced, but could not shift enough to make them as accurate as the models that were given grayscale images first.

A similar phenomenon may occur in the human brain, which has more plasticity early in life, and can easily learn to identify objects based on their luminance alone. Early in life, the paucity of color information may in fact be beneficial to the developing brain, as it learns to identify objects based on sparse information.

“As a newborn, the normally sighted child is deprived, in a certain sense, of color vision. And that turns out to be an advantage,” Diamond says.

Researchers in Sinha’s lab have observed that limitations in early sensory input can also benefit other aspects of vision, as well as the auditory system. In 2022, they used computational models to show that early exposure to only low-frequency sounds, similar to those that babies hear in the womb, improves performance on auditory tasks that require analyzing sounds over a longer period of time, such as recognizing emotions. They now plan to explore whether this phenomenon extends to other aspects of development, such as language acquisition.

The research was funded by the National Eye Institute of NIH and the Intelligence Advanced Research Projects Activity.

Share this news article on:

Related links.

  • Project Prakash
  • Department of Brain and Cognitive Sciences

Related Topics

  • Brain and cognitive sciences

Related Articles

Against a decorative background is a profile view of a person’s brain scan. Overlayed on the brain are 4 brightly colored renderings of late-visual pathways, like stretchy taffy. The renderings stretch across the brain and are tangled in the center.

Scientists discover anatomical changes in the brains of the newly sighted

Photo from behind a person sitting at a desk, watching dot patterns on a monitor, while another person looks on.

After a lifetime of blindness, newly sighted can immediately identify human locomotion

baby in womb soundwave graphic

Early sound exposure in the womb shapes the auditory system

MIT neuroscientists tested children's spatial imagery abilities by asking them to mentally trace paths along a grid.

Vision is key to spatial skills

Previous item Next item

More MIT News

A little girl lies on a couch under a blanket while a woman holds a thermometer to the girl's mouth.

Understanding why autism symptoms sometimes improve amid fever

Read full story →

Three rows of five portrait photos

School of Engineering welcomes new faculty

Illustration shows a red, stylized computer chip and circuit board with flames and lava around it.

Turning up the heat on next-generation semiconductors

Sarah Milholland stands in front of an MIT building on a sunny day spring day. Leaves on the trees behind her are just beginning to emerge.

Sarah Millholland receives 2024 Vera Rubin Early Career Award

Grayscale photo of Nolen Scruggs seated on a field of grass

A community collaboration for progress

Headshots of Grant Knappe and Arjav Shah

MIT scholars will take commercial break with entrepreneurial scholarship

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

ScienceDaily

New 'atlas' provides unprecedented insights on how genes function in early embryo development

Ten-year project results in new gene databank that includes many genes tied to human disorders.

Although the Human Genome Project announced the completed sequencing of 20,000 human genes more than 20 years ago, scientists are still working to grasp how fully formed beings emerge from basic genetic instructions.

Biomedical efforts to learn how disorders can take hold in the earliest stages of development would benefit from knowing specifically how complex organisms arise from a single fertilized cell. Researchers from the University of California San Diego have captured a new understanding of how embryonic development unfolds through the lens of a simple model organism.

The comprehensive report led by School of Biological Sciences scientist Rebecca Green and Professor Karen Oegema provides a play-by-play of how genes function during embryonic development in Caenorhabditis elegans ( C. elegans ), a millimeter-long roundworm known to biologists as "the worm." Despite its tiny size, C. elegans has been a workhorse for scientists because so much of its biology, including early developmental stages, resembles that of higher organisms, including humans. The research, which forges a decade's worth of work by a collaborative multidisciplinary team into a "genetic atlas," is published in the journal Cell .

"By characterizing many of these poorly understood genes in a simple model organism, we can learn about what they are doing in more complex systems like humans," said Green, a bioinformatics scientist and first author of the paper. "While the work is done using C. elegans , the majority of genes analyzed are present in humans and mutations in many of them are associated with human developmental disorders."

The researchers developed an automated system for profiling the function of genes required for embryogenesis, the process by which a fertilized egg, which starts as a single cell, develops into an organism with different tissues, such as skin, digestive tract, neurons and muscles. They used time-lapse 4-D imaging to methodically track the function of each gene throughout all embryonic stages, including when cell identity is determined and when the tissues in the organism take shape. The researchers monitored this process using an approach known as "computer vision" to track specific aspects of development, including the number of cells in each tissue. They also tracked the mass, position and shape of the tissues within the developing organism.

To fully understand the function of nearly 500 genes that are important in embryonic development, they blocked the function of each gene, one at a time. This allowed the researchers to group genes into common clusters that revealed the role of each gene through "guilt by association." Green likens the process to automated facial recognition, in which images with features that appear similar are grouped together. By using this meticulous process to analyze a collection of nearly 7,000 4-D embryogenesis movies, the team was able to create "fingerprints" for individual genes, such as those required for cells to become muscle or skin. This helped them understand the physiological roles that the genes play in embryogenesis, such as controlling the formation of tissues like the intestine or nervous system.

"We show that our approach correctly classifies the functions of previously characterized genes, identifies functions for poorly characterized genes and describes new gene and pathway relationships," said Oegema, a faculty member in the Department of Cell and Developmental Biology and the paper's senior author. "A lot of genes that we thought served mundane functions were found to have important roles that were underappreciated."

In conjunction with the Cell paper, the abundance of data from the research led to the launch of a new online resource that houses all of the information. PhenoBank now offers a portal to the genetic atlas developed during the research.

"The approach yielded surprising insights into how metabolic pathways are specialized during embryogenesis and revealed interesting new connections between different molecular machines involved in gene regulation," said Professor Arshad Desai, a paper coauthor.

Beyond the 500 genes covered in the Cell study, the researchers are now working to finish the entire set of 2,000 C. elegans genes that have been implicated in embryogenesis.

"The broad interest lies in the approach developed to tackle arguably the most challenging problem in biology: how a single cell with a genome that contains approximately 20,000 genes (similar to the number of genes in humans) is able to build an entire organism," he said.

Authors of the paper included: Rebecca Green, Renat Khaliullin, Zhiling Zhao, Stacy Ochoa, Jeffrey Hendel, Tiffany-Lynn Chow, HongKee Moon, Ronald Biggs, Arshad Desai and Karen Oegema. The researchers also thank Tony Hyman and the Scientific Computing group at Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) for facilitating the PhenoBank build.

  • Medical Topics
  • Human Biology
  • Parkinson's Research
  • Developmental Biology
  • Evolutionary Biology
  • Biotechnology and Bioengineering
  • Developmental biology
  • Neural development
  • Somatic cell nuclear transfer
  • Molecular biology
  • Adult stem cell
  • Cell (biology)

Story Source:

Materials provided by University of California - San Diego . Original written by Mario Aguilera. Note: Content may be edited for style and length.

Journal Reference :

  • Rebecca A. Green, Renat N. Khaliullin, Zhiling Zhao, Stacy D. Ochoa, Jeffrey M. Hendel, Tiffany-Lynn Chow, HongKee Moon, Ronald J. Biggs, Arshad Desai, Karen Oegema. Automated profiling of gene function during embryonic development . Cell , 2024; DOI: 10.1016/j.cell.2024.04.012

Cite This Page :

Explore More

  • Symbiotic Bacteria Communicate With Plants
  • Birdsong and Human Voice: Same Genetic Blueprint
  • Molecular Dysregulations in PTSD and Depression
  • Look, Then Listen to 1 Person in a Crowd: AI
  • Predicting Individual Cancer Risk
  • Sexual Parasitism Helped Anglerfish Enter ...
  • Treating Cataracts and Other Eye Conditions
  • Early Arrival of Palaeolithic People On Cyprus
  • Networks Regulating Gene Function in Human Brain
  • Birth of Universe's Earliest Galaxies

Trending Topics

Strange & offbeat.

  • Skip to main content
  • Skip to FDA Search
  • Skip to in this section menu
  • Skip to footer links

U.S. flag

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

U.S. Food and Drug Administration

  •   Search
  •   Menu
  • Science & Research
  • Science and Research Special Topics
  • Advancing Regulatory Science

The Digital Variome: Understanding the Implications of Digital Tools on Health

CERSI Collaborators: University of California at San Francisco (UCSF): Andrew Auerbach MD MPH (UCSF, Variome and DOVeS); Benjamin Rosner MD PhD (UCSF, Variome and DOVeS co-PI); Stanford Univerisity (Stanford): Matthew Horridge PhD (Stanford, DOVeS)

FDA Collaborators: Center for Devices and Radiological Health(CDRH): Bakul Patel, MS, MBA (Formerly of CDRH); Vinay Pai, PhD; Catherine Bahr; Leeda Rashid, MD, MPH, ABFM; Arti Tandon, PhD; Charlie Yongpravat, PhD; Anindita Saha, PhD

CERSI Subcontractors: Flying Buttress Associates- Jeph Herrin, PhD

CERSI In-Kind Collaborators: Stanford Univerisity (Stanford): Mark Musen, PhD (Stanford, DOVeS)

Non-Federal Entity Collaborators: Johnson and Johnson- Karla Childers, MSJ, Paul Coplan, ScD, MBA, Stephen Johnston, MSc

Project Start Date: October 12, 2021 Project End Date: February 28, 2022-->

Regulatory Science Framework

Charge I “Modernize development and evaluation of FDA-regulated project” and Focus Area “C. Analytical and computational Methods.”

Regulatory Science Challenge

There is a consistent need to research and develop the methods used to ensure the quality and safety of FDA-regulated products. Research and development in this area helps FDA employ scientifically valid approaches for combining patient input and data from multiple sources. These 'real world' data insights are key to informing regulatory decision-making both for traditionally regulated products (e.g. drugs and devices) as well as for new and emerging products such as digital health tools. Furthermore, as the FDA considers new products for regulatory approval, they may examine whether these new products are “substantially equivalent” to previously approved products. The wave of new digital health products creates regulatory decision challenges that need to be informed by real world data and data that help identify the degree to which products may be similar.

Project Description and Goals

The Digital Variome project extends work that is ongoing as part of our overarching CERSI project Developing Frameworks and Tools for Integration of Digital Health Tools into Clinical Practice , a national network of leading academic medical centers, researchers, and innovators working to identify how real world measures and data can be used across types of software used in health, and the eventual data sources required to carry out real world performance measurement and post-market surveillance of digital health tools (DHTs). ADviCE identified several challenges to DHT adoption: (1) Variable definitions of which DHTs are relevant to clinical care delivery; (2) Lack of consistent, common terms to describe DHTs during selection, (3) Wide variability in how health systems integrate DHTs into practice and, (4) Lack of a framework and tools to evaluate DHTs’ real-world performance through post-market surveillance.

The ADviCE project in turn framed the goals of the Variome proposal, which focused on identifying data sources and potential partnerships needed to create a learning health collaboration that might leverage tools such as NEST or resources (e.g., PCORnet, or payor data) to provide data needed to carry out post-market surveillance of DHTs. Few of these data networks or partnerships could gather information needed for DHT post-market surveillance, so investigators turned their attention to tools which would both facilitate efficient specification of DHT characteristics while also being flexibly able to accommodate measures that might vary between DHTs even though applicable to similar patients or health systems.

With this realization, the research team extended their Priority Measurement framework and expanded it to represent a range of potential metrics applicable to real world performance. Investigators built on their consensus work from Developing Frameworks and Tools for Integration of Digital Health Tools into Clinical Practice to identify specific domains and measures relevant to each broad domain. For example, within the area of Product Performance  Cybersecurity, investigators developed subdomains where metric identification was recognized as a key next step. Not surprisingly, a wide range of potential measures were identified. For example, each of the Measure Concepts for Real World Health might have dozens or even hundreds of patient- or population-specific metrics that are supported by evidence, are broadly used, or both.

This realization led to development of the Digital medicine Outcomes Value Set (DOVeS), as a powerful and flexible approach to classifying digital health tools according to key features and important clinical outcomes identified by our work to this point.

DOVeS was blueprinted using Protégé software using input from research collaborators and professional ontologists so that it permits flexible expansion as outcomes or population definitions change and technology advances. DOVeS was then tested and validated against real DHT and company characteristics to yield a working prototype that facilitates search and display of data using the overall ADviCE/Variome approach. DOVeS has been published on BioPortal and is publicly available for broad use.

DOVeS has the potential to be scaled up to include a broader and more representative sample of real-world digital health tools, accommodate new technologies (e.g. large language lodels (LLMs)), while also being tested for usability and feasibility as a practical framework for use by health systems, vendors, and regulators use.

Research Outcomes/Results

There are several outcomes to date associated with the development of the Variome project and DOVeS Ontology. The first is that the DOVeS ontology has been expanded substantially over the course of this support, informed by real world digital health outcomes gleaned from industry and academic experts. The second is that DOVeS has been made publicly available on the BioPortal website so that a community of digital health experts may continue to contribute to it over time. The third is that a prototype user interface overlying DOVeS has been created (only a non-functional wireframe was originally proposed) leading to functional demonstrations that show the power and value of DOVeS in identifying tools based on common outcomes. Fourth, several public presentations of DOVeS have been made. Finally, a peer reviewed publication on the development of DOVeS is forthcoming and will help disseminate awareness of the ontology and its value. In the future, investigators hope to convert the prototype front end user interface into a robust platform capable of supporting regulatory insights as well as health system leader inquiries and decisions about digital health tools.

Research Impacts

This project enhances foundational requirements for regulatory science research by providing the FDA and other stakeholders with a new way to categorize and identify digital health tools based on outcomes they influence. This is particularly valuable to enable more appropriate apples-to-apples comparison of digital health tools that influence similar outcomes which could be valuable for "substantial equivalence" assessment as well as both superiority and non-inferiority considerations. The ontology is also particularly valuable for ongoing post-market surveillance.

Publications

No peer-reviewed publications to date; Investigators plan to analyze and publish follow-up study results.

Dr. Auerbach has published invited editorials in JAMA IM on digital health regulation based in part on his experiences with ADviCE.

IMAGES

  1. 150 Best Biology Research Paper Topics

    independent research project ideas biology

  2. 3 Unique Ideas for Biology Projects to Ramp Up Your Students

    independent research project ideas biology

  3. 23 Ideas for Science Experiments Using Plants

    independent research project ideas biology

  4. Biology Independent Research Project

    independent research project ideas biology

  5. Biology Independent Research and Internship Opportunities

    independent research project ideas biology

  6. ⭐ Good topics for biology projects. 134 Interesting Biology Topics for

    independent research project ideas biology

VIDEO

  1. Biology investigatory project file on Biodiversity in Amazon Rainforest| class12th

  2. Class 12th Biology Project file on Cancer

  3. BIOLOGY INVESTIGATORY PROJECT ON GENETIC DISORDERS (class XII )🦠🧫🧬🔬

  4. Exclusive Project topics for Life science @microbiologyintamil2811

  5. The great ideas of biology

  6. 21-Batch: Basic plots practice in R

COMMENTS

  1. 100 Biology Research Topics for Students & Researchers

    Research Topics in Biology for Undergraduates. 41. Investigating the effects of pollutants on local plant species. Microbial diversity and ecosystem functioning in a specific habitat. Understanding the genetics of antibiotic resistance in bacteria. Impact of urbanization on bird populations and biodiversity. Investigating the role of pheromones ...

  2. Biology Research Projects for High School Students: 20 Ideas To Try

    In this project, we will perform and systematic review and meta-analysis of fasting or diet-induced autophagy and its benefits on the body. You will gain skills in 1) searching and reviewing primary literature, 2) computational skills for performing data analysis (R language), and 3) writing your scientific findings.

  3. 200+ Interesting Biology Research Topics For Students In 2023

    Biology Research Topics For College Students. 1. Investigating the role of genetic mutations in cancer development. See also Top 100 Spring Boot Project Ideas [Updated] 2. Analyzing the impact of climate changes on wildlife populations. 3. Studying the ecology of invasive species in urban environments. 4.

  4. Biology Research Projects for High School Students

    Animals, Plants, and Nature Project Ideas. Next up, we'll discuss the biology research projects related to animals, plants, and nature. These environments are very close to human and they are definitely very interesting to explore. 1. Examining the Impact of Genetically Modified Mosquitoes on Disease Rates.

  5. 30 Research Ideas in Biology for High School Students

    Here are 30 research ideas for high school students to stimulate inquiry and enhance their understanding of biological principles. 1. Genetics and Heredity: Understanding Life's Blueprint. Genetics and heredity are the foundation of life's diversity.

  6. 100 Biology Research Topics Ideas For Students

    Eloquent Examples of Popular Biology Research Topics. To make things as simple as possible for you, we've put together a list of biology research project ideas. You will find 100 topics on various subjects below. Of course, you can use any of our topics for free.

  7. 49 Most Interesting Biology Research Topics

    The first of our potentially easy biology research topics: climate change and ecosystems. Investigate how ecosystems respond and adapt to the changing climate. And learn about shifts in species distributions, phenology, and ecological interactions. 1) How are different ecosystems responding to temperature changes and altered precipitation ...

  8. Independent Research Projects for High School Students

    Social Science Surveys and Studies. Use research methods from sociology, political science, anthropology, economics, and psychology to craft a survey study or field observation around a high school research project idea that interests you. Collect data from peers, your community, and online sources, and compile findings.

  9. Examples of Undergraduate Research Projects

    Molecular and Cellular Biology; Ecology, Evolution, and Organismal Biology; Neuroscience; Teaching Faculty; Research Faculty; Secondary and Adjunct; Emeritus Faculty; Postdoctoral Scholars; ... Examples of Undergraduate Research Projects Fall 2021 Projects. Student Research Proposal; Whitney Brown: Characterizing the role of FOXP3 in ccRCC ...

  10. Seventy-Five Scientific Research Projects You Can Contribute to Online

    With Floating Forests, you'll sift through 40 years of satellite images of the ocean surface identifying kelp forests, which are foundational for marine ecosystems, providing shelter for shrimp ...

  11. Independent Study

    Independent study projects provide research experience and academic credit for laboratory, field work, or theoretical research. Biology majors are encouraged to engage in independent study projects in areas of their interest. Independent study projects may be done with any faculty in the biological sciences. Eligible students may use their independent research as the basis for an honors thesis ...

  12. Independent Research Projects

    Independent Research Projects can be undertaken with any professor in the Biology Department. To identify potential supervisors, browse our Faculty Profiles and connect with professors whose research expertise aligns with your own interests.. In order to register for an Independent Research Project, you must complete an Independent Research Project Application and submit it to nancy.nelson [at ...

  13. Introductory Biology 152 Independent Research Project Overview

    The Introductory Biology 152 Independent Research Project (IP) is designed to help our students gain real insight into what biologists actually do by involving them in either: Mentored experimental research: Working with a researcher on campus, students propose a research question, learn and execute the experimental techniques required to examine the question, analyze data and…

  14. 8. Investigative projects

    We see the extended project as an opportunity to engage students in science whilst boosting independent learning, creativity, communication and teamwork skills. Lisa Niven works at All Saints RC School in York, which was praised as an example of best practice for the role played by extended investigative projects in Year 12.

  15. Student Research

    Students participate in a lab, field, or modeling project in which they themselves have a say in the design, implementation, and interpretation of experiments. It is expected that the student will meet regularly with his or her mentor as well as gain exposure to the scientific literature of the field. Follow the instructions below to get started.

  16. Your Guide to Conducting Independent Research Projects

    Step 2: Gather information. This may be self-explanatory, but it's time to research! Have a variety of primary, secondary, and tertiary sources. Good places to find sources are your local library, school databases, or Google Scholar . Since not everything on the internet is true, vetting your source is crucial.

  17. 15 Biology Research Opportunities for High School Students

    Texas Tech University's Research Program is pivotal in cultivating the next generation of scientists and healthcare professionals by providing high school students with university resources and mentorship. 11. University of Chicago's Research in the Biological Sciences. Location: University of Chicago.

  18. PDF INDEPENDENT SCIENCE RESEARCH PROJECT IDEAS

    Directions: This exercise is to be done with 2 references (sources) BEFORE you complete the 3 IDEAS assignment. While reading a science-related book, article, or journal of interest in the area in which you think you want to experiment, reflect and expand on the following questions. Try to develop a researchable / testable question.

  19. A Guide For Pursuing Independent Scientific Research ...

    NHSJS is a free, online, student-run and peer-reviewed research journal that is targeted towards high school students. To be published in this journal, students don't have to do independent ...

  20. 25+ Best Science Research Ideas for High School Students

    Some topics you can research include: 7. Tumor progression and how cancer cells invade and interact with other cells. 8. Cancer immunotherapy: the study of how cancer cells evade the immune system and how we can harness the immune system to battle cancer. 9.

  21. Plant Biology Science Projects

    Science Fair Project Idea. Plants move—not very quickly compared to animals, but they do move. Their roots grow downward in response to gravity, and their stems grow upward toward the Sun. In this plant biology science fair project, you will investigate how young plants respond through movement to light. Read more.

  22. How to Build an Independent Research Project

    Step #2: Find a mentor (if you can) After identifying a broad area of interest, invest time in finding a mentor. Certainly, you do not need to work with a mentor to conduct research. But, in my experience, it's hard to get started on a research project without some guidance.

  23. Project-Based Learning in High School Science

    The goal of project-based is to learn through a process to ultimately complete a product whereas the goal of problem-based is to create a solution to a problem. My main motivations in incorporating more project-based learning in high school science were to: Create more opportunities for nontraditional assessments. Increase student autonomy.

  24. 9 Undergraduate Research Projects That Wowed Us This Year

    Many present their work at research conferences, and some even co-author work with faculty and graduate students that leads to publication. As 2023-2024 drew to a close, the NYU News team coordinated with the Office of the Provost to pull together a snapshot of the research efforts that students undertook during this school year.

  25. NSF

    NSF's mission is to advance the progress of science, ... NSF is an independent federal agency that supports science and engineering in all 50 states and U.S. territories. Learn more. ... We focus on accelerating new technologies and big ideas — from biology to technology.

  26. Integration of Digital Health Tools into Clinical Practice

    Project Start Date: May 1, 2018 Project End Date: February 28, 2022. While FDA funding of this project has ended, the research continues to evolve and result in additional findings, as described ...

  27. DKK 36 million from DFF for Innovative Research Projects

    Six SUND researchers have been granted funding from the Independent Research Fund Denmark, which aims to give excellent researchers the opportunity to pursue their most innovative ideas and to promote pioneering Danish research. The grants are part of DFF-Research Project2.

  28. Study explains why the brain can robustly recognize images, even

    MIT postdocs Marin Vogelsang and Lukas Vogelsang, and Project Prakash research scientist Priti Gupta, are the lead authors of the study, which appears today in Science. Sidney Diamond, a retired neurologist who is now an MIT research affiliate, and additional members of the Project Prakash team are also authors of the paper. Seeing in black and ...

  29. New 'atlas' provides unprecedented insights on how genes function in

    Biologists have provided new insights on a longstanding puzzle in biology: How complex organisms arise from a single fertilized cell. Producing a new 'gene atlas' with 4-D imaging, the researchers ...

  30. The Digital Variome: Understanding the Implications of Digital Tools on

    This project enhances foundational requirements for regulatory science research by providing the FDA and other stakeholders with a new way to categorize and identify digital health tools based on ...