What is The Null Hypothesis & When Do You Reject The Null Hypothesis

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A null hypothesis is a statistical concept suggesting no significant difference or relationship between measured variables. It’s the default assumption unless empirical evidence proves otherwise.

The null hypothesis states no relationship exists between the two variables being studied (i.e., one variable does not affect the other).

The null hypothesis is the statement that a researcher or an investigator wants to disprove.

Testing the null hypothesis can tell you whether your results are due to the effects of manipulating ​ the dependent variable or due to random chance. 

How to Write a Null Hypothesis

Null hypotheses (H0) start as research questions that the investigator rephrases as statements indicating no effect or relationship between the independent and dependent variables.

It is a default position that your research aims to challenge or confirm.

For example, if studying the impact of exercise on weight loss, your null hypothesis might be:

There is no significant difference in weight loss between individuals who exercise daily and those who do not.

Examples of Null Hypotheses

When do we reject the null hypothesis .

We reject the null hypothesis when the data provide strong enough evidence to conclude that it is likely incorrect. This often occurs when the p-value (probability of observing the data given the null hypothesis is true) is below a predetermined significance level.

If the collected data does not meet the expectation of the null hypothesis, a researcher can conclude that the data lacks sufficient evidence to back up the null hypothesis, and thus the null hypothesis is rejected. 

Rejecting the null hypothesis means that a relationship does exist between a set of variables and the effect is statistically significant ( p > 0.05).

If the data collected from the random sample is not statistically significance , then the null hypothesis will be accepted, and the researchers can conclude that there is no relationship between the variables. 

You need to perform a statistical test on your data in order to evaluate how consistent it is with the null hypothesis. A p-value is one statistical measurement used to validate a hypothesis against observed data.

Calculating the p-value is a critical part of null-hypothesis significance testing because it quantifies how strongly the sample data contradicts the null hypothesis.

The level of statistical significance is often expressed as a  p  -value between 0 and 1. The smaller the p-value, the stronger the evidence that you should reject the null hypothesis.

Probability and statistical significance in ab testing. Statistical significance in a b experiments

Usually, a researcher uses a confidence level of 95% or 99% (p-value of 0.05 or 0.01) as general guidelines to decide if you should reject or keep the null.

When your p-value is less than or equal to your significance level, you reject the null hypothesis.

In other words, smaller p-values are taken as stronger evidence against the null hypothesis. Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis.

In this case, the sample data provides insufficient data to conclude that the effect exists in the population.

Because you can never know with complete certainty whether there is an effect in the population, your inferences about a population will sometimes be incorrect.

When you incorrectly reject the null hypothesis, it’s called a type I error. When you incorrectly fail to reject it, it’s called a type II error.

Why Do We Never Accept The Null Hypothesis?

The reason we do not say “accept the null” is because we are always assuming the null hypothesis is true and then conducting a study to see if there is evidence against it. And, even if we don’t find evidence against it, a null hypothesis is not accepted.

A lack of evidence only means that you haven’t proven that something exists. It does not prove that something doesn’t exist. 

It is risky to conclude that the null hypothesis is true merely because we did not find evidence to reject it. It is always possible that researchers elsewhere have disproved the null hypothesis, so we cannot accept it as true, but instead, we state that we failed to reject the null. 

One can either reject the null hypothesis, or fail to reject it, but can never accept it.

Why Do We Use The Null Hypothesis?

We can never prove with 100% certainty that a hypothesis is true; We can only collect evidence that supports a theory. However, testing a hypothesis can set the stage for rejecting or accepting this hypothesis within a certain confidence level.

The null hypothesis is useful because it can tell us whether the results of our study are due to random chance or the manipulation of a variable (with a certain level of confidence).

A null hypothesis is rejected if the measured data is significantly unlikely to have occurred and a null hypothesis is accepted if the observed outcome is consistent with the position held by the null hypothesis.

Rejecting the null hypothesis sets the stage for further experimentation to see if a relationship between two variables exists. 

Hypothesis testing is a critical part of the scientific method as it helps decide whether the results of a research study support a particular theory about a given population. Hypothesis testing is a systematic way of backing up researchers’ predictions with statistical analysis.

It helps provide sufficient statistical evidence that either favors or rejects a certain hypothesis about the population parameter. 

Purpose of a Null Hypothesis 

  • The primary purpose of the null hypothesis is to disprove an assumption. 
  • Whether rejected or accepted, the null hypothesis can help further progress a theory in many scientific cases.
  • A null hypothesis can be used to ascertain how consistent the outcomes of multiple studies are.

Do you always need both a Null Hypothesis and an Alternative Hypothesis?

The null (H0) and alternative (Ha or H1) hypotheses are two competing claims that describe the effect of the independent variable on the dependent variable. They are mutually exclusive, which means that only one of the two hypotheses can be true. 

While the null hypothesis states that there is no effect in the population, an alternative hypothesis states that there is statistical significance between two variables. 

The goal of hypothesis testing is to make inferences about a population based on a sample. In order to undertake hypothesis testing, you must express your research hypothesis as a null and alternative hypothesis. Both hypotheses are required to cover every possible outcome of the study. 

What is the difference between a null hypothesis and an alternative hypothesis?

The alternative hypothesis is the complement to the null hypothesis. The null hypothesis states that there is no effect or no relationship between variables, while the alternative hypothesis claims that there is an effect or relationship in the population.

It is the claim that you expect or hope will be true. The null hypothesis and the alternative hypothesis are always mutually exclusive, meaning that only one can be true at a time.

What are some problems with the null hypothesis?

One major problem with the null hypothesis is that researchers typically will assume that accepting the null is a failure of the experiment. However, accepting or rejecting any hypothesis is a positive result. Even if the null is not refuted, the researchers will still learn something new.

Why can a null hypothesis not be accepted?

We can either reject or fail to reject a null hypothesis, but never accept it. If your test fails to detect an effect, this is not proof that the effect doesn’t exist. It just means that your sample did not have enough evidence to conclude that it exists.

We can’t accept a null hypothesis because a lack of evidence does not prove something that does not exist. Instead, we fail to reject it.

Failing to reject the null indicates that the sample did not provide sufficient enough evidence to conclude that an effect exists.

If the p-value is greater than the significance level, then you fail to reject the null hypothesis.

Is a null hypothesis directional or non-directional?

A hypothesis test can either contain an alternative directional hypothesis or a non-directional alternative hypothesis. A directional hypothesis is one that contains the less than (“<“) or greater than (“>”) sign.

A nondirectional hypothesis contains the not equal sign (“≠”).  However, a null hypothesis is neither directional nor non-directional.

A null hypothesis is a prediction that there will be no change, relationship, or difference between two variables.

The directional hypothesis or nondirectional hypothesis would then be considered alternative hypotheses to the null hypothesis.

Gill, J. (1999). The insignificance of null hypothesis significance testing.  Political research quarterly ,  52 (3), 647-674.

Krueger, J. (2001). Null hypothesis significance testing: On the survival of a flawed method.  American Psychologist ,  56 (1), 16.

Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.  Behavior research methods ,  43 , 679-690.

Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy.  Psychological methods ,  5 (2), 241.

Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test.  Psychological bulletin ,  57 (5), 416.

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

Hypothesis Testing (cont...)

Hypothesis testing, the null and alternative hypothesis.

In order to undertake hypothesis testing you need to express your research hypothesis as a null and alternative hypothesis. The null hypothesis and alternative hypothesis are statements regarding the differences or effects that occur in the population. You will use your sample to test which statement (i.e., the null hypothesis or alternative hypothesis) is most likely (although technically, you test the evidence against the null hypothesis). So, with respect to our teaching example, the null and alternative hypothesis will reflect statements about all statistics students on graduate management courses.

The null hypothesis is essentially the "devil's advocate" position. That is, it assumes that whatever you are trying to prove did not happen ( hint: it usually states that something equals zero). For example, the two different teaching methods did not result in different exam performances (i.e., zero difference). Another example might be that there is no relationship between anxiety and athletic performance (i.e., the slope is zero). The alternative hypothesis states the opposite and is usually the hypothesis you are trying to prove (e.g., the two different teaching methods did result in different exam performances). Initially, you can state these hypotheses in more general terms (e.g., using terms like "effect", "relationship", etc.), as shown below for the teaching methods example:

Depending on how you want to "summarize" the exam performances will determine how you might want to write a more specific null and alternative hypothesis. For example, you could compare the mean exam performance of each group (i.e., the "seminar" group and the "lectures-only" group). This is what we will demonstrate here, but other options include comparing the distributions , medians , amongst other things. As such, we can state:

Now that you have identified the null and alternative hypotheses, you need to find evidence and develop a strategy for declaring your "support" for either the null or alternative hypothesis. We can do this using some statistical theory and some arbitrary cut-off points. Both these issues are dealt with next.

Significance levels

The level of statistical significance is often expressed as the so-called p -value . Depending on the statistical test you have chosen, you will calculate a probability (i.e., the p -value) of observing your sample results (or more extreme) given that the null hypothesis is true . Another way of phrasing this is to consider the probability that a difference in a mean score (or other statistic) could have arisen based on the assumption that there really is no difference. Let us consider this statement with respect to our example where we are interested in the difference in mean exam performance between two different teaching methods. If there really is no difference between the two teaching methods in the population (i.e., given that the null hypothesis is true), how likely would it be to see a difference in the mean exam performance between the two teaching methods as large as (or larger than) that which has been observed in your sample?

So, you might get a p -value such as 0.03 (i.e., p = .03). This means that there is a 3% chance of finding a difference as large as (or larger than) the one in your study given that the null hypothesis is true. However, you want to know whether this is "statistically significant". Typically, if there was a 5% or less chance (5 times in 100 or less) that the difference in the mean exam performance between the two teaching methods (or whatever statistic you are using) is as different as observed given the null hypothesis is true, you would reject the null hypothesis and accept the alternative hypothesis. Alternately, if the chance was greater than 5% (5 times in 100 or more), you would fail to reject the null hypothesis and would not accept the alternative hypothesis. As such, in this example where p = .03, we would reject the null hypothesis and accept the alternative hypothesis. We reject it because at a significance level of 0.03 (i.e., less than a 5% chance), the result we obtained could happen too frequently for us to be confident that it was the two teaching methods that had an effect on exam performance.

Whilst there is relatively little justification why a significance level of 0.05 is used rather than 0.01 or 0.10, for example, it is widely used in academic research. However, if you want to be particularly confident in your results, you can set a more stringent level of 0.01 (a 1% chance or less; 1 in 100 chance or less).

Testimonials

One- and two-tailed predictions

When considering whether we reject the null hypothesis and accept the alternative hypothesis, we need to consider the direction of the alternative hypothesis statement. For example, the alternative hypothesis that was stated earlier is:

The alternative hypothesis tells us two things. First, what predictions did we make about the effect of the independent variable(s) on the dependent variable(s)? Second, what was the predicted direction of this effect? Let's use our example to highlight these two points.

Sarah predicted that her teaching method (independent variable: teaching method), whereby she not only required her students to attend lectures, but also seminars, would have a positive effect (that is, increased) students' performance (dependent variable: exam marks). If an alternative hypothesis has a direction (and this is how you want to test it), the hypothesis is one-tailed. That is, it predicts direction of the effect. If the alternative hypothesis has stated that the effect was expected to be negative, this is also a one-tailed hypothesis.

Alternatively, a two-tailed prediction means that we do not make a choice over the direction that the effect of the experiment takes. Rather, it simply implies that the effect could be negative or positive. If Sarah had made a two-tailed prediction, the alternative hypothesis might have been:

In other words, we simply take out the word "positive", which implies the direction of our effect. In our example, making a two-tailed prediction may seem strange. After all, it would be logical to expect that "extra" tuition (going to seminar classes as well as lectures) would either have a positive effect on students' performance or no effect at all, but certainly not a negative effect. However, this is just our opinion (and hope) and certainly does not mean that we will get the effect we expect. Generally speaking, making a one-tail prediction (i.e., and testing for it this way) is frowned upon as it usually reflects the hope of a researcher rather than any certainty that it will happen. Notable exceptions to this rule are when there is only one possible way in which a change could occur. This can happen, for example, when biological activity/presence in measured. That is, a protein might be "dormant" and the stimulus you are using can only possibly "wake it up" (i.e., it cannot possibly reduce the activity of a "dormant" protein). In addition, for some statistical tests, one-tailed tests are not possible.

Rejecting or failing to reject the null hypothesis

Let's return finally to the question of whether we reject or fail to reject the null hypothesis.

If our statistical analysis shows that the significance level is below the cut-off value we have set (e.g., either 0.05 or 0.01), we reject the null hypothesis and accept the alternative hypothesis. Alternatively, if the significance level is above the cut-off value, we fail to reject the null hypothesis and cannot accept the alternative hypothesis. You should note that you cannot accept the null hypothesis, but only find evidence against it.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

9.1: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 23459

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

\(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

\(H_a\): The alternative hypothesis: It is a claim about the population that is contradictory to \(H_0\) and what we conclude when we reject \(H_0\). This is usually what the researcher is trying to prove.

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_0\)" if the sample information favors the alternative hypothesis or "do not reject \(H_0\)" or "decline to reject \(H_0\)" if the sample information is insufficient to reject the null hypothesis.

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example \(\PageIndex{1}\)

  • \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
  • \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

  • \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
  • \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

  • \(H_{0}: \mu = 2.0\)
  • \(H_{a}: \mu \neq 2.0\)

Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 66\)
  • \(H_{a}: \mu \_ 66\)
  • \(H_{0}: \mu = 66\)
  • \(H_{a}: \mu \neq 66\)

Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

  • \(H_{0}: \mu \geq 5\)
  • \(H_{a}: \mu < 5\)

Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 45\)
  • \(H_{a}: \mu \_ 45\)
  • \(H_{0}: \mu \geq 45\)
  • \(H_{a}: \mu < 45\)

Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

  • \(H_{0}: p \leq 0.066\)
  • \(H_{a}: p > 0.066\)

Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

  • \(H_{0}: p \_ 0.40\)
  • \(H_{a}: p \_ 0.40\)
  • \(H_{0}: p = 0.40\)
  • \(H_{a}: p > 0.40\)

COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

  • Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
  • Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
  • If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
  • Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

  • If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
  • If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 13: Inferential Statistics

Understanding Null Hypothesis Testing

Learning Objectives

  • Explain the purpose of null hypothesis testing, including the role of sampling error.
  • Describe the basic logic of null hypothesis testing.
  • Describe the role of relationship strength and sample size in determining statistical significance and make reasonable judgments about statistical significance based on these two factors.

The Purpose of Null Hypothesis Testing

As we have seen, psychological research typically involves measuring one or more variables for a sample and computing descriptive statistics for that sample. In general, however, the researcher’s goal is not to draw conclusions about that sample but to draw conclusions about the population that the sample was selected from. Thus researchers must use sample statistics to draw conclusions about the corresponding values in the population. These corresponding values in the population are called  parameters . Imagine, for example, that a researcher measures the number of depressive symptoms exhibited by each of 50 clinically depressed adults and computes the mean number of symptoms. The researcher probably wants to use this sample statistic (the mean number of symptoms for the sample) to draw conclusions about the corresponding population parameter (the mean number of symptoms for clinically depressed adults).

Unfortunately, sample statistics are not perfect estimates of their corresponding population parameters. This is because there is a certain amount of random variability in any statistic from sample to sample. The mean number of depressive symptoms might be 8.73 in one sample of clinically depressed adults, 6.45 in a second sample, and 9.44 in a third—even though these samples are selected randomly from the same population. Similarly, the correlation (Pearson’s  r ) between two variables might be +.24 in one sample, −.04 in a second sample, and +.15 in a third—again, even though these samples are selected randomly from the same population. This random variability in a statistic from sample to sample is called  sampling error . (Note that the term error  here refers to random variability and does not imply that anyone has made a mistake. No one “commits a sampling error.”)

One implication of this is that when there is a statistical relationship in a sample, it is not always clear that there is a statistical relationship in the population. A small difference between two group means in a sample might indicate that there is a small difference between the two group means in the population. But it could also be that there is no difference between the means in the population and that the difference in the sample is just a matter of sampling error. Similarly, a Pearson’s  r  value of −.29 in a sample might mean that there is a negative relationship in the population. But it could also be that there is no relationship in the population and that the relationship in the sample is just a matter of sampling error.

In fact, any statistical relationship in a sample can be interpreted in two ways:

  • There is a relationship in the population, and the relationship in the sample reflects this.
  • There is no relationship in the population, and the relationship in the sample reflects only sampling error.

The purpose of null hypothesis testing is simply to help researchers decide between these two interpretations.

The Logic of Null Hypothesis Testing

Null hypothesis testing  is a formal approach to deciding between two interpretations of a statistical relationship in a sample. One interpretation is called the   null hypothesis  (often symbolized  H 0  and read as “H-naught”). This is the idea that there is no relationship in the population and that the relationship in the sample reflects only sampling error. Informally, the null hypothesis is that the sample relationship “occurred by chance.” The other interpretation is called the  alternative hypothesis  (often symbolized as  H 1 ). This is the idea that there is a relationship in the population and that the relationship in the sample reflects this relationship in the population.

Again, every statistical relationship in a sample can be interpreted in either of these two ways: It might have occurred by chance, or it might reflect a relationship in the population. So researchers need a way to decide between them. Although there are many specific null hypothesis testing techniques, they are all based on the same general logic. The steps are as follows:

  • Assume for the moment that the null hypothesis is true. There is no relationship between the variables in the population.
  • Determine how likely the sample relationship would be if the null hypothesis were true.
  • If the sample relationship would be extremely unlikely, then reject the null hypothesis  in favour of the alternative hypothesis. If it would not be extremely unlikely, then  retain the null hypothesis .

Following this logic, we can begin to understand why Mehl and his colleagues concluded that there is no difference in talkativeness between women and men in the population. In essence, they asked the following question: “If there were no difference in the population, how likely is it that we would find a small difference of  d  = 0.06 in our sample?” Their answer to this question was that this sample relationship would be fairly likely if the null hypothesis were true. Therefore, they retained the null hypothesis—concluding that there is no evidence of a sex difference in the population. We can also see why Kanner and his colleagues concluded that there is a correlation between hassles and symptoms in the population. They asked, “If the null hypothesis were true, how likely is it that we would find a strong correlation of +.60 in our sample?” Their answer to this question was that this sample relationship would be fairly unlikely if the null hypothesis were true. Therefore, they rejected the null hypothesis in favour of the alternative hypothesis—concluding that there is a positive correlation between these variables in the population.

A crucial step in null hypothesis testing is finding the likelihood of the sample result if the null hypothesis were true. This probability is called the  p value . A low  p  value means that the sample result would be unlikely if the null hypothesis were true and leads to the rejection of the null hypothesis. A high  p  value means that the sample result would be likely if the null hypothesis were true and leads to the retention of the null hypothesis. But how low must the  p  value be before the sample result is considered unlikely enough to reject the null hypothesis? In null hypothesis testing, this criterion is called  α (alpha)  and is almost always set to .05. If there is less than a 5% chance of a result as extreme as the sample result if the null hypothesis were true, then the null hypothesis is rejected. When this happens, the result is said to be  statistically significant . If there is greater than a 5% chance of a result as extreme as the sample result when the null hypothesis is true, then the null hypothesis is retained. This does not necessarily mean that the researcher accepts the null hypothesis as true—only that there is not currently enough evidence to conclude that it is true. Researchers often use the expression “fail to reject the null hypothesis” rather than “retain the null hypothesis,” but they never use the expression “accept the null hypothesis.”

The Misunderstood  p  Value

The  p  value is one of the most misunderstood quantities in psychological research (Cohen, 1994) [1] . Even professional researchers misinterpret it, and it is not unusual for such misinterpretations to appear in statistics textbooks!

The most common misinterpretation is that the  p  value is the probability that the null hypothesis is true—that the sample result occurred by chance. For example, a misguided researcher might say that because the  p  value is .02, there is only a 2% chance that the result is due to chance and a 98% chance that it reflects a real relationship in the population. But this is incorrect . The  p  value is really the probability of a result at least as extreme as the sample result  if  the null hypothesis  were  true. So a  p  value of .02 means that if the null hypothesis were true, a sample result this extreme would occur only 2% of the time.

You can avoid this misunderstanding by remembering that the  p  value is not the probability that any particular  hypothesis  is true or false. Instead, it is the probability of obtaining the  sample result  if the null hypothesis were true.

Role of Sample Size and Relationship Strength

Recall that null hypothesis testing involves answering the question, “If the null hypothesis were true, what is the probability of a sample result as extreme as this one?” In other words, “What is the  p  value?” It can be helpful to see that the answer to this question depends on just two considerations: the strength of the relationship and the size of the sample. Specifically, the stronger the sample relationship and the larger the sample, the less likely the result would be if the null hypothesis were true. That is, the lower the  p  value. This should make sense. Imagine a study in which a sample of 500 women is compared with a sample of 500 men in terms of some psychological characteristic, and Cohen’s  d  is a strong 0.50. If there were really no sex difference in the population, then a result this strong based on such a large sample should seem highly unlikely. Now imagine a similar study in which a sample of three women is compared with a sample of three men, and Cohen’s  d  is a weak 0.10. If there were no sex difference in the population, then a relationship this weak based on such a small sample should seem likely. And this is precisely why the null hypothesis would be rejected in the first example and retained in the second.

Of course, sometimes the result can be weak and the sample large, or the result can be strong and the sample small. In these cases, the two considerations trade off against each other so that a weak result can be statistically significant if the sample is large enough and a strong relationship can be statistically significant even if the sample is small. Table 13.1 shows roughly how relationship strength and sample size combine to determine whether a sample result is statistically significant. The columns of the table represent the three levels of relationship strength: weak, medium, and strong. The rows represent four sample sizes that can be considered small, medium, large, and extra large in the context of psychological research. Thus each cell in the table represents a combination of relationship strength and sample size. If a cell contains the word  Yes , then this combination would be statistically significant for both Cohen’s  d  and Pearson’s  r . If it contains the word  No , then it would not be statistically significant for either. There is one cell where the decision for  d  and  r  would be different and another where it might be different depending on some additional considerations, which are discussed in Section 13.2 “Some Basic Null Hypothesis Tests”

Although Table 13.1 provides only a rough guideline, it shows very clearly that weak relationships based on medium or small samples are never statistically significant and that strong relationships based on medium or larger samples are always statistically significant. If you keep this lesson in mind, you will often know whether a result is statistically significant based on the descriptive statistics alone. It is extremely useful to be able to develop this kind of intuitive judgment. One reason is that it allows you to develop expectations about how your formal null hypothesis tests are going to come out, which in turn allows you to detect problems in your analyses. For example, if your sample relationship is strong and your sample is medium, then you would expect to reject the null hypothesis. If for some reason your formal null hypothesis test indicates otherwise, then you need to double-check your computations and interpretations. A second reason is that the ability to make this kind of intuitive judgment is an indication that you understand the basic logic of this approach in addition to being able to do the computations.

Statistical Significance Versus Practical Significance

Table 13.1 illustrates another extremely important point. A statistically significant result is not necessarily a strong one. Even a very weak result can be statistically significant if it is based on a large enough sample. This is closely related to Janet Shibley Hyde’s argument about sex differences (Hyde, 2007) [2] . The differences between women and men in mathematical problem solving and leadership ability are statistically significant. But the word  significant  can cause people to interpret these differences as strong and important—perhaps even important enough to influence the college courses they take or even who they vote for. As we have seen, however, these statistically significant differences are actually quite weak—perhaps even “trivial.”

This is why it is important to distinguish between the  statistical  significance of a result and the  practical  significance of that result.  Practical significance refers to the importance or usefulness of the result in some real-world context. Many sex differences are statistically significant—and may even be interesting for purely scientific reasons—but they are not practically significant. In clinical practice, this same concept is often referred to as “clinical significance.” For example, a study on a new treatment for social phobia might show that it produces a statistically significant positive effect. Yet this effect still might not be strong enough to justify the time, effort, and other costs of putting it into practice—especially if easier and cheaper treatments that work almost as well already exist. Although statistically significant, this result would be said to lack practical or clinical significance.

Key Takeaways

  • Null hypothesis testing is a formal approach to deciding whether a statistical relationship in a sample reflects a real relationship in the population or is just due to chance.
  • The logic of null hypothesis testing involves assuming that the null hypothesis is true, finding how likely the sample result would be if this assumption were correct, and then making a decision. If the sample result would be unlikely if the null hypothesis were true, then it is rejected in favour of the alternative hypothesis. If it would not be unlikely, then the null hypothesis is retained.
  • The probability of obtaining the sample result if the null hypothesis were true (the  p  value) is based on two considerations: relationship strength and sample size. Reasonable judgments about whether a sample relationship is statistically significant can often be made by quickly considering these two factors.
  • Statistical significance is not the same as relationship strength or importance. Even weak relationships can be statistically significant if the sample size is large enough. It is important to consider relationship strength and the practical significance of a result in addition to its statistical significance.
  • Discussion: Imagine a study showing that people who eat more broccoli tend to be happier. Explain for someone who knows nothing about statistics why the researchers would conduct a null hypothesis test.
  • The correlation between two variables is  r  = −.78 based on a sample size of 137.
  • The mean score on a psychological characteristic for women is 25 ( SD  = 5) and the mean score for men is 24 ( SD  = 5). There were 12 women and 10 men in this study.
  • In a memory experiment, the mean number of items recalled by the 40 participants in Condition A was 0.50 standard deviations greater than the mean number recalled by the 40 participants in Condition B.
  • In another memory experiment, the mean scores for participants in Condition A and Condition B came out exactly the same!
  • A student finds a correlation of  r  = .04 between the number of units the students in his research methods class are taking and the students’ level of stress.

Long Descriptions

“Null Hypothesis” long description: A comic depicting a man and a woman talking in the foreground. In the background is a child working at a desk. The man says to the woman, “I can’t believe schools are still teaching kids about the null hypothesis. I remember reading a big study that conclusively disproved it years ago.” [Return to “Null Hypothesis”]

“Conditional Risk” long description: A comic depicting two hikers beside a tree during a thunderstorm. A bolt of lightning goes “crack” in the dark sky as thunder booms. One of the hikers says, “Whoa! We should get inside!” The other hiker says, “It’s okay! Lightning only kills about 45 Americans a year, so the chances of dying are only one in 7,000,000. Let’s go on!” The comic’s caption says, “The annual death rate among people who know that statistic is one in six.” [Return to “Conditional Risk”]

Media Attributions

  • Null Hypothesis by XKCD  CC BY-NC (Attribution NonCommercial)
  • Conditional Risk by XKCD  CC BY-NC (Attribution NonCommercial)
  • Cohen, J. (1994). The world is round: p < .05. American Psychologist, 49 , 997–1003. ↵
  • Hyde, J. S. (2007). New directions in the study of gender similarities and differences. Current Directions in Psychological Science, 16 , 259–263. ↵

Values in a population that correspond to variables measured in a study.

The random variability in a statistic from sample to sample.

A formal approach to deciding between two interpretations of a statistical relationship in a sample.

The idea that there is no relationship in the population and that the relationship in the sample reflects only sampling error.

The idea that there is a relationship in the population and that the relationship in the sample reflects this relationship in the population.

When the relationship found in the sample would be extremely unlikely, the idea that the relationship occurred “by chance” is rejected.

When the relationship found in the sample is likely to have occurred by chance, the null hypothesis is not rejected.

The probability that, if the null hypothesis were true, the result found in the sample would occur.

How low the p value must be before the sample result is considered unlikely in null hypothesis testing.

When there is less than a 5% chance of a result as extreme as the sample result occurring and the null hypothesis is rejected.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

the null hypothesis cannot be accepted

What 'Fail to Reject' Means in a Hypothesis Test

Casarsa Guru/Getty Images

  • Inferential Statistics
  • Statistics Tutorials
  • Probability & Games
  • Descriptive Statistics
  • Applications Of Statistics
  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade
  • Ph.D., Mathematics, Purdue University
  • M.S., Mathematics, Purdue University
  • B.A., Mathematics, Physics, and Chemistry, Anderson University

In statistics , scientists can perform a number of different significance tests to determine if there is a relationship between two phenomena. One of the first they usually perform is a null hypothesis test. In short, the null hypothesis states that there is no meaningful relationship between two measured phenomena. After a performing a test, scientists can:

  • Reject the null hypothesis (meaning there is a definite, consequential relationship between the two phenomena), or
  • Fail to reject the null hypothesis (meaning the test has not identified a consequential relationship between the two phenomena)

Key Takeaways: The Null Hypothesis

• In a test of significance, the null hypothesis states that there is no meaningful relationship between two measured phenomena.

• By comparing the null hypothesis to an alternative hypothesis, scientists can either reject or fail to reject the null hypothesis.

• The null hypothesis cannot be positively proven. Rather, all that scientists can determine from a test of significance is that the evidence collected does or does not disprove the null hypothesis.

It is important to note that a failure to reject does not mean that the null hypothesis is true—only that the test did not prove it to be false. In some cases, depending on the experiment, a relationship may exist between two phenomena that is not identified by the experiment. In such cases, new experiments must be designed to rule out alternative hypotheses.

Null vs. Alternative Hypothesis

The null hypothesis is considered the default in a scientific experiment . In contrast, an alternative hypothesis is one that claims that there is a meaningful relationship between two phenomena. These two competing hypotheses can be compared by performing a statistical hypothesis test, which determines whether there is a statistically significant relationship between the data.

For example, scientists studying the water quality of a stream may wish to determine whether a certain chemical affects the acidity of the water. The null hypothesis—that the chemical has no effect on the water quality—can be tested by measuring the pH level of two water samples, one of which contains some of the chemical and one of which has been left untouched. If the sample with the added chemical is measurably more or less acidic—as determined through statistical analysis—it is a reason to reject the null hypothesis. If the sample's acidity is unchanged, it is a reason to not reject the null hypothesis.

When scientists design experiments, they attempt to find evidence for the alternative hypothesis. They do not try to prove that the null hypothesis is true. The null hypothesis is assumed to be an accurate statement until contrary evidence proves otherwise. As a result, a test of significance does not produce any evidence pertaining to the truth of the null hypothesis.

Failing to Reject vs. Accept

In an experiment, the null hypothesis and the alternative hypothesis should be carefully formulated such that one and only one of these statements is true. If the collected data supports the alternative hypothesis, then the null hypothesis can be rejected as false. However, if the data does not support the alternative hypothesis, this does not mean that the null hypothesis is true. All it means is that the null hypothesis has not been disproven—hence the term "failure to reject." A "failure to reject" a hypothesis should not be confused with acceptance.

In mathematics, negations are typically formed by simply placing the word “not” in the correct place. Using this convention, tests of significance allow scientists to either reject or not reject the null hypothesis. It sometimes takes a moment to realize that “not rejecting” is not the same as "accepting."

Null Hypothesis Example

In many ways, the philosophy behind a test of significance is similar to that of a trial. At the beginning of the proceedings, when the defendant enters a plea of “not guilty,” it is analogous to the statement of the null hypothesis. While the defendant may indeed be innocent, there is no plea of “innocent” to be formally made in court. The alternative hypothesis of “guilty” is what the prosecutor attempts to demonstrate.

The presumption at the outset of the trial is that the defendant is innocent. In theory, there is no need for the defendant to prove that he or she is innocent. The burden of proof is on the prosecuting attorney, who must marshal enough evidence to convince the jury that the defendant is guilty beyond a reasonable doubt. Likewise, in a test of significance, a scientist can only reject the null hypothesis by providing evidence for the alternative hypothesis.

If there is not enough evidence in a trial to demonstrate guilt, then the defendant is declared “not guilty.” This claim has nothing to do with innocence; it merely reflects the fact that the prosecution failed to provide enough evidence of guilt. In a similar way, a failure to reject the null hypothesis in a significance test does not mean that the null hypothesis is true. It only means that the scientist was unable to provide enough evidence for the alternative hypothesis.

For example, scientists testing the effects of a certain pesticide on crop yields might design an experiment in which some crops are left untreated and others are treated with varying amounts of pesticide. Any result in which the crop yields varied based on pesticide exposure—assuming all other variables are equal—would provide strong evidence for the alternative hypothesis (that the pesticide does affect crop yields). As a result, the scientists would have reason to reject the null hypothesis.

  • Null Hypothesis Examples
  • Hypothesis Test for the Difference of Two Population Proportions
  • Type I and Type II Errors in Statistics
  • Null Hypothesis and Alternative Hypothesis
  • How to Conduct a Hypothesis Test
  • An Example of a Hypothesis Test
  • What Is a P-Value?
  • The Difference Between Type I and Type II Errors in Hypothesis Testing
  • Null Hypothesis Definition and Examples
  • What Is a Hypothesis? (Science)
  • Hypothesis Test Example
  • What Level of Alpha Determines Statistical Significance?
  • Scientific Method Vocabulary Terms
  • How to Do Hypothesis Tests With the Z.TEST Function in Excel
  • The Runs Test for Random Sequences
  • What Is the Difference Between Alpha and P-Values?

the null hypothesis cannot be accepted

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

6a.1 - introduction to hypothesis testing, basic terms section  .

The first step in hypothesis testing is to set up two competing hypotheses. The hypotheses are the most important aspect. If the hypotheses are incorrect, your conclusion will also be incorrect.

The two hypotheses are named the null hypothesis and the alternative hypothesis.

The goal of hypothesis testing is to see if there is enough evidence against the null hypothesis. In other words, to see if there is enough evidence to reject the null hypothesis. If there is not enough evidence, then we fail to reject the null hypothesis.

Consider the following example where we set up these hypotheses.

Example 6-1 Section  

A man, Mr. Orangejuice, goes to trial and is tried for the murder of his ex-wife. He is either guilty or innocent. Set up the null and alternative hypotheses for this example.

Putting this in a hypothesis testing framework, the hypotheses being tested are:

  • The man is guilty
  • The man is innocent

Let's set up the null and alternative hypotheses.

\(H_0\colon \) Mr. Orangejuice is innocent

\(H_a\colon \) Mr. Orangejuice is guilty

Remember that we assume the null hypothesis is true and try to see if we have evidence against the null. Therefore, it makes sense in this example to assume the man is innocent and test to see if there is evidence that he is guilty.

The Logic of Hypothesis Testing Section  

We want to know the answer to a research question. We determine our null and alternative hypotheses. Now it is time to make a decision.

The decision is either going to be...

  • reject the null hypothesis or...
  • fail to reject the null hypothesis.

Consider the following table. The table shows the decision/conclusion of the hypothesis test and the unknown "reality", or truth. We do not know if the null is true or if it is false. If the null is false and we reject it, then we made the correct decision. If the null hypothesis is true and we fail to reject it, then we made the correct decision.

So what happens when we do not make the correct decision?

When doing hypothesis testing, two types of mistakes may be made and we call them Type I error and Type II error. If we reject the null hypothesis when it is true, then we made a type I error. If the null hypothesis is false and we failed to reject it, we made another error called a Type II error.

Types of errors

The “reality”, or truth, about the null hypothesis is unknown and therefore we do not know if we have made the correct decision or if we committed an error. We can, however, define the likelihood of these events.

\(\alpha\) and \(\beta\) are probabilities of committing an error so we want these values to be low. However, we cannot decrease both. As \(\alpha\) decreases, \(\beta\) increases.

Example 6-1 Cont'd... Section  

A man, Mr. Orangejuice, goes to trial and is tried for the murder of his ex-wife. He is either guilty or not guilty. We found before that...

  • \( H_0\colon \) Mr. Orangejuice is innocent
  • \( H_a\colon \) Mr. Orangejuice is guilty

Interpret Type I error, \(\alpha \), Type II error, \(\beta \).

As you can see here, the Type I error (putting an innocent man in jail) is the more serious error. Ethically, it is more serious to put an innocent man in jail than to let a guilty man go free. So to minimize the probability of a type I error we would choose a smaller significance level.

Try it! Section  

An inspector has to choose between certifying a building as safe or saying that the building is not safe. There are two hypotheses:

  • Building is safe
  • Building is not safe

Set up the null and alternative hypotheses. Interpret Type I and Type II error.

\( H_0\colon\) Building is not safe vs \(H_a\colon \) Building is safe

Power and \(\beta \) are complements of each other. Therefore, they have an inverse relationship, i.e. as one increases, the other decreases.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of plosone

Why we habitually engage in null-hypothesis significance testing: A qualitative study

Jonah stunt.

1 Department of Health Sciences, Section of Methodology and Applied Statistics, Vrije Universiteit, Amsterdam, The Netherlands

2 Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands

Leonie van Grootel

3 Rathenau Institute, The Hague, The Netherlands

4 Department of Philosophy, Vrije Universiteit, Amsterdam, The Netherlands

5 Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, The Netherlands

David Trafimow

6 Psychology Department, New Mexico State University, Las Cruces, New Mexico, United States of America

Trynke Hoekstra

Michiel de boer.

7 Department of General Practice and Elderly Care, University Medical Center Groningen, Groningen, The Netherlands

Associated Data

A full study protocol, including a detailed data analysis plan, was preregistered ( https://osf.io/4qg38/ ). At the start of this study, preregistration forms for qualitative studies were not developed yet. Therefore, preregistration for this study is based on an outdated form. Presently, there is a preregistration form available for qualitative studies. Information about data collection, data management, data sharing and data storage is described in a Data Management Plan. Sensitive data is stored in Darkstor, an offline archive for storing sensitive information or data (information that involves i.e., privacy or copyright). As the recordings and transcripts of the interviews and focus groups contain privacy-sensitive data, these files are archived in Darkstor and can be accessed only on request by authorized individuals (i.e., the original researcher or a research coordinator)1. Non-sensitive data is stored in DANS ( https://doi.org/10.17026/dans-2at-nzfs ) (Data Archiving and Networked Services; the Netherlands institute for permanent access to digital research resources). 1. Data requests can be send to ln.uv@mdr .

Null Hypothesis Significance Testing (NHST) is the most familiar statistical procedure for making inferences about population effects. Important problems associated with this method have been addressed and various alternatives that overcome these problems have been developed. Despite its many well-documented drawbacks, NHST remains the prevailing method for drawing conclusions from data. Reasons for this have been insufficiently investigated. Therefore, the aim of our study was to explore the perceived barriers and facilitators related to the use of NHST and alternative statistical procedures among relevant stakeholders in the scientific system.

Individual semi-structured interviews and focus groups were conducted with junior and senior researchers, lecturers in statistics, editors of scientific journals and program leaders of funding agencies. During the focus groups, important themes that emerged from the interviews were discussed. Data analysis was performed using the constant comparison method, allowing emerging (sub)themes to be fully explored. A theory substantiating the prevailing use of NHST was developed based on the main themes and subthemes we identified.

Twenty-nine interviews and six focus groups were conducted. Several interrelated facilitators and barriers associated with the use of NHST and alternative statistical procedures were identified. These factors were subsumed under three main themes: the scientific climate, scientific duty, and reactivity. As a result of the factors, most participants feel dependent in their actions upon others, have become reactive, and await action and initiatives from others. This may explain why NHST is still the standard and ubiquitously used by almost everyone involved.

Our findings demonstrate how perceived barriers to shift away from NHST set a high threshold for actual behavioral change and create a circle of interdependency between stakeholders. By taking small steps it should be possible to decrease the scientific community’s strong dependence on NHST and p-values.

Introduction

Empirical studies often start from the idea that there might be an association between a specific factor and a certain outcome within a population. This idea is referred to as the alternative hypothesis (H1). Its complement, the null hypothesis (H0), typically assumes no association or effect (although it is possible to test other effect sizes than no effect with the null hypothesis). At the stage of data-analysis, the probability of obtaining the observed, or a more extreme, association is calculated under the assumption of no effect in the population (H0) and a number of inferential assumptions [ 1 ]. The probability of obtaining the observed, or more extreme, data is known as ‘the p-value’. The p-value demonstrates the compatibility between the observed data and the expected data under the null hypothesis, where 0 is complete incompatibility and 1 is perfect compatibility [ 2 ]. When the p-value is smaller than a prespecified value (labelled as alpha, usually set at 5% (0.05)), results are generally declared to be statistically significant. At this point, researchers commonly reject the null hypothesis and accept the alternative hypothesis [ 2 ]. Assessing statistical significance by means of contrasting the data with the null hypothesis is called Null Hypothesis Significance Testing (NHST). NHST is the best known and most widely used statistical procedure for making inferences about population effects. The procedure has become the prevailing paradigm in empirical science [ 3 ], and reaching and being able to report statistically significant results has become the ultimate goal for many researchers.

Despite its widespread use, NHST and the p-value have been criticized since its inception. Numerous publications have addressed problems associated with NHST and p-values. Arguably the most important drawback is the fact that NHST is a form of indirect or inverse inference: researchers usually want to know if the null or alternative hypothesis can be accepted and use NHST to conclude either way. But with NHST, the probability of a finding, or more extreme findings, given the null hypothesis is calculated [ 4 ]. Ergo, NHST doesn’t tell us what we want to know. In fact, p-values were never meant to serve as a basis to draw conclusions, but as a continuous measure of incompatibility between empirical findings and a statistical model [ 2 ]. Moreover, the procedure promotes a dichotomous way of thinking, by using the outcome of a significance test as a dichotomous indicator for an effect (p<0.05: effect, p>0.05: no effect). Reducing empirical findings to two categories also results in a great loss of information. Further, a significant outcome is often unjustly interpreted as relevant, but a p-value does not convey any information about the strength or importance of the association. Worse yet, the p-values on which NHST is based confound effect size and sample size. A trivial effect size may nevertheless result in statistical significance provided a sufficiently large sample size. Or an important effect size may fail to result in statistical significance if the sample size is too small. P-values do not validly index the size, relevance, or precision of an effect [ 5 ]. Furthermore, statistical models include not only null hypotheses, but additional assumptions, some of which are wrong, such as the ubiquitous assumption of random and independent sampling from a defined population [ 1 ]. Therefore, although p-values validly index the incompatibility of data with models, p-values do not validly index incompatibility of data with hypotheses that are embedded in wrong models. These are important drawbacks rendering NHST unsuitable as the default procedure for drawing conclusions from empirical data [ 2 , 3 , 5 – 13 ].

A number of alternatives have been developed that overcome these pitfalls, such as Bayesian inference methods [ 7 , 11 , 14 , 15 ], informative hypothesis testing [ 9 , 16 ] and a priori inferential statistics [ 4 , 17 ]. These alternatives build on the idea that research usually starts with a more informed research-question than one merely assuming the null hypothesis of no effect. These methods overcome the problem of inverse inference, although the first two might still lead to dichotomous thinking with the use of thresholds. Despite the availability of alternatives, statistical behavior in the research community has hardly changed. Researchers have been slow to adopt alternative methods and NHST is still the prevailing paradigm for making inferences about population effects [ 3 ].

Until now, reasons for the continuous and ubiquitous use of NHST and the p-value have scarcely been investigated. One explanation is that NHST provides a very simple means for drawing conclusions from empirical data, usually based on the 5% cut-off. Secondly, most researchers are unaware of the pitfalls of NHST; it has been shown that NHST and the p-value are often misunderstood and misinterpreted [ 2 , 3 , 8 , 11 , 18 , 19 ]. Thirdly, NHST has a central role in most methods and statistics courses in higher education. Courses on alternative methods are increasingly being offered but are usually not mandatory. To our knowledge, there is a lack of in depth, empirical research, aimed at elucidating why NHST nevertheless remains the dominant approach, or what actions can be taken to shift the sciences away from NHST. Therefore, the aim of our study was to explore the perceived barriers and facilitators, as well as behavioral intentions related to the use of NHST and alternatives statistical procedures, among all relevant stakeholders in the scientific system.

Theoretical framework

In designing our study, we used two theories. Firstly, we used the ‘diffusion of innovation theory’ of Rogers [ 20 ]. This theory describes the dissemination of an innovation as a process consisting of four elements: 1) an innovation is 2) communicated through certain channels 3) over time 4) among the members of a social system [ 20 ]. In the current study, the innovation consists of the idea that we should stop with the default use of NHST and instead consider using alternative methods for drawing conclusions from empirical data. The science system forms the social structure in which the innovation should take place. The most important members, and potential adopters of the innovation, we identified are researchers, lecturers, editors of scientific journals and representatives of funding agencies. Rogers describes phases in the adoption process, which coincide with characteristics of the (potential) adopters of the idea: 1) innovators, 2) early adopters, 3) early majority adopters, 4) late majority adopters and 5) laggards. Innovators are the first to adopt an innovation. There are few innovators but these few are very important for bringing in new ideas. Early adopters form the second group to adopt an innovation. This group includes opinion leaders and role models for other stakeholders. The largest group consists of the early and late majority who follow the early adopters, and then there is a smaller group of laggards who resist the innovation until they are certain the innovation will not fail. The process of innovation adoption by individuals is described as a normal distribution ( Fig 1 ). For these five groups, the adoption of a new idea is influenced by the following five characteristics of the innovative idea and 1) its relative advantage, 2) its compatibility with current experiences, 3) its complexity, 4) its flexibility, and 5) its visibility [ 20 ]. Members of all four stakeholder groups could play an important role in the diffusion of the innovation of replacing NHST by its alternatives.

An external file that holds a picture, illustration, etc.
Object name is pone.0258330.g001.jpg

The innovativeness dimension, measured by the time at which an individual from an adopter category adopts an innovation. Each category is one of more standard deviations removed from the average time of adoption [ 20 ].

Another important theory for our study is the ‘theory of planned behavior’, that was developed in the 1960s [ 21 ]. This theory describes how human behavior in a certain context can be predicted and explained. The theory was updated in 2010, under the name ‘the reasoned action approach’ [ 22 ]. A central factor in this theory is the intention to perform a certain behavior, in this case, to change the default use of NHST. According to the theory, people’s intentions determine their behaviors. An intention indexes to what extent someone is motivated to perform the behavior. Intentions are determined by three independent determinants: the person’s attitudes toward the behavior—the degree to which a person sees the behavior as favorable or unfavorable, perceived subjective norms regarding the behavior—the perceived social pressure to perform the behavior or not, and perceptions of control regarding the behavior—the perceived ease or difficulty of performing the behavior. Underlying (i.e. responsible for) these three constructs are corresponding behavioral, normative, and control beliefs [ 21 , 22 ] (see Fig 2 ).

An external file that holds a picture, illustration, etc.
Object name is pone.0258330.g002.jpg

Both theories have served as a lens for both data collection and analysis. We used sensitizing concepts [ 23 ] within the framework of the grounded theory approach [ 24 ] from both theories as a starting point for this qualitative study, and more specifically, for the topic list for the interviews and focus groups, providing direction and guidance for the data collection and data analysis.

Many of the concepts of Rogers’ and Fishbein and Ajzen’s theory can be seen as facilitators and barriers for embracing and implementing innovation in the scientific system.

A qualitative study among stakeholders using semi-structured interviews and focus groups was performed. Data collection and analysis were guided by the principle of constant comparison traditional to the grounded theory approach we followed [ 24 ]. The grounded theory is a methodology that uses inductive reasoning, and aims to construct a theory through the collection and analysis of data. Constant comparison is the iterative process whereby each part of the data that emerges from the data analysis is compared with other parts of the data to thoroughly explore and validate the data. Concepts that have been extracted from the data are tagged with codes that are grouped into categories. These categories constitute themes, which (may) become the basis for a new theory. Data collection and analysis were continued until no new information was gained and data saturation had likely occurred within the identified themes.

The target population consisted of stakeholders relevant to our topic: junior and senior researchers, lecturers in statistics, editors of scientific journals and program leaders of funding agencies (see Tables ​ Tables1 1 and ​ and2). 2 ). We approached participants in the field of medical sciences, health- and life sciences and psychology. In line with the grounded theory approach, theoretical sampling was used to identify and recruit eligible participants. Theoretical sampling is a form of purposive sampling. This means that we aimed to purposefully select participants, based on their characteristics that fit the parameters of the research questions [ 25 ]. Recruitment took place by approaching persons in our professional networks and or the networks of the approached persons.

*The numbers between brackets represents the number of participants that were also interviewed.

Data collection

We conducted individual semi-structured interviews followed by focus groups. The aim of the interviews was to gain insight into the views of participants on the use of NHST and alternative methods and to examine potential barriers and facilitators related to these methods. The aim of the focus groups was to validate and further explore interview findings and to develop a comprehensive understanding of participants’ views and beliefs.

For the semi-structured interviews, we used a topic list (see Appendix 1 in S1 Appendix ). Questions addressed participants’ knowledge and beliefs about the concept of NHST, their familiarity with NHST, perceived attractiveness and drawbacks of the use of NHST, knowledge of the current NHST debate, knowledge of and views on alternative procedures and their views on the future of NHST. The topic list was slightly adjusted based on the interviews with editors and representatives from funding agencies (compared to the topic list for interviews with researchers and lecturers). Questions particularly focused on research and education were replaced by questions focused on policy (see Appendix 1 in S1 Appendix ).

The interviews were conducted between October 2017 and June 2018 by two researchers (L.v.G. and J.S.), both trained in qualitative research methods. Interviews lasted about one hour (range 31–86 minutes) and were voice-recorded. One interview was conducted by telephone; all others were face to face and took place at a location convenient for the participants, in most cases the participants’ work location.

Focus groups

During the focus groups, important themes that emerged from the interviews were discussed and explored. These include perceptions on NHST and alternatives and essential conditions to shift away from the default use of NHST.

Five focus groups included representatives from the different stakeholder groups. One focus group was homogenous, including solely lecturers. The focus groups consisted of ‘old’ as well as ‘new’ participants, that is, some of the participants of the focus groups were also in the interview sample. We also selected persons that were open for further contribution to the NHST debate and were willing to help think about (implementing) alternatives for NHST.

The focus groups were conducted between September and December 2018 by three researchers (L.v.G., J.S. and A.d.K.), all trained in qualitative research methods. The focus groups lasted about one-and-a-half hours (range 86–100 minutes).

Data analysis

All interviews and focus groups were transcribed verbatim. Atlas.ti 8.0 software was used for data management and analysis. All transcripts were read thoroughly several times to identify meaningful and relevant text fragments and analyzed by two researchers (J.S. and L.v.G.). Deductive predefined themes and theoretical concepts were used to guide the development of the topic list for the semi-structured interviews and focus groups, and were used as sensitizing concepts [ 23 ] in data collection and data analysis. Inductive themes were identified during the interview process and analysis of the data [ 26 ].

Transcripts were open-, axial- and selectively coded by two researchers (J.S. and L.v.G.). Open coding is the first step in the data-analysis, whereby phenomena found in the text are identified and named (coded). With axial coding, connections between codes are drawn. Selective coding is the process of selecting one central category and relating all other categories to that category, capturing the essence of the research. The constant comparison method [ 27 ] was applied allowing emerging (sub)themes to be fully explored. First, the two researchers independently developed a set of initial codes. Subsequently, findings were discussed until consensus was reached. Codes were then grouped into categories that were covered under subthemes, belonging to main themes. Finally, a theory substantiating the prevailing use of NHST was developed based on the main themes and subthemes.

Ethical issues

This research was conducted in accordance with the Dutch "General Data Protection Regulation" and the “Netherland’s code of conduct for research integrity”. The research protocol had been submitted for review and approved by the ethical review committee of the VU Faculty of Behavioral and Movement Sciences. In addition, the project had been submitted to the Medical Ethics Committee (METC) of the Amsterdam University Medical Centre who decided that the project is not subject to the Medical Research (Human Subjects) Act ( WMO). At the start of data collection, all participants signed an informed consent form.

A full study protocol, including a detailed data analysis plan, was preregistered ( https://osf.io/4qg38/ ). At the start of this study, preregistration forms for qualitative studies were not developed yet. Therefore, preregistration for this study is based on an outdated form. Presently, there is a preregistration form available for qualitative studies [ 28 ]. Information about data collection, data management, data sharing and data storage is described in a Data Management Plan. Sensitive data is stored in Darkstor, an offline archive for storing sensitive information or data (information that involves i.e., privacy or copyright). As the recordings and transcripts of the interviews and focus groups contain privacy-sensitive data, these files are archived in Darkstor and can be accessed only on request by authorized individuals (i.e., the original researcher or a research coordinator) (Data requests can be send to ln.uv@mdr ). Non-sensitive data is stored in DANS ( https://doi.org/10.17026/dans-2at-nzfs ) (Data Archiving and Networked Services; the Netherlands institute for permanent access to digital research resources).

Participant characteristics

Twenty-nine individual interviews and six focus groups were conducted. The focus groups included four to six participants per session. A total of 47 participants were included in the study (13 researchers, 15 lecturers, 11 editors of scientific journals and 8 representatives of funding agencies). Twenty-nine participants were interviewed. Twenty-seven participants took part in the focus group. Nine of the twenty-seven participants were both interviewed and took part in the focus groups. Some participants had multiple roles (i.e., editor and researcher, editor and lecturer or lecturer and researcher) but were classified based on their primary role (assistant professors were classified as lecturers). The lecturers in statistics in our sample were not statisticians themselves. Although they all received training in statistics, they were primarily trained as psychologists, medical doctors, or health scientists. Some lecturers in our sample taught an applied subject, with statistics as part of it. Other lectures taught Methodology and Statistics courses. Statistical skills and knowledge among lecturers varied from modest to quite advanced. Statistical skills and knowledge among participants from the other stakeholder groups varied from poor to quite advanced. All participants were working in the Netherlands. A general overview of the participants is presented in Table 1 . Participant characteristics split up by interviews and focus groups are presented in Table 2 .

Three main themes with sub-themes and categories emerged ( Fig 3 ): the green-colored compartments hold the three main themes: The scientific climate , The scientific duty and Reactivity . Each of these three main themes consists of subthemes, depicted by the yellow-colored compartments. In turn, some (but not all) of the 9 subthemes also have categories. These ‘lower level’ findings are not included in the figure but will be mentioned in the elaboration on the findings and are depicted in Appendix 2 in S1 Appendix . Fig 3 shows how the themes are related to each other. The blue arrows indicate that the themes are interrelated; factors influence each other. The scientific climate affects the way stakeholders perceive and fulfil their scientific duty, the way stakeholders give substance to their scientific duty shapes and maintain the scientific climate. The scientific duty and the scientific climate cause a state of reactivity. Many participants have adopted a ’wait and see’ attitude regarding behavioral changes with respect to statistical methods. They feel dependent on someone else’s action. This leads to a reactive (instead of a proactive) attitude and a low sense of responsibility. ‘Reactivity’ is the core theme, explaining the most critical problem with respect to the continuous and ubiquitous use of NHST.

An external file that holds a picture, illustration, etc.
Object name is pone.0258330.g003.jpg

Main themes and subthemes are numbered. Categories are mentioned in the body of the text in bold. ‘P’ stands for participant; ‘I’ stands for interviewer.

1. The scientific climate

The theme, ‘the scientific climate’, represents researchers’ (Dutch) perceptions of the many written and unwritten rules they face in the research environment. This theme concerns the opportunities and challenges participants encounter when working in the science system. Dutch academics feel pressured to publish fast and regularly, and to follow conventions and directions of those on whom they depend. They feel this comes at the expense of the quality of their work. Thus, the scientific climate in the Netherlands has a strong influence on the behavior of participants regarding how they set their priorities and control the quality of their work.

1 . 1 Quality control . Monitoring the quality of research is considered very important. Researchers, funding agencies and editors indicate they rely on their own knowledge, expertise, and insight, and those of their colleagues, to guarantee this quality. However, editors or funding agencies are often left with little choice when it comes to compiling an evaluation committee or a review panel. The choice is often like-knows-like-based. Given the limited choice, they are forced to trust the opinion of their consultants, but the question is whether this is justified.

I: “The ones who evaluate the statistics, do they have sufficient statistical knowledge?” P: “Ehhr, no, I don’t think so.” I: “Okay, interesting. So, there are manuscripts published of which you afterwards might think….” P: “Yes yes.” (Interview 18; Professor/editor, Medical Sciences)

1 . 2 Convention . The scientific system is built on mores and conventions, as this participant describes:

P: “There is science, and there is the sociology of science, that is, how we talk to each other, what we believe, how we connect. And at some point, it was agreed upon that we would talk to each other in this way.” (Interview 28, researcher, Medical Sciences)

And to these conventions, one (naturally) conforms. Stakeholders copy behavior and actions of others within their discipline, thereby causing particular behaviors and values to become conventional or normative. One of those conventions is the use of NHST and p-values. Everyone is trained with NHST and is used to applying this method. Another convention is the fact that significant results mean ‘success’, in the sense of successful research and being a successful researcher. Everyone is aware that ‘p is smaller than 0.05’ means the desired results are achieved and that publication and citation chances are increased.

P: “You want to find a significant result so badly. (…) Because people constantly think: I must find a significant result, otherwise my study is worthless.” (Focus group 4, lecturer, Medical Sciences)

Stakeholders rigidly hold on to the above-mentioned conventions and are not inclined to deviate from existing norms; they are, in other words, quite conservative . ‘We don’t know any better’ has been brought up as a valid argument by participants from various stakeholder groups to stick to current rules and conventions. Consequently, the status quo in the scientific system is being maintained.

P: “People hold on to….” I: ‘Everyone maintains the system?’ P: ‘Yes, we kind of hang to the conservative manner. This is what we know, what someone, everyone, accepts.” (Interview 17, researcher, Health Sciences)

Everyone is trained with NHST and considers it an accessible and easy to interpret method. The familiarity and perceived simplicity of NHST, user-friendly software such as SPSS and the clear cut-off value for significance are important facilitators for the use of NHST and at the same time barriers to start using alternative methods. Applied researchers stressed the importance of the accessibility of NHST as a method to test hypotheses and draw conclusions. This accessibility also justifies the use of NHST when researchers want to communicate their study results and messages in understandable ways to their readership.

P: “It is harder, also to explain, to use an alternative. So, I think, but maybe I’m overstepping, but if you want to go in that direction [alternative methods] it needs to be better facilitated for researchers. Because at the moment… I did some research, but, you know, there are those uncommon statistical packages.” (Interview 16, researcher/editor, Medical Sciences)

1 . 3 Publication pressure . Most researchers mentioned that they perceive publication pressure. This motivates them to use NHST and hope for significant results, as ‘significant p-values’ increase publication chances. They perceive a high workload and the way the scientific reward system is constructed as barriers for behavioral change pertaining to the use of statistical methods; potential negative consequences for publication and career chances prevent researchers from deviating from (un)written rules.

P: “I would like to learn it [alternative methods], but it might very well be that I will not be able to apply it, because I will not get my paper published. I find that quite tricky.” (Interview 1, Assistant Professor, Health Sciences)

2. The scientific duty

Throughout the interviews, participants reported a sense of duty in several variations. “What does it mean to be a scientific researcher?” seemed to be a question that was reflected upon during rather than prior to the interview, suggesting that many scientists had not really thought about the moral and professional obligations of being a scientist in general—let alone what that would mean for their use of NHST. Once they had given it some thought, the opinions concerning what constitutes the scientific duty varied to a large extent. Some participants attached great importance to issues such as reproducibility and transparency in scientific research and continuing education and training for researchers. For others, these topics seemed to play a less important role. A distinction was made between moral and professional obligations that participants described concerning their scientific duty.

2 . 1 Moral obligation . The moral obligation concerns issues such as doing research in a thorough and honest way, refraining from questionable research practices (QRPs) and investing in better research. It concerns tasks and activities that are not often rewarded or acknowledged.

Throughout the interviews and the focus groups, participants very frequently touched upon the responsibility they felt for doing ‘the right thing’ and making the right choice in doing research and using NHST, in particular. The extent to which they felt responsible varied among participants. When it comes to choices during doing research—for example, drawing conclusions from data—participants felt a strong sense of responsibility to do this correctly. However, when it comes to innovation and new practices, and feeling responsible for your own research, let alone improving scientific practice in general, opinions differed. This quotation from one of the focus groups illustrates that:

P1: “If you people [statisticians, methodologists] want me to improve the statistics I use in my research, then you have to hand it to me. I am not going to make any effort to improve that myself. “P3: “No. It is your responsibility as an academic to keep growing and learning and so, also to start familiarizing yourself when you notice that your statistics might need improvement.” (Focus group 2, participant 1 (PhD researcher, Medical Sciences) and 3 (Associate Professor, Health Sciences)

The sense of responsibility for improving research practices regarding the use of NHST was strongly felt and emphasized by a small group of participants. They emphasized the responsibility of the researcher to think, interpret and be critical when interpreting the p -value in NHST. It was felt that you cannot leave that up to the reader. Moreover, scrutinizing and reflecting upon research results was considered a primary responsibility of a scientist, and failing to do so, as not living up to what your job demands you to do:

P: “Yes, and if I want to be very provocative—and I often want that, because then people tend to wake up and react: then I say that hiding behind alpha.05 is just scientific laziness. Actually, it is worse: it is scientific cowardice. I would even say it is ‘relieving yourself from your duty’, but that may sound a bit harsh…” (Interview 2, Professor, Health Sciences)

These participants were convinced that scientists have a duty to keep scientific practice in general at the highest level possible.

The avoidance of questionable research practices (QRPs) was considered a means or a way to keep scientific practices high level and was often touched upon during the interviews and focus groups as being part of the scientific duty. Statisticians saw NHST as directly facilitating QRPs and providing ample examples of how the use of NHST leads to QRPs, whereas most applied researchers perceived NHST as the common way of doing research and were not aware of the risks related to QRPs. Participants did mention the violation of assumptions underlying NHST as being a QRP. Then, too, participants considered overinterpreting results as a QRP, including exaggerating the degree of significance. Although participants stated they were careful about interpreting and reporting p-values, they ‘admitted’ that statistical significance was a starting point for them. Most researchers indicated they search for information that could get their study published, which usually includes a low p-value (this also relates to the theme ‘Scientific climate’).

P: “We all know that a lot of weight is given to the p-value. So, if it is not significant, then that’s the end of it. If it ís significant, it just begins.” (Interview 5, lecturer, Psychology)

The term ‘sloppy science’ was mentioned in relation to efforts by researchers to reduce the p -value (a.k.a. p-hacking, data-dredging, and HARKing. HARKing is an acronym that refers to the questionable research question of Hypothesizing After the Results are Known. It occurs when researchers formulate a hypothesis after the data have been collected and analyzed, but make it look like it is an a priori hypothesis [ 29 ]). Preregistration and replication were mentioned as being promising solutions for some of the problems caused by NHST.

2 . 2 . Professional obligation . The theme professional obligation reflects participants’ expressions about what methodological knowledge scientists should have about NHST. In contrast moral obligations, there appeared to be some consensus about scientists’ professional obligations. Participants considered critical evaluation of research results a core professional obligation. Also, within all the stakeholder groups, participants agreed that sufficient statistical knowledge is required for using NHST, but they varied in their insights in the principles, potential and limitations of NHST. This also applied to the extent to which participants were aware of the current debate about NHST.

Participants considered critical thinking as a requirement for fulfilling their professional obligation. It specifically refers to the process of interpreting outcomes and taking all relevant contextual information into consideration. Critical thinking was not only literally referred to by participants, but also emerged by interpreting text fragments on the emphasis within their research. Researchers differed quite strongly in where the emphasis of their research outcomes should be put and what kind of information is required when reporting study results. Participants mentioned the proven effectiveness of a particular treatment, giving a summary of the research results, effect sizes, clinical relevance, p-values, or whether you have made a considerable contribution to science or society.

P: “I come back to the point where I said that people find it arbitrary to state that two points difference on a particular scale is relevant. They prefer to hide behind an alpha of 0.05, as if it is a God given truth, that it counts for one and for all. But it is just as well an invented concept and an invented guideline, an invented cut-off value, that isn’t more objective than other methods?” (Interview 2, Professor, Health Sciences)

For some participants, especially those representing funding agencies, critical thinking was primarily seen as a prerequisite for the utility of the research. The focus, when formulating the research question and interpreting the results, should be on practical relevance and the contribution the research makes to society.

The term ‘ignorance’ arose in the context of the participants’ concern regarding the level of statistical knowledge scientists and other stakeholders have versus what knowledge they should have to adequately apply statistical analysis in their research. The more statistically competent respondents in the sample felt quite strongly about how problematic the lack of knowledge about NHST is among those who regularly use it in their research, let alone the lack of knowledge about alternative methods. They felt that regularly retraining yourself in research methods is an essential part of the professional obligation one has. Applied researchers in the sample agreed that a certain level of background knowledge on NHST was required to apply it properly to research and acknowledged their own ignorance. However, they had different opinions about what level of knowledge is required. Moreover, not all of them regarded it as part of their scientific duty to be informed about all ins and outs of NHST. Some saw it as the responsibility of statisticians to actively inform them (see also the subtheme periphery). Some participants were not aware of their ignorance or stated that some of their colleagues are not aware of their ignorance, i.e., that they are unconsciously incompetent and without realizing it, poorly understood what the p-value and associated outcome measures actually mean.

P: “The worst, and I honestly think that this is the most common, is unconsciously incompetent, people don’t even understand that…” I: “Ignorance.” P: “Yes, but worse, ignorant and not even knowing you are ignorant.” (Interview 2, Professor, Health Sciences)

The lack of proper knowledge about statistical procedures was especially prevalent in the medical sciences. Participants working in or with the medical sciences all confirmed that there is little room for proper statistical training for medical students and that the level of knowledge is fairly low. NHST is often used because of its simplicity. It is especially attractive for medical PhD students because they need their PhD to get ahead in their medical career instead of pursuing a scientific career.

P: “I am not familiar with other ways of doing research. I would really like to learn, but I do not know where I could go. And I do not know whether there are better ways. So sometimes I do read studies of which I think: ‘this is something I could investigate with a completely different test. Apparently, this is also possible, but I don’t know how.’ Yes, there are courses, but I do not know what they are. And here in the medical center, a lot of research is done by medical doctors and these people have hardly been taught any statistics. Maybe they will get one or two statistics courses, they know how to do a t-test and that is about it. (…) And the courses have a very low level of statistics, so to say.” (Interview 1, Assistant Professor, Health Sciences)

Also, the term ‘ awareness ’ arose. Firstly, it refers to being conscious about the limitations of NHST. Secondly, it refers to the awareness of the ongoing discussions about NHST and more broadly, about the replication crisis. The statisticians in the sample emphasized the importance of knowing that NHST has limitations and that it cannot be considered the holy grail of data analysis. They also emphasized the importance of being aware of the debate. A certain level of awareness was considered a necessary requirement for critical thinking. There was variation in that awareness. Some participants were quite informed and were also fairly engaged in the discussion whereas others were very new to the discussion and larger contextual factors, such as the replication crisis.

I: “Are you aware of the debate going on in academia on this topic [NHST]? P: “No, I occasionally see some article sent by a colleague passing by. I have the idea that something is going on, but I do not know how the debate is conducted and how advanced it is. (Interview 6, lecturer, Psychology)

With respect to the theme, ‘the scientific duty’, participants differed to what extent they felt responsible for better and open science, for pioneering, for reviewing, and for growing and learning as a scientist. Participants had one commonality: although they strived for adherence to the norms of good research, the rampant feeling is that this is very difficult, due to the scientific climate. Consequently, participants perceive an internal conflict : a discrepancy between what they want or believe , and what they do . Participants often found themselves struggling with the responsibility they felt they had. Making the scientifically most solid choice was often difficult due to feasibility, time constraints, or certain expectations from supervisors (this is also directly related to the themes ‘Scientific climate’ and ‘Reactivity’). Thus, the scientific climate strongly influences the behavior of scientists regarding how they set their priorities and fulfill their scientific duties. The strong sense of scientific duty was perceived by some participants as a facilitator and by others as a barrier for the use of alternative methods.

3. Reactivity

A consequence of the foregoing factors is that most stakeholders have adopted a reactive attitude and behave accordingly. People are disinclined to take responsibility and await external signals and initiatives of others. This might explain why NHST is being continuously used and remains the default procedure to make inferences about population effects.

The core theme ‘reactivity’ can be explained by the following subthemes and categories:

3 . 1 Periphery . The NHST-problem resides in the periphery in several ways. First, it is a subject that is not given much priority. Secondly, some applied researchers and editors believe that methodological knowledge, as it is not their field of expertise, should not be part of their job requirement. This also applies to the NHST debate. Thirdly, and partly related to the second point, there is a lack of cooperation within and between disciplines.

The term ‘ priority’ was mentioned often when participants were asked to what extent the topic of NHST was subject of discussion in their working environment. Participants indicated that (too) little priority is given to statistics and the problems related to the subject. There is simply a lot going on in their research field and daily work, so there are always more important or urgent issues on the agenda.

P: “Discussions take place in the periphery; many people find it complicated. Or are just a little too busy.” (Interview 5, lecturer, Psychology)

As the NHST debate is not prioritized, initiatives with respect to this issue are not forthcoming. Moreover, researchers and lecturers claim there is neither time nor money available for training in statistics in general or acquiring more insight and skills with respect to (the use of) alternative methods. Busy working schedules were mentioned as an important barrier for improving statistical knowledge and skills.

P: “Well you can use your time once, so it is an issue low on the priority list.” (Focus group 5, researcher, Medical Sciences)

The NHST debate is perceived as the domain of statisticians and methodologists. Also, cooperation between different domains and domain-specific experts is perceived as complicated, as different perceptions and ways of thinking can clash. Therefore, some participants feel that separate worlds should be kept separate; put another way: stick to what you know!

P: “This part is not our job. The editorial staff, we have the assignment to ensure that it is properly written down. But the discussion about that [alternatives], that is outside our territory.” (Interview 26, editor, Medical Sciences)

Within disciplines, individuals tend to act on their own, not being aware that others are working on the same subject and that it would be worthwhile to join forces. The interviews and focus groups exposed that a modest number of participants actively try to change the current situation, but in doing that, feel like lone voices in the wilderness.

P1: “I mean, you become a lone voice in the wilderness.” P2: “Indeed, you don’t want that.” P1: “I get it, but no one listens. There is no audience.” (Focus Group 3, P1: MD, lecturer, medical Sciences, P2: editor, Medical Sciences)

To succeed at positive change, participants emphasized that it is essential that people (interdisciplinary) cooperate and join forces, rather than operate on individual levels, focusing solely on their own working environment.

The caution people show with respect to taking initiative is reenforced by the fear of encountering resistance from their working environment when one voices that change regarding the use of NHST is needed. A condition that was mentioned as essential to bring about change was tactical implementation , that is, taking very small steps. As everyone is still using NHST, taking big steps brings the risk of losing especially the more conservative people along the way. Also, the adjustment of policy, guidelines and educational programs are processes for which we need to provide time and scope.

P: “Everyone still uses it, so I think we have to be more critical, and I think we have to look at some kind of culture change, that means that we are going to let go of it (NHST) more and we will also use other tests, that in the long term will overthrow NHST. I: and what about alternatives? P: I think you should never be too fanatic in those discussion, because then you will provoke resistance. (…) That is not how it works in communication. You will touch them on a sore spot, and they will think: ‘and who are you?’ I: “and what works?” P: “well, gradualness. Tell them to use NHST, do not burn it to the ground, you do not want to touch peoples work, because it is close to their hearts. Instead, you say: ‘try to do another test next to NHST’. Be a pioneer yourself.” (Interview 5, lecturer, Psychology)

3 . 2 . Efficacy . Most participants stated they feel they are not in the position to initiate change. On the one hand, this feeling is related to their hierarchical positions within their working environments. On the other hand, the feeling is caused by the fact that statistics is perceived as a very complex field of expertise and people feel they lack sufficient knowledge and skills, especially about alternative methods.

Many participants stated they felt little sense of empowerment, or self-efficacy. The academic system is perceived as hierarchical, having an unequal balance of power. Most participants believe that it is not in their power to take a lead in innovative actions or to stand up against establishment, and think that this responsibility lies with other stakeholders, that have more status .

P: “Ideally, there would be a kind of an emergency letter from several people whose names open up doors, in which they indicate that in the medical sciences we are throwing away money because research is not being interpreted properly. Well, if these people that we listen to send such an emergency letter to the board of The Netherlands Organization for Health Research and Development [the largest Dutch funding agency for innovation and research in healthcare], I can imagine that this will initiate a discussion.” (…) I: “and with a big name you mean someone from within the science system? P: well, you know, ideally a chairman, or chairmen of the academic medical center. At that level. If they would put a letter together. Yes, that of course would have way more impact. Or some prominent medical doctors, yes, that would have more impact, than if some other person would send a letter yes.” (Interview 19, representative from funding agency, Physical Sciences)

Some participants indicated that they did try to make a difference but encountered too much resistance and therefore gave up their efforts. PhD students feel they have insufficient power to choose their own directions and make their own choices.

P: I am dependent on funding agencies and professors. In the end, I will write a grant application in that direction that gives me the greatest chance of eventually receiving that grant. Not primarily research that I think is the most optimal (…) If I know that reviewers believe the p-value is very important, well, of course I write down a method in which the p-value is central.” (Focus group 2, PhD-student, Medical Sciences)

With a sense of imperturbability, most participants accept that they cannot really change anything.

Lastly, the complexity of the subject is an obstacle for behavioral change. Statistics is perceived as a difficult subject. Participants indicate that they have a lack of knowledge and skills and that they are unsure about their own abilities. This applies to the ‘standard’ statistical methods (NHST), but to a greater extent to alternative methods. Many participants feel that they do not have the capacity to pursue a true understanding of (alternative) statistical methods.

P: “Statistics is just very hard. Time and again, research demonstrates that scientists, even the smartest, have a hard time with statistics.” (Focus group 3, PhD researcher, Psychology)

3 . 3 . Interdependency . As mentioned, participants feel they are not in a sufficiently strong position to take initiative or to behave in an anti-establishment manner. Therefore, they await external signals from people within the scientific system with more status, power, or knowledge. This can be people within their own stakeholder group, or from other stakeholder groups. As a consequence of this attitude, a situation arises in which peoples’ actions largely depend on others. That is, a complex state of interdependency evolves: scientists argue that if the reward system does not change, they are not able to alter their statistical behavior. According to researchers, editors and funding agencies are still very much focused on NHST and especially (significant) p-values, and thus, scientists wait for editors and funders to adjust their policy regarding statistics:

P: “I wrote an article and submitted it to an internal medicine journal. I only mentioned confidence intervals. Then I was asked to also write down the p-values. So, I had to do that. This is how they [editors] can use their power. They decide.” (Interview 1, Assistant Professor, Health Sciences)

Editors and funders in their turn claim they do not maintain a strict policy. Their main position is that scientists should reach consensus about the best statistical procedure, and they will then adjust their policy and guidelines.

P: “We actually believe that the research field itself should direct the quality of its research, and thus, also the discussions.” (Interview 22, representative from funding agency, Neurosciences)

Lecturers, for their part, argue that they cannot revise their educational programs due to the academic system, and university policies are adapted to NHST and p-values.

As most participants seem not to be aware of this process, a circle of interdependency arises that is difficult to break.

P: “Yes, the stupid thing about this perpetual circle is that you are educating people, let’s say in the department of cardiology. They must of course grow, and so they need to publish. If you want to publish you must meet the norms and values of the cardiology journals, so they will write down all those p-values. These people are trained and in twenty years they are on the editorial board of those journals, and then you never get rid of it [the p-value].” (Interview 18, Professor, editor, Medical Sciences)

3 . 4 . Degree of eagerness . Exerting certain behavior or behavioral change is (partly) determined by the extent to which people want to employ particular behavior, their behavioral intention [ 22 ]. Some participants indicated they are willing to change their behavior regarding the use of statistical methods, but only if it is absolutely necessary, imposed or if they think that the current conventions have too many negative consequences. Thus, true, intrinsic will-power to change behavior is lacking among these participants. Instead, they have a rather opportunistic attitude, meaning that their behavior is mostly driven by circumstances, not by principles.

P: “If tomorrow an alternative is offered by people that make that call, than I will move along. But I am not the one calling the shots on this issue.” (Interview 26, editor, Medical Sciences)

In addition, pragmatism often outweighs the perceived urgency to change. Participants argue they ‘just want to do their jobs’ and consider the practical consequences mainly in their actions. This attitude creates a certain degree of inertia. Although participants claim they are willing to change their behavior, this would contain much more than ‘doing their jobs, and thus, in the end, the NHST-debate is subject to ‘coffee talk’. People are open to discussion, but when it comes to taking action (and motivating others to do so), no one takes action.

P: “The endless analysis of your data to get something with a p-value less than 0.05… There are people that are more critical about that, and there are people that are less critical. But that is a subject for during the coffee break.” (Interview 18, professor, editor, Medical Sciences)

The goal of our study was to acquire in-depth insight into reasons why so many stakeholders from the scientific system keep using NHST as the default method to draw conclusions, despite its many well-documented drawbacks. Furthermore, we wanted to gain insight into the reasons for their reluctance to apply alternative methods. Using a theoretical framework [ 20 , 21 ], several interrelated facilitators and barriers associated with the use of NHST and alternative methods were identified. The identified factors are subsumed under three main themes: the scientific climate, the scientific duty and reactivity. The scientific climate is dominated by conventions, behavioral rules, and beliefs, of which the use of NHST and p-values is part. At the same time, stakeholders feel they have a (moral or professional) duty. For many participants, these two sides of the same coin are incompatible, leading to internal conflicts. There is a discrepancy between what participants want and what they do . As a result of these factors, the majority feels dependent on others and have thereby become reactive. Most participants are not inclined to take responsibility themselves but await action and initiatives from others. This may explain why NHST is still the standard and used by almost everyone involved.

The current study is closely related to the longstanding debate regarding NHST which recently increased to a level not seen before. In 2015, the editors of the journal ‘Basic and Applied Social Psychology’ (BASP) prohibited the use of NHST (and p-values and confidence intervals) [ 30 ]. Subsequently, in 2016, the American Statistical Association published the so-called ‘Statement on p-values’ in the American Statistician. This statement consists of critical standpoints regarding the use of NHST and p-values and warns against the abuse of the procedure. In 2019, the American Statistician devoted an entire edition to the implementation of reforms regarding the use of NHST; in more than forty articles, scientists debated statistical significance, advocated to embrace uncertainty, and suggested alternatives such as the use of s-values, False Positive Risks, reporting results as effect sizes and confidence intervals and more holistic approaches to p-values and outcome measures [ 31 ]. In addition, in the same year, several articles appeared in which an appeal was made to stop using statistical significance testing [ 32 , 33 ]. A number of counter-reactions were published [ 34 – 36 ], stating (i.e.) that banning statistical significance and, with that, abandoning clear rules for statistical analyses may create new problems with regard to statistical interpretation, study interpretations and objectivity. Also, some methodologists expressed the view that under certain circumstances the use of NHST and p-values is not problematic and can in fact provide useful answers [ 37 ]. Until recently, the NHST-debate was limited to mainly methodologists and statisticians. However, a growing number of scientists are getting involved in this lively debate and believe that a paradigm shift is desirable or even necessary.

The aforementioned publications have constructively contributed to this debate. In fact, since the publication of the special edition of the American Statistician, numerous scientific journals published editorials or revised, to a greater or lesser extent, their author guidelines [ 38 – 45 ]. Furthermore, following the American Statistical Association (ASA), the National Institute of Statistical Sciences (NISS) in the United States has also taken up the reform issue. However, real changes are still barely visible. It takes a long time before these kinds of initiatives translate into behavioral changes, and the widespread adoption by most of the scientific community is still far from accomplished. Debate alone will not lead to real changes, and therefore, our efforts to elucidate behavioral barriers and facilitators could provide a framework for potential effective initiatives that could be taken to reduce the default use of NHST. In fact, the debate could counteract behavioral change. If there is no consensus among statisticians and methodologists (the innovators), changing behavior cannot be expected from stakeholders with less statistical and methodological expertise. In other words, without agreement among innovators, early adopters might be reluctant to adopt the innovation.

Research has recently been conducted to explore the potential of behavioral change to improve Open Science behaviors. The adoption of open science behavior has increased in the last years, but uptake has been slow, due to firm barriers such as a lack of awareness about the subject, concerns about constrainment of the creative process, worries about being “scooped” and holding on to existing working practices [ 46 ]. The development regarding open science practices and the parallels these lines of research shows with the current study, might be of benefit to subserve behavioral change regarding the use of statistical methods.

The described obstacles to change behavior are related to features of both the ‘innovative idea’ and the potential adopters of the idea. First, there are characteristics of ‘the innovation’ that form barriers. The first barrier is the complexity of the innovation: most participants perceive alternative methods as difficult to understand and to use. A second barrier concerns the feasibility of trying the innovation; most people do not feel flexible about trying out or experimenting with the new idea. There is a lack of time and monetary resources to get acquainted with alternative methods (for example, by following a course). Also, the possible negative consequences of the use of alternatives (lower publications chances, the chance that the statistical method and message is too complicated for one’s readership) is holding people back from experimenting with these alternatives. And lastly, it is unclear for most participants what the visibility of the results of the new idea are. Up until now, the debate has mainly taken place among a small group of statisticians and methodologists. Many researchers are still not aware of the NHST debate and the idea to shift away from NHST and use alternative methods instead. Therefore, the question is how easily the benefits of the innovation can be made visible for a larger part of the scientific community. Thus, our study shows that, although the compatibility of the innovation is largely consistent with existing values (participants are critical about (the use of) NHST and the p-value and believe that there are better alternatives to NHST), important attributes of the innovative idea negatively affect the rate of adoption and consequently the diffusion of the innovation.

Due to the barriers mentioned above, most stakeholders do not have the intention to change their behavior and adopt the innovative idea. From the theory of planned behavior [ 21 ], it is known that behavioral intentions directly relate to performances of behaviors. The strength of the intention is shaped by attitudes, subjective norms, and perceived power. If people evaluate the suggested behavior as positive (attitude), and if they think others want them to perform the behavior (subjective norm), this leads to a stronger intention to perform that behavior. When an individual also perceives they have enough control over the behavior, they are likely to perform it. Although most participants have a positive attitude towards the behavior, or the innovative idea at stake, many participants think that others in their working environment believe that they should not perform the behavior—i.e., they do not approve of the use of alternative methods (social normative pressure). This is expressed, for example, in lower publication chances, negative judgements by supervisors or failing the requirements that are imposed by funding agencies. Thus, the perception about a particular behavior—the use of alternative methods—is negatively influenced by the (perceived) judgment of others. Moreover, we found that many participants have a low self-efficacy, meaning that there is a perceived lack of behavioral control, i.e., their perceived ability to engage in the behavior at issue is low. Also, participants feel a lack of authority (in the sense of knowledge and skills, but also power) to initiate behavioral change. The existing subjective norms and perceived behavioral control, and the negative attitudes towards performing the behavior, lead to a lower behavioral intention, and, ultimately, a lower chance of the performance of the actual behavior.

Several participants mentioned there is a need for people of stature (belonging to the group of early adopters) to take the lead and break down perceived barriers. Early adopters serve as role models and have opinion leadership, and form the next group (after the innovators, in this case statisticians and methodologists) to adopt an innovative idea [ 20 ] ( Fig 2 ). If early adopters would stand up, conveying a positive attitude towards the innovation, breaking down the described perceived barriers and facilitating the use of alternatives (for example by adjusting policy, guidelines and educational programs and making available financial resources for further training), this could positively affect the perceived social norms and self-efficacy of the early and late majority and ultimately laggards, which could ultimately lead to behavioral change among all stakeholders within the scientific community.

A strength of our study is that it is the first empirical study on views on the use of NHST, its alternatives and reasons for the prevailing use of NHST. Another strength is the method of coding which corresponds to the thematic approach from Braun & Clarke [ 47 ], which allows the researcher to move beyond just categorizing and coding the data, but also analyze how the codes are related to each other [ 47 ]. It provides a rich description of what is studied, linked to theory, but also generating new hypotheses. Moreover, two independent researchers coded all transcripts, which adds to the credibility of the study. All findings and the coding scheme were discussed by the two researchers, until consensus was reached. Also, interview results were further explored, enriched and validated by means of (mixed) focus groups. Important themes that emanated from the interviews, such as interdependency, perceptions on the scientific duty, perceived disadvantages of alternatives or the consequences of the current scientific climate, served as starting points and main subjects of the focus groups. This set-up provided more data, and more insight about the data and validation of the data. Lastly, the use of a theoretical framework [ 20 , 21 ] to develop the topic list, guide the interviews and focus groups, and guide their analysis is a strength as it provides structure to the analysis and substantiation of the results.

A limitation of this study is its sampling method. By using the network of members of the project group, and the fact that a relatively high proportion of those invited to participate refused because they thought they knew too little about the subject to be able to contribute, our sample was biased towards participants that are (somewhat) aware of the NHST debate. Our sample may also consist of people that are relatively critical towards the use of NHST, compared to the total population of researchers. It was not easy to include participants who were indifferent about or who were pro-NHST, as those were presumably less willing to make time and participate in this study. Even in our sample we found that the majority of our participants solely used NHST and perceived it as difficult if not impossible to change their behavior. These perceptions are thus probably even stronger in the target population. Another limitation, that is inherent to qualitative research, is the risk of interviewer bias. Respondents are unable, unwilling, or afraid to answer questions in good conscience, and instead provide socially desirable answers. In the context of our research, people are aware that, especially as a scientist, it does not look good to be conservative, complacent, or ignorant, or not to be open to innovation and new ideas. Therefore, some participants might have given a too favorable view of themselves. The interviewer bias can also take the other direction when values and expectations of the interviewer consciously or unconsciously influence the answers of the respondents. Although we have tried to be as neutral and objective as possible in asking questions and interpreting answers, we cannot rule out the chance that our views and opinions on the use of NHST have at times steered the respondents somewhat, potentially leading to the foregoing desirable answers.

Generalizability is a topic that is often debated in qualitative research methodology. Many researchers do not consider generalizability the purpose of qualitative research, but rather finding in-depth insights and explanations. However, this is an unjustified simplification, as generalizing of findings from qualitative research is possible. Three types of generalization in qualitative research are described: representational generalization (whether what is found in a sample can be generalized to the parent population of the sample), inferential generalization (whether findings from the study can be generalized to other settings), and theoretical generalization (where one draws theoretical statements from the findings of the study for more general application) [ 48 ]. The extent to which our results are generalizable is uncertain, as we used a theoretical sampling method, and our study was conducted exclusively in the Netherlands. We expect that the generic themes (reactivity, the scientific duty and the scientific climate) are applicable to academia in many countries across the world (inferential generalization). However, some elements, such as the Dutch educational system, will differ to a more or lesser extent from other countries (and thus can only be representationally generalized). In the Netherlands there is, for example, only one educational route after secondary school that has an academic orientation (scientific education, equivalent to the US university level education). This route consists of a bachelor’s program (typically 3 years), and a master’s program (typically 1, 2 or 3 years). Not every study program contains (compulsory) statistical courses, and statistical courses differ in depth and difficulty levels depending on the study program. Thus, not all the results will hold for other parts of the world, and further investigation is required.

Our findings demonstrate how perceived barriers to shift away from NHST set a high threshold for behavioral change and create a circle of interdependency. Behavioral change is a complex process. As ‘the stronger the intention to engage in a behavior, the more likely should be its performance’[ 21 ], further research on this subject should focus on how to influence the intention of behavior; i.e. which perceived barriers for the use of alternatives are most promising to break down in order to increase the intention for behavioral change. The present study shows that negative normative beliefs and a lack of perceived behavioral control regarding the innovation among individuals in the scientific system is a substantial problem. When social norms change in favor of the innovation, and control over the behavior increases, then the behavioral intention becomes a sufficient predictor of behavior [ 49 ]. An important follow-up question will therefore be: how can people be enthused and empowered, to ultimately take up the use of alternative methods instead of NHST? Answering this question can, in the long run, lead to the diffusion of the innovation through the scientific system as a whole.

NHST has been the leading paradigm for many decades and is deeply rooted in our science system, despite longstanding criticism. The aim of this study was to gain insight as to why we continue to use NHST. Our findings have demonstrated how perceived barriers to make a shift away from NHST set a high threshold for actual behavioral change and create a circle of interdependency between stakeholders in the scientific system. Consequently, people find themselves in a state of reactivity, which limits behavioral change with respect to the use of NHST. The next step would be to get more insight into ways to effectively remove barriers and thereby increase the intention to take a step back from NHST. A paradigm shift within a couple of years is not realistic. However, we believe that by taking small steps, one at a time, it is possible to decrease the scientific community’s strong dependence on NHST and p-values.

Supporting information

S1 appendix, acknowledgments.

The authors are grateful to Anja de Kruif for her contribution to the design of the study and for moderating one of the focus groups.

Funding Statement

This research was funded by the NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Dutch Organization for Scientific Research) ( https://www.nwo.nl/ ) The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data Availability

9.8: Hypothesis: Accept or Fail to Reject?

Chapter 1: understanding statistics, chapter 2: summarizing and visualizing data, chapter 3: measure of central tendency, chapter 4: measures of variation, chapter 5: measures of relative standing, chapter 6: probability distributions, chapter 7: estimates, chapter 8: distributions, chapter 9: hypothesis testing, chapter 10: analysis of variance, chapter 11: correlation and regression, chapter 12: statistics in practice.

The JoVE video player is compatible with HTML5 and Adobe Flash. Older browsers that do not support HTML5 and the H.264 video codec will still use a Flash-based video player. We recommend downloading the newest version of Flash here, but we support all versions 10 and above.

the null hypothesis cannot be accepted

In an experiment, a farm with infected plants is subjected to a widely applicable insecticide.

This insecticide is expected to increase the number of healthy plants after its application. However, at the end of the experiment, the proportion of healthy and infected plants remained the same.

Here, the null hypothesis that the insecticide has no effect seems to hold, but should one accept the hypothesis or fail to reject it?

Accepting this hypothesis would mean that the insecticide is ineffective and cannot improve the plants' health.

This decision actually overlooks the other plausible explanations for the observed results.

In this case, using an unprescribed amount or concentration of insecticide might have resulted in no effect.

There is a possibility of plants being infected by something that the insecticide cannot target.

Failing to reject a null hypothesis means there is no sufficient evidence for the expected or the observed effect.

Today, if scientists had accepted null hypotheses, the discovery of plant viruses or the rediscovery of many extinct species would not have been possible.

The outcome of any hypothesis testing leads to rejecting or not rejecting the null hypothesis. This decision is taken based on the analysis of the data, an appropriate test statistic, an appropriate confidence level, the critical values, and P -values. However, when the evidence suggests that the null hypothesis cannot be rejected, is it right to say, 'Accept' the null hypothesis?

There are two ways to indicate that the null hypothesis is not rejected. 'Accept' the null hypothesis and 'fail to reject' the null hypothesis. Superficially, both these phrases mean the same, but in statistics, the meanings are somewhat different. The phrase 'accept the null hypothesis' implies that the null hypothesis is by nature true, and it is proved. But a hypothesis test simply provides information that there is no sufficient evidence in support of the alternative hypothesis, and therefore the null hypothesis cannot be rejected. The null hypothesis cannot be proven, although the hypothesis test begins with an assumption that the hypothesis is true, and the final result indicates the failure of the rejection of the null hypothesis. Thus, it is always advisable to state 'fail to reject the null hypothesis' instead of 'accept the null hypothesis.'

'Accepting' a hypothesis may also imply that the given hypothesis is now proven, so there is no need to study it further. Nevertheless, that is never the case, as newer scientific evidence often challenges the existing studies. Discovery of viruses and fossils, rediscovery of presumed extinct species, criminal trials, and novel drug tests follow the same principles of testing hypotheses. In those cases, 'accepting' a hypothesis may lead to severe consequences.

Get cutting-edge science videos from J o VE sent straight to your inbox every month.

mktb-description

We use cookies to enhance your experience on our website.

By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.

WeChat QR Code - JoVE

9.2 Outcomes and the Type I and Type II Errors

When you perform a hypothesis test, there are four possible outcomes depending on the actual truth (or falseness) of the null hypothesis H 0 and the decision to reject or not. The outcomes are summarized in the following table:

The four possible outcomes in the table are:

  • The decision is cannot reject H 0 when H 0 is true (correct decision).
  • The decision is cannot accept H 0 when H 0 is true (incorrect decision known as a Type I error ). This case is described as "rejecting a good null". As we will see later, it is this type of error that we will guard against by setting the probability of making such an error. The goal is to NOT take an action that is an error.
  • The decision is cannot reject H 0 when, in fact, H 0 is false (incorrect decision known as a Type II error ). This is called "accepting a false null". In this situation you have allowed the status quo to remain in force when it should be overturned. As we will see, the null hypothesis has the advantage in competition with the alternative.
  • The decision is cannot accept H 0 when H 0 is false ( correct decision ).

Each of the errors occurs with a particular probability. The Greek letters α and β represent the probabilities.

α = probability of a Type I error = P (Type I error) = probability of rejecting the null hypothesis when the null hypothesis is true: rejecting a good null.

β = probability of a Type II error = P (Type II error) = probability of not rejecting the null hypothesis when the null hypothesis is false. (1 − β ) is called the Power of the Test .

α and β should be as small as possible because they are probabilities of errors.

Statistics allows us to set the probability that we are making a Type I error. The probability of making a Type I error is α. Recall that the confidence intervals in the last unit were set by choosing a value called Z α (or t α ) and the alpha value determined the confidence level of the estimate because it was the probability of the interval failing to capture the true mean (or proportion parameter p). This alpha and that one are the same.

The easiest way to see the relationship between the alpha error and the level of confidence is with the following figure.

In the center of Figure 9.2 is a normally distributed sampling distribution marked H 0 . This is a sampling distribution of X ¯ X ¯ and by the Central Limit Theorem it is normally distributed. The distribution in the center is marked H 0 and represents the distribution for the null hypotheses H 0 : µ = 100. This is the value that is being tested. The formal statements of the null and alternative hypotheses are listed below the figure.

The distributions on either side of the H 0 distribution represent distributions that would be true if H 0 is false, under the alternative hypothesis listed as H a . We do not know which is true, and will never know. There are, in fact, an infinite number of distributions from which the data could have been drawn if H a is true, but only two of them are on Figure 9.2 representing all of the others.

To test a hypothesis we take a sample from the population and determine if it could have come from the hypothesized distribution with an acceptable level of significance. This level of significance is the alpha error and is marked on Figure 9.2 as the shaded areas in each tail of the H 0 distribution. (Each area is actually α/2 because the distribution is symmetrical and the alternative hypothesis allows for the possibility for the value to be either greater than or less than the hypothesized value--called a two-tailed test).

If the sample mean marked as X ¯ 1 X ¯ 1 is in the tail of the distribution of H 0 , we conclude that the probability that it could have come from the H 0 distribution is less than alpha. We consequently state, "the null hypothesis cannot be accepted with (α) level of significance". The truth may be that this X ¯ 1 X ¯ 1 did come from the H 0 distribution, but from out in the tail. If this is so then we have falsely rejected a true null hypothesis and have made a Type I error. What statistics has done is provide an estimate about what we know, and what we control, and that is the probability of us being wrong, α.

We can also see in Figure 9.2 that the sample mean could be really from an H a distribution, but within the boundary set by the alpha level. Such a case is marked as X ¯ 2 X ¯ 2 . There is a probability that X ¯ 2 X ¯ 2 actually came from H a but shows up in the range of H 0 between the two tails. This probability is the beta error, the probability of accepting a false null.

Our problem is that we can only set the alpha error because there are an infinite number of alternative distributions from which the mean could have come that are not equal to H 0 . As a result, the statistician places the burden of proof on the alternative hypothesis. That is, we will not reject a null hypothesis unless there is a greater than 90, or 95, or even 99 percent probability that the null is false: the burden of proof lies with the alternative hypothesis. This is why we called this the tyranny of the status quo earlier.

By way of example, the American judicial system begins with the concept that a defendant is "presumed innocent". This is the status quo and is the null hypothesis. The judge will tell the jury that they cannot find the defendant guilty unless the evidence indicates guilt beyond a "reasonable doubt" which is usually defined in criminal cases as 95% certainty of guilt. If the jury cannot accept the null, innocent, then action will be taken, jail time. The burden of proof always lies with the alternative hypothesis. (In civil cases, the jury needs only to be more than 50% certain of wrongdoing to find culpability, called "a preponderance of the evidence").

The example above was for a test of a mean, but the same logic applies to tests of hypotheses for all statistical parameters one may wish to test.

The following are examples of Type I and Type II errors.

Example 9.4

Suppose the null hypothesis, H 0 , is: Navah's rock climbing equipment is safe.

Type I error : Navah thinks that his rock climbing equipment may not be safe when, in fact, it really is safe.

Type II error : Navah thinks that her rock climbing equipment may be safe when, in fact, it is not safe.

α = probability that Navah thinks her rock climbing equipment may not be safe when, in fact, it really is safe. β = probability that Navah thinks her rock climbing equipment may be safe when, in fact, it is not safe.

Notice that, in this case, the error with the greater consequence is the Type II error. (If Navah thinks her rock climbing equipment is safe, she will go ahead and use it.)

This is a situation described as "accepting a false null".

Suppose the null hypothesis, H 0 , is: the blood cultures contain no traces of pathogen X . State the Type I and Type II errors.

Example 9.5

Suppose the null hypothesis, H 0 , is: The victim of an automobile accident is alive when he arrives at the emergency room of a hospital. This is the status quo and requires no action if it is true. If the null hypothesis cannot be accepted then action is required and the hospital will begin appropriate procedures.

Type I error : The emergency crew thinks that the victim is dead when, in fact, the victim is alive. Type II error : The emergency crew does not know if the victim is alive when, in fact, the victim is dead.

α = probability that the emergency crew thinks the victim is dead when, in fact, he is really alive = P (Type I error). β = probability that the emergency crew does not know if the victim is alive when, in fact, the victim is dead = P (Type II error).

The error with the greater consequence is the Type I error. (If the emergency crew thinks the victim is dead, they will not treat him.)

Suppose the null hypothesis, H 0 , is: a patient is not sick. Which type of error has the greater consequence, Type I or Type II?

Example 9.6

A company called Genetic Labs claims to be able to increase the likelihood that a pregnancy will result in a male being born. Statisticians want to test the claim. Suppose that the null hypothesis, H 0 , is: Genetic Labs has no effect on sex outcome. The status quo is that the claim is false. The burden of proof always falls to the person making the claim, in this case the Genetics Lab.

Type I error : This results when a true null hypothesis is rejected. In the context of this scenario, we would state that we believe that Genetic Labs influences the sex outcome, when in fact it has no effect. The probability of this error occurring is denoted by the Greek letter alpha, α .

Type II error : This results when we fail to reject a false null hypothesis. In context, we would state that Genetic Labs does not influence the sex outcome of a pregnancy when, in fact, it does. The probability of this error occurring is denoted by the Greek letter beta, β .

The error of greater consequence would be the Type I error since people would use the Genetic Labs product in hopes of increasing the chances of having a male.

“Red tide” is a bloom of poison-producing algae–a few different species of a class of plankton called dinoflagellates. When the weather and water conditions cause these blooms, shellfish such as clams living in the area develop dangerous levels of a paralysis-inducing toxin. In Massachusetts, the Division of Marine Fisheries (DMF) monitors levels of the toxin in shellfish by regular sampling of shellfish along the coastline. If the mean level of toxin in clams exceeds 800 μg (micrograms) of toxin per kg of clam meat in any area, clam harvesting is banned there until the bloom is over and levels of toxin in clams subside. Describe both a Type I and a Type II error in this context, and state which error has the greater consequence.

Example 9.7

A certain experimental drug claims a cure rate of at least 75% for males with prostate cancer. Describe both the Type I and Type II errors in context. Which error is the more serious?

Type I : A cancer patient believes the cure rate for the drug is less than 75% when it actually is at least 75%.

Type II : A cancer patient believes the experimental drug has at least a 75% cure rate when it has a cure rate that is less than 75%.

In this scenario, the Type II error contains the more severe consequence. If a patient believes the drug works at least 75% of the time, this most likely will influence the patient’s (and doctor’s) choice about whether to use the drug as a treatment option.

Determine both Type I and Type II errors for the following scenario:

Assume a null hypothesis, H 0 , that states the percentage of adults with jobs is at least 88%.

Identify the Type I and Type II errors from these four statements.

  • Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88% when that percentage is actually less than 88%
  • Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88% when the percentage is actually at least 88%.
  • Reject the null hypothesis that the percentage of adults who have jobs is at least 88% when the percentage is actually at least 88%.
  • Reject the null hypothesis that the percentage of adults who have jobs is at least 88% when that percentage is actually less than 88%.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/introductory-business-statistics-2e/pages/1-introduction
  • Authors: Alexander Holmes, Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Introductory Business Statistics 2e
  • Publication date: Dec 13, 2023
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/introductory-business-statistics-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/introductory-business-statistics-2e/pages/9-2-outcomes-and-the-type-i-and-type-ii-errors

© Dec 6, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Statology

Statistics Made Easy

Understanding the Null Hypothesis for ANOVA Models

A one-way ANOVA is used to determine if there is a statistically significant difference between the mean of three or more independent groups.

A one-way ANOVA uses the following null and alternative hypotheses:

  • H 0 :  μ 1  = μ 2  = μ 3  = … = μ k  (all of the group means are equal)
  • H A : At least one group mean is different   from the rest

To decide if we should reject or fail to reject the null hypothesis, we must refer to the p-value in the output of the ANOVA table.

If the p-value is less than some significance level (e.g. 0.05) then we can reject the null hypothesis and conclude that not all group means are equal.

A two-way ANOVA is used to determine whether or not there is a statistically significant difference between the means of three or more independent groups that have been split on two variables (sometimes called “factors”).

A two-way ANOVA tests three null hypotheses at the same time:

  • All group means are equal at each level of the first variable
  • All group means are equal at each level of the second variable
  • There is no interaction effect between the two variables

To decide if we should reject or fail to reject each null hypothesis, we must refer to the p-values in the output of the two-way ANOVA table.

The following examples show how to decide to reject or fail to reject the null hypothesis in both a one-way ANOVA and two-way ANOVA.

Example 1: One-Way ANOVA

Suppose we want to know whether or not three different exam prep programs lead to different mean scores on a certain exam. To test this, we recruit 30 students to participate in a study and split them into three groups.

The students in each group are randomly assigned to use one of the three exam prep programs for the next three weeks to prepare for an exam. At the end of the three weeks, all of the students take the same exam. 

The exam scores for each group are shown below:

Example one-way ANOVA data

When we enter these values into the One-Way ANOVA Calculator , we receive the following ANOVA table as the output:

ANOVA output table interpretation

Notice that the p-value is 0.11385 .

For this particular example, we would use the following null and alternative hypotheses:

  • H 0 :  μ 1  = μ 2  = μ 3 (the mean exam score for each group is equal)

Since the p-value from the ANOVA table is not less than 0.05, we fail to reject the null hypothesis.

This means we don’t have sufficient evidence to say that there is a statistically significant difference between the mean exam scores of the three groups.

Example 2: Two-Way ANOVA

Suppose a botanist wants to know whether or not plant growth is influenced by sunlight exposure and watering frequency.

She plants 40 seeds and lets them grow for two months under different conditions for sunlight exposure and watering frequency. After two months, she records the height of each plant. The results are shown below:

Two-way ANOVA table in Excel

In the table above, we see that there were five plants grown under each combination of conditions.

For example, there were five plants grown with daily watering and no sunlight and their heights after two months were 4.8 inches, 4.4 inches, 3.2 inches, 3.9 inches, and 4.4 inches:

Two-way ANOVA data in Excel

She performs a two-way ANOVA in Excel and ends up with the following output:

the null hypothesis cannot be accepted

We can see the following p-values in the output of the two-way ANOVA table:

  • The p-value for watering frequency is 0.975975 . This is not statistically significant at a significance level of 0.05.
  • The p-value for sunlight exposure is 3.9E-8 (0.000000039) . This is statistically significant at a significance level of 0.05.
  • The p-value for the interaction between watering  frequency and sunlight exposure is 0.310898 . This is not statistically significant at a significance level of 0.05.

These results indicate that sunlight exposure is the only factor that has a statistically significant effect on plant height.

And because there is no interaction effect, the effect of sunlight exposure is consistent across each level of watering frequency.

That is, whether a plant is watered daily or weekly has no impact on how sunlight exposure affects a plant.

Additional Resources

The following tutorials provide additional information about ANOVA models:

How to Interpret the F-Value and P-Value in ANOVA How to Calculate Sum of Squares in ANOVA What Does a High F Value Mean in ANOVA?

Featured Posts

7 Common Beginner Stats Mistakes and How to Avoid Them

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

2 Replies to “Understanding the Null Hypothesis for ANOVA Models”

Hi, I’m a student at Stellenbosch University majoring in Conservation Ecology and Entomology and we are currently busy doing stats. I am still at a very entry level of stats understanding, so pages like these are of huge help. I wanted to ask, why is the sum of squares (treatment) for the one way ANOVA so high? I calculated it by hand and got a much lower number, could you please help point out if and where I went wrong?

As I understand it, SSB (treatment) is calculated by finding the mean of each group and the grand mean, and then calculating the sum of squares like this: GM = 85.5 x1 = 83.4 x2 = 89.3 x3 = 84.7

SSB = (85.5 – 83.4)^2 + (85.5 – 89.3)^2 + (85.5 – 84.7)^2 = 18.65 DF = 2

I would appreciate any help, thank you so much!

Hi Theo…Certainly! Here are the equations rewritten as they would be typed in Python:

### Sum of Squares Between Groups (SSB)

In a one-way ANOVA, the sum of squares between groups (SSB) measures the variation due to the interaction between the groups. It is calculated as follows:

1. **Calculate the group means**: “`python mean_group1 = 83.4 mean_group2 = 89.3 mean_group3 = 84.7 “`

2. **Calculate the grand mean**: “`python grand_mean = 85.5 “`

3. **Calculate the sum of squares between groups (SSB)**: Assuming each group has `n` observations: “`python n = 10 # Number of observations in each group

ssb = n * ((mean_group1 – grand_mean)**2 + (mean_group2 – grand_mean)**2 + (mean_group3 – grand_mean)**2) “`

### Example Calculation

For simplicity, let’s assume each group has 10 observations: “`python n = 10

ssb = n * ((83.4 – 85.5)**2 + (89.3 – 85.5)**2 + (84.7 – 85.5)**2) “`

Now calculate each term: “`python term1 = (83.4 – 85.5)**2 # term1 = (-2.1)**2 = 4.41 term2 = (89.3 – 85.5)**2 # term2 = (3.8)**2 = 14.44 term3 = (84.7 – 85.5)**2 # term3 = (-0.8)**2 = 0.64 “`

Sum these squared differences: “`python sum_of_squared_diffs = term1 + term2 + term3 # sum_of_squared_diffs = 4.41 + 14.44 + 0.64 = 19.49 ssb = n * sum_of_squared_diffs # ssb = 10 * 19.49 = 194.9 “`

So, the sum of squares between groups (SSB) is 194.9, assuming each group has 10 observations.

### Degrees of Freedom (DF)

The degrees of freedom for SSB is calculated as: “`python df_between = k – 1 “` where `k` is the number of groups.

For three groups: “`python k = 3 df_between = k – 1 # df_between = 3 – 1 = 2 “`

### Summary

– **SSB** should consider the number of observations in each group. – **DF** is the number of groups minus one.

By ensuring you include the number of observations per group in your SSB calculation, you can get the correct SSB value.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

communitymedicine4all

Community medicine for academics and lay learners.

the null hypothesis cannot be accepted

The Null Hypothesis: Why it can never be accepted

One of the commonest uses of Biostatistics is null hypothesis significance testing .

This involves the following steps:

1. State the null hypothesis (H0)

2. State the alternative hypothesis (Ha) (one sided or two sided)

3. Choose a test of significance

4. Set the level of significance

5. Make observations and collect data

6. Run the test of significance

7. Take a decision regarding the null hypothesis.

Often, the last step is the trickiest- how does one interpret the test statistic ? Does one reject the null hypothesis?

In common usage, when one does not reject something, one is accepting it. This seems logical since accept and reject are antonyms (opposites).

However, in null hypothesis significance testing, one can never accept the null hypothesis. Here’s why:

Let us assume that a 4 year old asked you, “Why do men have larger hands than women?”

You don’t know the answer to that question, but you start wondering if all women have smaller hands than men. Being of a scientific bent of mind, you decide to find out for yourself.

Accordingly, you follow the steps outlined above:

Null hypothesis (H0): The hands of men are the same size as those of women

Alternative hypothesis ( Two sided ): Men and women do not have the same hand size

You decide to use the Chi-square test to test significance, and set the significance level at 5% (p= 0.05).

You then go around requesting men and women to provide an outline of their hands (on paper). To keep things simple, if you first encountered a woman, you’d then go looking for a man, and vice-versa. For the purpose of the study, it has been decided that a difference of 10% or more in size would qualify as being larger or smaller than the preceding/ succeeding hand.

After spending weeks, you do not find any difference in hand size between men and women (as per definition).

It’s time to conclude the study, you think to yourself.

What would you conclude at this point?

Since you failed to find a significantly larger or smaller hand, would you conclude that the null hypothesis was true and accept it?

Chances are, you’d say, “I’m not sure. Maybe it’s because of the way I collected the data; Maybe it is true in this location, but we’re talking about men and women in general;…”

You decide to obtain one last set of prints before finally concluding the study.

This time the man has a much larger hand than the woman. Point proven. Case closed.

Now what would you conclude?

The null hypothesis has been proven to be false, so it can be rejected.

From the above example we understand the following:

1. It is easier to reject the null hypothesis (because even a single observation to the contrary will disprove it)

2. Numerous factors influence the ability to disprove the null hypothesis

3. Due to this, there is uncertainty about the truth

4. Therefore, it is risky to conclude that the null hypothesis is true merely because we did not find evidence to reject it

5. It is always possible that investigators elsewhere might be able to disprove the null hypothesis. However, in order that they can do this, we must not accept the null hypothesis as true- there is no question of testing something that has already been proven.

6. It is safer (and preferable) to state that we failed to reject the null hypothesis (and leave it to others to test the null hypothesis subsequently), than accepting the null hypothesis as true and making a Type I error .

For these reasons, in null hypothesis significance testing, one can either reject the null hypothesis, or fail to reject it, but can never accept it. 

Enhanced by Zemanta

Share this:

3 thoughts on “ the null hypothesis: why it can never be accepted ”.

' src=

This is an interesting blog! Thanks for writing it. The concept of Null Hypothesis emerged because, as you rightly pointed out, disproving something is easier than proving that something is true. A Null Hypothesis is tested using a ‘test of significance’ and a ‘level of significance’. Let us take for example Chi Square test and ‘p value’. By definition, these tests of significance work only under the assumption that the Null Hypothesis is true. I would refer to the definition of ‘p value’. p value is the probability of finding a test statistic as extreme or more extreme than an assumed level of significance, under the assumption that the Null Hypothesis is true. Therefore these tests of significance and p values operate only under the assumption that the Null Hypothesis is true. When the Null Hypothesis is true and your p value is very small, then it gives you an evidence to reject the Null Hypothesis. On the other hand when the p value is large, then you fail to reject the Null Hypothesis. But all this operates under the assumption that the Null Hypothesis is true. therefore one can never ‘accept’ the Null Hypothesis after the experiment.

' src=

I’ve been struggling so much with statistics, and this is the best explanation I found about rejecting/failing to reject the null hypothesis. Thank you so much!

Pingback: Misunderstanding The Null Hypothesis and Knowledge. » AiR

Leave a comment Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

IMAGES

  1. Null Hypothesis

    the null hypothesis cannot be accepted

  2. Solved data: The null hypothesis can be rejected. The null

    the null hypothesis cannot be accepted

  3. 15 Null Hypothesis Examples (2024)

    the null hypothesis cannot be accepted

  4. Mastering Hypothesis Writing: Expert Tips for 2023

    the null hypothesis cannot be accepted

  5. Solved 21. If we reject the null hypothesis when, in fact,

    the null hypothesis cannot be accepted

  6. Null and Alternative Hypothesis

    the null hypothesis cannot be accepted

VIDEO

  1. WHAT TO DO WHEN THE NULL HYPOTHESIS CONTRADICTS THE FINDINGS OF THE STUDY

  2. Null and Alternative Hypothesis

  3. a Null hypothesis

  4. General procedure for testing hypothesis ch 16 lec 5

  5. How to identify NULL hypothesis

  6. HYPOTHESIS STATEMENT IS ACCEPTED OR REJECTED l THESIS TIPS & GUIDE

COMMENTS

  1. What Is The Null Hypothesis & When To Reject It

    A null hypothesis is rejected if the measured data is significantly unlikely to have occurred and a null hypothesis is accepted if the observed outcome is consistent with the position held by the null hypothesis. Rejecting the null hypothesis sets the stage for further experimentation to see if a relationship between two variables exists.

  2. Why can't we accept the null hypothesis, but we can accept the

    A frequentist analysis fundamentally cannot assign a probability to the truth of a hypothesis, so it doesn't give much of a basis for accepting it. ... Within the Bayesian framework you can "accept the null hypothesis" in the sense that the posterior probability of a point null hypothesis can tend to one with increasing sample size. This ...

  3. Failing to Reject the Null Hypothesis

    so, that's why when p<0.01 we reject the null hypothesis, because it's too rare (p0.05, i can understand that for most cases we cannot accept the null, for example, if p=0.5, it means that the probability to get a statistic from the distribution is 0.5, which is totally random.

  4. When Do You Reject the Null Hypothesis? (3 Examples)

    A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical hypothesis. We always use the following steps to perform a hypothesis test: Step 1: State the null and alternative hypotheses. The null hypothesis, denoted as H0, is the hypothesis that the sample data occurs purely from chance.

  5. Null Hypothesis: Definition, Rejecting & Examples

    The null hypothesis in statistics states that there is no difference between groups or no relationship between variables. It is one of two mutually exclusive hypotheses about a population in a hypothesis test. When your sample contains sufficient evidence, you can reject the null and conclude that the effect is statistically significant.

  6. Null & Alternative Hypotheses

    Null hypothesis (H 0): There's no effect in the population. Alternative hypothesis ... Be careful not to say you "prove" or "accept" the null hypothesis. Example: Population on trial. Think of a statistical test as being like a legal trial. The population is accused of the "crime" of having an effect, and the sample is the ...

  7. Hypothesis Testing

    Let's return finally to the question of whether we reject or fail to reject the null hypothesis. If our statistical analysis shows that the significance level is below the cut-off value we have set (e.g., either 0.05 or 0.01), we reject the null hypothesis and accept the alternative hypothesis. Alternatively, if the significance level is above ...

  8. 9.1: Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. \(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  9. Understanding Null Hypothesis Testing

    A crucial step in null hypothesis testing is finding the likelihood of the sample result if the null hypothesis were true. This probability is called the p value. A low p value means that the sample result would be unlikely if the null hypothesis were true and leads to the rejection of the null hypothesis. A high p value means that the sample ...

  10. Null hypothesis significance testing: a short tutorial

    By failing to reject, we simply continue to assume that H0 is true, which implies that one cannot argue against a theory from a non-significant result (absence of evidence is not evidence of absence). To accept the null hypothesis, tests of equivalence ( Walker & Nowacki, 2011) or Bayesian approaches ( Dienes, 2014; Kruschke, 2011) must be used.

  11. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0, the —null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  12. What 'Fail to Reject' Means in a Hypothesis Test

    Key Takeaways: The Null Hypothesis. • In a test of significance, the null hypothesis states that there is no meaningful relationship between two measured phenomena. • By comparing the null hypothesis to an alternative hypothesis, scientists can either reject or fail to reject the null hypothesis. • The null hypothesis cannot be positively ...

  13. Support or Reject Null Hypothesis in Easy Steps

    Use the P-Value method to support or reject null hypothesis. Step 1: State the null hypothesis and the alternate hypothesis ("the claim"). H o :p ≤ 0.23; H 1 :p > 0.23 (claim) Step 2: Compute by dividing the number of positive respondents from the number in the random sample: 63 / 210 = 0.3. Step 3: Find 'p' by converting the stated ...

  14. 6a.1

    The first step in hypothesis testing is to set up two competing hypotheses. The hypotheses are the most important aspect. If the hypotheses are incorrect, your conclusion will also be incorrect. The two hypotheses are named the null hypothesis and the alternative hypothesis. The null hypothesis is typically denoted as H 0.

  15. Null hypothesis

    Basic definitions. The null hypothesis and the alternative hypothesis are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise.. The statement being tested in a test of statistical significance is called the null hypothesis. . The test of significance is designed ...

  16. Why we habitually engage in null-hypothesis significance testing: A

    At this point, researchers commonly reject the null hypothesis and accept the alternative hypothesis [ 2 ]. Assessing statistical significance by means of contrasting the data with the null hypothesis is called Null Hypothesis Significance Testing (NHST). NHST is the best known and most widely used statistical procedure for making inferences ...

  17. Hypothesis: Accept or Fail to Reject? (Video)

    The null hypothesis cannot be proven, although the hypothesis test begins with an assumption that the hypothesis is true, and the final result indicates the failure of the rejection of the null hypothesis. Thus, it is always advisable to state 'fail to reject the null hypothesis' instead of 'accept the null hypothesis.'

  18. 9.2 Outcomes and the Type I and Type II Errors

    This is the status quo and is the null hypothesis. The judge will tell the jury that they cannot find the defendant guilty unless the evidence indicates guilt beyond a "reasonable doubt" which is usually defined in criminal cases as 95% certainty of guilt. If the jury cannot accept the null, innocent, then action will be taken, jail time.

  19. Understanding the Null Hypothesis for ANOVA Models

    The following examples show how to decide to reject or fail to reject the null hypothesis in both a one-way ANOVA and two-way ANOVA. Example 1: One-Way ANOVA. Suppose we want to know whether or not three different exam prep programs lead to different mean scores on a certain exam. To test this, we recruit 30 students to participate in a study ...

  20. What to claim when we don't reject the null hypothesis?

    The phrase "Insufficient evidence to reject". Shows that with more evidence, e.g. more data, or repeating the experiment with a different random selection of data, you might have rejected. The significance level. At a higher significance level you might have rejected the null hypothesis. What your conclusion is.

  21. communitymedicine4all

    communitymedicine4all