Home Blog Design Understanding Data Presentations (Guide + Examples)

Understanding Data Presentations (Guide + Examples)

Cover for guide on data presentation by SlideModel

In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey. Different types of visualizations serve distinct purposes. Whether you’re dealing with how to develop a report or simply trying to communicate complex information, how you present data influences how well your audience understands and engages with it. This extensive guide leads you through the different ways of data presentation.

Table of Contents

What is a Data Presentation?

What should a data presentation include, line graphs, treemap chart, scatter plot, how to choose a data presentation type, recommended data presentation templates, common mistakes done in data presentation.

A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on, supported by concise textual explanations to improve understanding and boost retention rate.

Data presentations require us to cull data in a format that allows the presenter to highlight trends, patterns, and insights so that the audience can act upon the shared information. In a few words, the goal of data presentations is to enable viewers to grasp complicated concepts or trends quickly, facilitating informed decision-making or deeper analysis.

Data presentations go beyond the mere usage of graphical elements. Seasoned presenters encompass visuals with the art of data storytelling , so the speech skillfully connects the points through a narrative that resonates with the audience. Depending on the purpose – inspire, persuade, inform, support decision-making processes, etc. – is the data presentation format that is better suited to help us in this journey.

To nail your upcoming data presentation, ensure to count with the following elements:

  • Clear Objectives: Understand the intent of your presentation before selecting the graphical layout and metaphors to make content easier to grasp.
  • Engaging introduction: Use a powerful hook from the get-go. For instance, you can ask a big question or present a problem that your data will answer. Take a look at our guide on how to start a presentation for tips & insights.
  • Structured Narrative: Your data presentation must tell a coherent story. This means a beginning where you present the context, a middle section in which you present the data, and an ending that uses a call-to-action. Check our guide on presentation structure for further information.
  • Visual Elements: These are the charts, graphs, and other elements of visual communication we ought to use to present data. This article will cover one by one the different types of data representation methods we can use, and provide further guidance on choosing between them.
  • Insights and Analysis: This is not just showcasing a graph and letting people get an idea about it. A proper data presentation includes the interpretation of that data, the reason why it’s included, and why it matters to your research.
  • Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose of your presentation, there must be a stage in which you convey all that you shared and show the path to staying in touch. Plan ahead whether you want to use a thank-you slide, a video presentation, or which method is apt and tailored to the kind of presentation you deliver.
  • Q&A Session: After your speech is concluded, allocate 3-5 minutes for the audience to raise any questions about the information you disclosed. This is an extra chance to establish your authority on the topic. Check our guide on questions and answer sessions in presentations here.

Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies in an established category. They make it easy for readers to spot patterns or trends. Bar charts can be horizontal or vertical, although the vertical format is commonly known as a column chart. They display categorical, discrete, or continuous variables grouped in class intervals [1] . They include an axis and a set of labeled bars horizontally or vertically. These bars represent the frequencies of variable values or the values themselves. Numbers on the y-axis of a vertical bar chart or the x-axis of a horizontal bar chart are called the scale.

Presentation of the data through bar charts

Real-Life Application of Bar Charts

Let’s say a sales manager is presenting sales to their audience. Using a bar chart, he follows these steps.

Step 1: Selecting Data

The first step is to identify the specific data you will present to your audience.

The sales manager has highlighted these products for the presentation.

  • Product A: Men’s Shoes
  • Product B: Women’s Apparel
  • Product C: Electronics
  • Product D: Home Decor

Step 2: Choosing Orientation

Opt for a vertical layout for simplicity. Vertical bar charts help compare different categories in case there are not too many categories [1] . They can also help show different trends. A vertical bar chart is used where each bar represents one of the four chosen products. After plotting the data, it is seen that the height of each bar directly represents the sales performance of the respective product.

It is visible that the tallest bar (Electronics – Product C) is showing the highest sales. However, the shorter bars (Women’s Apparel – Product B and Home Decor – Product D) need attention. It indicates areas that require further analysis or strategies for improvement.

Step 3: Colorful Insights

Different colors are used to differentiate each product. It is essential to show a color-coded chart where the audience can distinguish between products.

  • Men’s Shoes (Product A): Yellow
  • Women’s Apparel (Product B): Orange
  • Electronics (Product C): Violet
  • Home Decor (Product D): Blue

Accurate bar chart representation of data with a color coded legend

Bar charts are straightforward and easily understandable for presenting data. They are versatile when comparing products or any categorical data [2] . Bar charts adapt seamlessly to retail scenarios. Despite that, bar charts have a few shortcomings. They cannot illustrate data trends over time. Besides, overloading the chart with numerous products can lead to visual clutter, diminishing its effectiveness.

For more information, check our collection of bar chart templates for PowerPoint .

Line graphs help illustrate data trends, progressions, or fluctuations by connecting a series of data points called ‘markers’ with straight line segments. This provides a straightforward representation of how values change [5] . Their versatility makes them invaluable for scenarios requiring a visual understanding of continuous data. In addition, line graphs are also useful for comparing multiple datasets over the same timeline. Using multiple line graphs allows us to compare more than one data set. They simplify complex information so the audience can quickly grasp the ups and downs of values. From tracking stock prices to analyzing experimental results, you can use line graphs to show how data changes over a continuous timeline. They show trends with simplicity and clarity.

Real-life Application of Line Graphs

To understand line graphs thoroughly, we will use a real case. Imagine you’re a financial analyst presenting a tech company’s monthly sales for a licensed product over the past year. Investors want insights into sales behavior by month, how market trends may have influenced sales performance and reception to the new pricing strategy. To present data via a line graph, you will complete these steps.

First, you need to gather the data. In this case, your data will be the sales numbers. For example:

  • January: $45,000
  • February: $55,000
  • March: $45,000
  • April: $60,000
  • May: $ 70,000
  • June: $65,000
  • July: $62,000
  • August: $68,000
  • September: $81,000
  • October: $76,000
  • November: $87,000
  • December: $91,000

After choosing the data, the next step is to select the orientation. Like bar charts, you can use vertical or horizontal line graphs. However, we want to keep this simple, so we will keep the timeline (x-axis) horizontal while the sales numbers (y-axis) vertical.

Step 3: Connecting Trends

After adding the data to your preferred software, you will plot a line graph. In the graph, each month’s sales are represented by data points connected by a line.

Line graph in data presentation

Step 4: Adding Clarity with Color

If there are multiple lines, you can also add colors to highlight each one, making it easier to follow.

Line graphs excel at visually presenting trends over time. These presentation aids identify patterns, like upward or downward trends. However, too many data points can clutter the graph, making it harder to interpret. Line graphs work best with continuous data but are not suitable for categories.

For more information, check our collection of line chart templates for PowerPoint and our article about how to make a presentation graph .

A data dashboard is a visual tool for analyzing information. Different graphs, charts, and tables are consolidated in a layout to showcase the information required to achieve one or more objectives. Dashboards help quickly see Key Performance Indicators (KPIs). You don’t make new visuals in the dashboard; instead, you use it to display visuals you’ve already made in worksheets [3] .

Keeping the number of visuals on a dashboard to three or four is recommended. Adding too many can make it hard to see the main points [4]. Dashboards can be used for business analytics to analyze sales, revenue, and marketing metrics at a time. They are also used in the manufacturing industry, as they allow users to grasp the entire production scenario at the moment while tracking the core KPIs for each line.

Real-Life Application of a Dashboard

Consider a project manager presenting a software development project’s progress to a tech company’s leadership team. He follows the following steps.

Step 1: Defining Key Metrics

To effectively communicate the project’s status, identify key metrics such as completion status, budget, and bug resolution rates. Then, choose measurable metrics aligned with project objectives.

Step 2: Choosing Visualization Widgets

After finalizing the data, presentation aids that align with each metric are selected. For this project, the project manager chooses a progress bar for the completion status and uses bar charts for budget allocation. Likewise, he implements line charts for bug resolution rates.

Data analysis presentation example

Step 3: Dashboard Layout

Key metrics are prominently placed in the dashboard for easy visibility, and the manager ensures that it appears clean and organized.

Dashboards provide a comprehensive view of key project metrics. Users can interact with data, customize views, and drill down for detailed analysis. However, creating an effective dashboard requires careful planning to avoid clutter. Besides, dashboards rely on the availability and accuracy of underlying data sources.

For more information, check our article on how to design a dashboard presentation , and discover our collection of dashboard PowerPoint templates .

Treemap charts represent hierarchical data structured in a series of nested rectangles [6] . As each branch of the ‘tree’ is given a rectangle, smaller tiles can be seen representing sub-branches, meaning elements on a lower hierarchical level than the parent rectangle. Each one of those rectangular nodes is built by representing an area proportional to the specified data dimension.

Treemaps are useful for visualizing large datasets in compact space. It is easy to identify patterns, such as which categories are dominant. Common applications of the treemap chart are seen in the IT industry, such as resource allocation, disk space management, website analytics, etc. Also, they can be used in multiple industries like healthcare data analysis, market share across different product categories, or even in finance to visualize portfolios.

Real-Life Application of a Treemap Chart

Let’s consider a financial scenario where a financial team wants to represent the budget allocation of a company. There is a hierarchy in the process, so it is helpful to use a treemap chart. In the chart, the top-level rectangle could represent the total budget, and it would be subdivided into smaller rectangles, each denoting a specific department. Further subdivisions within these smaller rectangles might represent individual projects or cost categories.

Step 1: Define Your Data Hierarchy

While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project.

  • Top-level rectangle: Total Budget
  • Second-level rectangles: Departments (Engineering, Marketing, Sales)
  • Third-level rectangles: Projects within each department
  • Fourth-level rectangles: Cost categories for each project (Personnel, Marketing Expenses, Equipment)

Step 2: Choose a Suitable Tool

It’s time to select a data visualization tool supporting Treemaps. Popular choices include Tableau, Microsoft Power BI, PowerPoint, or even coding with libraries like D3.js. It is vital to ensure that the chosen tool provides customization options for colors, labels, and hierarchical structures.

Here, the team uses PowerPoint for this guide because of its user-friendly interface and robust Treemap capabilities.

Step 3: Make a Treemap Chart with PowerPoint

After opening the PowerPoint presentation, they chose “SmartArt” to form the chart. The SmartArt Graphic window has a “Hierarchy” category on the left.  Here, you will see multiple options. You can choose any layout that resembles a Treemap. The “Table Hierarchy” or “Organization Chart” options can be adapted. The team selects the Table Hierarchy as it looks close to a Treemap.

Step 5: Input Your Data

After that, a new window will open with a basic structure. They add the data one by one by clicking on the text boxes. They start with the top-level rectangle, representing the total budget.  

Treemap used for presenting data

Step 6: Customize the Treemap

By clicking on each shape, they customize its color, size, and label. At the same time, they can adjust the font size, style, and color of labels by using the options in the “Format” tab in PowerPoint. Using different colors for each level enhances the visual difference.

Treemaps excel at illustrating hierarchical structures. These charts make it easy to understand relationships and dependencies. They efficiently use space, compactly displaying a large amount of data, reducing the need for excessive scrolling or navigation. Additionally, using colors enhances the understanding of data by representing different variables or categories.

In some cases, treemaps might become complex, especially with deep hierarchies.  It becomes challenging for some users to interpret the chart. At the same time, displaying detailed information within each rectangle might be constrained by space. It potentially limits the amount of data that can be shown clearly. Without proper labeling and color coding, there’s a risk of misinterpretation.

A heatmap is a data visualization tool that uses color coding to represent values across a two-dimensional surface. In these, colors replace numbers to indicate the magnitude of each cell. This color-shaded matrix display is valuable for summarizing and understanding data sets with a glance [7] . The intensity of the color corresponds to the value it represents, making it easy to identify patterns, trends, and variations in the data.

As a tool, heatmaps help businesses analyze website interactions, revealing user behavior patterns and preferences to enhance overall user experience. In addition, companies use heatmaps to assess content engagement, identifying popular sections and areas of improvement for more effective communication. They excel at highlighting patterns and trends in large datasets, making it easy to identify areas of interest.

We can implement heatmaps to express multiple data types, such as numerical values, percentages, or even categorical data. Heatmaps help us easily spot areas with lots of activity, making them helpful in figuring out clusters [8] . When making these maps, it is important to pick colors carefully. The colors need to show the differences between groups or levels of something. And it is good to use colors that people with colorblindness can easily see.

Check our detailed guide on how to create a heatmap here. Also discover our collection of heatmap PowerPoint templates .

Pie charts are circular statistical graphics divided into slices to illustrate numerical proportions. Each slice represents a proportionate part of the whole, making it easy to visualize the contribution of each component to the total.

The size of the pie charts is influenced by the value of data points within each pie. The total of all data points in a pie determines its size. The pie with the highest data points appears as the largest, whereas the others are proportionally smaller. However, you can present all pies of the same size if proportional representation is not required [9] . Sometimes, pie charts are difficult to read, or additional information is required. A variation of this tool can be used instead, known as the donut chart , which has the same structure but a blank center, creating a ring shape. Presenters can add extra information, and the ring shape helps to declutter the graph.

Pie charts are used in business to show percentage distribution, compare relative sizes of categories, or present straightforward data sets where visualizing ratios is essential.

Real-Life Application of Pie Charts

Consider a scenario where you want to represent the distribution of the data. Each slice of the pie chart would represent a different category, and the size of each slice would indicate the percentage of the total portion allocated to that category.

Step 1: Define Your Data Structure

Imagine you are presenting the distribution of a project budget among different expense categories.

  • Column A: Expense Categories (Personnel, Equipment, Marketing, Miscellaneous)
  • Column B: Budget Amounts ($40,000, $30,000, $20,000, $10,000) Column B represents the values of your categories in Column A.

Step 2: Insert a Pie Chart

Using any of the accessible tools, you can create a pie chart. The most convenient tools for forming a pie chart in a presentation are presentation tools such as PowerPoint or Google Slides.  You will notice that the pie chart assigns each expense category a percentage of the total budget by dividing it by the total budget.

For instance:

  • Personnel: $40,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 40%
  • Equipment: $30,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 30%
  • Marketing: $20,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 20%
  • Miscellaneous: $10,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 10%

You can make a chart out of this or just pull out the pie chart from the data.

Pie chart template in data presentation

3D pie charts and 3D donut charts are quite popular among the audience. They stand out as visual elements in any presentation slide, so let’s take a look at how our pie chart example would look in 3D pie chart format.

3D pie chart in data presentation

Step 03: Results Interpretation

The pie chart visually illustrates the distribution of the project budget among different expense categories. Personnel constitutes the largest portion at 40%, followed by equipment at 30%, marketing at 20%, and miscellaneous at 10%. This breakdown provides a clear overview of where the project funds are allocated, which helps in informed decision-making and resource management. It is evident that personnel are a significant investment, emphasizing their importance in the overall project budget.

Pie charts provide a straightforward way to represent proportions and percentages. They are easy to understand, even for individuals with limited data analysis experience. These charts work well for small datasets with a limited number of categories.

However, a pie chart can become cluttered and less effective in situations with many categories. Accurate interpretation may be challenging, especially when dealing with slight differences in slice sizes. In addition, these charts are static and do not effectively convey trends over time.

For more information, check our collection of pie chart templates for PowerPoint .

Histograms present the distribution of numerical variables. Unlike a bar chart that records each unique response separately, histograms organize numeric responses into bins and show the frequency of reactions within each bin [10] . The x-axis of a histogram shows the range of values for a numeric variable. At the same time, the y-axis indicates the relative frequencies (percentage of the total counts) for that range of values.

Whenever you want to understand the distribution of your data, check which values are more common, or identify outliers, histograms are your go-to. Think of them as a spotlight on the story your data is telling. A histogram can provide a quick and insightful overview if you’re curious about exam scores, sales figures, or any numerical data distribution.

Real-Life Application of a Histogram

In the histogram data analysis presentation example, imagine an instructor analyzing a class’s grades to identify the most common score range. A histogram could effectively display the distribution. It will show whether most students scored in the average range or if there are significant outliers.

Step 1: Gather Data

He begins by gathering the data. The scores of each student in class are gathered to analyze exam scores.

After arranging the scores in ascending order, bin ranges are set.

Step 2: Define Bins

Bins are like categories that group similar values. Think of them as buckets that organize your data. The presenter decides how wide each bin should be based on the range of the values. For instance, the instructor sets the bin ranges based on score intervals: 60-69, 70-79, 80-89, and 90-100.

Step 3: Count Frequency

Now, he counts how many data points fall into each bin. This step is crucial because it tells you how often specific ranges of values occur. The result is the frequency distribution, showing the occurrences of each group.

Here, the instructor counts the number of students in each category.

  • 60-69: 1 student (Kate)
  • 70-79: 4 students (David, Emma, Grace, Jack)
  • 80-89: 7 students (Alice, Bob, Frank, Isabel, Liam, Mia, Noah)
  • 90-100: 3 students (Clara, Henry, Olivia)

Step 4: Create the Histogram

It’s time to turn the data into a visual representation. Draw a bar for each bin on a graph. The width of the bar should correspond to the range of the bin, and the height should correspond to the frequency.  To make your histogram understandable, label the X and Y axes.

In this case, the X-axis should represent the bins (e.g., test score ranges), and the Y-axis represents the frequency.

Histogram in Data Presentation

The histogram of the class grades reveals insightful patterns in the distribution. Most students, with seven students, fall within the 80-89 score range. The histogram provides a clear visualization of the class’s performance. It showcases a concentration of grades in the upper-middle range with few outliers at both ends. This analysis helps in understanding the overall academic standing of the class. It also identifies the areas for potential improvement or recognition.

Thus, histograms provide a clear visual representation of data distribution. They are easy to interpret, even for those without a statistical background. They apply to various types of data, including continuous and discrete variables. One weak point is that histograms do not capture detailed patterns in students’ data, with seven compared to other visualization methods.

A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. Each point represents a unique observation. It visualizes patterns, trends, or correlations between the two variables.

Scatter plots are also effective in revealing the strength and direction of relationships. They identify outliers and assess the overall distribution of data points. The points’ dispersion and clustering reflect the relationship’s nature, whether it is positive, negative, or lacks a discernible pattern. In business, scatter plots assess relationships between variables such as marketing cost and sales revenue. They help present data correlations and decision-making.

Real-Life Application of Scatter Plot

A group of scientists is conducting a study on the relationship between daily hours of screen time and sleep quality. After reviewing the data, they managed to create this table to help them build a scatter plot graph:

In the provided example, the x-axis represents Daily Hours of Screen Time, and the y-axis represents the Sleep Quality Rating.

Scatter plot in data presentation

The scientists observe a negative correlation between the amount of screen time and the quality of sleep. This is consistent with their hypothesis that blue light, especially before bedtime, has a significant impact on sleep quality and metabolic processes.

There are a few things to remember when using a scatter plot. Even when a scatter diagram indicates a relationship, it doesn’t mean one variable affects the other. A third factor can influence both variables. The more the plot resembles a straight line, the stronger the relationship is perceived [11] . If it suggests no ties, the observed pattern might be due to random fluctuations in data. When the scatter diagram depicts no correlation, whether the data might be stratified is worth considering.

Choosing the appropriate data presentation type is crucial when making a presentation . Understanding the nature of your data and the message you intend to convey will guide this selection process. For instance, when showcasing quantitative relationships, scatter plots become instrumental in revealing correlations between variables. If the focus is on emphasizing parts of a whole, pie charts offer a concise display of proportions. Histograms, on the other hand, prove valuable for illustrating distributions and frequency patterns. 

Bar charts provide a clear visual comparison of different categories. Likewise, line charts excel in showcasing trends over time, while tables are ideal for detailed data examination. Starting a presentation on data presentation types involves evaluating the specific information you want to communicate and selecting the format that aligns with your message. This ensures clarity and resonance with your audience from the beginning of your presentation.

1. Fact Sheet Dashboard for Data Presentation

presentation and interpretation of data

Convey all the data you need to present in this one-pager format, an ideal solution tailored for users looking for presentation aids. Global maps, donut chats, column graphs, and text neatly arranged in a clean layout presented in light and dark themes.

Use This Template

2. 3D Column Chart Infographic PPT Template

presentation and interpretation of data

Represent column charts in a highly visual 3D format with this PPT template. A creative way to present data, this template is entirely editable, and we can craft either a one-page infographic or a series of slides explaining what we intend to disclose point by point.

3. Data Circles Infographic PowerPoint Template

presentation and interpretation of data

An alternative to the pie chart and donut chart diagrams, this template features a series of curved shapes with bubble callouts as ways of presenting data. Expand the information for each arch in the text placeholder areas.

4. Colorful Metrics Dashboard for Data Presentation

presentation and interpretation of data

This versatile dashboard template helps us in the presentation of the data by offering several graphs and methods to convert numbers into graphics. Implement it for e-commerce projects, financial projections, project development, and more.

5. Animated Data Presentation Tools for PowerPoint & Google Slides

Canvas Shape Tree Diagram Template

A slide deck filled with most of the tools mentioned in this article, from bar charts, column charts, treemap graphs, pie charts, histogram, etc. Animated effects make each slide look dynamic when sharing data with stakeholders.

6. Statistics Waffle Charts PPT Template for Data Presentations

presentation and interpretation of data

This PPT template helps us how to present data beyond the typical pie chart representation. It is widely used for demographics, so it’s a great fit for marketing teams, data science professionals, HR personnel, and more.

7. Data Presentation Dashboard Template for Google Slides

presentation and interpretation of data

A compendium of tools in dashboard format featuring line graphs, bar charts, column charts, and neatly arranged placeholder text areas. 

8. Weather Dashboard for Data Presentation

presentation and interpretation of data

Share weather data for agricultural presentation topics, environmental studies, or any kind of presentation that requires a highly visual layout for weather forecasting on a single day. Two color themes are available.

9. Social Media Marketing Dashboard Data Presentation Template

presentation and interpretation of data

Intended for marketing professionals, this dashboard template for data presentation is a tool for presenting data analytics from social media channels. Two slide layouts featuring line graphs and column charts.

10. Project Management Summary Dashboard Template

presentation and interpretation of data

A tool crafted for project managers to deliver highly visual reports on a project’s completion, the profits it delivered for the company, and expenses/time required to execute it. 4 different color layouts are available.

11. Profit & Loss Dashboard for PowerPoint and Google Slides

presentation and interpretation of data

A must-have for finance professionals. This typical profit & loss dashboard includes progress bars, donut charts, column charts, line graphs, and everything that’s required to deliver a comprehensive report about a company’s financial situation.

Overwhelming visuals

One of the mistakes related to using data-presenting methods is including too much data or using overly complex visualizations. They can confuse the audience and dilute the key message.

Inappropriate chart types

Choosing the wrong type of chart for the data at hand can lead to misinterpretation. For example, using a pie chart for data that doesn’t represent parts of a whole is not right.

Lack of context

Failing to provide context or sufficient labeling can make it challenging for the audience to understand the significance of the presented data.

Inconsistency in design

Using inconsistent design elements and color schemes across different visualizations can create confusion and visual disarray.

Failure to provide details

Simply presenting raw data without offering clear insights or takeaways can leave the audience without a meaningful conclusion.

Lack of focus

Not having a clear focus on the key message or main takeaway can result in a presentation that lacks a central theme.

Visual accessibility issues

Overlooking the visual accessibility of charts and graphs can exclude certain audience members who may have difficulty interpreting visual information.

In order to avoid these mistakes in data presentation, presenters can benefit from using presentation templates . These templates provide a structured framework. They ensure consistency, clarity, and an aesthetically pleasing design, enhancing data communication’s overall impact.

Understanding and choosing data presentation types are pivotal in effective communication. Each method serves a unique purpose, so selecting the appropriate one depends on the nature of the data and the message to be conveyed. The diverse array of presentation types offers versatility in visually representing information, from bar charts showing values to pie charts illustrating proportions. 

Using the proper method enhances clarity, engages the audience, and ensures that data sets are not just presented but comprehensively understood. By appreciating the strengths and limitations of different presentation types, communicators can tailor their approach to convey information accurately, developing a deeper connection between data and audience understanding.

[1] Government of Canada, S.C. (2021) 5 Data Visualization 5.2 Bar Chart , 5.2 Bar chart .  https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/bargraph-diagrammeabarres/5214818-eng.htm

[2] Kosslyn, S.M., 1989. Understanding charts and graphs. Applied cognitive psychology, 3(3), pp.185-225. https://apps.dtic.mil/sti/pdfs/ADA183409.pdf

[3] Creating a Dashboard . https://it.tufts.edu/book/export/html/1870

[4] https://www.goldenwestcollege.edu/research/data-and-more/data-dashboards/index.html

[5] https://www.mit.edu/course/21/21.guide/grf-line.htm

[6] Jadeja, M. and Shah, K., 2015, January. Tree-Map: A Visualization Tool for Large Data. In GSB@ SIGIR (pp. 9-13). https://ceur-ws.org/Vol-1393/gsb15proceedings.pdf#page=15

[7] Heat Maps and Quilt Plots. https://www.publichealth.columbia.edu/research/population-health-methods/heat-maps-and-quilt-plots

[8] EIU QGIS WORKSHOP. https://www.eiu.edu/qgisworkshop/heatmaps.php

[9] About Pie Charts.  https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c8.htm

[10] Histograms. https://sites.utexas.edu/sos/guided/descriptive/numericaldd/descriptiven2/histogram/ [11] https://asq.org/quality-resources/scatter-diagram

presentation and interpretation of data

Like this article? Please share

Data Analysis, Data Science, Data Visualization Filed under Design

Related Articles

How to Make a Presentation Graph

Filed under Design • March 27th, 2024

How to Make a Presentation Graph

Detailed step-by-step instructions to master the art of how to make a presentation graph in PowerPoint and Google Slides. Check it out!

All About Using Harvey Balls

Filed under Presentation Ideas • January 6th, 2024

All About Using Harvey Balls

Among the many tools in the arsenal of the modern presenter, Harvey Balls have a special place. In this article we will tell you all about using Harvey Balls.

How to Design a Dashboard Presentation: A Step-by-Step Guide

Filed under Business • December 8th, 2023

How to Design a Dashboard Presentation: A Step-by-Step Guide

Take a step further in your professional presentation skills by learning what a dashboard presentation is and how to properly design one in PowerPoint. A detailed step-by-step guide is here!

Leave a Reply

presentation and interpretation of data

  • 13 min read

What is Data Interpretation? Methods, Examples & Tools

What is Data Interpretation Methods Examples Tools

What is Data Interpretation?

  • Importance of Data Interpretation in Today's World

Types of Data Interpretation

Quantitative data interpretation, qualitative data interpretation, mixed methods data interpretation, methods of data interpretation, descriptive statistics, inferential statistics, visualization techniques, benefits of data interpretation, data interpretation process, data interpretation use cases, data interpretation tools, data interpretation challenges and solutions, overcoming bias in data, dealing with missing data, addressing data privacy concerns, data interpretation examples, sales trend analysis, customer segmentation, predictive maintenance, fraud detection, data interpretation best practices, maintaining data quality, choosing the right tools, effective communication of results, ongoing learning and development, data interpretation tips.

Data interpretation is the process of making sense of data and turning it into actionable insights. With the rise of big data and advanced technologies, it has become more important than ever to be able to effectively interpret and understand data.

In today's fast-paced business environment, companies rely on data to make informed decisions and drive growth. However, with the sheer volume of data available, it can be challenging to know where to start and how to make the most of it.

This guide provides a comprehensive overview of data interpretation, covering everything from the basics of what it is to the benefits and best practices.

Data interpretation refers to the process of taking raw data and transforming it into useful information. This involves analyzing the data to identify patterns, trends, and relationships, and then presenting the results in a meaningful way. Data interpretation is an essential part of data analysis, and it is used in a wide range of fields, including business, marketing, healthcare, and many more.

Importance of Data Interpretation in Today's World

Data interpretation is critical to making informed decisions and driving growth in today's data-driven world. With the increasing availability of data, companies can now gain valuable insights into their operations, customer behavior, and market trends. Data interpretation allows businesses to make informed decisions, identify new opportunities, and improve overall efficiency.

There are three main types of data interpretation: quantitative, qualitative, and mixed methods.

Quantitative data interpretation refers to the process of analyzing numerical data. This type of data is often used to measure and quantify specific characteristics, such as sales figures, customer satisfaction ratings, and employee productivity.

Qualitative data interpretation refers to the process of analyzing non-numerical data, such as text, images, and audio. This data type is often used to gain a deeper understanding of customer attitudes and opinions and to identify patterns and trends.

Mixed methods data interpretation combines both quantitative and qualitative data to provide a more comprehensive understanding of a particular subject. This approach is particularly useful when analyzing data that has both numerical and non-numerical components, such as customer feedback data.

There are several data interpretation methods, including descriptive statistics, inferential statistics, and visualization techniques.

Descriptive statistics involve summarizing and presenting data in a way that makes it easy to understand. This can include calculating measures such as mean, median, mode, and standard deviation.

Inferential statistics involves making inferences and predictions about a population based on a sample of data. This type of data interpretation involves the use of statistical models and algorithms to identify patterns and relationships in the data.

Visualization techniques involve creating visual representations of data, such as graphs, charts, and maps. These techniques are particularly useful for communicating complex data in an easy-to-understand manner and identifying data patterns and trends.

How To Share Only One Tab in Google Sheets

When sharing a Google Sheets spreadsheet Google usually tries to share the entire document. Here’s how to share only one tab instead.

Data interpretation plays a crucial role in decision-making and helps organizations make informed choices. There are numerous benefits of data interpretation, including:

  • Improved decision-making: Data interpretation provides organizations with the information they need to make informed decisions. By analyzing data, organizations can identify trends, patterns, and relationships that they may not have been able to see otherwise.
  • Increased efficiency: By automating the data interpretation process, organizations can save time and improve their overall efficiency. With the right tools and methods, data interpretation can be completed quickly and accurately, providing organizations with the information they need to make decisions more efficiently.
  • Better collaboration: Data interpretation can help organizations work more effectively with others, such as stakeholders, partners, and clients. By providing a common understanding of the data and its implications, organizations can collaborate more effectively and make better decisions.
  • Increased accuracy: Data interpretation helps to ensure that data is accurate and consistent, reducing the risk of errors and miscommunication. By using data interpretation techniques, organizations can identify errors and inconsistencies in their data, making it possible to correct them and ensure the accuracy of their information.
  • Enhanced transparency: Data interpretation can also increase transparency, helping organizations demonstrate their commitment to ethical and responsible data management. By providing clear and concise information, organizations can build trust and credibility with their stakeholders.
  • Better resource allocation: Data interpretation can help organizations make better decisions about resource allocation. By analyzing data, organizations can identify areas where they are spending too much time or money and make adjustments to optimize their resources.
  • Improved planning and forecasting: Data interpretation can also help organizations plan for the future. By analyzing historical data, organizations can identify trends and patterns that inform their forecasting and planning efforts.

Data interpretation is a process that involves several steps, including:

  • Data collection: The first step in data interpretation is to collect data from various sources, such as surveys, databases, and websites. This data should be relevant to the issue or problem the organization is trying to solve.
  • Data preparation: Once data is collected, it needs to be prepared for analysis. This may involve cleaning the data to remove errors, missing values, or outliers. It may also include transforming the data into a more suitable format for analysis.
  • Data analysis: The next step is to analyze the data using various techniques, such as statistical analysis, visualization, and modeling. This analysis should be focused on uncovering trends, patterns, and relationships in the data.
  • Data interpretation: Once the data has been analyzed, it needs to be interpreted to determine what the results mean. This may involve identifying key insights, drawing conclusions, and making recommendations.
  • Data communication: The final step in the data interpretation process is to communicate the results and insights to others. This may involve creating visualizations, reports, or presentations to share the results with stakeholders.

Data interpretation can be applied in a variety of settings and industries. Here are a few examples of how data interpretation can be used:

  • Marketing: Marketers use data interpretation to analyze customer behavior, preferences, and trends to inform marketing strategies and campaigns.
  • Healthcare: Healthcare professionals use data interpretation to analyze patient data, including medical histories and test results, to diagnose and treat illnesses.
  • Financial Services: Financial services companies use data interpretation to analyze financial data, such as investment performance, to inform investment decisions and strategies.
  • Retail: Retail companies use data interpretation to analyze sales data, customer behavior, and market trends to inform merchandising and pricing strategies.
  • Manufacturing: Manufacturers use data interpretation to analyze production data, such as machine performance and inventory levels, to inform production and inventory management decisions.

These are just a few examples of how data interpretation can be applied in various settings. The possibilities are endless, and data interpretation can provide valuable insights in any industry where data is collected and analyzed.

Data interpretation is a crucial step in the data analysis process, and the right tools can make a significant difference in accuracy and efficiency. Here are a few tools that can help you with data interpretation:

  • Share parts of your spreadsheet, including sheets or even cell ranges, with different collaborators or stakeholders.
  • Review and approve edits by collaborators to their respective sheets before merging them back with your master spreadsheet.
  • Integrate popular tools and connect your tech stack to sync data from different sources, giving you a timely, holistic view of your data.
  • Google Sheets: Google Sheets is a free, web-based spreadsheet application that allows users to create, edit, and format spreadsheets. It provides a range of features for data interpretation, including functions, charts, and pivot tables.
  • Microsoft Excel: Microsoft Excel is a spreadsheet software widely used for data interpretation. It provides various functions and features to help you analyze and interpret data, including sorting, filtering, pivot tables, and charts.
  • Tableau: Tableau is a data visualization tool that helps you see and understand your data. It allows you to connect to various data sources and create interactive dashboards and visualizations to communicate insights.
  • Power BI: Power BI is a business analytics service that provides interactive visualizations and business intelligence capabilities with an easy interface for end users to create their own reports and dashboards.
  • R: R is a programming language and software environment for statistical computing and graphics. It is widely used by statisticians, data scientists, and researchers to analyze and interpret data.

Each of these tools has its strengths and weaknesses, and the right tool for you will depend on your specific needs and requirements. Consider the size and complexity of your data, the analysis methods you need to use, and the level of customization you require, before making a decision.

How to Password Protect a Google Sheet

If you work with important data in Google Sheets, you probably want an extra layer of protection. Here's how you can password protect a Google Sheet

Data interpretation can be a complex and challenging process, but there are several solutions that can help overcome some of the most common difficulties.

Data interpretation can often be biased based on the data sources and the people who interpret it. It is important to eliminate these biases to get a clear and accurate understanding of the data. This can be achieved by diversifying the data sources, involving multiple stakeholders in the data interpretation process, and regularly reviewing the data interpretation methodology.

Missing data can often result in inaccuracies in the data interpretation process. To overcome this challenge, data scientists can use imputation methods to fill in missing data or use statistical models that can account for missing data.

Data privacy is a crucial concern in today's data-driven world. To address this, organizations should ensure that their data interpretation processes align with data privacy regulations and that the data being analyzed is adequately secured.

Data interpretation is used in a variety of industries and for a range of purposes. Here are a few examples:

Sales trend analysis is a common use of data interpretation in the business world. This type of analysis involves looking at sales data over time to identify trends and patterns, which can then be used to make informed business decisions.

Customer segmentation is a data interpretation technique that categorizes customers into segments based on common characteristics. This can be used to create more targeted marketing campaigns and to improve customer engagement.

Predictive maintenance is a data interpretation technique that uses machine learning algorithms to predict when equipment is likely to fail. This can help organizations proactively address potential issues and reduce downtime.

Fraud detection is a use case for data interpretation involving data and machine learning algorithms to identify patterns and anomalies that may indicate fraudulent activity.

To ensure that data interpretation processes are as effective and accurate as possible, it is recommended to follow some best practices.

Data quality is critical to the accuracy of data interpretation. To maintain data quality, organizations should regularly review and validate their data, eliminate data biases, and address missing data.

Choosing the right data interpretation tools is crucial to the success of the data interpretation process. Organizations should consider factors such as cost, compatibility with existing tools and processes, and the complexity of the data to be analyzed when choosing the right data interpretation tool. Layer, an add-on that equips teams with the tools to increase efficiency and data quality in their processes on top of Google Sheets, is an excellent choice for organizations looking to optimize their data interpretation process.

Data interpretation results need to be communicated effectively to stakeholders in a way they can understand. This can be achieved by using visual aids such as charts and graphs and presenting the results clearly and concisely.

The world of data interpretation is constantly evolving, and organizations must stay up to date with the latest developments and best practices. Ongoing learning and development initiatives, such as attending workshops and conferences, can help organizations stay ahead of the curve.

Regardless of the data interpretation method used, following best practices can help ensure accurate and reliable results. These best practices include:

  • Validate data sources: It is essential to validate the data sources used to ensure they are accurate, up-to-date, and relevant. This helps to minimize the potential for errors in the data interpretation process.
  • Use appropriate statistical techniques: The choice of statistical methods used for data interpretation should be suitable for the type of data being analyzed. For example, regression analysis is often used for analyzing trends in large data sets, while chi-square tests are used for categorical data.
  • Graph and visualize data: Graphical representations of data can help to quickly identify patterns and trends. Visualization tools like histograms, scatter plots, and bar graphs can make the data more understandable and easier to interpret.
  • Document and explain results: Results from data interpretation should be documented and presented in a clear and concise manner. This includes providing context for the results and explaining how they were obtained.
  • Use a robust data interpretation tool: Data interpretation tools can help to automate the process and minimize the risk of errors. However, choosing a reliable, user-friendly tool that provides the features and functionalities needed to support the data interpretation process is vital.

Data interpretation is a crucial aspect of data analysis and enables organizations to turn large amounts of data into actionable insights. The guide covered the definition, importance, types, methods, benefits, process, analysis, tools, use cases, and best practices of data interpretation.

As technology continues to advance, the methods and tools used in data interpretation will also evolve. Predictive analytics and artificial intelligence will play an increasingly important role in data interpretation as organizations strive to automate and streamline their data analysis processes. In addition, big data and the Internet of Things (IoT) will lead to the generation of vast amounts of data that will need to be analyzed and interpreted effectively.

Data interpretation is a critical skill that enables organizations to make informed decisions based on data. It is essential that organizations invest in data interpretation and the development of their in-house data interpretation skills, whether through training programs or the use of specialized tools like Layer. By staying up-to-date with the latest trends and best practices in data interpretation, organizations can maximize the value of their data and drive growth and success.

Hady has a passion for tech, marketing, and spreadsheets. Besides his Computer Science degree, he has vast experience in developing, launching, and scaling content marketing processes at SaaS startups.

Layer is now Sheetgo

Automate your procesess on top of spreadsheets.

A Guide To The Methods, Benefits & Problems of The Interpretation of Data

Data interpretation blog post by datapine

Table of Contents

1) What Is Data Interpretation?

2) How To Interpret Data?

3) Why Data Interpretation Is Important?

4) Data Interpretation Skills

5) Data Analysis & Interpretation Problems

6) Data Interpretation Techniques & Methods

7) The Use of Dashboards For Data Interpretation

8) Business Data Interpretation Examples

Data analysis and interpretation have now taken center stage with the advent of the digital age… and the sheer amount of data can be frightening. In fact, a Digital Universe study found that the total data supply in 2012 was 2.8 trillion gigabytes! Based on that amount of data alone, it is clear the calling card of any successful enterprise in today’s global world will be the ability to analyze complex data, produce actionable insights, and adapt to new market needs… all at the speed of thought.

Business dashboards are the digital age tools for big data. Capable of displaying key performance indicators (KPIs) for both quantitative and qualitative data analyses, they are ideal for making the fast-paced and data-driven market decisions that push today’s industry leaders to sustainable success. Through the art of streamlined visual communication, data dashboards permit businesses to engage in real-time and informed decision-making and are key instruments in data interpretation. First of all, let’s find a definition to understand what lies behind this practice.

What Is Data Interpretation?

Data interpretation refers to the process of using diverse analytical methods to review data and arrive at relevant conclusions. The interpretation of data helps researchers to categorize, manipulate, and summarize the information in order to answer critical questions.

The importance of data interpretation is evident, and this is why it needs to be done properly. Data is very likely to arrive from multiple sources and has a tendency to enter the analysis process with haphazard ordering. Data analysis tends to be extremely subjective. That is to say, the nature and goal of interpretation will vary from business to business, likely correlating to the type of data being analyzed. While there are several types of processes that are implemented based on the nature of individual data, the two broadest and most common categories are “quantitative and qualitative analysis.”

Yet, before any serious data interpretation inquiry can begin, it should be understood that visual presentations of data findings are irrelevant unless a sound decision is made regarding measurement scales. Before any serious data analysis can begin, the measurement scale must be decided for the data as this will have a long-term impact on data interpretation ROI. The varying scales include:

  • Nominal Scale: non-numeric categories that cannot be ranked or compared quantitatively. Variables are exclusive and exhaustive.
  • Ordinal Scale: exclusive categories that are exclusive and exhaustive but with a logical order. Quality ratings and agreement ratings are examples of ordinal scales (i.e., good, very good, fair, etc., OR agree, strongly agree, disagree, etc.).
  • Interval: a measurement scale where data is grouped into categories with orderly and equal distances between the categories. There is always an arbitrary zero point.
  • Ratio: contains features of all three.

For a more in-depth review of scales of measurement, read our article on data analysis questions . Once measurement scales have been selected, it is time to select which of the two broad interpretation processes will best suit your data needs. Let’s take a closer look at those specific methods and possible data interpretation problems.

How To Interpret Data? Top Methods & Techniques

Illustration of data interpretation on blackboard

When interpreting data, an analyst must try to discern the differences between correlation, causation, and coincidences, as well as many other biases – but he also has to consider all the factors involved that may have led to a result. There are various data interpretation types and methods one can use to achieve this.

The interpretation of data is designed to help people make sense of numerical data that has been collected, analyzed, and presented. Having a baseline method for interpreting data will provide your analyst teams with a structure and consistent foundation. Indeed, if several departments have different approaches to interpreting the same data while sharing the same goals, some mismatched objectives can result. Disparate methods will lead to duplicated efforts, inconsistent solutions, wasted energy, and inevitably – time and money. In this part, we will look at the two main methods of interpretation of data: qualitative and quantitative analysis.

Qualitative Data Interpretation

Qualitative data analysis can be summed up in one word – categorical. With this type of analysis, data is not described through numerical values or patterns but through the use of descriptive context (i.e., text). Typically, narrative data is gathered by employing a wide variety of person-to-person techniques. These techniques include:

  • Observations: detailing behavioral patterns that occur within an observation group. These patterns could be the amount of time spent in an activity, the type of activity, and the method of communication employed.
  • Focus groups: Group people and ask them relevant questions to generate a collaborative discussion about a research topic.
  • Secondary Research: much like how patterns of behavior can be observed, various types of documentation resources can be coded and divided based on the type of material they contain.
  • Interviews: one of the best collection methods for narrative data. Inquiry responses can be grouped by theme, topic, or category. The interview approach allows for highly focused data segmentation.

A key difference between qualitative and quantitative analysis is clearly noticeable in the interpretation stage. The first one is widely open to interpretation and must be “coded” so as to facilitate the grouping and labeling of data into identifiable themes. As person-to-person data collection techniques can often result in disputes pertaining to proper analysis, qualitative data analysis is often summarized through three basic principles: notice things, collect things, and think about things.

After qualitative data has been collected through transcripts, questionnaires, audio and video recordings, or the researcher’s notes, it is time to interpret it. For that purpose, there are some common methods used by researchers and analysts.

  • Content analysis : As its name suggests, this is a research method used to identify frequencies and recurring words, subjects, and concepts in image, video, or audio content. It transforms qualitative information into quantitative data to help discover trends and conclusions that will later support important research or business decisions. This method is often used by marketers to understand brand sentiment from the mouths of customers themselves. Through that, they can extract valuable information to improve their products and services. It is recommended to use content analytics tools for this method as manually performing it is very time-consuming and can lead to human error or subjectivity issues. Having a clear goal in mind before diving into it is another great practice for avoiding getting lost in the fog.  
  • Thematic analysis: This method focuses on analyzing qualitative data, such as interview transcripts, survey questions, and others, to identify common patterns and separate the data into different groups according to found similarities or themes. For example, imagine you want to analyze what customers think about your restaurant. For this purpose, you do a thematic analysis on 1000 reviews and find common themes such as “fresh food”, “cold food”, “small portions”, “friendly staff”, etc. With those recurring themes in hand, you can extract conclusions about what could be improved or enhanced based on your customer’s experiences. Since this technique is more exploratory, be open to changing your research questions or goals as you go. 
  • Narrative analysis: A bit more specific and complicated than the two previous methods, it is used to analyze stories and discover their meaning. These stories can be extracted from testimonials, case studies, and interviews, as these formats give people more space to tell their experiences. Given that collecting this kind of data is harder and more time-consuming, sample sizes for narrative analysis are usually smaller, which makes it harder to reproduce its findings. However, it is still a valuable technique for understanding customers' preferences and mindsets.  
  • Discourse analysis : This method is used to draw the meaning of any type of visual, written, or symbolic language in relation to a social, political, cultural, or historical context. It is used to understand how context can affect how language is carried out and understood. For example, if you are doing research on power dynamics, using discourse analysis to analyze a conversation between a janitor and a CEO and draw conclusions about their responses based on the context and your research questions is a great use case for this technique. That said, like all methods in this section, discourse analytics is time-consuming as the data needs to be analyzed until no new insights emerge.  
  • Grounded theory analysis : The grounded theory approach aims to create or discover a new theory by carefully testing and evaluating the data available. Unlike all other qualitative approaches on this list, grounded theory helps extract conclusions and hypotheses from the data instead of going into the analysis with a defined hypothesis. This method is very popular amongst researchers, analysts, and marketers as the results are completely data-backed, providing a factual explanation of any scenario. It is often used when researching a completely new topic or with little knowledge as this space to start from the ground up. 

Quantitative Data Interpretation

If quantitative data interpretation could be summed up in one word (and it really can’t), that word would be “numerical.” There are few certainties when it comes to data analysis, but you can be sure that if the research you are engaging in has no numbers involved, it is not quantitative research, as this analysis refers to a set of processes by which numerical data is analyzed. More often than not, it involves the use of statistical modeling such as standard deviation, mean, and median. Let’s quickly review the most common statistical terms:

  • Mean: A mean represents a numerical average for a set of responses. When dealing with a data set (or multiple data sets), a mean will represent the central value of a specific set of numbers. It is the sum of the values divided by the number of values within the data set. Other terms that can be used to describe the concept are arithmetic mean, average, and mathematical expectation.
  • Standard deviation: This is another statistical term commonly used in quantitative analysis. Standard deviation reveals the distribution of the responses around the mean. It describes the degree of consistency within the responses; together with the mean, it provides insight into data sets.
  • Frequency distribution: This is a measurement gauging the rate of a response appearance within a data set. When using a survey, for example, frequency distribution, it can determine the number of times a specific ordinal scale response appears (i.e., agree, strongly agree, disagree, etc.). Frequency distribution is extremely keen in determining the degree of consensus among data points.

Typically, quantitative data is measured by visually presenting correlation tests between two or more variables of significance. Different processes can be used together or separately, and comparisons can be made to ultimately arrive at a conclusion. Other signature interpretation processes of quantitative data include:

  • Regression analysis: Essentially, it uses historical data to understand the relationship between a dependent variable and one or more independent variables. Knowing which variables are related and how they developed in the past allows you to anticipate possible outcomes and make better decisions going forward. For example, if you want to predict your sales for next month, you can use regression to understand what factors will affect them, such as products on sale and the launch of a new campaign, among many others. 
  • Cohort analysis: This method identifies groups of users who share common characteristics during a particular time period. In a business scenario, cohort analysis is commonly used to understand customer behaviors. For example, a cohort could be all users who have signed up for a free trial on a given day. An analysis would be carried out to see how these users behave, what actions they carry out, and how their behavior differs from other user groups.
  • Predictive analysis: As its name suggests, the predictive method aims to predict future developments by analyzing historical and current data. Powered by technologies such as artificial intelligence and machine learning, predictive analytics practices enable businesses to identify patterns or potential issues and plan informed strategies in advance.
  • Prescriptive analysis: Also powered by predictions, the prescriptive method uses techniques such as graph analysis, complex event processing, and neural networks, among others, to try to unravel the effect that future decisions will have in order to adjust them before they are actually made. This helps businesses to develop responsive, practical business strategies.
  • Conjoint analysis: Typically applied to survey analysis, the conjoint approach is used to analyze how individuals value different attributes of a product or service. This helps researchers and businesses to define pricing, product features, packaging, and many other attributes. A common use is menu-based conjoint analysis, in which individuals are given a “menu” of options from which they can build their ideal concept or product. Through this, analysts can understand which attributes they would pick above others and drive conclusions.
  • Cluster analysis: Last but not least, the cluster is a method used to group objects into categories. Since there is no target variable when using cluster analysis, it is a useful method to find hidden trends and patterns in the data. In a business context, clustering is used for audience segmentation to create targeted experiences. In market research, it is often used to identify age groups, geographical information, and earnings, among others.

Now that we have seen how to interpret data, let's move on and ask ourselves some questions: What are some of the benefits of data interpretation? Why do all industries engage in data research and analysis? These are basic questions, but they often don’t receive adequate attention.

Your Chance: Want to test a powerful data analysis software? Use our 14-days free trial & start extracting insights from your data!

Why Data Interpretation Is Important

illustrating quantitative data interpretation with charts & graphs

The purpose of collection and interpretation is to acquire useful and usable information and to make the most informed decisions possible. From businesses to newlyweds researching their first home, data collection and interpretation provide limitless benefits for a wide range of institutions and individuals.

Data analysis and interpretation, regardless of the method and qualitative/quantitative status, may include the following characteristics:

  • Data identification and explanation
  • Comparing and contrasting data
  • Identification of data outliers
  • Future predictions

Data analysis and interpretation, in the end, help improve processes and identify problems. It is difficult to grow and make dependable improvements without, at the very least, minimal data collection and interpretation. What is the keyword? Dependable. Vague ideas regarding performance enhancement exist within all institutions and industries. Yet, without proper research and analysis, an idea is likely to remain in a stagnant state forever (i.e., minimal growth). So… what are a few of the business benefits of digital age data analysis and interpretation? Let’s take a look!

1) Informed decision-making: A decision is only as good as the knowledge that formed it. Informed data decision-making can potentially set industry leaders apart from the rest of the market pack. Studies have shown that companies in the top third of their industries are, on average, 5% more productive and 6% more profitable when implementing informed data decision-making processes. Most decisive actions will arise only after a problem has been identified or a goal defined. Data analysis should include identification, thesis development, and data collection, followed by data communication.

If institutions only follow that simple order, one that we should all be familiar with from grade school science fairs, then they will be able to solve issues as they emerge in real-time. Informed decision-making has a tendency to be cyclical. This means there is really no end, and eventually, new questions and conditions arise within the process that need to be studied further. The monitoring of data results will inevitably return the process to the start with new data and sights.

2) Anticipating needs with trends identification: data insights provide knowledge, and knowledge is power. The insights obtained from market and consumer data analyses have the ability to set trends for peers within similar market segments. A perfect example of how data analytics can impact trend prediction is evidenced in the music identification application Shazam . The application allows users to upload an audio clip of a song they like but can’t seem to identify. Users make 15 million song identifications a day. With this data, Shazam has been instrumental in predicting future popular artists.

When industry trends are identified, they can then serve a greater industry purpose. For example, the insights from Shazam’s monitoring benefits not only Shazam in understanding how to meet consumer needs but also grant music executives and record label companies an insight into the pop-culture scene of the day. Data gathering and interpretation processes can allow for industry-wide climate prediction and result in greater revenue streams across the market. For this reason, all institutions should follow the basic data cycle of collection, interpretation, decision-making, and monitoring.

3) Cost efficiency: Proper implementation of analytics processes can provide businesses with profound cost advantages within their industries. A recent data study performed by Deloitte vividly demonstrates this in finding that data analysis ROI is driven by efficient cost reductions. Often, this benefit is overlooked because making money is typically viewed as “sexier” than saving money. Yet, sound data analyses have the ability to alert management to cost-reduction opportunities without any significant exertion of effort on the part of human capital.

A great example of the potential for cost efficiency through data analysis is Intel. Prior to 2012, Intel would conduct over 19,000 manufacturing function tests on their chips before they could be deemed acceptable for release. To cut costs and reduce test time, Intel implemented predictive data analyses. By using historical and current data, Intel now avoids testing each chip 19,000 times by focusing on specific and individual chip tests. After its implementation in 2012, Intel saved over $3 million in manufacturing costs. Cost reduction may not be as “sexy” as data profit, but as Intel proves, it is a benefit of data analysis that should not be neglected.

4) Clear foresight: companies that collect and analyze their data gain better knowledge about themselves, their processes, and their performance. They can identify performance challenges when they arise and take action to overcome them. Data interpretation through visual representations lets them process their findings faster and make better-informed decisions on the company's future.

Key Data Interpretation Skills You Should Have

Just like any other process, data interpretation and analysis require researchers or analysts to have some key skills to be able to perform successfully. It is not enough just to apply some methods and tools to the data; the person who is managing it needs to be objective and have a data-driven mind, among other skills. 

It is a common misconception to think that the required skills are mostly number-related. While data interpretation is heavily analytically driven, it also requires communication and narrative skills, as the results of the analysis need to be presented in a way that is easy to understand for all types of audiences. 

Luckily, with the rise of self-service tools and AI-driven technologies, data interpretation is no longer segregated for analysts only. However, the topic still remains a big challenge for businesses that make big investments in data and tools to support it, as the interpretation skills required are still lacking. It is worthless to put massive amounts of money into extracting information if you are not going to be able to interpret what that information is telling you. For that reason, below we list the top 5 data interpretation skills your employees or researchers should have to extract the maximum potential from the data. 

  • Data Literacy: The first and most important skill to have is data literacy. This means having the ability to understand, work, and communicate with data. It involves knowing the types of data sources, methods, and ethical implications of using them. In research, this skill is often a given. However, in a business context, there might be many employees who are not comfortable with data. The issue is the interpretation of data can not be solely responsible for the data team, as it is not sustainable in the long run. Experts advise business leaders to carefully assess the literacy level across their workforce and implement training instances to ensure everyone can interpret their data. 
  • Data Tools: The data interpretation and analysis process involves using various tools to collect, clean, store, and analyze the data. The complexity of the tools varies depending on the type of data and the analysis goals. Going from simple ones like Excel to more complex ones like databases, such as SQL, or programming languages, such as R or Python. It also involves visual analytics tools to bring the data to life through the use of graphs and charts. Managing these tools is a fundamental skill as they make the process faster and more efficient. As mentioned before, most modern solutions are now self-service, enabling less technical users to use them without problem.
  • Critical Thinking: Another very important skill is to have critical thinking. Data hides a range of conclusions, trends, and patterns that must be discovered. It is not just about comparing numbers; it is about putting a story together based on multiple factors that will lead to a conclusion. Therefore, having the ability to look further from what is right in front of you is an invaluable skill for data interpretation. 
  • Data Ethics: In the information age, being aware of the legal and ethical responsibilities that come with the use of data is of utmost importance. In short, data ethics involves respecting the privacy and confidentiality of data subjects, as well as ensuring accuracy and transparency for data usage. It requires the analyzer or researcher to be completely objective with its interpretation to avoid any biases or discrimination. Many countries have already implemented regulations regarding the use of data, including the GDPR or the ACM Code Of Ethics. Awareness of these regulations and responsibilities is a fundamental skill that anyone working in data interpretation should have. 
  • Domain Knowledge: Another skill that is considered important when interpreting data is to have domain knowledge. As mentioned before, data hides valuable insights that need to be uncovered. To do so, the analyst needs to know about the industry or domain from which the information is coming and use that knowledge to explore it and put it into a broader context. This is especially valuable in a business context, where most departments are now analyzing data independently with the help of a live dashboard instead of relying on the IT department, which can often overlook some aspects due to a lack of expertise in the topic. 

Common Data Analysis And Interpretation Problems

Man running away from common data interpretation problems

The oft-repeated mantra of those who fear data advancements in the digital age is “big data equals big trouble.” While that statement is not accurate, it is safe to say that certain data interpretation problems or “pitfalls” exist and can occur when analyzing data, especially at the speed of thought. Let’s identify some of the most common data misinterpretation risks and shed some light on how they can be avoided:

1) Correlation mistaken for causation: our first misinterpretation of data refers to the tendency of data analysts to mix the cause of a phenomenon with correlation. It is the assumption that because two actions occurred together, one caused the other. This is inaccurate, as actions can occur together, absent a cause-and-effect relationship.

  • Digital age example: assuming that increased revenue results from increased social media followers… there might be a definitive correlation between the two, especially with today’s multi-channel purchasing experiences. But that does not mean an increase in followers is the direct cause of increased revenue. There could be both a common cause and an indirect causality.
  • Remedy: attempt to eliminate the variable you believe to be causing the phenomenon.

2) Confirmation bias: our second problem is data interpretation bias. It occurs when you have a theory or hypothesis in mind but are intent on only discovering data patterns that support it while rejecting those that do not.

  • Digital age example: your boss asks you to analyze the success of a recent multi-platform social media marketing campaign. While analyzing the potential data variables from the campaign (one that you ran and believe performed well), you see that the share rate for Facebook posts was great, while the share rate for Twitter Tweets was not. Using only Facebook posts to prove your hypothesis that the campaign was successful would be a perfect manifestation of confirmation bias.
  • Remedy: as this pitfall is often based on subjective desires, one remedy would be to analyze data with a team of objective individuals. If this is not possible, another solution is to resist the urge to make a conclusion before data exploration has been completed. Remember to always try to disprove a hypothesis, not prove it.

3) Irrelevant data: the third data misinterpretation pitfall is especially important in the digital age. As large data is no longer centrally stored and as it continues to be analyzed at the speed of thought, it is inevitable that analysts will focus on data that is irrelevant to the problem they are trying to correct.

  • Digital age example: in attempting to gauge the success of an email lead generation campaign, you notice that the number of homepage views directly resulting from the campaign increased, but the number of monthly newsletter subscribers did not. Based on the number of homepage views, you decide the campaign was a success when really it generated zero leads.
  • Remedy: proactively and clearly frame any data analysis variables and KPIs prior to engaging in a data review. If the metric you use to measure the success of a lead generation campaign is newsletter subscribers, there is no need to review the number of homepage visits. Be sure to focus on the data variable that answers your question or solves your problem and not on irrelevant data.

4) Truncating an Axes: When creating a graph to start interpreting the results of your analysis, it is important to keep the axes truthful and avoid generating misleading visualizations. Starting the axes in a value that doesn’t portray the actual truth about the data can lead to false conclusions. 

  • Digital age example: In the image below, we can see a graph from Fox News in which the Y-axes start at 34%, making it seem that the difference between 35% and 39.6% is way higher than it actually is. This could lead to a misinterpretation of the tax rate changes. 

Fox news graph truncating an axes

* Source : www.venngage.com *

  • Remedy: Be careful with how your data is visualized. Be respectful and realistic with axes to avoid misinterpretation of your data. See below how the Fox News chart looks when using the correct axis values. This chart was created with datapine's modern online data visualization tool.

Fox news graph with the correct axes values

5) (Small) sample size: Another common problem is using a small sample size. Logically, the bigger the sample size, the more accurate and reliable the results. However, this also depends on the size of the effect of the study. For example, the sample size in a survey about the quality of education will not be the same as for one about people doing outdoor sports in a specific area. 

  • Digital age example: Imagine you ask 30 people a question, and 29 answer “yes,” resulting in 95% of the total. Now imagine you ask the same question to 1000, and 950 of them answer “yes,” which is again 95%. While these percentages might look the same, they certainly do not mean the same thing, as a 30-person sample size is not a significant number to establish a truthful conclusion. 
  • Remedy: Researchers say that in order to determine the correct sample size to get truthful and meaningful results, it is necessary to define a margin of error that will represent the maximum amount they want the results to deviate from the statistical mean. Paired with this, they need to define a confidence level that should be between 90 and 99%. With these two values in hand, researchers can calculate an accurate sample size for their studies.

6) Reliability, subjectivity, and generalizability : When performing qualitative analysis, researchers must consider practical and theoretical limitations when interpreting the data. In some cases, this type of research can be considered unreliable because of uncontrolled factors that might or might not affect the results. This is paired with the fact that the researcher has a primary role in the interpretation process, meaning he or she decides what is relevant and what is not, and as we know, interpretations can be very subjective.

Generalizability is also an issue that researchers face when dealing with qualitative analysis. As mentioned in the point about having a small sample size, it is difficult to draw conclusions that are 100% representative because the results might be biased or unrepresentative of a wider population. 

While these factors are mostly present in qualitative research, they can also affect the quantitative analysis. For example, when choosing which KPIs to portray and how to portray them, analysts can also be biased and represent them in a way that benefits their analysis.

  • Digital age example: Biased questions in a survey are a great example of reliability and subjectivity issues. Imagine you are sending a survey to your clients to see how satisfied they are with your customer service with this question: “How amazing was your experience with our customer service team?”. Here, we can see that this question clearly influences the response of the individual by putting the word “amazing” on it. 
  • Remedy: A solution to avoid these issues is to keep your research honest and neutral. Keep the wording of the questions as objective as possible. For example: “On a scale of 1-10, how satisfied were you with our customer service team?”. This does not lead the respondent to any specific answer, meaning the results of your survey will be reliable. 

Data Interpretation Best Practices & Tips

Data interpretation methods and techniques by datapine

Data analysis and interpretation are critical to developing sound conclusions and making better-informed decisions. As we have seen with this article, there is an art and science to the interpretation of data. To help you with this purpose, we will list a few relevant techniques, methods, and tricks you can implement for a successful data management process. 

As mentioned at the beginning of this post, the first step to interpreting data in a successful way is to identify the type of analysis you will perform and apply the methods respectively. Clearly differentiate between qualitative (observe, document, and interview notice, collect and think about things) and quantitative analysis (you lead research with a lot of numerical data to be analyzed through various statistical methods). 

1) Ask the right data interpretation questions

The first data interpretation technique is to define a clear baseline for your work. This can be done by answering some critical questions that will serve as a useful guideline to start. Some of them include: what are the goals and objectives of my analysis? What type of data interpretation method will I use? Who will use this data in the future? And most importantly, what general question am I trying to answer?

Once all this information has been defined, you will be ready for the next step: collecting your data. 

2) Collect and assimilate your data

Now that a clear baseline has been established, it is time to collect the information you will use. Always remember that your methods for data collection will vary depending on what type of analysis method you use, which can be qualitative or quantitative. Based on that, relying on professional online data analysis tools to facilitate the process is a great practice in this regard, as manually collecting and assessing raw data is not only very time-consuming and expensive but is also at risk of errors and subjectivity. 

Once your data is collected, you need to carefully assess it to understand if the quality is appropriate to be used during a study. This means, is the sample size big enough? Were the procedures used to collect the data implemented correctly? Is the date range from the data correct? If coming from an external source, is it a trusted and objective one? 

With all the needed information in hand, you are ready to start the interpretation process, but first, you need to visualize your data. 

3) Use the right data visualization type 

Data visualizations such as business graphs , charts, and tables are fundamental to successfully interpreting data. This is because data visualization via interactive charts and graphs makes the information more understandable and accessible. As you might be aware, there are different types of visualizations you can use, but not all of them are suitable for any analysis purpose. Using the wrong graph can lead to misinterpretation of your data, so it’s very important to carefully pick the right visual for it. Let’s look at some use cases of common data visualizations. 

  • Bar chart: One of the most used chart types, the bar chart uses rectangular bars to show the relationship between 2 or more variables. There are different types of bar charts for different interpretations, including the horizontal bar chart, column bar chart, and stacked bar chart. 
  • Line chart: Most commonly used to show trends, acceleration or decelerations, and volatility, the line chart aims to show how data changes over a period of time, for example, sales over a year. A few tips to keep this chart ready for interpretation are not using many variables that can overcrowd the graph and keeping your axis scale close to the highest data point to avoid making the information hard to read. 
  • Pie chart: Although it doesn’t do a lot in terms of analysis due to its uncomplex nature, pie charts are widely used to show the proportional composition of a variable. Visually speaking, showing a percentage in a bar chart is way more complicated than showing it in a pie chart. However, this also depends on the number of variables you are comparing. If your pie chart needs to be divided into 10 portions, then it is better to use a bar chart instead. 
  • Tables: While they are not a specific type of chart, tables are widely used when interpreting data. Tables are especially useful when you want to portray data in its raw format. They give you the freedom to easily look up or compare individual values while also displaying grand totals. 

With the use of data visualizations becoming more and more critical for businesses’ analytical success, many tools have emerged to help users visualize their data in a cohesive and interactive way. One of the most popular ones is the use of BI dashboards . These visual tools provide a centralized view of various graphs and charts that paint a bigger picture of a topic. We will discuss the power of dashboards for an efficient data interpretation practice in the next portion of this post. If you want to learn more about different types of graphs and charts , take a look at our complete guide on the topic. 

4) Start interpreting 

After the tedious preparation part, you can start extracting conclusions from your data. As mentioned many times throughout the post, the way you decide to interpret the data will solely depend on the methods you initially decided to use. If you had initial research questions or hypotheses, then you should look for ways to prove their validity. If you are going into the data with no defined hypothesis, then start looking for relationships and patterns that will allow you to extract valuable conclusions from the information. 

During the process of interpretation, stay curious and creative, dig into the data, and determine if there are any other critical questions that should be asked. If any new questions arise, you need to assess if you have the necessary information to answer them. Being able to identify if you need to dedicate more time and resources to the research is a very important step. No matter if you are studying customer behaviors or a new cancer treatment, the findings from your analysis may dictate important decisions in the future. Therefore, taking the time to really assess the information is key. For that purpose, data interpretation software proves to be very useful.

5) Keep your interpretation objective

As mentioned above, objectivity is one of the most important data interpretation skills but also one of the hardest. Being the person closest to the investigation, it is easy to become subjective when looking for answers in the data. A good way to stay objective is to show the information related to the study to other people, for example, research partners or even the people who will use your findings once they are done. This can help avoid confirmation bias and any reliability issues with your interpretation. 

Remember, using a visualization tool such as a modern dashboard will make the interpretation process way easier and more efficient as the data can be navigated and manipulated in an easy and organized way. And not just that, using a dashboard tool to present your findings to a specific audience will make the information easier to understand and the presentation way more engaging thanks to the visual nature of these tools. 

6) Mark your findings and draw conclusions

Findings are the observations you extracted from your data. They are the facts that will help you drive deeper conclusions about your research. For example, findings can be trends and patterns you found during your interpretation process. To put your findings into perspective, you can compare them with other resources that use similar methods and use them as benchmarks.

Reflect on your own thinking and reasoning and be aware of the many pitfalls data analysis and interpretation carry—correlation versus causation, subjective bias, false information, inaccurate data, etc. Once you are comfortable with interpreting the data, you will be ready to develop conclusions, see if your initial questions were answered, and suggest recommendations based on them.

Interpretation of Data: The Use of Dashboards Bridging The Gap

As we have seen, quantitative and qualitative methods are distinct types of data interpretation and analysis. Both offer a varying degree of return on investment (ROI) regarding data investigation, testing, and decision-making. But how do you mix the two and prevent a data disconnect? The answer is professional data dashboards. 

For a few years now, dashboards have become invaluable tools to visualize and interpret data. These tools offer a centralized and interactive view of data and provide the perfect environment for exploration and extracting valuable conclusions. They bridge the quantitative and qualitative information gap by unifying all the data in one place with the help of stunning visuals. 

Not only that, but these powerful tools offer a large list of benefits, and we will discuss some of them below. 

1) Connecting and blending data. With today’s pace of innovation, it is no longer feasible (nor desirable) to have bulk data centrally located. As businesses continue to globalize and borders continue to dissolve, it will become increasingly important for businesses to possess the capability to run diverse data analyses absent the limitations of location. Data dashboards decentralize data without compromising on the necessary speed of thought while blending both quantitative and qualitative data. Whether you want to measure customer trends or organizational performance, you now have the capability to do both without the need for a singular selection.

2) Mobile Data. Related to the notion of “connected and blended data” is that of mobile data. In today’s digital world, employees are spending less time at their desks and simultaneously increasing production. This is made possible because mobile solutions for analytical tools are no longer standalone. Today, mobile analysis applications seamlessly integrate with everyday business tools. In turn, both quantitative and qualitative data are now available on-demand where they’re needed, when they’re needed, and how they’re needed via interactive online dashboards .

3) Visualization. Data dashboards merge the data gap between qualitative and quantitative data interpretation methods through the science of visualization. Dashboard solutions come “out of the box” and are well-equipped to create easy-to-understand data demonstrations. Modern online data visualization tools provide a variety of color and filter patterns, encourage user interaction, and are engineered to help enhance future trend predictability. All of these visual characteristics make for an easy transition among data methods – you only need to find the right types of data visualization to tell your data story the best way possible.

4) Collaboration. Whether in a business environment or a research project, collaboration is key in data interpretation and analysis. Dashboards are online tools that can be easily shared through a password-protected URL or automated email. Through them, users can collaborate and communicate through the data in an efficient way. Eliminating the need for infinite files with lost updates. Tools such as datapine offer real-time updates, meaning your dashboards will update on their own as soon as new information is available.  

Examples Of Data Interpretation In Business

To give you an idea of how a dashboard can fulfill the need to bridge quantitative and qualitative analysis and help in understanding how to interpret data in research thanks to visualization, below, we will discuss three valuable examples to put their value into perspective.

1. Customer Satisfaction Dashboard 

This market research dashboard brings together both qualitative and quantitative data that are knowledgeably analyzed and visualized in a meaningful way that everyone can understand, thus empowering any viewer to interpret it. Let’s explore it below. 

Data interpretation example on customers' satisfaction with a brand

**click to enlarge**

The value of this template lies in its highly visual nature. As mentioned earlier, visuals make the interpretation process way easier and more efficient. Having critical pieces of data represented with colorful and interactive icons and graphs makes it possible to uncover insights at a glance. For example, the colors green, yellow, and red on the charts for the NPS and the customer effort score allow us to conclude that most respondents are satisfied with this brand with a short glance. A further dive into the line chart below can help us dive deeper into this conclusion, as we can see both metrics developed positively in the past 6 months. 

The bottom part of the template provides visually stunning representations of different satisfaction scores for quality, pricing, design, and service. By looking at these, we can conclude that, overall, customers are satisfied with this company in most areas. 

2. Brand Analysis Dashboard

Next, in our list of data interpretation examples, we have a template that shows the answers to a survey on awareness for Brand D. The sample size is listed on top to get a perspective of the data, which is represented using interactive charts and graphs. 

Data interpretation example using a market research dashboard for brand awareness analysis

When interpreting information, context is key to understanding it correctly. For that reason, the dashboard starts by offering insights into the demographics of the surveyed audience. In general, we can see ages and gender are diverse. Therefore, we can conclude these brands are not targeting customers from a specified demographic, an important aspect to put the surveyed answers into perspective. 

Looking at the awareness portion, we can see that brand B is the most popular one, with brand D coming second on both questions. This means brand D is not doing wrong, but there is still room for improvement compared to brand B. To see where brand D could improve, the researcher could go into the bottom part of the dashboard and consult the answers for branding themes and celebrity analysis. These are important as they give clear insight into what people and messages the audience associates with brand D. This is an opportunity to exploit these topics in different ways and achieve growth and success. 

3. Product Innovation Dashboard 

Our third and last dashboard example shows the answers to a survey on product innovation for a technology company. Just like the previous templates, the interactive and visual nature of the dashboard makes it the perfect tool to interpret data efficiently and effectively. 

Market research results on product innovation, useful for product development and pricing decisions as an example of data interpretation using dashboards

Starting from right to left, we first get a list of the top 5 products by purchase intention. This information lets us understand if the product being evaluated resembles what the audience already intends to purchase. It is a great starting point to see how customers would respond to the new product. This information can be complemented with other key metrics displayed in the dashboard. For example, the usage and purchase intention track how the market would receive the product and if they would purchase it, respectively. Interpreting these values as positive or negative will depend on the company and its expectations regarding the survey. 

Complementing these metrics, we have the willingness to pay. Arguably, one of the most important metrics to define pricing strategies. Here, we can see that most respondents think the suggested price is a good value for money. Therefore, we can interpret that the product would sell for that price. 

To see more data analysis and interpretation examples for different industries and functions, visit our library of business dashboards .

To Conclude…

As we reach the end of this insightful post about data interpretation and analysis, we hope you have a clear understanding of the topic. We've covered the definition and given some examples and methods to perform a successful interpretation process.

The importance of data interpretation is undeniable. Dashboards not only bridge the information gap between traditional data interpretation methods and technology, but they can help remedy and prevent the major pitfalls of the process. As a digital age solution, they combine the best of the past and the present to allow for informed decision-making with maximum data interpretation ROI.

To start visualizing your insights in a meaningful and actionable way, test our online reporting software for free with our 14-day trial !

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Present Your Data Like a Pro

  • Joel Schwartzberg

presentation and interpretation of data

Demystify the numbers. Your audience will thank you.

While a good presentation has data, data alone doesn’t guarantee a good presentation. It’s all about how that data is presented. The quickest way to confuse your audience is by sharing too many details at once. The only data points you should share are those that significantly support your point — and ideally, one point per chart. To avoid the debacle of sheepishly translating hard-to-see numbers and labels, rehearse your presentation with colleagues sitting as far away as the actual audience would. While you’ve been working with the same chart for weeks or months, your audience will be exposed to it for mere seconds. Give them the best chance of comprehending your data by using simple, clear, and complete language to identify X and Y axes, pie pieces, bars, and other diagrammatic elements. Try to avoid abbreviations that aren’t obvious, and don’t assume labeled components on one slide will be remembered on subsequent slides. Every valuable chart or pie graph has an “Aha!” zone — a number or range of data that reveals something crucial to your point. Make sure you visually highlight the “Aha!” zone, reinforcing the moment by explaining it to your audience.

With so many ways to spin and distort information these days, a presentation needs to do more than simply share great ideas — it needs to support those ideas with credible data. That’s true whether you’re an executive pitching new business clients, a vendor selling her services, or a CEO making a case for change.

presentation and interpretation of data

  • JS Joel Schwartzberg oversees executive communications for a major national nonprofit, is a professional presentation coach, and is the author of Get to the Point! Sharpen Your Message and Make Your Words Matter and The Language of Leadership: How to Engage and Inspire Your Team . You can find him on LinkedIn and X. TheJoelTruth

Partner Center

Leeds Beckett University

Skills for Learning : Research Skills

Data analysis is an ongoing process that should occur throughout your research project. Suitable data-analysis methods must be selected when you write your research proposal. The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis methods selected.

We run interactive workshops to help you develop skills related to doing research, such as data analysis, writing literature reviews and preparing for dissertations. Find out more on the Skills for Learning Workshops page.

We have online academic skills modules within MyBeckett for all levels of university study. These modules will help your academic development and support your success at LBU. You can work through the modules at your own pace, revisiting them as required. Find out more from our FAQ What academic skills modules are available?

Quantitative data analysis

Broadly speaking, 'statistics' refers to methods, tools and techniques used to collect, organise and interpret data. The goal of statistics is to gain understanding from data. Therefore, you need to know how to:

  • Produce data – for example, by handing out a questionnaire or doing an experiment.
  • Organise, summarise, present and analyse data.
  • Draw valid conclusions from findings.

There are a number of statistical methods you can use to analyse data. Choosing an appropriate statistical method should follow naturally, however, from your research design. Therefore, you should think about data analysis at the early stages of your study design. You may need to consult a statistician for help with this.

Tips for working with statistical data

  • Plan so that the data you get has a good chance of successfully tackling the research problem. This will involve reading literature on your subject, as well as on what makes a good study.
  • To reach useful conclusions, you need to reduce uncertainties or 'noise'. Thus, you will need a sufficiently large data sample. A large sample will improve precision. However, this must be balanced against the 'costs' (time and money) of collection.
  • Consider the logistics. Will there be problems in obtaining sufficient high-quality data? Think about accuracy, trustworthiness and completeness.
  • Statistics are based on random samples. Consider whether your sample will be suited to this sort of analysis. Might there be biases to think about?
  • How will you deal with missing values (any data that is not recorded for some reason)? These can result from gaps in a record or whole records being missed out.
  • When analysing data, start by looking at each variable separately. Conduct initial/exploratory data analysis using graphical displays. Do this before looking at variables in conjunction or anything more complicated. This process can help locate errors in the data and also gives you a 'feel' for the data.
  • Look out for patterns of 'missingness'. They are likely to alert you if there’s a problem. If the 'missingness' is not random, then it will have an impact on the results.
  • Be vigilant and think through what you are doing at all times. Think critically. Statistics are not just mathematical tricks that a computer sorts out. Rather, analysing statistical data is a process that the human mind must interpret!

Top tips! Try inventing or generating the sort of data you might get and see if you can analyse it. Make sure that your process works before gathering actual data. Think what the output of an analytic procedure will look like before doing it for real.

(Note: it is actually difficult to generate realistic data. There are fraud-detection methods in place to identify data that has been fabricated. So, remember to get rid of your practice data before analysing the real stuff!)

Statistical software packages

Software packages can be used to analyse and present data. The most widely used ones are SPSS and NVivo.

SPSS is a statistical-analysis and data-management package for quantitative data analysis. Click on ‘ How do I install SPSS? ’ to learn how to download SPSS to your personal device. SPSS can perform a wide variety of statistical procedures. Some examples are:

  • Data management (i.e. creating subsets of data or transforming data).
  • Summarising, describing or presenting data (i.e. mean, median and frequency).
  • Looking at the distribution of data (i.e. standard deviation).
  • Comparing groups for significant differences using parametric (i.e. t-test) and non-parametric (i.e. Chi-square) tests.
  • Identifying significant relationships between variables (i.e. correlation).

NVivo can be used for qualitative data analysis. It is suitable for use with a wide range of methodologies. Click on ‘ How do I access NVivo ’ to learn how to download NVivo to your personal device. NVivo supports grounded theory, survey data, case studies, focus groups, phenomenology, field research and action research.

  • Process data such as interview transcripts, literature or media extracts, and historical documents.
  • Code data on screen and explore all coding and documents interactively.
  • Rearrange, restructure, extend and edit text, coding and coding relationships.
  • Search imported text for words, phrases or patterns, and automatically code the results.

Qualitative data analysis

Miles and Huberman (1994) point out that there are diverse approaches to qualitative research and analysis. They suggest, however, that it is possible to identify 'a fairly classic set of analytic moves arranged in sequence'. This involves:

  • Affixing codes to a set of field notes drawn from observation or interviews.
  • Noting reflections or other remarks in the margins.
  • Sorting/sifting through these materials to identify: a) similar phrases, relationships between variables, patterns and themes and b) distinct differences between subgroups and common sequences.
  • Isolating these patterns/processes and commonalties/differences. Then, taking them out to the field in the next wave of data collection.
  • Highlighting generalisations and relating them to your original research themes.
  • Taking the generalisations and analysing them in relation to theoretical perspectives.

        (Miles and Huberman, 1994.)

Patterns and generalisations are usually arrived at through a process of analytic induction (see above points 5 and 6). Qualitative analysis rarely involves statistical analysis of relationships between variables. Qualitative analysis aims to gain in-depth understanding of concepts, opinions or experiences.

Presenting information

There are a number of different ways of presenting and communicating information. The particular format you use is dependent upon the type of data generated from the methods you have employed.

Here are some appropriate ways of presenting information for different types of data:

Bar charts: These   may be useful for comparing relative sizes. However, they tend to use a large amount of ink to display a relatively small amount of information. Consider a simple line chart as an alternative.

Pie charts: These have the benefit of indicating that the data must add up to 100%. However, they make it difficult for viewers to distinguish relative sizes, especially if two slices have a difference of less than 10%.

Other examples of presenting data in graphical form include line charts and  scatter plots .

Qualitative data is more likely to be presented in text form. For example, using quotations from interviews or field diaries.

  • Plan ahead, thinking carefully about how you will analyse and present your data.
  • Think through possible restrictions to resources you may encounter and plan accordingly.
  • Find out about the different IT packages available for analysing your data and select the most appropriate.
  • If necessary, allow time to attend an introductory course on a particular computer package. You can book SPSS and NVivo workshops via MyHub .
  • Code your data appropriately, assigning conceptual or numerical codes as suitable.
  • Organise your data so it can be analysed and presented easily.
  • Choose the most suitable way of presenting your information, according to the type of data collected. This will allow your information to be understood and interpreted better.

Primary, secondary and tertiary sources

Information sources are sometimes categorised as primary, secondary or tertiary sources depending on whether or not they are ‘original’ materials or data. For some research projects, you may need to use primary sources as well as secondary or tertiary sources. However the distinction between primary and secondary sources is not always clear and depends on the context. For example, a newspaper article might usually be categorised as a secondary source. But it could also be regarded as a primary source if it were an article giving a first-hand account of a historical event written close to the time it occurred.

  • Primary sources
  • Secondary sources
  • Tertiary sources
  • Grey literature

Primary sources are original sources of information that provide first-hand accounts of what is being experienced or researched. They enable you to get as close to the actual event or research as possible. They are useful for getting the most contemporary information about a topic.

Examples include diary entries, newspaper articles, census data, journal articles with original reports of research, letters, email or other correspondence, original manuscripts and archives, interviews, research data and reports, statistics, autobiographies, exhibitions, films, and artists' writings.

Some information will be available on an Open Access basis, freely accessible online. However, many academic sources are paywalled, and you may need to login as a Leeds Beckett student to access them. Where Leeds Beckett does not have access to a source, you can use our  Request It! Service .

Secondary sources interpret, evaluate or analyse primary sources. They're useful for providing background information on a topic, or for looking back at an event from a current perspective. The majority of your literature searching will probably be done to find secondary sources on your topic.

Examples include journal articles which review or interpret original findings, popular magazine articles commenting on more serious research, textbooks and biographies.

The term tertiary sources isn't used a great deal. There's overlap between what might be considered a secondary source and a tertiary source. One definition is that a tertiary source brings together secondary sources.

Examples include almanacs, fact books, bibliographies, dictionaries and encyclopaedias, directories, indexes and abstracts. They can be useful for introductory information or an overview of a topic in the early stages of research.

Depending on your subject of study, grey literature may be another source you need to use. Grey literature includes technical or research reports, theses and dissertations, conference papers, government documents, white papers, and so on.

Artificial intelligence tools

Before using any generative artificial intelligence or paraphrasing tools in your assessments, you should check if this is permitted on your course.

If their use is permitted on your course, you must  acknowledge any use of generative artificial intelligence tools  such as ChatGPT or paraphrasing tools (e.g., Grammarly, Quillbot, etc.), even if you have only used them to generate ideas for your assessments or for proofreading.

  • Academic Integrity Module in MyBeckett
  • Assignment Calculator
  • Building on Feedback
  • Disability Advice
  • Essay X-ray tool
  • International Students' Academic Introduction
  • Manchester Academic Phrasebank
  • Quote, Unquote
  • Skills and Subject Suppor t
  • Turnitin Grammar Checker

{{You can add more boxes below for links specific to this page [this note will not appear on user pages] }}

  • Research Methods Checklist
  • Sampling Checklist

Skills for Learning FAQs

Library & Student Services

0113 812 1000

  • University Disclaimer
  • Accessibility
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

presentation and interpretation of data

Home Market Research Research Tools and Apps

Data Interpretation: Definition and Steps with Examples

Data interpretation is the process of collecting data from one or more sources, analyzing it using appropriate methods, & drawing conclusions.

A good data interpretation process is key to making your data usable. It will help you make sure you’re drawing the correct conclusions and acting on your information.

No matter what, data is everywhere in the modern world. There are two groups and organizations: those drowning in data or not using it appropriately and those benefiting.

In this blog, you will learn the definition of data interpretation and its primary steps and examples.

What is Data Interpretation

Data interpretation is the process of reviewing data and arriving at relevant conclusions using various analytical research methods. Data analysis assists researchers in categorizing, manipulating data , and summarizing data to answer critical questions.

LEARN ABOUT: Level of Analysis

In business terms, the interpretation of data is the execution of various processes. This process analyzes and revises data to gain insights and recognize emerging patterns and behaviors. These conclusions will assist you as a manager in making an informed decision based on numbers while having all of the facts at your disposal.

Importance of Data Interpretation

Raw data is useless unless it’s interpreted. Data interpretation is important to businesses and people. The collected data helps make informed decisions.

Make better decisions

Any decision is based on the information that is available at the time. People used to think that many diseases were caused by bad blood, which was one of the four humors. So, the solution was to get rid of the bad blood. We now know that things like viruses, bacteria, and immune responses can cause illness and can act accordingly.

In the same way, when you know how to collect and understand data well, you can make better decisions. You can confidently choose a path for your organization or even your life instead of working with assumptions.

The most important thing is to follow a transparent process to reduce mistakes and tiredness when making decisions.

Find trends and take action

Another practical use of data interpretation is to get ahead of trends before they reach their peak. Some people have made a living by researching industries, spotting trends, and then making big bets on them.

LEARN ABOUT: Action Research

With the proper data interpretations and a little bit of work, you can catch the start of trends and use them to help your business or yourself grow. 

Better resource allocation

The last importance of data interpretation we will discuss is the ability to use people, tools, money, etc., more efficiently. For example, If you know via strong data interpretation that a market is underserved, you’ll go after it with more energy and win.

In the same way, you may find out that a market you thought was a good fit is actually bad. This could be because the market is too big for your products to serve, there is too much competition, or something else.

No matter what, you can move the resources you need faster and better to get better results.

What are the steps in interpreting data?

Here are some steps to interpreting data correctly.

Gather the data

The very first step in data interpretation is gathering all relevant data. You can do this by first visualizing it in a bar, graph, or pie chart. This step aims to analyze the data accurately and without bias. Now is the time to recall how you conducted your research.

Here are two question patterns that will help you to understand better.

  • Were there any flaws or changes that occurred during the data collection process?
  • Have you saved any observatory notes or indicators?

You can proceed to the next stage when you have all of your data.

  • Develop your discoveries

This is a summary of your findings. Here, you thoroughly examine the data to identify trends, patterns, or behavior. If you are researching a group of people using a sample population, this is the section where you examine behavioral patterns. You can compare these deductions to previous data sets, similar data sets, or general hypotheses in your industry. This step’s goal is to compare these deductions before drawing any conclusions.

  • Draw Conclusions

After you’ve developed your findings from your data sets, you can draw conclusions based on your discovered trends. Your findings should address the questions that prompted your research. If they do not respond, inquire about why; it may produce additional research or questions.

LEARN ABOUT: Research Process Steps

  • Give recommendations

The interpretation procedure of data comes to a close with this stage. Every research conclusion must include a recommendation. As recommendations are a summary of your findings and conclusions, they should be brief. There are only two options for recommendations; you can either recommend a course of action or suggest additional research.

Data interpretation examples

Here are two examples of data interpretations to help you understand it better:

Let’s say your users fall into four age groups. So a company can see which age group likes their content or product. Based on bar charts or pie charts, they can develop a marketing strategy to reach uninvolved groups or an outreach strategy to grow their core user base.

Another example of data analysis is the use of recruitment CRM by businesses. They utilize it to find candidates, track their progress, and manage their entire hiring process to determine how they can better automate their workflow.

Overall, data interpretation is an essential factor in data-driven decision-making. It should be performed on a regular basis as part of an iterative interpretation process. Investors, developers, and sales and acquisition professionals can benefit from routine data interpretation. It is what you do with those insights that determine the success of your business.

Contact QuestionPro experts if you need assistance conducting research or creating a data analysis. We can walk you through the process and help you make the most of your data.

MORE LIKE THIS

data information vs insight

Data Information vs Insight: Essential differences

May 14, 2024

pricing analytics software

Pricing Analytics Software: Optimize Your Pricing Strategy

May 13, 2024

relationship marketing

Relationship Marketing: What It Is, Examples & Top 7 Benefits

May 8, 2024

email survey tool

The Best Email Survey Tool to Boost Your Feedback Game

May 7, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Data Collection, Presentation and Analysis

  • First Online: 25 May 2023

Cite this chapter

presentation and interpretation of data

  • Uche M. Mbanaso 4 ,
  • Lucienne Abrahams 5 &
  • Kennedy Chinedu Okafor 6  

569 Accesses

This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions. One of the interesting features of this chapter is the section dealing with using measurement scales in quantitative research, including nominal scales, ordinal scales, interval scales and ratio scales. It explains key facets of qualitative research including ethical clearance requirements. The chapter discusses the importance of data visualization as key to effective presentation of data, including tabular forms, graphical forms and visual charts such as those generated by Atlas.ti analytical software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Abdullah, M. F., & Ahmad, K. (2013). The mapping process of unstructured data to structured data. Proceedings of the 2013 International Conference on Research and Innovation in Information Systems (ICRIIS) , Malaysia , 151–155. https://doi.org/10.1109/ICRIIS.2013.6716700

Adnan, K., & Akbar, R. (2019). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6 , 91. https://doi.org/10.1186/s40537-019-0254-8

Article   Google Scholar  

Alsheref, F. K., & Fattoh, I. E. (2020). Medical text annotation tool based on IBM Watson Platform. Proceedings of the 2020 6th international conference on advanced computing and communication systems (ICACCS) , India , 1312–1316. https://doi.org/10.1109/ICACCS48705.2020.9074309

Cinque, M., Cotroneo, D., Della Corte, R., & Pecchia, A. (2014). What logs should you look at when an application fails? Insights from an industrial case study. Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks , USA , 690–695. https://doi.org/10.1109/DSN.2014.69

Gideon, L. (Ed.). (2012). Handbook of survey methodology for the social sciences . Springer.

Google Scholar  

Leedy, P., & Ormrod, J. (2015). Practical research planning and design (12th ed.). Pearson Education.

Madaan, A., Wang, X., Hall, W., & Tiropanis, T. (2018). Observing data in IoT worlds: What and how to observe? In Living in the Internet of Things: Cybersecurity of the IoT – 2018 (pp. 1–7). https://doi.org/10.1049/cp.2018.0032

Chapter   Google Scholar  

Mahajan, P., & Naik, C. (2019). Development of integrated IoT and machine learning based data collection and analysis system for the effective prediction of agricultural residue/biomass availability to regenerate clean energy. Proceedings of the 2019 9th International Conference on Emerging Trends in Engineering and Technology – Signal and Information Processing (ICETET-SIP-19) , India , 1–5. https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092156 .

Mahmud, M. S., Huang, J. Z., Salloum, S., Emara, T. Z., & Sadatdiynov, K. (2020). A survey of data partitioning and sampling methods to support big data analysis. Big Data Mining and Analytics, 3 (2), 85–101. https://doi.org/10.26599/BDMA.2019.9020015

Miswar, S., & Kurniawan, N. B. (2018). A systematic literature review on survey data collection system. Proceedings of the 2018 International Conference on Information Technology Systems and Innovation (ICITSI) , Indonesia , 177–181. https://doi.org/10.1109/ICITSI.2018.8696036

Mosina, C. (2020). Understanding the diffusion of the internet: Redesigning the global diffusion of the internet framework (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/30723

Nkamisa, S. (2021). Investigating the integration of drone management systems to create an enabling remote piloted aircraft regulatory environment in South Africa (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/33883

QuestionPro. (2020). Survey research: Definition, examples and methods . https://www.questionpro.com/article/survey-research.html

Rajanikanth, J. & Kanth, T. V. R. (2017). An explorative data analysis on Bangalore City Weather with hybrid data mining techniques using R. Proceedings of the 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) , India , 1121-1125. https://doi/10.1109/CTCEEC.2017.8455008

Rao, R. (2003). From unstructured data to actionable intelligence. IT Professional, 5 , 29–35. https://www.researchgate.net/publication/3426648_From_Unstructured_Data_to_Actionable_Intelligence

Schulze, P. (2009). Design of the research instrument. In P. Schulze (Ed.), Balancing exploitation and exploration: Organizational antecedents and performance effects of innovation strategies (pp. 116–141). Gabler. https://doi.org/10.1007/978-3-8349-8397-8_6

Usanov, A. (2015). Assessing cybersecurity: A meta-analysis of threats, trends and responses to cyber attacks . The Hague Centre for Strategic Studies. https://www.researchgate.net/publication/319677972_Assessing_Cyber_Security_A_Meta-analysis_of_Threats_Trends_and_Responses_to_Cyber_Attacks

Van de Kaa, G., De Vries, H. J., van Heck, E., & van den Ende, J. (2007). The emergence of standards: A meta-analysis. Proceedings of the 2007 40th Annual Hawaii International Conference on Systems Science (HICSS’07) , USA , 173a–173a. https://doi.org/10.1109/HICSS.2007.529

Download references

Author information

Authors and affiliations.

Centre for Cybersecurity Studies, Nasarawa State University, Keffi, Nigeria

Uche M. Mbanaso

LINK Centre, University of the Witwatersrand, Johannesburg, South Africa

Lucienne Abrahams

Department of Mechatronics Engineering, Federal University of Technology, Owerri, Nigeria

Kennedy Chinedu Okafor

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Mbanaso, U.M., Abrahams, L., Okafor, K.C. (2023). Data Collection, Presentation and Analysis. In: Research Techniques for Computer Science, Information Systems and Cybersecurity. Springer, Cham. https://doi.org/10.1007/978-3-031-30031-8_7

Download citation

DOI : https://doi.org/10.1007/978-3-031-30031-8_7

Published : 25 May 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-30030-1

Online ISBN : 978-3-031-30031-8

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

National Research Council; Division of Behavioral and Social Sciences and Education; Commission on Behavioral and Social Sciences and Education; Committee on Basic Research in the Behavioral and Social Sciences; Gerstein DR, Luce RD, Smelser NJ, et al., editors. The Behavioral and Social Sciences: Achievements and Opportunities. Washington (DC): National Academies Press (US); 1988.

Cover of The Behavioral and Social Sciences: Achievements and Opportunities

The Behavioral and Social Sciences: Achievements and Opportunities.

  • Hardcopy Version at National Academies Press

5 Methods of Data Collection, Representation, and Analysis

This chapter concerns research on collecting, representing, and analyzing the data that underlie behavioral and social sciences knowledge. Such research, methodological in character, includes ethnographic and historical approaches, scaling, axiomatic measurement, and statistics, with its important relatives, econometrics and psychometrics. The field can be described as including the self-conscious study of how scientists draw inferences and reach conclusions from observations. Since statistics is the largest and most prominent of methodological approaches and is used by researchers in virtually every discipline, statistical work draws the lion’s share of this chapter’s attention.

Problems of interpreting data arise whenever inherent variation or measurement fluctuations create challenges to understand data or to judge whether observed relationships are significant, durable, or general. Some examples: Is a sharp monthly (or yearly) increase in the rate of juvenile delinquency (or unemployment) in a particular area a matter for alarm, an ordinary periodic or random fluctuation, or the result of a change or quirk in reporting method? Do the temporal patterns seen in such repeated observations reflect a direct causal mechanism, a complex of indirect ones, or just imperfections in the data? Is a decrease in auto injuries an effect of a new seat-belt law? Are the disagreements among people describing some aspect of a subculture too great to draw valid inferences about that aspect of the culture?

Such issues of inference are often closely connected to substantive theory and specific data, and to some extent it is difficult and perhaps misleading to treat methods of data collection, representation, and analysis separately. This report does so, as do all sciences to some extent, because the methods developed often are far more general than the specific problems that originally gave rise to them. There is much transfer of new ideas from one substantive field to another—and to and from fields outside the behavioral and social sciences. Some of the classical methods of statistics arose in studies of astronomical observations, biological variability, and human diversity. The major growth of the classical methods occurred in the twentieth century, greatly stimulated by problems in agriculture and genetics. Some methods for uncovering geometric structures in data, such as multidimensional scaling and factor analysis, originated in research on psychological problems, but have been applied in many other sciences. Some time-series methods were developed originally to deal with economic data, but they are equally applicable to many other kinds of data.

  • In economics: large-scale models of the U.S. economy; effects of taxation, money supply, and other government fiscal and monetary policies; theories of duopoly, oligopoly, and rational expectations; economic effects of slavery.
  • In psychology: test calibration; the formation of subjective probabilities, their revision in the light of new information, and their use in decision making; psychiatric epidemiology and mental health program evaluation.
  • In sociology and other fields: victimization and crime rates; effects of incarceration and sentencing policies; deployment of police and fire-fighting forces; discrimination, antitrust, and regulatory court cases; social networks; population growth and forecasting; and voting behavior.

Even such an abridged listing makes clear that improvements in methodology are valuable across the spectrum of empirical research in the behavioral and social sciences as well as in application to policy questions. Clearly, methodological research serves many different purposes, and there is a need to develop different approaches to serve those different purposes, including exploratory data analysis, scientific inference about hypotheses and population parameters, individual decision making, forecasting what will happen in the event or absence of intervention, and assessing causality from both randomized experiments and observational data.

This discussion of methodological research is divided into three areas: design, representation, and analysis. The efficient design of investigations must take place before data are collected because it involves how much, what kind of, and how data are to be collected. What type of study is feasible: experimental, sample survey, field observation, or other? What variables should be measured, controlled, and randomized? How extensive a subject pool or observational period is appropriate? How can study resources be allocated most effectively among various sites, instruments, and subsamples?

The construction of useful representations of the data involves deciding what kind of formal structure best expresses the underlying qualitative and quantitative concepts that are being used in a given study. For example, cost of living is a simple concept to quantify if it applies to a single individual with unchanging tastes in stable markets (that is, markets offering the same array of goods from year to year at varying prices), but as a national aggregate for millions of households and constantly changing consumer product markets, the cost of living is not easy to specify clearly or measure reliably. Statisticians, economists, sociologists, and other experts have long struggled to make the cost of living a precise yet practicable concept that is also efficient to measure, and they must continually modify it to reflect changing circumstances.

Data analysis covers the final step of characterizing and interpreting research findings: Can estimates of the relations between variables be made? Can some conclusion be drawn about correlation, cause and effect, or trends over time? How uncertain are the estimates and conclusions and can that uncertainty be reduced by analyzing the data in a different way? Can computers be used to display complex results graphically for quicker or better understanding or to suggest different ways of proceeding?

Advances in analysis, data representation, and research design feed into and reinforce one another in the course of actual scientific work. The intersections between methodological improvements and empirical advances are an important aspect of the multidisciplinary thrust of progress in the behavioral and social sciences.

  • Designs for Data Collection

Four broad kinds of research designs are used in the behavioral and social sciences: experimental, survey, comparative, and ethnographic.

Experimental designs, in either the laboratory or field settings, systematically manipulate a few variables while others that may affect the outcome are held constant, randomized, or otherwise controlled. The purpose of randomized experiments is to ensure that only one or a few variables can systematically affect the results, so that causes can be attributed. Survey designs include the collection and analysis of data from censuses, sample surveys, and longitudinal studies and the examination of various relationships among the observed phenomena. Randomization plays a different role here than in experimental designs: it is used to select members of a sample so that the sample is as representative of the whole population as possible. Comparative designs involve the retrieval of evidence that is recorded in the flow of current or past events in different times or places and the interpretation and analysis of this evidence. Ethnographic designs, also known as participant-observation designs, involve a researcher in intensive and direct contact with a group, community, or population being studied, through participation, observation, and extended interviewing.

Experimental Designs

Laboratory experiments.

Laboratory experiments underlie most of the work reported in Chapter 1 , significant parts of Chapter 2 , and some of the newest lines of research in Chapter 3 . Laboratory experiments extend and adapt classical methods of design first developed, for the most part, in the physical and life sciences and agricultural research. Their main feature is the systematic and independent manipulation of a few variables and the strict control or randomization of all other variables that might affect the phenomenon under study. For example, some studies of animal motivation involve the systematic manipulation of amounts of food and feeding schedules while other factors that may also affect motivation, such as body weight, deprivation, and so on, are held constant. New designs are currently coming into play largely because of new analytic and computational methods (discussed below, in “Advances in Statistical Inference and Analysis”).

Two examples of empirically important issues that demonstrate the need for broadening classical experimental approaches are open-ended responses and lack of independence of successive experimental trials. The first concerns the design of research protocols that do not require the strict segregation of the events of an experiment into well-defined trials, but permit a subject to respond at will. These methods are needed when what is of interest is how the respondent chooses to allocate behavior in real time and across continuously available alternatives. Such empirical methods have long been used, but they can generate very subtle and difficult problems in experimental design and subsequent analysis. As theories of allocative behavior of all sorts become more sophisticated and precise, the experimental requirements become more demanding, so the need to better understand and solve this range of design issues is an outstanding challenge to methodological ingenuity.

The second issue arises in repeated-trial designs when the behavior on successive trials, even if it does not exhibit a secular trend (such as a learning curve), is markedly influenced by what has happened in the preceding trial or trials. The more naturalistic the experiment and the more sensitive the meas urements taken, the more likely it is that such effects will occur. But such sequential dependencies in observations cause a number of important conceptual and technical problems in summarizing the data and in testing analytical models, which are not yet completely understood. In the absence of clear solutions, such effects are sometimes ignored by investigators, simplifying the data analysis but leaving residues of skepticism about the reliability and significance of the experimental results. With continuing development of sensitive measures in repeated-trial designs, there is a growing need for more advanced concepts and methods for dealing with experimental results that may be influenced by sequential dependencies.

Randomized Field Experiments

The state of the art in randomized field experiments, in which different policies or procedures are tested in controlled trials under real conditions, has advanced dramatically over the past two decades. Problems that were once considered major methodological obstacles—such as implementing randomized field assignment to treatment and control groups and protecting the randomization procedure from corruption—have been largely overcome. While state-of-the-art standards are not achieved in every field experiment, the commitment to reaching them is rising steadily, not only among researchers but also among customer agencies and sponsors.

The health insurance experiment described in Chapter 2 is an example of a major randomized field experiment that has had and will continue to have important policy reverberations in the design of health care financing. Field experiments with the negative income tax (guaranteed minimum income) conducted in the 1970s were significant in policy debates, even before their completion, and provided the most solid evidence available on how tax-based income support programs and marginal tax rates can affect the work incentives and family structures of the poor. Important field experiments have also been carried out on alternative strategies for the prevention of delinquency and other criminal behavior, reform of court procedures, rehabilitative programs in mental health, family planning, and special educational programs, among other areas.

In planning field experiments, much hinges on the definition and design of the experimental cells, the particular combinations needed of treatment and control conditions for each set of demographic or other client sample characteristics, including specification of the minimum number of cases needed in each cell to test for the presence of effects. Considerations of statistical power, client availability, and the theoretical structure of the inquiry enter into such specifications. Current important methodological thresholds are to find better ways of predicting recruitment and attrition patterns in the sample, of designing experiments that will be statistically robust in the face of problematic sample recruitment or excessive attrition, and of ensuring appropriate acquisition and analysis of data on the attrition component of the sample.

Also of major significance are improvements in integrating detailed process and outcome measurements in field experiments. To conduct research on program effects under field conditions requires continual monitoring to determine exactly what is being done—the process—how it corresponds to what was projected at the outset. Relatively unintrusive, inexpensive, and effective implementation measures are of great interest. There is, in parallel, a growing emphasis on designing experiments to evaluate distinct program components in contrast to summary measures of net program effects.

Finally, there is an important opportunity now for further theoretical work to model organizational processes in social settings and to design and select outcome variables that, in the relatively short time of most field experiments, can predict longer-term effects: For example, in job-training programs, what are the effects on the community (role models, morale, referral networks) or on individual skills, motives, or knowledge levels that are likely to translate into sustained changes in career paths and income levels?

Survey Designs

Many people have opinions about how societal mores, economic conditions, and social programs shape lives and encourage or discourage various kinds of behavior. People generalize from their own cases, and from the groups to which they belong, about such matters as how much it costs to raise a child, the extent to which unemployment contributes to divorce, and so on. In fact, however, effects vary so much from one group to another that homespun generalizations are of little use. Fortunately, behavioral and social scientists have been able to bridge the gaps between personal perspectives and collective realities by means of survey research. In particular, governmental information systems include volumes of extremely valuable survey data, and the facility of modern computers to store, disseminate, and analyze such data has significantly improved empirical tests and led to new understandings of social processes.

Within this category of research designs, two major types are distinguished: repeated cross-sectional surveys and longitudinal panel surveys. In addition, and cross-cutting these types, there is a major effort under way to improve and refine the quality of survey data by investigating features of human memory and of question formation that affect survey response.

Repeated cross-sectional designs can either attempt to measure an entire population—as does the oldest U.S. example, the national decennial census—or they can rest on samples drawn from a population. The general principle is to take independent samples at two or more times, measuring the variables of interest, such as income levels, housing plans, or opinions about public affairs, in the same way. The General Social Survey, collected by the National Opinion Research Center with National Science Foundation support, is a repeated cross sectional data base that was begun in 1972. One methodological question of particular salience in such data is how to adjust for nonresponses and “don’t know” responses. Another is how to deal with self-selection bias. For example, to compare the earnings of women and men in the labor force, it would be mistaken to first assume that the two samples of labor-force participants are randomly selected from the larger populations of men and women; instead, one has to consider and incorporate in the analysis the factors that determine who is in the labor force.

In longitudinal panels, a sample is drawn at one point in time and the relevant variables are measured at this and subsequent times for the same people. In more complex versions, some fraction of each panel may be replaced or added to periodically, such as expanding the sample to include households formed by the children of the original sample. An example of panel data developed in this way is the Panel Study of Income Dynamics (PSID), conducted by the University of Michigan since 1968 (discussed in Chapter 3 ).

Comparing the fertility or income of different people in different circumstances at the same time to find correlations always leaves a large proportion of the variability unexplained, but common sense suggests that much of the unexplained variability is actually explicable. There are systematic reasons for individual outcomes in each person’s past achievements, in parental models, upbringing, and earlier sequences of experiences. Unfortunately, asking people about the past is not particularly helpful: people remake their views of the past to rationalize the present and so retrospective data are often of uncertain validity. In contrast, generation-long longitudinal data allow readings on the sequence of past circumstances uncolored by later outcomes. Such data are uniquely useful for studying the causes and consequences of naturally occurring decisions and transitions. Thus, as longitudinal studies continue, quantitative analysis is becoming feasible about such questions as: How are the decisions of individuals affected by parental experience? Which aspects of early decisions constrain later opportunities? And how does detailed background experience leave its imprint? Studies like the two-decade-long PSID are bringing within grasp a complete generational cycle of detailed data on fertility, work life, household structure, and income.

Advances in Longitudinal Designs

Large-scale longitudinal data collection projects are uniquely valuable as vehicles for testing and improving survey research methodology. In ways that lie beyond the scope of a cross-sectional survey, longitudinal studies can sometimes be designed—without significant detriment to their substantive interests—to facilitate the evaluation and upgrading of data quality; the analysis of relative costs and effectiveness of alternative techniques of inquiry; and the standardization or coordination of solutions to problems of method, concept, and measurement across different research domains.

Some areas of methodological improvement include discoveries about the impact of interview mode on response (mail, telephone, face-to-face); the effects of nonresponse on the representativeness of a sample (due to respondents’ refusal or interviewers’ failure to contact); the effects on behavior of continued participation over time in a sample survey; the value of alternative methods of adjusting for nonresponse and incomplete observations (such as imputation of missing data, variable case weighting); the impact on response of specifying different recall periods, varying the intervals between interviews, or changing the length of interviews; and the comparison and calibration of results obtained by longitudinal surveys, randomized field experiments, laboratory studies, onetime surveys, and administrative records.

It should be especially noted that incorporating improvements in methodology and data quality has been and will no doubt continue to be crucial to the growing success of longitudinal studies. Panel designs are intrinsically more vulnerable than other designs to statistical biases due to cumulative item non-response, sample attrition, time-in-sample effects, and error margins in repeated measures, all of which may produce exaggerated estimates of change. Over time, a panel that was initially representative may become much less representative of a population, not only because of attrition in the sample, but also because of changes in immigration patterns, age structure, and the like. Longitudinal studies are also subject to changes in scientific and societal contexts that may create uncontrolled drifts over time in the meaning of nominally stable questions or concepts as well as in the underlying behavior. Also, a natural tendency to expand over time the range of topics and thus the interview lengths, which increases the burdens on respondents, may lead to deterioration of data quality or relevance. Careful methodological research to understand and overcome these problems has been done, and continued work as a component of new longitudinal studies is certain to advance the overall state of the art.

Longitudinal studies are sometimes pressed for evidence they are not designed to produce: for example, in important public policy questions concerning the impact of government programs in such areas as health promotion, disease prevention, or criminal justice. By using research designs that combine field experiments (with randomized assignment to program and control conditions) and longitudinal surveys, one can capitalize on the strongest merits of each: the experimental component provides stronger evidence for casual statements that are critical for evaluating programs and for illuminating some fundamental theories; the longitudinal component helps in the estimation of long-term program effects and their attenuation. Coupling experiments to ongoing longitudinal studies is not often feasible, given the multiple constraints of not disrupting the survey, developing all the complicated arrangements that go into a large-scale field experiment, and having the populations of interest overlap in useful ways. Yet opportunities to join field experiments to surveys are of great importance. Coupled studies can produce vital knowledge about the empirical conditions under which the results of longitudinal surveys turn out to be similar to—or divergent from—those produced by randomized field experiments. A pattern of divergence and similarity has begun to emerge in coupled studies; additional cases are needed to understand why some naturally occurring social processes and longitudinal design features seem to approximate formal random allocation and others do not. The methodological implications of such new knowledge go well beyond program evaluation and survey research. These findings bear directly on the confidence scientists—and others—can have in conclusions from observational studies of complex behavioral and social processes, particularly ones that cannot be controlled or simulated within the confines of a laboratory environment.

Memory and the Framing of Questions

A very important opportunity to improve survey methods lies in the reduction of nonsampling error due to questionnaire context, phrasing of questions, and, generally, the semantic and social-psychological aspects of surveys. Survey data are particularly affected by the fallibility of human memory and the sensitivity of respondents to the framework in which a question is asked. This sensitivity is especially strong for certain types of attitudinal and opinion questions. Efforts are now being made to bring survey specialists into closer contact with researchers working on memory function, knowledge representation, and language in order to uncover and reduce this kind of error.

Memory for events is often inaccurate, biased toward what respondents believe to be true—or should be true—about the world. In many cases in which data are based on recollection, improvements can be achieved by shifting to techniques of structured interviewing and calibrated forms of memory elicitation, such as specifying recent, brief time periods (for example, in the last seven days) within which respondents recall certain types of events with acceptable accuracy.

  • “Taking things altogether, how would you describe your marriage? Would you say that your marriage is very happy, pretty happy, or not too happy?”
  • “Taken altogether how would you say things are these days—would you say you are very happy, pretty happy, or not too happy?”

Presenting this sequence in both directions on different forms showed that the order affected answers to the general happiness question but did not change the marital happiness question: responses to the specific issue swayed subsequent responses to the general one, but not vice versa. The explanations for and implications of such order effects on the many kinds of questions and sequences that can be used are not simple matters. Further experimentation on the design of survey instruments promises not only to improve the accuracy and reliability of survey research, but also to advance understanding of how people think about and evaluate their behavior from day to day.

Comparative Designs

Both experiments and surveys involve interventions or questions by the scientist, who then records and analyzes the responses. In contrast, many bodies of social and behavioral data of considerable value are originally derived from records or collections that have accumulated for various nonscientific reasons, quite often administrative in nature, in firms, churches, military organizations, and governments at all levels. Data of this kind can sometimes be subjected to careful scrutiny, summary, and inquiry by historians and social scientists, and statistical methods have increasingly been used to develop and evaluate inferences drawn from such data. Some of the main comparative approaches are cross-national aggregate comparisons, selective comparison of a limited number of cases, and historical case studies.

Among the more striking problems facing the scientist using such data are the vast differences in what has been recorded by different agencies whose behavior is being compared (this is especially true for parallel agencies in different nations), the highly unrepresentative or idiosyncratic sampling that can occur in the collection of such data, and the selective preservation and destruction of records. Means to overcome these problems form a substantial methodological research agenda in comparative research. An example of the method of cross-national aggregative comparisons is found in investigations by political scientists and sociologists of the factors that underlie differences in the vitality of institutions of political democracy in different societies. Some investigators have stressed the existence of a large middle class, others the level of education of a population, and still others the development of systems of mass communication. In cross-national aggregate comparisons, a large number of nations are arrayed according to some measures of political democracy and then attempts are made to ascertain the strength of correlations between these and the other variables. In this line of analysis it is possible to use a variety of statistical cluster and regression techniques to isolate and assess the possible impact of certain variables on the institutions under study. While this kind of research is cross-sectional in character, statements about historical processes are often invoked to explain the correlations.

More limited selective comparisons, applied by many of the classic theorists, involve asking similar kinds of questions but over a smaller range of societies. Why did democracy develop in such different ways in America, France, and England? Why did northeastern Europe develop rational bourgeois capitalism, in contrast to the Mediterranean and Asian nations? Modern scholars have turned their attention to explaining, for example, differences among types of fascism between the two World Wars, and similarities and differences among modern state welfare systems, using these comparisons to unravel the salient causes. The questions asked in these instances are inevitably historical ones.

Historical case studies involve only one nation or region, and so they may not be geographically comparative. However, insofar as they involve tracing the transformation of a society’s major institutions and the role of its main shaping events, they involve a comparison of different periods of a nation’s or a region’s history. The goal of such comparisons is to give a systematic account of the relevant differences. Sometimes, particularly with respect to the ancient societies, the historical record is very sparse, and the methods of history and archaeology mesh in the reconstruction of complex social arrangements and patterns of change on the basis of few fragments.

Like all research designs, comparative ones have distinctive vulnerabilities and advantages: One of the main advantages of using comparative designs is that they greatly expand the range of data, as well as the amount of variation in those data, for study. Consequently, they allow for more encompassing explanations and theories that can relate highly divergent outcomes to one another in the same framework. They also contribute to reducing any cultural biases or tendencies toward parochialism among scientists studying common human phenomena.

One main vulnerability in such designs arises from the problem of achieving comparability. Because comparative study involves studying societies and other units that are dissimilar from one another, the phenomena under study usually occur in very different contexts—so different that in some cases what is called an event in one society cannot really be regarded as the same type of event in another. For example, a vote in a Western democracy is different from a vote in an Eastern bloc country, and a voluntary vote in the United States means something different from a compulsory vote in Australia. These circumstances make for interpretive difficulties in comparing aggregate rates of voter turnout in different countries.

The problem of achieving comparability appears in historical analysis as well. For example, changes in laws and enforcement and recording procedures over time change the definition of what is and what is not a crime, and for that reason it is difficult to compare the crime rates over time. Comparative researchers struggle with this problem continually, working to fashion equivalent measures; some have suggested the use of different measures (voting, letters to the editor, street demonstration) in different societies for common variables (political participation), to try to take contextual factors into account and to achieve truer comparability.

A second vulnerability is controlling variation. Traditional experiments make conscious and elaborate efforts to control the variation of some factors and thereby assess the causal significance of others. In surveys as well as experiments, statistical methods are used to control sources of variation and assess suspected causal significance. In comparative and historical designs, this kind of control is often difficult to attain because the sources of variation are many and the number of cases few. Scientists have made efforts to approximate such control in these cases of “many variables, small N.” One is the method of paired comparisons. If an investigator isolates 15 American cities in which racial violence has been recurrent in the past 30 years, for example, it is helpful to match them with 15 cities of similar population size, geographical region, and size of minorities—such characteristics are controls—and then search for systematic differences between the two sets of cities. Another method is to select, for comparative purposes, a sample of societies that resemble one another in certain critical ways, such as size, common language, and common level of development, thus attempting to hold these factors roughly constant, and then seeking explanations among other factors in which the sampled societies differ from one another.

Ethnographic Designs

Traditionally identified with anthropology, ethnographic research designs are playing increasingly significant roles in most of the behavioral and social sciences. The core of this methodology is participant-observation, in which a researcher spends an extended period of time with the group under study, ideally mastering the local language, dialect, or special vocabulary, and participating in as many activities of the group as possible. This kind of participant-observation is normally coupled with extensive open-ended interviewing, in which people are asked to explain in depth the rules, norms, practices, and beliefs through which (from their point of view) they conduct their lives. A principal aim of ethnographic study is to discover the premises on which those rules, norms, practices, and beliefs are built.

The use of ethnographic designs by anthropologists has contributed significantly to the building of knowledge about social and cultural variation. And while these designs continue to center on certain long-standing features—extensive face-to-face experience in the community, linguistic competence, participation, and open-ended interviewing—there are newer trends in ethnographic work. One major trend concerns its scale. Ethnographic methods were originally developed largely for studying small-scale groupings known variously as village, folk, primitive, preliterate, or simple societies. Over the decades, these methods have increasingly been applied to the study of small groups and networks within modern (urban, industrial, complex) society, including the contemporary United States. The typical subjects of ethnographic study in modern society are small groups or relatively small social networks, such as outpatient clinics, medical schools, religious cults and churches, ethnically distinctive urban neighborhoods, corporate offices and factories, and government bureaus and legislatures.

As anthropologists moved into the study of modern societies, researchers in other disciplines—particularly sociology, psychology, and political science—began using ethnographic methods to enrich and focus their own insights and findings. At the same time, studies of large-scale structures and processes have been aided by the use of ethnographic methods, since most large-scale changes work their way into the fabric of community, neighborhood, and family, affecting the daily lives of people. Ethnographers have studied, for example, the impact of new industry and new forms of labor in “backward” regions; the impact of state-level birth control policies on ethnic groups; and the impact on residents in a region of building a dam or establishing a nuclear waste dump. Ethnographic methods have also been used to study a number of social processes that lend themselves to its particular techniques of observation and interview—processes such as the formation of class and racial identities, bureaucratic behavior, legislative coalitions and outcomes, and the formation and shifting of consumer tastes.

Advances in structured interviewing (see above) have proven especially powerful in the study of culture. Techniques for understanding kinship systems, concepts of disease, color terminologies, ethnobotany, and ethnozoology have been radically transformed and strengthened by coupling new interviewing methods with modem measurement and scaling techniques (see below). These techniques have made possible more precise comparisons among cultures and identification of the most competent and expert persons within a culture. The next step is to extend these methods to study the ways in which networks of propositions (such as boys like sports, girls like babies) are organized to form belief systems. Much evidence suggests that people typically represent the world around them by means of relatively complex cognitive models that involve interlocking propositions. The techniques of scaling have been used to develop models of how people categorize objects, and they have great potential for further development, to analyze data pertaining to cultural propositions.

Ideological Systems

Perhaps the most fruitful area for the application of ethnographic methods in recent years has been the systematic study of ideologies in modern society. Earlier studies of ideology were in small-scale societies that were rather homogeneous. In these studies researchers could report on a single culture, a uniform system of beliefs and values for the society as a whole. Modern societies are much more diverse both in origins and number of subcultures, related to different regions, communities, occupations, or ethnic groups. Yet these subcultures and ideologies share certain underlying assumptions or at least must find some accommodation with the dominant value and belief systems in the society.

The challenge is to incorporate this greater complexity of structure and process into systematic descriptions and interpretations. One line of work carried out by researchers has tried to track the ways in which ideologies are created, transmitted, and shared among large populations that have traditionally lacked the social mobility and communications technologies of the West. This work has concentrated on large-scale civilizations such as China, India, and Central America. Gradually, the focus has generalized into a concern with the relationship between the great traditions—the central lines of cosmopolitan Confucian, Hindu, or Mayan culture, including aesthetic standards, irrigation technologies, medical systems, cosmologies and calendars, legal codes, poetic genres, and religious doctrines and rites—and the little traditions, those identified with rural, peasant communities. How are the ideological doctrines and cultural values of the urban elites, the great traditions, transmitted to local communities? How are the little traditions, the ideas from the more isolated, less literate, and politically weaker groups in society, transmitted to the elites?

India and southern Asia have been fruitful areas for ethnographic research on these questions. The great Hindu tradition was present in virtually all local contexts through the presence of high-caste individuals in every community. It operated as a pervasive standard of value for all members of society, even in the face of strong little traditions. The situation is surprisingly akin to that of modern, industrialized societies. The central research questions are the degree and the nature of penetration of dominant ideology, even in groups that appear marginal and subordinate and have no strong interest in sharing the dominant value system. In this connection the lowest and poorest occupational caste—the untouchables—serves as an ultimate test of the power of ideology and cultural beliefs to unify complex hierarchical social systems.

Historical Reconstruction

Another current trend in ethnographic methods is its convergence with archival methods. One joining point is the application of descriptive and interpretative procedures used by ethnographers to reconstruct the cultures that created historical documents, diaries, and other records, to interview history, so to speak. For example, a revealing study showed how the Inquisition in the Italian countryside between the 1570s and 1640s gradually worked subtle changes in an ancient fertility cult in peasant communities; the peasant beliefs and rituals assimilated many elements of witchcraft after learning them from their persecutors. A good deal of social history—particularly that of the family—has drawn on discoveries made in the ethnographic study of primitive societies. As described in Chapter 4 , this particular line of inquiry rests on a marriage of ethnographic, archival, and demographic approaches.

Other lines of ethnographic work have focused on the historical dimensions of nonliterate societies. A strikingly successful example in this kind of effort is a study of head-hunting. By combining an interpretation of local oral tradition with the fragmentary observations that were made by outside observers (such as missionaries, traders, colonial officials), historical fluctuations in the rate and significance of head-hunting were shown to be partly in response to such international forces as the great depression and World War II. Researchers are also investigating the ways in which various groups in contemporary societies invent versions of traditions that may or may not reflect the actual history of the group. This process has been observed among elites seeking political and cultural legitimation and among hard-pressed minorities (for example, the Basque in Spain, the Welsh in Great Britain) seeking roots and political mobilization in a larger society.

Ethnography is a powerful method to record, describe, and interpret the system of meanings held by groups and to discover how those meanings affect the lives of group members. It is a method well adapted to the study of situations in which people interact with one another and the researcher can interact with them as well, so that information about meanings can be evoked and observed. Ethnography is especially suited to exploration and elucidation of unsuspected connections; ideally, it is used in combination with other methods—experimental, survey, or comparative—to establish with precision the relative strengths and weaknesses of such connections. By the same token, experimental, survey, and comparative methods frequently yield connections, the meaning of which is unknown; ethnographic methods are a valuable way to determine them.

  • Models for Representing Phenomena

The objective of any science is to uncover the structure and dynamics of the phenomena that are its subject, as they are exhibited in the data. Scientists continuously try to describe possible structures and ask whether the data can, with allowance for errors of measurement, be described adequately in terms of them. Over a long time, various families of structures have recurred throughout many fields of science; these structures have become objects of study in their own right, principally by statisticians, other methodological specialists, applied mathematicians, and philosophers of logic and science. Methods have evolved to evaluate the adequacy of particular structures to account for particular types of data. In the interest of clarity we discuss these structures in this section and the analytical methods used for estimation and evaluation of them in the next section, although in practice they are closely intertwined.

A good deal of mathematical and statistical modeling attempts to describe the relations, both structural and dynamic, that hold among variables that are presumed to be representable by numbers. Such models are applicable in the behavioral and social sciences only to the extent that appropriate numerical measurement can be devised for the relevant variables. In many studies the phenomena in question and the raw data obtained are not intrinsically numerical, but qualitative, such as ethnic group identifications. The identifying numbers used to code such questionnaire categories for computers are no more than labels, which could just as well be letters or colors. One key question is whether there is some natural way to move from the qualitative aspects of such data to a structural representation that involves one of the well-understood numerical or geometric models or whether such an attempt would be inherently inappropriate for the data in question. The decision as to whether or not particular empirical data can be represented in particular numerical or more complex structures is seldom simple, and strong intuitive biases or a priori assumptions about what can and cannot be done may be misleading.

Recent decades have seen rapid and extensive development and application of analytical methods attuned to the nature and complexity of social science data. Examples of nonnumerical modeling are increasing. Moreover, the widespread availability of powerful computers is probably leading to a qualitative revolution, it is affecting not only the ability to compute numerical solutions to numerical models, but also to work out the consequences of all sorts of structures that do not involve numbers at all. The following discussion gives some indication of the richness of past progress and of future prospects although it is by necessity far from exhaustive.

In describing some of the areas of new and continuing research, we have organized this section on the basis of whether the representations are fundamentally probabilistic or not. A further useful distinction is between representations of data that are highly discrete or categorical in nature (such as whether a person is male or female) and those that are continuous in nature (such as a person’s height). Of course, there are intermediate cases involving both types of variables, such as color stimuli that are characterized by discrete hues (red, green) and a continuous luminance measure. Probabilistic models lead very naturally to questions of estimation and statistical evaluation of the correspondence between data and model. Those that are not probabilistic involve additional problems of dealing with and representing sources of variability that are not explicitly modeled. At the present time, scientists understand some aspects of structure, such as geometries, and some aspects of randomness, as embodied in probability models, but do not yet adequately understand how to put the two together in a single unified model. Table 5-1 outlines the way we have organized this discussion and shows where the examples in this section lie.

Table 5-1. A Classification of Structural Models.

A Classification of Structural Models.

Probability Models

Some behavioral and social sciences variables appear to be more or less continuous, for example, utility of goods, loudness of sounds, or risk associated with uncertain alternatives. Many other variables, however, are inherently categorical, often with only two or a few values possible: for example, whether a person is in or out of school, employed or not employed, identifies with a major political party or political ideology. And some variables, such as moral attitudes, are typically measured in research with survey questions that allow only categorical responses. Much of the early probability theory was formulated only for continuous variables; its use with categorical variables was not really justified, and in some cases it may have been misleading. Recently, very significant advances have been made in how to deal explicitly with categorical variables. This section first describes several contemporary approaches to models involving categorical variables, followed by ones involving continuous representations.

Log-Linear Models for Categorical Variables

Many recent models for analyzing categorical data of the kind usually displayed as counts (cell frequencies) in multidimensional contingency tables are subsumed under the general heading of log-linear models, that is, linear models in the natural logarithms of the expected counts in each cell in the table. These recently developed forms of statistical analysis allow one to partition variability due to various sources in the distribution of categorical attributes, and to isolate the effects of particular variables or combinations of them.

Present log-linear models were first developed and used by statisticians and sociologists and then found extensive application in other social and behavioral sciences disciplines. When applied, for instance, to the analysis of social mobility, such models separate factors of occupational supply and demand from other factors that impede or propel movement up and down the social hierarchy. With such models, for example, researchers discovered the surprising fact that occupational mobility patterns are strikingly similar in many nations of the world (even among disparate nations like the United States and most of the Eastern European socialist countries), and from one time period to another, once allowance is made for differences in the distributions of occupations. The log-linear and related kinds of models have also made it possible to identify and analyze systematic differences in mobility among nations and across time. As another example of applications, psychologists and others have used log-linear models to analyze attitudes and their determinants and to link attitudes to behavior. These methods have also diffused to and been used extensively in the medical and biological sciences.

Regression Models for Categorical Variables

Models that permit one variable to be explained or predicted by means of others, called regression models, are the workhorses of much applied statistics; this is especially true when the dependent (explained) variable is continuous. For a two-valued dependent variable, such as alive or dead, models and approximate theory and computational methods for one explanatory variable were developed in biometry about 50 years ago. Computer programs able to handle many explanatory variables, continuous or categorical, are readily available today. Even now, however, the accuracy of the approximate theory on given data is an open question.

Using classical utility theory, economists have developed discrete choice models that turn out to be somewhat related to the log-linear and categorical regression models. Models for limited dependent variables, especially those that cannot take on values above or below a certain level (such as weeks unemployed, number of children, and years of schooling) have been used profitably in economics and in some other areas. For example, censored normal variables (called tobits in economics), in which observed values outside certain limits are simply counted, have been used in studying decisions to go on in school. It will require further research and development to incorporate information about limited ranges of variables fully into the main multivariate methodologies. In addition, with respect to the assumptions about distribution and functional form conventionally made in discrete response models, some new methods are now being developed that show promise of yielding reliable inferences without making unrealistic assumptions; further research in this area promises significant progress.

One problem arises from the fact that many of the categorical variables collected by the major data bases are ordered. For example, attitude surveys frequently use a 3-, 5-, or 7-point scale (from high to low) without specifying numerical intervals between levels. Social class and educational levels are often described by ordered categories. Ignoring order information, which many traditional statistical methods do, may be inefficient or inappropriate, but replacing the categories by successive integers or other arbitrary scores may distort the results. (For additional approaches to this question, see sections below on ordered structures.) Regression-like analysis of ordinal categorical variables is quite well developed, but their multivariate analysis needs further research. New log-bilinear models have been proposed, but to date they deal specifically with only two or three categorical variables. Additional research extending the new models, improving computational algorithms, and integrating the models with work on scaling promise to lead to valuable new knowledge.

Models for Event Histories

Event-history studies yield the sequence of events that respondents to a survey sample experience over a period of time; for example, the timing of marriage, childbearing, or labor force participation. Event-history data can be used to study educational progress, demographic processes (migration, fertility, and mortality), mergers of firms, labor market behavior, and even riots, strikes, and revolutions. As interest in such data has grown, many researchers have turned to models that pertain to changes in probabilities over time to describe when and how individuals move among a set of qualitative states.

Much of the progress in models for event-history data builds on recent developments in statistics and biostatistics for life-time, failure-time, and hazard models. Such models permit the analysis of qualitative transitions in a population whose members are undergoing partially random organic deterioration, mechanical wear, or other risks over time. With the increased complexity of event-history data that are now being collected, and the extension of event-history data bases over very long periods of time, new problems arise that cannot be effectively handled by older types of analysis. Among the problems are repeated transitions, such as between unemployment and employment or marriage and divorce; more than one time variable (such as biological age, calendar time, duration in a stage, and time exposed to some specified condition); latent variables (variables that are explicitly modeled even though not observed); gaps in the data; sample attrition that is not randomly distributed over the categories; and respondent difficulties in recalling the exact timing of events.

Models for Multiple-Item Measurement

For a variety of reasons, researchers typically use multiple measures (or multiple indicators) to represent theoretical concepts. Sociologists, for example, often rely on two or more variables (such as occupation and education) to measure an individual’s socioeconomic position; educational psychologists ordinarily measure a student’s ability with multiple test items. Despite the fact that the basic observations are categorical, in a number of applications this is interpreted as a partitioning of something continuous. For example, in test theory one thinks of the measures of both item difficulty and respondent ability as continuous variables, possibly multidimensional in character.

Classical test theory and newer item-response theories in psychometrics deal with the extraction of information from multiple measures. Testing, which is a major source of data in education and other areas, results in millions of test items stored in archives each year for purposes ranging from college admissions to job-training programs for industry. One goal of research on such test data is to be able to make comparisons among persons or groups even when different test items are used. Although the information collected from each respondent is intentionally incomplete in order to keep the tests short and simple, item-response techniques permit researchers to reconstitute the fragments into an accurate picture of overall group proficiencies. These new methods provide a better theoretical handle on individual differences, and they are expected to be extremely important in developing and using tests. For example, they have been used in attempts to equate different forms of a test given in successive waves during a year, a procedure made necessary in large-scale testing programs by legislation requiring disclosure of test-scoring keys at the time results are given.

An example of the use of item-response theory in a significant research effort is the National Assessment of Educational Progress (NAEP). The goal of this project is to provide accurate, nationally representative information on the average (rather than individual) proficiency of American children in a wide variety of academic subjects as they progress through elementary and secondary school. This approach is an improvement over the use of trend data on university entrance exams, because NAEP estimates of academic achievements (by broad characteristics such as age, grade, region, ethnic background, and so on) are not distorted by the self-selected character of those students who seek admission to college, graduate, and professional programs.

Item-response theory also forms the basis of many new psychometric instruments, known as computerized adaptive testing, currently being implemented by the U.S. military services and under additional development in many testing organizations. In adaptive tests, a computer program selects items for each examinee based upon the examinee’s success with previous items. Generally, each person gets a slightly different set of items and the equivalence of scale scores is established by using item-response theory. Adaptive testing can greatly reduce the number of items needed to achieve a given level of measurement accuracy.

Nonlinear, Nonadditive Models

Virtually all statistical models now in use impose a linearity or additivity assumption of some kind, sometimes after a nonlinear transformation of variables. Imposing these forms on relationships that do not, in fact, possess them may well result in false descriptions and spurious effects. Unwary users, especially of computer software packages, can easily be misled. But more realistic nonlinear and nonadditive multivariate models are becoming available. Extensive use with empirical data is likely to force many changes and enhancements in such models and stimulate quite different approaches to nonlinear multivariate analysis in the next decade.

Geometric and Algebraic Models

Geometric and algebraic models attempt to describe underlying structural relations among variables. In some cases they are part of a probabilistic approach, such as the algebraic models underlying regression or the geometric representations of correlations between items in a technique called factor analysis. In other cases, geometric and algebraic models are developed without explicitly modeling the element of randomness or uncertainty that is always present in the data. Although this latter approach to behavioral and social sciences problems has been less researched than the probabilistic one, there are some advantages in developing the structural aspects independent of the statistical ones. We begin the discussion with some inherently geometric representations and then turn to numerical representations for ordered data.

Although geometry is a huge mathematical topic, little of it seems directly applicable to the kinds of data encountered in the behavioral and social sciences. A major reason is that the primitive concepts normally used in geometry—points, lines, coincidence—do not correspond naturally to the kinds of qualitative observations usually obtained in behavioral and social sciences contexts. Nevertheless, since geometric representations are used to reduce bodies of data, there is a real need to develop a deeper understanding of when such representations of social or psychological data make sense. Moreover, there is a practical need to understand why geometric computer algorithms, such as those of multidimensional scaling, work as well as they apparently do. A better understanding of the algorithms will increase the efficiency and appropriateness of their use, which becomes increasingly important with the widespread availability of scaling programs for microcomputers.

Over the past 50 years several kinds of well-understood scaling techniques have been developed and widely used to assist in the search for appropriate geometric representations of empirical data. The whole field of scaling is now entering a critical juncture in terms of unifying and synthesizing what earlier appeared to be disparate contributions. Within the past few years it has become apparent that several major methods of analysis, including some that are based on probabilistic assumptions, can be unified under the rubric of a single generalized mathematical structure. For example, it has recently been demonstrated that such diverse approaches as nonmetric multidimensional scaling, principal-components analysis, factor analysis, correspondence analysis, and log-linear analysis have more in common in terms of underlying mathematical structure than had earlier been realized.

Nonmetric multidimensional scaling is a method that begins with data about the ordering established by subjective similarity (or nearness) between pairs of stimuli. The idea is to embed the stimuli into a metric space (that is, a geometry with a measure of distance between points) in such a way that distances between points corresponding to stimuli exhibit the same ordering as do the data. This method has been successfully applied to phenomena that, on other grounds, are known to be describable in terms of a specific geometric structure; such applications were used to validate the procedures. Such validation was done, for example, with respect to the perception of colors, which are known to be describable in terms of a particular three-dimensional structure known as the Euclidean color coordinates. Similar applications have been made with Morse code symbols and spoken phonemes. The technique is now used in some biological and engineering applications, as well as in some of the social sciences, as a method of data exploration and simplification.

One question of interest is how to develop an axiomatic basis for various geometries using as a primitive concept an observable such as the subject’s ordering of the relative similarity of one pair of stimuli to another, which is the typical starting point of such scaling. The general task is to discover properties of the qualitative data sufficient to ensure that a mapping into the geometric structure exists and, ideally, to discover an algorithm for finding it. Some work of this general type has been carried out: for example, there is an elegant set of axioms based on laws of color matching that yields the three-dimensional vectorial representation of color space. But the more general problem of understanding the conditions under which the multidimensional scaling algorithms are suitable remains unsolved. In addition, work is needed on understanding more general, non-Euclidean spatial models.

Ordered Factorial Systems

One type of structure common throughout the sciences arises when an ordered dependent variable is affected by two or more ordered independent variables. This is the situation to which regression and analysis-of-variance models are often applied; it is also the structure underlying the familiar physical identities, in which physical units are expressed as products of the powers of other units (for example, energy has the unit of mass times the square of the unit of distance divided by the square of the unit of time).

There are many examples of these types of structures in the behavioral and social sciences. One example is the ordering of preference of commodity bundles—collections of various amounts of commodities—which may be revealed directly by expressions of preference or indirectly by choices among alternative sets of bundles. A related example is preferences among alternative courses of action that involve various outcomes with differing degrees of uncertainty; this is one of the more thoroughly investigated problems because of its potential importance in decision making. A psychological example is the trade-off between delay and amount of reward, yielding those combinations that are equally reinforcing. In a common, applied kind of problem, a subject is given descriptions of people in terms of several factors, for example, intelligence, creativity, diligence, and honesty, and is asked to rate them according to a criterion such as suitability for a particular job.

In all these cases and a myriad of others like them the question is whether the regularities of the data permit a numerical representation. Initially, three types of representations were studied quite fully: the dependent variable as a sum, a product, or a weighted average of the measures associated with the independent variables. The first two representations underlie some psychological and economic investigations, as well as a considerable portion of physical measurement and modeling in classical statistics. The third representation, averaging, has proved most useful in understanding preferences among uncertain outcomes and the amalgamation of verbally described traits, as well as some physical variables.

For each of these three cases—adding, multiplying, and averaging—researchers know what properties or axioms of order the data must satisfy for such a numerical representation to be appropriate. On the assumption that one or another of these representations exists, and using numerical ratings by subjects instead of ordering, a scaling technique called functional measurement (referring to the function that describes how the dependent variable relates to the independent ones) has been developed and applied in a number of domains. What remains problematic is how to encompass at the ordinal level the fact that some random error intrudes into nearly all observations and then to show how that randomness is represented at the numerical level; this continues to be an unresolved and challenging research issue.

During the past few years considerable progress has been made in understanding certain representations inherently different from those just discussed. The work has involved three related thrusts. The first is a scheme of classifying structures according to how uniquely their representation is constrained. The three classical numerical representations are known as ordinal, interval, and ratio scale types. For systems with continuous numerical representations and of scale type at least as rich as the ratio one, it has been shown that only one additional type can exist. A second thrust is to accept structural assumptions, like factorial ones, and to derive for each scale the possible functional relations among the independent variables. And the third thrust is to develop axioms for the properties of an order relation that leads to the possible representations. Much is now known about the possible nonadditive representations of both the multifactor case and the one where stimuli can be combined, such as combining sound intensities.

Closely related to this classification of structures is the question: What statements, formulated in terms of the measures arising in such representations, can be viewed as meaningful in the sense of corresponding to something empirical? Statements here refer to any scientific assertions, including statistical ones, formulated in terms of the measures of the variables and logical and mathematical connectives. These are statements for which asserting truth or falsity makes sense. In particular, statements that remain invariant under certain symmetries of structure have played an important role in classical geometry, dimensional analysis in physics, and in relating measurement and statistical models applied to the same phenomenon. In addition, these ideas have been used to construct models in more formally developed areas of the behavioral and social sciences, such as psychophysics. Current research has emphasized the communality of these historically independent developments and is attempting both to uncover systematic, philosophically sound arguments as to why invariance under symmetries is as important as it appears to be and to understand what to do when structures lack symmetry, as, for example, when variables have an inherent upper bound.

Many subjects do not seem to be correctly represented in terms of distances in continuous geometric space. Rather, in some cases, such as the relations among meanings of words—which is of great interest in the study of memory representations—a description in terms of tree-like, hierarchial structures appears to be more illuminating. This kind of description appears appropriate both because of the categorical nature of the judgments and the hierarchial, rather than trade-off, nature of the structure. Individual items are represented as the terminal nodes of the tree, and groupings by different degrees of similarity are shown as intermediate nodes, with the more general groupings occurring nearer the root of the tree. Clustering techniques, requiring considerable computational power, have been and are being developed. Some successful applications exist, but much more refinement is anticipated.

Network Models

Several other lines of advanced modeling have progressed in recent years, opening new possibilities for empirical specification and testing of a variety of theories. In social network data, relationships among units, rather than the units themselves, are the primary objects of study: friendships among persons, trade ties among nations, cocitation clusters among research scientists, interlocking among corporate boards of directors. Special models for social network data have been developed in the past decade, and they give, among other things, precise new measures of the strengths of relational ties among units. A major challenge in social network data at present is to handle the statistical dependence that arises when the units sampled are related in complex ways.

  • Statistical Inference and Analysis

As was noted earlier, questions of design, representation, and analysis are intimately intertwined. Some issues of inference and analysis have been discussed above as related to specific data collection and modeling approaches. This section discusses some more general issues of statistical inference and advances in several current approaches to them.

Causal Inference

Behavioral and social scientists use statistical methods primarily to infer the effects of treatments, interventions, or policy factors. Previous chapters included many instances of causal knowledge gained this way. As noted above, the large experimental study of alternative health care financing discussed in Chapter 2 relied heavily on statistical principles and techniques, including randomization, in the design of the experiment and the analysis of the resulting data. Sophisticated designs were necessary in order to answer a variety of questions in a single large study without confusing the effects of one program difference (such as prepayment or fee for service) with the effects of another (such as different levels of deductible costs), or with effects of unobserved variables (such as genetic differences). Statistical techniques were also used to ascertain which results applied across the whole enrolled population and which were confined to certain subgroups (such as individuals with high blood pressure) and to translate utilization rates across different programs and types of patients into comparable overall dollar costs and health outcomes for alternative financing options.

A classical experiment, with systematic but randomly assigned variation of the variables of interest (or some reasonable approach to this), is usually considered the most rigorous basis from which to draw such inferences. But random samples or randomized experimental manipulations are not always feasible or ethically acceptable. Then, causal inferences must be drawn from observational studies, which, however well designed, are less able to ensure that the observed (or inferred) relationships among variables provide clear evidence on the underlying mechanisms of cause and effect.

Certain recurrent challenges have been identified in studying causal inference. One challenge arises from the selection of background variables to be measured, such as the sex, nativity, or parental religion of individuals in a comparative study of how education affects occupational success. The adequacy of classical methods of matching groups in background variables and adjusting for covariates needs further investigation. Statistical adjustment of biases linked to measured background variables is possible, but it can become complicated. Current work in adjustment for selectivity bias is aimed at weakening implausible assumptions, such as normality, when carrying out these adjustments. Even after adjustment has been made for the measured background variables, other, unmeasured variables are almost always still affecting the results (such as family transfers of wealth or reading habits). Analyses of how the conclusions might change if such unmeasured variables could be taken into account is essential in attempting to make causal inferences from an observational study, and systematic work on useful statistical models for such sensitivity analyses is just beginning.

The third important issue arises from the necessity for distinguishing among competing hypotheses when the explanatory variables are measured with different degrees of precision. Both the estimated size and significance of an effect are diminished when it has large measurement error, and the coefficients of other correlated variables are affected even when the other variables are measured perfectly. Similar results arise from conceptual errors, when one measures only proxies for a theoretical construct (such as years of education to represent amount of learning). In some cases, there are procedures for simultaneously or iteratively estimating both the precision of complex measures and their effect on a particular criterion.

Although complex models are often necessary to infer causes, once their output is available, it should be translated into understandable displays for evaluation. Results that depend on the accuracy of a multivariate model and the associated software need to be subjected to appropriate checks, including the evaluation of graphical displays, group comparisons, and other analyses.

New Statistical Techniques

Internal resampling.

One of the great contributions of twentieth-century statistics was to demonstrate how a properly drawn sample of sufficient size, even if it is only a tiny fraction of the population of interest, can yield very good estimates of most population characteristics. When enough is known at the outset about the characteristic in question—for example, that its distribution is roughly normal—inference from the sample data to the population as a whole is straightforward, and one can easily compute measures of the certainty of inference, a common example being the 95 percent confidence interval around an estimate. But population shapes are sometimes unknown or uncertain, and so inference procedures cannot be so simple. Furthermore, more often than not, it is difficult to assess even the degree of uncertainty associated with complex data and with the statistics needed to unravel complex social and behavioral phenomena.

Internal resampling methods attempt to assess this uncertainty by generating a number of simulated data sets similar to the one actually observed. The definition of similar is crucial, and many methods that exploit different types of similarity have been devised. These methods provide researchers the freedom to choose scientifically appropriate procedures and to replace procedures that are valid under assumed distributional shapes with ones that are not so restricted. Flexible and imaginative computer simulation is the key to these methods. For a simple random sample, the “bootstrap” method repeatedly resamples the obtained data (with replacement) to generate a distribution of possible data sets. The distribution of any estimator can thereby be simulated and measures of the certainty of inference be derived. The “jackknife” method repeatedly omits a fraction of the data and in this way generates a distribution of possible data sets that can also be used to estimate variability. These methods can also be used to remove or reduce bias. For example, the ratio-estimator, a statistic that is commonly used in analyzing sample surveys and censuses, is known to be biased, and the jackknife method can usually remedy this defect. The methods have been extended to other situations and types of analysis, such as multiple regression.

There are indications that under relatively general conditions, these methods, and others related to them, allow more accurate estimates of the uncertainty of inferences than do the traditional ones that are based on assumed (usually, normal) distributions when that distributional assumption is unwarranted. For complex samples, such internal resampling or subsampling facilitates estimating the sampling variances of complex statistics.

An older and simpler, but equally important, idea is to use one independent subsample in searching the data to develop a model and at least one separate subsample for estimating and testing a selected model. Otherwise, it is next to impossible to make allowances for the excessively close fitting of the model that occurs as a result of the creative search for the exact characteristics of the sample data—characteristics that are to some degree random and will not predict well to other samples.

Robust Techniques

Many technical assumptions underlie the analysis of data. Some, like the assumption that each item in a sample is drawn independently of other items, can be weakened when the data are sufficiently structured to admit simple alternative models, such as serial correlation. Usually, these models require that a few parameters be estimated. Assumptions about shapes of distributions, normality being the most common, have proved to be particularly important, and considerable progress has been made in dealing with the consequences of different assumptions.

More recently, robust techniques have been designed that permit sharp, valid discriminations among possible values of parameters of central tendency for a wide variety of alternative distributions by reducing the weight given to occasional extreme deviations. It turns out that by giving up, say, 10 percent of the discrimination that could be provided under the rather unrealistic assumption of normality, one can greatly improve performance in more realistic situations, especially when unusually large deviations are relatively common.

These valuable modifications of classical statistical techniques have been extended to multiple regression, in which procedures of iterative reweighting can now offer relatively good performance for a variety of underlying distributional shapes. They should be extended to more general schemes of analysis.

In some contexts—notably the most classical uses of analysis of variance—the use of adequate robust techniques should help to bring conventional statistical practice closer to the best standards that experts can now achieve.

Many Interrelated Parameters

In trying to give a more accurate representation of the real world than is possible with simple models, researchers sometimes use models with many parameters, all of which must be estimated from the data. Classical principles of estimation, such as straightforward maximum-likelihood, do not yield reliable estimates unless either the number of observations is much larger than the number of parameters to be estimated or special designs are used in conjunction with strong assumptions. Bayesian methods do not draw a distinction between fixed and random parameters, and so may be especially appropriate for such problems.

A variety of statistical methods have recently been developed that can be interpreted as treating many of the parameters as or similar to random quantities, even if they are regarded as representing fixed quantities to be estimated. Theory and practice demonstrate that such methods can improve the simpler fixed-parameter methods from which they evolved, especially when the number of observations is not large relative to the number of parameters. Successful applications include college and graduate school admissions, where quality of previous school is treated as a random parameter when the data are insufficient to separately estimate it well. Efforts to create appropriate models using this general approach for small-area estimation and undercount adjustment in the census are important potential applications.

Missing Data

In data analysis, serious problems can arise when certain kinds of (quantitative or qualitative) information is partially or wholly missing. Various approaches to dealing with these problems have been or are being developed. One of the methods developed recently for dealing with certain aspects of missing data is called multiple imputation: each missing value in a data set is replaced by several values representing a range of possibilities, with statistical dependence among missing values reflected by linkage among their replacements. It is currently being used to handle a major problem of incompatibility between the 1980 and previous Bureau of Census public-use tapes with respect to occupation codes. The extension of these techniques to address such problems as nonresponse to income questions in the Current Population Survey has been examined in exploratory applications with great promise.

Computer Packages and Expert Systems

The development of high-speed computing and data handling has fundamentally changed statistical analysis. Methodologies for all kinds of situations are rapidly being developed and made available for use in computer packages that may be incorporated into interactive expert systems. This computing capability offers the hope that much data analyses will be more carefully and more effectively done than previously and that better strategies for data analysis will move from the practice of expert statisticians, some of whom may not have tried to articulate their own strategies, to both wide discussion and general use.

But powerful tools can be hazardous, as witnessed by occasional dire misuses of existing statistical packages. Until recently the only strategies available were to train more expert methodologists or to train substantive scientists in more methodology, but without the updating of their training it tends to become outmoded. Now there is the opportunity to capture in expert systems the current best methodological advice and practice. If that opportunity is exploited, standard methodological training of social scientists will shift to emphasizing strategies in using good expert systems—including understanding the nature and importance of the comments it provides—rather than in how to patch together something on one’s own. With expert systems, almost all behavioral and social scientists should become able to conduct any of the more common styles of data analysis more effectively and with more confidence than all but the most expert do today. However, the difficulties in developing expert systems that work as hoped for should not be underestimated. Human experts cannot readily explicate all of the complex cognitive network that constitutes an important part of their knowledge. As a result, the first attempts at expert systems were not especially successful (as discussed in Chapter 1 ). Additional work is expected to overcome these limitations, but it is not clear how long it will take.

Exploratory Analysis and Graphic Presentation

The formal focus of much statistics research in the middle half of the twentieth century was on procedures to confirm or reject precise, a priori hypotheses developed in advance of collecting data—that is, procedures to determine statistical significance. There was relatively little systematic work on realistically rich strategies for the applied researcher to use when attacking real-world problems with their multiplicity of objectives and sources of evidence. More recently, a species of quantitative detective work, called exploratory data analysis, has received increasing attention. In this approach, the researcher seeks out possible quantitative relations that may be present in the data. The techniques are flexible and include an important component of graphic representations. While current techniques have evolved for single responses in situations of modest complexity, extensions to multiple responses and to single responses in more complex situations are now possible.

Graphic and tabular presentation is a research domain in active renaissance, stemming in part from suggestions for new kinds of graphics made possible by computer capabilities, for example, hanging histograms and easily assimilated representations of numerical vectors. Research on data presentation has been carried out by statisticians, psychologists, cartographers, and other specialists, and attempts are now being made to incorporate findings and concepts from linguistics, industrial and publishing design, aesthetics, and classification studies in library science. Another influence has been the rapidly increasing availability of powerful computational hardware and software, now available even on desktop computers. These ideas and capabilities are leading to an increasing number of behavioral experiments with substantial statistical input. Nonetheless, criteria of good graphic and tabular practice are still too much matters of tradition and dogma, without adequate empirical evidence or theoretical coherence. To broaden the respective research outlooks and vigorously develop such evidence and coherence, extended collaborations between statistical and mathematical specialists and other scientists are needed, a major objective being to understand better the visual and cognitive processes (see Chapter 1 ) relevant to effective use of graphic or tabular approaches.

Combining Evidence

Combining evidence from separate sources is a recurrent scientific task, and formal statistical methods for doing so go back 30 years or more. These methods include the theory and practice of combining tests of individual hypotheses, sequential design and analysis of experiments, comparisons of laboratories, and Bayesian and likelihood paradigms.

There is now growing interest in more ambitious analytical syntheses, which are often called meta-analyses. One stimulus has been the appearance of syntheses explicitly combining all existing investigations in particular fields, such as prison parole policy, classroom size in primary schools, cooperative studies of therapeutic treatments for coronary heart disease, early childhood education interventions, and weather modification experiments. In such fields, a serious approach to even the simplest question—how to put together separate estimates of effect size from separate investigations—leads quickly to difficult and interesting issues. One issue involves the lack of independence among the available studies, due, for example, to the effect of influential teachers on the research projects of their students. Another issue is selection bias, because only some of the studies carried out, usually those with “significant” findings, are available and because the literature search may not find out all relevant studies that are available. In addition, experts agree, although informally, that the quality of studies from different laboratories and facilities differ appreciably and that such information probably should be taken into account. Inevitably, the studies to be included used different designs and concepts and controlled or measured different variables, making it difficult to know how to combine them.

Rich, informal syntheses, allowing for individual appraisal, may be better than catch-all formal modeling, but the literature on formal meta-analytic models is growing and may be an important area of discovery in the next decade, relevant both to statistical analysis per se and to improved syntheses in the behavioral and social and other sciences.

  • Opportunities and Needs

This chapter has cited a number of methodological topics associated with behavioral and social sciences research that appear to be particularly active and promising at the present time. As throughout the report, they constitute illustrative examples of what the committee believes to be important areas of research in the coming decade. In this section we describe recommendations for an additional $16 million annually to facilitate both the development of methodologically oriented research and, equally important, its communication throughout the research community.

Methodological studies, including early computer implementations, have for the most part been carried out by individual investigators with small teams of colleagues or students. Occasionally, such research has been associated with quite large substantive projects, and some of the current developments of computer packages, graphics, and expert systems clearly require large, organized efforts, which often lie at the boundary between grant-supported work and commercial development. As such research is often a key to understanding complex bodies of behavioral and social sciences data, it is vital to the health of these sciences that research support continue on methods relevant to problems of modeling, statistical analysis, representation, and related aspects of behavioral and social sciences data. Researchers and funding agencies should also be especially sympathetic to the inclusion of such basic methodological work in large experimental and longitudinal studies. Additional funding for work in this area, both in terms of individual research grants on methodological issues and in terms of augmentation of large projects to include additional methodological aspects, should be provided largely in the form of investigator-initiated project grants.

Ethnographic and comparative studies also typically rely on project grants to individuals and small groups of investigators. While this type of support should continue, provision should also be made to facilitate the execution of studies using these methods by research teams and to provide appropriate methodological training through the mechanisms outlined below.

Overall, we recommend an increase of $4 million in the level of investigator-initiated grant support for methodological work. An additional $1 million should be devoted to a program of centers for methodological research.

Many of the new methods and models described in the chapter, if and when adopted to any large extent, will demand substantially greater amounts of research devoted to appropriate analysis and computer implementation. New user interfaces and numerical algorithms will need to be designed and new computer programs written. And even when generally available methods (such as maximum-likelihood) are applicable, model application still requires skillful development in particular contexts. Many of the familiar general methods that are applied in the statistical analysis of data are known to provide good approximations when sample sizes are sufficiently large, but their accuracy varies with the specific model and data used. To estimate the accuracy requires extensive numerical exploration. Investigating the sensitivity of results to the assumptions of the models is important and requires still more creative, thoughtful research. It takes substantial efforts of these kinds to bring any new model on line, and the need becomes increasingly important and difficult as statistical models move toward greater realism, usefulness, complexity, and availability in computer form. More complexity in turn will increase the demand for computational power. Although most of this demand can be satisfied by increasingly powerful desktop computers, some access to mainframe and even supercomputers will be needed in selected cases. We recommend an additional $4 million annually to cover the growth in computational demands for model development and testing.

Interaction and cooperation between the developers and the users of statistical and mathematical methods need continual stimulation—both ways. Efforts should be made to teach new methods to a wider variety of potential users than is now the case. Several ways appear effective for methodologists to communicate to empirical scientists: running summer training programs for graduate students, faculty, and other researchers; encouraging graduate students, perhaps through degree requirements, to make greater use of the statistical, mathematical, and methodological resources at their own or affiliated universities; associating statistical and mathematical research specialists with large-scale data collection projects; and developing statistical packages that incorporate expert systems in applying the methods.

Methodologists, in turn, need to become more familiar with the problems actually faced by empirical scientists in the laboratory and especially in the field. Several ways appear useful for communication in this direction: encouraging graduate students in methodological specialties, perhaps through degree requirements, to work directly on empirical research; creating postdoctoral fellowships aimed at integrating such specialists into ongoing data collection projects; and providing for large data collection projects to engage relevant methodological specialists. In addition, research on and development of statistical packages and expert systems should be encouraged to involve the multidisciplinary collaboration of experts with experience in statistical, computer, and cognitive sciences.

A final point has to do with the promise held out by bringing different research methods to bear on the same problems. As our discussions of research methods in this and other chapters have emphasized, different methods have different powers and limitations, and each is designed especially to elucidate one or more particular facets of a subject. An important type of interdisciplinary work is the collaboration of specialists in different research methodologies on a substantive issue, examples of which have been noted throughout this report. If more such research were conducted cooperatively, the power of each method pursued separately would be increased. To encourage such multidisciplinary work, we recommend increased support for fellowships, research workshops, and training institutes.

Funding for fellowships, both pre-and postdoctoral, should be aimed at giving methodologists experience with substantive problems and at upgrading the methodological capabilities of substantive scientists. Such targeted fellowship support should be increased by $4 million annually, of which $3 million should be for predoctoral fellowships emphasizing the enrichment of methodological concentrations. The new support needed for research workshops is estimated to be $1 million annually. And new support needed for various kinds of advanced training institutes aimed at rapidly diffusing new methodological findings among substantive scientists is estimated to be $2 million annually.

  • Cite this Page National Research Council; Division of Behavioral and Social Sciences and Education; Commission on Behavioral and Social Sciences and Education; Committee on Basic Research in the Behavioral and Social Sciences; Gerstein DR, Luce RD, Smelser NJ, et al., editors. The Behavioral and Social Sciences: Achievements and Opportunities. Washington (DC): National Academies Press (US); 1988. 5, Methods of Data Collection, Representation, and Analysis.
  • PDF version of this title (16M)

In this Page

Other titles in this collection.

  • The National Academies Collection: Reports funded by National Institutes of Health

Recent Activity

  • Methods of Data Collection, Representation, and Analysis - The Behavioral and So... Methods of Data Collection, Representation, and Analysis - The Behavioral and Social Sciences: Achievements and Opportunities

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Chapter 4 PRESENTATION, ANALYSIS AND INTERPRETATION OF DATA

Profile image of Rodny Baula

Related Papers

SMCC Higher Education Research Journal

Gian Venci Alonzo

presentation and interpretation of data

International Journal of Research -GRANTHAALAYAH

Sherill A . Gilbas

This paper highlights the trust, respect, safety and security ratings of the community to the Philippine National Police (PNP) in the Province of Albay. It presents the sectoral ratings to PNP programs. The survey utilized a structured interview with 200 sample respondents from Albay coming from different sectors. Male respondents outnumbered female respondents. The majority of the respondents are 41-50 years old, at least high school graduates and are married. The respondents gave the highest net rating on respect, followed by net rating on trust and the lowest net rating on safety and security on the performance of the PNP. Moreover, a high net rating on commitment of support to the identified programs of the PNP was also attained from the respondents. The highest net rating of support is given to the PNP’s anti-illegal drugs program, followed by anti-terrorism, anti-riding in tandem and anti-illegal gambling programs. The ratings of the PNP obtained from the different sectors of...

Charlie Rosales

IOER International Multidisciplinary Research Journal

IOER International Multidisciplinary Research Journal ( IIMRJ)

Police organizations have conducted operational activities to reduce the opportunity for would-be criminals to commit crimes. This operational activity includes patrol, traffic management, and investigation. In this study, the extent of police operational activities in Pagadian City, Zamboanga del Sur, Philippines, was evaluated to determine the extent of police operational activities and to test the association between the crime rate and the extent of police operation activities. This study utilized a quantitative descriptive research method. The respondents were 142 active police officers who were chosen purposively by employing total enumeration. The gathering of data was done using a self-made questionnaire, which underwent validation and reliability testing. The statistical tools used were frequency count, mean computation, percentage, and regression analysis. The results revealed that more respondents were 31-35 years old and above. Most of them were male, bachelor's degree holders, attended training and seminars for 50 hours, and served the police force for 15 years and below. Patrolling and investigation were found to be much observable while traffic management was observable. As for index crime, there were more crimes against the person committed than crimes against property. As for non-index crimes, there were more other non-index crimes compared to the violation of special laws. Patrolling has a positive influence on the commission and non-commission of both index and non-index crimes. This study also recommends intensive patrolling on hot-spot areas for criminal presence and activity, strengthening traffic management practices, procurement of traffic lights, improving traffic signs, and intensive implementation of traffic laws and regulations.

International Journal of Social Sciences and Humanities Research

Bro. Jose Arnold L . Alferez, OCDS

Effective law enforcement service demands that the law enforcement officers are diligent and effective in their duties and responsibilities. They should be punctual and alert while on their respective beats. They should respect the human rights of the people of the community they serve. They should even patrol their beats on foot so that their visibility would be more evident thus curtailing the criminal impulses of the criminally inclined, instead of whisking through the vicinity on the " flying visit" to their assigned places without even giving the people a glimpse of their presence. Transparency is the call of effective law enforcement service. However, effective law enforcement necessitates that the police command should be provided police equipment like two-way radios so that they could readily call for assistance whenever necessary, in order to improve the delivery of services and the maintenance of peace and order. Furthermore, a strong partnership between the police and the community will help ensure the success of the Philippine National Police in its drive against criminality. The findings of this study showed that the police force of the municipality of Pinamungajan, Cebu did their best under the circumstances they had to work in, but their efforts were not equally recognized by the people of the community. Hence, the need for support from the local officials and the people in the community are important factors that would facilitate the effectiveness of the law enforcement service.

Filius Populi

The Philippine National Police has implemented the new rank classification and abbreviation that shall be used in all manner of organization communications. Interview method was used to gather the information from the PNP RCADD respondents and selected community residents. Focus Group Discussion was conducted among the Barangay Officials to validate the data gathered. The findings of the study as follows: The respondents were not fully aware yet on the modified new rank classification applied in the PNP organization today; They shared diverse insights both positive and negative about the PNP modified new rank classification and it can offer a positive outcome in the long-run . Respondents were satisfied with the implementation of the PNP community relations program under the new rank classification. However, the modified new rank classification of the PNP would have the following positive implications: The new rank would mean higher people’s expectations; bring new image of the PNP;...

josefina B A L U C A N A G bitonio

DISSERTATION ABSTRACT Title : THE WOMEN AND CHILDREN PROTECTION SERVICES OF THE PHILIPPINE NATIONAL POLICE-CORDILLERA ADMINISTRATIVE REGION Researcher : MELY RITA D. ANAMONG-DAVIS Institution : Lyceum-Northwestern University, Dagupan City Degree : DOCTOR IN PUBLIC ADMINISTRATION Date : April 5, 2013 Abstract : This research sought to evaluate the provision of services provided by the members of the Women and Children Protection Desk of the Philippine National Police (PNP) Cordillera Administrative Region . The descriptive-evaluative research design was used in this study with the questionnaire, interviews as the data- gathering tool in the evaluation of the WCPD of the PNP services rendered to the victims-survivors of violence in the Cordillera Region. The types and statistics of cases investigated by the members of the WCPD of the PNP in the Cordillera were provided by the different offices of the WCPD of the PNP particularly the Regional and Provincial Offices. On the other hand, the acquired data from the respondents describes the capability of the WCPD office and personnel, relative to the organizational structure, financial resources, human resources, equipment and facilities; the extent of the mandated services provided for the victims-survivors of violence, level of satisfaction of the WCPD clientele and the problems encountered by the members of the WCPD of the PNP in providing the services to its clientele. Based on the findings, a proposal were formulated to enhance the quality or quantity of the services rendered to the victims of abuses and violence. Two hundred thirty (230) respondents were employed to answer the questionnaire to get the needed data, 160 from the police officers and 70 from the clientele of the WCPD. In the treatment of the data, SPSS version 20 was used in the analysis of data, Paired t-test for the determination of the significant difference in the perceptions of the two groups of respondents on the extent of provision of the mandated services by the WCPD of the PNP in the Cordillera and Spearman rank correlation for determining the level of satisfaction of the victims-survivors related to their perception on the extent of services provided by the Women and Children Protection Desk of the PNP. The findings of the study were the following: 1) Cases handled by the members of the WCPD of the PNP are physical injuries, violation of RA 9262, Rape and Acts of lasciviousness are the myriad cases committed against women; for crimes against children, rape, physical injuries, other forms of RA 7610 and acts of lasciviousness ; and for the crimes committed by the Children in Conflict with the law theft and robbery for intent to gain and material gain, physical injuries, rape and acts of lasciviousness are the majority they committed. The fact of this case is that 16 children were involved in the commission of rape where the youngest perpetrator is 7 years old. 2. On the capability of the members of the WCPD of the PNP, police officers believed that WCPD investigators are capable in providing the services to the victims of violence while the clientele respondents states otherwise that on some point along capability on human resources states that the number of police women assigned with the WCPD of the PNP is not sufficient to provide the services to its clientele. 3. On the extent of the mandated services provided to the victims-survivors of violence by the members of the WCPD of the PNP, perceptions of the police officers that to a great extent the members of the WCPD provide the services while the perceptions of the clientele is just on average extent on the services provided to them. 3.1. On the significant difference in the perceptions of the two groups of respondent on the extent of provision of the mandated services by the WCPD of the PNP in the Cordillera, there is a significant difference in the perception of the two groups of respondents on the extent of mandated services provided by the WCPD of the PNP in the Cordillera. The result indicates that the performance of the WCPD in rendering service is inadequate in the perception of its clients. 4) The satisfaction level of the clientele on the extent of services provided by the WCPD of the PNP is just moderate. This validates the result of the extent of the mandated services provided to the victims-survivors of violence by the WCPD investigators to be just on average. 5. On the level of satisfaction of the victims-survivors related to their perception on the extent of services provided by the Women and Children Protection Desk of the PNP revealed that WCPD clients is higher with greater extent of services being rendered by the WCPD. It indicates that the WCPD of the PNP in Cordillera should strive more to really fulfill the needed services to be provided with its clients. Likewise, on the level of satisfaction of the victims-survivors related to the capability of the WCPD of the PNP Cordillera in providing their mandated services disclosed that the more capable of the WCPD of the PNP in Cordillera will definitely provide an intense delivery of services to its clients. 7) Lastly, for the problems encountered by the WCPD of the PNP in providing services the following are considered a) no imagery tool kit purposely for the children’s victim to illicit information regarding the incident; b) the insufficient number of female police officers to investigate cases of women and children; c) lack of training of WCPD officers in handling VAWC cases and other gender-based crimes and d) service vehicle purposely for WCPD use only. Based on the findings and conclusion, the following recommendations are offered. 1. The propose strategies to enhance the services provided to the victims-survivors by the WCPD investigators must be intensely implemented: 1.a. There should be budgetary allocations for WCPD to enhance their capability to provide services and to fulfill the satisfaction of their clientele. 1.b. Increase the number of the female police officers assigned with the WCPD to sustain the 24/7 availability of investigators. 1.c. There should be a continuous conduct of specialized training on the Investigation of Crimes involving Women and children to all WCPD officers to include policemen for conclusive delivery of services for the victims of violence. 1.d. Purchase of the imagery tool kit purposely for the children’s victim of sexual abuse to illicit information regarding the incident.1.e. Issuance of service vehicle purposely for the Women and Children Protection Desk.1.f. Provide computer sets for WCPD.1.g. Provide communication equipment to be issued with the WCPD. 1.h. To improve the quality and consistency of WCPD services, a constant monitoring scheme and or clientele feedback should be implemented to understand the ways that service can be improved. 1.i. Develop and sustain the collaborative effort of the multidisciplinary team to meet the specific protocol designed to meet the needs of the victims of violence.1.j. To prevent new victims of violence, there should be a persistent campaign through advocacy and the education of the community in every barangay in coordination with the different member agencies. 2. A follow-up study should be conducted to cover other areas particularly target respondents on the level of satisfaction on the services provided for the victims of violence which is the main purpose of the establishment of the Women and Children Protection Desk.

Maita P Guadamor

RELATED PAPERS

Michal Biran

Srinivasan Kalyanaraman

Optica Pura y Aplicada

Nélida Russo

XXV Congresso de Iniciação Científica da Unicamp

Rosana Icassatti Corazza

Fauna norvegica

Björn Kinsten

arXiv (Cornell University)

Saeid Alikhani

Clinical Chemistry and Laboratory Medicine

Mariastella Graziani

Paola Montanez

International Journal of Progressive Sciences and Technologies

TAIWO ISHOLA

Abstract and Applied Analysis

James LARROUY

Akademik Dil ve Edebiyat Dergisi

Gaston Carreño

Estudios de Psicología

Maria Selena Martinez Carrera

Annals of the Stefan cel Mare …

cristian peres

Education Sciences

Atmospheric Chemistry and Physics

Suvarna Fadnavis

Computational Statistics & Data Analysis

MICHEL Silva

Luis López-Léon

Aurora Dimache

hjhjgfg freghrf

Topoi. Revista de História

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • BMJ Journals More You are viewing from: Google Indexer

You are here

  • Volume 33, Issue 6
  • Taking action on inequities: a structural paradigm for quality and safety
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0002-0258-2898 Tara A Burra 1 ,
  • http://orcid.org/0000-0002-1397-9671 Christine Soong 2 ,
  • Brian M Wong 3
  • 1 Department of Psychiatry , Mount Sinai Hospital , Toronto , Ontario , Canada
  • 2 General Internal Medicine , Mount Sinai Hospital , Toronto , Ontario , Canada
  • 3 Medicine , Sunnybrook Health Sciences Centre, University of Toronto , Toronto , Ontario , Canada
  • Correspondence to Dr Christine Soong, General Internal Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; christine.soong{at}utoronto.ca

https://doi.org/10.1136/bmjqs-2023-017027

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

  • Quality improvement
  • Healthcare quality improvement
  • Health professions education

As quality improvement and patient safety (QIPS) practitioners, we aspire to improve care for all patients, caregivers and families using improvement methods. While teams are trained to carefully implement the science of improvement, less is known of how to effectively incorporate equity into QIPS work. Should there be more projects focused specifically on equity, or should equity be embedded into all quality improvement? Inattention to the equity domain in improvement efforts ignores systemic biases and can worsen inequities in health outcomes. How to measure inequity, and growing calls to reframe health equity data measurement, presentation and analysis are central to this discourse.

Arrington and colleagues' article offers strategies to collect, share and interpret quality data using a racial equity lens. 1 The authors first describe the problems with stratifying quality data by race and ethnicity, which can perpetuate the false notion that race or ethnicity is responsible for differences in health outcomes and inhibit teams from identifying embedded structural or systemic root causes of health inequities. They provide concrete examples of reimagining data collection and presentation that are actionable and feasible. These include considering root causes beyond describing differences among racial groups, choosing reference points equitably (eg, avoiding using outcomes of white patients as reference points), presenting the most specific level of aggregation (eg, identifying race as ‘Chinese’ rather than ‘Asian’), collecting data on strengths (eg, describing groups with positive outcomes) rather than deficits, measuring racism instead of race and collaborating with community partners. Using this framework, the narrative shifts away from race and ethnicity to a focus on unjust systems, structures and practices responsible for health inequities.

As articulated by Arrington and colleagues, 1 adopting a racial equity lens to the interpretation of stratified QIPS data is an essential skill that QIPS practitioners must learn and apply. By incorporating education on the concept of racialisation (and by extension, other forms of discrimination) into QIPS curricula, QIPS practitioners will be better equipped to change healthcare processes and achieve the Institute for Healthcare Improvement’s quintuple aim of healthcare improvement, that is, that health equity should be included in all improvement efforts. 2 However, improving health equity through QIPS practices will require substantial health equity-focused structural changes at the level of individuals, programmes and guidelines.

At the individual level, we challenge QIPS practitioners to promote necessary structural change to reduce health inequities. The concept of structural change should be familiar to QIPS practitioners, given the Donabedian Model for QIPS evaluation includes structural measures in addition to outcome and process measures. 3 Nevertheless, the prospect of making structural change is understandably daunting for many QIPS practitioners and educators. There are a number of identified barriers to making structural change, namely attitudes (beliefs that social structural change is not in their purview), a hidden curriculum that reinforces biases and discriminatory practices 4 and a lack of knowledge on how to take action to promote equity through QIPS practice. The belief of some healthcare professionals that social structural change is not in their scope is a perspective that commonly takes root during training and is reinforced in practice. 5

However, the assertion that healthcare professionals do not have a role in promoting social change is contested. 6 7 For example, Sharma and colleagues 8 critique curricula that emphasise cognitivism, knowing about the social determinants of health (SDOH), rather than behaviouralism, knowing how to take action to help achieve health equity. Use of cognitivism to approach education about SDOH also implies that health inequities are manifestations of a ‘natural process’, rather than the sequelae of socially constructed systems of power and privilege that should be interrogated and questioned by learners and educators. 8 Worldwide, enduring inequities in health outcomes provide ample evidence of a second flawed assumption associated with cognitivism as the educational approach: teaching about SDOH will somehow lead to action by health professionals to reduce health inequities. 8

For action on health inequities to be realised through education, educational paradigms, such as transformational and humanism, that align with this learning outcome must be considered. Transformational educational theorists emphasise a pivotal role for learners in altering social structures to reduce oppression, while humanism stresses the value of human dignity, freedom, self-fulfilment and the importance of both knowledge and affect (feelings) in the learning process. 9 Attention to these facets of curricular development in QIPS is particularly important, given that, all too often, the hidden curriculum in health professions education reinforces harmful biases, stereotypes and prejudices that perpetuate health inequities. 4 5 In the absence of substantial curricular reform, we are unlikely to overcome the healthcare educational-culture and affective barriers to QIPS practitioners and leaders taking action to address health inequities through their improvement work.

How, then, can we equip QIPS practitioners and leaders with the necessary knowledge, skills and attitudes to tackle the wicked problem of health inequities? At a programmatic level, QIPS education needs to evolve in several critical ways.

First, we suggest integrating structural competency 10 11 as a core concept into QIPS curricula. Structural competency involves training health professionals to recognise and respond to health and illness as the downstream impacts of larger social, political and economic structures, including healthcare systems; food production and distribution systems; zoning laws; justice systems; housing, sanitation and transportation infrastructure; and variations in the conceptualisations of illness/health. 12 The structural competency paradigm extends the racial equity lens articulated by Okoli and colleagues, 1 to help health professionals to consider health inequities in relation to not only race and ethnicity but also many other facets of social privilege and oppression. In healthcare, these include, but are not limited to, sexism, ableism, classism and discrimination based on gender identity, sexual orientation, housing status, body habitus, migration/citizenship status, substance use or mental health co-morbidities.

Second, to increase the likelihood that education will lead to action on health inequities, the structural competency approach focuses on structural intervention . 11 That is, the development of skills to recognise that the social structures, which shape experiences of health and illness, are not absolute. Learners are encouraged not only to examine how social structures impact experiences of health and illness in their clinical settings but also to empower themselves with skills to take action to redress health inequities. Accordingly, QIPS initiatives focused on reducing healthcare inequities represent a critical opportunity for healthcare professionals to apply their skills in structural intervention. To facilitate the practice of structural intervention, QIPS education programmes would benefit from providing worked examples of QI initiatives aimed at improving health equity. Fortunately, there are an increasing number of QI studies that have targeted health equity in a variety of specialty areas, including internal medicine, paediatrics, obstetrics and primary care targeting inequities in cancer screening 13 and asthma management, 14 among others.

Third, QIPS education must adopt competency frameworks, to guide curricular design and trainee evaluation, which include equity-related concepts. For example, the Association of American Medical Colleges Quality Improvement and Patient Safety Competencies Across the Learning Continuum framework includes health equity as one of its five core domains. 15 QIPS educators can use these frameworks to outline the key concepts and approaches relevant for equity-based QIPS learning. QIPS education must also account for broader shifts occurring in health professions’ education as training programmes introduce equity and diversity concepts more routinely. For example, the General Medical Council recommends that ‘learners are equipped to understand the needs of diverse patient groups’ and there is ‘evidence of patients and the public with protected characteristics being consulted about and involved with curricular changes’ 16

In tandem with programmatic change, QIPS guidelines must evolve to make explicit the ways that QIPS methodologies can address health inequities. The Standards for QUality Improvement Reporting Excellence (SQUIRE) are the international publication guidelines for the reporting of QIPS research and scholarship, which have been adopted by many QIPS education programmes as the teaching framework that guides how to conduct QIPS work. 17 The current version, SQUIRE V.2.0, was last updated in 2015 and does not include any overt references to equity. Subsequently, a number of viewpoints and perspectives have outlined key considerations for how QI frameworks could address health equity. 18 Common among these suggested approaches are the need to direct QIPS efforts towards (1) addressing the needs of people experiencing health inequities, (2) engaging with communities to identify priorities, (3) coproducing change that moves beyond process improvement to target structural change and (4) stratifying outcome data to ensure both overall improvement and reduced inequities. These newer insights and approaches can and should inform revisions to the SQUIRE guidelines to shape QI practices towards those that are more equity-focused.

In summary, Okoli and colleagues 1 offer important recommendations to apply a racial equity lens to the collection, sharing and interpretation of quality data, thereby broadening the skillset of QIPS practitioners to address health inequities. However, achieving the quintuple aim 2 of healthcare improvement will not only require the expansion of knowledge, skills and attitudes but also a commitment to equity-focused structural change within the QIPS community itself.

Ethics statements

Patient consent for publication.

Not applicable.

Ethics approval

  • Arrington N ,
  • Hall J , et al
  • Cooper LA ,
  • Donabedian A
  • Martimianakis MAT ,
  • Michalec B ,
  • Lam J , et al
  • Howell BA ,
  • Kristal RB ,
  • Whitmire LR , et al
  • Wright S , et al
  • Braslow J ,
  • Rohrbaugh RM
  • Holmes SM ,
  • Knight KR , et al
  • Berkowitz SA ,
  • Percac-Lima S ,
  • Ashburner JM , et al
  • Kercsmar CM ,
  • Sauers-Ford H , et al
  • ↵ Association of American Medical colleges (AAMC) . In : Diversity, Equity, and Inclusion Competencies Across the Learning Continuum. AAMC New and Emerging Areas in Medicine Series . Washington, DC : AAMC , 2022 .
  • General Medical Council
  • Goodman D , et al
  • Farag A , et al

X @christinesoong, @Brian_M_Wong

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Provenance and peer review Commissioned; internally peer-reviewed.

Linked Articles

  • Viewpoint Interrupting false narratives: applying a racial equity lens to healthcare quality data Lauren Anita Arrington Briana Kramer Serena Michelle Ogunwole Tanay Lynn Harris Lois Dankwa SherWanda Knight Andreea A Creanga Kelly M Bower BMJ Quality & Safety 2024; 33 340-344 Published Online First: 12 Jan 2024. doi: 10.1136/bmjqs-2023-016612

Read the full text or download the PDF:

The world is getting “smarter” every day, and to keep up with consumer expectations, companies are increasingly using machine learning algorithms to make things easier. You can see them in use in end-user devices (through face recognition for unlocking smartphones) or for detecting credit card fraud (like triggering alerts for unusual purchases).

Within  artificial intelligence  (AI) and  machine learning , there are two basic approaches: supervised learning and unsupervised learning. The main difference is that one uses labeled data to help predict outcomes, while the other does not. However, there are some nuances between the two approaches, and key areas in which one outperforms the other. This post clarifies the differences so you can choose the best approach for your situation.

Supervised learning  is a machine learning approach that’s defined by its use of labeled data sets. These data sets are designed to train or “supervise” algorithms into classifying data or predicting outcomes accurately. Using labeled inputs and outputs, the model can measure its accuracy and learn over time.

Supervised learning can be separated into two types of problems when  data mining : classification and regression:

  • Classification  problems use an algorithm to accurately assign test data into specific categories, such as separating apples from oranges. Or, in the real world, supervised learning algorithms can be used to classify spam in a separate folder from your inbox. Linear classifiers, support vector machines, decision trees and  random forest  are all common types of classification algorithms.
  • Regression  is another type of supervised learning method that uses an algorithm to understand the relationship between dependent and independent variables. Regression models are helpful for predicting numerical values based on different data points, such as sales revenue projections for a given business. Some popular regression algorithms are linear regression, logistic regression, and polynomial regression.

Unsupervised learning  uses machine learning algorithms to analyze and cluster unlabeled data sets. These algorithms discover hidden patterns in data without the need for human intervention (hence, they are “unsupervised”).

Unsupervised learning models are used for three main tasks: clustering, association and dimensionality reduction:

  • Clustering  is a data mining technique for grouping unlabeled data based on their similarities or differences. For example, K-means clustering algorithms assign similar data points into groups, where the K value represents the size of the grouping and granularity. This technique is helpful for market segmentation, image compression, and so on.
  • Association  is another type of unsupervised learning method that uses different rules to find relationships between variables in a given data set. These methods are frequently used for market basket analysis and recommendation engines, along the lines of “Customers Who Bought This Item Also Bought” recommendations.
  • Dimensionality reduction  is a learning technique that is used when the number of features (or dimensions) in a given data set is too high. It reduces the number of data inputs to a manageable size while also preserving the data integrity. Often, this technique is used in the preprocessing data stage, such as when autoencoders remove noise from visual data to improve picture quality.

The main distinction between the two approaches is the use of labeled data sets. To put it simply, supervised learning uses labeled input and output data, while an unsupervised learning algorithm does not.

In supervised learning, the algorithm “learns” from the training data set by iteratively making predictions on the data and adjusting for the correct answer. While supervised learning models tend to be more accurate than unsupervised learning models, they require upfront human intervention to label the data appropriately. For example, a supervised learning model can predict how long your commute will be based on the time of day, weather conditions and so on. But first, you must train it to know that rainy weather extends the driving time.

Unsupervised learning models, in contrast, work on their own to discover the inherent structure of unlabeled data. Note that they still require some human intervention for validating output variables. For example, an unsupervised learning model can identify that online shoppers often purchase groups of products at the same time. However, a data analyst would need to validate that it makes sense for a recommendation engine to group baby clothes with an order of diapers, applesauce, and sippy cups.

  • Goals:  In supervised learning, the goal is to predict outcomes for new data. You know up front the type of results to expect. With an unsupervised learning algorithm, the goal is to get insights from large volumes of new data. The machine learning itself determines what is different or interesting from the data set.
  • Applications: Supervised learning models are ideal for spam detection, sentiment analysis, weather forecasting and pricing predictions, among other things. In contrast, unsupervised learning is a great fit for anomaly detection, recommendation engines, customer personas and medical imaging.
  • Complexity:  Supervised learning is a simple method for machine learning, typically calculated by using programs like R or Python. In unsupervised learning, you need powerful tools for working with large amounts of unclassified data. Unsupervised learning models are computationally complex because they need a large training set to produce intended outcomes.
  • Drawbacks: Supervised learning models can be time-consuming to train, and the labels for input and output variables require expertise. Meanwhile, unsupervised learning methods can have wildly inaccurate results unless you have human intervention to validate the output variables.

Choosing the right approach for your situation depends on how your data scientists assess the structure and volume of your data, as well as the use case. To make your decision, be sure to do the following:

  • Evaluate your input data:  Is it labeled or unlabeled data? Do you have experts that can support extra labeling?
  • Define your goals:  Do you have a recurring, well-defined problem to solve? Or will the algorithm need to predict new problems?
  • Review your options for algorithms:  Are there algorithms with the same dimensionality that you need (number of features, attributes, or characteristics)? Can they support your data volume and structure?

Classifying big data can be a real challenge in supervised learning, but the results are highly accurate and trustworthy. In contrast, unsupervised learning can handle large volumes of data in real time. But, there’s a lack of transparency into how data is clustered and a higher risk of inaccurate results. This is where semi-supervised learning comes in.

Can’t decide on whether to use supervised or unsupervised learning?  Semi-supervised learning  is a happy medium, where you use a training data set with both labeled and unlabeled data. It’s particularly useful when it’s difficult to extract relevant features from data—and when you have a high volume of data.

Semi-supervised learning is ideal for medical images, where a small amount of training data can lead to a significant improvement in accuracy. For example, a radiologist can label a small subset of CT scans for tumors or diseases so the machine can more accurately predict which patients might require more medical attention.

Machine learning models are a powerful way to gain the data insights that improve our world. To learn more about the specific algorithms that are used with supervised and unsupervised learning, we encourage you to delve into the Learn Hub articles on these techniques. We also recommend checking out the blog post that goes a step further, with a detailed look at deep learning and neural networks.

  • What is Supervised Learning?
  • What is Unsupervised Learning?
  • AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the difference?

To learn more about how to build machine learning models, explore the free tutorials on the  IBM® Developer Hub .

Get the latest tech insights and expert thought leadership in your inbox.

The Data Differentiator: Learn how to weave a single technology concept into a holistic data strategy that drives business value.

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.

COMMENTS

  1. Understanding Data Presentations (Guide + Examples)

    A proper data presentation includes the interpretation of that data, the reason why it's included, and why it matters to your research. Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose ...

  2. What is Data Interpretation? Methods, Examples & Tools

    Data interpretation is a crucial aspect of data analysis and enables organizations to turn large amounts of data into actionable insights. The guide covered the definition, importance, types, methods, benefits, process, analysis, tools, use cases, and best practices of data interpretation. As technology continues to advance, the methods and ...

  3. What Is Data Interpretation? Meaning & Analysis Examples

    7) The Use of Dashboards For Data Interpretation. 8) Business Data Interpretation Examples. Data analysis and interpretation have now taken center stage with the advent of the digital age… and the sheer amount of data can be frightening. In fact, a Digital Universe study found that the total data supply in 2012 was 2.8 trillion gigabytes!

  4. Present Your Data Like a Pro

    TheJoelTruth. While a good presentation has data, data alone doesn't guarantee a good presentation. It's all about how that data is presented. The quickest way to confuse your audience is by ...

  5. PDF METHODS OF PRESENTING DATA FROM EXPERIMENTS

    Statements. The most common way of presentation of data is in the form of statements. This works best for simple observations, such as: "When viewed by light microscopy, all of the cells appeared dead." When data are more quantitative, such as- "7 out of 10 cells were dead", a table is the preferred form. Tables.

  6. Data Interpretation

    The purpose of data interpretation is to make sense of complex data by analyzing and drawing insights from it. The process of data interpretation involves identifying patterns and trends, making comparisons, and drawing conclusions based on the data. The ultimate goal of data interpretation is to use the insights gained from the analysis to ...

  7. How To Create A Successful Data Presentation

    Storytelling with data is a highly valued skill in the workforce today and translating data and insights for a non-technical audience is rare to see than it is expected. Here's my five-step routine to make and deliver your data presentation right where it is intended —. 1. Understand Your Data & Make It Seen.

  8. Analysis and Interpretation of Data

    There are 4 modules in this course. This course focuses on the analysis and interpretation of data. The focus will be placed on data preparation and description and quantitative and qualitative data analysis. The course commences with a discussion of data preparation, scale internal consistency, appropriate data analysis and the Pearson ...

  9. The Library: Research Skills: Analysing and Presenting Data

    Overview. Data analysis is an ongoing process that should occur throughout your research project. Suitable data-analysis methods must be selected when you write your research proposal. The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis ...

  10. What Is Data Analysis? (With Examples)

    Written by Coursera Staff • Updated on Apr 19, 2024. Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock ...

  11. PDF Data analysis and interpretation I: introduction and the ...

    Once the field data have been collected for a specific project, attention turns to the methods for the analysis of the data and the presentation of the results. Two very important points must be stressed immediately: 1 the data should have been collected with the techniques of analysis and presentation in mind.

  12. Data Interpretation: Definition and Steps with Examples

    In business terms, the interpretation of data is the execution of various processes. This process analyzes and revises data to gain insights and recognize emerging patterns and behaviors. These conclusions will assist you as a manager in making an informed decision based on numbers while having all of the facts at your disposal.

  13. What is Data Analysis? An Expert Guide With Examples

    Data analysis is a comprehensive method of inspecting, cleansing, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making. It is a multifaceted process involving various techniques and methodologies to interpret data from various sources in different formats, both structured and unstructured.

  14. Data Collection, Presentation and Analysis

    Abstract. This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions.

  15. Data Analysis and Presentation Skills: the PwC Approach

    In the first module you'll plan an analysis approach, in the second and third modules you will analyze sets of data using the Excel skills you learn. In the fourth module you will prepare a business presentation. In the final Capstone Project, you'll apply the skills you've learned by working through a mock client business problem.

  16. Methods of Data Collection, Representation, and Analysis

    Advances in analysis, data representation, and research design feed into and reinforce one another in the course of actual scientific work. ... Research on data presentation has been carried out by statisticians, psychologists, cartographers, and other specialists, and attempts are now being made to incorporate findings and concepts from ...

  17. PDF Chapter 4: Analysis and Interpretation of Results

    chapter, data is interpreted in a descriptive form. This chapter comprises the analysis, presentation and interpretation of the findings resulting from this study. The analysis and interpretation of data is carried out in two phases. The first part, which is based on the results of the questionnaire, deals with a quantitative analysis of data.

  18. (PDF) Qualitative Data Analysis and Interpretation: Systematic Search

    Qualitative data analysis is. concerned with transforming raw data by searching, evaluating, recogni sing, cod ing, mapping, exploring and describing patterns, trends, themes an d categories in ...

  19. Chapter Four Data Presentation, Analysis and Interpretation 4.0

    DATA PRESENTATION, ANALYSIS AND INTERPRETATION. 4.0 Introduction. This chapter is concerned with data pres entation, of the findings obtained through the study. The. findings are presented in ...

  20. Analysis and interpretation of data

    2. ANALYSIS and INTERPRETATION provide answers to the research questions postulated in the study. ANALYSIS means the ordering, manipulating, and summarizing of data to obtain answers to research questions. Its purpose is to reduce data to intelligible and interpretable form so that the relations of research problems can be studied and tested.

  21. PDF DATA ANALYSIS, INTERPRETATION AND PRESENTATION

    analysis to use on a set of data and the relevant forms of pictorial presentation or data display. The decision is based on the scale of measurement of the data. These scales are nominal, ordinal and numerical. Nominal scale A nominal scale is where: the data can be classified into a non-numerical or named categories, and

  22. Data Presentation

    Data Analysis and Data Presentation have a practical implementation in every possible field. It can range from academic studies, commercial, industrial and marketing activities to professional practices. In its raw form, data can be extremely complicated to decipher and in order to extract meaningful insights from the data, data analysis is an important step towards breaking down data into ...

  23. Chapter 4 PRESENTATION, ANALYSIS AND INTERPRETATION OF DATA

    Chapter 4 PRESENTATION, ANALYSIS AND INTERPRETATION OF DATA This chapter presents the data gathered, the results of the statistical analysis done and interpretation of findings. These are presented in tables following the sequence of the specific research problem regarding the Effectiveness of Beat Patrol System in of San Manuel, Pangasinan.

  24. Taking action on inequities: a structural paradigm for quality and

    How to measure inequity, and growing calls to reframe health equity data measurement, presentation and analysis are central to this discourse. Arrington and colleagues' article offers strategies to collect, share and interpret quality data using a racial equity lens.1 The authors first describe the problems with stratifying quality data by race ...

  25. Full article: Clinical Presentation and Outcomes of Hospitalized

    All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal ...

  26. Supervised vs. unsupervised learning: What's the difference?

    The main difference between supervised and unsupervised learning: Labeled data. The main distinction between the two approaches is the use of labeled data sets. To put it simply, supervised learning uses labeled input and output data, while an unsupervised learning algorithm does not. In supervised learning, the algorithm "learns" from the ...

  27. . Data Presentation and Analysis: Assignment Review Worksheet 1

    Detailed explanation: Overall, this analysis assignment involves collecting, interpreting, and discussing data to gain actionable insights into online shopping behavior, with the ultimate goal of informing strategic marketing decisions. Just follow the correct format in your presentation. Answer to . Data Presentation and Analysis: Assignment ...

  28. Summer 2023 consultation

    Presentation and interpretation of data. When interpreting the findings, it is important to remember that results are based on a sample of the maintained and independent school population, and not the entire population of 11 to 17 year olds in England, Scotland, and Wales.

  29. Excel Power Tools for Data Analysis

    Welcome to Excel Power Tools for Data Analysis. In this four-week course, we introduce Power Query, Power Pivot and Power BI, three power tools for transforming, analysing and presenting data. Excel's ease and flexibility have long made it a tool of choice for doing data analysis, but it does have some inherent limitations: for one, truly "big ...

  30. JPM

    Data on patient demographics, clinical presentation, and diagnostic methods were collected and analyzed. Results: Of the 152 records identified, 26 cases from 23 articles met the inclusion criteria. A demographic analysis revealed that the gender distribution appears to be perfectly balanced, with an age range of 38 to 91 years.