• Engineering Mathematics
  • Discrete Mathematics
  • Operating System
  • Computer Networks
  • Digital Logic and Design
  • C Programming
  • Data Structures
  • Theory of Computation
  • Compiler Design
  • Computer Org and Architecture
  • Computer Network Tutorial

Basics of Computer Network

  • Basics of Computer Networking
  • Introduction to basic Networking Terminology
  • Goals of Networks
  • Basic characteristics of Computer Networks
  • Challenges of Computer Network
  • Physical Components of Computer Network

Network Hardware and Software

  • Types of Computer Networks
  • LAN Full Form
  • How to Set Up a LAN Network?
  • MAN Full Form in Computer Networking
  • MAN Full Form
  • WAN Full Form
  • Introduction of Internetworking
  • Difference between Internet, Intranet and Extranet
  • Protocol Hierarchies in Computer Network
  • Network Devices (Hub, Repeater, Bridge, Switch, Router, Gateways and Brouter)
  • Introduction of a Router
  • Introduction of Gateways
  • What is a network switch, and how does it work?

Network Topology

  • Types of Network Topology
  • Difference between Physical and Logical Topology
  • What is OSI Model? - Layers of OSI Model
  • Physical Layer in OSI Model
  • Data Link Layer
  • Session Layer in OSI model

Presentation Layer in OSI model

  • Application Layer in OSI Model
  • Protocol and Standard in Computer Networks
  • Examples of Data Link Layer Protocols
  • TCP/IP Model
  • TCP/IP Ports and Its Applications
  • What is Transmission Control Protocol (TCP)?
  • TCP 3-Way Handshake Process
  • Services and Segment structure in TCP
  • TCP Connection Establishment
  • TCP Connection Termination
  • Fast Recovery Technique For Loss Recovery in TCP
  • Difference Between OSI Model and TCP/IP Model

Medium Access Control

  • MAC Full Form
  • Channel Allocation Problem in Computer Network
  • Multiple Access Protocols in Computer Network
  • Carrier Sense Multiple Access (CSMA)
  • Collision Detection in CSMA/CD
  • Controlled Access Protocols in Computer Network

SLIDING WINDOW PROTOCOLS

  • Stop and Wait ARQ
  • Sliding Window Protocol | Set 3 (Selective Repeat)
  • Piggybacking in Computer Networks

IP Addressing

  • What is IPv4?
  • What is IPv6?
  • Introduction of Classful IP Addressing
  • Classless Addressing in IP Addressing
  • Classful Vs Classless Addressing
  • Classless Inter Domain Routing (CIDR)
  • Supernetting in Network Layer
  • Introduction To Subnetting
  • Difference between Subnetting and Supernetting
  • Types of Routing
  • Difference between Static and Dynamic Routing
  • Unicast Routing - Link State Routing
  • Distance Vector Routing (DVR) Protocol
  • Fixed and Flooding Routing algorithms
  • Introduction of Firewall in Computer Network

Congestion Control Algorithms

  • Congestion Control in Computer Networks
  • Congestion Control techniques in Computer Networks
  • Computer Network | Leaky bucket algorithm
  • TCP Congestion Control

Network Switching

  • Circuit Switching in Computer Network
  • Message switching techniques
  • Packet Switching and Delays in Computer Network
  • Differences Between Virtual Circuits and Datagram Networks

Application Layer:DNS

  • Domain Name System (DNS) in Application Layer
  • Details on DNS
  • Introduction to Electronic Mail
  • E-Mail Format
  • World Wide Web (WWW)
  • HTTP Full Form
  • Streaming Stored Video
  • What is a Content Distribution Network and how does it work?

CN Interview Quetions

  • Top 50 Networking Interview Questions (2024)
  • Top 50 TCP/IP Interview Questions and Answers 2024
  • Top 50 IP Addressing Interview Questions and Answers
  • Last Minute Notes - Computer Networks
  • Computer Network - Cheat Sheet
  • Network Layer
  • Transport Layer
  • Application Layer

Prerequisite : OSI Model

Introduction : Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the required format to transmit over the network. The main responsibility of this layer is to provide or define the data format and encryption. The presentation layer is also called as Syntax layer since it is responsible for maintaining the proper syntax of the data which it either receives or transmits to other layer(s).

Functions of Presentation Layer :

The presentation layer, being the 6th layer in the OSI model, performs several types of functions, which are described below-

  • Presentation layer format and encrypts data to be sent across the network.
  • This layer takes care that the data is sent in such a way that the receiver will understand the information (data) and will be able to use the data efficiently and effectively.
  • This layer manages the abstract data structures and allows high-level data structures (example- banking records), which are to be defined or exchanged.
  • This layer carries out the encryption at the transmitter and decryption at the receiver.
  • This layer carries out data compression to reduce the bandwidth of the data to be transmitted (the primary goal of data compression is to reduce the number of bits which is to be transmitted).
  • This layer is responsible for interoperability (ability of computers to exchange and make use of information) between encoding methods as different computers use different encoding methods.
  • This layer basically deals with the presentation part of the data.
  • Presentation layer, carries out the data compression (number of bits reduction while transmission), which in return improves the data throughput.
  • This layer also deals with the issues of string representation.
  • The presentation layer is also responsible for integrating all the formats into a standardized format for efficient and effective communication.
  • This layer encodes the message from the user-dependent format to the common format and vice-versa for communication between dissimilar systems.
  • This layer deals with the syntax and semantics of the messages.
  • This layer also ensures that the messages which are to be presented to the upper as well as the lower layer should be standardized as well as in an accurate format too.
  • Presentation layer is also responsible for translation, formatting, and delivery of information for processing or display.
  • This layer also performs serialization (process of translating a data structure or an object into a format that can be stored or transmitted easily).

Features of Presentation Layer in the OSI model: Presentation layer, being the 6th layer in the OSI model, plays a vital role while communication is taking place between two devices in a network.

List of features which are provided by the presentation layer are:

  • Presentation layer could apply certain sophisticated compression techniques, so fewer bytes of data are required to represent the information when it is sent over the network.
  • If two or more devices are communicating over an encrypted connection, then this presentation layer is responsible for adding encryption on the sender’s end as well as the decoding the encryption on the receiver’s end so that it can represent the application layer with unencrypted, readable data.
  • This layer formats and encrypts data to be sent over a network, providing freedom from compatibility problems.
  • This presentation layer also negotiates the Transfer Syntax.
  • This presentation layer is also responsible for compressing data it receives from the application layer before delivering it to the session layer (which is the 5th layer in the OSI model) and thus improves the speed as well as the efficiency of communication by minimizing the amount of the data to be transferred.

Working of Presentation Layer in the OSI model : Presentation layer in the OSI model, as a translator, converts the data sent by the application layer of the transmitting node into an acceptable and compatible data format based on the applicable network protocol and architecture.  Upon arrival at the receiving computer, the presentation layer translates data into an acceptable format usable by the application layer. Basically, in other words, this layer takes care of any issues occurring when transmitted data must be viewed in a format different from the original format. Being the functional part of the OSI mode, the presentation layer performs a multitude (large number of) data conversion algorithms and character translation functions. Mainly, this layer is responsible for managing two network characteristics: protocol (set of rules) and architecture.

Presentation Layer Protocols : Presentation layer being the 6th layer, but the most important layer in the OSI model performs several types of functionalities, which makes sure that data which is being transferred or received should be accurate or clear to all the devices which are there in a closed network. Presentation Layer, for performing translations or other specified functions, needs to use certain protocols which are defined below –

  • Apple Filing Protocol (AFP): Apple Filing Protocol is the proprietary network protocol (communications protocol) that offers services to macOS or the classic macOS. This is basically the network file control protocol specifically designed for Mac-based platforms.
  • Lightweight Presentation Protocol (LPP): Lightweight Presentation Protocol is that protocol which is used to provide ISO presentation services on the top of TCP/IP based protocol stacks.
  • NetWare Core Protocol (NCP): NetWare Core Protocol is the network protocol which is used to access file, print, directory, clock synchronization, messaging, remote command execution and other network service functions.
  • Network Data Representation (NDR): Network Data Representation is basically the implementation of the presentation layer in the OSI model, which provides or defines various primitive data types, constructed data types and also several types of data representations.
  • External Data Representation (XDR): External Data Representation (XDR) is the standard for the description and encoding of data. It is useful for transferring data between computer architectures and has been used to communicate data between very diverse machines. Converting from local representation to XDR is called encoding, whereas converting XDR into local representation is called decoding.
  • Secure Socket Layer (SSL): The Secure Socket Layer protocol provides security to the data that is being transferred between the web browser and the server. SSL encrypts the link between a web server and a browser, which ensures that all data passed between them remains private and free from attacks.

author

Please Login to comment...

Similar reads, improve your coding skills with practice.

 alt=

What kind of Experience do you want to share?

  Layer 6 Presentation Layer

De/Encryption, Encoding, String representation

The presentation layer (data presentation layer, data provision level) sets the system-dependent representation of the data (for example, ASCII, EBCDIC) into an independent form, enabling the syntactically correct data exchange between different systems. Also, functions such as data compression and encryption are guaranteed that data to be sent by the application layer of a system that can be read by the application layer of another system to the layer 6. The presentation layer. If necessary, the presentation layer acts as a translator between different data formats, by making an understandable for both systems data format, the ASN.1 (Abstract Syntax Notation One) used.

OSI Layer 6 - Presentation Layer

The presentation layer is responsible for the delivery and formatting of information to the application layer for further processing or display. It relieves the application layer of concern regarding syntactical differences in data representation within the end-user systems. An example of a presentation service would be the conversion of an EBCDIC-coded text computer file to an ASCII-coded file. The presentation layer is the lowest layer at which application programmers consider data structure and presentation, instead of simply sending data in the form of datagrams or packets between hosts. This layer deals with issues of string representation - whether they use the Pascal method (an integer length field followed by the specified amount of bytes) or the C/C++ method (null-terminated strings, e.g. "thisisastring\0"). The idea is that the application layer should be able to point at the data to be moved, and the presentation layer will deal with the rest. Serialization of complex data structures into flat byte-strings (using mechanisms such as TLV or XML) can be thought of as the key functionality of the presentation layer. Encryption is typically done at this level too, although it can be done on the application, session, transport, or network layers, each having its own advantages and disadvantages. Decryption is also handled at the presentation layer. For example, when logging on to bank account sites the presentation layer will decrypt the data as it is received.[1] Another example is representing structure, which is normally standardized at this level, often by using XML. As well as simple pieces of data, like strings, more complicated things are standardized in this layer. Two common examples are 'objects' in object-oriented programming, and the exact way that streaming video is transmitted. In many widely used applications and protocols, no distinction is made between the presentation and application layers. For example, HyperText Transfer Protocol (HTTP), generally regarded as an application-layer protocol, has presentation-layer aspects such as the ability to identify character encoding for proper conversion, which is then done in the application layer. Within the service layering semantics of the OSI network architecture, the presentation layer responds to service requests from the application layer and issues service requests to the session layer. In the OSI model: the presentation layer ensures the information that the application layer of one system sends out is readable by the application layer of another system. For example, a PC program communicates with another computer, one using extended binary coded decimal interchange code (EBCDIC) and the other using ASCII to represent the same characters. If necessary, the presentation layer might be able to translate between multiple data formats by using a common format. Wikipedia
  • Data conversion
  • Character code translation
  • Compression
  • Encryption and Decryption

The Presentation OSI Layer is usually composed of 2 sublayers that are:

CASE common application service element

Sase specific application service element, layer 7   application layer, layer 6   presentation layer, layer 5   session layer, layer 4   transport layer, layer 3   network layer, layer 2   data link layer, layer 1   physical layer.

The OSI Model – The 7 Layers of Networking Explained in Plain English

Chloe Tucker

This article explains the Open Systems Interconnection (OSI) model and the 7 layers of networking, in plain English.

The OSI model is a conceptual framework that is used to describe how a network functions. In plain English, the OSI model helped standardize the way computer systems send information to each other.

Learning networking is a bit like learning a language - there are lots of standards and then some exceptions. Therefore, it’s important to really understand that the OSI model is not a set of rules. It is a tool for understanding how networks function.

Once you learn the OSI model, you will be able to further understand and appreciate this glorious entity we call the Internet, as well as be able to troubleshoot networking issues with greater fluency and ease.

All hail the Internet!

Prerequisites

You don’t need any prior programming or networking experience to understand this article. However, you will need:

  • Basic familiarity with common networking terms (explained below)
  • A curiosity about how things work :)

Learning Objectives

Over the course of this article, you will learn:

  • What the OSI model is
  • The purpose of each of the 7 layers
  • The problems that can happen at each of the 7 layers
  • The difference between TCP/IP model and the OSI model

Common Networking Terms

Here are some common networking terms that you should be familiar with to get the most out of this article. I’ll use these terms when I talk about OSI layers next.

A node is a physical electronic device hooked up to a network, for example a computer, printer, router, and so on. If set up properly, a node is capable of sending and/or receiving information over a network.

Nodes may be set up adjacent to one other, wherein Node A can connect directly to Node B, or there may be an intermediate node, like a switch or a router, set up between Node A and Node B.

Typically, routers connect networks to the Internet and switches operate within a network to facilitate intra-network communication. Learn more about hub vs. switch vs. router.

Here's an example:

1-Router-Image

For the nitpicky among us (yep, I see you), host is another term that you will encounter in networking. I will define a host as a type of node that requires an IP address. All hosts are nodes, but not all nodes are hosts. Please Tweet angrily at me if you disagree.

Links connect nodes on a network. Links can be wired, like Ethernet, or cable-free, like WiFi.

Links to can either be point-to-point, where Node A is connected to Node B, or multipoint, where Node A is connected to Node B and Node C.

When we’re talking about information being transmitted, this may also be described as a one-to-one vs. a one-to-many relationship.

A protocol is a mutually agreed upon set of rules that allows two nodes on a network to exchange data.

“A protocol defines the rules governing the syntax (what can be communicated), semantics (how it can be communicated), and synchronization (when and at what speed it can be communicated) of the communications procedure. Protocols can be implemented on hardware, software, or a combination of both. Protocols can be created by anyone, but the most widely adopted protocols are based on standards.” - The Illustrated Network.

Both wired and cable-free links can have protocols.

While anyone can create a protocol, the most widely adopted protocols are often based on standards published by Internet organizations such as the Internet Engineering Task Force (IETF).

A network is a general term for a group of computers, printers, or any other device that wants to share data.

Network types include LAN, HAN, CAN, MAN, WAN, BAN, or VPN. Think I’m just randomly rhyming things with the word can ? I can ’t say I am - these are all real network types. Learn more here .

Topology describes how nodes and links fit together in a network configuration, often depicted in a diagram. Here are some common network topology types:

What is Network Topology? Best Guides to Types & Diagrams - DNSstuff

A network consists of nodes, links between nodes, and protocols that govern data transmission between nodes.

At whatever scale and complexity networks get to, you will understand what’s happening in all computer networks by learning the OSI model and 7 layers of networking.

What is the OSI Model?

The OSI model consists of 7 layers of networking.

First, what’s a layer?

Cave, Dragon's Lair, mountains

No, a layer - not a lair . Here there are no dragons.

A layer is a way of categorizing and grouping functionality and behavior on and of a network.

In the OSI model, layers are organized from the most tangible and most physical, to less tangible and less physical but closer to the end user.

Each layer abstracts lower level functionality away until by the time you get to the highest layer. All the details and inner workings of all the other layers are hidden from the end user.

How to remember all the names of the layers? Easy.

  • Please | Physical Layer
  • Do | Data Link Layer
  • Not | Network Layer
  • Tell (the) | Transport Layer
  • Secret | Session Layer
  • Password (to) | Presentation Layer
  • Anyone | Application Layer

Keep in mind that while certain technologies, like protocols, may logically “belong to” one layer more than another, not all technologies fit neatly into a single layer in the OSI model. For example, Ethernet, 802.11 (Wifi) and the Address Resolution Protocol (ARP) procedure operate on >1 layer.

The OSI is a model and a tool, not a set of rules.

OSI Layer 1

Layer 1 is the physical layer . There’s a lot of technology in Layer 1 - everything from physical network devices, cabling, to how the cables hook up to the devices. Plus if we don’t need cables, what the signal type and transmission methods are (for example, wireless broadband).

Instead of listing every type of technology in Layer 1, I’ve created broader categories for these technologies. I encourage readers to learn more about each of these categories:

  • Nodes (devices) and networking hardware components. Devices include hubs, repeaters, routers, computers, printers, and so on. Hardware components that live inside of these devices include antennas, amplifiers, Network Interface Cards (NICs), and more.
  • Device interface mechanics. How and where does a cable connect to a device (cable connector and device socket)? What is the size and shape of the connector, and how many pins does it have? What dictates when a pin is active or inactive?
  • Functional and procedural logic. What is the function of each pin in the connector - send or receive? What procedural logic dictates the sequence of events so a node can start to communicate with another node on Layer 2?
  • Cabling protocols and specifications. Ethernet (CAT), USB, Digital Subscriber Line (DSL) , and more. Specifications include maximum cable length, modulation techniques, radio specifications, line coding, and bits synchronization (more on that below).
  • Cable types. Options include shielded or unshielded twisted pair, untwisted pair, coaxial and so on. Learn more about cable types here .
  • Signal type. Baseband is a single bit stream at a time, like a railway track - one-way only. Broadband consists of multiple bit streams at the same time, like a bi-directional highway.
  • Signal transmission method (may be wired or cable-free). Options include electrical (Ethernet), light (optical networks, fiber optics), radio waves (802.11 WiFi, a/b/g/n/ac/ax variants or Bluetooth). If cable-free, then also consider frequency: 2.5 GHz vs. 5 GHz. If it’s cabled, consider voltage. If cabled and Ethernet, also consider networking standards like 100BASE-T and related standards.

The data unit on Layer 1 is the bit.

A bit the smallest unit of transmittable digital information. Bits are binary, so either a 0 or a 1. Bytes, consisting of 8 bits, are used to represent single characters, like a letter, numeral, or symbol.

Bits are sent to and from hardware devices in accordance with the supported data rate (transmission rate, in number of bits per second or millisecond) and are synchronized so the number of bits sent and received per unit of time remains consistent (this is called bit synchronization). The way bits are transmitted depends on the signal transmission method.

Nodes can send, receive, or send and receive bits. If they can only do one, then the node uses a simplex mode. If they can do both, then the node uses a duplex mode. If a node can send and receive at the same time, it’s full-duplex – if not, it’s just half-duplex.

The original Ethernet was half-duplex. Full-duplex Ethernet is an option now, given the right equipment.

How to Troubleshoot OSI Layer 1 Problems

Here are some Layer 1 problems to watch out for:

  • Defunct cables, for example damaged wires or broken connectors
  • Broken hardware network devices, for example damaged circuits
  • Stuff being unplugged (...we’ve all been there)

If there are issues in Layer 1, anything beyond Layer 1 will not function properly.

Layer 1 contains the infrastructure that makes communication on networks possible.

It defines the electrical, mechanical, procedural, and functional specifications for activating, maintaining, and deactivating physical links between network devices. - Source

Fun fact: deep-sea communications cables transmit data around the world. This map will blow your mind: https://www.submarinecablemap.com/

And because you made it this far, here’s a koala:

Closeup of a Koala

OSI Layer 2

Layer 2 is the data link layer . Layer 2 defines how data is formatted for transmission, how much data can flow between nodes, for how long, and what to do when errors are detected in this flow.

In more official tech terms:

  • Line discipline. Who should talk for how long? How long should nodes be able to transit information for?
  • Flow control. How much data should be transmitted?
  • Error control - detection and correction . All data transmission methods have potential for errors, from electrical spikes to dirty connectors. Once Layer 2 technologies tell network administrators about an issue on Layer 2 or Layer 1, the system administrator can correct for those errors on subsequent layers. Layer 2 is mostly concerned with error detection, not error correction. ( Source )

There are two distinct sublayers within Layer 2:

  • Media Access Control (MAC): the MAC sublayer handles the assignment of a hardware identification number, called a MAC address, that uniquely identifies each device on a network. No two devices should have the same MAC address. The MAC address is assigned at the point of manufacturing. It is automatically recognized by most networks. MAC addresses live on Network Interface Cards (NICs). Switches keep track of all MAC addresses on a network. Learn more about MAC addresses on PC Mag and in this article . Learn more about network switches here .
  • Logical Link Control (LLC): the LLC sublayer handles framing addressing and flow control. The speed depends on the link between nodes, for example Ethernet or Wifi.

The data unit on Layer 2 is a frame .

Each frame contains a frame header, body, and a frame trailer:

  • Header: typically includes MAC addresses for the source and destination nodes.
  • Body: consists of the bits being transmitted.
  • Trailer: includes error detection information. When errors are detected, and depending on the implementation or configuration of a network or protocol, frames may be discarded or the error may be reported up to higher layers for further error correction. Examples of error detection mechanisms: Cyclic Redundancy Check (CRC) and Frame Check Sequence (FCS). Learn more about error detection techniques here .

Example of frames, the network layer, and the physical layer

Typically there is a maximum frame size limit, called an Maximum Transmission Unit, MTU. Jumbo frames exceed the standard MTU, learn more about jumbo frames here .

How to Troubleshoot OSI Layer 2 Problems

Here are some Layer 2 problems to watch out for:

  • All the problems that can occur on Layer 1
  • Unsuccessful connections (sessions) between two nodes
  • Sessions that are successfully established but intermittently fail
  • Frame collisions

The Data Link Layer allows nodes to communicate with each other within a local area network. The foundations of line discipline, flow control, and error control are established in this layer.

OSI Layer 3

Layer 3 is the network layer . This is where we send information between and across networks through the use of routers. Instead of just node-to-node communication, we can now do network-to-network communication.

Routers are the workhorse of Layer 3 - we couldn’t have Layer 3 without them. They move data packets across multiple networks.

Not only do they connect to Internet Service Providers (ISPs) to provide access to the Internet, they also keep track of what’s on its network (remember that switches keep track of all MAC addresses on a network), what other networks it’s connected to, and the different paths for routing data packets across these networks.

Routers store all of this addressing and routing information in routing tables.

Here’s a simple example of a routing table:

A routing table showing the destination, subnet mask, and interface

The data unit on Layer 3 is the data packet . Typically, each data packet contains a frame plus an IP address information wrapper. In other words, frames are encapsulated by Layer 3 addressing information.

The data being transmitted in a packet is also sometimes called the payload . While each packet has everything it needs to get to its destination, whether or not it makes it there is another story.

Layer 3 transmissions are connectionless, or best effort - they don't do anything but send the traffic where it’s supposed to go. More on data transport protocols on Layer 4.

Once a node is connected to the Internet, it is assigned an Internet Protocol (IP) address, which looks either like 172.16. 254.1 (IPv4 address convention) or like 2001:0db8:85a3:0000:0000:8a2e:0370:7334 (IPv6 address convention). Routers use IP addresses in their routing tables.

IP addresses are associated with the physical node’s MAC address via the Address Resolution Protocol (ARP), which resolves MAC addresses with the node’s corresponding IP address.

ARP is conventionally considered part of Layer 2, but since IP addresses don’t exist until Layer 3, it’s also part of Layer 3.

How to Troubleshoot OSI Layer 3 Problems

Here are some Layer 3 problems to watch out for:

  • All the problems that can crop up on previous layers :)
  • Faulty or non-functional router or other node
  • IP address is incorrectly configured

Many answers to Layer 3 questions will require the use of command-line tools like ping , trace , show ip route , or show ip protocols . Learn more about troubleshooting on layer 1-3 here .

The Network Layer allows nodes to connect to the Internet and send information across different networks.

OSI Layer 4

Layer 4 is the transport layer . This where we dive into the nitty gritty specifics of the connection between two nodes and how information is transmitted between them. It builds on the functions of Layer 2 - line discipline, flow control, and error control.

This layer is also responsible for data packet segmentation, or how data packets are broken up and sent over the network.

Unlike the previous layer, Layer 4 also has an understanding of the whole message, not just the contents of each individual data packet. With this understanding, Layer 4 is able to manage network congestion by not sending all the packets at once.

The data units of Layer 4 go by a few names. For TCP, the data unit is a packet. For UDP, a packet is referred to as a datagram. I’ll just use the term data packet here for the sake of simplicity.

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are two of the most well-known protocols in Layer 4.

TCP, a connection-oriented protocol, prioritizes data quality over speed.

TCP explicitly establishes a connection with the destination node and requires a handshake between the source and destination nodes when data is transmitted. The handshake confirms that data was received. If the destination node does not receive all of the data, TCP will ask for a retry.

TCP also ensures that packets are delivered or reassembled in the correct order. Learn more about TCP here .

UDP, a connectionless protocol, prioritizes speed over data quality. UDP does not require a handshake, which is why it’s called connectionless.

Because UDP doesn’t have to wait for this acknowledgement, it can send data at a faster rate, but not all of the data may be successfully transmitted and we’d never know.

If information is split up into multiple datagrams, unless those datagrams contain a sequence number, UDP does not ensure that packets are reassembled in the correct order. Learn more about UDP here .

TCP and UDP both send data to specific ports on a network device, which has an IP address. The combination of the IP address and the port number is called a socket.

Learn more about sockets here .

Learn more about the differences and similarities between these two protocols here .

How to Troubleshoot OSI Layer 4 Problems

Here are some Layer 4 problems to watch out for:

  • Blocked ports - check your Access Control Lists (ACL) & firewalls
  • Quality of Service (QoS) settings. QoS is a feature of routers/switches that can prioritize traffic, and they can really muck things up. Learn more about QoS here .

The Transport Layer provides end-to-end transmission of a message by segmenting a message into multiple data packets; the layer supports connection-oriented and connectionless communication.

OSI Layer 5

Layer 5 is the session layer . This layer establishes, maintains, and terminates sessions.

A session is a mutually agreed upon connection that is established between two network applications. Not two nodes! Nope, we’ve moved on from nodes. They were so Layer 4.

Just kidding, we still have nodes, but Layer 5 doesn’t need to retain the concept of a node because that’s been abstracted out (taken care of) by previous layers.

So a session is a connection that is established between two specific end-user applications. There are two important concepts to consider here:

  • Client and server model: the application requesting the information is called the client, and the application that has the requested information is called the server.
  • Request and response model: while a session is being established and during a session, there is a constant back-and-forth of requests for information and responses containing that information or “hey, I don’t have what you’re requesting.”

Sessions may be open for a very short amount of time or a long amount of time. They may fail sometimes, too.

Depending on the protocol in question, various failure resolution processes may kick in. Depending on the applications/protocols/hardware in use, sessions may support simplex, half-duplex, or full-duplex modes.

Examples of protocols on Layer 5 include Network Basic Input Output System (NetBIOS) and Remote Procedure Call Protocol (RPC), and many others.

From here on out (layer 5 and up), networks are focused on ways of making connections to end-user applications and displaying data to the user.

How to Troubleshoot OSI Layer 5 Problems

Here are some Layer 5 problems to watch out for:

  • Servers are unavailable
  • Servers are incorrectly configured, for example Apache or PHP configs
  • Session failure - disconnect, timeout, and so on.

The Session Layer initiates, maintains, and terminates connections between two end-user applications. It responds to requests from the presentation layer and issues requests to the transport layer.

OSI Layer 6

Layer 6 is the presentation layer . This layer is responsible for data formatting, such as character encoding and conversions, and data encryption.

The operating system that hosts the end-user application is typically involved in Layer 6 processes. This functionality is not always implemented in a network protocol.

Layer 6 makes sure that end-user applications operating on Layer 7 can successfully consume data and, of course, eventually display it.

There are three data formatting methods to be aware of:

  • American Standard Code for Information Interchange (ASCII): this 7-bit encoding technique is the most widely used standard for character encoding. One superset is ISO-8859-1, which provides most of the characters necessary for languages spoken in Western Europe.
  • Extended Binary-Coded Decimal Interchange Code (EBDCIC): designed by IBM for mainframe usage. This encoding is incompatible with other character encoding methods.
  • Unicode: character encodings can be done with 32-, 16-, or 8-bit characters and attempts to accommodate every known, written alphabet.

Learn more about character encoding methods in this article , and also here .

Encryption: SSL or TLS encryption protocols live on Layer 6. These encryption protocols help ensure that transmitted data is less vulnerable to malicious actors by providing authentication and data encryption for nodes operating on a network. TLS is the successor to SSL.

How to Troubleshoot OSI Layer 6 Problems

Here are some Layer 6 problems to watch out for:

  • Non-existent or corrupted drivers
  • Incorrect OS user access level

The Presentation Layer formats and encrypts data.

OSI Layer 7

Layer 7 is the application layer .

True to its name, this is the layer that is ultimately responsible for supporting services used by end-user applications. Applications include software programs that are installed on the operating system, like Internet browsers (for example, Firefox) or word processing programs (for example, Microsoft Word).

Applications can perform specialized network functions under the hood and require specialized services that fall under the umbrella of Layer 7.

Electronic mail programs, for example, are specifically created to run over a network and utilize networking functionality, such as email protocols, which fall under Layer 7.

Applications will also control end-user interaction, such as security checks (for example, MFA), identification of two participants, initiation of an exchange of information, and so on.

Protocols that operate on this level include File Transfer Protocol (FTP), Secure Shell (SSH), Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol (IMAP), Domain Name Service (DNS), and Hypertext Transfer Protocol (HTTP).

While each of these protocols serve different functions and operate differently, on a high level they all facilitate the communication of information. ( Source )

How to Troubleshoot OSI Layer 7 Problems

Here are some Layer 7 problems to watch out for:

  • All issues on previous layers
  • Incorrectly configured software applications
  • User error (... we’ve all been there)

The Application Layer owns the services and functions that end-user applications need to work. It does not include the applications themselves.

Our Layer 1 koala is all grown up.

Koala with Photoshopped makeup

Learning check - can you apply makeup to a koala?

Don’t have a koala?

Well - answer these questions instead. It’s the next best thing, I promise.

  • What is the OSI model?
  • What are each of the layers?
  • How could I use this information to troubleshoot networking issues?

Congratulations - you’ve taken one step farther to understanding the glorious entity we call the Internet.

Learning Resources

Many, very smart people have written entire books about the OSI model or entire books about specific layers. I encourage readers to check out any O’Reilly-published books about the subject or about network engineering in general.

Here are some resources I used when writing this article:

  • The Illustrated Network, 2nd Edition
  • Protocol Data Unit (PDU): https://www.geeksforgeeks.org/difference-between-segments-packets-and-frames/
  • Troubleshooting Along the OSI Model: https://www.pearsonitcertification.com/articles/article.aspx?p=1730891
  • The OSI Model Demystified: https://www.youtube.com/watch?v=HEEnLZV2wGI
  • OSI Model for Dummies: https://www.dummies.com/programming/networking/layers-in-the-osi-model-of-a-computer-network/

Chloe Tucker is an artist and computer science enthusiast based in Portland, Oregon. As a former educator, she's continuously searching for the intersection of learning and teaching, or technology and art. Reach out to her on Twitter @_chloetucker and check out her website at chloe.dev .

Read more posts .

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

Network Encyclopedia Logo

Presentation Layer

Last Edited

What is the Presentation Layer?

Presentation Layer is the Layer 6 of the seven-layer Open Systems Interconnection (OSI) reference model . The presentation layer structures data that is passed down from the application layer into a format suitable for network transmission. This layer is responsible for data encryption, data compression, character set conversion, interpretation of graphics commands, and so on. The network redirector also functions at this layer.

Presentation Layer

Presentation Layer functions

  • Translation:  Before being transmitted, information in the form of characters and numbers should be changed to bit streams. Layer 6 is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the network requires and the format the computer.
  • Encryption:  Encryption at the transmitter and decryption at the receiver
  • Compression:  Data compression to reduce the bandwidth of the data to be transmitted. The primary role of  data compression  is to reduce the number of bits to be transmitted. Multimedia files, such as audio and video, are bigger than text files and compression is more important.

Role of Presentation Layer in the OSI Model

This layer is not always used in network communications because its functions are not always necessary. Translation is only needed if different types of machines need to talk with each other. Encryption is optional in communication. If the information is public there is no need to encrypt and decrypt info. Compression is also optional. If files are small there is no need for compression.

Explaining Layer 6 in video

Most real-world protocol suites, such as TCP/IP , do not use separate presentation layer protocols. This layer is mostly an abstraction in real-world networking.

An example of a program that loosely adheres to layer 6 of OSI is the tool that manages the Hypertext Transfer Protocol (HTTP) — although it’s technically considered an application-layer protocol per the TCP/IP model.

However, HTTP includes presentation layer services within it. HTTP works when the requesting device forwards user requests passed to the web browser onto a web server elsewhere in the network.

It receives a return message from the web server that includes a multipurpose internet mail extensions (MIME) header. The MIME header indicates the type of file – text, video, or audio – that has been received so that an appropriate player utility can be used to present the file to the user.

In short, the presentation layer

Makes sure that data which is being transferred or received should be accurate or clear to all the devices which are there, in a closed network.

  • ensures proper formatting and delivery to and from the application layer;
  • performs data encryption; and
  • manages serialization of data objects.

presentation layer work

Please Whitelist This Site? I know everyone hates ads. But please understand that I am providing premium content for free that takes hundreds of hours of time to research and write. I don't want to go to a pay-only model like some sites, but when more and more people block ads, I end up working for free. And I have a family to support, just like you. :) If you like The TCP/IP Guide, please consider the download version . It's priced very economically and you can read all of it in a convenient format without ads. If you want to use this site for free, I'd be grateful if you could add the site to the whitelist for Adblock. To do so, just open the Adblock menu and select "Disable on tcpipguide.com". Or go to the Tools menu and select "Adblock Plus Preferences...". Then click "Add Filter..." at the bottom, and add this string: "@@||tcpipguide.com^$document". Then just click OK. Thanks for your understanding! Sincerely, Charles Kozierok Author and Publisher, The TCP/IP Guide

The presentation layer is the sixth layer of the OSI Reference Model protocol stack, and second from the top. It is different from the other layers in two key respects. First, it has a much more limited and specific function than the other layers; it's actually somewhat easy to describe, hurray! Second, it is used much less often than the other layers; in many types of connections it is not required.

The name of this layer suggests its main function as well: it deals with the presentation of data. More specifically, the presentation layer is charged with taking care of any issues that might arise where data sent from one system needs to be viewed in a different way by the other system. It also takes care of any special processing that must be done to data from the time an application tries to send it until the time it is sent over the network.

Here are some of the specific types of data handling issues that the presentation layer handles:

The reason that the presentation layer is not always used in network communications is that the jobs mentioned above are simply not always needed. Compression and encryption are usually considered “optional”, and translation features are also only needed in certain circumstances. Another reason why the presentation layer is sometimes not mentioned is that its functions may be performed as part of the application layer.

The fact that the translation job done by the presentation layer isn't always needed means that it is common for it to be “skipped” by actual protocol stack implementations. This means that protocols at layer seven may talk directly with those at layer five. Once again, this is part of the reason why all of the functions of layers five through seven may be included together in the same software package, as described in the overview of layers and layer groupings .

How-To Geek

The 7 osi networking layers explained.

The Open Systems Interconnection (OSI) networking model defines a conceptual framework for communications between computer systems.

Quick Links

  • Physical Layer
  • Data Link Layer
  • Network Layer
  • Transport Layer
  • Session Layer
  • Presentation Layer
  • Application Layer

The Open Systems Interconnection (OSI) networking model defines a conceptual framework for communications between computer systems. The model is an ISO standard which identifies seven fundamental networking layers, from the physical hardware up to high-level software applications.

Each layer in the model handles a specific networking function. The standard helps administrators to visualize networks, isolate problems, and understand the use cases for new technologies. Many network equipment vendors advertise the OSI layer that their products are designed to slot into.

OSI was adopted as an international standard in 1984. It remains relevant today despite the changes to network implementation that have occurred since first publication. Cloud, edge, and IoT can all be accommodated within the model.

In this article, we'll explain each of the seven OSI layers in turn. We'll start from the lowest level, labelled as Layer 1.

1. Physical Layer

All networking begins with physical equipment. This layer encapsulates the hardware involved in the communications, such as switches and cables. Data is transferred as a stream of binary digits - 0 or 1 - that the hardware prepares from input it's been fed. The physical layer specifies the electrical signals that are used to encode the data over the wire, such as a 5-volt pulse to indicate a binary "1."

Errors in the physical layer tend to result in data not being transferred at all. There could be a break in the connection due to a missing plug or incorrect power supply. Problems can also arise when two components disagree on the physical encoding of data values. In the case of wireless connections, a weak signal can lead to bit loss during transmission.

2. Data Link Layer

The model's second layer concerns communication between two devices that are directly connected to each other in the same network. It's responsible for establishing a link that allows data to be exchanged using an agreed protocol. Many network switches operate at Layer 2.

The data link layer will eventually pass bits to the physical layer. As it sits above the hardware, the data link layer can perform basic error detection and correction in response to physical transfer issues. There are two sub-layers that define these responsibilities: Logical Link Control (LLC) that handles frame synchronization and error detection, and Media Access Control (MAC) which uses MAC addresses to constrain how devices acquire permission to transfer data.

3. Network Layer

The network layer is the first level to support data transfer between two separately maintained networks. It's redundant in situations where all your devices exist on the same network.

Data that comes to the network layer from higher levels is first broken up into packets suitable for transmission. Packets received from the remote network in response are reassembled into usable data.

The network layer is where several important protocols are first encountered. These include IP (for determining the path to a destination), ICMP, routing, and virtual LAN. Together these mechanisms facilitate inter-network communications with a familiar degree of usability. However operations at this level aren't necessarily reliable: messages aren't required to succeed and may not necessarily be retried.

4. Transport Layer

The transport layer provides higher-level abstractions for coordinating data transfers between devices. Transport controllers determine where data will be sent and the rate it should be transferred at.

Layer 4 is where TCP and UDP are implemented, providing the port numbers that allow devices to expose multiple communication channels. Load balancing is often situated at Layer 4 as a result, allowing traffic to be routed between ports on a target device.

Transport mechanisms are expected to guarantee successful communication. Stringent error controls are applied to recover from packet loss and retry failed transfers. Flow control is enforced so the sender doesn't overwhelm the remote device by sending data more quickly than the available bandwidth permits.

5. Session Layer

Layer 5 creates ongoing communication sessions between two devices. Sessions are used to negotiate new connections, agree on their duration, and gracefully close down the connection once the data exchange is complete. This layer ensures that sessions remain open long enough to transfer all the data that's being sent.

Checkpoint control is another responsibility that's held by Layer 5. Sessions can define checkpoints to facilitate progress updates and resumable transmissions. A new checkpoint could be set every few megabytes for a file upload, allowing the sender to continue from a particular point if the transfer gets interrupted.

Many significant protocols operate at Layer 5 including authentication and logon technologies such as LDAP and NetBIOS. These establish semi-permanent communication channels for managing an end user session on a specific device.

6. Presentation Layer

The presentation layer handles preparation of data for the application layer that comes next in the model. After data has made it up from the hardware, through the data link, and across the transport, it's almost ready to be consumed by high-level components. The presentation layer completes the process by performing any formatting tasks that may be required.

Decryption, decoding, and decompression are three common operations found at this level. The presentation layer processes received data into formats that can be eventually utilized by a client application. Similarly, outward-bound data is reformatted into compressed and encrypted structures that are suitable for network transmission.

TLS is one major technology that's part of the presentation layer. Certificate verification and data decryption is handled before requests reach the network client, allowing information to be consumed with confidence that it's authentic.

7. Application Layer

The application layer is the top of the stack. It represents the functionality that's perceived by network end users. Applications in the OSI model provide a convenient end-to-end interface to facilitate complete data transfers, without making you think about hardware, data links, sessions, and compression.

Despite its name, this layer doesn't relate to client-side software such as your web browser or email client. An application in OSI terms is a protocol that caters for the complete communication of complex data through layers 1-6.

HTTP, FTP, DHCP, DNS, and SSH all exist at the application layer. These are high-level mechanisms which permit direct transfers of user data between an origin device and a remote server. You only need minimal knowledge of the workings of the other layers.

The seven OSI layers describe the transfer of data through computer networks. Understanding the functions and responsibilities of each layer can help you identify the source of problems and assess the intended use case for new components.

OSI is an abstract model that doesn't directly map to the specific networking implementations commonly used today. As an example, the TCP/IP protocol works on its own simpler system of four layers: Network Access, Internet, Transport, and Application. These abstract and absorb the equivalent OSI layers: the application layer spans OSI L5 to L7, while L1 and L2 are combined in TCP/IP's concept of Network Access.

OSI remains applicable despite its lack of direct real-world application. It's been around so long that it's widely understood among administrators from all backgrounds. Its relatively high level of abstraction has also ensured it's remained relevant in the face of new networking paradigms, many of which have targeted Layer 3 and above. An awareness of the seven layers and their responsibilities can still help you appreciate the flow of data through a network while uncovering integration opportunities for new components.

OSI Seven Layers Model Explained with Examples

This tutorial explains the OSI reference model. Learn the seven layers of the OSI model and the functions of each layer in detail through examples.

The OSI (Open System Interconnection) reference model is a comprehensive set of standards and rules for hardware manufacturers and software developers. By following these standards, they can build networking components and software applications that work in any environment. It was published in 1984 by ISO (International Organization for Standardization).

It provides a framework for creating and implementing networking standards, devices, and internetworking schemes. It explains the networking from a modular perspective, making it easier to understand and troubleshoot.

Seven layers of the OSI Model

The OSI model has seven different layers, which are divided into two groups. The following table lists all the layers with their names and numbers.

seven layers of OSI model

Let’s understand each layer in detail.

This tutorial is the second part of the article " Networking reference models explained in detail with examples. ". Other parts of this article are the following.

This tutorial is the first part of the article. It summarizes why the OSI model was created and what advantages it has.

This tutorial is the third part of the article. It compares the OSI reference model with the TCP/IP model and lists the similarities and differences between both.

This tutorial is the fourth part of the article. It explains the five layers of the TCP/IP model in detail.

This tutorial is the fifth part of the article. It explains how data is encapsulated and de-encapsulated when it passes through the layers.

The Application Layer

This is the last and topmost layer of the OSI model. This layer provides an interface between the local system and the application program running on the network. If an application wants to use the resources available on the remote system, it interacts with this layer. Then, this layer provides the protocols and services that the application needs to access those resources.

There are two types of application programs: Network-aware and Network-unaware . An application program is considered a Network-aware application if it can make any type of network request. If an application program cannot make any type of network request, it is considered a Network-unaware program.

Network-aware programs are further divided into two types.

Programs that are mainly built to work on a local system. This type of program occasionally accesses the network for particular reasons such as updates, documentation, and troubleshooting. MS-Word, Adobe-Photoshop, and VLC Player are examples of this type of program.

Programs that are mainly built to work with a remote system. This type of program provides a platform to access resources available on a remote system. This type of program only works if the system is connected to the network. SSH, FTP, and TFTP are examples of this type of program.

The Application layer describes only the programs which fall in the second type. But it doesn’t mean that the first type of programs can’t take the advantage of the Application layer. It simply means that they are not documented in the Application layer. But if required, they can also connect to the network through the Application layer.

The Top layer of the OSI model is the application layer. It provides the protocols and services that are required by the network-aware applications to connect to the network. FTP, TFTP, POP3, SMTP, and HTTP are examples of standards and protocols used in this layer.

The Presentation Layer

The sixth layer of the OSI model is the Presentation layer. Applications running on the local system may or may not understand the format that is used to transmit the data over the network. The presentation layer works as a translator. When receiving data from the Application layer, it converts that data in such a format that can be sent over the network. When receiving data from the Session layer, it reconverts the data in such a format that the application, which will use it, can understand.

Conversion, compression, and encryption are the main functions that the Presentation layer performs on the sending computer while on the receiving computer these functions are reconversion, decompression, and decryption. ASCII, BMP, GIF, JPEG, WAV, AVI, and MPEG are examples of standards and protocols that work in this layer.

The Session Layer

The session layer is the fifth layer of the OSI model. It is responsible for setting up, managing, and dismantling sessions between presentation layer entities and providing dialogs between computers.

When an application makes a network request, this layer checks whether the requested resource is available on the local system or on a remote system. If the requested resource is available on a remote system, it tests whether a network connection to access that resource is available or not. If a network connection is not available, it sends an error message back to the application informing that the connection is not available.

If a network connection is available, it establishes a session with the remote system. For each request, it uses a separate session. This allows multiple applications to send or receive data simultaneously. When data transmission is completed, it terminates the session.

The session layer is responsible for establishing, managing, and terminating communications between two computers. RPCs and NFS are examples of the session layer.

The Transport Layer

The transport layer is the fourth layer of the OSI model. It provides the following functionalities: -

Segmentation

On the sending computer, it breaks the data stream into smaller pieces. Each piece is known as a segment and the process of breaking the data stream into smaller pieces is known as the segmentation . On the receiving computer, it joins all segments to recreate the original data stream.

Data transportation

This layer establishes a logical connection between the sending system and receiving system and uses that connection to provide end-to-end data transportation. This process uses two protocols: TCP and UDP.

The TCP protocol is used for reliable data transportation. TCP is a connection-oriented protocol. UDP protocol is used for unreliable data transportation. UDP is a connection-less protocol.

The main difference between a connection-less and connection-oriented protocol is that a connection-oriented protocol provides reliable data delivery. For reliable data delivery, it uses several mechanisms such as the three-way handshake process, acknowledgments, sequencing, and flow control.

Multiplexing

Through the use of port numbers, this layer also provides connection multiplexing. Connection multiplexing allows multiple applications to send and receive data simultaneously.

The main functionalities of the Transport layer are segmentation, data transportation, and connection multiplexing. For data transportation, it uses TCP and UDP protocols. TCP is a connection-oriented protocol. It provides reliable data delivery.

The Network Layer

The third layer of the OSI model is the Network Layer. This layer takes the data segment from the Transport layer and adds a logical address to it. A logical address has two components; network partition and host partition. The Network partition is used to group networking components while the host partition is used to uniquely identify a system on the network. A logical address is known as the IP address. Once the logical address and other related information are added to the segment , it becomes the packet .

This layer decides whether the packet is intended for the local system or a remote system. It also specifies the standards and protocols which are used to move data packets over networks.

To move data packets between two different networks, a device known as the router is used. Routers use the logical address to make the routing decision. Routing is the process of forwarding data packets to their destination.

Defining logical addresses and finding the best path to reach the destination address are the main functions of this layer. Routers work in this layer. Routing also takes place in this layer. IP, IPX, and AppleTalk are examples of this layer.

The Data Link Layer

The Data Link Layer is the second layer of the OSI model. This layer defines how networking components access the media and what transmission methods they use. This layer has two sub-layers: MAC and LLC.

MAC (Media Access Control)

This sub-layer defines how the data packets are placed in media. It also provides physical addressing. The physical address is known as the MAC address. Unlike logical addresses that need to be configured, physical addresses are pre-configured in NIC. The MAC address is used to uniquely identify a host in the local network.

LLC (Logical Link Control)

This sub-layer identifies the network layer protocol. On the sending computer, it encapsulates the information of the Network Layer protocol in the LLC header from which the Data Link layer receives the data packet. On the receiving computer, it checks the LLC header to get the information about the network layer protocol. This way, a data packet is always delivered to the same network layer protocol from which it was sent.

Defining physical addresses, finding hosts in the local network, specifying standards and methods to access the media are the primary functions of this layer. Switching takes place in this layer. Switches and Bridges work in this layer. HDLC, PPP, and Frame Relay are examples of this layer.

The Physical Layer

The Physical Layer is the first layer of the OSI model. This layer specifies the standards for devices, media, and technologies that are used in moving the data across the network such as:-

  • Type of cable used in connecting the devices
  • Patterns of pins used in both sides of the cable
  • Type of interface-card used in the networking device
  • Type of connector used to connect the cable with the network interface
  • Encoding of digital signals received from the Data Link layer based on the attached media type such as electrical for copper, light for fiber, or a radio wave for wireless.

On the sending computer, it converts digital signals received from the Data Link layer, into analog signals and loads them on the physical media. On the receiving computer, it picks analog signals from the media and converts them into digital signals, and transfers them to the Data Link layer for further processing.

The Physical Layer mainly defines standards for media and devices that are used to move data across the network. 10BaseT, 10Base100, CSU/DSU, DCE, and DTE are examples of the standards used in this layer.

That’s all for this tutorial. In the next part of this article, we will compare the OSI model with the TCP/IP model and explains the similarities and differences between both models. If you like this tutorial, please don’t forget to share it with friends.

By ComputerNetworkingNotes Updated on 2024-01-25 05:30:01 IST

ComputerNetworkingNotes CCNA Study Guide OSI Seven Layers Model Explained with Examples

We do not accept any kind of Guest Post. Except Guest post submission, for any other query (such as adverting opportunity, product advertisement, feedback, suggestion, error reporting and technical issue) or simply just say to hello mail us [email protected]

presentation layer work

FOSSBYTES-TECH-SIMPLIFIED-LOGO

Presentation Layer Of OSI Model For Beginners

presentation layer osi networking model

Presentation Layer:

Presentation Layer is the sixth layer in the OSI model and here are some of the functionalities of the presentation layer:

Translation

Before being transmitted, the data remains in the form of characters and numbers. This data has to be changed to bitstreams before transmission. The presentation layer is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats that a network requires and the format a computer needs.

It carries out the process of encryption at the transmitter end and the process of decryption at the receiver end.

Encryption and decryption are ways to protect the confidentiality of the data stored on computer systems or wired over the internet or other computer networks.

Also Read:   Network Layer Of OSI Mode: Functionalities and Protocols

In terms of security, modern-day encryption methods play a vital role in the security assurance of IT systems and communications as they can provide not only confidentiality but also,  authentication and integrity.

Data compression

Data compression is also known by different names like source coding or bit-rate reduction. As evident from these names, data compression involves encoding information using fewer bits than the original representation. So in this way, the data compression can be either lossy or lossless.

Even though lossless compression reduces bits by identifying and eliminating statistical redundancy, no data information is lost in the lossless compression.

On the other hand, the lossy compression reduces bits by identifying unnecessary information and removing it.

Data compression is useful in computer networks because it helps in the following ways:

  • Reducing resource usages such as data storage space or transmission capacity. B
  • Reducing the need for an expensive hardware for the data representation. For example, if a video is highly compressed before transmission, an expensive hardware might be required to decompress the video data before playing it.

Thus, data compression is also very helpful in real-time applications over the internet like real-time video or audio streaming.

Data conversion

There are different types of operating systems such as Windows, Linux, Mac OS etc. are being used all around the world. Data conversion is, thus, responsible for the conversion of computer data from one format to another.

Different computers encode data in different ways on the basis of certain standards. On top of that, each computer program handles data in a different manner. Data conversion comes in handy in those situations when the representation of data is needed on different platforms.

The presentation layer can be composed of two sublayers: common application service element (CASE) and specific application service element (SASE).

Also Read:   LLC Layer (Logical Link Control): Data Link Layer Of OSI Model

The common application service element sublayer provides services for the application layer and request services from the session layer. It provides support for common application services whereas the specific application service element sublayer provides application specific services (protocols) like remote database access, file transfer, virtual terminal.

If you have any comments or thoughts related to it, feel free to ask and correct us. Also, don’t miss our complete coverage on the Computer networks .

presentation layer work

A passionate adventure traveller over Trekkerpedia.com and Author of the book 'The Girl from the Woods'.

Similar Posts

How Is Chrome Canary Different From Regular Google Chrome? Why Should I Try It?

How Is Chrome Canary Different From Regular Google Chrome? Why Should I Try It?

Short Bytes: Google has 4 channels for the release of Chrome versions. Out of those, Canary…

Should You Keep Your Phone On The Table Screen Down Or Up?

Should You Keep Your Phone On The Table Screen Down Or Up?

Let’s talk about both and what your phone keeping habits say about you.

256GB iPhone Vs. 200GB iCloud Online Storage: Pros & Cons Explained

256GB iPhone Vs. 200GB iCloud Online Storage: Pros & Cons Explained

You buy a new iPhone and use it for about a week, and all of a…

At What Time Does Disney+ Release TV Shows & Movies?

At What Time Does Disney+ Release TV Shows & Movies?

Don’t miss a title on Disney+ now.

Can I Watch Cruella For Free on Disney+? Is it Available On Hotstar India?

Can I Watch Cruella For Free on Disney+? Is it Available On Hotstar India?

Cruella is currently available on Disney+ Premier Access.

Play Store Vs. App Store: Comparing The World’s Two Leading App Marketplaces

Play Store Vs. App Store: Comparing The World’s Two Leading App Marketplaces

There are certain factors that set the two biggest app libraries apart.

  • I Tried Both: Apple Watch 9 vs Fitbit Charge 6
  • Best Places to Print Photos Online

The Layers of the OSI Model Illustrated

Each layer explained

  • Massachusetts Institute of Technology
  • University of Illinois

presentation layer work

  • The Wireless Connection
  • Routers & Firewalls
  • Network Hubs
  • Installing & Upgrading
  • Wi-Fi & Wireless

The Open Systems Interconnection (OSI) model defines a networking framework to implement protocols in layers, with control passed from one layer to the next. It is primarily used today as a teaching tool. It conceptually divides computer network architecture into 7 layers in a logical progression.

The lower layers deal with electrical signals, chunks of binary data , and routing of these data across networks. Higher levels cover network requests and responses, representation of data, and network protocols, as seen from a user's point of view. 

The OSI model was originally conceived as a standard architecture for building network systems, and many popular network technologies today reflect the layered design of OSI.

Physical Layer

At Layer 1, the Physical layer of the OSI model is responsible for the ultimate transmission of digital data bits from the Physical layer of the sending (source) device over network communications media to the Physical layer of the receiving (destination) device.

Examples of layer 1 technologies include  Ethernet cables  and  hubs . Also, hubs and other repeaters  are standard network devices that function at the Physical layer, as are cable connectors.

At the Physical layer, data is transmitted using the type of signaling supported by the physical medium: electric voltages, radio frequencies, or pulses of infrared or ordinary light.

Data Link Layer

When obtaining data from the Physical layer, the Data Link layer checks for physical transmission errors and packages bits into data frames. The Data Link layer also manages physical addressing schemes such as MAC addresses for Ethernet networks, controlling access of network devices to the physical medium.

Because the Data Link layer is the most complex layer in the OSI model, it is often divided into two parts: the Media Access Control sub-layer and the Logical Link Control sub-layer.

Network Layer

The Network layer adds the concept of routing above the Data Link layer. When data arrives at the Network layer, the source and destination addresses contained inside each frame are examined to determine if the data has reached its final destination. If the data has reached the final destination, layer 3 formats the data into packets delivered to the Transport layer. Otherwise, the Network layer updates the destination address and pushes the frame down to the lower layers.

To support routing, the Network layer maintains logical addresses such as IP addresses  for devices on the network. The Network layer also manages the mapping between these logical addresses and physical addresses. In IPv4 networking, this mapping is accomplished through the Address Resolution Protocol (ARP); IPv6 uses Neighbor Discovery Protocol (NDP).

Transport Layer

The Transport Layer delivers data across network connections. TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are the most common examples of Transport Layer 4 network protocols.  Different transport protocols may support a range of optional capabilities, including error recovery, flow control, and support for re-transmission.

Session Layer

The Session Layer manages the sequence and flow of events that initiate and tear down network connections. At layer 5, it is built to support multiple types of connections that can be created dynamically and run over individual networks.

Presentation Layer

The Presentation layer has the simplest function of any piece of the OSI model. At layer 6, it handles syntax processing of message data such as format conversions and encryption/decryption needed to support the Application layer above it.

Application Layer

The Application layer supplies network services to end-user applications. Network services are protocols that work with the user's data. For example, in a web browser application, the Application layer protocol HTTP packages the data needed to send and receive web page content. This layer 7 provides data to (and obtains data from) the Presentation layer.

Get the Latest Tech News Delivered Every Day

  • Common Questions and Answers on the OSI Network Model
  • A Guide to X.25 in Computer Networking
  • OSI Model Reference Guide
  • Cat5 vs. Cat6 Cable: What's the Difference?
  • Visual Index of Computer Networking Topics
  • Wireless Access Point vs. Wireless Application Protocol
  • Understanding Transmission Control Protocol/Internet Protocol (TCP/IP)
  • Here's Why Your Network Might Need a Layer 3 Switch
  • What Is PPTP: Point-to-Point Tunneling Protocol
  • What Are Network Protocols?
  • How Do Computer Network Protocols Work?
  • Beginner's Guide to Asynchronous Transfer Mode (ATM)
  • ARP (Address Resolution Protocol) and Your Computer Network
  • What Is a Virtual LAN (VLAN)?
  • Use a Bridge to Expand Your Local Network
  • A Short Guide on Networking Fundamentals

Trending Articles on Technical and Non Technical topics

  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

The Presentation Layer of OSI Model

The presentation layer (Layer 6) ensures that the message is presented to the upper layer in a standardized format. It deals with the syntax and the semantics of the messages.

The main functions of the presentation layer are as follows −

  • It encodes the messages from the user dependent format to the common format and vice versa, for communication among dissimilar systems.
  • It is responsible for data encryption and decryption of sensitive data before they are transmitted over common channels.
  • It is also responsible for data compression. Data compression is done at the source to reduce the number of bits to be transmitted. It reduces the storage space and increases the file transfer rate. It is particularly useful for transmission of large multimedia files.

presentation layer work

Related Articles

  • The Physical Layer of OSI Model
  • The Network Layer of OSI Model
  • The Transport Layer of OSI Model
  • The Session Layer of OSI Model
  • The Application Layer of OSI Model
  • The Data Link Layer of OSI Model
  • Explain the functions of Presentation Layer.
  • What is Presentation Layer?
  • The OSI Reference Model
  • What is a presentation layer?
  • Advantages and Disadvantages of the OSI Model
  • Computer Networks – Layers of OSI Model
  • What is the OSI Reference Model?
  • OSI Model in Computer Networking
  • Why Does the OSI Reference Model Matter?

Kickstart Your Career

Get certified by completing the course

To Continue Learning Please Login

Javatpoint Logo

Computer Network

  • Operating Systems
  • Computer Fundamentals
  • Interview Q

Physical Layer

Data link layer, network layer, routing algorithm, transport layer, application layer, application protocols, network security.

Interview Questions

JavaTpoint

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

Presentation Layer: Protocols, Examples, Services | Functions of Presentation Layer

Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model where all application programmer consider data structure and presentation, beyond of simply sending the data into form of datagram otherwise packets in between the hosts. Now, we will explain about what is presentation layer with its protocols, example, service ; involving with major functions of presentation Layer with ease. At the end of this article, you will completely educate about What is Presentation Layer in OSI Model without any hassle.

  • What is Presentation Layer?

Definition : Presentation layer is 6th layer in the OSI model , and its main objective is to present all messages to upper layer as a standardized format. It is also known as the “ Translation layer “.  This layer takes care of syntax and semantics of messages exchanged in between two communication systems. Presentation layer has responsible that receiver can understand all data, and it will be to implement all data languages can be dissimilar of two communication system.

presentation layer

Presentation layer is capable to handle abstract data structures, and further it helps to defined and exchange of higher-level data structures.

Presentation Layer Tutorial Headlines:

In this section, we will show you all headlines about this entire article; you can check them as your choice; below shown all:

  • Functions of Presentation Layer

Protocols of Presentation Layer

  • Example of Presentation Layer Protocols

Presentation Layer Services

Design issues with presentation layer, faqs (frequently asked questions), what is meant by presentation layer in osi model, what protocols are used in the presentation layer, can you explain some presentation layer examples, what are the main functions of the presentation layer, what are services of presentation layer in osi, let’s get started,   functions of presentation layer.

Presentation layer performs various functions in the OSI model ; below explain each one – 

  • Presentation layer helps to translate from American standard code for information interchange (ASCII) to the extended binary code decimal interchange code (EBCDIC).
  • It deals with user interface as well as supporting for several services such as email and file transfer.
  • It provides encoding mechanism for translating all messages from user dependent format with common format and vice – versa.
  • It’s main goal for data encryption and decryption of entire data before they are getting transmission over all common platforms.
  • It provides data compression mechanism for source point to decrease the all bits which are transmitted. Due to this data compression system, user are able to transmit enlarge multimedia file at fastest file transfer rate.
  • Due to use of Data Encryption and Decryption algorithm, presentation layer provides more network protection and confidentiality while transmission data over the entire network.
  • This layer offers best flexibility for data translation for making connections with various kinds of servers , computers, and mainframes over the similar network.
  • Presentation layer has responsible to fix all translations in between all network systems .

Presentation layer is used various protocols; below list is available –

  • Multipurpose Internet Mail Extensions
  • File Transfer Protocol
  • Network News Transfer Protocol
  • Apple Filing Protocol (AFP)
  • Independent Computing Architecture (ICA), the Citrix system core protocol
  • Lightweight Presentation Protocol (LPP)
  • NetWare Core Protocol (NCP)
  • Network Data Representation (NDR)
  • Telnet (a remote terminal access protocol)
  • Tox Protocol
  • eXternal Data Representation (XDR)
  • 25 Packet Assembler/Disassembler Protocol (PAD)

Example of Presentation Layer Protocols:

Here, we will discuss all examples of presentation layer protocols; below explain each one –  

Multipurpose Internet Mail Extensions (MIME) : MIME protocol was introduced by Bell Communications in 1991, and it is an internet standard that provides scalable capable of email for attaching of images, sounds and text in a message.

File Transfer Protocol (FTP) : FTP is a internet protocol, and its main goal is to transmit all files in between one host to other hosts over the internet on TCP/IP connections.

Network News Transfer Protocol (NNTP) : This protocol is used to make connection with Usenet server and transmit all newsgroup articles in between system over internet.

Apple Filing Protocol (AFP ) : AFP protocol is designed by Apple company for sharing all files over the entire network .

Lightweight Presentation Protocol (LPP) : This protocol is used to offer ISO presentation services on top of TCP/IP based protocol stacks.

NetWare Core Protocol (NCP) : NCP is a Novell client server model protocol that is designed especially for Local Area Network (LAN). It is capable to perform several functions like as file/print-sharing, clock synchronization, remote processing and messaging.

Network Data Representation (NDR) : NDR is an data encoding standard, and it is implement in the Distributed Computing Environment (DCE).

Telnet (Telecommunication Network) : Telnet protocol was introduced in 1969, and it offers the command line interface for making communication along with remote device or server .

Tox : The Tox protocol is sometimes regarded as part of both the presentation and application layer , and it is used for sending peer-to-peer instant-messaging as well as video calling.

eXternal Data Representation (XDR) : This protocol provides the description and encoding of entire data, and  it’s main goal is to transfer data in between dissimilar computer architecture.

25 Packet Assembler/Disassembler Protocol (PAD) : Main objective of this protocol is to obtain all data from group of terminal and allots the data into X. 25 packets.

Presentation layer provides several services like as –

  • Data conversion
  • Character code translation
  • Compression
  • Encryption and Decryption
  • It helps to handle and maintain Syntax and Semantics of the message transmitted.
  • Encoding data can be done as standard agreed like as String, double, date, and more.
  • Standard Encoding can be done on wire.

Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model that is the lowest layer, where all application programmer consider data structure and presentation, beyond of simply sending the data into form of datagram otherwise packets in between the hosts.

Presentation layer is used various protocols like as:

Yes! In this article, already we have been explained many examples of presentation layer; you can check them.

Presentation layer has a responsibility for formatting, translation, and delivery of the information for getting to process otherwise display .

Now, i hope that you have completely learnt about what is presentation layer with its protocols, example, service ; involving with major functions of presentation Layer with ease. If this post is useful for you, then please share it along with your friends, family members or relatives over social media platforms like as Facebook, Instagram, Linked In, Twitter, and more.

Also Read: Data Link Layer: Protocols, Examples | Functions of Data Link Layer

If you have any experience, tips, tricks, or query regarding this issue? You can drop a comment!

Related Posts

transport layer

presentation layer work

Introducing Copilot+ PCs

May 20, 2024 | Yusuf Mehdi - Executive Vice President, Consumer Chief Marketing Officer

  • Share on Facebook (opens new window)
  • Share on Twitter (opens new window)
  • Share on LinkedIn (opens new window)

Copilot plus PC main art

An on-demand recording of our May 20 event is available .

Today, at a special event on our new Microsoft campus, we introduced the world to a new category of Windows PCs designed for AI, Copilot+ PCs.    

Copilot+ PCs are the fastest, most intelligent Windows PCs ever built. With powerful new silicon capable of an incredible 40+ TOPS (trillion operations per second), all – day battery life and access to the most advanced AI models, Copilot+ PCs will enable you to do things you can’t on any other PC. Easily find and remember what you have seen in your PC with Recall, generate and refine AI images in near real-time directly on the device using Cocreator, and bridge language barriers with Live Captions, translating audio from 40+ languages into English .  

These experiences come to life on a set of thin, light and beautiful devices from Microsoft Surface and our OEM partners Acer, ASUS, Dell, HP, Lenovo and Samsung, with pre-orders beginning today and availability starting on June 18. Starting at $999, Copilot+ PCs offer incredible value.  

This first wave of Copilot+ PCs is just the beginning. Over the past year, we have seen an incredible pace of innovation of AI in the cloud with Copilot allowing us to do things that we never dreamed possible. Now, we begin a new chapter with AI innovation on the device. We have completely reimagined the entirety of the PC – from silicon to the operating system, the application layer to the cloud – with AI at the center, marking the most significant change to the Windows platform in decades.  

YouTube Video

The fastest, most secure Windows PCs ever built  

We introduced an all-new system architecture to bring the power of the CPU, GPU, and now a new high performance Neural Processing Unit (NPU) together. Connected to and enhanced by the large language models (LLMs) running in our Azure Cloud in concert with small language models (SLMs), Copilot+ PCs can now achieve a level of performance never seen before. They are up to 20x more powerful [1] and up to 100x as efficient [2] for running AI workloads and deliver industry-leading AI acceleration. They outperform Apple’s MacBook Air 15” by up to 58% in sustained multithreaded performance [3] , all while delivering all-day battery life.  With incredible efficiency, Copilot+ PCs can deliver up to 22 hours of local video playback or 15 hours of web browsing on a single charge. [4] That is up to 20% more battery in local video playback than the MacBook Air 15”. [5]

Windows now has the best implementation of apps on the fastest chip, starting with Qualcomm. We now offer more native Arm64 experiences than ever before, including our fastest implementation of Microsoft 365 apps like Teams, PowerPoint, Outlook, Word, Excel, OneDrive and OneNote. Chrome, Spotify, Zoom, WhatsApp, Adobe Photoshop, Adobe Lightroom, Blender, Affinity Suite, DaVinci Resolve and many more now run​ natively on Arm to give you great performance with additional apps, like Slack, releasing later this year. In fact, 87% of the total app minutes people spend in apps today have native Arm versions. [6] With a powerful new emulator, Prism, your apps run great, whether native or emulated.

Every Copilot+ PC comes secured out of the box. The Microsoft Pluton Security processor will be enabled by default on all Copilot+ PCs and we have introduced a number of new features, updates and defaults to Windows 11 that make it easy for users to stay secure. And, we’ve built in personalized privacy controls to help you protect what’s important to you. You can read more about how we are making Windows more secure here .

Entirely new, powerful AI experiences   

Copilot+ PCs leverage powerful processors and multiple state-of-the-art AI models, including several of Microsoft’s world-class SLMs, to unlock a new set of experiences you can run locally, directly on the device. This removes previous limitations on things like latency, cost and even privacy to help you be more productive, creative and communicate more effectively.  

Recall instantly  

We set out to solve one of the most frustrating problems we encounter daily – finding something we know we have seen before on our PC. Today, we must remember what file folder it was stored in, what website it was on, or scroll through hundreds of emails trying to find it.   

Now with Recall, you can access virtually what you have seen or done on your PC in a way that feels like having photographic memory. Copilot+ PCs organize information like we do – based on relationships and associations unique to each of our individual experiences. This helps you remember things you may have forgotten so you can find what you’re looking for quickly and intuitively by simply using the cues you remember. [7]

You can scroll across time to find the content you need in your timeline across any application, website, document, or more. Interact intuitively using snapshots with screenray to help you take the next step using suggested actions based on object recognition. And get back to where you were, whether to a specific email in Outlook or the right chat in Teams.

Recall leverages your personal semantic index, built and stored entirely on your device. Your snapshots are yours; they stay locally on your PC. You can delete individual snapshots, adjust and delete ranges of time in Settings, or pause at any point right from the icon in the System Tray on your Taskbar. You can also filter apps and websites from ever being saved. You are always in control with privacy you can trust.

Cocreate with AI-powered image creation and editing, built into Windows

Since the launch of Image Creator, almost 10 billion images have been generated, helping more people bring their ideas to life easily by using natural language to describe what they want to create. Yet, today’s cloud offerings may limit the number of images you can create, keep you waiting while the artwork processes or even present privacy concerns. By using the Neural Processing Units (NPUs) and powerful local small language models, we are bringing innovative new experiences to your favorite creative applications like Paint and Photos.

Combine your ink strokes with text prompts to generate new images in nearly real time with Cocreator. As you iterate, so does the artwork, helping you more easily refine, edit and evolve your ideas. Powerful diffusion-based algorithms optimize for the highest quality output over minimum steps to make it feel like you are creating alongside AI. Use the creativity slider to choose from a range of artwork from more literal to more expressive. Once you select your artwork, you can continue iterating on top of it, helping you express your ideas, regardless of your creative skills.

Restyle image

Take photo editing and image creation to the next level. With Restyle Image, you can reimagine your personal photos with a new style combining image generation and photo editing in Photos. Use a pre-set style like Cyberpunk or Claymation to change the background, foreground or full picture to create an entirely new image. Or jumpstart your next creative project and get visual inspiration with Image Creator in Photos. On Copilot+ PCs you can generate endless images for free, fast, with the ability to fine tune images to your liking and to save your favorites to collections.

Innovative AI experiences from the creative apps you love

We are also partnering with some of the biggest and most-loved applications on the planet to leverage the power of the NPU to deliver new innovative AI experiences.

Together with Adobe, we are thrilled to announce Adobe’s flagship apps are coming to Copilot+ PCs, including Photoshop, Lightroom and Express – available today. Illustrator, Premiere Pro and more are coming this summer. And we’re continuing to partner to optimize AI in these apps for the NPU. For Adobe Creative Cloud customers, they will benefit from the full performance advantages of Copilot+ PCs to express their creativity faster than ever before.

Adobe photo

DaVinci Resolve Studio    

Effortlessly apply visual effects to objects and people using NPU-accelerated Magic Mask in DaVinci Resolve Studio.  

DaVinci Resolve Studio screenshot

Remove the background from any video clip in a snap using Auto Cutout running on the NPU in CapCut.  

presentation layer work

Stay in your flow with faster, more responsive adaptive input controls, like head movement or facial expressions via the new NPU-powered camera pipeline in Cephable.  

Cephable app screenshot

LiquidText  

Make quicker and smarter annotations to documents, using AI features that run entirely on-device via NPU, so data stays private in LiquidText. 

LiquidText screenshots

Have fun breaking down and remixing any music track, with a new, higher-quality version of NeuralMix™ that’s exclusive to NPU in Algoriddim’s djay Pro.  

djay NeuralMix screenshot

Connect and communicate effortlessly with live captions  

In an increasingly connected and global world, Windows wants to bring people closer together. Whether catching up on your favorite podcast from a different country, or watching your favorite international sports team, or even collaborating with friends and colleagues across the world, we want to make more content accessible to more people.   

Live Captions now has live translations and will turn any audio that passes through your PC into a single, English-language caption experience, in real time on your screen across all your apps consistently. You can translate any live or pre-recorded audio in any app or video platform from over 40 languages into English subtitles instantly, automatically and even while you’re offline. Powered by the NPU and available across all Copilot+ PCs, now you can have confidence your words are understood as intended.   

New and enhanced Windows Studio Effects  

Look and sound your best automatically with easily accessible controls at your fingertips in Quick Settings. Portrait light automatically adjusts the image to improve your perceived illumination in a dark environment or brighten the foreground pixels when in a low-light environment. Three new creative filters (illustrated, animated or watercolor) add an artistic flare. Eye contact teleprompter helps you maintain eye contact while reading your screen. New improvements to voice focus and portrait blur help ensure you’re always in focus.   

Copilot, your everyday AI companion

Copilot screenshot

Every Copilot+ PC comes with your personal powerful AI agent that is just a single tap away on keyboards with the new Copilot key. [8] Copilot will now have the full application experience customers have been asking for in a streamlined, simple yet powerful and personal design. Copilot puts the most advanced AI models at your fingertips. In the coming weeks, get access to the latest models including GPT-4o from our partners at OpenAI, so you can have voice conversations that feel more natural.

Advancing AI responsibly

At Microsoft, we have a company-wide commitment to develop ethical, safe and secure AI. Our responsible AI principles guided the development of these new experiences, and all AI features are aligned with our standards. Learn more here .

New Copilot+ PCs from Microsoft Surface and our partners

We have worked with each of the top OEMs — Acer, ASUS, Dell, HP, Lenovo, Samsung — and of course Surface, to bring exciting new Copilot+ PCs that will begin to launch on June 18. Starting at $999, these devices are up to $200 less than similar spec’d devices [9] .

Surface plays a key role in the Windows ecosystem, as we design software and hardware together to deliver innovative designs and meaningful experiences to our customers and fans. We are introducing the first-ever Copilot+ PCs from Surface: The all-new Surface Pro and Surface Laptop.

Surface Pro and Surface Laptop

The new Surface Laptop is a powerhouse in an updated, modern laptop design with razor-thin bezels, a brilliant touchscreen display, AI-enhanced camera, premium audio, and now with a haptic touchpad.

Choose between a 13.8” and 15” display and four stunning colors. Enjoy up to 22 hours of local video playback on Surface Laptop 15” or up to 20 hours on Surface Laptop13.8” on top of incredible performance and all-new AI experiences.

The new Surface Pro is the most flexible 2-in-1 laptop, now reimagined with more speed and battery life to power all-new AI experiences. It introduces a new, optional OLED with HDR display, and ultrawide field of view camera perfect for Windows Studio Effects. The new Surface Pro Flex Keyboard is the first 2-in-1 keyboard designed to be used both attached or detached. It delivers enhanced stability, with Surface Slim Pen storage and charging integrated seamlessly, as well as a quiet, haptic touchpad. Learn more here.

New Copilot+ PCs from the biggest brands available starting June 18:

  • Acer : Acer’s Swift 14 AI 2.5K touchscreen enables you to draw and edit your vision with greater accuracy and with color-accurate imagery. Launch and discover AI-enhanced features, like Acer PurifiedVoice 2.0 and Purified View, with a touch of the dedicated AcerSense button.
  • ASUS : The ASUS Vivobook S 15 is a powerful device that brings AI experiences to life with its Snapdragon X Elite Platform and built-in Qualcomm® AI. It boasts 40+ NPU TOPS, a dual-fan cooling system, and up to 1 TB of storage. Next-gen AI enhancements include Windows Studio effects v2 and ASUS AiSense camera, with presence-detection capabilities for Adaptive Dimming and Lock. Built for portability, it has an ultra-slim and light all-metal design, a high-capacity battery, and premium styling with a single-zone RGB backlit keyboard.
  • Dell : Dell is launching five new Copilot+ PCs, including the XPS 13, Inspiron 14 Plus, Inspiron 14, Latitude 7455, and Latitude 5455, offering a range of consumer and commercial options that deliver groundbreaking battery life and unique AI experiences. The XPS 13 is powered by Snapdragon X Elite processors and features a premium, futuristic design, while the Latitude 7455 boasts a stunning QHD+ display and quad speakers with AI noise reduction. The Inspiron14 and Inspiron 14 Plus feature a Snapdragon X Plus 1and are crafted with lightweight, low carbon aluminum and are energy efficient with EPEAT Gold rating.
  • HP : HP’s OmniBook X AI PC and HP EliteBook Ultra G1q AI PC with Snapdragon X Elite are slim and sleek designs, delivering advanced performance and mobility for a more personalized computing experience. Features include long-lasting battery life and AI-powered productivity tools, such as real-time transcription and meeting summaries. A 5MP camera with automatic framing and eye focus is supported by Poly Studio’s crystal-clear audio for enhanced virtual interactions.
  • Lenovo : Lenovo is launching two AI PCs: one built for consumers, Yoga Slim 7x, and one for commercial, ThinkPad T14s Gen 6. The Yoga Slim 7x brings efficiency for creatives, featuring a 14.5” touchscreen with 3K Dolby Vision and optimized power for 3D rendering and video editing. The T14s Gen 6 brings enterprise-level experiences and AI performance to your work tasks, with features including a webcam privacy shutter, Wi-Fi 7 connectivity and up to 64GB RAM.
  • Samsung : Samsung’s new Galaxy Book4 Edge is ultra-thin and light, with a 3K resolution 2x AMOLED display and Wi-Fi 7 connectivity. It has a long-lasting battery that provides up to 22 hours of video playback, making it perfect for work or entertainment on the go.

Learn more about new Copilot+ PCs and pre-order today at Microsoft.com and from major PC manufacturers, as well as other leading global retailers.

Start testing for commercial deployment today

Copilot+ PCs offer businesses the most performant Windows 11 devices with unique AI capabilities to unlock productivity, improve collaboration and drive efficiency. As a Windows PC, businesses can deploy and manage a Copilot+ PC with the same tools and processes used today including IT controls for new features and AppAssure support. We recommend IT admins begin testing and readying for deployment to start empowering your workforce with access to powerful AI features on these high-performance devices. You can read more about our commercial experiences here .

Neural Processing Units

AI innovation across the Windows ecosystem  

Like we’ve always done with Windows, we have built a platform for our ecosystem partners to build on.  

The first Copilot+ PCs will launch with both the Snapdragon® X Elite and Snapdragon® X Plus processors and feature leading performance per watt thanks to the custom Qualcomm Oryon™ CPU, which delivers unrivaled performance and battery efficiency. Snapdragon X Series delivers 45 NPU TOPS all-in-one system on a chip (SoC). The premium integrated Qualcomm® Adreno ™ GPU delivers stunning graphics for immersive entertainment. We look forward to expanding through deep partnerships with Intel and AMD, starting with Lunar Lake and Strix Point. We will bring new Copilot+ PC experiences at a later date. In the future we expect to see devices with this silicon paired with powerful graphics cards like NVIDIA GeForce RTX and AMD Radeon™, bringing Copilot+ PC experiences to reach even broader audiences like advanced gamers and creators.  

We are at an inflection point where the PC will accelerate AI innovation. We believe the richest AI experiences will only be possible when the cloud and device work together in concert. Together with our partners, we’re setting the frame for the next decade of Windows innovation.  

[1] Based on snapshot of aggregated, non-gaming app usage data as of April 2024 for iGPU-based laptops and 2-in-1 devices running Windows 10 and Windows 11 in US, UK, CA, FR, AU, DE, JP.

[2] Tested April 2024 using Phi SLM workload running 512-token prompt processing in a loop with default settings comparing pre-release Copilot+ PC builds with Snapdragon Elite X 12 Core and Snapdragon X Plus 10 core configurations (QNN build) to Windows 11 PC with NVIDIA 4080 GPU configuration (CUDA build).

[3] Tested May 2024 using Cinebench 2024 Multi-Core benchmark comparing Copilot+ PCs with Snapdragon X Elite 12 core and Snapdragon X Plus 10 core configurations to MacBook Air 15” with M3 8 core CPU / 10 Core GPU configuration. Performance will vary significantly between device configuration and usage.

[4] *Battery life varies significantly by device and with settings, usage and other factors. See aka.ms/cpclaims*

[5] *Battery life varies significantly based on device configuration, usage, network and feature configuration, signal strength, settings and other factors. Testing conducted May 2024 using the prelease Windows ADK full screen local video playback assessment under standard testing conditions, with the device connected to Wi-Fi and screen brightness set to 150 nits, comparing Copilot+ PCs with Snapdragon X Elite 12 core and Snapdragon X Plus 10 core configurations running Windows Version 26097.5003 (24H2) to MacBook Air 15” M3 8-Core CPU/ 10 Core GPU running macOS 14.4 with similar device configurations and testing scenario.

[6] Based on snapshot of aggregated, non-gaming app usage data as of April 2024 for iGPU-based laptops and 2-in-1 devices running Windows 10 and Windows 11 in US, UK, CA, FR, AU, DE, JP.

[7] Recall is optimized for select languages (English, Chinese (simplified), French, German, Japanese, and Spanish.) Content-based and storage limitations apply. Learn more here .

[8] Copilot key functionality may vary. See aka.ms/keysupport

[9] Based on MSRPs; actual savings may vary

Tags: AI , Copilot+ PC

  • Check us out on RSS

presentation layer work

IMAGES

  1. presentation layer definition

    presentation layer work

  2. A Guide to the Presentation Layer

    presentation layer work

  3. PPT

    presentation layer work

  4. Where to Use Tiers and Layers Graphics in a Presentation

    presentation layer work

  5. PPT Slide-Layer Diagram

    presentation layer work

  6. Presentation Layer OSI Model

    presentation layer work

VIDEO

  1. OSI model

  2. Presentation layer of OSI in detail || Layer's functios || Computer network

  3. client server architecture & work processer

  4. Layer work #love

  5. Lecture-03:How Network Layer work in Bangla

  6. Presentation layer is used to provide customized views of Business model in BMM layer to users

COMMENTS

  1. Presentation Layer in OSI model

    Prerequisite : OSI Model Introduction : Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the required format to transmit over the network.

  2. Presentation layer

    The presentation layer ensures the information that the application layer of one system sends out is readable by the application layer of another system. On the sending system it is responsible for conversion to standard, transmittable formats. [7] On the receiving system it is responsible for the translation, formatting, and delivery of ...

  3. Presentation Layer

    The presentation layer is the lowest layer at which application programmers consider data structure and presentation, instead of simply sending data in the form of datagrams or packets between hosts. This layer deals with issues of string representation - whether they use the Pascal method (an integer length field followed by the specified ...

  4. What is presentation layer?

    The presentation layer is located at Layer 6 of the OSI model. The tool that manages Hypertext Transfer Protocol ( HTTP) is an example of a program that loosely adheres to the presentation layer of OSI. Although it's technically considered an application-layer protocol per the TCP/IP model, HTTP includes presentation layer services within it.

  5. The OSI Model

    The Session Layer initiates, maintains, and terminates connections between two end-user applications. It responds to requests from the presentation layer and issues requests to the transport layer. OSI Layer 6. Layer 6 is the presentation layer. This layer is responsible for data formatting, such as character encoding and conversions, and data ...

  6. Presentation Layer

    Presentation Layer is the Layer 6 of the seven-layer Open Systems Interconnection (OSI) reference model. The presentation layer structures data that is passed down from the application layer into a format suitable for network transmission. This layer is responsible for data encryption, data compression, character set conversion, interpretation ...

  7. Presentation layer and Session layer of the OSI model

    The presentation layer is the sixth layer of the OSI Reference model. It defines how data and information is transmitted and presented to the user. It translates data and format code in such a way that it is correctly used by the application layer. It identifies the syntaxes that different applications use and formats data using those syntaxes.

  8. The OSI Model

    The presentation layer is primarily responsible for presenting data so that the recipient will understand the data. ... The web browser and HTTP work closely together, and the distinction between the two may be subtle. Yet, HTTP is the web browsing protocol for all web browser applications. In contrast, no single web browser software ...

  9. The TCP/IP Guide

    Presentation Layer (Layer 6) The presentation layer is the sixth layer of the OSI Reference Model protocol stack, and second from the top. It is different from the other layers in two key respects. First, it has a much more limited and specific function than the other layers; it's actually somewhat easy to describe, hurray! Second, it is used ...

  10. Presentation Layer of the OSI Model

    The presentation layer is a very important layer because it handles encryption, decryption, and the conversion of complex data into flat-byte strings, a format that is easily transmittable. The ...

  11. The 7 OSI Networking Layers Explained

    Data Link Layer. Network Layer. Transport Layer. Session Layer. Presentation Layer. Application Layer. Summary. The Open Systems Interconnection (OSI) networking model defines a conceptual framework for communications between computer systems. The model is an ISO standard which identifies seven fundamental networking layers, from the physical ...

  12. OSI Seven Layers Model Explained with Examples

    The sixth layer of the OSI model is the Presentation layer. Applications running on the local system may or may not understand the format that is used to transmit the data over the network. ... ASCII, BMP, GIF, JPEG, WAV, AVI, and MPEG are examples of standards and protocols that work in this layer. The Session Layer. The session layer is the ...

  13. What is the Presentation Layer?

    Presentation Layer: The presentation layer is layer 6 of the 7-layer Open Systems Interconnection (OSI) model. It is used to present data to the application layer (layer 7) in an accurate, well-defined and standardized format. The presentation layer is sometimes called the syntax layer.

  14. Presentation Layer Of OSI Layer For Beginners

    Presentation Layer is the sixth layer in the OSI model and here are some of the functionalities of the presentation layer: Translation. Before being transmitted, the data remains in the form of ...

  15. The OSI Model Layers from Physical to Application

    The Presentation layer has the simplest function of any piece of the OSI model. At layer 6, it handles syntax processing of message data such as format conversions and encryption/decryption needed to support the Application layer above it. ... Network services are protocols that work with the user's data. For example, in a web browser ...

  16. The Presentation Layer of OSI Model

    The Presentation Layer of OSI Model - The presentation layer (Layer 6) ensures that the message is presented to the upper layer in a standardized format. It deals with the syntax and the semantics of the messages.The main functions of the presentation layer are as follows −It encodes the messages from the user dependent format to the.

  17. What is the OSI model? The 7 layers of OSI explained

    The presentation layer. ... Layers can't work in parallel; each layer must wait to receive data from the previous layer. OSI model vs. TCP/IP model. The OSI reference model describes the functions of a telecommunication or networking system, while TCP/IP is a suite of communication protocols used to interconnect network devices on the internet. ...

  18. Presentation Layer of the OSI Model: Definition and Function

    The presentation layer is the sixth layer of the Open Systems Interconnection (OSI), model. In computer networking, the OSI model is a concept that describes the transmission of data from one computer to another. Each layer in the model is a packet of protocols, or procedures that govern data transmission, which allow the layer to execute ...

  19. OSI model

    The session layer is meant to store states between two connections, like what we use cookies for when working with web programming. The presentation layer is meant to convert between different formats. This was simpler when the only format that was worried about was character encoding, ie ASCII and EBCDIC. When you consider all of the different ...

  20. Presentation Layer ln OSI Model

    🔥Post Graduate Program In Cyber Security: https://www.simplilearn.com/pgp-cyber-security-certification-training-course?utm_campaign=PresentationLayerInOSIMo...

  21. Presentation Layer in OSI Model

    The presentation layer is the 6 th layer from the bottom in the OSI model. This layer presents the incoming data from the application layer of the sender machine to the receiver machine. It converts one format of data to another format of data if both sender and receiver understand different formats; hence this layer is also called the ...

  22. Presentation Layer: Protocols, Examples, Services

    What is Presentation Layer? Definition: Presentation layer is 6th layer in the OSI model, and its main objective is to present all messages to upper layer as a standardized format.It is also known as the "Translation layer". This layer takes care of syntax and semantics of messages exchanged in between two communication systems. Presentation layer has responsible that receiver can ...

  23. Introducing Copilot+ PCs

    The Yoga Slim 7x brings efficiency for creatives, featuring a 14.5" touchscreen with 3K Dolby Vision and optimized power for 3D rendering and video editing. The T14s Gen 6 brings enterprise-level experiences and AI performance to your work tasks, with features including a webcam privacy shutter, Wi-Fi 7 connectivity and up to 64GB RAM.