• Privacy Policy

Research Method

Home » Research Report – Example, Writing Guide and Types

Research Report – Example, Writing Guide and Types

Table of Contents

Research Report

Research Report

Definition:

Research Report is a written document that presents the results of a research project or study, including the research question, methodology, results, and conclusions, in a clear and objective manner.

The purpose of a research report is to communicate the findings of the research to the intended audience, which could be other researchers, stakeholders, or the general public.

Components of Research Report

Components of Research Report are as follows:

Introduction

The introduction sets the stage for the research report and provides a brief overview of the research question or problem being investigated. It should include a clear statement of the purpose of the study and its significance or relevance to the field of research. It may also provide background information or a literature review to help contextualize the research.

Literature Review

The literature review provides a critical analysis and synthesis of the existing research and scholarship relevant to the research question or problem. It should identify the gaps, inconsistencies, and contradictions in the literature and show how the current study addresses these issues. The literature review also establishes the theoretical framework or conceptual model that guides the research.

Methodology

The methodology section describes the research design, methods, and procedures used to collect and analyze data. It should include information on the sample or participants, data collection instruments, data collection procedures, and data analysis techniques. The methodology should be clear and detailed enough to allow other researchers to replicate the study.

The results section presents the findings of the study in a clear and objective manner. It should provide a detailed description of the data and statistics used to answer the research question or test the hypothesis. Tables, graphs, and figures may be included to help visualize the data and illustrate the key findings.

The discussion section interprets the results of the study and explains their significance or relevance to the research question or problem. It should also compare the current findings with those of previous studies and identify the implications for future research or practice. The discussion should be based on the results presented in the previous section and should avoid speculation or unfounded conclusions.

The conclusion summarizes the key findings of the study and restates the main argument or thesis presented in the introduction. It should also provide a brief overview of the contributions of the study to the field of research and the implications for practice or policy.

The references section lists all the sources cited in the research report, following a specific citation style, such as APA or MLA.

The appendices section includes any additional material, such as data tables, figures, or instruments used in the study, that could not be included in the main text due to space limitations.

Types of Research Report

Types of Research Report are as follows:

Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master’s or Doctoral degree, although it can also be written by researchers or scholars in other fields.

Research Paper

Research paper is a type of research report. A research paper is a document that presents the results of a research study or investigation. Research papers can be written in a variety of fields, including science, social science, humanities, and business. They typically follow a standard format that includes an introduction, literature review, methodology, results, discussion, and conclusion sections.

Technical Report

A technical report is a detailed report that provides information about a specific technical or scientific problem or project. Technical reports are often used in engineering, science, and other technical fields to document research and development work.

Progress Report

A progress report provides an update on the progress of a research project or program over a specific period of time. Progress reports are typically used to communicate the status of a project to stakeholders, funders, or project managers.

Feasibility Report

A feasibility report assesses the feasibility of a proposed project or plan, providing an analysis of the potential risks, benefits, and costs associated with the project. Feasibility reports are often used in business, engineering, and other fields to determine the viability of a project before it is undertaken.

Field Report

A field report documents observations and findings from fieldwork, which is research conducted in the natural environment or setting. Field reports are often used in anthropology, ecology, and other social and natural sciences.

Experimental Report

An experimental report documents the results of a scientific experiment, including the hypothesis, methods, results, and conclusions. Experimental reports are often used in biology, chemistry, and other sciences to communicate the results of laboratory experiments.

Case Study Report

A case study report provides an in-depth analysis of a specific case or situation, often used in psychology, social work, and other fields to document and understand complex cases or phenomena.

Literature Review Report

A literature review report synthesizes and summarizes existing research on a specific topic, providing an overview of the current state of knowledge on the subject. Literature review reports are often used in social sciences, education, and other fields to identify gaps in the literature and guide future research.

Research Report Example

Following is a Research Report Example sample for Students:

Title: The Impact of Social Media on Academic Performance among High School Students

This study aims to investigate the relationship between social media use and academic performance among high school students. The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The findings indicate that there is a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students. The results of this study have important implications for educators, parents, and policymakers, as they highlight the need for strategies that can help students balance their social media use and academic responsibilities.

Introduction:

Social media has become an integral part of the lives of high school students. With the widespread use of social media platforms such as Facebook, Twitter, Instagram, and Snapchat, students can connect with friends, share photos and videos, and engage in discussions on a range of topics. While social media offers many benefits, concerns have been raised about its impact on academic performance. Many studies have found a negative correlation between social media use and academic performance among high school students (Kirschner & Karpinski, 2010; Paul, Baker, & Cochran, 2012).

Given the growing importance of social media in the lives of high school students, it is important to investigate its impact on academic performance. This study aims to address this gap by examining the relationship between social media use and academic performance among high school students.

Methodology:

The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The questionnaire was developed based on previous studies and was designed to measure the frequency and duration of social media use, as well as academic performance.

The participants were selected using a convenience sampling technique, and the survey questionnaire was distributed in the classroom during regular school hours. The data collected were analyzed using descriptive statistics and correlation analysis.

The findings indicate that the majority of high school students use social media platforms on a daily basis, with Facebook being the most popular platform. The results also show a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students.

Discussion:

The results of this study have important implications for educators, parents, and policymakers. The negative correlation between social media use and academic performance suggests that strategies should be put in place to help students balance their social media use and academic responsibilities. For example, educators could incorporate social media into their teaching strategies to engage students and enhance learning. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. Policymakers could develop guidelines and policies to regulate social media use among high school students.

Conclusion:

In conclusion, this study provides evidence of the negative impact of social media on academic performance among high school students. The findings highlight the need for strategies that can help students balance their social media use and academic responsibilities. Further research is needed to explore the specific mechanisms by which social media use affects academic performance and to develop effective strategies for addressing this issue.

Limitations:

One limitation of this study is the use of convenience sampling, which limits the generalizability of the findings to other populations. Future studies should use random sampling techniques to increase the representativeness of the sample. Another limitation is the use of self-reported measures, which may be subject to social desirability bias. Future studies could use objective measures of social media use and academic performance, such as tracking software and school records.

Implications:

The findings of this study have important implications for educators, parents, and policymakers. Educators could incorporate social media into their teaching strategies to engage students and enhance learning. For example, teachers could use social media platforms to share relevant educational resources and facilitate online discussions. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. They could also engage in open communication with their children to understand their social media use and its impact on their academic performance. Policymakers could develop guidelines and policies to regulate social media use among high school students. For example, schools could implement social media policies that restrict access during class time and encourage responsible use.

References:

  • Kirschner, P. A., & Karpinski, A. C. (2010). Facebook® and academic performance. Computers in Human Behavior, 26(6), 1237-1245.
  • Paul, J. A., Baker, H. M., & Cochran, J. D. (2012). Effect of online social networking on student academic performance. Journal of the Research Center for Educational Technology, 8(1), 1-19.
  • Pantic, I. (2014). Online social networking and mental health. Cyberpsychology, Behavior, and Social Networking, 17(10), 652-657.
  • Rosen, L. D., Carrier, L. M., & Cheever, N. A. (2013). Facebook and texting made me do it: Media-induced task-switching while studying. Computers in Human Behavior, 29(3), 948-958.

Note*: Above mention, Example is just a sample for the students’ guide. Do not directly copy and paste as your College or University assignment. Kindly do some research and Write your own.

Applications of Research Report

Research reports have many applications, including:

  • Communicating research findings: The primary application of a research report is to communicate the results of a study to other researchers, stakeholders, or the general public. The report serves as a way to share new knowledge, insights, and discoveries with others in the field.
  • Informing policy and practice : Research reports can inform policy and practice by providing evidence-based recommendations for decision-makers. For example, a research report on the effectiveness of a new drug could inform regulatory agencies in their decision-making process.
  • Supporting further research: Research reports can provide a foundation for further research in a particular area. Other researchers may use the findings and methodology of a report to develop new research questions or to build on existing research.
  • Evaluating programs and interventions : Research reports can be used to evaluate the effectiveness of programs and interventions in achieving their intended outcomes. For example, a research report on a new educational program could provide evidence of its impact on student performance.
  • Demonstrating impact : Research reports can be used to demonstrate the impact of research funding or to evaluate the success of research projects. By presenting the findings and outcomes of a study, research reports can show the value of research to funders and stakeholders.
  • Enhancing professional development : Research reports can be used to enhance professional development by providing a source of information and learning for researchers and practitioners in a particular field. For example, a research report on a new teaching methodology could provide insights and ideas for educators to incorporate into their own practice.

How to write Research Report

Here are some steps you can follow to write a research report:

  • Identify the research question: The first step in writing a research report is to identify your research question. This will help you focus your research and organize your findings.
  • Conduct research : Once you have identified your research question, you will need to conduct research to gather relevant data and information. This can involve conducting experiments, reviewing literature, or analyzing data.
  • Organize your findings: Once you have gathered all of your data, you will need to organize your findings in a way that is clear and understandable. This can involve creating tables, graphs, or charts to illustrate your results.
  • Write the report: Once you have organized your findings, you can begin writing the report. Start with an introduction that provides background information and explains the purpose of your research. Next, provide a detailed description of your research methods and findings. Finally, summarize your results and draw conclusions based on your findings.
  • Proofread and edit: After you have written your report, be sure to proofread and edit it carefully. Check for grammar and spelling errors, and make sure that your report is well-organized and easy to read.
  • Include a reference list: Be sure to include a list of references that you used in your research. This will give credit to your sources and allow readers to further explore the topic if they choose.
  • Format your report: Finally, format your report according to the guidelines provided by your instructor or organization. This may include formatting requirements for headings, margins, fonts, and spacing.

Purpose of Research Report

The purpose of a research report is to communicate the results of a research study to a specific audience, such as peers in the same field, stakeholders, or the general public. The report provides a detailed description of the research methods, findings, and conclusions.

Some common purposes of a research report include:

  • Sharing knowledge: A research report allows researchers to share their findings and knowledge with others in their field. This helps to advance the field and improve the understanding of a particular topic.
  • Identifying trends: A research report can identify trends and patterns in data, which can help guide future research and inform decision-making.
  • Addressing problems: A research report can provide insights into problems or issues and suggest solutions or recommendations for addressing them.
  • Evaluating programs or interventions : A research report can evaluate the effectiveness of programs or interventions, which can inform decision-making about whether to continue, modify, or discontinue them.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies.

When to Write Research Report

A research report should be written after completing the research study. This includes collecting data, analyzing the results, and drawing conclusions based on the findings. Once the research is complete, the report should be written in a timely manner while the information is still fresh in the researcher’s mind.

In academic settings, research reports are often required as part of coursework or as part of a thesis or dissertation. In this case, the report should be written according to the guidelines provided by the instructor or institution.

In other settings, such as in industry or government, research reports may be required to inform decision-making or to comply with regulatory requirements. In these cases, the report should be written as soon as possible after the research is completed in order to inform decision-making in a timely manner.

Overall, the timing of when to write a research report depends on the purpose of the research, the expectations of the audience, and any regulatory requirements that need to be met. However, it is important to complete the report in a timely manner while the information is still fresh in the researcher’s mind.

Characteristics of Research Report

There are several characteristics of a research report that distinguish it from other types of writing. These characteristics include:

  • Objective: A research report should be written in an objective and unbiased manner. It should present the facts and findings of the research study without any personal opinions or biases.
  • Systematic: A research report should be written in a systematic manner. It should follow a clear and logical structure, and the information should be presented in a way that is easy to understand and follow.
  • Detailed: A research report should be detailed and comprehensive. It should provide a thorough description of the research methods, results, and conclusions.
  • Accurate : A research report should be accurate and based on sound research methods. The findings and conclusions should be supported by data and evidence.
  • Organized: A research report should be well-organized. It should include headings and subheadings to help the reader navigate the report and understand the main points.
  • Clear and concise: A research report should be written in clear and concise language. The information should be presented in a way that is easy to understand, and unnecessary jargon should be avoided.
  • Citations and references: A research report should include citations and references to support the findings and conclusions. This helps to give credit to other researchers and to provide readers with the opportunity to further explore the topic.

Advantages of Research Report

Research reports have several advantages, including:

  • Communicating research findings: Research reports allow researchers to communicate their findings to a wider audience, including other researchers, stakeholders, and the general public. This helps to disseminate knowledge and advance the understanding of a particular topic.
  • Providing evidence for decision-making : Research reports can provide evidence to inform decision-making, such as in the case of policy-making, program planning, or product development. The findings and conclusions can help guide decisions and improve outcomes.
  • Supporting further research: Research reports can provide a foundation for further research on a particular topic. Other researchers can build on the findings and conclusions of the report, which can lead to further discoveries and advancements in the field.
  • Demonstrating expertise: Research reports can demonstrate the expertise of the researchers and their ability to conduct rigorous and high-quality research. This can be important for securing funding, promotions, and other professional opportunities.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies. Producing a high-quality research report can help ensure compliance with these requirements.

Limitations of Research Report

Despite their advantages, research reports also have some limitations, including:

  • Time-consuming: Conducting research and writing a report can be a time-consuming process, particularly for large-scale studies. This can limit the frequency and speed of producing research reports.
  • Expensive: Conducting research and producing a report can be expensive, particularly for studies that require specialized equipment, personnel, or data. This can limit the scope and feasibility of some research studies.
  • Limited generalizability: Research studies often focus on a specific population or context, which can limit the generalizability of the findings to other populations or contexts.
  • Potential bias : Researchers may have biases or conflicts of interest that can influence the findings and conclusions of the research study. Additionally, participants may also have biases or may not be representative of the larger population, which can limit the validity and reliability of the findings.
  • Accessibility: Research reports may be written in technical or academic language, which can limit their accessibility to a wider audience. Additionally, some research may be behind paywalls or require specialized access, which can limit the ability of others to read and use the findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 11: Presenting Your Research

Writing a Research Report in American Psychological Association (APA) Style

Learning Objectives

  • Identify the major sections of an APA-style research report and the basic contents of each section.
  • Plan and write an effective APA-style research report.

In this section, we look at how to write an APA-style empirical research report , an article that presents the results of one or more new studies. Recall that the standard sections of an empirical research report provide a kind of outline. Here we consider each of these sections in detail, including what information it contains, how that information is formatted and organized, and tips for writing each section. At the end of this section is a sample APA-style research report that illustrates many of these principles.

Sections of a Research Report

Title page and abstract.

An APA-style research report begins with a  title page . The title is centred in the upper half of the page, with each important word capitalized. The title should clearly and concisely (in about 12 words or fewer) communicate the primary variables and research questions. This sometimes requires a main title followed by a subtitle that elaborates on the main title, in which case the main title and subtitle are separated by a colon. Here are some titles from recent issues of professional journals published by the American Psychological Association.

  • Sex Differences in Coping Styles and Implications for Depressed Mood
  • Effects of Aging and Divided Attention on Memory for Items and Their Contexts
  • Computer-Assisted Cognitive Behavioural Therapy for Child Anxiety: Results of a Randomized Clinical Trial
  • Virtual Driving and Risk Taking: Do Racing Games Increase Risk-Taking Cognitions, Affect, and Behaviour?

Below the title are the authors’ names and, on the next line, their institutional affiliation—the university or other institution where the authors worked when they conducted the research. As we have already seen, the authors are listed in an order that reflects their contribution to the research. When multiple authors have made equal contributions to the research, they often list their names alphabetically or in a randomly determined order.

In some areas of psychology, the titles of many empirical research reports are informal in a way that is perhaps best described as “cute.” They usually take the form of a play on words or a well-known expression that relates to the topic under study. Here are some examples from recent issues of the Journal Psychological Science .

  • “Smells Like Clean Spirit: Nonconscious Effects of Scent on Cognition and Behavior”
  • “Time Crawls: The Temporal Resolution of Infants’ Visual Attention”
  • “Scent of a Woman: Men’s Testosterone Responses to Olfactory Ovulation Cues”
  • “Apocalypse Soon?: Dire Messages Reduce Belief in Global Warming by Contradicting Just-World Beliefs”
  • “Serial vs. Parallel Processing: Sometimes They Look Like Tweedledum and Tweedledee but They Can (and Should) Be Distinguished”
  • “How Do I Love Thee? Let Me Count the Words: The Social Effects of Expressive Writing”

Individual researchers differ quite a bit in their preference for such titles. Some use them regularly, while others never use them. What might be some of the pros and cons of using cute article titles?

For articles that are being submitted for publication, the title page also includes an author note that lists the authors’ full institutional affiliations, any acknowledgments the authors wish to make to agencies that funded the research or to colleagues who commented on it, and contact information for the authors. For student papers that are not being submitted for publication—including theses—author notes are generally not necessary.

The  abstract  is a summary of the study. It is the second page of the manuscript and is headed with the word  Abstract . The first line is not indented. The abstract presents the research question, a summary of the method, the basic results, and the most important conclusions. Because the abstract is usually limited to about 200 words, it can be a challenge to write a good one.

Introduction

The  introduction  begins on the third page of the manuscript. The heading at the top of this page is the full title of the manuscript, with each important word capitalized as on the title page. The introduction includes three distinct subsections, although these are typically not identified by separate headings. The opening introduces the research question and explains why it is interesting, the literature review discusses relevant previous research, and the closing restates the research question and comments on the method used to answer it.

The Opening

The  opening , which is usually a paragraph or two in length, introduces the research question and explains why it is interesting. To capture the reader’s attention, researcher Daryl Bem recommends starting with general observations about the topic under study, expressed in ordinary language (not technical jargon)—observations that are about people and their behaviour (not about researchers or their research; Bem, 2003 [1] ). Concrete examples are often very useful here. According to Bem, this would be a poor way to begin a research report:

Festinger’s theory of cognitive dissonance received a great deal of attention during the latter part of the 20th century (p. 191)

The following would be much better:

The individual who holds two beliefs that are inconsistent with one another may feel uncomfortable. For example, the person who knows that he or she enjoys smoking but believes it to be unhealthy may experience discomfort arising from the inconsistency or disharmony between these two thoughts or cognitions. This feeling of discomfort was called cognitive dissonance by social psychologist Leon Festinger (1957), who suggested that individuals will be motivated to remove this dissonance in whatever way they can (p. 191).

After capturing the reader’s attention, the opening should go on to introduce the research question and explain why it is interesting. Will the answer fill a gap in the literature? Will it provide a test of an important theory? Does it have practical implications? Giving readers a clear sense of what the research is about and why they should care about it will motivate them to continue reading the literature review—and will help them make sense of it.

Breaking the Rules

Researcher Larry Jacoby reported several studies showing that a word that people see or hear repeatedly can seem more familiar even when they do not recall the repetitions—and that this tendency is especially pronounced among older adults. He opened his article with the following humourous anecdote:

A friend whose mother is suffering symptoms of Alzheimer’s disease (AD) tells the story of taking her mother to visit a nursing home, preliminary to her mother’s moving there. During an orientation meeting at the nursing home, the rules and regulations were explained, one of which regarded the dining room. The dining room was described as similar to a fine restaurant except that tipping was not required. The absence of tipping was a central theme in the orientation lecture, mentioned frequently to emphasize the quality of care along with the advantages of having paid in advance. At the end of the meeting, the friend’s mother was asked whether she had any questions. She replied that she only had one question: “Should I tip?” (Jacoby, 1999, p. 3)

Although both humour and personal anecdotes are generally discouraged in APA-style writing, this example is a highly effective way to start because it both engages the reader and provides an excellent real-world example of the topic under study.

The Literature Review

Immediately after the opening comes the  literature review , which describes relevant previous research on the topic and can be anywhere from several paragraphs to several pages in length. However, the literature review is not simply a list of past studies. Instead, it constitutes a kind of argument for why the research question is worth addressing. By the end of the literature review, readers should be convinced that the research question makes sense and that the present study is a logical next step in the ongoing research process.

Like any effective argument, the literature review must have some kind of structure. For example, it might begin by describing a phenomenon in a general way along with several studies that demonstrate it, then describing two or more competing theories of the phenomenon, and finally presenting a hypothesis to test one or more of the theories. Or it might describe one phenomenon, then describe another phenomenon that seems inconsistent with the first one, then propose a theory that resolves the inconsistency, and finally present a hypothesis to test that theory. In applied research, it might describe a phenomenon or theory, then describe how that phenomenon or theory applies to some important real-world situation, and finally suggest a way to test whether it does, in fact, apply to that situation.

Looking at the literature review in this way emphasizes a few things. First, it is extremely important to start with an outline of the main points that you want to make, organized in the order that you want to make them. The basic structure of your argument, then, should be apparent from the outline itself. Second, it is important to emphasize the structure of your argument in your writing. One way to do this is to begin the literature review by summarizing your argument even before you begin to make it. “In this article, I will describe two apparently contradictory phenomena, present a new theory that has the potential to resolve the apparent contradiction, and finally present a novel hypothesis to test the theory.” Another way is to open each paragraph with a sentence that summarizes the main point of the paragraph and links it to the preceding points. These opening sentences provide the “transitions” that many beginning researchers have difficulty with. Instead of beginning a paragraph by launching into a description of a previous study, such as “Williams (2004) found that…,” it is better to start by indicating something about why you are describing this particular study. Here are some simple examples:

Another example of this phenomenon comes from the work of Williams (2004).

Williams (2004) offers one explanation of this phenomenon.

An alternative perspective has been provided by Williams (2004).

We used a method based on the one used by Williams (2004).

Finally, remember that your goal is to construct an argument for why your research question is interesting and worth addressing—not necessarily why your favourite answer to it is correct. In other words, your literature review must be balanced. If you want to emphasize the generality of a phenomenon, then of course you should discuss various studies that have demonstrated it. However, if there are other studies that have failed to demonstrate it, you should discuss them too. Or if you are proposing a new theory, then of course you should discuss findings that are consistent with that theory. However, if there are other findings that are inconsistent with it, again, you should discuss them too. It is acceptable to argue that the  balance  of the research supports the existence of a phenomenon or is consistent with a theory (and that is usually the best that researchers in psychology can hope for), but it is not acceptable to  ignore contradictory evidence. Besides, a large part of what makes a research question interesting is uncertainty about its answer.

The Closing

The  closing  of the introduction—typically the final paragraph or two—usually includes two important elements. The first is a clear statement of the main research question or hypothesis. This statement tends to be more formal and precise than in the opening and is often expressed in terms of operational definitions of the key variables. The second is a brief overview of the method and some comment on its appropriateness. Here, for example, is how Darley and Latané (1968) [2] concluded the introduction to their classic article on the bystander effect:

These considerations lead to the hypothesis that the more bystanders to an emergency, the less likely, or the more slowly, any one bystander will intervene to provide aid. To test this proposition it would be necessary to create a situation in which a realistic “emergency” could plausibly occur. Each subject should also be blocked from communicating with others to prevent his getting information about their behaviour during the emergency. Finally, the experimental situation should allow for the assessment of the speed and frequency of the subjects’ reaction to the emergency. The experiment reported below attempted to fulfill these conditions. (p. 378)

Thus the introduction leads smoothly into the next major section of the article—the method section.

The  method section  is where you describe how you conducted your study. An important principle for writing a method section is that it should be clear and detailed enough that other researchers could replicate the study by following your “recipe.” This means that it must describe all the important elements of the study—basic demographic characteristics of the participants, how they were recruited, whether they were randomly assigned, how the variables were manipulated or measured, how counterbalancing was accomplished, and so on. At the same time, it should avoid irrelevant details such as the fact that the study was conducted in Classroom 37B of the Industrial Technology Building or that the questionnaire was double-sided and completed using pencils.

The method section begins immediately after the introduction ends with the heading “Method” (not “Methods”) centred on the page. Immediately after this is the subheading “Participants,” left justified and in italics. The participants subsection indicates how many participants there were, the number of women and men, some indication of their age, other demographics that may be relevant to the study, and how they were recruited, including any incentives given for participation.

Three ways of organizing an APA-style method. Long description available.

After the participants section, the structure can vary a bit. Figure 11.1 shows three common approaches. In the first, the participants section is followed by a design and procedure subsection, which describes the rest of the method. This works well for methods that are relatively simple and can be described adequately in a few paragraphs. In the second approach, the participants section is followed by separate design and procedure subsections. This works well when both the design and the procedure are relatively complicated and each requires multiple paragraphs.

What is the difference between design and procedure? The design of a study is its overall structure. What were the independent and dependent variables? Was the independent variable manipulated, and if so, was it manipulated between or within subjects? How were the variables operationally defined? The procedure is how the study was carried out. It often works well to describe the procedure in terms of what the participants did rather than what the researchers did. For example, the participants gave their informed consent, read a set of instructions, completed a block of four practice trials, completed a block of 20 test trials, completed two questionnaires, and were debriefed and excused.

In the third basic way to organize a method section, the participants subsection is followed by a materials subsection before the design and procedure subsections. This works well when there are complicated materials to describe. This might mean multiple questionnaires, written vignettes that participants read and respond to, perceptual stimuli, and so on. The heading of this subsection can be modified to reflect its content. Instead of “Materials,” it can be “Questionnaires,” “Stimuli,” and so on.

The  results section  is where you present the main results of the study, including the results of the statistical analyses. Although it does not include the raw data—individual participants’ responses or scores—researchers should save their raw data and make them available to other researchers who request them. Several journals now encourage the open sharing of raw data online.

Although there are no standard subsections, it is still important for the results section to be logically organized. Typically it begins with certain preliminary issues. One is whether any participants or responses were excluded from the analyses and why. The rationale for excluding data should be described clearly so that other researchers can decide whether it is appropriate. A second preliminary issue is how multiple responses were combined to produce the primary variables in the analyses. For example, if participants rated the attractiveness of 20 stimulus people, you might have to explain that you began by computing the mean attractiveness rating for each participant. Or if they recalled as many items as they could from study list of 20 words, did you count the number correctly recalled, compute the percentage correctly recalled, or perhaps compute the number correct minus the number incorrect? A third preliminary issue is the reliability of the measures. This is where you would present test-retest correlations, Cronbach’s α, or other statistics to show that the measures are consistent across time and across items. A final preliminary issue is whether the manipulation was successful. This is where you would report the results of any manipulation checks.

The results section should then tackle the primary research questions, one at a time. Again, there should be a clear organization. One approach would be to answer the most general questions and then proceed to answer more specific ones. Another would be to answer the main question first and then to answer secondary ones. Regardless, Bem (2003) [3] suggests the following basic structure for discussing each new result:

  • Remind the reader of the research question.
  • Give the answer to the research question in words.
  • Present the relevant statistics.
  • Qualify the answer if necessary.
  • Summarize the result.

Notice that only Step 3 necessarily involves numbers. The rest of the steps involve presenting the research question and the answer to it in words. In fact, the basic results should be clear even to a reader who skips over the numbers.

The  discussion  is the last major section of the research report. Discussions usually consist of some combination of the following elements:

  • Summary of the research
  • Theoretical implications
  • Practical implications
  • Limitations
  • Suggestions for future research

The discussion typically begins with a summary of the study that provides a clear answer to the research question. In a short report with a single study, this might require no more than a sentence. In a longer report with multiple studies, it might require a paragraph or even two. The summary is often followed by a discussion of the theoretical implications of the research. Do the results provide support for any existing theories? If not, how  can  they be explained? Although you do not have to provide a definitive explanation or detailed theory for your results, you at least need to outline one or more possible explanations. In applied research—and often in basic research—there is also some discussion of the practical implications of the research. How can the results be used, and by whom, to accomplish some real-world goal?

The theoretical and practical implications are often followed by a discussion of the study’s limitations. Perhaps there are problems with its internal or external validity. Perhaps the manipulation was not very effective or the measures not very reliable. Perhaps there is some evidence that participants did not fully understand their task or that they were suspicious of the intent of the researchers. Now is the time to discuss these issues and how they might have affected the results. But do not overdo it. All studies have limitations, and most readers will understand that a different sample or different measures might have produced different results. Unless there is good reason to think they  would have, however, there is no reason to mention these routine issues. Instead, pick two or three limitations that seem like they could have influenced the results, explain how they could have influenced the results, and suggest ways to deal with them.

Most discussions end with some suggestions for future research. If the study did not satisfactorily answer the original research question, what will it take to do so? What  new  research questions has the study raised? This part of the discussion, however, is not just a list of new questions. It is a discussion of two or three of the most important unresolved issues. This means identifying and clarifying each question, suggesting some alternative answers, and even suggesting ways they could be studied.

Finally, some researchers are quite good at ending their articles with a sweeping or thought-provoking conclusion. Darley and Latané (1968) [4] , for example, ended their article on the bystander effect by discussing the idea that whether people help others may depend more on the situation than on their personalities. Their final sentence is, “If people understand the situational forces that can make them hesitate to intervene, they may better overcome them” (p. 383). However, this kind of ending can be difficult to pull off. It can sound overreaching or just banal and end up detracting from the overall impact of the article. It is often better simply to end when you have made your final point (although you should avoid ending on a limitation).

The references section begins on a new page with the heading “References” centred at the top of the page. All references cited in the text are then listed in the format presented earlier. They are listed alphabetically by the last name of the first author. If two sources have the same first author, they are listed alphabetically by the last name of the second author. If all the authors are the same, then they are listed chronologically by the year of publication. Everything in the reference list is double-spaced both within and between references.

Appendices, Tables, and Figures

Appendices, tables, and figures come after the references. An  appendix  is appropriate for supplemental material that would interrupt the flow of the research report if it were presented within any of the major sections. An appendix could be used to present lists of stimulus words, questionnaire items, detailed descriptions of special equipment or unusual statistical analyses, or references to the studies that are included in a meta-analysis. Each appendix begins on a new page. If there is only one, the heading is “Appendix,” centred at the top of the page. If there is more than one, the headings are “Appendix A,” “Appendix B,” and so on, and they appear in the order they were first mentioned in the text of the report.

After any appendices come tables and then figures. Tables and figures are both used to present results. Figures can also be used to illustrate theories (e.g., in the form of a flowchart), display stimuli, outline procedures, and present many other kinds of information. Each table and figure appears on its own page. Tables are numbered in the order that they are first mentioned in the text (“Table 1,” “Table 2,” and so on). Figures are numbered the same way (“Figure 1,” “Figure 2,” and so on). A brief explanatory title, with the important words capitalized, appears above each table. Each figure is given a brief explanatory caption, where (aside from proper nouns or names) only the first word of each sentence is capitalized. More details on preparing APA-style tables and figures are presented later in the book.

Sample APA-Style Research Report

Figures 11.2, 11.3, 11.4, and 11.5 show some sample pages from an APA-style empirical research report originally written by undergraduate student Tomoe Suyama at California State University, Fresno. The main purpose of these figures is to illustrate the basic organization and formatting of an APA-style empirical research report, although many high-level and low-level style conventions can be seen here too.

""

Key Takeaways

  • An APA-style empirical research report consists of several standard sections. The main ones are the abstract, introduction, method, results, discussion, and references.
  • The introduction consists of an opening that presents the research question, a literature review that describes previous research on the topic, and a closing that restates the research question and comments on the method. The literature review constitutes an argument for why the current study is worth doing.
  • The method section describes the method in enough detail that another researcher could replicate the study. At a minimum, it consists of a participants subsection and a design and procedure subsection.
  • The results section describes the results in an organized fashion. Each primary result is presented in terms of statistical results but also explained in words.
  • The discussion typically summarizes the study, discusses theoretical and practical implications and limitations of the study, and offers suggestions for further research.
  • Practice: Look through an issue of a general interest professional journal (e.g.,  Psychological Science ). Read the opening of the first five articles and rate the effectiveness of each one from 1 ( very ineffective ) to 5 ( very effective ). Write a sentence or two explaining each rating.
  • Practice: Find a recent article in a professional journal and identify where the opening, literature review, and closing of the introduction begin and end.
  • Practice: Find a recent article in a professional journal and highlight in a different colour each of the following elements in the discussion: summary, theoretical implications, practical implications, limitations, and suggestions for future research.

Long Descriptions

Figure 11.1 long description: Table showing three ways of organizing an APA-style method section.

In the simple method, there are two subheadings: “Participants” (which might begin “The participants were…”) and “Design and procedure” (which might begin “There were three conditions…”).

In the typical method, there are three subheadings: “Participants” (“The participants were…”), “Design” (“There were three conditions…”), and “Procedure” (“Participants viewed each stimulus on the computer screen…”).

In the complex method, there are four subheadings: “Participants” (“The participants were…”), “Materials” (“The stimuli were…”), “Design” (“There were three conditions…”), and “Procedure” (“Participants viewed each stimulus on the computer screen…”). [Return to Figure 11.1]

  • Bem, D. J. (2003). Writing the empirical journal article. In J. M. Darley, M. P. Zanna, & H. R. Roediger III (Eds.),  The compleat academic: A practical guide for the beginning social scientist  (2nd ed.). Washington, DC: American Psychological Association. ↵
  • Darley, J. M., & Latané, B. (1968). Bystander intervention in emergencies: Diffusion of responsibility.  Journal of Personality and Social Psychology, 4 , 377–383. ↵

A type of research article which describes one or more new empirical studies conducted by the authors.

The page at the beginning of an APA-style research report containing the title of the article, the authors’ names, and their institutional affiliation.

A summary of a research study.

The third page of a manuscript containing the research question, the literature review, and comments about how to answer the research question.

An introduction to the research question and explanation for why this question is interesting.

A description of relevant previous research on the topic being discusses and an argument for why the research is worth addressing.

The end of the introduction, where the research question is reiterated and the method is commented upon.

The section of a research report where the method used to conduct the study is described.

The main results of the study, including the results from statistical analyses, are presented in a research article.

Section of a research report that summarizes the study's results and interprets them by referring back to the study's theoretical background.

Part of a research report which contains supplemental material.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

professional research report example

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

  • Academic Skills
  • Reading, writing and referencing

Research reports

This resource will help you identify the common elements and basic format of a research report.

Research reports generally follow a similar structure and have common elements, each with a particular purpose. Learn more about each of these elements below.

Common elements of reports

Your title should be brief, topic-specific, and informative, clearly indicating the purpose and scope of your study. Include key words in your title so that search engines can easily access your work. For example:  Measurement of water around Station Pier.

An abstract is a concise summary that helps readers to quickly assess the content and direction of your paper. It should be brief, written in a single paragraph and cover: the scope and purpose of your report; an overview of methodology; a summary of the main findings or results; principal conclusions or significance of the findings; and recommendations made.

The information in the abstract must be presented in the same order as it is in your report. The abstract is usually written last when you have developed your arguments and synthesised the results.

The introduction creates the context for your research. It should provide sufficient background to allow the reader to understand and evaluate your study without needing to refer to previous publications. After reading the introduction your reader should understand exactly what your research is about, what you plan to do, why you are undertaking this research and which methods you have used. Introductions generally include:

  • The rationale for the present study. Why are you interested in this topic? Why is this topic worth investigating?
  • Key terms and definitions.
  • An outline of the research questions and hypotheses; the assumptions or propositions that your research will test.

Not all research reports have a separate literature review section. In shorter research reports, the review is usually part of the Introduction.

A literature review is a critical survey of recent relevant research in a particular field. The review should be a selection of carefully organised, focused and relevant literature that develops a narrative ‘story’ about your topic. Your review should answer key questions about the literature:

  • What is the current state of knowledge on the topic?
  • What differences in approaches / methodologies are there?
  • Where are the strengths and weaknesses of the research?
  • What further research is needed? The review may identify a gap in the literature which provides a rationale for your study and supports your research questions and methodology.

The review is not just a summary of all you have read. Rather, it must develop an argument or a point of view that supports your chosen methodology and research questions.

The purpose of this section is to detail how you conducted your research so that others can understand and replicate your approach.

You need to briefly describe the subjects (if appropriate), any equipment or materials used and the approach taken. If the research method or method of data analysis is commonly used within your field of study, then simply reference the procedure. If, however, your methods are new or controversial then you need to describe them in more detail and provide a rationale for your approach. The methodology is written in the past tense and should be as concise as possible.

This section is a concise, factual summary of your findings, listed under headings appropriate to your research questions. It’s common to use tables and graphics. Raw data or details about the method of statistical analysis used should be included in the Appendices.

Present your results in a consistent manner. For example, if you present the first group of results as percentages, it will be confusing for the reader and difficult to make comparisons of data if later results are presented as fractions or as decimal values.

In general, you won’t discuss your results here. Any analysis of your results usually occurs in the Discussion section.

Notes on visual data representation:

  • Graphs and tables may be used to reveal trends in your data, but they must be explained and referred to in adjacent accompanying text.
  • Figures and tables do not simply repeat information given in the text: they summarise, amplify or complement it.
  • Graphs are always referred to as ‘Figures’, and both axes must be clearly labelled.
  • Tables must be numbered, and they must be able to stand-alone or make sense without your reader needing to read all of the accompanying text.

The Discussion responds to the hypothesis or research question. This section is where you interpret your results, account for your findings and explain their significance within the context of other research. Consider the adequacy of your sampling techniques, the scope and long-term implications of your study, any problems with data collection or analysis and any assumptions on which your study was based. This is also the place to discuss any disappointing results and address limitations.

Checklist for the discussion

  • To what extent was each hypothesis supported?
  • To what extent are your findings validated or supported by other research?
  • Were there unexpected variables that affected your results?
  • On reflection, was your research method appropriate?
  • Can you account for any differences between your results and other studies?

Conclusions in research reports are generally fairly short and should follow on naturally from points raised in the Discussion. In this section you should discuss the significance of your findings. To what extent and in what ways are your findings useful or conclusive? Is further research required? If so, based on your research experience, what suggestions could you make about improvements to the scope or methodology of future studies?

Also, consider the practical implications of your results and any recommendations you could make. For example, if your research is on reading strategies in the primary school classroom, what are the implications of your results for the classroom teacher? What recommendations could you make for teachers?

A Reference List contains all the resources you have cited in your work, while a Bibliography is a wider list containing all the resources you have consulted (but not necessarily cited) in the preparation of your work. It is important to check which of these is required, and the preferred format, style of references and presentation requirements of your own department.

Appendices (singular ‘Appendix’) provide supporting material to your project. Examples of such materials include:

  • Relevant letters to participants and organisations (e.g. regarding the ethics or conduct of the project).
  • Background reports.
  • Detailed calculations.

Different types of data are presented in separate appendices. Each appendix must be titled, labelled with a number or letter, and referred to in the body of the report.

Appendices are placed at the end of a report, and the contents are generally not included in the word count.

Fi nal ti p

While there are many common elements to research reports, it’s always best to double check the exact requirements for your task. You may find that you don’t need some sections, can combine others or have specific requirements about referencing, formatting or word limits.

Two people looking over study materials

Looking for one-on-one advice?

Get tailored advice from an Academic Skills Adviser by booking an Individual appointment, or get quick feedback from one of our Academic Writing Mentors via email through our Writing advice service.

Go to Student appointments

Grad Coach (R)

What’s Included: Research Paper Template

If you’re preparing to write an academic research paper, our free research paper template is the perfect starting point. In the template, we cover every section step by step, with clear, straightforward explanations and examples .

The template’s structure is based on the tried and trusted best-practice format for formal academic research papers. The template structure reflects the overall research process, ensuring your paper will have a smooth, logical flow from chapter to chapter.

The research paper template covers the following core sections:

  • The title page/cover page
  • Abstract (sometimes also called the executive summary)
  • Section 1: Introduction 
  • Section 2: Literature review 
  • Section 3: Methodology
  • Section 4: Findings /results
  • Section 5: Discussion
  • Section 6: Conclusion
  • Reference list

Each section is explained in plain, straightforward language , followed by an overview of the key elements that you need to cover within each section. We’ve also included links to free resources to help you understand how to write each section.

The cleanly formatted Google Doc can be downloaded as a fully editable MS Word Document (DOCX format), so you can use it as-is or convert it to LaTeX.

FAQs: Research Paper Template

What format is the template (doc, pdf, ppt, etc.).

The research paper template is provided as a Google Doc. You can download it in MS Word format or make a copy to your Google Drive. You’re also welcome to convert it to whatever format works best for you, such as LaTeX or PDF.

What types of research papers can this template be used for?

The template follows the standard best-practice structure for formal academic research papers, so it is suitable for the vast majority of degrees, particularly those within the sciences.

Some universities may have some additional requirements, but these are typically minor, with the core structure remaining the same. Therefore, it’s always a good idea to double-check your university’s requirements before you finalise your structure.

Is this template for an undergrad, Masters or PhD-level research paper?

This template can be used for a research paper at any level of study. It may be slight overkill for an undergraduate-level study, but it certainly won’t be missing anything.

How long should my research paper be?

This depends entirely on your university’s specific requirements, so it’s best to check with them. We include generic word count ranges for each section within the template, but these are purely indicative. 

What about the research proposal?

If you’re still working on your research proposal, we’ve got a template for that here .

We’ve also got loads of proposal-related guides and videos over on the Grad Coach blog .

How do I write a literature review?

We have a wealth of free resources on the Grad Coach Blog that unpack how to write a literature review from scratch. You can check out the literature review section of the blog here.

How do I create a research methodology?

We have a wealth of free resources on the Grad Coach Blog that unpack research methodology, both qualitative and quantitative. You can check out the methodology section of the blog here.

Can I share this research paper template with my friends/colleagues?

Yes, you’re welcome to share this template. If you want to post about it on your blog or social media, all we ask is that you reference this page as your source.

Can Grad Coach help me with my research paper?

Within the template, you’ll find plain-language explanations of each section, which should give you a fair amount of guidance. However, you’re also welcome to consider our private coaching services .

Free Webinar: Literature Review 101

  • RMIT Australia
  • RMIT Europe
  • RMIT Vietnam
  • RMIT Global
  • RMIT Online
  • Alumni & Giving

RMIT University Library - Learning Lab

  • What will I do?
  • What will I need?
  • Who will help me?
  • About the institution
  • New to university?
  • Studying efficiently
  • Time management
  • Mind mapping
  • Note-taking
  • Reading skills
  • Argument analysis
  • Preparing for assessment
  • Critical thinking and argument analysis
  • Online learning skills
  • Starting my first assignment
  • Researching your assignment
  • What is referencing?
  • Understanding citations
  • When referencing isn't needed
  • Paraphrasing
  • Summarising
  • Synthesising
  • Integrating ideas with reporting words
  • Referencing with Easy Cite
  • Getting help with referencing
  • Acting with academic integrity
  • Artificial intelligence tools
  • Understanding your audience
  • Writing for coursework
  • Literature review
  • Academic style
  • Writing for the workplace
  • Spelling tips
  • Writing paragraphs
  • Writing sentences
  • Academic word lists
  • Annotated bibliographies
  • Artist statement
  • Case studies
  • Creating effective poster presentations
  • Essays, Reports, Reflective Writing
  • Law assessments
  • Oral presentations
  • Reflective writing
  • Art and design
  • Critical thinking
  • Maths and statistics
  • Sustainability
  • Educators' guide
  • Learning Lab content in context
  • Latest updates
  • Students Alumni & Giving Staff Library

Learning Lab

Getting started at uni, study skills, referencing.

  • When referencing isn't needed
  • Integrating ideas

Writing and assessments

  • Critical reading
  • Poster presentations
  • Postgraduate report writing

Subject areas

For educators.

  • Educators' guide
  • Writing a business research report

This video explains how to write a business report for postgraduate level students. It covers the introduction, report structure and organisation, writing the report, and business writing.

Introduction

[slide 1: Topic slide]

[slide 2: Outline]

Description:

Sitting at the centre of the screen is: “What am I going to be learning today?” The following four words animate in:

- Introduction

- Report structure and organization

- Writing the report

- Business writing

This resource covers three important features of the writing required for a successful business research report. Following this brief introduction, the second section covers report structure with a focus on suitable ways

to organize content. The third section outlines the features of persuasive writing. And the final section provides tips for strong effective business writing.

[slide 3: What is a business research report?]

A checklist of items that make up a research report:

- Formulates a research

- Reports on research findings

- Recommends actions to achieve desirable outcomes

And is written in a

- Business report format

- Professional business writing style

This assignment provides you with the opportunity to research and write a real workplace report. It will inform the client of important aspects of their research brief. It will also provide recommendations to achieve desirable outcomes. The report will be presented as a written business proposal and as a presentation. This assignment requires a transition from academic writing to professional business writing. A business research report is written in a professional business style that differs from academic writing.

Report structure and organization

[slide 4: Topic slide]

[slide 5: Linear text structure]

[Graphic] Three babushka dolls representing each of the following:

- Whole text

- Paragraph

Overall, reports have a highly structured linear form with a beginning, middle and an end. This is repeated at the section level and the paragraph level.

[slide 6: Part: 1 - Organising content]

A report structure should be broken down into sections, having a beginning, middle and end. An example of this is:

- Executive summary

- Research question

- Problem, context and literature

- Methodology, approach and limitations

- Discussion and data analysis

- Implications (benefits and limitations)

- Recommendation and conclusion

- Considerations of policy adjustments and recommendations for further research

- References

A numbering system is used for the table of contents, and within them a broad example of a research page appears. Here it emphasizes the use of TEEL, and how each paragraph should be linked with one another.

Reports are structured using sections that are clearly organized and use a numbering system. Paragraphs within the sections should be well structured

and ideas should be linked between paragraphs.

[slide 7: Part: 2 - Organising content]

An example of going from general to specific.

- Current trend for businesses to outsource non-core activities

- Increase in demand for Facilities Management (FM) services

- More integrated and strategic approach to providing FM services

- Business now delivers a range of services through a single contract. These include…

General to specific is a useful strategy for organising content in business writing. This is particularly helpful for giving background or an overview.

[slide 8: Report sections]

[Text] We will now go through each of the report sections in detail:

Example. Report structure and headings.

- Report title and authors names

- Recommendations and conclusions

- Consideration of policy adjustments and recommendation for further research

No narration.

[slide 9: Executive summary]

- Briefly summarise the whole report in a logical order

- Outlines context, rationale, objectives, findings, conclusions, recommendations

- Written last, mainly in past tense

A strong executive summary is vital to a successful report as it determines the relevance of the report for the reader. It is the section the reader reads first and provides an overall summary of the whole report. Each major section of the report should be summarised in 1 or 2 sentences.

[Slide 10: Introduction]

- Identifies the main context and issues

- Narrows to project aim/purpose

[Text and graphic example]

Graphic of a triangle point downwards, writing from a general to specific.

Accompanying this the following text:

General (top of the triangle): ‘PICA is a property and financial services company currently offering…’

Specific (bottom of the triangle): ‘PICA requires a business plan for….’

Notice how the introduction narrows the topic from its broader context to the specific purpose of this report. The introduction is written from general to specific, which is a common form found in business writing.

[slide 11: Research question]

Frames the whole report

[Text example]

This report aims to answer the question ‘Is now a good time for PICA to diversify into Facilities Management (FM)’?

- Sub-questions

This research question frames the whole report and focuses the research to a specific area. It is common to have one research question followed by sub questions and these emerge from the larger question being answered.

[slide 12: Problem, context and literature]

Outlines the general situation in the specific business area

- Definitions

- Competitors

- Financial background

The accompanying graphic is of the triangle representation pointing downwards from general to specific.

Problem, context and literature section of the report requires a general

Introduction to the business which then narrows to cover details of competitors and their financial background. Again you are writing from general to specific.

[slide 13: Methodology, approach and limitations]

The research uses an applied strategy with a change focus (Saunders, Lewis & Thornhill 2012).

The main approach is data collection will be This methodology is appropriate because….

The research is based on secondary data, both qualitative and quantitative

Limitations in the research include…

The methodology covers how the research was done, why these methods were chosen, the details of the methods used and the limits of stating explicitly what is covered and what is not.

[slide 14: Discussion and data analysis]

Refer to your research

- Limitations in the research include…

Compare to theory / other research

- Industry bodies and secondary research…

- Eg. This strategy encompasses all aspects of financial reporting (Faulding & Lau 2011)…

Sum up at the end of each section

- In summary, Sydney is well positioned for further growth in residential buildings that require FM services…

It is important to refer to your research to show links between the primary research. In this case industry bodies, secondary research such as academic papers, theory and research and your findings.

[slide: 15: Implications: benefits and limitations]

What do your findings mean for the client?

- The findings outlines above suggests that PICA’s desire to enter the FM industry is expected to be beneficial given that…

- NSW trends demonstrate…

- Evidence suggests that PICA will be required to …

- There are risks associated with entering the FM services market.

It is important to refer to your research to show links between the primary research. In this case industry bodies, secondary research such as academic papers, theory and research and your findings. You need to explain what your research findings mean for your client. These implications will lead into your recommendations in the next section.

[slide 16: Recommendations and conclusions]

[Text and Graphic]

- Restates purpose

- Provides ‘the answer’

- Provides a concluding statement

The accompanying graphic of a triangle representation, this time with it points upward -going from specific to general.

Recommendations

- Suggests steps for further action

Eg. It is recommended that:

o PICA should enter the FM market

o Pica should acquire new…

The conclusion should provide a clear answer to the research question.

The conclusion is the reverse of the introduction it moves from answering the specific research question to showing how it fits into the broader context. In the recommendation section we return to the steps that this specific business should be taking as a result of the report.

[slide 17: Recommendation for further research]

Outline other research

- Based on the research findings, it is recommended that further in-depth analysis be conducted of the competitive landscape.

- PICA should seek legal and tax advice in order to…

Broadening the scope of the research

Examining certain issues in detail

In the final section of your report, outline what other research you think the client should undertake. This could include broadening the scope of the current research or examining certain issues in more detail.

Writing the report

[slide 18: Topic slide]

[slide 19: Paragraphs: TEEL]

[Graphic and Text]

Buns top and bottom: Topic and linking sentence

Condiments and meat: Explanation, evidence and examples

TEEL can be described using a burger metaphor. The topic and linking sentences make up the bun and base of the burger, and the evidence and explanations make the filling.

A paragraph contains one main idea, which is found in the topic sentence.

It is best to put the topic sentence first in the paragraph as this makes reading easier. The rest of the paragraph is made up of explanation and evidence to support the topic sentence.

[slide 20: Paragraph structure: TEEL]

A sample of a paragraph structure is given using the TEEL structure; each of these parts is highlighted.

[Topic] Leighton Contractors is a large-scale FM operation with considerable FM expertise within its own group of companies [end-topic]. [Example] A brief analysis of Leighton’s focus is helpful to PICA as it considers entry to the FM industry as PICA is considering a similar strategy [end-example]. [Evidence] The specific observation of this report is that Leighton focuses its FM operations into specific areas in which its group of companies has expertise, in particular in construction, telecommunications and mining (Leighton Constractors Pty Ltd 2009) [end-evidence]. [Link] This is a key observation as it affirms PICA’s expressed desire to enter FM by leveraging its expertise in Strata Management [end-link].

[slide 21: Persuading the reader]

Grid of icons accompanying the following text:

- Strong topic sentence

- Introduction and summaries for each section

- Effective evaluation and analysis

- Integration of sources to support your view

In a business research report your goal is to persuade the reader to follow your advice. Therefore, it is essential that they believe your understanding of the market is thorough and well researched. The following strategies are useful for writing persuasively.

[slide 22: Strong topic sentence]

[Text examples]

- [underlined] Evolution consulting [end-underlined] recommends that PICA consider acquiring the Port Stevens Group.

- [underlined] The hypothesis [end-underlined] is that now is a good time for PICA to diversify into FM.

Strong topic sentences reinforce your argument and help persuade the reader. Both topic sentences below have a clear direct message.

Notice how the topic sentence comes at the beginning of the sentence.

[slide 23: Introductions and conclusions for sections]

Introduction to a section

It is the belief of the research team that the successful entry into the FM sector will require PICA to target a specific building sub-market.

Conclusion to a section

In a conclusion, from the analysis of overall market trends, PICA would benefit from targeting the residential building sub-market.

Use section introduction and summaries to clearly state and restate your view. This acts as a reminder to the reader and emphasises the consistency

of your argument.

[slide 24: Effective evaluation and analysis]

- Paragraph strategy

- Sentence strategy

It is essential to write convincing evaluations of the strengths, weaknesses and risks. It is this understanding that makes it possible for the company to make decisions about future strategy.

[slide 25: Paragraph strategy]

A graphic illustrating the narration:

At the beginning of a paragraph, the topic sentence (evaluation of risk) should be first written. Followed by an explanation and analysis. Lastly, providing a solution. The language used in the process, should be formal impersonal language.

Here are two useful writing strategies, which make your evaluation

and analysis more effective. They are firstly clear paragraph organization

and secondly use of a formal impersonal style.

[slide 26: Sentence strategy]

Use tentative language

This demonstrates you have a thorough understanding of the level of risk.

- It is advised

- Is minimized

- Will be made

Use passive form

Write in an impersonal style. Suggest your view is based on research rather than opinion.

- Could, would, may, might

- There is a view that,

- There is a perception that

Use active verbs

In business writing it is generally better to write in a

clear and direct style. This includes using active verb forms.

However, when evaluating risks it is useful to write in a more

tentative and indirect style. Using tentative language shows you have a complex understanding of the situation and are aware of the degrees of risk.

It is also useful to write in an impersonal style as this gives your writing authority. It suggest that you are stating the views of the industry or other experts, and not just your own opinion. Passive verb forms generally weaken business writing as they are indirect. However, they are useful in evaluation as their use emphasises the advice itself rather than the voice of the writer.

[slide 27: Integration of sources]

- Supports your view with evidence

- Demonstrates the strength of your research and sources

[slide 28: Referencing in sentences]

Description: Sentence 1:

[Source] ACIF (2013) [end-source] projects that recovery will continue to strengthen for NSW in 2014.

Sentence 2:

Recover of the construction sector will continue to strengthen for NSW in 2014 [source] (ACIF) [end-source]

There are two ways to include references in a sentence at the beginning or at the end. The difference between these two constructions is subtle but it changes the focus of the sentence.

[slide 29: Effects and emphasis]

Source prominent

- Source (ACIF) emphasized as topic

- Common in academic writing where the research itself can be the topic

Information prominent

- Recovery emphasized as topic

- Common in business writing

This sentence emphasizes the source of the information and is common in academic writing. This does not emphasize the view of the student or writer. This sentence puts the information at the beginning of the sentence and emphasizes the writers view. This is useful if the writer wants to persuade the reader to follow his or her advice.

Business writing

[slide 30: Topic slide]

[slide 31: Academic writing and business writing]

Description: Academic

Knowledge and research

- Expected structure

- Academic style

- Uses a range of sources

Business decision-making and action

Workplace / Industry

- Business style

- Uses sources with practical application

There are differences between academic writing and business writing. In academic writing the overall focus is on knowledge and research. In business writing decision making and action are the goal. These differences are important and affect the writing style.

[slide 32: Tips for business writing]

Iconography for the following three points:

- Be direct: Darts board, aimed at the centre

- Be concise: Cutting out words (paper)

- Use strong active verbs: A man lifting up weights

[slide 33: Be direct]

Put the most important information first. So people can easily find it.

Put the topic sentence at the beginning

attitude towards FM services [end-emphasis] have changed to now viewing these costs as life cycle costs (International Facilities Management Association 2011).

[Emphasis] Attitudes towards FM services [end-emphasis] have changed from that of an overhead cost to a life cycle cost (International Facilities Management Association 2011).

Make it easy to read

Clear logical structure, headings, sub-headings and bullet points.

People are busy and will read only minimally. Therefore, one very useful strategy in business writing is to put the most important information first,

so you know the audience will find it. Notice how the first sentence is more difficult to read. In the second sentence the topic is at the beginning of the sentence as this makes the point immediately clear to the reader.

[slide 34: Be concise]

Description: Cut out unnecessary words

Use concise language by replacing wordy phrases with single words.

[slide 35: Use strong active verbs]

Description: Use strong active verbs

[Example 1]

ACIF believes [end-emphasis] that construction projects will experience [end-emphasis] considerable growth in 2014.

[Example 2]

ACIF forecasts [end-emphasis] considerable growth in residential construction investment in 2014.

Strong active verbs convey a clear and remove the need for repetition.

[slide 36: Identify the weaknesses ]

Description: [Poor example]

In terms of non-residential construction projects ACIF (2013) expects that construction investments in NSW will be subject to a considerable growth rate, whereas investments in non-residential construction projects are expected to remain constant for all other region.

How this can be improved

Legend: [strikethrough] = Be concise. [Highlight] = be direct. [Emphasis] = Use strong active words.

[Strikethrough] in terms of [end-strikethrough] [highlight] non-residential [end-highlight] construction projects ACIF (2013) expects [end-emphasis] that [highlight] construction investments in NSW [end-highlight] will be [strikethrough] subject to a considerable growth rate [end-strikethrough] , whereas investments in non-residential construction projects are expected to [end-emphasis] remain constant for all other regions.

[Improved example]

In NSW, construction investment for non-residential projects will grow compared with other regions of Australia (ACIF 2013).

  • Overall structure of a report
  • Methodology section in a report
  • Example of a report
  • Report checklist

Still can't find what you need?

The RMIT University Library provides study support , one-on-one consultations and peer mentoring to RMIT students.

  • Facebook (opens in a new window)
  • Twitter (opens in a new window)
  • Instagram (opens in a new window)
  • Linkedin (opens in a new window)
  • YouTube (opens in a new window)
  • Weibo (opens in a new window)
  • Copyright © 2024 RMIT University |
  • Accessibility |
  • Learning Lab feedback |
  • Complaints |
  • ABN 49 781 030 034 |
  • CRICOS provider number: 00122A |
  • RTO Code: 3046 |
  • Open Universities Australia

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

11.2 Writing a Research Report in American Psychological Association (APA) Style

Learning objectives.

  • Identify the major sections of an APA-style research report and the basic contents of each section.
  • Plan and write an effective APA-style research report.

In this section, we look at how to write an APA-style empirical research report , an article that presents the results of one or more new studies. Recall that the standard sections of an empirical research report provide a kind of outline. Here we consider each of these sections in detail, including what information it contains, how that information is formatted and organized, and tips for writing each section. At the end of this section is a sample APA-style research report that illustrates many of these principles.

Sections of a Research Report

Title page and abstract.

An APA-style research report begins with a title page . The title is centered in the upper half of the page, with each important word capitalized. The title should clearly and concisely (in about 12 words or fewer) communicate the primary variables and research questions. This sometimes requires a main title followed by a subtitle that elaborates on the main title, in which case the main title and subtitle are separated by a colon. Here are some titles from recent issues of professional journals published by the American Psychological Association.

  • Sex Differences in Coping Styles and Implications for Depressed Mood
  • Effects of Aging and Divided Attention on Memory for Items and Their Contexts
  • Computer-Assisted Cognitive Behavioral Therapy for Child Anxiety: Results of a Randomized Clinical Trial
  • Virtual Driving and Risk Taking: Do Racing Games Increase Risk-Taking Cognitions, Affect, and Behavior?

Below the title are the authors’ names and, on the next line, their institutional affiliation—the university or other institution where the authors worked when they conducted the research. As we have already seen, the authors are listed in an order that reflects their contribution to the research. When multiple authors have made equal contributions to the research, they often list their names alphabetically or in a randomly determined order.

It’s Soooo Cute!

How Informal Should an Article Title Be?

In some areas of psychology, the titles of many empirical research reports are informal in a way that is perhaps best described as “cute.” They usually take the form of a play on words or a well-known expression that relates to the topic under study. Here are some examples from recent issues of the Journal of Personality and Social Psychology .

  • “Let’s Get Serious: Communicating Commitment in Romantic Relationships”
  • “Through the Looking Glass Clearly: Accuracy and Assumed Similarity in Well-Adjusted Individuals’ First Impressions”
  • “Don’t Hide Your Happiness! Positive Emotion Dissociation, Social Connectedness, and Psychological Functioning”
  • “Forbidden Fruit: Inattention to Attractive Alternatives Provokes Implicit Relationship Reactance”

Individual researchers differ quite a bit in their preference for such titles. Some use them regularly, while others never use them. What might be some of the pros and cons of using cute article titles?

For articles that are being submitted for publication, the title page also includes an author note that lists the authors’ full institutional affiliations, any acknowledgments the authors wish to make to agencies that funded the research or to colleagues who commented on it, and contact information for the authors. For student papers that are not being submitted for publication—including theses—author notes are generally not necessary.

The abstract is a summary of the study. It is the second page of the manuscript and is headed with the word Abstract . The first line is not indented. The abstract presents the research question, a summary of the method, the basic results, and the most important conclusions. Because the abstract is usually limited to about 200 words, it can be a challenge to write a good one.

Introduction

The introduction begins on the third page of the manuscript. The heading at the top of this page is the full title of the manuscript, with each important word capitalized as on the title page. The introduction includes three distinct subsections, although these are typically not identified by separate headings. The opening introduces the research question and explains why it is interesting, the literature review discusses relevant previous research, and the closing restates the research question and comments on the method used to answer it.

The Opening

The opening , which is usually a paragraph or two in length, introduces the research question and explains why it is interesting. To capture the reader’s attention, researcher Daryl Bem recommends starting with general observations about the topic under study, expressed in ordinary language (not technical jargon)—observations that are about people and their behavior (not about researchers or their research; Bem, 2003). Concrete examples are often very useful here. According to Bem, this would be a poor way to begin a research report:

Festinger’s theory of cognitive dissonance received a great deal of attention during the latter part of the 20th century (p. 191)

The following would be much better:

The individual who holds two beliefs that are inconsistent with one another may feel uncomfortable. For example, the person who knows that he or she enjoys smoking but believes it to be unhealthy may experience discomfort arising from the inconsistency or disharmony between these two thoughts or cognitions. This feeling of discomfort was called cognitive dissonance by social psychologist Leon Festinger (1957), who suggested that individuals will be motivated to remove this dissonance in whatever way they can (p. 191).

After capturing the reader’s attention, the opening should go on to introduce the research question and explain why it is interesting. Will the answer fill a gap in the literature? Will it provide a test of an important theory? Does it have practical implications? Giving readers a clear sense of what the research is about and why they should care about it will motivate them to continue reading the literature review—and will help them make sense of it.

Breaking the Rules

Researcher Larry Jacoby reported several studies showing that a word that people see or hear repeatedly can seem more familiar even when they do not recall the repetitions—and that this tendency is especially pronounced among older adults. He opened his article with the following humorous anecdote (Jacoby, 1999).

A friend whose mother is suffering symptoms of Alzheimer’s disease (AD) tells the story of taking her mother to visit a nursing home, preliminary to her mother’s moving there. During an orientation meeting at the nursing home, the rules and regulations were explained, one of which regarded the dining room. The dining room was described as similar to a fine restaurant except that tipping was not required. The absence of tipping was a central theme in the orientation lecture, mentioned frequently to emphasize the quality of care along with the advantages of having paid in advance. At the end of the meeting, the friend’s mother was asked whether she had any questions. She replied that she only had one question: “Should I tip?” (p. 3).

Although both humor and personal anecdotes are generally discouraged in APA-style writing, this example is a highly effective way to start because it both engages the reader and provides an excellent real-world example of the topic under study.

The Literature Review

Immediately after the opening comes the literature review , which describes relevant previous research on the topic and can be anywhere from several paragraphs to several pages in length. However, the literature review is not simply a list of past studies. Instead, it constitutes a kind of argument for why the research question is worth addressing. By the end of the literature review, readers should be convinced that the research question makes sense and that the present study is a logical next step in the ongoing research process.

Like any effective argument, the literature review must have some kind of structure. For example, it might begin by describing a phenomenon in a general way along with several studies that demonstrate it, then describing two or more competing theories of the phenomenon, and finally presenting a hypothesis to test one or more of the theories. Or it might describe one phenomenon, then describe another phenomenon that seems inconsistent with the first one, then propose a theory that resolves the inconsistency, and finally present a hypothesis to test that theory. In applied research, it might describe a phenomenon or theory, then describe how that phenomenon or theory applies to some important real-world situation, and finally suggest a way to test whether it does, in fact, apply to that situation.

Looking at the literature review in this way emphasizes a few things. First, it is extremely important to start with an outline of the main points that you want to make, organized in the order that you want to make them. The basic structure of your argument, then, should be apparent from the outline itself. Second, it is important to emphasize the structure of your argument in your writing. One way to do this is to begin the literature review by summarizing your argument even before you begin to make it. “In this article, I will describe two apparently contradictory phenomena, present a new theory that has the potential to resolve the apparent contradiction, and finally present a novel hypothesis to test the theory.” Another way is to open each paragraph with a sentence that summarizes the main point of the paragraph and links it to the preceding points. These opening sentences provide the “transitions” that many beginning researchers have difficulty with. Instead of beginning a paragraph by launching into a description of a previous study, such as “Williams (2004) found that…,” it is better to start by indicating something about why you are describing this particular study. Here are some simple examples:

Another example of this phenomenon comes from the work of Williams (2004).
Williams (2004) offers one explanation of this phenomenon.
An alternative perspective has been provided by Williams (2004).
We used a method based on the one used by Williams (2004).

Finally, remember that your goal is to construct an argument for why your research question is interesting and worth addressing—not necessarily why your favorite answer to it is correct. In other words, your literature review must be balanced. If you want to emphasize the generality of a phenomenon, then of course you should discuss various studies that have demonstrated it. However, if there are other studies that have failed to demonstrate it, you should discuss them too. Or if you are proposing a new theory, then of course you should discuss findings that are consistent with that theory. However, if there are other findings that are inconsistent with it, again, you should discuss them too. It is acceptable to argue that the balance of the research supports the existence of a phenomenon or is consistent with a theory (and that is usually the best that researchers in psychology can hope for), but it is not acceptable to ignore contradictory evidence. Besides, a large part of what makes a research question interesting is uncertainty about its answer.

The Closing

The closing of the introduction—typically the final paragraph or two—usually includes two important elements. The first is a clear statement of the main research question or hypothesis. This statement tends to be more formal and precise than in the opening and is often expressed in terms of operational definitions of the key variables. The second is a brief overview of the method and some comment on its appropriateness. Here, for example, is how Darley and Latané (1968) concluded the introduction to their classic article on the bystander effect:

These considerations lead to the hypothesis that the more bystanders to an emergency, the less likely, or the more slowly, any one bystander will intervene to provide aid. To test this proposition it would be necessary to create a situation in which a realistic “emergency” could plausibly occur. Each subject should also be blocked from communicating with others to prevent his getting information about their behavior during the emergency. Finally, the experimental situation should allow for the assessment of the speed and frequency of the subjects’ reaction to the emergency. The experiment reported below attempted to fulfill these conditions (p. 378).

Thus the introduction leads smoothly into the next major section of the article—the method section.

The method section is where you describe how you conducted your study. An important principle for writing a method section is that it should be clear and detailed enough that other researchers could replicate the study by following your “recipe.” This means that it must describe all the important elements of the study—basic demographic characteristics of the participants, how they were recruited, whether they were randomly assigned, how the variables were manipulated or measured, how counterbalancing was accomplished, and so on. At the same time, it should avoid irrelevant details such as the fact that the study was conducted in Classroom 37B of the Industrial Technology Building or that the questionnaire was double-sided and completed using pencils.

The method section begins immediately after the introduction ends with the heading “Method” (not “Methods”) centered on the page. Immediately after this is the subheading “Participants,” left justified and in italics. The participants subsection indicates how many participants there were, the number of women and men, some indication of their age, other demographics that may be relevant to the study, and how they were recruited, including any incentives given for participation.

Figure 11.1 Three Ways of Organizing an APA-Style Method

After the participants section, the structure can vary a bit. Figure 11.1 “Three Ways of Organizing an APA-Style Method” shows three common approaches. In the first, the participants section is followed by a design and procedure subsection, which describes the rest of the method. This works well for methods that are relatively simple and can be described adequately in a few paragraphs. In the second approach, the participants section is followed by separate design and procedure subsections. This works well when both the design and the procedure are relatively complicated and each requires multiple paragraphs.

What is the difference between design and procedure? The design of a study is its overall structure. What were the independent and dependent variables? Was the independent variable manipulated, and if so, was it manipulated between or within subjects? How were the variables operationally defined? The procedure is how the study was carried out. It often works well to describe the procedure in terms of what the participants did rather than what the researchers did. For example, the participants gave their informed consent, read a set of instructions, completed a block of four practice trials, completed a block of 20 test trials, completed two questionnaires, and were debriefed and excused.

In the third basic way to organize a method section, the participants subsection is followed by a materials subsection before the design and procedure subsections. This works well when there are complicated materials to describe. This might mean multiple questionnaires, written vignettes that participants read and respond to, perceptual stimuli, and so on. The heading of this subsection can be modified to reflect its content. Instead of “Materials,” it can be “Questionnaires,” “Stimuli,” and so on.

The results section is where you present the main results of the study, including the results of the statistical analyses. Although it does not include the raw data—individual participants’ responses or scores—researchers should save their raw data and make them available to other researchers who request them. Some journals now make the raw data available online.

Although there are no standard subsections, it is still important for the results section to be logically organized. Typically it begins with certain preliminary issues. One is whether any participants or responses were excluded from the analyses and why. The rationale for excluding data should be described clearly so that other researchers can decide whether it is appropriate. A second preliminary issue is how multiple responses were combined to produce the primary variables in the analyses. For example, if participants rated the attractiveness of 20 stimulus people, you might have to explain that you began by computing the mean attractiveness rating for each participant. Or if they recalled as many items as they could from study list of 20 words, did you count the number correctly recalled, compute the percentage correctly recalled, or perhaps compute the number correct minus the number incorrect? A third preliminary issue is the reliability of the measures. This is where you would present test-retest correlations, Cronbach’s α, or other statistics to show that the measures are consistent across time and across items. A final preliminary issue is whether the manipulation was successful. This is where you would report the results of any manipulation checks.

The results section should then tackle the primary research questions, one at a time. Again, there should be a clear organization. One approach would be to answer the most general questions and then proceed to answer more specific ones. Another would be to answer the main question first and then to answer secondary ones. Regardless, Bem (2003) suggests the following basic structure for discussing each new result:

  • Remind the reader of the research question.
  • Give the answer to the research question in words.
  • Present the relevant statistics.
  • Qualify the answer if necessary.
  • Summarize the result.

Notice that only Step 3 necessarily involves numbers. The rest of the steps involve presenting the research question and the answer to it in words. In fact, the basic results should be clear even to a reader who skips over the numbers.

The discussion is the last major section of the research report. Discussions usually consist of some combination of the following elements:

  • Summary of the research
  • Theoretical implications
  • Practical implications
  • Limitations
  • Suggestions for future research

The discussion typically begins with a summary of the study that provides a clear answer to the research question. In a short report with a single study, this might require no more than a sentence. In a longer report with multiple studies, it might require a paragraph or even two. The summary is often followed by a discussion of the theoretical implications of the research. Do the results provide support for any existing theories? If not, how can they be explained? Although you do not have to provide a definitive explanation or detailed theory for your results, you at least need to outline one or more possible explanations. In applied research—and often in basic research—there is also some discussion of the practical implications of the research. How can the results be used, and by whom, to accomplish some real-world goal?

The theoretical and practical implications are often followed by a discussion of the study’s limitations. Perhaps there are problems with its internal or external validity. Perhaps the manipulation was not very effective or the measures not very reliable. Perhaps there is some evidence that participants did not fully understand their task or that they were suspicious of the intent of the researchers. Now is the time to discuss these issues and how they might have affected the results. But do not overdo it. All studies have limitations, and most readers will understand that a different sample or different measures might have produced different results. Unless there is good reason to think they would have, however, there is no reason to mention these routine issues. Instead, pick two or three limitations that seem like they could have influenced the results, explain how they could have influenced the results, and suggest ways to deal with them.

Most discussions end with some suggestions for future research. If the study did not satisfactorily answer the original research question, what will it take to do so? What new research questions has the study raised? This part of the discussion, however, is not just a list of new questions. It is a discussion of two or three of the most important unresolved issues. This means identifying and clarifying each question, suggesting some alternative answers, and even suggesting ways they could be studied.

Finally, some researchers are quite good at ending their articles with a sweeping or thought-provoking conclusion. Darley and Latané (1968), for example, ended their article on the bystander effect by discussing the idea that whether people help others may depend more on the situation than on their personalities. Their final sentence is, “If people understand the situational forces that can make them hesitate to intervene, they may better overcome them” (p. 383). However, this kind of ending can be difficult to pull off. It can sound overreaching or just banal and end up detracting from the overall impact of the article. It is often better simply to end when you have made your final point (although you should avoid ending on a limitation).

The references section begins on a new page with the heading “References” centered at the top of the page. All references cited in the text are then listed in the format presented earlier. They are listed alphabetically by the last name of the first author. If two sources have the same first author, they are listed alphabetically by the last name of the second author. If all the authors are the same, then they are listed chronologically by the year of publication. Everything in the reference list is double-spaced both within and between references.

Appendixes, Tables, and Figures

Appendixes, tables, and figures come after the references. An appendix is appropriate for supplemental material that would interrupt the flow of the research report if it were presented within any of the major sections. An appendix could be used to present lists of stimulus words, questionnaire items, detailed descriptions of special equipment or unusual statistical analyses, or references to the studies that are included in a meta-analysis. Each appendix begins on a new page. If there is only one, the heading is “Appendix,” centered at the top of the page. If there is more than one, the headings are “Appendix A,” “Appendix B,” and so on, and they appear in the order they were first mentioned in the text of the report.

After any appendixes come tables and then figures. Tables and figures are both used to present results. Figures can also be used to illustrate theories (e.g., in the form of a flowchart), display stimuli, outline procedures, and present many other kinds of information. Each table and figure appears on its own page. Tables are numbered in the order that they are first mentioned in the text (“Table 1,” “Table 2,” and so on). Figures are numbered the same way (“Figure 1,” “Figure 2,” and so on). A brief explanatory title, with the important words capitalized, appears above each table. Each figure is given a brief explanatory caption, where (aside from proper nouns or names) only the first word of each sentence is capitalized. More details on preparing APA-style tables and figures are presented later in the book.

Sample APA-Style Research Report

Figure 11.2 “Title Page and Abstract” , Figure 11.3 “Introduction and Method” , Figure 11.4 “Results and Discussion” , and Figure 11.5 “References and Figure” show some sample pages from an APA-style empirical research report originally written by undergraduate student Tomoe Suyama at California State University, Fresno. The main purpose of these figures is to illustrate the basic organization and formatting of an APA-style empirical research report, although many high-level and low-level style conventions can be seen here too.

Figure 11.2 Title Page and Abstract

Title Page and Abstract

This student paper does not include the author note on the title page. The abstract appears on its own page.

Figure 11.3 Introduction and Method

Introduction and Method

Note that the introduction is headed with the full title, and the method section begins immediately after the introduction ends.

Figure 11.4 Results and Discussion

Results and Discussion

The discussion begins immediately after the results section ends.

Figure 11.5 References and Figure

References and Figure

If there were appendixes or tables, they would come before the figure.

Key Takeaways

  • An APA-style empirical research report consists of several standard sections. The main ones are the abstract, introduction, method, results, discussion, and references.
  • The introduction consists of an opening that presents the research question, a literature review that describes previous research on the topic, and a closing that restates the research question and comments on the method. The literature review constitutes an argument for why the current study is worth doing.
  • The method section describes the method in enough detail that another researcher could replicate the study. At a minimum, it consists of a participants subsection and a design and procedure subsection.
  • The results section describes the results in an organized fashion. Each primary result is presented in terms of statistical results but also explained in words.
  • The discussion typically summarizes the study, discusses theoretical and practical implications and limitations of the study, and offers suggestions for further research.
  • Practice: Look through an issue of a general interest professional journal (e.g., Psychological Science ). Read the opening of the first five articles and rate the effectiveness of each one from 1 ( very ineffective ) to 5 ( very effective ). Write a sentence or two explaining each rating.
  • Practice: Find a recent article in a professional journal and identify where the opening, literature review, and closing of the introduction begin and end.
  • Practice: Find a recent article in a professional journal and highlight in a different color each of the following elements in the discussion: summary, theoretical implications, practical implications, limitations, and suggestions for future research.

Bem, D. J. (2003). Writing the empirical journal article. In J. M. Darley, M. P. Zanna, & H. R. Roediger III (Eds.), The compleat academic: A practical guide for the beginning social scientist (2nd ed.). Washington, DC: American Psychological Association.

Darley, J. M., & Latané, B. (1968). Bystander intervention in emergencies: Diffusion of responsibility. Journal of Personality and Social Psychology, 4 , 377–383.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

tools4dev Practical tools for international development

professional research report example

Research report template

A research report describes the results of a survey, interviews, focus groups or any other type of qualitative or quantitative research. Even if they aren’t necessarily “researchers”, most international development practitioners will still need to write a basic research report at some point in their career. Either for a baseline or endline survey, needs assessment, or to describe the results of interviews or focus groups with program participants. This template can be used as a starting point for any type of basic research report (qualitative or quantitative).

Download research report template

This research report template is appropriate when:

  • You need to write a report after conducting surveys, interviews, focus groups, or any other type of qualitative or quantitative research.
  • You need to write a report for a simple baseline or endline survey, or needs assessment.

This research report template is NOT appropriate when:

  • You need to write an academic research report.
  • You need to write a report for a very complex or large research project (you could start with this template, but it would need a lot of modifications).

The Research Report Template by tools4dev is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License . All other content is  © tools4dev .

Photo by  Horia Varlan

Tags Monitoring & Evaluation Program Design

About Piroska Bisits Bullen

Avatar photo

Related Articles

professional research report example

What can international development learn from tech start-ups?

13 May 2021

professional research report example

Social Enterprise Business Plan Template

12 May 2021

professional research report example

How to write an M&E framework – Free video tutorial & templates

10 September 2017

👀 Turn any prompt into captivating visuals in seconds with our AI-powered design generator ✨ Try Piktochart AI!

  • Piktochart Visual
  • Video Editor
  • AI Design Generator
  • Infographic Maker
  • Banner Maker
  • Brochure Maker
  • Diagram Maker
  • Flowchart Maker
  • Flyer Maker
  • Graph Maker
  • Invitation Maker
  • Pitch Deck Creator
  • Poster Maker
  • Presentation Maker
  • Report Maker
  • Resume Maker
  • Social Media Graphic Maker
  • Timeline Maker
  • Venn Diagram Maker
  • Screen Recorder
  • Social Media Video Maker
  • Video Cropper
  • Video to Text Converter
  • Video Views Calculator
  • AI Brochure Maker
  • AI Document Generator
  • AI Flyer Generator
  • AI Infographic
  • AI Instagram Post Generator
  • AI Newsletter Generator
  • AI Report Generator
  • AI Timeline Generator
  • For Communications
  • For Education
  • For eLearning
  • For Financial Services
  • For Healthcare
  • For Human Resources
  • For Marketing
  • For Nonprofits
  • Brochure Templates
  • Flyer Templates
  • Infographic Templates
  • Newsletter Templates
  • Presentation Templates
  • Resume Templates
  • Business Infographics
  • Business Proposals
  • Education Templates
  • Health Posters
  • HR Templates
  • Sales Presentations
  • Community Template
  • Explore all free templates on Piktochart
  • Course: What is Visual Storytelling?
  • The Business Storyteller Podcast
  • User Stories
  • Video Tutorials
  • Need help? Check out our Help Center
  • Earn money as a Piktochart Affiliate Partner
  • Compare prices and features across Free, Pro, and Enterprise plans.
  • For professionals and small teams looking for better brand management.
  • For organizations seeking enterprise-grade onboarding, support, and SSO.
  • Discounted plan for students, teachers, and education staff.
  • Great causes deserve great pricing. Registered nonprofits pay less.

How to Write a Report (2023 Guide & Free Templates)

how to write a report, 2023 guide on how to write a report plus free templates

You have a report due in a few days, but you’re still procrastinating like a pro.

Sounds familiar?

If you’ve been staring at a blank page, wondering how to write a report the best way possible, you’re not alone. For many, writing a report, especially for the first time, can feel like rolling a giant boulder uphill.

The good news is that from a first draft to creating reports that people love to read is a skill you can develop and polish over time.

Whether you’re a student, a professional, or someone who wants to up their report-writing game, keep reading for a 2023 guide and step-by-step instructions on how to write a report. Plus, learn about the basic report format.

You’ll also get access to report templates that you can edit and customize immediately and learn about a tool to make reports online (no need to download software!). You can also jump right into customizing templates by creating a free account .

What is report writing?

Report writing is a way of communicating information, data, insight, or analysis. It’s an essential skill that will come in handy in various settings, from academic research or diving into historical events to business meetings.

But creating a report can be a bit intimidating at first.

In its simplest form, report writing starts with researching and gathering all the information, analyzing your findings, and presenting it in a way that’s easy for your audience to understand.

Sounds easy enough, right? 

Well, there’s a bit more to it than that. We’ll guide you through every step of the process to write an entire report from a rough draft and data in the next section. 

But first, let’s get to know the different types of reports.

Types of reports

Reports come in all shapes and sizes, and the type of report you write will depend on your specific goals and audience. Each type of report has its unique purpose, format, and style.

financial review report, how to write a report

The most common types of reports are: 

  • Academic report – These include school reports, book reports, thesis reports, or analytical reports between two opposing ideas.
  • Business report – Business reports range from annual reports to SWOT analyses . The goal of business reports is to communicate ideas, information, or insights in a business setting.
  • Research report –  Research reports are often more scientific or methodological in nature. They can take the form of case studies or research papers. 

Learn more : 20 Types of Reports and When to Use Them (Plus Templates)

How to write a report without feeling overwhelmed

Breaking down the report writing process into three stages can make it much more manageable for you, especially if it’s your first time to create one. 

These three stages are: 

  • Pre-writing stage
  • Writing stage
  • Post-writing stage

Let’s take a look at the steps for each stage and how to write a good report in 2023 that you can be proud of.

Stage 1: Pre-writing 

The pre-writing stage is all about preparation. Take some time to gather your thoughts and organize your main idea. Write a summary first.

Here are important steps to help you deal with the overwhelm of creating an insightful report. 

Understand the purpose of your report

Knowing your purpose will help you focus and stay on track throughout the process. Dig into the why of your report through these questions:

  • Who is your intended reader? Are you familiar with your audience’s language and how they think?
  • What are you trying to achieve with your report? Are you trying to inform, persuade, or recommend a course of action to the reader? 

Research your topic

It’s time to gather as much information as you can about your topic. This might involve reading books, articles, and other reports. You might also need to conduct interviews with subject matter experts.

Pro tip on how to write a report : Pick reputable sources like research papers, recently-published books, and case studies by trustworthy authors. 

Make a report outline

An outline is a roadmap for your report. It covers your title, introduction, thesis statement, main points, and conclusion. Organizing your thoughts this way will help you keep focus and ensure you cover all the necessary information.

example of a business report outline

While you can create a report without creating an outline, you could write a better report with an outline. An outline helps you organize your facts and important points on paper. 

Stage 2: Writing

Once you have completed the pre-writing stage, it’s time to write your report. 

Follow the proper report writing format

You will feel a lot of resistance at this point because this is where most of the tedious work of report writing happens. However, the process can be a breeze if you follow a proper structure and report writing format.

The structure of your report can vary depending on the type of report you’re creating, but the report writing format below can serve as a guide for anyone.

  • Title page. This is the first page of your report and should include the report’s title, the author’s name, the date of presentation or submission, and any other relevant information, such as your name or the organization’s name.
  • Table of Contents (TOC ). This section contains subsections of your report and their corresponding page numbering.  A well-written TOC will help readers navigate your report easily and find the information they need.
  • Brief summary . This part provides an overview of the report’s particular purpose, subject, methodology, key findings, and recommendations. This section is often called the executive summary in corporate reports.
  • Introduction . The introduction should provide background information about the topic and explain why the report was written. It should also state the aims and objectives of your report and give an overview of the methodology used to gather and analyze the data. Make sure you include a powerful topic sentence.
  • Main body. The main body of the report should be divided into subsections, each dealing with a specific aspect of the topic. These sections should be clearly labeled and organized in a logical order. In most reports, this is also the part where you explain and present your findings, analysis, and recommendations.
  • Conclusion. Summarize the main points of your report and provide a final summary, thought, or suggestions. Review your thesis statement. The conclusion also includes any limitations of the study and areas for further research or future action.
  • References . This section should include a list of all the sources cited in the report, like books, journal articles, websites, and any other sources used to gather information on your subject.
  • Appendices . In the appendices section, you should include any additional information relevant to the report but not in the article’s main body. This might consist of raw data, event details, graphs, charts, or tables.

With all these key report elements, your readers can look forward to an informative, well-organized, and easy-to-read report.

Pro tips: Remember to use clear and concise language in your essay. It is also required to follow a specific type of formatting set by your organization or instructor.

Plus, use the active voice when you can because it helps improve clarity. To write a report essay in a passive voice makes it sound less concise.

Reports should usually be written in the third person.

Edit and proofread the article

Once you have completed your first essay draft, take some time to edit and proofread your work. Look for spelling mistakes and grammar errors, as well as any areas where the flow of your article could be improved. Review your topic sentence.

If hiring a professional editor isn’t possible, have a colleague or someone else read your rough draft and provide feedback. You can also use tools like Grammarly and the Hemingway App . 

Stage 3: Post-writing

You’re almost there! This stage is about finalizing your report and ensuring it is ready to be shared. 

Format your report

Ensure your report is formatted correctly, with clear and easy-to-read fonts, headings, and subheadings.

Incorporate visuals

Adding visuals to your report article is another great way to help your audience understand complex information more easily.

From charts to illustrations, the right visual can help highlight and explain key points, events, trends, and patterns in your data, making it easier for the reader to interpret the information.

an example of a report that uses visuals effectively, written report

Want to check out more templates? Get access to the template gallery today .

However, it’s important to use visuals sparingly and ensure they are relevant and effectively support the texts. You will learn more about effectively incorporating visuals into your report as you scroll down below to the next sections. 

Share your report

Once your report is complete, share it with your audience. This might involve submitting it to your boss, presenting it to a group, or sharing it online.

A final note for this section: Remember to take your time, stay organized, and most importantly, have fun! Writing a report can be a rewarding experience, especially if you get positive feedback when you present.

How to add visuals to your report

Adding visuals to your report is more than just putting a graph or chart for every piece of information.

There are no hard and fast rules but use the pointers below as guidelines:

  • Each visual in your report should have a purpose. Don’t just add a pie chart or bar graph for the sake of adding one. Your visual of choice should offer clarity to readers that’s impossible to achieve with words alone. Piktochart’s report maker lets you search for free stock images and illustrations to add to any page with drag and drop.
  • Add captions, legends, or arrows to your visuals when possible. For more technical reports, graphics are either Tables or Figures. Number them in order of appearance (Figure 1, Figure 2, Table 1, etc.) and give each a descriptive title.
  • Place the visual close to the relevant text on the page.
  • Document the source of the visual, citing it in both the caption and references section if necessary.
  • Make the graphic stand out with colors, borders, boxes, spacing, and frames.

a report about customer satisfaction results with graphs, charts, and icons

Learn more : How to Improve Your Data Visualization Design in 6 Steps 

Write reports like a pro with Piktochart’s easy-to-edit report templates

Creating reports from scratch can be time-consuming. The great news is you don’t have to make reports from scratch like how it used to be in the 90s and early 2000s. Organizations of all shapes and sizes now understand that you can also create the perfect report with the help of templates.

For example, Piktochart offers a variety of fully customizable templates, allowing you to easily add your branding, colors, and text within the online editor. You can visualize your thesis statement and first draft in less than an hour. It’s also possible to start writing directly in the tool, adding graphics page by page.

These templates range from reports for school presentations to sales reports. By editing them, you can create professional-looking reports without the hassle of formatting and design.

Here are some examples of Piktochart’s professionally-designed templates. If you can’t pick one that matches your report writing format and needs, create a free Piktochart account to get access to more templates. 

Survey report template 

This survey report template includes clear visualizations, making your report findings easier to understand. From customer surveys to employee satisfaction reports, this template is quite versatile. 

an employee satisfaction survey report template by Piktochart

Research report template 

This research report template is perfect for anyone looking to create a thorough and professional research report. The template includes all the necessary sections to help you easily organize your research and present your findings in a concise document.

research report template by Piktochart

Corporate report template 

Looking for a corporate report template example with an editable table of contents and foreword? This template is the perfect fit!

Whether you’re presenting to investors or sharing information with your team, this corporate report template will help you create a polished and informative executive summary for any corporate organization.

corporate report template by Piktochart

Case study report template

Whether you’re conducting a business case study or an academic case study, this case study report template can help you earn your readers’ trust. This template is specifically designed with fashion as its main theme, but you can edit the photos and details to make it more on-brand with your niche.

case study report template

Marketing report template

Use this template to create comprehensive marketing reports. The template includes editable sections for social media, data from search engines, email marketing, and paid ads. 

monthly marketing report template by Piktochart

Financial report template 

With this customizable finance report template, you don’t need to make a financial report from scratch. Once you’ve written your content, save your report in PDF or PNG formats.

finance report template by Piktochart

Annual report template 

This annual report template is the right template for creating a professional and informative executive summary of your organization’s performance over the past year. This template was designed for HR annual reports, but you can also repurpose it for other types of yearly reports. 

annual review template by Piktochart showing how to write a report

See more report templates by creating a free Piktochart account . 

Quick checklist for better report writing

Before you submit or present your report, use the quick checklist below to help ensure that your report is well-structured, accurate, clear, and properly cited. Most of all, you must ensure that your report meets your audience’s expectations and has all the information and details they need. 

Purpose and audience

  • Does the report address its purpose and meet the needs of the intended audience?

Structure and organization

  • Is the material appropriately arranged in sections?
  • Have irrelevant details been removed?

Accuracy and analysis

  • Has all the material been checked for accuracy?
  • Are graphs and tables clearly labeled? Check the page numbers too.
  • Is the data in graphs or tables analyzed and explained in words?
  • Does the discussion or conclusion show how the results relate to the objectives mentioned in the introduction?
  • Have the results been compared with existing research from the literature survey?

Writing style and clarity

  • Is the report written in a tone that’s indicated in the brand style guide (for corporate reports)? Does it avoid colloquialisms or contractions? 
  • Does it follow the organization’s specific guidelines for writing style? 
  • Is it jargon-free and clearly written? Have you translated technical terms into simpler words?
  • Use the active voice when you can because it helps improve clarity. A written report in a passive voice may make it sound less concise. 

Acknowledgment and citation

  • Have all ideas and event data taken from or inspired by someone else’s work been acknowledged with a reference?
  • Have all illustrations and figures taken from someone else’s work been cited correctly?

Proofreading

  • Has the report been carefully proofread for typos, spelling errors, and grammatical mistakes?

Make engaging and effective reports quickly with Piktochart

Writing a report is a must-have skill for anyone looking to communicate more effectively in their personal and professional lives. 

With the steps we’ve provided in this guide, anyone can learn how to write a report that is informative, engaging, and comprehensive.

Plus, the free templates we highlighted are valuable for individuals looking to create reports quickly and efficiently. They can also be used to transform a longer report filled with texts into something more engaging and easy to digest.

Sign up for a free Piktochart account today, and look forward to writing reports with its library of modern, customizable report templates. 

Piktochart offers professionally designed templates for all your visual communication needs. It is your one-stop shop for presentations , posters , logos , email signatures , infographics , and more. Customize all templates according to your brand assets in seconds. Get started for free today.

Kaitomboc

Other Posts

best sales report templates featured image

10 Best Sales Report Templates for Tracking Revenue, KPIs & Growth

10 types of hr reports featured image

10 Types of HR Reports (With Templates and Examples)

professional research report example

7 Captivating Report Design Ideas And Tips (With Templates and Examples)

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

The purpose of a field report in the social sciences is to describe the deliberate observation of people, places, and/or events and to analyze what has been observed in order to identify and categorize common themes in relation to the research problem underpinning the study. The content represents the researcher's interpretation of meaning found in data that has been gathered during one or more observational events.

Flick, Uwe. The SAGE Handbook of Qualitative Data Collection . London: SAGE Publications, 2018; Lofland, John, David Snow, Leon Anderson, and Lyn H. Lofland. Analyzing Social Settings: A Guide to Qualitative Observation and Analysis. Long Grove, IL: Waveland Press, 2022; Baker, Lynda. "Observation: A Complex Research Method." Library Trends 55 (Summer 2006): 171-189.; Kellehear, Allan. The Unobtrusive Researcher: A Guide to Methods . New York: Routledge, 2020.

How to Approach Writing a Field Report

How to Begin

Field reports are most often assigned in disciplines of the applied social sciences [e.g., social work, anthropology, gerontology, criminal justice, education, law, the health care services] where it is important to build a bridge of relevancy between the theoretical concepts learned in the classroom and the practice of actually doing the work you are being taught to do. Field reports are also common in certain science disciplines [e.g., geology] but these reports are organized differently and serve a different purpose than what is described below.

Professors will assign a field report with the intention of improving your understanding of key theoretical concepts by applying methods of careful and structured observation of, and reflection about, people, places, or phenomena existing in their natural settings. Field reports facilitate the development of data collection techniques and observation skills and they help you to understand how theory applies to real world situations. Field reports are also an opportunity to obtain evidence through methods of observing professional practice that contribute to or challenge existing theories.

We are all observers of people, their interactions, places, and events; however, your responsibility when writing a field report is to conduct research based on data generated by the act of designing a specific study, deliberate observation, synthesis of key findings, and interpretation of their meaning.

When writing a field report you need to:

  • Systematically observe and accurately record the varying aspects of a situation . Always approach your field study with a detailed protocol about what you will observe, where you should conduct your observations, and the method by which you will collect and record your data.
  • Continuously analyze your observations . Always look for the meaning underlying the actions you observe. Ask yourself: What's going on here? What does this observed activity mean? What else does this relate to? Note that this is an on-going process of reflection and analysis taking place for the duration of your field research.
  • Keep the report’s aims in mind while you are observing . Recording what you observe should not be done randomly or haphazardly; you must be focused and pay attention to details. Enter the observation site [i.e., "field"] with a clear plan about what you are intending to observe and record in relation to the research problem while, at the same time, being prepared to adapt to changing circumstances as they may arise.
  • Consciously observe, record, and analyze what you hear and see in the context of a theoretical framework . This is what separates data gatherings from reporting. The theoretical framework guiding your field research should determine what, when, and how you observe and act as the foundation from which you interpret your findings in relation to the underlying assumptions embedded in the theoretical framework .

Techniques to Record Your Observations Although there is no limit to the type of data gathering techniques you can use, these are the most frequently used methods:

Note Taking This is the most common and easiest method of recording your observations. Tips for taking notes include: organizing some shorthand symbols beforehand so that recording basic or repeated actions does not impede your ability to observe, using many small paragraphs, which reflect changes in activities, who is talking, etc., and, leaving space on the page so you can write down additional thoughts and ideas about what’s being observed, any theoretical insights, and notes to yourself that are set aside for further investigation. See drop-down tab for additional information about note-taking.

Photography With the advent of smart phones, an almost unlimited number of high quality photographs can be taken of the objects, events, and people observed during a field study. Photographs can help capture an important moment in time as well as document details about the space where your observation takes place. Taking a photograph can save you time in documenting the details of a space that would otherwise require extensive note taking. However, be aware that flash photography could undermine your ability to observe unobtrusively so assess the lighting in your observation space; if it's too dark, you may need to rely on taking notes. Also, you should reject the idea that photographs represent some sort of "window into the world" because this assumption creates the risk of over-interpreting what they show. As with any product of data gathering, you are the sole instrument of interpretation and meaning-making, not the object itself. Video and Audio Recordings Video or audio recording your observations has the positive effect of giving you an unfiltered record of the observation event. It also facilitates repeated analysis of your observations. This can be particularly helpful as you gather additional information or insights during your research. However, these techniques have the negative effect of increasing how intrusive you are as an observer and will often not be practical or even allowed under certain circumstances [e.g., interaction between a doctor and a patient] and in certain organizational settings [e.g., a courtroom]. Illustrations/Drawings This does not refer to an artistic endeavor but, rather, refers to the possible need, for example, to draw a map of the observation setting or illustrating objects in relation to people's behavior. This can also take the form of rough tables, charts, or graphs documenting the frequency and type of activities observed. These can be subsequently placed in a more readable format when you write your field report. To save time, draft a table [i.e., columns and rows] on a separate piece of paper before an observation if you know you will be entering data in that way.

NOTE:   You may consider using a laptop or other electronic device to record your notes as you observe, but keep in mind the possibility that the clicking of keys while you type or noises from your device can be obtrusive, whereas writing your notes on paper is relatively quiet and unobtrusive. Always assess your presence in the setting where you're gathering the data so as to minimize your impact on the subject or phenomenon being studied.

ANOTHER NOTE:   Techniques of deliberate observation and data gathering are not innate skills; they are skills that must be learned and practiced in order to achieve proficiency. Before your first observation, practice the technique you plan to use in a setting similar to your study site [e.g., take notes about how people choose to enter checkout lines at a grocery store if your research involves examining the choice patterns of unrelated people forced to queue in busy social settings]. When the act of data gathering counts, you'll be glad you practiced beforehand.

YET ANOTHER NOTE:   An issue rarely discussed in the literature about conducting field research is whether you should move around the study site while observing or remaining situated in one place. Moving around can be intrusive, but it facilitates observing people's behavior from multiple vectors. However, if you remain in one place throughout the observation [or during each observation], you will eventually blend into the background and diminish the chance of unintentionally influencing people's behavior. If the site has a complex set of interactions or interdependent activities [e.g., a play ground], consider moving around; if the study site is relatively fixed [e.g., a classroom], then consider staying in one place while observing.

Examples of Things to Document While Observing

  • Physical setting . The characteristics of an occupied space and the human use of the place where the observation(s) are being conducted.
  • Objects and material culture . This refers to the presence, placement, and arrangement of objects that impact the behavior or actions of those being observed. If applicable, describe the cultural artifacts representing the beliefs [i.e., the values, ideas, attitudes, and assumptions] of the individuals you are observing [e.g., the choice of particular types of clothing in the observation of family gatherings during culturally specific holidays].
  • Use of language . Don't just observe but  listen to what is being said, how is it being said, and the tone of conversations among participants.
  • Behavior cycles . This refers to documenting when and who performs what behavior or task and how often they occur. Record at which stage this behavior is occurring within the setting.
  • The order in which events unfold . Note sequential patterns of behavior or the moment when actions or events take place and their significance. Also, be prepared to note moments that diverge from these sequential patterns of behavior or actions.
  • Physical characteristics of subjects. If relevant, document personal characteristics of individuals being observed. Note that, unless this data can be verified in interviews or from documentary evidence, you should only focus on characteristics that can be clearly observed [e.g., clothing, physical appearance, body language].
  • Expressive body movements . This would include things like body posture or facial expressions. Note that it may be relevant to also assess whether expressive body movements support or contradict the language used in conversation [e.g., detecting sarcasm].

Brief notes about all of these examples contextualize your observations; however, your observation notes will be guided primarily by your theoretical framework, keeping in mind that your observations will feed into and potentially modify or alter these frameworks.

Sampling Techniques

Sampling refers to the process used to select a portion of the population for study . Qualitative research, of which observation is one method of data gathering, is generally based on non-probability and purposive sampling rather than probability or random approaches characteristic of quantitatively-driven studies. Sampling in observational research is flexible and often continues until no new themes emerge from the data, a point referred to as data saturation.

All sampling decisions are made for the explicit purpose of obtaining the richest possible source of information to answer the research questions. Decisions about sampling assumes you know what you want to observe, what behaviors are important to record, and what research problem you are addressing before you begin the study. These questions determine what sampling technique you should use, so be sure you have adequately answered them before selecting a sampling method.

Ways to sample when conducting an observation include:

  • Ad Libitum Sampling -- this approach is not that different from what people do at the zoo; they observe whatever seems interesting at the moment. There is no organized system of recording the observations; you just note whatever seems relevant at the time. The advantage of this method is that you are often able to observe relatively rare or unusual behaviors that might be missed by more deliberately designed sampling methods. This method is also useful for obtaining preliminary observations that can be used to develop your final field study. Problems using this method include the possibility of inherent bias toward conspicuous behaviors or individuals, thereby missing mundane or repeated patterns of behavior, and that you may miss brief interactions in social settings.
  • Behavior Sampling -- this involves watching the entire group of subjects and recording each occurrence of a specific behavior of interest and with reference to which individuals were involved. The method is useful in recording rare behaviors missed by other sampling methods and is often used in conjunction with focal or scan methods [see below]. However, sampling can be biased towards particular conspicuous behaviors.
  • Continuous Recording -- provides a faithful record of behavior including frequencies, durations, and latencies [the time that elapses between a stimulus and the response to it]. This is a very demanding method because you are trying to record everything within the setting and, thus, measuring reliability may be sacrificed. In addition, durations and latencies are only reliable if subjects remain present throughout the collection of data. However, this method facilitates analyzing sequences of behaviors and ensures obtaining a wealth of data about the observation site and the people within it. The use of audio or video recording is most useful with this type of sampling.
  • Focal Sampling -- this involves observing one individual for a specified amount of time and recording all instances of that individual's behavior. Usually you have a set of predetermined categories or types of behaviors that you are interested in observing [e.g., when a teacher walks around the classroom] and you keep track of the duration of those behaviors. This approach doesn't tend to bias one behavior over another and provides significant detail about a individual's behavior. However, with this method, you likely have to conduct a lot of focal samples before you have a good idea about how group members interact. It can also be difficult within certain settings to keep one individual in sight for the entire period of the observation without being intrusive.
  • Instantaneous Sampling -- this is where observation sessions are divided into short intervals divided by sample points. At each sample point the observer records if predetermined behaviors of interest are taking place. This method is not effective for recording discrete events of short duration and, frequently, observers will want to record novel behaviors that occur slightly before or after the point of sampling, creating a sampling error. Though not exact, this method does give you an idea of durations and is relatively easy to do. It is also good for recording behavior patterns occurring at a specific instant, such as, movement or body positions.
  • One-Zero Sampling -- this is very similar to instantaneous sampling, only the observer records if the behaviors of interest have occurred at any time during an interval instead of at the instant of the sampling point. The method is useful for capturing data on behavior patterns that start and stop repeatedly and rapidly, but that last only for a brief period of time. The disadvantage of this approach is that you get a dimensionless score for an entire recording session, so you only get one one data point for each recording session.
  • Scan Sampling -- this method involves taking a census of the entire observed group at predetermined time periods and recording what each individual is doing at that moment. This is useful for obtaining group behavioral data and allows for data that are evenly representative across individuals and periods of time. On the other hand, this method may be biased towards more conspicuous behaviors and you may miss a lot of what is going on between observations, especially rare or unusual behaviors. It is also difficult to record more than a few individuals in a group setting without missing what each individual is doing at each predetermined moment in time [e.g., children sitting at a table during lunch at school]. The use of audio or video recording is useful with this type of sampling.

Alderks, Peter. Data Collection. Psychology 330 Course Documents. Animal Behavior Lab. University of Washington; Emerson, Robert M. Contemporary Field Research: Perspectives and Formulations . 2nd ed. Prospect Heights, IL: Waveland Press, 2001; Emerson, Robert M. et al. “Participant Observation and Fieldnotes.” In Handbook of Ethnography . Paul Atkinson et al., eds. (Thousand Oaks, CA: Sage, 2001), 352-368; Emerson, Robert M. et al. Writing Ethnographic Fieldnotes . 2nd ed. Chicago, IL: University of Chicago Press, 2011; Ethnography, Observational Research, and Narrative Inquiry. Writing@CSU. Colorado State University; Hazel, Spencer. "The Paradox from Within: Research Participants Doing-Being-Observed." Qualitative Research 16 (August 2016): 446-457; Pace, Tonio. Writing Field Reports. Scribd Online Library; Presser, Jon and Dona Schwartz. “Photographs within the Sociological Research Process.” In Image-based Research: A Sourcebook for Qualitative Researchers . Jon Prosser, editor (London: Falmer Press, 1998), pp. 115-130; Pyrczak, Fred and Randall R. Bruce. Writing Empirical Research Reports: A Basic Guide for Students of the Social and Behavioral Sciences . 5th ed. Glendale, CA: Pyrczak Publishing, 2005; Report Writing. UniLearning. University of Wollongong, Australia; Wolfinger, Nicholas H. "On Writing Fieldnotes: Collection Strategies and Background Expectancies.” Qualitative Research 2 (April 2002): 85-95; Writing Reports. Anonymous. The Higher Education Academy.

Structure and Writing Style

How you choose to format your field report is determined by the research problem, the theoretical framework that is driving your analysis, the observations that you make, and/or specific guidelines established by your professor. Since field reports do not have a standard format, it is worthwhile to determine from your professor what the preferred structure and organization should be before you begin to write. Note that field reports should be written in the past tense. With this in mind, most field reports in the social sciences include the following elements:

I.  Introduction The introduction should describe the research problem, the specific objectives of your research, and the important theories or concepts underpinning your field study. The introduction should describe the nature of the organization or setting where you are conducting the observation, what type of observations you have conducted, what your focus was, when you observed, and the methods you used for collecting the data. Collectively, this descriptive information should support reasons why you chose the observation site and the people or events within it. You should also include a review of pertinent literature related to the research problem, particularly if similar methods were used in prior studies. Conclude your introduction with a statement about how the rest of the paper is organized.

II.  Description of Activities

Your readers only knowledge and understanding of what happened will come from the description section of your report because they were not witnesses to the situation, people, or events that you are writing about. Given this, it is crucial that you provide sufficient details to place the analysis that will follow into proper context; don't make the mistake of providing a description without context. The description section of a field report is similar to a well written piece of journalism. Therefore, a useful approach to systematically describing the varying aspects of an observed situation is to answer the "Five W’s of Investigative Reporting." As Dubbels notes [p. 19], these are:

  • What -- describe what you observed. Note the temporal, physical, and social boundaries you imposed to limit the observations you made. What were your general impressions of the situation you were observing. For example, as a student teacher, what is your impression of the application of iPads as a learning device in a history class; as a cultural anthropologist, what is your impression of women's participation in a Native American religious ritual?
  • Where -- provide background information about the setting of your observation and, if necessary, note important material objects that are present that help contextualize the observation [e.g., arrangement of computers in relation to student engagement with the teacher].
  • When -- record factual data about the day and the beginning and ending time of each observation. Note that it may also be necessary to include background information or key events which impact upon the situation you were observing [e.g., observing the ability of teachers to re-engage students after coming back from an unannounced fire drill].
  • Who -- note background and demographic information about the individuals being observed e.g., age, gender, ethnicity, and/or any other variables relevant to your study]. Record who is doing what and saying what, as well as, who is not doing or saying what. If relevant, be sure to record who was missing from the observation.
  • Why -- why were you doing this? Describe the reasons for selecting particular situations to observe. Note why something happened. Also note why you may have included or excluded certain information.

III.  Interpretation and Analysis

Always place the analysis and interpretations of your field observations within the larger context of the theoretical assumptions and issues you described in the introduction. Part of your responsibility in analyzing the data is to determine which observations are worthy of comment and interpretation, and which observations are more general in nature. It is your theoretical framework that allows you to make these decisions. You need to demonstrate to the reader that you are conducting the field work through the eyes of an informed viewer and from the perspective of a casual observer.

Here are some questions to ask yourself when analyzing your observations:

  • What is the meaning of what you have observed?
  • Why do you think what you observed happened? What evidence do you have for your reasoning?
  • What events or behaviors were typical or widespread? If appropriate, what was unusual or out of the ordinary? How were they distributed among categories of people?
  • Do you see any connections or patterns in what you observed?
  • Why did the people you observed proceed with an action in the way that they did? What are the implications of this?
  • Did the stated or implicit objectives of what you were observing match what was achieved?
  • What were the relative merits of the behaviors you observed?
  • What were the strengths and weaknesses of the observations you recorded?
  • Do you see connections between what you observed and the findings of similar studies identified from your review of the literature?
  • How do your observations fit into the larger context of professional practice? In what ways have your observations possibly changed or affirmed your perceptions of professional practice?
  • Have you learned anything from what you observed?

NOTE:   Only base your interpretations on what you have actually observed. Do not speculate or manipulate your observational data to fit into your study's theoretical framework.

IV.  Conclusion and Recommendations

The conclusion should briefly recap of the entire study, reiterating the importance or significance of your observations. Avoid including any new information. You should also state any recommendations you may have based on the results of your study. Be sure to describe any unanticipated problems you encountered and note the limitations of your study. The conclusion should not be more than two or three paragraphs.

V.  Appendix

This is where you would place information that is not essential to explaining your findings, but that supports your analysis [especially repetitive or lengthy information], that validates your conclusions, or that contextualizes a related point that helps the reader understand the overall report. Examples of information that could be included in an appendix are figures/tables/charts/graphs of results, statistics, pictures, maps, drawings, or, if applicable, transcripts of interviews. There is no limit to what can be included in the appendix or its format [e.g., a DVD recording of the observation site], provided that it is relevant to the study's purpose and reference is made to it in the report. If information is placed in more than one appendix ["appendices"], the order in which they are organized is dictated by the order they were first mentioned in the text of the report.

VI.  References

List all sources that you consulted and obtained information from while writing your field report. Note that field reports generally do not include further readings or an extended bibliography. However, consult with your professor concerning what your list of sources should be included and be sure to write them in the preferred citation style of your discipline or is preferred by your professor [i.e., APA, Chicago, MLA, etc.].

Alderks, Peter. Data Collection. Psychology 330 Course Documents. Animal Behavior Lab. University of Washington; Dubbels, Brock R. Exploring the Cognitive, Social, Cultural, and Psychological Aspects of Gaming and Simulations . Hershey, PA: IGI Global, 2018; Emerson, Robert M. Contemporary Field Research: Perspectives and Formulations . 2nd ed. Prospect Heights, IL: Waveland Press, 2001; Emerson, Robert M. et al. “Participant Observation and Fieldnotes.” In Handbook of Ethnography . Paul Atkinson et al., eds. (Thousand Oaks, CA: Sage, 2001), 352-368; Emerson, Robert M. et al. Writing Ethnographic Fieldnotes . 2nd ed. Chicago, IL: University of Chicago Press, 2011; Ethnography, Observational Research, and Narrative Inquiry. Writing@CSU. Colorado State University; Pace, Tonio. Writing Field Reports. Scribd Online Library; Pyrczak, Fred and Randall R. Bruce. Writing Empirical Research Reports: A Basic Guide for Students of the Social and Behavioral Sciences . 5th ed. Glendale, CA: Pyrczak Publishing, 2005; Report Writing. UniLearning. University of Wollongong, Australia; Wolfinger, Nicholas H. "On Writing Fieldnotes: Collection Strategies and Background Expectancies.” Qualitative Research 2 (April 2002): 85-95; Writing Reports. Anonymous. The Higher Education Academy.

  • << Previous: Writing a Case Study
  • Next: About Informed Consent >>
  • Last Updated: May 7, 2024 9:45 AM
  • URL: https://libguides.usc.edu/writingguide/assignments

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 09 May 2024

Cubic millimetre of brain mapped in spectacular detail

  • Carissa Wong

You can also search for this author in PubMed   Google Scholar

Rendering based on electron-microscope data, showing the positions of neurons in a fragment of the brain cortex. Neurons are coloured according to size. Credit: Google Research & Lichtman Lab (Harvard University). Renderings by D. Berger (Harvard University)

You have full access to this article via your institution.

Researchers have mapped a tiny piece of the human brain in astonishing detail. The resulting cell atlas, which was described today in Science 1 and is available online , reveals new patterns of connections between brain cells called neurons, as well as cells that wrap around themselves to form knots, and pairs of neurons that are almost mirror images of each other.

The 3D map covers a volume of about one cubic millimetre, one-millionth of a whole brain, and contains roughly 57,000 cells and 150 million synapses — the connections between neurons. It incorporates a colossal 1.4 petabytes of data. “It’s a little bit humbling,” says Viren Jain, a neuroscientist at Google in Mountain View, California, and a co-author of the paper. “How are we ever going to really come to terms with all this complexity?”

Slivers of brain

The brain fragment was taken from a 45-year-old woman when she underwent surgery to treat her epilepsy. It came from the cortex, a part of the brain involved in learning, problem-solving and processing sensory signals. The sample was immersed in preservatives and stained with heavy metals to make the cells easier to see. Neuroscientist Jeff Lichtman at Harvard University in Cambridge, Massachusetts, and his colleagues then cut the sample into around 5,000 slices — each just 34 nanometres thick — that could be imaged using electron microscopes.

Jain’s team then built artificial-intelligence models that were able to stitch the microscope images together to reconstruct the whole sample in 3D. “I remember this moment, going into the map and looking at one individual synapse from this woman’s brain, and then zooming out into these other millions of pixels,” says Jain. “It felt sort of spiritual.”

Rendering of a neuron with a round base and many branches, on a black background.

A single neuron (white) shown with 5,600 of the axons (blue) that connect to it. The synapses that make these connections are shown in green. Credit: Google Research & Lichtman Lab (Harvard University). Renderings by D. Berger (Harvard University)

When examining the model in detail, the researchers discovered unconventional neurons, including some that made up to 50 connections with each other. “In general, you would find a couple of connections at most between two neurons,” says Jain. Elsewhere, the model showed neurons with tendrils that formed knots around themselves. “Nobody had seen anything like this before,” Jain adds.

The team also found pairs of neurons that were near-perfect mirror images of each other. “We found two groups that would send their dendrites in two different directions, and sometimes there was a kind of mirror symmetry,” Jain says. It is unclear what role these features have in the brain.

Proofreaders needed

The map is so large that most of it has yet to be manually checked, and it could still contain errors created by the process of stitching so many images together. “Hundreds of cells have been ‘proofread’, but that’s obviously a few per cent of the 50,000 cells in there,” says Jain. He hopes that others will help to proofread parts of the map they are interested in. The team plans to produce similar maps of brain samples from other people — but a map of the entire brain is unlikely in the next few decades, he says.

“This paper is really the tour de force creation of a human cortex data set,” says Hongkui Zeng, director of the Allen Institute for Brain Science in Seattle. The vast amount of data that has been made freely accessible will “allow the community to look deeper into the micro-circuitry in the human cortex”, she adds.

Gaining a deeper understanding of how the cortex works could offer clues about how to treat some psychiatric and neurodegenerative diseases. “This map provides unprecedented details that can unveil new rules of neural connections and help to decipher the inner working of the human brain,” says Yongsoo Kim, a neuroscientist at Pennsylvania State University in Hershey.

Nature 629 , 739-740 (2024)

doi: https://doi.org/10.1038/d41586-024-01387-9

Shapson-Coe, A. et al. Science 384 , eadk4858 (2024).

Article   Google Scholar  

Download references

Reprints and permissions

Related Articles

professional research report example

  • Neuroscience

First ‘bilingual’ brain-reading device decodes Spanish and English words

First ‘bilingual’ brain-reading device decodes Spanish and English words

News 21 MAY 24

Temporal multiplexing of perception and memory codes in IT cortex

Temporal multiplexing of perception and memory codes in IT cortex

Article 15 MAY 24

Volatile working memory representations crystallize with practice

Volatile working memory representations crystallize with practice

Organoids merge to model the blood–brain barrier

Organoids merge to model the blood–brain barrier

Research Highlight 15 MAY 24

How does ChatGPT ‘think’? Psychology and neuroscience crack open AI large language models

How does ChatGPT ‘think’? Psychology and neuroscience crack open AI large language models

News Feature 14 MAY 24

Assistant Professor in Plant Biology

The Plant Science Program in the Biological and Environmental Science and Engineering (BESE) Division at King Abdullah University of Science and Te...

Saudi Arabia (SA)

King Abdullah University of Science and Technology

professional research report example

Postdoctoral Fellow

New Orleans, Louisiana

Tulane University School of Medicine

professional research report example

Postdoctoral Associate - Immunology

Houston, Texas (US)

Baylor College of Medicine (BCM)

professional research report example

Postdoctoral Associate

Vice president, nature communications portfolio.

This is an exciting opportunity to play a key leadership role in the market-leading journal Nature Portfolio and help drive its overall contribution.

New York City, New York (US), Berlin, or Heidelberg

Springer Nature Ltd

professional research report example

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

IMAGES

  1. Research Report Writing Format Sample

    professional research report example

  2. Report Writing

    professional research report example

  3. Research Report Sample Template

    professional research report example

  4. Formal Research Report

    professional research report example

  5. Research Report

    professional research report example

  6. Laboratory Report Format Throughout Engineering Lab Report Template

    professional research report example

VIDEO

  1. RESEARCH REPORT/ COMPONENTS & FEATURES/ BS/ COMPREHENSIVE GUIDE/ EASY DESCRIPTION/ PROF. SHAMSA

  2. RESEARCH WRITING THE REPORT

  3. Report Writing

  4. How To Write a Standout Business Report

  5. Awesome Power BI sample reports for inspiration

  6. How to find secondary keyword for content coverage

COMMENTS

  1. Research Report

    Enhancing professional development: Research reports can be used to enhance professional development by providing a source of information and learning for researchers and practitioners in a particular field. For example, a research report on a new teaching methodology could provide insights and ideas for educators to incorporate into their own ...

  2. Writing a Research Report in American Psychological Association (APA

    Sample APA-Style Research Report. Figures 11.2, 11.3, 11.4, and 11.5 show some sample pages from an APA-style empirical research report originally written by undergraduate student Tomoe Suyama at California State University, Fresno. ... Practice: Find a recent article in a professional journal and highlight in a different colour each of the ...

  3. Sample papers

    These sample papers demonstrate APA Style formatting standards for different student paper types. Students may write the same types of papers as professional authors (e.g., quantitative studies, literature reviews) or other types of papers for course assignments (e.g., reaction or response papers, discussion posts), dissertations, and theses.

  4. Scientific Reports

    This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach this writing situation ...

  5. How To Write A Research Paper (FREE Template

    Step 1: Find a topic and review the literature. As we mentioned earlier, in a research paper, you, as the researcher, will try to answer a question.More specifically, that's called a research question, and it sets the direction of your entire paper. What's important to understand though is that you'll need to answer that research question with the help of high-quality sources - for ...

  6. How to Write a Research Paper

    Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft. The revision process. Research paper checklist. Free lecture slides.

  7. Research reports

    An outline of the research questions and hypotheses; the assumptions or propositions that your research will test. Literature Review. Not all research reports have a separate literature review section. In shorter research reports, the review is usually part of the Introduction. A literature review is a critical survey of recent relevant ...

  8. Research Paper Format

    The main guidelines for formatting a paper in APA Style are as follows: Use a standard font like 12 pt Times New Roman or 11 pt Arial. Set 1 inch page margins. Apply double line spacing. If submitting for publication, insert a APA running head on every page. Indent every new paragraph ½ inch.

  9. PDF Writing a Research Report

    Use the section headings (outlined above) to assist with your rough plan. Write a thesis statement that clarifies the overall purpose of your report. Jot down anything you already know about the topic in the relevant sections. 3 Do the Research. Steps 1 and 2 will guide your research for this report.

  10. PDF How to Write an Effective Research REport

    Abstract. This guide for writers of research reports consists of practical suggestions for writing a report that is clear, concise, readable, and understandable. It includes suggestions for terminology and notation and for writing each section of the report—introduction, method, results, and discussion. Much of the guide consists of ...

  11. Free Research Paper Template (Word Doc & PDF)

    If you're preparing to write an academic research paper, our free research paper template is the perfect starting point. In the template, we cover every section step by step, with clear, straightforward explanations and examples.. The template's structure is based on the tried and trusted best-practice format for formal academic research papers. The template structure reflects the overall ...

  12. Writing a business research report

    This resource covers three important features of the writing required for a successful business research report. Following this brief introduction, the second section covers report structure with a focus on suitable ways ... - Business report format - Professional business writing style ... Example. Report structure and headings. - Report title ...

  13. Report Examples With Sample Templates [To Edit and Download]

    3 Market Research Report Examples. A market research report is all about showing the results of a market research audit. The main idea is to describe the competitors, the ideal client, the current atmosphere in the market and ideas on how to implement a successful marketing strategy. ... 44 Business Report Templates for Professional Reports ...

  14. 11.2 Writing a Research Report in American Psychological Association

    Sample APA-Style Research Report Figure 11.2 "Title Page and Abstract" , Figure 11.3 "Introduction and Method" , Figure 11.4 "Results and Discussion" , and Figure 11.5 "References and Figure" show some sample pages from an APA-style empirical research report originally written by undergraduate student Tomoe Suyama at California ...

  15. Research report template

    A research report describes the results of a survey, interviews, focus groups or any other type of qualitative or quantitative research. Even if they aren't necessarily "researchers", most international development practitioners will still need to write a basic research report at some point in their career. Either for a baseline or endline survey, needs assessment, or to …

  16. How to Write a Report (2023 Guide & Free Templates)

    It should also state the aims and objectives of your report and give an overview of the methodology used to gather and analyze the data. Make sure you include a powerful topic sentence. Main body. The main body of the report should be divided into subsections, each dealing with a specific aspect of the topic.

  17. How to Write a Research Proposal

    Research proposal examples. Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We've included a few for you below. Example research proposal #1: "A Conceptual Framework for Scheduling Constraint Management" Example research proposal #2: "Medical Students as Mediators of ...

  18. Report Writing Format with Templates and Sample Report

    5. Research Report. Sometimes if you need to do some in-depth research, the best way to present that information is with a research report. Whether it's scientific findings, data and statistics from a study, etc., a research report is a great way to share your results. For the visuals in your research report, Visme offers millions of free stock ...

  19. Writing a Field Report

    How to Begin. Field reports are most often assigned in disciplines of the applied social sciences [e.g., social work, anthropology, gerontology, criminal justice, education, law, the health care services] where it is important to build a bridge of relevancy between the theoretical concepts learned in the classroom and the practice of actually doing the work you are being taught to do.

  20. PDF Sample Research Report

    This report discusses the changes that have occurred in the Australian workforce since the end of World War II (1945-2000). A review of some of the available literature provides insights into the changing role of women and migrants in the workforce, and the influence of new technologies and changing levels of unemployment have also been ...

  21. How To Write A Lab Report

    Introduction. Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure: Start with the broad, general research topic. Narrow your topic down your specific study focus. End with a clear research question.

  22. 50 Professional Technical Report Examples (+Format Samples)

    A technical report example is a written document made by a researcher which contains the details about a project's results. After creating the technical report, the researcher submits it to the project's sponsor. Such a report may contain procedures, design criteria, research history, images or illustrations, and other data relevant to the ...

  23. Cubic millimetre of brain mapped in spectacular detail

    The 3D map covers a volume of about one cubic millimetre, one-millionth of a whole brain, and contains roughly 57,000 cells and 150 million synapses — the connections between neurons. It ...