• Search Menu
  • Author Guidelines
  • Submission Site
  • Open Access
  • About Alcohol and Alcoholism
  • About the Medical Council on Alcohol
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Dispatch Dates
  • Contact the MCA
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Editors-in-Chief

Dr Giancarlo Colombo

Dr Lorenzo Leggio

Publish with Alcohol and Alcoholism

Supportive and international Editorial Board, rigorous and constructive peer review, open access options, and much more. Learn why your research is a perfect fit for Alcohol and Alcoholism .

Featured Content

Advanced access, high cited articles, latest posts on x.

lightbulb in shades of red

The liver collection

Research highlights related to ALD and AUD. 

Browse the papers

research paper on alcoholism

10 Reasons to Publish with Alcohol and Alcoholism

Learn more about why your impactful research is the perfect fit for Alcohol and Alcoholism .

Read more here

research paper on alcoholism

Promote Your Article

Have you published an article? What should you do now? Read our top tips on promoting your work to reach a wider audience and ensure your work makes an impact.

Find out more

research paper on alcoholism

Explore the archive

Alcohol and Alcoholism offers free online access to all content older than 12 months back to Jan 1st 1996.

Trending articles

Trending articles

Discover the Alcohol and Alcoholism  articles that your peers and the public are talking about, and the news stories they have been featured in.

Join global conversations

COPE logo

Committee on Publication Ethics (COPE)

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE)

publicationethics.org

ISAJE: International Society of Addiction Journal Editors

ISAJE (International Society of Addiction Journal Editors)

Alcohol and Alcoholism is an ISAJE Member Journal. ISAJE is a not-for-profit organization supporting journal editors, authors and reviewers who work in the addiction field.

research paper on alcoholism

Looking for a place to publish?

Alcohol and Alcoholism welcomes submissions, publishing papers on the biomedical, psychological, and sociological aspects of alcoholism and alcohol research.

To gain more information please see the Instructions to Authors page.

Recommend to your library

Recommend to your library

Fill out our simple online form to recommend Alcohol and Alcoholism to your library.

Recommend now

openaccess

Open Access options for authors

Alcohol and Alcoholism welcomes submissions from Authors wishing to submit open access papers.

research paper on alcoholism

The International Impacts of Alcohol Use Disorder and Nicotine and Tobacco

Explore a collaborative collection showcasing crucial research into the global impacts of alcohol use disorder and nicotine and tobacco use.

Related titles

Cover image of current issue from Journal of Public Health

  • Recommend to your Library

Affiliations

  • Online ISSN 1464-3502
  • Copyright © 2024 Medical Council on Alcohol and Oxford University Press
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

U.S. flag

An official website of the United States government

Here's how you know

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Home

Alcohol Research: Current Reviews (ARCR)

ARCR, a peer-reviewed scientific journal published by the National Institute on Alcohol Abuse and Alcoholism at the National Institutes of Health, marks its 50th anniversary in 2024. Explore our "News & Notes" webpage for more on this historic accomplishment.

Recent Articles

ORCID logo

Liz Simon, Brianna L. Bourgeois, and Patricia E. Molina

Julie A. Kable 1,2 and Kenneth Lyons Jones 3

Grace Chang

News and Notes

50th years of insights into alcohol research

25 January 2024

ARCR Celebrates Its 50th Anniversary

2024 marks the 50th anniversary of Alcohol Research: Current Reviews (ARCR), an open-access, peer-reviewed journal published by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) at the National Institutes of Health.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Systematic Review
  • Open access
  • Published: 25 August 2022

Age-related differences in the effect of chronic alcohol on cognition and the brain: a systematic review

  • Lauren Kuhns   ORCID: orcid.org/0000-0002-3156-8905 1 , 2 ,
  • Emese Kroon   ORCID: orcid.org/0000-0003-1803-9336 1 , 2 ,
  • Heidi Lesscher 3 ,
  • Gabry Mies 1 &
  • Janna Cousijn 1 , 2 , 4  

Translational Psychiatry volume  12 , Article number:  345 ( 2022 ) Cite this article

4499 Accesses

4 Citations

3 Altmetric

Metrics details

  • Human behaviour

Adolescence is an important developmental period associated with increased risk for excessive alcohol use, but also high rates of recovery from alcohol use-related problems, suggesting potential resilience to long-term effects compared to adults. The aim of this systematic review is to evaluate the current evidence for a moderating role of age on the impact of chronic alcohol exposure on the brain and cognition. We searched Medline, PsycInfo, and Cochrane Library databases up to February 3, 2021. All human and animal studies that directly tested whether the relationship between chronic alcohol exposure and neurocognitive outcomes differs between adolescents and adults were included. Study characteristics and results of age-related analyses were extracted into reference tables and results were separately narratively synthesized for each cognitive and brain-related outcome. The evidence strength for age-related differences varies across outcomes. Human evidence is largely missing, but animal research provides limited but consistent evidence of heightened adolescent sensitivity to chronic alcohol’s effects on several outcomes, including conditioned aversion, dopaminergic transmission in reward-related regions, neurodegeneration, and neurogenesis. At the same time, there is limited evidence for adolescent resilience to chronic alcohol-induced impairments in the domain of cognitive flexibility, warranting future studies investigating the potential mechanisms underlying adolescent risk and resilience to the effects of alcohol. The available evidence from mostly animal studies indicates adolescents are both more vulnerable and potentially more resilient to chronic alcohol effects on specific brain and cognitive outcomes. More human research directly comparing adolescents and adults is needed despite the methodological constraints. Parallel translational animal models can aid in the causal interpretation of observed effects. To improve their translational value, future animal studies should aim to use voluntary self-administration paradigms and incorporate individual differences and environmental context to better model human drinking behavior.

Similar content being viewed by others

research paper on alcoholism

Yohimbine as a pharmacological probe for alcohol research: a systematic review of rodent and human studies

research paper on alcoholism

Consequences of adolescent drug use

research paper on alcoholism

Chronic voluntary alcohol consumption causes persistent cognitive deficits and cortical cell loss in a rodent model

Introduction.

Alcohol use disorder (AUD) is the most prevalent substance use disorder worldwide [ 1 ]. Most AUDs remain untreated [ 2 ] and for those seeking treatment, relapse rates are high [ 3 ]. Adolescence marks a rapid increase in AUD and an earlier onset of AUD is associated with worse long-term outcomes, including greater problem severity and more relapses [ 4 , 5 ]. Loss of control over alcohol use is a core aspect of AUD [ 6 ] and the developmentally normative difficulty to control motivational urges in tempting and arousing situations is thought to put adolescents at risk for developing addictive behaviors [ 7 ]. Moreover, neurotoxic consequences of alcohol use may be more severe for a developing brain [ 8 ]. Paradoxically, adolescence is also a period of remarkable behavioral flexibility and neural plasticity [ 9 , 10 , 11 ], allowing adolescents to adapt their goals and behavior to changing situations [ 12 ] and to recover from brain trauma more easily than adults [ 10 ]. In line with this, the transition from adolescence to adulthood is associated with high rates of AUD recovery without formal intervention [ 13 ]. While the adolescent brain may be a vulnerability for the development of addiction, it may also be more resilient to long-term effects compared to adults. Increased neural plasticity during this period could help protect adolescents from longer-term alcohol use-related cognitive impairments across multiple domains, from learning and memory to decision-making and cognitive flexibility. Therefore, the goal of this systematic review was to examine the evidence of age-related differences in the effect of alcohol on the brain and cognitive outcomes, evaluating evidence from both human and animal studies.

In humans, the salience and reinforcement learning network as well as the central executive network are involved in the development and maintenance of AUD [ 7 , 14 ]. The central executive network encompasses fronto-parietal regions and is the main network involved in cognitive control [ 15 ]. The salience network encompasses fronto-limbic regions crucial for emotion regulation, salience attribution, and integration of affective information into decision-making [ 15 , 16 ], which overlaps with fronto-limbic areas of the reinforcement learning network (Fig. 1 ). Relatively early maturation of salience and reinforcement learning networks compared to the central executive network is believed to put adolescents at heightened risk for escalation of alcohol use compared to adults [ 7 ]. Rodent models are regularly used for AUD research and allow in-depth neurobehavioral analyses of the effects of ethanol exposure during different developmental periods while controlling for experimental conditions such as cumulative ethanol exposure in a way that is not possible using human subjects because exposure is inherently confounded with age. For example, animal models allow for detailed neurobiological investigation of the effects of alcohol exposure in a specific age range on neural activation, protein expression, gene expression, epigenetic changes, and neurotransmission in brain regions that are homologous to those that have been implicated in AUD in humans.

figure 1

A visual representation of the translational model of the executive control and salience networks in humans and rodents. The executive control and salience are key networks believed to play a part in adolescent vulnerability to alcohol-related problems.

While most of our knowledge on the effects of alcohol on the brain and cognitive outcomes is based on research in adults, several recent reviews have examined the effects of alcohol on the brain and cognition in adolescents and young adults specifically [ 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ]. Heavy or binge drinking has been associated with reduced gray and white matter. Also, altered task-related brain activity [ 20 ], structural abnormalities [ 25 ], and overlapping behavioral impairment in executive functioning have been identified in adolescent and young adult alcohol users [ 19 ]. While some of the observed neurocognitive differences between drinkers and non-drinkers may be predisposing factors, they may be further exacerbated by heavy and binge drinking [ 21 , 23 ]. Furthermore, reviews of longitudinal studies concluded that adolescent alcohol use is associated with neural and cognitive alterations in a dose-dependent manner [ 17 , 22 ].

Although previous reviews underscore the potential negative consequences of heavy alcohol use on the brain and cognition in adolescence, they do not typically address the question of whether adolescents are differentially vulnerable compared to adults to the effects of alcohol on these outcomes. Explicit comparisons between adolescents and adults are crucial to identify potential risk and resilience factors. In the current review, we aimed to extend previous work by systematically examining this critical question: does the relationship between chronic alcohol use and neurocognitive outcomes differ between adolescents and adults? To address this question, we systematically reviewed human and animal studies that included both age groups and used a factorial design that would allow for the comparison of the effects of chronic alcohol use on cognitive and brain-related outcomes across age groups. We specifically highlight outcomes from voluntary self-administration paradigms when available and discuss the translational quality of the animal evidence base. We conclude with a discussion of prominent knowledge gaps, future research directions, and clinical implications.

Study inclusion criteria and search strategy

We followed the PRISMA guidelines for the current systematic review (The PRIMSA Group, 2009). An initial MedLine, Cochrane Library, and PsycInfo search was conducted during September of 2018 with terms related to alcohol, cognition, adolescence/adulthood, and study type (see Appendix for full search strategy and syntax). Two search updates using the same search strategy were conducted on 31 March 2020 and 3 February 2021. For all searches, the identified citations were split into batches and at least two of the following assessors (GM, LK, JC, or CG) conducted a blinded review to determine whether articles met the inclusion criteria. In the first phase of screening, only titles and abstracts were screened and articles that clearly did not meet the inclusion criteria were excluded. In the second phase, the remaining articles received a full-text review and those that did not meet all inclusion criteria were excluded. The first inclusion criterion that was not adhered to was recorded as the reason for excluding. If there was a discrepancy between authors after initial and full-text screening process, the reviewing authors discussed the article and a consensus was reached.

The inclusion criteria were: (1) Human samples including both adolescents younger than 18 and adults older than 18 and animal samples including adolescent (Post Natal Day (PND) 25–42 for rodents) and adult [ 8 ] animals (greater than PND 65 for rodents); (2) Exploration of alcohol as the independent variable and cognitive, reward-related, or brain outcomes as the dependent variables; (3) Alcohol and cognitive outcomes must meet our operationalization defined below; (4) Study design comparing adults and adolescents on outcome measures; (5) Administering or measuring alcohol use during adolescence or adulthood, not retrospectively (e.g., no age of onset work in humans using retrospective self-reports of alcohol consumption); (6) Primary quantitative data collection (no case studies, or review papers); (7) Solely looking at alcohol-related factors as the independent variables (e.g., cannot explore alcohol-related factors in individuals with psychosis); (8) Written in English; (9) Published in a peer-reviewed journal before February 3, 2021 (see Fig. 2 for a detailed screening process).

The definitions for adolescence are variable, hampering the direct comparison of human and rodent research. In rodents, the end of early-mid adolescence is considered to be approximately PND 42 when rats reach sexual puberty. By contrast, the boundaries for the onset of early adolescence are less clear. Based on the notion that most age-typical physiological changes that are characteristic of adolescence emerge from PND 28 [ 26 ], the conservative boundary for adolescence has been set at PND 28 (e.g., seminal review on adolescence [ 27 ]). The preceding week (PND 21-PND 28) has been described as the juvenile period (e.g., [ 28 , 29 ]) but these same reports consider PND 21-PND 23 as the lower boundary for early adolescence [ 28 , 29 ], further emphasizing that the boundary of PND28 may be too conservative. Indeed, multiple studies (e.g., [ 30 , 31 ]), have chosen to take PND25 as the boundary for early adolescence. Hence, we have decided to also follow this less conservative approach and include all studies where alcohol was administered between PND 25 and PND 42.

The exact boundaries of human adolescence are similarly nebulous. From a neurodevelopmental perspective, adolescence is now often thought of as continuing until approximately age 25 because of the continuing maturation of the brain [ 32 ]. However, the delineation of adolescence and adulthood is also dependent on societal norms, and is commonly defined as the transitional period between puberty and legal adulthood and independence which typically begins around age eighteen. In light of this, we chose a relatively liberal inclusion criteria for the human studies; studies needed to include at least some adolescents below eighteen, the age at which drinking typically begins, as well as ‘adult’ participants over the age of eighteen. We are careful to interpret the results of human studies within the neurodevelopmental framework of adolescence, such that 18–25-year-olds are considered late adolescents to young adults who are still undergoing cognitive and brain maturation.

Notably, we excluded studies that assessed alcohol exposure retrospectively (primarily early onset alcohol studies) because age of onset variables are often inaccurate, with reported age of alcohol onset increasing with both historical age [ 33 ] and current alcohol use patterns [ 34 ]. In addition, we excluded work that has not undergone peer-review to ensure high-quality papers.

In humans, we defined cognition as any construct that typically falls within the umbrella of neuropsychological testing, as well as brain-based studies. We also included more distal constructs of cognition, like craving and impulsivity, because they play a prominent role in addictive behaviors [ 35 , 36 ]. In rodents, we defined cognition as attention, learning, and memory in line with a seminal review paper [ 37 ]. Given the importance of social cognition in patterns of alcohol use particularly in adolescence [ 38 ] and its proposed role in adolescent risk and resilience to addiction [ 39 ], we included social behavior as an outcome. Furthermore, because many rodent studies assessed anxiety-related behaviors and the high degree of comorbidity between anxiety disorders and alcohol addiction [ 40 ], we also included anxiety as a secondary outcome. On the other hand, locomotor activity was excluded as an outcome because even though behavioral sensitization is considered to reflect neurobiological changes that may underlie certain aspects of addictive behavior [ 36 ], the translational relevance for addictive behavior and human addiction in particular remains unclear [ 41 , 42 ]. Across both rodents and humans, general alcohol metabolization and ethanol withdrawal studies were not included except if they included brain-related outcomes. The relevant reported findings (i.e., the results of an analysis of comparing age groups on the effect of alcohol on an included outcome) were extracted by a one reviewer and then confirmed by at least one other reviewer. In addition, the characteristics of the sample, details of alcohol exposure, and study design were extracted by a single reviewer and then confirmed by at least one other reviewer. No automation tools were used for extraction. Within the included studies, peripheral findings that did not relate to cognition were excluded from review and not extracted. The protocol for this systematic review was not registered and no review protocol can be accessed.

Study search

Our searches identified 7229 studies once duplicates were removed. A total of 6791 studies were excluded after initial review of abstracts. Then, 434 studies received a full-text review and 371 were excluded for failing to meet all inclusion criteria. See Fig. 2 for a flow diagram of the full screening process. At the end of the inclusion process, 59 rodent studies and 4 human studies were included. The characteristics and findings of the final studies are detailed in Table 1 (rodents) and Table 2 (humans). Due to the heterogeneity of outcomes, meta-regression was not suitable for synthesizing results. Results are narratively synthesized and grouped based on forced or voluntary ethanol exposure and by outcome within the tables and by outcome only in text. Two authors independently rated the quality of evidence for human studies (Table 2 ) based on criteria used in a similar systematic review [ 43 ]: (1) strong level of causality: longitudinal design comparing adolescent and adults while adjusting for relevant covariates; (2) moderate level of causality: longitudinal design comparing adolescents and adults without adjusting for relevant covariates or cross-sectional designs with matched groups that considered relevant covariates; (3) weak level of causality: cross-sectional design without matched adolescent and adult groups and/or did not adjust for relevant covariates. A methodological quality assessment was not conducted for the animal studies due to a lack of empirically validated risk of bias tools and lack of standardized reporting requirements in the animal literature.

figure 2

PRIMSA flow diagram detailing the screening process.

Animal studies

Cognitive outcomes, learning and memory.

Human evidence clearly suggests that alcohol is related to learning and memory impairments, both during intoxication [ 44 ] and after sustained heavy use and dependence [ 45 , 46 ]. Paradigms that assess learning and memory provide insight into the negative consequences of alcohol consumption on brain functioning, as well as the processes underlying the development and maintenance of learned addictive behaviors.

Conditioned alcohol aversion or preference: Lower sensitivity to alcohol’s aversive effects (e.g., nausea, drowsiness, motor incoordination) but higher sensitivity to alcohol’s rewarding effects has been hypothesized to underlie the higher levels of alcohol use, especially binge-like behavior, in adolescents compared to adults [ 47 ]. Several conditioning paradigms have been developed to assess the aversive and motivational effects of alcohol exposure.

The conditioned taste aversion (CTA) paradigm is widely used to measure perceived aversiveness of alcohol in animals. Repeated high-dose ethanol injections are paired with a conditioned stimulus (CS, e.g., a saccharin or NaCL solution). The reduction in CS consumption after conditioning is used as an index of alcohol aversion. Two studies examined CTA in mice [ 48 , 49 ] and two in rats [ 50 , 51 ]. Three of the four studies found age-related differences. In all three studies using a standard CTA paradigm, adolescents required a higher ethanol dosage to develop aversion compared to adults [ 48 , 49 , 50 ]. Using a similar second-order conditioning (SOC) paradigm pairing high doses of ethanol (3.0 g/kg) with sucrose (CS), both adolescent and adult rats developed equal aversion to the testing compartment paired with ethanol [ 51 ].

Overall, three studies found support for lower sensitivity to alcohol’s aversive effects in adolescents, whereas one observed no differences. Future research should employ intragastric as opposed intraperitoneal exposure to better mimic human binge-like drinking in order to increase the translational value of the findings.

To measure differences in alcohol’s motivational value, conditioned place preference (CPP) paradigms have been used. This involves repeated pairings of ethanol injections with one compartment and saline injections with another compartment of the testing apparatus. On test days, CPP is assessed by measuring how long the animal stays in the compartment paired with ethanol relative to saline injections. Four studies examined CPP, with two studies observing age-related differences [ 52 , 53 , 54 , 55 ]. In the only mouse study, history of chronic ethanol exposure during adolescence (2.0 g/kg for 15 days) but not adulthood [ 52 ] led to increased CPP after brief abstinence (5 days) before the conditioning procedure (2.0 g/kg, four doses over 8 days). This suggests that early ethanol exposure increases alcohol’s rewarding properties later on. However, two rat studies did not observe either preference or aversion in either age when using lower ethanol doses and a shorter exposure period (0.5 and 1.0 g/kg for 8 days) [ 53 ], nor when using higher doses and intermittent exposure (3.0 g/kg, 2 days on, 2 days off schedule) [ 55 ]. Next to species and exposure-specific factors, environmental factors also play a role [ 54 ], with adolescents raised in environmentally enriched conditions demonstrating CPP (2 g/kg) while adolescents raised in standard conditions did not. In contrast, CPP was insensitive to rearing conditions in adults with both enriched and standard-housed rats showing similar levels of CPP.

Overall, there is inconsistent evidence for age-related differences in the motivational value of ethanol. One study found support for increased sensitivity to the rewarding effects of ethanol in adolescents, whereas one found support for adults being more sensitive and two observed no differences.

Fear conditioning and retention: Pavlovian fear conditioning paradigms are used to investigate associative learning and memory in animals. These paradigms are relevant for addiction because fear and drug-seeking behavior are considered conditioned responses with overlapping neural mechanisms [ 56 ]. Rodents are administered an unconditioned stimulus (US; e.g., foot shock) in the presence of a conditioned stimulus (CS; unique context or cue). Conditioned responses (CR; e.g., freezing behavior) are then measured in the presence of the CS without the US as a measure of fear retention. Contextual fear conditioning is linked to hippocampus and amygdala functioning and discrete cue-based (e.g., tone) fear is linked to amygdala functioning. [ 57 , 58 , 59 ], and fear extinction involves medial PFC functioning [ 60 ]. Five studies investigated fear conditioning, four in rats [ 61 , 62 , 63 , 64 ] and one in mice [ 65 ].

Only one of the four studies observed age-related differences in tone fear conditioning. Bergstrom et al. [ 61 ] found evidence for impaired tone fear conditioning in male and female alcohol-exposed (18d) adolescent compared to adult rats after extended abstinence (30d). However, adolescent rats consumed more ethanol during the one-hour access period than adults, which may explain the observed age differences in fear tone conditioning. Small but significant sex differences in consumption also emerged in the adolescent group, with males showing more persistent impairment across the test sessions compared to females, despite adolescent females consuming more ethanol than males. In contrast, three studies found no evidence of impaired tone fear conditioning in either age group after chronic alcohol exposure (4 g/kg, every other day for 20d) and extended abstinence [ 62 , 63 ] (22d), [ 64 ].

Two of the three studies observed age-related differences in contextual fear conditioning [ 62 , 63 , 64 ]. In two studies with similar exposure paradigms, only adolescents exposed to chronic high dosages of ethanol (4 g/kg) showed disrupted contextual fear conditioning after extended abstinence (22d) [ 62 , 63 ]. Importantly, differences disappeared when the context was also paired with a tone, which is suggestive of a potential disruption in hippocampal-linked contextual fear conditioning specifically [ 64 ]. Furthermore, there may be distinct vulnerability periods during adolescence as contextual fear retention was disrupted after chronic alcohol exposure (4 g/kg, every other day for 20d) during early-mid adolescence but not late adolescence [ 62 ]. In the only study to combine chronic exposure and acute ethanol challenges, contextual conditioning was impaired by the acute challenge (1 g/kg) but there was no effect of pre-exposure history in either age group (4 g/kg, every other day for 20d) [ 63 ].

Only one study examined fear extinction, and found no effect of ethanol exposure (4/kg, every other day for 20d) on extinction after tone conditioning. However, adults had higher levels of contextual fear extinction compared to mid-adolescents while late adolescents performed similar to adults [ 62 ]. Moreover, looking at binge-like exposure in mice (three binges, 3d abstinence), Lacaille et al. [ 65 ] showed comparable impairments in long-term fear memory in adolescents and adults during a passive avoidance task in which one compartment of the testing apparatus was paired with a foot shock once and avoidance of this chamber after a 24 h delay was measured.

In sum, there is limited but fairly consistent evidence for adolescent-specific impairments in hippocampal-linked contextual fear conditioning across two rat studies, while no age differences emerged in context-based fear retention in one study of mice. In contrast, only one of the four studies found evidence of impaired tone fear conditioning in adolescents (that also consumed more alcohol), with most finding no effect of alcohol on tone fear conditioning regardless of age. With only one study examining medial PFC-linked fear extinction, no strong conclusions can be drawn, but initial evidence suggests context-based fear extinction may be diminished in mid-adolescents compared to adults and late adolescents. Research on age-related differences on the effect of alcohol on longer-term fear memory is largely missing.

Spatial learning and memory: The Morris Water Maze (MWM) is commonly used to test spatial learning and memory in rodents. Across trials, time to find the hidden platform in a round swimming pool is used as a measure of spatial learning. Spatial memory can be tested by removing the platform and measuring the time the animal spends in the quadrant where the escape used to be. The sand box maze (SBM) is a similar paradigm in which animals need to locate a buried appetitive reinforcer.

Six rat studies examined spatial learning and memory using these paradigms. Three of the six studies observed age-related differences. Four examined the effects of repeated ethanol challenges 30 minutes prior to MWM training, showing mixed results [ 30 , 66 , 67 , 68 ]. While one found ethanol-induced spatial learning impairments in adolescents only (1.0 and 2.0 g/kg doses) [ 66 ], another found no age-related differences, with both age groups showing impairments after moderate doses (2.5 g/kg) and enhancements in learning after very low doses (0.5 g/kg) [ 67 ]. Sircar and Sircar [ 68 ] also found evidence of ethanol-induced spatial learning and memory impairments in both ages (2.0 g/kg). However, memory impairments recovered after extended abstinence (25d) in adults only. Importantly, MWM findings could be related to thigmotaxis, an anxiety-related tendency to stay close to the walls of the maze. Developmental differences in stress sensitivity may potentially confound ethanol-related age effects in these paradigms. Using the less stress-inducing SBM, adults showed greater impairments in spatial learning compared to adolescents after 1.5 g/kg ethanol doses 30 min prior to training [ 30 ].

Two studies examined the effects of chronic ethanol exposure prior to training with or without acute challenges [ 69 , 70 ]. Matthews et al. [ 70 ] looked at the effect of 20 days binge-like (every other day) pre-exposure and found no effect on spatial learning in either age following an extended abstinence period (i.e., 6–8 weeks). Swartzwelder et al. [ 69 ] examined effects of 5-day ethanol pre-exposure with and without ethanol challenges before MWM training. Ethanol challenges (2.0 g/kg) impaired learning in both age groups regardless of pre-exposure history. Thigmotaxis was also increased in both age groups after acute challenges while pre-exposure increased it in adults only.

In sum, evidence for impaired spatial learning and memory after acute challenges is mixed across six studies. Two studies found support for ethanol having a larger impact in adolescents compared to adults, whereas one study found the opposite and three studies did not observe any differences. Differences in ethanol doses stress responses may partially explain the discrepancies across studies. Importantly, given the sparsity of studies addressing the effects of long-term and voluntary ethanol exposure, no conclusion can be drawn about the impact of age on the relation between chronic alcohol exposure and spatial learning and memory.

Non-spatial learning and memory: Non-spatial learning can also be assessed in the MWM and SBM by marking the target location with a pole and moving it across trials, measuring time and distances traveled to locate the target. By assessing non-spatial learning as well, studies can determine whether learning is more generally impaired by ethanol or whether it is specific to hippocampal-dependent spatial learning processes. A total of six studies assessed facets of non-spatial learning and memory. Two of the six studies observed age-related differences.

In the four studies that examined non-spatial memory using the MWM or SBM in rats, none found an effect of alcohol regardless of dose, duration, or abstinence period in either age group [ 30 , 66 , 67 , 70 ]. Two other studies examined other facets of non-spatial memory in rats [ 65 , 71 ]. Galaj et al. [ 71 ] used an incentive learning paradigm to examine conditioned reward responses and approach behavior towards alcohol after chronic intermittent ethanol (CIE; 4 g/kg; 3d on, 2d off) exposure to mimic binge drinking. To examine reward-related learning and approach behavior, a CS (light) was paired with food pellets and approach behavior to CS only presentation and responses to a lever producing the CS were measured. In both adolescents and adults, the ethanol-exposed rats showed impaired reward-related learning after both short (2d) and extended (21d) abstinence. No effect of alcohol on conditioned approach behavior was observed in either age group during acute (2d) or extended (21d) abstinence. Using a novel object recognition test in mice, Lacaille et al. [ 65 ] assessed non-spatial recognition memory by replacing a familiar object with a novel object in the testing environment. Explorative behavior of the new object was used as an index of recognition. After chronic binge-like exposure (three injections daily at 2 h intervals) and limited abstinence (4d), only adolescents showed reduced object recognition.

Across facets of non-spatial memory, there is little evidence for age-related differences in the effect of chronic alcohol, with four of the six studies finding no age differences. For memory of visually cued target locations in the MWM and SBM paradigms, alcohol does not alter performance in either age. Also, both adolescents and adults appear similarly vulnerable to alcohol-induced impairments in reward-related learning based on the one study. Only in the domain of object memory did any age-related differences emerge, with adolescents and not adults showing reduced novel object recognition after binge-like alcohol exposure in one study. However, more research into object recognition memory and reward-related learning and memory is needed to draw strong conclusions in these domains.

Executive function and higher-order cognition

Executive functions are a domain of cognitive processes underlying higher-order cognitive functions such as goal-directed behavior. Executive functions can include but are not limited to working memory, attentional processes, cognitive flexibility, and impulse control or inhibition [ 72 ]. A core feature of AUD is the transition from goal-directed alcohol use to habitual, uncontrolled alcohol use. Impaired executive functioning, linked to PFC dysfunction [ 73 ], is assumed to be both a risk factor and consequence of chronic alcohol use. A meta-analysis of 62 studies highlighted widespread impairments in executive functioning in individuals with AUD that persisted even after 1-year of abstinence [ 46 ]. Thirteen studies examined facets of executive functioning and higher-order cognition, specifically in the domains of working memory, attentional processes, cognitive flexibility, impulsivity in decision-making, and goal-directed behavior [ 65 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 ].

Working memory: Working memory refers to the limited capacity system for temporarily storing and manipulating information, which is necessary for reasoning and decision-making [ 84 ]. In the Radial Arm Maze test (RAM) [ 85 ], some of the equally spaced arms (typically eight) around a circular platform contain a food reward for animals to find. Spatial working memory is measured by recording the number of revisits to previously visited arms (i.e., working memory error) and first entries into unbaited arms (i.e., reference memory). Alternatively, the hippocampus mediated [ 86 ] spontaneous tendency to alternate arms can be used as a measure of spatial working memory. In this case, revisiting an arm in back-to-back trials in close temporal succession is interpreted as a working memory error. Five studies examined the effects of chronic ethanol exposure on spatial working memory [ 65 , 75 , 79 , 80 , 83 ]. One of the five studies observed age-related differences.

Chronic binge-like alcohol exposure had no effects on spontaneous alterations after prolonged abstinence (2d on, 2d off; 3 weeks abstinence) [ 79 , 80 ] in rats or limited abstinence (three injections daily at 2 h intervals; 24 h abstinence) [ 65 ] in mice, nor on RAM performance in rats (2d on, 2d off) [ 75 , 83 ]. However, acute ethanol challenges (1.5 g/kg) after chronic binge-like exposure (2d on, 2d off) resulted in RAM test impairments in both age groups in rats [ 75 , 83 ], with some evidence for increased working memory errors in adolescents [ 83 ].

In sum, there is little evidence for impairments in working memory function in rats after chronic ethanol exposure, with four of the five studies observing no difference between age groups. While acute intoxication impairs working memory function in both ages, there is evidence from only one study that adolescents may make more working memory errors.

Attentional processes: Attentional processing refers to the selection of information that gains access to working memory [ 87 ]. PPI is a pre-attentional cognitive function which provides an index of sensorimotor gating and measures the ability of a lower intensity sensory stimulus to reduce the magnitude of response to a more intense stimulus presented closely afterward. Reduced sensorimotor gating (reduced PPI) can disrupt information processing and thereby impair cognitive function, while enhanced sensorimotor gating (enhanced PPI) may reflect behavioral inflexibility [ 88 ]. For example, lesions in the medial PFC produce both behavioral inflexibility and enhancements in PPI in rats. Two studies assessed attentional processes by measuring prepulse inhibition (PPI) in rats [ 82 , 89 ]. One study observed age-related differences and one did not.

Slawecki and Ehlers [ 82 ] observed age-related differences in sensorimotor gating following ethanol vapor exposure (2w) and brief abstinence (6d), with adolescents showing enhanced PPI at some decibels reflective of behavioral inflexibility, while adults did not exhibit PPI at any of the intensities tested. Slawecki et al. [ 89 ] did not observe any age-related differences in PPI during the acute phase of ethanol withdrawal (7–10 h abstinence) during a period of chronic ethanol exposure (14d).

In sum, there is limited and mixed evidence from two studies of age-related differences in the pre-attentional process of sensorimotor gating. Only one study found support for adolescent sensitivity to ethanol effects.

Cognitive flexibility: Cognitive flexibility refers to the ability to update information based on environmental factors r changing goals in order to adaptively guide decision-making and is linked to the inability to reduce or abstain from drinking [ 90 ]. Three studies examined facets of cognitive and behavioral flexibility [ 79 , 80 , 81 ]. Two of the three studies observed age-related differences.

In two rat studies, cognitive flexibility was assessed using reversal learning paradigms [ 79 , 80 ]. In the reversal learning paradigm, rats were trained on simple (e.g., visual cue) and more complex discriminations (e.g., visual + scent cue) between rewarded and non-rewarded bowls. After learning the discriminants, the rewards were reversed. Ethanol exposure reduced flexibility in both adolescents and adults for simple discriminations in both studies. Age-related differences emerged for the more complex discriminations in one study, with only adults showing reduced flexibility after prolonged abstinence (21d) following binge-like exposure (5 g/kg, 2d on, 2d off) [ 79 ]. In contrast, both age groups showed reduced flexibility for complex discrimination in the other study after prolonged abstinence (21d) despite adolescents consuming more ethanol orally than adults during the 28 week exposure [ 80 ].

In another study, Labots et al. [ 81 ] used a conditioned suppression of alcohol-seeking task after two months of voluntary ethanol consumption (2 months) in rats to examine flexibility around alcohol-seeking behavior. After stratifying the age groups based on levels of ethanol consumption, medium- and high-consuming, adolescents showed higher levels of conditioned suppression compared to similarly drinking adults, indicating greater behavioral flexibility and control over alcohol-seeking in adolescents after chronic voluntary exposure.

Overall, there is limited evidence for adolescent resilience to the effects of chronic alcohol on cognitive flexibility. Two studies found support for adolescent resilience to ethanol’s effect on behavioral flexibility, whereas another study found no differences between adolescents and adults.

Impulsivity: Impulsivity is a multi-faceted behavioral trait that encompasses impaired response inhibition, preference for an immediate reward over a larger but delayed reward, and premature expression of behaviors which may be maladaptive or in conflict with conscious goals. Impulsivity is a risk-factor for the development of addiction and may also be a consequence of sustained substance use [ 35 ]. Pharmacological evidence points towards overlapping neuronal mechanisms in impulsivity and addictive behavior, particularly within the mesolimbic dopamine system [ 91 ]. Two studies examined impulsive decision-making behavior in rats [ 74 , 78 ]. Both studies observed age-related differences.

One study examined impulsive behavior using a delay-discounting task in which choices are made between immediate small rewards and larger delayed rewards [ 78 ]. Regardless of age, chronic intermittent exposure (2d on, 2d off) had no effect on choice behavior in non-intoxicated rats. Following acute challenges, adolescents but not adults demonstrated a reduced preference for the large reward regardless of ethanol exposure history, reflecting a general adolescent-specific heightened impulsivity during intoxication. Another study examined decision-making under risk conditions using an instrumental training and probability-discounting task [ 74 ]. After prolonged abstinence (20d), rats were trained to press two levers for sucrose rewards and were concurrently trained to choose between two levers with different associated probabilities of reward and reward size, creating a choice between a certain, small reward and an uncertain, large reward (i.e., riskier choice). Ethanol consumption was voluntary and while adolescents initially consumed more ethanol than adults at the beginning of the exposure period, the total amount of consumption was similar by the end of the exposure period. Only adolescents showed increased risky and sub-optimal decision-making compared to age-matched controls, while adults performed similarly to controls.

In sum, both studies found support for ethanol having a larger impact on adolescent compared to adults on impulsive behavior.

Goal-directed behavior: Goal-directed behavior refers to when actions are sensitive to both the outcome value (goal) and contingency between the behavior and the outcome [ 92 ]. Two studies used a sign-tracking and omission contingency learning paradigm to examine goal-directed versus habitual behavior [ 76 , 77 ]. One study observed age-related differences and the other did not. Sign tracking refers to tasks where a cue predicts a reward, but no response is needed for the reward to be delivered. Despite this, after repeated pairings of the cue and reward, animals and humans may respond (e.g., via a lever) when the cue is presented anyway, and even when no reward is known to be available. Sign-directed behavior is considered habitual and has been proposed to underlie the lack of control of alcohol use in addiction [ 93 ]. In humans, sign-tracking behavior is difficult to differentiate from goal-directed behavior based on only the observable behavior, i.e., seeing a cue such as a favorite drink or bar and then having a drink [ 94 ]. In the context of alcohol use, reflexively having a drink when seeing an item that is often associated with the rewarding effects of alcohol (e.g., wine glass, bar, smell of alcohol) despite not consciously desiring the alcohol ‘reward’ is an example of how habitual behavior (possibly driven by sign-tracking) can initiate the behavior as opposed to an intentional goal [ 93 ]. Omission contingency refers to a 2nd phase after sign-tracking when the response is punished and the behavior must be inhibited to avoid punishment. After both forced and voluntary ethanol exposure (6w), no alterations to sign-tracking behavior were observed in adolescent and adult rats [ 76 , 77 ]. One study did observe an age-related difference in omission contingency learning, with adolescents performing better than adults after chronic voluntary ethanol exposure [ 77 ]. This preliminarily suggests that adolescents may be more capable of adapting their behavior to avoid punishment compared to adults after chronic use. However, before behavioral testing began, adolescent rats were abstinent for 17 days, while adults were only abstinence for 10 days which may have influenced the results.

In summary, one study found support for adolescents being less sensitive to ethanol effects on goal-directed behavior compared to adults, whereas one study found no effect of ethanol in either age group.

Across the domains of executive function, there is some evidence that adolescents may be more vulnerable to impairments in certain executive and higher-order cognitive functions following chronic alcohol exposure, with increased risky decision-making after prolonged abstinence [ 74 ], impulsivity during intoxication [ 78 ], and reduced working memory function during intoxication after chronic exposure. In contrast, animals exposed to alcohol during adolescence may better retain cognitive flexibility [ 77 , 79 ] and are better able to regain control over alcohol-seeking in adulthood [ 81 ].

Other behavioral outcomes

Anxiety : AUD is highly comorbid with anxiety disorders [ 95 ], especially in adolescence [ 96 ]. While anxiety is not strictly a cognitive outcome, it is related to altered cognitive functioning [ 97 , 98 ]. Many studies assessing the effects of ethanol on the rodent brain and cognition also include anxiety-related measures. Multiple paradigms have been developed to elicit behaviors thought to reflect anxiety in rodents (e.g., rearing, startle, avoidance, etc.). In the open field test (OFT), anxiety is indexed as the tendency to stay close to perimeter walls as animals have a natural aversion to brightly lit open spaces [ 99 ]. In the elevated plus maze paradigm, rodents are placed at the center of an elevated four-arm maze with two open arms two closed arms [ 100 ]. The open arms elicit unconditioned fear of heights/open spaces and the closed arms elicit the proclivity for enclosed, dark spaces. Anxiety is indexed as entries/duration of time in open vs. closed arms, as well as rearing, freezing, or other postural indices of anxiety. In startle paradigms, the startle response is a defensive mechanism reflecting anxiety which follows a sudden, unpredictable stimulus (e.g., tones, light) [ 101 ]. In light-dark box paradigms, anxiety is elicited using a testing apparatus with a light and dark compartment, relying on the conflict between natural aversions to well-lit spaces and the tendency to explore new areas. Percentage of time spent in the light compartment, latency to return to the dark compartment, movement between compartments (transitions), and rearing-behavior are measured as indices of anxiety [ 102 ]. Anxiety can also be assessed using a social interaction test with an unfamiliar partner, with approach and avoidance behaviors measured to index anxiety [ 103 ]. In the novel object test (NOT) [ 104 ], anxiety is elicited by the introduction of a new object in the rodent’s environment. The amount of contacts and time spent in contact with the object is used as an index of anxiety. Similarly, in the marble-burying test (MBT), novel marbles are placed in an environment and the amount of defensive burying of the objects is used as an index of anxiety [ 105 ].

Eleven studies examined anxiety-like behavior in rodents with mixed results across paradigms [ 70 , 78 , 82 , 83 , 89 , 106 , 107 , 108 , 109 , 110 , 111 ]. Overall, five of the eleven studies observed age-related differences.

Two studies used the OFT, finding no effects of voluntary (2w, 4 h/day access) or forced (12/day vapor) ethanol exposure on anxiety-like behavior in adolescents or adult rats during withdrawal (7–9 h) [ 110 ] or after a brief abstinence period (4 days) [ 107 ]. One study used both the MBT and NOT after voluntary ethanol consumption (2 h/d for 2 weeks; no abstinence) and observed higher anxiety in ethanol-exposed adults and reduced anxiety in ethanol-exposed adolescents compared to controls as indexed by marble burying [ 106 ]. However, no age effects were observed in response to a novel object, with reduced interaction with the novel object in both age groups after chronic exposure.

Four studies used the elevated maze paradigm with mixed results. Only one study observed age-related differences in mice after chronic exposure (8–10w vapor) [ 109 ]. Adolescents showed reduced anxiety compared to adults during the acute withdrawal period, but all mice were kept under chronic social isolation and unpredictable stress conditions, which may have affected the results. Two studies in rats found no effect of intermittent (1 g/kg) or binge-like (5 g/kg) exposure in either age group after short (24 h) [ 70 ] or sustained abstinence (20d) [ 83 ]. A third study observed heightened anxiety in both age groups after intermittent exposure (4 g/kg), with anxiety increasing with prolonged abstinence periods (24 h to 12d) [ 108 ].

Three rat studies used a startle paradigm to assess anxiety. Two observed reduced acoustic startle responses after ethanol exposure (12 h/d vapor) in both age groups during acute withdrawal periods (7–10 h) and following more sustained abstinence (6d) [ 82 , 89 ]. In the other study, light-potentiated startle was also reduced in both ages during days 1–10 of withdrawal after binge-like exposure (2d on, 2d off), but age-related differences emerged when the rats were re-exposed via a 4-day binge (1–4/kg). Then, only adults showed higher levels of light-potentiated startle compared to controls [ 78 ], suggesting that ethanol pre-exposure increases anxiety in adults but not adolescents when re-exposed to ethanol after withdrawal.

Two studies used the light-dark box paradigm with mixed results [ 89 , 111 ]. Only adult rats showed increased mild anxiety-like behaviors during early withdrawal (7–10 h) after chronic vapor exposure 12 h/d) [ 89 ]. In contrast, no age-related differences emerged after voluntary ethanol consumption (18 h/d access; 3d/w for 6 weeks), with male mice showing less anxiety-like behavior in both ages [ 111 ]. In contrast, the one study using the social interaction test observed reduced anxiety in adult mice compared to both adolescents and age-matched controls during early withdrawal (4–6 h) after chronic, unpredictable vapor exposure [ 109 ].

In summary, there is inconsistent evidence for age-related differences in the effect of chronic ethanol exposure on anxiety outcomes in rodents. The substantial differences across studies in how anxiety was elicited and measured make it challenging to draw strong conclusions. In the five studies that found age-related differences, adults tend to show higher levels of anxiety, particularly during early withdrawal; however, the opposite was found in the one study examining anxiety in social interactions. Six studies did not observe any age-related differences. Overall, adolescents may be less sensitive to the anxiety-inducing effects of chronic alcohol exposure.

Social behavior: Two studies were identified that examined the effects of chronic ethanol exposure on social behavior in rats [ 112 , 113 ], with both observing age-related differences. After chronic exposure (1 g/kg, 7d), followed by a brief abstinence period (24–48 h), one study found a decrease in social preference in adolescents only [ 112 ], while the other study found no ethanol-related effects on social behavior (2 g/kg, 10d) [ 113 ]. After acute challenges, age and treatment interactions emerged in both studies, but the directions of the results are inconsistent. In the first study, adolescents showed increased social preference, as indexed by the number of cross-overs between compartments toward and away from a peer, across multiple acute doses (0.5–1.0 g/kg) administered immediately before testing, while adults showed no changes in social preference [ 112 ]. In contrast, Morales et al. [ 113 ] found evidence for age-related temporal differences in social activity after acute challenge, with adults showing decreased social impairment five minutes post injection (1 g/kg) and adolescents (1.25 g/kg) after 25 min compared to age-matched controls.

The findings from these two studies paint a complicated and inconsistent picture of the effects of ethanol on social behavior in adults and adolescents warranting further research. One study found support for a larger effect of chronic ethanol on adolescent social behavior compared to adults, while the other did not observe effects of ethanol in either group. One study found support for a larger effect of chronic plus acute ethanol intoxication on social behavior, with the opposite observed in the other.

Brain outcomes

Neurotransmitter systems.

Glutamate is the brain’s main excitatory neurotransmitter and plays a crucial role in synaptic plasticity (i.e., experience-related strengthening or weakening of synaptic connections). Glutamatergic transmission plays an important role in the formation and maintenance of addictive behaviors and the nucleus accumbens (NAc) is considered an important hub in this, receiving glutamatergic input from cortical-limbic areas and dopaminergic input from the midbrain [ 114 ]. Seven studies investigated glutamate functioning in regions of the brain [ 106 , 107 , 108 , 109 , 115 , 116 , 117 , 118 ]. Four of the seven studies observed age-related differences.

Three studies investigated glutamate-related processes in the NAc [ 106 , 107 , 118 ]. Two weeks of voluntary binge drinking (4-h access, no abstinence) did not affect expression of calcium-dependent kinase II alpha (CaMKIIα) and the AMPA receptor GluA1 subunit in the NAc of mice [ 107 ]. In contrast, Lee et al. [ 106 ] showed that voluntary binge drinking (2-h access, no abstinence) increased mGlu1, mGlu5, and GluN2b expression in the shell of the NAc, as well as PKCε and CAMKII in the core of the NAc in adult mice only. In rats, Pascual et al. [ 118 ] showed reduced NR2B phosphorylation in the NAc of adolescents only after two weeks of chronic intermittent ethanol exposure; an effect that also lasted until 24 h after end of exposure. This indicates that adolescents might be less affected by the effects of ethanol on NAc-related glutamatergic neurotransmission than adults. This may in turn mediate decreased withdrawal symptoms and potentially facilitate increased drinking [ 106 ].

Two studies investigated glutamate-related processes in the (basolateral) amygdala [ 107 , 116 ]. In mice, Agoglia et al. [ 107 ] showed decreased CaMKIIα phosphorylation in adolescents, but increased GluA1 expression in adults after two weeks of voluntary binge drinking (4-h access, no abstinence). Also, drug-induced AMPAR activation resulted in increased binge drinking in adolescents but decreased binge drinking in adults, highlighting the potential importance of glutamatergic signaling in age-related differences in alcohol consumption. However, Falco et al. [ 116 ] reported no difference in NR2A mRNA levels in the basolateral amygdala for either age group after 60-day abstinence.

Alcohol’s effects on frontal cortex functioning is thought to be mediated by alterations in NMDA receptor subunit expression [ 119 , 120 ]. Two studies investigated glutamate-related processes in the frontal cortex of rats [ 115 , 118 ]. Pascual et al. [ 118 ] showed reduced NR2B phosphorylation after two weeks of forced intermittent ethanol exposure in adolescents only. Using a 2-week ethanol vapor paradigm, Pian et al. [ 115 ] found different patterns of NMDAR subunit expression. These patterns were highly dependent on abstinence duration (0 h, 24 h, 2w), however, they only statistically compared results within rather than between age groups. Ethanol exposure was associated with decreased NR1 receptor expression in both age groups, but only the adult group showed a decrease in NR2A and NR2B expression. The NR1 and NR2A expression returned to normal during withdrawal, but in adults NR2B expression increased after two weeks of abstinence.

Conrad and Winder [ 109 ] assessed long-term potentiation (LTP) in the bed nucleus stria terminalis (BNST), a major output pathway of the amygdala towards the hypothalamus and thalamus. Voluntary ethanol exposure resulted in blunted LTP responses in the dorsolateral BNST regardless of age. However, all mice were socially isolated during the experiments to induce anxiety, so it is unclear whether the effects were solely due to ethanol exposure.

Two studies looked at glutamate receptor subunit expression in the hippocampus [ 108 , 115 ]. Pian et al. [ 115 ] observed increased expression of NR1, NR2A, and NR2B in adults after 2 weeks of ethanol exposure. In adolescents, a reduction in NR2A expression was observed. After abstinence, adult levels returned to normal, while in adolescents, decreased NR1 and NR2A expression was seen after 24 h but an increased expression of these subunits was seen after 2 weeks of abstinence. These findings support regional specific effects of age group, with potentially increased sensitivity to the impact of alcohol on glutamatergic mediated hippocampal functioning in adolescents. Unlike expected, van Skike et al. [ 108 ] did not find effects of chronic intermittent ethanol exposure or withdrawal on NMDA receptor subunit expression in the hippocampus and cortex as a whole in adolescent and adult rats. The authors speculate that these null results might be associated with the exposure design (limited exposure and route of administration) and lack of withdrawal periods compared to Pian et al. [ 115 ].

In sum, there is limited and inconsistent evidence for age-related differences in glutamate function across seven studies. The direction of the observed age-related differences varies across regions, with evidence of both increased and decreased sensitivity to ethanol effects in adolescents compared to adults in the four studies that observed age-related differences.

GABA is the brain’s main inhibitory neurotransmitter. GABA A receptors are a primary mediator of alcohol’s pharmacological effects [ 121 ]. A total of four studies looked at GABAergic functioning [ 108 , 116 , 122 , 123 ]. Three of the four studies observed age-related differences.

One study investigated GABA-related processes in the (basolateral) amygdala, showing reduced GABA A α1 and GAD67 (enzyme that converts Glutamate to GABA) mRNA expression in adult rats only, 60 days after 18-days ethanol exposure [ 116 ].

Two studies looked at the rat cortex as a whole [ 108 , 122 ]. Van Skike et al. did not find effects of chronic intermittent ethanol exposure on GABA A receptor expression [ 108 ]. Grobin et al. [ 122 ] showed that, while basal GABA A receptor functioning was not affected by 1 month of chronic intermittent ethanol exposure, GABA A receptors were less sensitive to the neurosteroid THDOC in adolescents. This neuromodulatory effect was not found in adults and did not persist after 33 days of abstinence. However, these results indicate that neurosteroids may play an indirect role in age differences in the GABAA receptor’s response to alcohol.

Two studies focused on the rat hippocampus [ 108 , 124 ]. Fleming et al. [ 124 ] found age-specific effects of chronic intermittent ethanol exposure on hippocampal (dentate gyrus) GABA A receptor functioning. Adolescent rats showed decreased tonic inhibitory current amplitudes after ethanol exposure, which was not the case for young adult and adult rats. Also, only the adolescents showed greater sensitivity to (ex vivo) acute ethanol exposure induced enhanced GABAergic tonic currents. The specificity of these effects to adolescent exposure might indicate adolescent vulnerability to ethanol-induced effects on the hippocampus; however, Van Skike et al. [ 108 ] did not find any effects of chronic intermittent ethanol exposure on GABA A receptor expression in the hippocampus.

In sum, given the limited number of studies and lack of replicated effects, no clear conclusions can be drawn about the role of age on the effects of alcohol on GABAergic neurotransmission. Age-specific effects appear to be regionally distinct. The only available study found support for heightened adult sensitivity to ethanol in the amygdala. In contrast, one study found support for greater adolescent sensitivity in the hippocampus and whole cortex, whereas the other found no age-related differences.

The mesocorticolimbic dopamine system, with dopaminergic neurons in the ventral tegmental area (VTA) projecting to the NAc and prefrontal cortex, plays a key role in AUD, particularly through reward and motivational processes [ 14 ]. Only two studies investigated dopaminergic processes, focusing on the frontal cortex, NAc, and broader striatum [ 118 , 125 ]. Both studies observed age-related differences in certain dopamine outcomes.

Carrara-Nascimento et al. [ 125 ] investigated acute effects of ethanol in adolescent and adult mice 5 days after a 15-day treatment with either ethanol or saline. In the PFC, ethanol pretreated adolescents showed reduced dopamine levels (DA) and related metabolites (DOPAC and HVA) in response to an acute ethanol challenge compared to ethanol pretreated adults and adolescent saline controls. In the NAc, there were no differences between pretreated adolescents and adults, but analyses within each age group revealed that ethanol-pretreatment with an acute challenge decreased DOPAC within the adolescent group. Results from the dorsal striatum also showed no differences between adolescents and adults. However, within the adolescent group, ethanol pre-treatment increased DOPAC and, within the adult group, it increased HVA. Pascual et al. [ 118 ] found similar results looking at the expression of DRD1 and DRD2 dopamine receptors after two weeks of chronic intermittent ethanol exposure in rats. In the NAc and dorsal striatum, DRD2 expression was reduced in adolescent compared to adult exposed rats, while both DRD1 and DRD2 expression were reduced in the frontal cortex.

These results suggest reduced alcohol-induced dopamine reactivity in adolescents in the PFC and NAc based on the two available studies, but more studies are warranted for a more detailed understanding of the relationship between age and dopamine receptor expression following chronic ethanol exposure.

Acetylcholine

Acetylcholine is a known neuromodulator of reward and cognition-related processes [ 126 ]. The composition and expression of nicotinic and muscarinic acetylcholine receptors have been implicated in various alcohol use-related behaviors [ 127 , 128 ]. Only one study investigated cholinergic processes and observed age-related differences. Vetreno et al. [ 129 ] showed global reductions in choline acetyltransferase (ChAT; cholinergic cell marker) expression after adolescent onset, but not adult onset of forced intermittent binge-like exposure (20 days – every other day, 25 days abstinence).

Neuromodulatory processes

Neurodegeneration and neurodevelopment.

Chronic alcohol consumption is thought to lead to brain damage by influencing processes involved in neurodegeneration and neurogenesis. The formation of addictive behaviors is paralleled by the formation of new axons and dendrites, strengthening specific neuronal pathways [ 130 ]. While brain morphology is commonly investigated in humans, it is a proxy of the impact of alcohol on the brain and therefore rarely studied in rodents. Five studies investigated facets of neurodegeneration or development in rodents [ 55 , 65 , 131 , 132 , 133 ]. All five studies observed age-related differences.

Huang et al. [ 131 ] showed reduced cerebral cortex mass in adolescent mice, but shortening of the corpus collosum in adults after 45 days of ethanol injections, suggesting some age-specific regional effects. Using an amino cupric silver staining, significant brain damage was revealed for both adolescent and adult rats after 4 days of binge-like ethanol exposure [ 132 ]. However, adolescents showed more damage in the olfactory-frontal cortex, perirhinal cortex, and piriform cortex.

Looking at hippocampal neurogenesis, ethanol exposure has been shown to initially reduce hippocampal neurogenesis in adult rodents, recovering after 1-month abstinence [ 134 ]. Compared to adults, neurogenesis in the dentate gyrus of the hippocampus was found to be reduced in adolescent exposed mice (Bromodeoxyuridine levels) [ 65 ] and rats (doublecortin levels) [ 133 ]. Lacaille et al. [ 65 ] also measured the expression level of genes involved in oxidative mechanisms after binge-like alcohol exposure. In whole brain samples, they found increased expression of genes involved in brain protection (i.e., gpx3, srxn1) in adults, but increased expression of genes involved in cell death (i.e., casp3) combined with decreased expression of genes involved in brain protection (i.e., gpx7, nudt15) in adolescents. Casp3 protein levels were also higher in the whole brain of adolescent exposed mice [ 65 ] and the adolescent dentate gyrus [ 133 ], suggesting more neurodegeneration and less neurogenesis in adolescents versus adults following ethanol consumption.

Cyclin-dependent kinase 5 (CDK5) is involved in axon, dendrite, and synapse formation and regulation. CDK5 is overexpressed in the prefrontal cortex and the NAc following exposure to substances of abuse including alcohol [ 135 ]. Moreover, CDK5 inhibition has been shown to reduce operant self-administration of alcohol in alcohol-dependent rats [ 136 ]. One study reported higher H4 acetylation of the CDK5 promoter in the PFC of adult versus adolescent ethanol-exposed rats during acute withdrawal, however, CDK5 mRNA expression was control-like after 2 weeks of abstinence [ 55 ].

In sum, strong conclusions cannot be drawn due to the limited number of studies and lack of replicated effects. However, preliminary evidence points to adolescent vulnerability to damage in the cortex, reduced neurogenesis, and increased neurodegeneration in the hippocampus and the cortex as a whole based on four of the five studies. In contrast, one study found support for adult vulnerability to ethanol’s effects axon, dendrite, and synapse formation and regulation.

Growth factors

Brain-derived neurotrophic factor (BNDF) and nerve growth factor (NGF) are involved in brain homeostasis and neural recovery [ 137 , 138 ]. While ethanol exposure initially increases BDNF and NGF, chronic ethanol exposure seems to reduce BDNF and NGF levels and can thereby result in long-term brain damage and related cognitive problems [ 139 , 140 ]. Four studies investigated growth factor expression in the frontal cortex [ 54 , 55 , 79 , 80 ] and two studies also investigated the hippocampus [ 79 , 80 ]. All four studies of the frontal cortex observed age-related differences. Neither study of the hippocampus observed age-related differences.

In rats, 30 weeks of chronic ethanol exposure reduced prefrontal mBDNF and β-NGF regardless of age, despite adolescents consuming more ethanol [ 80 ]. Moreover, the reduction of mBDNF was correlated with higher blood alcohol levels and was persistent up to 6–8 weeks abstinence. Interestingly, during acute withdrawal (48 h) adolescents but not adults temporarily showed control-like mBDNF levels. This might indicate an attempt to counteract neurodegeneration as a result of ethanol exposure in adolescents. These results were partially replicated using a shorter intermittent exposure paradigm (13 doses, 2 days on/off) [ 79 ]. While intoxication after chronic ethanol exposure reduced prefrontal BDNF, levels recovered after 3-weeks abstinence regardless of age. However, during acute withdrawal (24 h), BDNF was still reduced in early-adolescent onset rats, increased in adult-onset rats, but control-like in mid-adolescent onset-rats, suggesting slower recovery in younger animals. Looking at BDNF gene regulation, a similar study (8 doses, 2 days on/off) reported higher H3 demethylation but lower H4 acetylation of the BDNF promoter in the PFC of adult versus adolescent ethanol-exposed rats during acute withdrawal [ 55 ]. However, prefrontal BDNF mRNA expression returned to control levels after 2 weeks of abstinence. Interestingly, social housing may be protective, as reduced prefrontal BDNF was no longer observed in alcohol-exposed adolescent mice housed in environmentally enriched relative to standard conditions [ 54 ]. Two studies investigated hippocampal BDNF expression but reported no significant interactions between alcohol exposure and age group [ 79 , 80 ].

In sum, the results of the four available studies suggest lower prefrontal BDNF during chronic alcohol use that recovers after abstinence regardless of age. However, the rate of recovery may be influenced by age with slower recovery in adolescents. In the two available studies, no age-related differences were observed in BDNF expression in the hippocampus.

Transcription factors

The transcription factors cFos and FosB are transiently upregulated in response to substance use, and ΔFosB accumulates after chronic exposure, particularly in striatal and other reward-related areas [ 141 ]. Two studies investigated cFos and FosB [ 55 , 142 ] and one study ΔFosB related processes [ 111 ]. All three studies observed age-related differences.

After chronic ethanol exposure (8 doses, 2 days on/off), adolescent compared to adult rats showed increased prefrontal H3 and H4 acetylation of the cFos promotor region and increased H4 acetylation and H3 dimethylation of FosB promotor regions after acute abstinence [ 55 ]. Moreover, mRNA expression of FosB was elevated in adolescents but not adults after 2-weeks abstinence. The upregulating effects of an acute ethanol challenge on prefrontal cFos appears to reduce after chronic pre-treatment to a larger extent in adolescent than adult exposed mice [ 142 ]. This pattern of results was similar in the NAc, but desensitization to ethanol’s acute effects on cFos in the hippocampus was more pronounced in adults. Faria et al. [ 142 ] also looked at Egr-1 (transcription factor, indirect marker of neuronal activity and involved in neuroplasticity), showing a stronger reduction in Egr-1 expression in the PFC, NAc, and hippocampus of adolescent versus adults after repeated ethanol exposure. Regarding ∆FosB, Wille-Bille et al. [ 111 ] found increased ∆FosB in adolescent compared to adult rats in the prelimbic PFC, dorsomedial striatum, NAc core and shell, central amygdala nucleus capsular, and basolateral amygdala after 3 days per week 18 h ethanol exposure sessions for 6 weeks. In sum, the three available studies provide preliminary evidence for increased adolescent vulnerability to ethanol-induced long-term genetic (mRNA expression) and epigenetic (methylation) changes in mesocorticolimbic areas.

Immune factors

Ethanol is known to trigger immune responses in the brain (e.g., increase production of hemokines and cytokines), causing inflammation and oxidative stress [ 143 , 144 , 145 ]. Three studies examined immune factors [ 146 , 147 , 148 ]. Two of the three studies observed age-related differences.

Microglia remove damaged brain tissue and infectious agents and are key to the brain’s immune defense. Only one study investigated microglia levels [ 146 ]. Although direct comparisons between age groups were missing, both adolescent and adult rats showed less microglia in the hippocampus (CA and DG) and peri-entorhinal cortex, and more dysmorphic microglia in the hippocampus after 2 and 4 days of binge-like ethanol exposure [ 146 ]. Notably, age groups were matched on intoxication scores, with adolescents needing more ethanol to reach the same level of intoxication. An in silico transcriptome analysis of brain samples from mice after 4 days of 4 h/day drinking in the dark, suggest overexpression of neuroimmune pathways related to microglia action (toll-like receptor signaling, MAPK signaling, Jak-STAT signaling, T-cell signaling, and chemokine signaling) in adults that was not observed in adolescents, while adolescents consumed more ethanol [ 147 ]. Similarly, ethanol-exposed adult mice showed higher chemokine expression (CCL2/MCP-1) in the hippocampus, cerebral cortex, and cerebellum and higher cytokine expression (IL-6, but not TNF-α) in the cerebellum, while no chemokine or cytokine changes were observed in ethanol exposed adolescent mice [ 148 ]. Both adolescents and adults showed increased astrocyte levels in the hippocampus (CA1) and the cerebellum after ethanol exposure, but changes in astrocyte morphology were only observed in the adult hippocampus.

In sum, two of the studies found support for increased immune responses after ethanol exposure in adults compared to adolescents, whereas the one other study found no difference between the age groups.

HPA-axis functionality

Chronic stress and HPA-axis functionality have been associated with the maintenance of AUD (e.g., reinstatement drug seeking, withdrawal) [ 149 ]. Two studies investigated corticotropin-release factor (CRF) expression in rats [ 116 , 150 ]. One study observed age-related differences and the other did not.

Falco et al. [ 116 ] found decreased CRF mRNA expression in the adult but not adolescent basolateral amygdala 2 months after 18-day restricted ethanol exposure. In contrast, Slawecki et al. did not find any interaction between age and treatment on CRF levels in the amygdala, as well as the frontal lobe, hippocampus, hypothalamus, and caudate 7 weeks after 10-days of ethanol vapor exposure.

No conclusions can be drawn. One study observed found support for reduced effects of ethanol on HPA-axis functionality compared to adults, whereas the other observed no difference between the age groups. Future studies using different (voluntary) exposure paradigms are needed to further investigate the effects of alcohol on HPA activity in relation to age of alcohol exposure.

Neuropeptides

Neuropeptides are a diverse class of proteins that have a modulatory function in many different processes, including but not limited to neurotransmission, stress, immune responses, homeostasis, and pain [ 151 , 152 , 153 ]. Only one study investigated neuropeptides in rats and observed age-related differences [ 150 ].

Slawecki et al. [ 150 ] specifically investigated neuropeptide-Y, substance-P, and interleukine expression in the frontal lobe, hippocampus, hypothalamus, dorsal striatum, and amygdala 7 weeks after 10-days of ethanol vapor exposure in rats [ 150 ]. Interactions between age and treatment were found for the hippocampus and caudate only. Ethanol-induced reductions in hippocampal neuropeptide-Y and increases in caudate neurokinine were more pronounced in adults compared to adolescents suggesting long-lasting effects of ethanol in adults but not adolescents.

Ethanol metabolism

The first metabolite of ethanol is acetaldehyde, which has been theorized to mediate the effects of ethanol on both brain and behavior [ 154 ]. Only one study investigated ethanol metabolism in the brain and did not observe age-related differences [ 155 ].

Rhoads et al. showed that despite the fact that adolescent rats consumed more alcohol brain catalase levels after 3-weeks of ethanol exposure (no abstinence) did not differ between adolescents and adults [ 155 ]. Although the general role of catalase in ethanol metabolism is small, catalase can oxidize ethanol to acetaldehyde in the brain, affecting elimination of ethanol after consumption [ 156 , 157 ]. These findings may therefore imply that ethanol metabolism may not differ between adolescent and adult animals, which should be studied in a more direct manner.

Full proteome analysis

While the previously described studies focused on specific factors involved in neurotransmission, brain health, and plasticity, proteomics allows for the study of the full proteome in a specific region or tissue type. One study investigated the impact of age on ethanol-induced changes in the hippocampal proteome, observing age-related differences [ 158 ]. In this study, rats intermittently and voluntarily consumed beer for 1 month and the hippocampal proteome was analyzed after 2 weeks of abstinence. The results point to the involvement of many of the factors described above and imply age-specific effects of alcohol. Adult beer exposure increased citrate synthase (part of the citric acid, or Krebs, cycle) and fatty acid binding proteins (involved in membrane transport) compared to controls. Adolescent beer exposure increased cytoskeletal protein T-complex protein 1 subunit epsilon (TCP-1), involved in ATP-dependent protein folding, and reduced expression of a variety of other proteins involved in glycolysis, glutamate expression, aldehyde detoxification, protein degradation, and synaptogenesis, as well as neurotransmitter release. These more extensive changes suggest that the adolescent hippocampus might be more vulnerable to the effects of ethanol exposure, but more studies are needed to clarify and replicate these findings and extend the focus to different brain areas.

Neuronal activity and functioning

Ethanol-induced molecular changes may eventually change neuronal activity. Three studies investigated neuronal activity and functioning [ 89 , 159 , 160 ] using electrophysiological methods. All three studies observed age-related differences.

Galaj et al. [ 159 ] assessed firing patterns and the structure of pyramidal neurons in the L2 and L5 layers of the prelimbic cortex of the rat brain using ex vivo electrophysiological recordings and morphological staining. Following chronic intermittent ethanol exposure and brief abstinence (2 days), adolescents, but not adults, showed reduced amplitudes of spontaneous excitatory post-synaptic currents (sEPSCs) in L5 neurons compared to controls, indicating reductions in intrinsic excitability. In line with this, Dil staining showed increased thin spine ratios in the L5 layer in adolescents only. Age differences were more pronounced after prolonged abstinence (21 days), with adolescents showing reduced amplitude and frequency of sEPSCs in L5 neurons while adult’s L5 neurons showed augmented firing patterns (i.e., amplitude and frequency). Furthermore, adolescent rats showed decreased total spine density and non-thin spines, indicating less excitatory postsynaptic receptors in the L5 layer. In contrast, adults showed increases in spine density and non-thin spines.

Li et al. [ 160 ] examined the functioning of CA1 interneurons, which are important for learning and memory processes [ 161 ], in the rat hippocampus using ex vivo whole-cell recordings. After prolonged abstinence (20 days), voltage-gated A-type potassium channel ( I A ) conductance was measured. Differences emerged between age groups (although no statistical interaction effect was directly assessed): EtOH-exposed adolescents and adults both showed lower I A mean peak amplitude compared to the respective control groups. However, adolescents also showed reduced I A density and increased mean decay time, which decreased in adults. Furthermore, only adolescents showed increased depolarization required for activation compared to controls, which can result in higher interneuron firing rates in the CA1 region that could affect learning processes. Additional research is needed to connect these findings to behavioral measures of learning and memory.

Slawecki et al. [ 89 ] was the only study to use in vivo electroencephalogram (EEG) recordings with rats to examine function in the frontal and parietal cortex at different times during a 14-day vapor exposure period. During acute withdrawal (7–10 h abstinence period), following daily exposure no effects emerged in frontal cortical regions throughout the exposure period. In parietal regions, only adolescents showed increased high frequency (16–32 Hz and 32–50 Hz) power on days 8 and 12 compared to controls. Adolescent hyperexcitability during withdrawal may indicate increased arousal in adolescents compared to adults during withdrawal, but more studies linking brain activity to behavioral indices of withdrawal will allow for clearer interpretations.

Overall, strong conclusions cannot be drawn given the disparate paradigms and outcomes utilized. While adolescents and adults appear to differ in the effect of ethanol on neuronal firing, the meaning of these differences is not clear given the lack of connection between these findings and behavioral outcomes.

Human studies

Four studies examined age-related differences of the effect of alcohol on brain or cognition in humans [ 162 , 163 , 164 , 165 ].

Müller-Oehring et al. [ 162 ] examined the moderating role of age on resting state functional connectivity and synchrony in the default mode, central executive, salience, emotion, and reward networks of the brain in a sample of no/low and heavier drinkers aged 12–21 years old. While the study did not compare discrete groups of adolescents and adults, analyses investigating the interaction between continuous age and alcohol exposure history were conducted which provide insight into the effect of alcohol use on functional brain networks from early adolescence to emerging adulthood. Regardless of age, no differences were observed between matched subgroups of no/low drinkers and moderate/heavy drinkers in the default mode, salience, or reward networks. However, in the central executive network, connectivity between the superior frontal gyrus (SFG) and insula increased with age in the no/low drinkers but not in heavier drinkers. Age-related strengthening of this fronto-limbic connection correlated with better performance on a delay discounting task in boys, suggesting that adolescent alcohol use may interfere with typical development of higher-level cognitive functions. In the emotion network, amygdala-medial parietal functional synchrony was reduced in the heavier drinkers compared to the no/low drinkers and exploratory analyses suggested that weaker amygdala-precuneus/posterior cingulate connectivity related to later stages of pubertal development in the no/low drinking group only. Interestingly, in the default mode (posterior cingulate-right hippocampus/amygdala) and emotional networks (amygdala, cerebellum), connectivity in regions that exhibited age-related desynchronization was negatively correlated with episodic memory performance in the heavy drinkers. These results give preliminary evidence that alcohol might have age-dependent effects on resting state connectivity and synchronization in the central executive, emotion, and default mode networks that could potentially interfere with normative maturation of these networks during adolescence.

Three studies examined age effects in alcohol-related implicit cognitions, specifically attentional bias [ 163 , 165 ], alcohol approach bias [ 165 ], and implicit memory associations and explicit outcome expectancies [ 164 ]. Attentional bias refers to the preferential automatic allocation or maintenance of attention to alcohol-related cues compared to neutral cues which is correlated with alcohol use severity and craving [ 166 ]. McAteer et al. [ 163 ] measured attentional bias with eye tracking during presentation of alcohol and neutral stimuli in heavy and light drinkers in early adolescents (12–13 yrs), late adolescents (16–17 yrs), and young adults (18–21 yrs). Regardless of age, heavy drinkers spent longer fixating on alcohol cues compared to light drinkers. Cousijn et al. [ 165 ] measured attentional bias with an Alcohol Stroop task [ 167 ], comparing the speed of naming the print color of alcohol-related and control words. Consistent with the findings of McAteer et al. [ 163 ], adults and adolescents matched on monthly alcohol consumption showed similar levels of alcohol attentional bias. In the same study, Cousijn et al. [ 165 ] did not find any evidence for an approach bias towards alcohol cues in any age group.

Rooke and Hine [ 164 ] found evidence for age-related differences in implicit and explicit alcohol cognitions and their relationship with binge drinking. Using a teen-parent dyad design, adolescents (13–19 yrs) showed stronger memory associations in an associative phrase completion task and more positive explicit alcohol expectancies than adults. Interestingly, both explicit positive alcohol expectancies and implicit memory associations were a stronger predictor of binge drinking in adolescents compared to adults. It is important to note that adolescents also had higher levels of binge drinking than adults in the study.

Cousijn et al. [ 165 ] also investigated impulsivity, drinking motives, risky decision-making, interference control, and working memory. No age differences emerged in the cognitive functioning measures including risky decision-making (Columbia Card Task – “hot” version), interference control (Classical Stroop Task), or working memory (Self-Ordered Pointing Task). However, adolescents were more impulsive (Barrett Impulsiveness Scale) than adults and reported more enhancement motives. Importantly, impulsivity as well as social, coping, and enhancement motives of alcohol use correlated with alcohol use in both ages. However, age only moderated the relationship between social drinking motives and alcohol use-related problems (as measured by the Alcohol Use Disorder Identification Test), with a stronger positive association in adolescents compared to adults. Importantly, the adolescent group had a different pattern of drinking, with less drinking days per month but more drinks per episode than the adult group.

In summary, human evidence is largely missing, with no studies comparing more severe and dependent levels of alcohol use between adolescents and adults. The preliminary evidence is too weak and heterogeneous to draw conclusions, warranting future studies investigating the impact of age.

The current systematic review assessed the evidence for the moderating role of age in the effects of chronic alcohol use on the brain and cognition. The identified 59 rodent studies (Table 1 ) and 4 human studies (Table 2 ) provide initial evidence for the presence of age-related differences. Rodents exposed to ethanol during adolescence show both increased risk and resilience to the effects of ethanol depending on the outcome parameter. However, due to the high variability in the outcomes studied and the limited number of studies per outcome, conclusions should be considered preliminary. Moreover, brain and behavioral outcomes were mostly studied separately, with studies focusing on either brain or behavioral outcomes. The behavioral consequences of changes in certain brain outcomes still need to be investigated. Table 3 provides a comprehensive overview of the strength of the evidence for age-related differences for all outcomes. Below, we will discuss the most consistent patterns of results, make connections between the behavioral and neurobiological findings when possible, highlight strengths and limitations of the evidence base, and identify the most prominent research gaps.

Patterns of results

Age-related differences in learning and memory-related processes appear to be highly domain specific. There is limited but fairly consistent evidence for adolescent-specific impairments in contextual fear conditioning, which could be related to hippocampal dysfunction. Results for other hippocampus-related memory processes such as spatial memory are mixed and largely based on forced exposure with acute challenge studies rather than voluntary long-term exposure to alcohol. The evidence base is currently insufficient to draw conclusions about the role of age in alcohol’s effects on non-spatial types of learning and memory. Alcohol generally did not impact performance in the non-spatial variants of the MWM and SBM paradigms or in reward-learning, but the results of the limited studies in the object-learning domain highlight potential impairments and the importance of age therein. For example, adolescents but not adults demonstrated impaired object memory in the only study using the novel object recognition task [ 65 ]. Acute challenges after chronic pre-exposure to alcohol also appear to impair performance in the working memory domain, with one study suggesting heightened adolescent sensitivity to working memory impairment [ 83 ]. Thus, although the domain-specific evidence is limited by the relative lack of research, overall patterns suggest that learning and memory functions that are primarily hippocampus-dependent may be differentially affected by adolescent compared to adult alcohol use. Studies focusing on neural hippocampal processes corroborate these findings, reporting more extensive changes in protein expression [ 158 ], less desensitization of cFos upregulation [ 142 ], larger changes in GABAa receptor subunit expression [ 124 ], longer lasting changes in NMDA receptor expression [ 115 ], and larger reductions in neurogenesis [ 65 , 133 ] in the hippocampus of adolescent compared to adult ethanol-exposed rodents. On the other hand, ethanol-induced changes in the hippocampus recovered more quickly in younger animals after abstinence [ 150 ] and adolescent mice showed less signs of ethanol-induced neuroinflammation compared to adults [ 148 ].

Higher rates of adolescent alcohol use, especially binge drinking, may be facilitated by a heightened sensitivity to the rewarding properties of alcohol in combination with a reduced sensitivity to the negative effects of high doses [ 47 ]. In line with this, there is limited but consistent evidence that adolescents show less CTA in response to chronic ethanol and consequently voluntarily consume more ethanol [ 50 ]. Importantly, distinct vulnerability periods within adolescence for altered CTA may exist [ 168 , 169 ], with early adolescents potentially being least sensitive to aversive effects. Future studies using chronic exposure paradigms comparing different stages of adolescence to adults are needed. In contrast to CTA, there is insufficient evidence of age-related differences in the motivational value of alcohol based on CPP paradigms, with only one of five studies reporting stronger CPP in adolescents than adults [ 52 ]. Adolescents may be more sensitive to the effects of environmental factors on the motivational value of alcohol than adults, as adolescents housed in enriched environments acquired CPP while those in standard housing did not, an effect that was not found in adults [ 54 ]. Evidence for environmentally enriched housing being protective against these changes in adolescents provides an important indication that environmental factors matter and are important factors to consider in future research on the motivational value of ethanol on both the behavioral and neural level. Complementary studies on the functioning of brain regions within the mesolimbic dopamine pathway and PFC, which play an important role in motivated behavior, indicate limited but consistent evidence for age-related differences. Adolescents showed less dopamine reactivity in the PFC and NAc compared to adults after chronic ethanol exposure. Furthermore, there is limited but consistent evidence that adolescents are more vulnerable to epigenetic changes in the frontal cortex and reward-related areas after chronic ethanol exposure. For instance, adolescents may be more sensitive to histone acetylation of transcription factors in motivational circuits underlying the rewarding effects of alcohol [ 55 ], which may contribute to addictive behaviors [ 170 , 171 ]. Chronic alcohol use is also associated with lower BDNF levels in the PFC and subsequent increases in alcohol consumption, implicating BDNF as an important regulator of alcohol intake [ 172 ]. While evidence is limited, chronic alcohol use consistently reduced prefrontal BDNF in both age groups. However, the rate of recovery of BDNF levels after abstinence appears to be slower in adolescents.

Regarding executive functioning, there is limited but fairly consistent evidence from animal studies that adolescents are more vulnerable to long-term effects of chronic exposure on decision-making and are more impulsive than adults during acute intoxication and after prolonged abstinence following chronic exposure. Impulsivity is associated with functional alterations of the limbic cortico-striatal systems [ 91 ], with involvement of both the dopaminergic and serotonergic neurotransmitter systems [ 173 ]. While no studies investigating serotonergic activity were identified, the consistent reduction in dopamine reactivity observed in the PFC and NAc in adolescents compared to adults parallel the behavioral findings. There is also limited but fairly consistent evidence that adolescents are more resilient to impairments in cognitive flexibility than adults following chronic exposure to alcohol, and that adolescents may more easily regain control over their alcohol-seeking behavior than adults. These behavioral findings provide preliminary support for the paradox of adolescent risk and resilience in which adolescents are at once more at risk to develop harmful patterns of drinking, but are also more resilient in that they may be more equipped to flexibly change behavior and with time regain control over alcohol consumption. However, studies assessing processes that might be related to brain recovery provide little conclusive evidence for potential underlying mechanisms of these behavioral findings. While adolescents appear more vulnerable to ethanol-induced brain damage [ 131 , 132 ], show reduced neurogenesis [ 65 , 133 ], and show less changes in gene expression associated with brain recovery [ 65 , 133 ], adults show relatively higher immune responses after repeated ethanol exposure [ 147 , 148 ]. The limited evidence for adolescent resilience to alcohol’s effects on cognitive flexibility diverge from the conclusions of recent reviews that focused mostly on adolescent-specific research. Spear et al. [ 18 ] concluded that adolescents are more sensitive to impairments in cognitive flexibility; however, this was based on adolescent-only animal studies. Similarly, the systematic review of Carbia et al. [ 19 ] on the neuropsychological effects of binge drinking in adolescents and young adults also revealed impairments in executive functions, particularly inhibitory control. However, as pointed out by the authors, the lack of consideration of confounding variables (e.g., other drug use, psychiatric comorbidities, etc.) in the individual studies and the lack of prospective longitudinal studies limit our ability to causally interpret these results. This further highlights the difficulty of conducting human studies which elucidate causal associations of the effects of alcohol, and the need for animal research that directly compares adolescents to adults to bolster interpretation of findings from human research.

Only a few studies have investigated age-related differences in cognitive functioning in humans. These studies focused on mostly non-dependent users and studied different outcomes, including cognitive biases and implicit and explicit alcohol-related cognitions. Overall, there was limited but consistent evidence that age does not affect alcohol attentional or approach biases, with heavy drinkers in both age groups allocating more attention to alcohol cues compared to controls [ 163 , 165 ]. In contrast, in line with a recent meta-analysis of the neurocognitive profile of binge-drinkers aged 10–24 [ 23 ], there is limited evidence that age affects alcohol associations. One study found age effects on implicit (memory associations) and explicit (expectancies) cognition in relation to alcohol use. Adolescents showed stronger memory associations and more positive expectancies than adults [ 164 ]. These expectancies were also predictive of higher binge drinking in adolescents but not adults, highlighting the importance of future research into age differences in alcohol-related cognitions and their consequences on alcohol consumption. However, the quality of the evidence was rated as weak based on the methodological design of the included studies.

Regarding anxiety-related outcomes, results are inconsistent across studies and paradigms. When age-differences are observed, adolescents often show reduced anxiety compared to adults during both acute withdrawal and sustained abstinence following chronic ethanol exposure. However, the direction of age-related effects of alcohol may also be anxiety-domain specific. In social settings, adults show reduced anxiety compared to adolescents. Research on the neurocircuitry of anxiety processes implicates the extended amygdala, especially the BNST, in anxiety behaviors with an emphasis on the role of GABAergic projections to the limbic, hindbrain, and cortical structures in rodents [ 174 ]. Despite adolescents showing less non-social anxiety than adults after ethanol exposure, no age-differences were observed for LTP in the BNST [ 109 ]. Also, GABA receptor expression in the hippocampus and whole cortex was not altered by ethanol exposure in either age group [ 108 ]. However, the anxiolytic effects of NMDA antagonists [ 175 ] also highlight the importance of glutamatergic activity in anxiety processes [ 176 ]. In line with behavioral findings, adolescents were less sensitive to changes in glutamate expression: adults showed heightened expression in the NAc, which has been suggested to underlie the higher levels of anxiety observed in adults compared to adolescents [ 106 ]. Importantly, across the various studies, different paradigms were used to assess anxiety, potentially contributing to the inconsistent results. Furthermore, most of the identified studies used a forced ethanol exposure paradigm. As alcohol-induced anxiety is likely also dependent on individual trait anxiety, voluntary consumption studies in high and low trait anxiety animals are important to further our understanding of the interaction between alcohol use and anxiety. Of note, the observed pattern suggestive of reduced anxiety in adolescents compared to adults diverges from conclusions of previous reviews such as Spear et al. [ 18 ] which concluded that adolescents are more likely to show augmented anxiety after alcohol exposure based on animal studies with adolescent animals only. Importantly, anxiety was included as a secondary outcome in this review because of the high comorbidity between anxiety disorders and alcohol addiction, warranting the inclusion of age-related differences in the relation between alcohol and anxiety. However, the search strategy was not specifically tailored to capturing all studies assessing age-related differences in the effect of alcohol on anxiety.

Translational considerations, limitations, and future directions

The reviewed studies revealed a high degree of variability in study designs and outcomes, hindering integration and evaluation of research findings. We were unable to differentiate our conclusions based on drinking patterns (i.e., comparing binge drinking, heavy prolonged use, AUD). The prevalence of binge-drinking in adolescence is very high and is associated with neurocognitive alterations [ 177 ]. Studies investigating the potential differential impact of binge-drinking compared to non-binge-like heavy alcohol use in adolescence and adulthood are critical for understanding the risks of chronic binge-like exposure in adolescence, even if it does not progress to AUD.

It is also important to acknowledge the limitations of the choice of adolescent and adult age ranges in our inclusion criteria. Rodent studies had to include an adolescent group exposed to alcohol between the ages of PND 25–42 and an adult group exposed after age PND 65. Ontogenetic changes may still be occurring between PND 42–55, and this period may more closely correspond to late adolescence and emerging adulthood in humans (e.g., 18–25 years). Studies that compared animals in this post-pubertal but pre-adulthood age range were not reviewed. Studies investigating age-related differences in the effects of ethanol on brain and cognitive outcomes in emerging adulthood are also translationally valuable given the high rates and risky patterns of drinking observed during this developmental period [ 178 ]. Indeed, an important future direction is to examine whether there are distinct vulnerability periods within adolescence itself for the effects of ethanol on brain and cognitive outcomes. Given that emerging adulthood is a period of continued neurocognitive maturation and heightened neural plasticity, studies comparing this age range to older adults (e.g., over 30) are also necessary for a more thorough understanding of periods of risk and resilience to the effects of alcohol.

Furthermore, we did not conduct a risk of bias assessment to examine the methodological quality of the animal studies. The applicability and validity of the risk of bias tools for general animal intervention studies, such as the SYRCLE risk of bias tool [ 179 ], remain in question at the moment. The lack of standardized reporting in the literature for many of the criteria (e.g., process of randomizing animals into intervention groups) would lead to many studies being labeled with an ‘unclear risk of bias’. Furthermore, there is still a lack of empirical evidence regarding the impact of the criteria in these tools on bias [ 179 , 180 ]. This is a significant limitation in evaluating the strength of the evidence for age-related differences based on the animal studies, which highlights the importance of more rigorous reporting standards in animal studies.

Moreover, most work is done in male rodents and is based on forced ethanol exposure regimes. In a recent opinion article, Field and Kersbergen [ 181 ] question the usefulness of these types of animal models to further our understanding of human substance use disorders (SUD). They argue that animal research has failed to deliver effective SUD treatment and that social, cultural, and other environmental factors crucial to human SUD are difficult, if not impossible, to model in animals. While it is clear that more sophisticated multi-symptom models incorporating social factors are needed to further our understanding of SUD and AUD specifically, a translational approach is still crucial in the context of investigating the more fundamental impact of alcohol use on brain and cognition. In humans, comparing the impact of alcohol use on brain and cognition between adolescents and adults is complicated by associations between age and cumulative exposure to alcohol; i.e., the older the individual, the longer and higher the overall exposure to alcohol. Although animal models may be limited in their ability to model every symptom of AUD, they can still provide critical insights into causal mechanisms underlying AUD by allowing direct control over alcohol exposure and in-depth investigation of brain mechanisms.

The intermittent voluntary access protocol resembles the patterns of alcohol use observed in humans, and also result in physiologically relevant levels of alcohol intake [ 182 , 183 , 184 ]. Only a minority of the studies included in this review employed a voluntary access protocol, with one study using beer instead of ethanol in water [ 158 ], which better accounts for the involvement of additional factors (e.g., sugar, taste) in the appeal of human alcohol consumption. Voluntary access protocols can also model behavioral aspects of addictive behavior such as loss of control over substance use and relapse [ 185 , 186 , 187 ], an important area in which little is known about the role of age. Ideally, one would also investigate choices between ethanol and alternative reinforcers, such as food or social interaction, that better mimic human decision-making processes [ 188 ]. However, studies on the effects of ethanol on social behavior are limited and show inconsistent results and studies assessing reward processes often lack a social reward component as an alternative reinforcer.

On a practical level, rodents mature quickly and choice-based exposure paradigms are more complex and time-consuming than most forced exposure paradigms. Consequently, by the time final behavioral measurements are recorded, both the adolescent and adult exposure groups have reached adulthood. To combat this, many of the included studies use forced ethanol exposure, such as ethanol vapor, to quickly expose rodents to very high doses of ethanol. Although the means and degrees of alcohol exposure may not directly translate to human patterns of alcohol use, such studies do allow for the assessment of the impact of high cumulative doses of ethanol within a relatively short period of time which allows for more time in the developmental window to test age-related differences in the outcomes. When considering the translational value of a study, it is therefore important to evaluate studies based on the goal, while not ignoring the practical constraints.

While human research is challenging due to the lack of experimental control and the inherent confounds in observational studies between age and alcohol exposure history, large-scale prospective longitudinal studies offer a gateway towards a better understanding. Comparisons of different trajectories of drinking from adolescence to adulthood (i.e., heavy drinking to light drinking, light drinking to heavy drinking, continuously heavy drinking, and continuously light drinking) could offer insight into the associated effects on cognitive and brain-related outcomes. Of course, different drinking trajectories are likely confounded with potentially relevant covariates which limits causal inference. Direct comparisons of low and heavy adolescent and adult drinkers, supported by a parallel animal model can help to bolster the causality of observed age-related differences in human studies. In addition, changes in legislation around the minimum age for alcohol consumption in some countries provide a unique opportunity to investigate how delaying alcohol use to later in adolescence or even young adulthood impacts cognitive functioning over time. Importantly, future studies investigating the moderating role of age in humans should carefully consider the impact of psychiatric comorbidities. While adolescence into young adulthood is the period in which mental health issues often emerge [ 189 , 190 ], there is some evidence that the prevalence of comorbidities is higher in adults with AUD [ 95 ]. This is an important to control for when considering age-related differences on cognition and the brain given the evidence of altered cognitive functioning in other common mental illnesses [ 191 , 192 ].

Concluding remarks

The aim of this systematic review was to extend our understanding of adolescent risk and resilience to the effects of alcohol on brain and cognitive outcomes compared to adults. In comparison to recent existing reviews on the impact of alcohol on the adolescent brain and cognition [ 17 , 18 , 19 , 22 , 23 ], a strength of the current review is the direct comparison of the effects of chronic alcohol exposure during adolescence versus adulthood. This approach allows us to uncover both similarities and differences in the processes underlying alcohol use and dependence between adolescents and adults. However, due to the large degree of heterogeneity in the studies included in sample, designs, and outcomes, we were unable to perform meta-analytic synthesis techniques.

In conclusion, while the identified studies used varying paradigms and outcomes, key patterns of results emerged indicating a complex role of age, with evidence pointing towards both adolescent vulnerability and resilience. The evidence suggests adolescents may be more vulnerable than adults in domains that may promote heavy and binge drinking, including reduced sensitivity to aversive effects of high alcohol dosages, reduced dopaminergic neurotransmission in the NAc and PFC, greater neurodegeneration and impaired neurogenesis, and other neuromodulatory processes. At the same time, adolescents may be more resilient than adults to alcohol-induced impairments in domains which may promote recovery from heavy drinking, such as cognitive flexibility. However, in most domains, the evidence was too limited or inconsistent to draw clear conclusions. Importantly, human studies directly comparing adolescents and adults are largely missing. Recent reviews of longitudinal human research in adolescents, however, revealed consistent evidence of alterations to gray matter, and to a lesser extent white matter, structure in drinkers [ 17 , 18 ], but also highlight the limited evidence available in the domains of neural and cognitive functioning in humans [ 17 ]. Future results from ongoing large-scale longitudinal neuroimaging studies like the ABCD study [ 193 ] will likely shed valuable light on the impact of alcohol use on the adolescent brain. However, our results also stress the need for direct comparisons with adult populations. Moreover, while the lack of experimental control and methodological constraints limit interpretations and causal attributions in human research, translational work aimed at connecting findings from animal models to humans is necessary to build upon the current knowledge base. Furthermore, the use of voluntary self-administration paradigms and incorporation of individual differences and environmental contexts are important steps forward in improving the validity of animal models of alcohol use and related problems. A more informed understanding of the effects of alcohol on adolescents compared to adults can further prevention efforts and better inform policy efforts aimed at minimizing harm during a crucial period for both social and cognitive development.

Degenhardt L, Charlson F, Ferrari A, Santomauro D, Erskine H, Mantilla-Herrara A, et al. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry. 2018;5:987–1012.

Article   Google Scholar  

Kohn R, Saxena S, Levav I, Saraceno B. The treatment gap in mental health care. World Health Organization; 2004. https://doi.org/10.1590/S0042-96862004001100011 .

Fleury MJ, Djouini A, Huỳnh C, Tremblay J, Ferland F, Ménard JM, et al. Remission from substance use disorders: a systematic review and meta-analysis. Drug Alcohol Depend. 2016;168:293–306.

Article   PubMed   Google Scholar  

Hingson RW, Heeren T, Winter MR. Age of alcohol-dependence onset: associations with severity of dependence and seeking treatment. Pediatrics. 2006;118:e755–e763.

Hingson RW, Heeren T, Winter MR. Age at drinking onset and alcohol dependence: age at onset, duration, and severity. Arch Pediatr Adolesc Med. 2006;160:739–46.

American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th edn. Arlington, VA: American Psychiatric Association; 2013. https://doi.org/10.1176/appi.books.9780890425596.dsm04 .

Conrod P, Nikolaou K. Annual Research Review: On the developmental neuropsychology of substance use disorders. J Child Psychol Psychiatry Allied Discip. 2016;57:371–94.

Spear LP. Adolescent alcohol exposure: Are there separable vulnerable periods within adolescence? Physiol Behav. 2015;148:122–30.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Simon NW, Gregory TA, Wood J, Moghaddam B. Differences in response initiation and behavioral flexibility between adolescent and adult rats. Behav Neurosci. 2013;127:23–32.

Article   PubMed   PubMed Central   Google Scholar  

Carroll LJ, Cassidy JD, Peloso PM, Borg J, von Holst H, Holm L, et al. Prognosis for mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 2004(Suppl. 43):84–105.

Mastwal S, Ye Y, Ren M, Jimenez DV, Martinowich K, Gerfen CR, et al. Phasic dopamine neuron activity elicits unique mesofrontal plasticity in adolescence. J Neurosci. 2014;34:9484–96.

Article   PubMed   PubMed Central   CAS   Google Scholar  

Crone EA, Dahl RE. Understanding adolescence as a period of social-affective engagement and goal flexibility. Nat Rev Neurosci. 2012;13:636–50.

Article   CAS   PubMed   Google Scholar  

Vergés A, Haeny AM, Jackson KM, Bucholz KK, Grant JD, Trull TJ, et al. Refining the notion of maturing out: results from the national epidemiologic survey on alcohol and related conditions. Am J Public Health. 2013;103:e67–e73.

Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010;35:217–38.

Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci. 2005;9:242–9.

de Goede J, van der Mark-Reeuwijk KG, Braun KP, le Cessie S, Durston S, Engels RCME, et al. Alcohol and brain development in adolescents and young adults: a systematic review of the literature and advisory report of the health council of the Netherlands. Adv Nutr. 2021. https://doi.org/10.1093/advances/nmaa170 .

Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci. 2018;19:197–214.

Carbia C, López-Caneda E, Corral M, Cadaveira F. A systematic review of neuropsychological studies involving young binge drinkers. Neurosci Biobehav Rev. 2018;90:332–49.

Feldstein Ewing SW, Sakhardande A, Blakemore SJ. The effect of alcohol consumption on the adolescent brain: a systematic review of MRI and fMRI studies of alcohol-using youth. NeuroImage Clin. 2014;5:420–37.

Article   PubMed Central   Google Scholar  

Squeglia LM, Boissoneault J, Van Skike CE, Nixon SJ, Matthews DB. Age-related effects of alcohol from adolescent, adult, and aged populations using human and animal models. Alcohol Clin Exp Res. 2014;38:2509–16.

Lees B, Meredith LR, Kirkland AE, Bryant BE, Squeglia LM. Effect of alcohol use on the adolescent brain and behavior. Pharm Biochem Behav. 2020;192:172906.

Article   CAS   Google Scholar  

Lees B, Mewton L, Stapinski LA, Squeglia LM, Rae CD, Teesson M. Neurobiological and cognitive profile of young binge drinkers: a systematic review and meta-analysis. Neuropsychol Rev. 2019;29:357–85.

Cservenka A, Brumback T. The burden of binge and heavy drinking on the brain: effects on adolescent and young adult neural structure and function. Front Psychol. 2017;8:1111.

Welch KA, Carson A, Lawrie SM. Brain structure in adolescents and young adults with alcohol problems: systematic review of imaging studies. Alcohol Alcohol. 2013;48:433–44.

Maeda K-I, Satoshi O, Hiroko T. Physiology of reproduction. Academic Press; 2000.

Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–63.

Burke AR, Miczek KA. Stress in adolescence and drugs of abuse in rodent models: role of dopamine, CRF, and HPA axis. Psychopharmacology. 2014;231:1557–80.

Doremus-Fitzwater TL, Spear LP. Reward-centricity and attenuated aversions: an adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev. 2016;70:121–34.

Rajendran P, Spear LP. The effects of ethanol on spatial and nonspatial memory in adolescent and adult rats studied using an appetitive paradigm. In: Annals of the New York Academy of Sciences. New York Academy of Sciences; 2004. p. 441–4.

Morales M, Schatz KC, Anderson RI, Spear LP, Varlinskaya EI. Conditioned taste aversion to ethanol in a social context: impact of age and sex. Behav Brain Res. 2014;261:323–7.

Dumontheil I. Adolescent brain development. Curr Opin Behav Sci. 2016;10:39–44.

Shillington AM, Woodruff SI, Clapp JD, Reed MB, Lemus H. Self-reported age of onset and telescoping for cigarettes, alcohol, and marijuana: across eight years of the national longitudinal survey of youth. J Child Adolesc Subst Abus. 2012;21:333–48.

Livingston MD, Xu X, Komro KA. Predictors of recall error in self-report of age at alcohol use onset. J Stud Alcohol Drugs. 2016;77:811–8.

De Wit H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol. 2009;14:22–31.

Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18:247–91.

Rodriguiz RM, Wetsel WC. Assessments of cognitive deficits in mutant mice. In: Levin ED, Buccafusco JJ, editors. Animal models of cognitive impairment. CRC Press; 2006. p. 223–82.

Leung RK, Toumbourou JW, Hemphill SA. The effect of peer influence and selection processes on adolescent alcohol use: a systematic review of longitudinal studies. Health Psychol Rev. 2014;8:426–57.

Cousijn J, Luijten M, Feldstein Ewing SW. Adolescent resilience to addiction: a social plasticity hypothesis. Lancet Child Adolesc Heal. 2018;2:69–78.

Kushner MG, Abrams K, Borchardt C. The relationship between anxiety disorders and alcohol use disorders: a review of major perspectives and findings. Clin Psychol Rev. 2000;20:149–71.

Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci. 2008;363:3137–46.

Vanderschuren LJMJ, Pierce RC. Sensitization processes in drug addiction. Curr Top Behav Neurosci. 2010;3:179–95.

Gorey C, Kuhns L, Smaragdi E, Kroon E, Cousijn J. Age-related differences in the impact of cannabis use on the brain and cognition: a systematic review. Eur Arch Psychiatry Clin Neurosci. 2019;269:37–58.

Schweizer TA, Vogel-Sprott M, Danckert J, Roy EA, Skakum A, Broderick CE. Neuropsychological profile of acute alcohol intoxication during ascending and descending blood alcohol concentrations. Neuropsychopharmacology. 2006;31:1301–9.

Ambrose ML, Bowden SC, Whelan G. Working memory impairments in alcohol-dependent participants without clinical amnesia. Alcohol Clin Exp Res. 2001;25:185–91.

Stavro K, Pelletier J, Potvin S. Widespread and sustained cognitive deficits in alcoholism: a meta-analysis. Addict Biol. 2013;18:203–13.

Spear LP. Adolescent neurobehavioral characteristics, alcohol sensitivities, and intake: setting the stage for alcohol use disorders? Child Dev Perspect. 2011;5:231–8.

Holstein SE, Spanos M, Hodge CW. Adolescent C57BL/6J mice show elevated alcohol intake, but reduced taste aversion, as compared to adult mice: a potential behavioral mechanism for binge drinking. Alcohol Clin Exp Res. 2011;35:1842–51.

Moore EM, Forrest RD, Boehm SL. Genotype modulates age-related alterations in sensitivity to the aversive effects of ethanol: an eight inbred strain analysis of conditioned taste aversion. Genes, Brain Behav. 2013;12:70–77.

Schramm-Sapyta NL, DiFeliceantonio AG, Foscue E, Glowacz S, Haseeb N, Wang N, et al. Aversive effects of ethanol in adolescent versus adult rats: potential causes and implication for future drinking. Alcohol Clin Exp Res. 2010;34:2061–9.

Pautassi RM, Myers M, Spear LP, Molina JC, Spear NE. Ethanol induces second-order aversive conditioning in adolescent and adult rats. Alcohol. 2011;45:45–55.

Carrara-Nascimento PF, Olive MF, Camarini R. Ethanol pre-exposure during adolescence or adulthood increases ethanol intake but ethanol-induced conditioned place preference is enhanced only when pre-exposure occurs in adolescence. Dev Psychobiol. 2014;56:36–48.

Leichtweis KS, Carvalho M, Morais-Silva G, Marin MT, Amaral VCS. Short and prolonged maternal separation impacts on ethanol-related behaviors in rats: sex and age differences. Stress. 2020;23:162–73.

Pautassi RM, Suárez AB, Hoffmann LB, Rueda AV, Rae M, Marianno P, et al. Effects of environmental enrichment upon ethanol-induced conditioned place preference and pre-frontal BDNF levels in adolescent and adult mice. Sci Rep. 2017;7:1–12.

Pascual M, Do Couto BR, Alfonso-Loeches S, Aguilar MA, Rodriguez-Arias M, Guerri C. Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology. 2012;62:2309–19.

Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem. 2009;16:279–88.

Antoniadis EA, McDonald RJ. Amygdala, hippocampus and discriminative fear conditioning to context. Behav Brain Res. 2000;108:1–19.

Marschner A, Kalisch R, Vervliet B, Vansteenwegen D, Büchel C. Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. J Neurosci. 2008;28:9030–6.

Orsini CA, Maren S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev. 2012;36:1773–802.

Quirk GJ, Garcia R, González-Lima F. Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry. 2006;60:337–43.

Bergstrom HC, McDonald CG, Smith RF. Alcohol exposure during adolescence impairs auditory fear conditioning in adult Long-Evans rats. Physiol Behav. 2006;88:466–72.

Broadwater M, Spear LP. Consequences of ethanol exposure on cued and contextual fear conditioning and extinction differ depending on timing of exposure during adolescence or adulthood. Behav Brain Res. 2013;256:10–19.

Broadwater M, Spear LP. Consequences of adolescent or adult ethanol exposure on tone and context fear retention: effects of an acute ethanol challenge during conditioning. Alcohol Clin Exp Res. 2014;38:1454–60.

Broadwater M, Spear LP. Tone conditioning potentiates rather than overshadows context fear in adult animals following adolescent ethanol exposure. Dev Psychobiol. 2014;56:1150–5.

Lacaille H, Duterte-Boucher D, Liot D, Vaudry H, Naassila M, Vaudry D. Comparison of the deleterious effects of binge drinking-like alcohol exposure in adolescent and adult mice. J Neurochem. 2015;132:629–41.

Markwiese BJ, Acheson SK, Levin ED, Wilson WA, Swartzwelder HS. Differential effects of ethanol on memory in adolescent and adult rats. In: Chapple L, editors. Alcoholism: clinical and Experimental Research. Blackwell Publishing Ltd; 1998. p. 416–21.

Acheson SK, Ross EL, Swartzwelder HS. Age-independent and dose-response effects of ethanol on spatial memory in rats. Alcohol. 2001;23:167–75.

Sircar R, Sircar D. Adolescent rats exposed to repeated ethanol treatment show lingering behavioral impairments. Alcohol Clin Exp Res. 2005;29:1402–10.

Swartzwelder HS, Hogan A, Risher ML, Swartzwelder RA, Wilson WA, Acheson SK. Effect of sub-chronic intermittent ethanol exposure on spatial learning and ethanol sensitivity in adolescent and adult rats. Alcohol. 2014;48:353–60.

Matthews DB, Watson MR, James K, Kastner A, Schneider A, Mittleman G. The impact of low to moderate chronic intermittent ethanol exposure on behavioral endpoints in aged, adult, and adolescent rats. Alcohol. 2019;78:33–42.

Galaj E, Barrera E, Morris D, Ma YY, Ranaldi R. Aberrations in incentive learning and responding to heroin in male rats after adolescent or adult chronic binge-like alcohol exposure. Alcohol Clin Exp Res. 2020;44:1214–23.

Diamond A. Executive functions. 2013;64:135–68. https://doi.org/10.1146/annurev-psych-113011-143750 .

Funahashi S, Andreau JM. Prefrontal cortex and neural mechanisms of executive function. J Physiol Paris. 2013;107:471–82.

Schindler AG, Tsutsui KT, Clark JJ. Chronic alcohol intake during adolescence, but not adulthood, promotes persistent deficits in risk-based decision making. Alcohol Clin Exp Res. 2014;38:1622–9.

Risher ML, Fleming RL, Boutros N, Semenova S, Wilson WA, Levin ED, et al. Long-term effects of chronic intermittent ethanol exposure in adolescent and adult rats: radial-arm maze performance and operant food reinforced responding. PLoS ONE. 2013;8:e62940.

Pickens CL, Cook A, Gaeddert B. Dose-dependent effects of alcohol injections on omission-contingency learning have an inverted-U pattern. Behav Brain Res. 2020;392:112736.

Pickens CL, Kallenberger P, Pajser A, Fisher H. Voluntary alcohol access during adolescence/early adulthood, but not during adulthood, causes faster omission contingency learning. Behav Brain Res. 2019;370:111918.

Mejia-Toiber J, Boutros N, Markou A, Semenova S. Impulsive choice and anxiety-like behavior in adult rats exposed to chronic intermittent ethanol during adolescence and adulthood. Behav Brain Res. 2014;266:19–28.

Fernandez GM, Lew BJ, Vedder LC, Savage LM. Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats. Neuroscience. 2017;348:324–34.

Fernandez GM, Stewart WN, Savage LM. Chronic drinking during adolescence predisposes the adult rat for continued heavy drinking: neurotrophin and behavioral adaptation after long-term, continuous ethanol exposure. PLoS ONE 2016;11. https://doi.org/10.1371/journal.pone.0149987 .

Labots M, Cousijn J, Jolink LA, Leon Kenemans J, Vanderschuren LJMJ, Lesscher HMB. Age-related differences in alcohol intake and control over alcohol seeking in rats. Front Psychiatry. 2018;9:419.

Slawecki CJ, Ehlers CL. Enhanced prepulse inhibition following adolescent ethanol exposure in Sprague-Dawley rats. Alcohol Clin Exp Res. 2005;29:1829–36.

White AM, Ghia AJ, Levin ED, Scott Swartzwelder H. Binge pattern ethanol exposure in adolescent and adult rats: differential impact on subsequent responsiveness to ethanol. Alcohol Clin Exp Res. 2000;24:1251–6.

Baddeley A. Working memory. Science. 1992;255:556–9.

Olton DS, Samuelson RJ. Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process. 1976;2:97–116.

Deacon RMJ, Rawlins JNP. T-maze alternation in the rodent. Nat Protoc. 2006;1:7–12.

Knudsen EI. Fundamental components of attention. Annu Rev Neurosci. 2007;30:57–78.

Koch M, Schnitzler HU. The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behav Brain Res. 1997;89:35–49.

Slawecki CJ, Roth J, Gilder A. Neurobehavioral profiles during the acute phase of ethanol withdrawal in adolescent and adult Sprague-Dawley rats. Behav Brain Res. 2006;170:41–51.

Cunha PJ, Nicastri S, de Andrade AG, Bolla KI. The frontal assessment battery (FAB) reveals neurocognitive dysfunction in substance-dependent individuals in distinct executive domains: abstract reasoning, motor programming, and cognitive flexibility. Addict Behav. 2010;35:875–81.

Jupp B, Dalley JW. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharm. 2014;171:4729–66.

Dickinson A, Balleine B. Motivational control of goal-directed action. Anim Learn Behav. 1994;22:1–18.

Tomie A, Sharma N. Pavlovian sign-tracking model of alcohol abuse. Curr Drug Abus Rev. 2013;6:201–19.

Tomie A, Jeffers P, Zito B. Sign-tracking model of the addiction blind spot. In: Tomie JMA, editors. Sign tracking and drug addiction. Maize Books; 2018. p. 8–34.

Castillo-Carniglia A, Keyes KM, Hasin DS, Cerdá M. Psychiatric comorbidities in alcohol use disorder. Lancet Psychiatry. 2019;6:1068–80.

Wolitzky-Taylor K, Bobova L, Zinbarg RE, Mineka S, Craske MG. Longitudinal investigation of the impact of anxiety and mood disorders in adolescence on subsequent substance use disorder onset and vice versa. Addict Behav. 2012;37:982–5.

Park J, Moghaddam B. Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience 2017;345:193–202.

Vytal KE, Cornwell BR, Letkiewicz AM, Arkin NE, Grillon C. The complex interaction between anxiety and cognition: Insight from spatial and verbal working memory. Front Hum Neurosci. 2013;7:93.

Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463:3–33.

Pellow S, Chopin P, File SE, Briley M. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14:149–67.

Elsey JWB, Kindt M. Startle reflex. In: Zeigler-Hill V, Shackelford TK, editors. Encyclopedia of personality and individual differences. Springer International Publishing; 2018. p. 1–5.

Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharm Biochem Behav. 1980;13:167–70.

File SE, Seth P. A review of 25 years of the social interaction test. Eur J Pharm. 2003;463:35–53.

Misslin R, Ropartz P. Responses in mice to a novel object author. Behavior. 1981;78:169–77.

Njung’e K, Handley SL. Evaluation of marble-burying behavior as a model of anxiety. Pharm Biochem Behav. 1991;38:63–67.

Lee KM, Coelho MA, McGregor HA, Solton NR, Cohen M, Szumlinski KK. Adolescent mice are resilient to alcohol withdrawal-induced anxiety and changes in indices of glutamate function within the nucleus accumbens. Front Cell Neurosci. 2016;10:265.

Agoglia AE, Holstein SE, Reid G, Hodge CW. CaMKIIα-GluA1 activity underlies vulnerability to adolescent binge alcohol drinking. Alcohol Clin Exp Res. 2015;39:1680–90.

Van Skike CE, Diaz-Granados JL, Matthews DB. Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats. Alcohol Clin Exp Res. 2015;39:262–71.

Conrad KL, Winder DG. Altered anxiety-like behavior and long-term potentiation in the bed nucleus of the stria terminalis in adult mice exposed to chronic social isolation, unpredictable stress, and ethanol beginning in adolescence. Alcohol. 2011;45:585–93.

Slawecki CJ, Roth J. Comparison of the onset of hypoactivity and anxiety-like behavior during alcohol withdrawal adolescent and adult rats. Alcohol Clin Exp Res. 2004;28:598–607.

Wille-Bille A, de Olmos S, Marengo L, Chiner F, Pautassi RM. Long-term ethanol self-administration induces ΔFosB in male and female adolescent, but not in adult, Wistar rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;74:15–30.

Varlinskaya EI, Spear LP. Chronic tolerance to the social consequences of ethanol in adolescent and adult Sprague-Dawley rats. Neurotoxicol Teratol. 2007;29:23–30.

Morales M, Varlinskaya EI, Spear LP. Age differences in the expression of acute and chronic tolerance to ethanol in male and female rats. Alcohol Clin Exp Res. 2011;35:1614–24.

PubMed   PubMed Central   Google Scholar  

Neuhofer D, Kalivas P. Metaplasticity at the addicted tetrapartite synapse: a common denominator of drug induced adaptations and potential treatment target for addiction. Neurobiol Learn Mem. 2018;154:97–111.

Pian JP, Criado JR, Milner R, Ehlers CL. N-methyl-d-aspartate receptor subunit expression in adult and adolescent brain following chronic ethanol exposure. Neuroscience. 2010;170:645–54.

Falco AM, Bergstrom HC, Bachus SE, Smith RF. Persisting changes in basolateral amygdala mRNAs after chronic ethanol consumption. Physiol Behav. 2009;96:169–73.

Chin VS, Van Skike CE, Berry RB, Kirk RE, Diaz-Granados J, Matthews DB. Effect of acute ethanol and acute allopregnanolone on spatial memory in adolescent and adult rats. Alcohol. 2011;45:473–83.

Pascual M, Boix J, Felipo V, Guerri C. Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat. J Neurochem. 2009;108:920–31.

Akkus F, Mihov Y, Treyer V, Ametamey SM, Johayem A, Senn S, et al. Metabotropic glutamate receptor 5 binding in male patients with alcohol use disorder. Transl Psychiatry 2018;8. https://doi.org/10.1038/s41398-017-0066-6 .

Leurquin-Sterk G, Ceccarini J, Crunelle CL, De Laat B, Verbeek J, Deman S, et al. Lower limbic metabotropic glutamate receptor 5 availability in alcohol dependence. J Nucl Med. 2018;59:682–90.

Davies M. The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry Neurosci. 2003;28:263–74.

Grobin AC, Matthews DB, Montoya D, Wilson WA, Morrow AL, Swartzwelder HS. Age-related differences in neurosteroid potentiation of muscimol-stimulated 36Cl- flux following chronic ethanol treatment. Neuroscience. 2001;105:547–52.

Fleming RL, Acheson SK, Moore SD, Wilson WA, Swartzwelder HS. GABA transport modulates the ethanol sensitivity of tonic inhibition in the rat dentate gyrus. Alcohol. 2011;45:577–83.

Fleming RL, Li Q, Risher ML, Sexton HG, Moore SD, Wilson WA, et al. Binge-pattern ethanol exposure during adolescence, but not adulthood, causes persistent changes in GABAA receptor-mediated tonic inhibition in dentate granule cells. Alcohol Clin Exp Res. 2013;37:1154–60.

Carrara-Nascimento PF, Hoffmann LB, Flório JC, Planeta CS, Camarini R. Effects of ethanol exposure during adolescence or adulthood on locomotor sensitization and dopamine levels in the reward system. Front Behav Neurosci. 2020;14:31.

Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 2012;76:116–29.

Wu J, Gao M, Taylor DH. Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence. Acta Pharmacol Sin. 2014;35:311–5.

Walker LC, Berizzi AE, Chen NA, Rueda P, Perreau VM, Huckstep K, et al. Acetylcholine muscarinic M4 receptors as a therapeutic target for alcohol use disorder: converging evidence from humans and rodents. Biol Psychiatry. 2020;88:898–909.

Vetreno RP, Broadwater M, Liu W, Spear LP, Crews FT. Adolescent, but not adult, binge ethanol exposure leads to persistent global reductions of choline acetyltransferase expressing neurons in brain. PLoS ONE. 2014;9:113421.

Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

Huang C, Titus JA, Bell RL, Kapros T, Chen J, Huang R. A mouse model for adolescent alcohol abuse: stunted growth and effects in brain. Alcohol Clin Exp Res. 2012;36:1728–37.

Crews FT, Braun CJ, Hoplight B, Switzer RC, Knapp DJ. Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats. Alcohol Clin Exp Res. 2000;24:1712–23.

Broadwater MA, Liu W, Crews FT, Spear LP. Persistent loss of hippocampal neurogenesis and increased cell death following adolescent, but not adult, chronic ethanol exposure. Dev Neurosci. 2014;36:297–305.

Nixon K, Kim DH, Potts EN, He J, Crews FT. Distinct cell proliferation events during abstinence after alcohol dependence: microglia proliferation precedes neurogenesis. Neurobiol Dis. 2008;31:218–29.

Camp MC, Mayfield RD, McCracken M, McCracken L, Alcantara AA. Neuroadaptations of Cdk5 in cholinergic interneurons of the nucleus accumbens and prefrontal cortex of inbred alcohol-preferring rats following voluntary alcohol drinking. Alcohol Clin Exp Res. 2006;30:1322–35.

Goulding SP, de Guglielmo G, Carrette LLG, George O, Contet C. Systemic administration of the cyclin-dependent kinase inhibitor (S)-CR8 selectively reduces escalated ethanol intake in dependent rats. Alcohol Clin Exp Res. 2019;43:2079–89.

Joe KH, Kim YK, Kim TS, Roh SW, Choi SW, Kim YB, et al. Decreased plasma brain-derived neurotrophic factor levels in patients with alcohol dependence. Alcohol Clin Exp Res. 2007;31:1833–8.

Huang MC, Chen CH, Chen CH, Liu SC, Ho CJ, Shen WW, et al. Alterations of serum brain-derived neurotrophic factor levels in early alcohol withdrawal. Alcohol Alcohol. 2008;43:241–5.

Miller R, King MA, Heaton MB, Walker DW. The effects of chronic ethanol consumption on neurotrophins and their receptors in the rat hippocampus and basal forebrain. Brain Res. 2002;950:137–47.

Vetreno RP, Crews FT. Binge ethanol exposure during adolescence leads to a persistent loss of neurogenesis in the dorsal and ventral hippocampus that is associated with impaired adult cognitive functioning. Front Neurosci. 2015;9:35.

Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12:623–37.

Faria RR, Lima Rueda AV, Sayuri C, Soares SL, Malta MB, Carrara-Nascimento PF, et al. Environmental modulation of ethanol-induced locomotor activity: Correlation with neuronal activity in distinct brain regions of adolescent and adult Swiss mice. Brain Res. 2008;1239:127–40.

Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, et al. Cytokines and alcohol. In: Alcoholism: clinical and experimental research. John Wiley & Sons, Ltd; 2006. p. 720–30.

Davis RL, Syapin PJ. Chronic ethanol inhibits CXC chemokine ligand 10 production in human A172 astroglia and astroglial-mediated leukocyte chemotaxis. Neurosci Lett. 2004;362:220–5.

Knapp DJ, Crews FT. Induction of cyclooxygenase-2 in brain during acute and chronic ethanol treatment and ethanol withdrawal. Alcohol Clin Exp Res. 1999;23:633–43.

Marshall SA, McClain JA, Wooden JI, Nixon K. Microglia dystrophy following binge-like alcohol exposure in adolescent and adult male rats. Front Neuroanat. 2020;14:52.

Agrawal RG, Owen JA, Levin PS, Hewetson A, Berman AE, Franklin SR, et al. Bioinformatics analyses reveal age-specific neuroimmune modulation as a target for treatment of high ethanol drinking. Alcohol Clin Exp Res. 2014;38:428–37.

Kane CJM, Phelan KD, Douglas JC, Wagoner G, Johnson JW, Xu J, et al. Effects of ethanol on immune response in the brain: region-specific changes in adolescent versus adult mice. Alcohol Clin Exp Res. 2014;38:384–91.

Blaine SK, Sinha R. Alcohol, stress, and glucocorticoids: from risk to dependence and relapse in alcohol use disorders. Neuropharmacology 2017;122:136–47.

Slawecki CJ, Jiménez-Vasquez P, Mathé AA, Ehlers CL. Effect of ethanol on brain neuropeptides in adolescent and adult rats. J Stud Alcohol. 2005;66:46–52.

van den Pol AN. Neuropeptide transmission in brain circuits. Neuron. 2012;76:98–115.

Souza-Moreira L, Campos-Salinas J, Caro M, Gonzalez-Rey E. Neuropeptides as pleiotropic modulators of the immune response. Neuroendocrinology. 2011;94:89–100.

Carniglia L, Ramírez D, Durand D, Saba J, Turati J, Caruso C, et al. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm. 2017;2017. https://doi.org/10.1155/2017/5048616 .

Hipolito L, Sanchez M, Polache A, Granero L. Brain metabolism of ethanol and alcoholism: an update. Curr Drug Metab. 2007;8:716–27.

Rhoads DE, Contreras C, Fathalla S. Brain levels of catalase remain constant through strain, developmental, and chronic alcohol challenges. Enzyme Res. 2012;2012. https://doi.org/10.1155/2012/572939 .

Vasiliou V, Ziegler TL, Bludeau P, Petersen DR, Gonzalez FJ, Deitrich RA. CYP2E1 and catalase influence ethanol sensitivity in the central nervous system. Pharmacogenet Genomics. 2006;16:51–58.

Zimatkin SM, Buben AI. Ethanol oxidation in the living brain. Alcohol Alcohol. 2007;42:529–32.

Hargreaves GA, Quinn H, Kashem MA, Matsumoto I, McGregor IS. Proteomic analysis demonstrates adolescent vulnerability to lasting hippocampal changes following chronic alcohol consumption. Alcohol Clin Exp Res. 2009;33:86–94.

Galaj E, Guo C, Huang D, Ranaldi R, Ma YY. Contrasting effects of adolescent and early-adult ethanol exposure on prelimbic cortical pyramidal neurons. Drug Alcohol Depend. 2020;216:108309.

Li Q, Fleming RL, Acheson SK, Madison RD, Moore SD, Risher ML, et al. Long-term modulation of A-type K+ conductances in hippocampal CA1 interneurons in rats after chronic intermittent ethanol exposure during adolescence or adulthood. Alcohol Clin Exp Res. 2013;37:2074–85.

Artinian J, Lacaille JC. Disinhibition in learning and memory circuits: new vistas for somatostatin interneurons and long-term synaptic plasticity. Brain Res Bull. 2018;141:20–26.

Müller-Oehring EM, Kwon D, Nagel BJ, Sullivan EV, Chu W, Rohlfing T, et al. Influences of age, sex, and moderate alcohol drinking on the intrinsic functional architecture of adolescent brains. Cereb Cortex. 2018;28:1049–63.

McAteer AM, Hanna D, Curran D. Age-related differences in alcohol attention bias: a cross-sectional study. Psychopharmacology. 2018;235:2387–93.

Rooke SE, Hine DW. A dual process account of adolescent and adult binge drinking. Addict Behav. 2011;36:341–6.

Cousijn J, Green KH, Labots M, Vanderschuren LJMJ, Kenemans JL, Lesscher HMB. Motivational and control mechanisms underlying adolescent versus adult alcohol use. NeuroSci. 2020;1:44–58.

Field M, Cox WM. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug Alcohol Depend. 2008;97:1–20.

Cousijn J, van Benthem P, van der Schee E, Spijkerman R. Motivational and control mechanisms underlying adolescent cannabis use disorders: a prospective study. Dev Cogn Neurosci. 2015;16:36–45.

Saalfield J, Spear L. Consequences of repeated ethanol exposure during early or late adolescence on conditioned taste aversions in rats. Dev Cogn Neurosci. 2015;16:174–82.

Saalfield J, Spear L. The ontogeny of ethanol aversion. Physiol Behav. 2016;156:164–70.

McQuown SC, Wood MA. Epigenetic regulation in substance use disorders. Curr Psychiatry Rep. 2010;12:145–53.

Renthal W, Nestler EJ. Epigenetic mechanisms in drug addiction. Trends Mol Med. 2008;14:341–50.

Logrip ML, Barak S, Warnault V, Ron D. Corticostriatal BDNF and alcohol addiction. Brain Res. 2015;1628:60–67.

Dalley JW, Roiser JP. Dopamine, serotonin and impulsivity. Neuroscience 2012;215:42–58.

Robinson OJ, Pike AC, Cornwell B, Grillon C. The translational neural circuitry of anxiety. J Neurol Neurosurg Psychiatry. 2019;90:1353–60.

PubMed   Google Scholar  

Martínez G, Ropero C, Funes A, Flores E, Blotta C, Landa AI, et al. Effects of selective NMDA and non-NMDA blockade in the nucleus accumbens on the plus-maze test. Physiol Behav. 2002;76:219–24.

Bergink V, Van Megen HJGM, Westenberg HGM. Glutamate and anxiety. Eur Neuropsychopharmacol. 2004;14:175–83.

Scott AJ, Jordan M, Lueras BJN. Effects of binge drinking on the developing brain. Alcohol Res. 2018;39:87–96.

Google Scholar  

Krieger H, Young CM, Anthenien AM, Neighbors C. The epidemiology of binge drinking among college-age individuals in the United States. Alcohol Res. 2018;39:23–30.

Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:1–9.

Krauth D, Woodruff TJ, Bero L. Instruments for assessing risk of bias and other methodological criteria of published animal studies: a systematic review. Environ Health Perspect. 2013;121:985–92.

Field M, Kersbergen I. Are animal models of addiction useful? Addiction. 2020;115:6–12.

Simms JA, Steensland P, Medina B, Abernathy KE, Chandler LJ, Wise R, et al. Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol Clin Exp Res. 2008;32:1816–23.

Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC. Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav. 2005;84:53–63.

Spoelder M, Hesseling P, Baars AM, Lozeman-van’t Klooster JG, Rotte MD, Vanderschuren LJMJ, et al. Individual variation in alcohol intake predicts reinforcement, motivation, and compulsive alcohol use in rats. Alcohol Clin Exp Res. 2015;39:2427–37.

Fredriksson I, Venniro M, Reiner DJ, Chow JJ, Bossert JM, Shaham Y. Animal models of drug relapse and craving after voluntary abstinence: a review. Pharm Rev. 2021;73:1050–83.

Vanderschuren LJMJ, Ahmed SH. Animal models of the behavioral symptoms of substance use disorders. Cold Spring Harb Perspect Med. 2021;11:a040287.

Kuhn BN, Kalivas PW, Bobadilla AC. Understanding addiction using animal models. Front Behav Neurosci. 2019;13. https://doi.org/10.3389/fnbeh.2019.00262 .

Venniro M, Shaham Y. An operant social self-administration and choice model in rats. Nat Protoc. 2020;15:1542–59.

Thapar A, Collishaw S, Pine DS, Thapar AK. Depression in adolescence. Lancet 2012;379:1056–67.

Costello EJ, Egger H, Angold A. 10-Year research update review: the epidemiology of child and adolescent psychiatric disorders: I. Methods and public health burden. J Am Acad Child Adolesc Psychiatry. 2005;44:972–86.

Snyder HR, Kaiser RH, Whisman MA, Turner AEJ, Guild RM, Munakata Y. Opposite effects of anxiety and depressive symptoms on executive function: the case of selecting among competing options. 2014;28:893–902. https://doi.org/10.1080/026999312013859568 .

McDermott LM, Ebmeier KP. A meta-analysis of depression severity and cognitive function. J Affect Disord. 2009;119:1–8.

Volkow ND, Koob GF, Croyle RT, Bianchi DW, Gordon JA, Koroshetz WJ, et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev Cogn Neurosci. 2018;32:4–7.

Download references

Acknowledgements

This work was supported by grant 1RO1 DA042490-01A1 awarded to Janna Cousijn and Francesca Filbey from the National Institute on Drug Abuse/National Institutes of Health. The grant supported the salaries of authors Lauren Kuhns, Emese Kroon, and Janna Cousijn. Thank you to Claire Gorey (CG) for running the initial search and aiding in the screening process.

Author information

Authors and affiliations.

Neuroscience of Addiction (NofA) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands

Lauren Kuhns, Emese Kroon, Gabry Mies & Janna Cousijn

The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands

Lauren Kuhns, Emese Kroon & Janna Cousijn

Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

Heidi Lesscher

Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands

Janna Cousijn

You can also search for this author in PubMed   Google Scholar

Contributions

LK conducted the systematic searches; LK, EK, GM, and JC screened the citations for exclusion and inclusion; LK, EK, HL, and JC wrote the review; LK, EK, HL, GM, and JC revised the manuscript.

Corresponding author

Correspondence to Lauren Kuhns .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Kuhns, L., Kroon, E., Lesscher, H. et al. Age-related differences in the effect of chronic alcohol on cognition and the brain: a systematic review. Transl Psychiatry 12 , 345 (2022). https://doi.org/10.1038/s41398-022-02100-y

Download citation

Received : 26 October 2021

Revised : 21 June 2022

Accepted : 28 July 2022

Published : 25 August 2022

DOI : https://doi.org/10.1038/s41398-022-02100-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper on alcoholism

  • Open access
  • Published: 13 November 2019

Evidence-based models of care for the treatment of alcohol use disorder in primary health care settings: protocol for systematic review

  • Susan A. Rombouts 1 ,
  • James Conigrave 2 ,
  • Eva Louie 1 ,
  • Paul Haber 1 , 3 &
  • Kirsten C. Morley   ORCID: orcid.org/0000-0002-0868-9928 1  

Systematic Reviews volume  8 , Article number:  275 ( 2019 ) Cite this article

7229 Accesses

3 Citations

Metrics details

Alcohol use disorder (AUD) is highly prevalent and accounts globally for 1.6% of disability-adjusted life years (DALYs) among females and 6.0% of DALYs among males. Effective treatments for AUDs are available but are not commonly practiced in primary health care. Furthermore, referral to specialized care is often not successful and patients that do seek treatment are likely to have developed more severe dependence. A more cost-efficient health care model is to treat less severe AUD in a primary care setting before the onset of greater dependence severity. Few models of care for the management of AUD in primary health care have been developed and with limited implementation. This proposed systematic review will synthesize and evaluate differential models of care for the management of AUD in primary health care settings.

We will conduct a systematic review to synthesize studies that evaluate the effectiveness of models of care in the treatment of AUD in primary health care. A comprehensive search approach will be conducted using the following databases; MEDLINE (1946 to present), PsycINFO (1806 to present), Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials (CENTRAL) (1991 to present), and Embase (1947 to present).

Reference searches of relevant reviews and articles will be conducted. Similarly, a gray literature search will be done with the help of Google and the gray matter tool which is a checklist of health-related sites organized by topic. Two researchers will independently review all titles and abstracts followed by full-text review for inclusion. The planned method of extracting data from articles and the critical appraisal will also be done in duplicate. For the critical appraisal, the Cochrane risk of bias tool 2.0 will be used.

This systematic review and meta-analysis aims to guide improvement of design and implementation of evidence-based models of care for the treatment of alcohol use disorder in primary health care settings. The evidence will define which models are most promising and will guide further research.

Protocol registration number

PROSPERO CRD42019120293.

Peer Review reports

It is well recognized that alcohol use disorders (AUD) have a damaging impact on the health of the population. According to the World Health Organization (WHO), 5.3% of all global deaths were attributable to alcohol consumption in 2016 [ 1 ]. The 2016 Global Burden of Disease Study reported that alcohol use led to 1.6% (95% uncertainty interval [UI] 1.4–2.0) of total DALYs globally among females and 6.0% (5.4–6.7) among males, resulting in alcohol use being the seventh leading risk factor for both premature death and disability-adjusted life years (DALYs) [ 2 ]. Among people aged 15–49 years, alcohol use was the leading risk factor for mortality and disability with 8.9% (95% UI 7.8–9.9) of all attributable DALYs for men and 2.3% (2.0–2.6) for women [ 2 ]. AUD has been linked to many physical and mental health complications, such as coronary heart disease, liver cirrhosis, a variety of cancers, depression, anxiety, and dementia [ 2 , 3 ]. Despite the high morbidity and mortality rate associated with hazardous alcohol use, the global prevalence of alcohol use disorders among persons aged above 15 years in 2016 was stated to be 5.1% (2.5% considered as harmful use and 2.6% as severe AUD), with the highest prevalence in the European and American region (8.8% and 8.2%, respectively) [ 1 ].

Effective and safe treatment for AUD is available through psychosocial and/or pharmacological interventions yet is not often received and is not commonly practiced in primary health care. While a recent European study reported 8.7% prevalence of alcohol dependence in primary health care populations [ 4 ], the vast majority of patients do not receive the professional treatment needed, with only 1 in 5 patients with alcohol dependence receiving any formal treatment [ 4 ]. In Australia, it is estimated that only 3% of individuals with AUD receive approved pharmacotherapy for the disorder [ 5 , 6 ]. Recognition of AUD in general practice uncommonly leads to treatment before severe medical and social disintegration [ 7 ]. Referral to specialized care is often not successful, and those patients that do seek treatment are likely to have more severe dependence with higher levels of alcohol use and concurrent mental and physical comorbidity [ 4 ].

Identifying and treating early stage AUDs in primary care settings can prevent condition worsening. This may reduce the need for more complex and more expensive specialized care. The high prevalence of AUD in primary health care and the chronic relapsing character of AUD make primary care a suitable and important location for implementing evidence-based interventions. Successful implementation of treatment models requires overcoming multiple barriers. Qualitative studies have identified several of those barriers such as limited time, limited organizational capacity, fear of losing patients, and physicians feeling incompetent in treating AUD [ 8 , 9 , 10 ]. Additionally, a recent systematic review revealed that diagnostic sensitivity of primary care physicians in the identification of AUD was 41.7% and that only in 27.3% alcohol problems were recorded correctly in primary care records [ 11 ].

Several models for primary care have been created to increase identification and treatment of patients with AUD. Of those, the model, screening, brief interventions, and referral to specialized treatment for people with severe AUD (SBIRT [ 12 ]) is most well-known. Multiple systematic reviews exist, confirming its effectiveness [ 13 , 14 , 15 ], although implementation in primary care has been inadequate. Moreover, most studies have looked primarily at SBIRT for the treatment of less severe AUD [ 16 ]. In the treatment of severe AUD, efficacy of SBIRT is limited [ 16 ]. Additionally, many patient referred to specialized care often do not attend as they encounter numerous difficulties in health care systems including stigmatization, costs, lack of information about existing treatments, and lack of non-abstinence-treatment goals [ 7 ]. An effective model of care for improved management of AUD that can be efficiently implemented in primary care settings is required.

Review objective

This proposed systematic review will synthesize and evaluate differential models of care for the management of AUD in primary health care settings. We aim to evaluate the effectiveness of the models of care in increasing engagement and reducing alcohol consumption.

By providing this overview, we aim to guide improvement of design and implementation of evidence-based models of care for the treatment of alcohol use disorder in primary health care settings.

The systematic review is registered in PROSPERO international prospective register of systematic reviews (CRD42019120293) and the current protocol has been written according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) recommended for systematic reviews [ 17 ]. A PRISMA-P checklist is included as Additional file  1 .

Eligibility criteria

Criteria for considering studies for this review are classified by the following:

Study design

Both individualized and cluster randomized trials will be included. Masking of patients and/or physicians is not an inclusion criterion as it is often hard to accomplish in these types of studies.

Patients in primary health care who are identified (using screening tools or by primary health care physician) as suffering from AUD (from mild to severe) or hazardous alcohol drinking habits (e.g., comorbidity, concurrent medication use). Eligible patients need to have had formal assessment of AUD with diagnostic tools such as Diagnostic and Statistical Manual of Mental Disorders (DSM-IV/V) or the International Statistical Classification of Diseases and Related Health Problems (ICD-10) and/or formal assessment of hazardous alcohol use assessed by the Comorbidity Alcohol Risk Evaluation Tool (CARET) or the Alcohol Use Disorders Identification test (AUDIT) and/or alcohol use exceeding guideline recommendations to reduce health risks (e.g., US dietary guideline (2015–2020) specifies excessive drinking for women as ≥ 4 standard drinks (SD) on any day and/or ≥ 8 SD per week and for men ≥ 5 SD on any day and/or ≥ 15 SD per week).

Studies evaluating models of care for additional diseases (e.g., other dependencies/mental health) other than AUD are included when they have conducted data analysis on the alcohol use disorder patient data separately or when 80% or more of the included patients have AUD.

Intervention

The intervention should consist of a model of care; therefore, it should include multiple components and cover different stages of the care pathway (e.g., identification of patients, training of staff, modifying access to resources, and treatment). An example is the Chronic Care Model (CCM) which is a primary health care model designed for chronic (relapsing) conditions and involves six elements: linkage to community resources, redesign of health care organization, self-management support, delivery system redesign (e.g., use of non-physician personnel), decision support, and the use of clinical information systems [ 18 , 19 ].

As numerous articles have already assessed the treatment model SBIRT, this model of care will be excluded from our review unless the particular model adds a specific new aspect. Also, the article has to assess the effectiveness of the model rather than assessing the effectiveness of the particular treatment used. Because identification of patients is vital to including them in the trial, a care model that only evaluates either patient identification or treatment without including both will be excluded from this review.

Model effectiveness may be in comparison with the usual care or a different treatment model.

Included studies need to include at least one of the following outcome measures: alcohol consumption, treatment engagement, uptake of pharmacological agents, and/or quality of life.

Solely quantitative research will be included in this systematic review (e.g., randomized controlled trials (RCTs) and cluster RCTs). We will only include peer-reviewed articles.

Restrictions (language/time period)

Studies published in English after 1 January 1998 will be included in this systematic review.

Studies have to be conducted in primary health care settings as such treatment facilities need to be physically in or attached to the primary care clinic. Examples are co-located clinics, veteran health primary care clinic, hospital-based primary care clinic, and community primary health clinics. Specialized primary health care clinics such as human immunodeficiency virus (HIV) clinics are excluded from this systematic review. All studies were included, irrespective of country of origin.

Search strategy and information sources

A comprehensive search will be conducted. The following databases will be consulted: MEDLINE (1946 to present), PsycINFO (1806 to present), Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials (CENTRAL) (1991 to present), and Embase (1947 to present). Initially, the search terms will be kept broad including alcohol use disorder (+synonyms), primary health care, and treatment to minimize the risk of missing any potentially relevant articles. Depending on the number of references attained by this preliminary search, we will add search terms referring to models such as models of care, integrated models, and stepped-care models, to limit the number of articles. Additionally, we will conduct reference searches of relevant reviews and articles. Similarly, a gray literature search will be done with the help of Google and the Gray Matters tool which is a checklist of health-related sites organized by topic. The tool is produced by the Canadian Agency for Drugs and Technologies in Health (CADTH) [ 20 ].

See Additional file  2 for a draft of our search strategy in MEDLINE.

Data collection

The selection of relevant articles is based on several consecutive steps. All references will be managed using EndNote (EndNote version X9 Clarivate Analytics). Initially, duplicates will be removed from the database after which all the titles will be screened with the purpose of discarding clearly irrelevant articles. The remaining records will be included in an abstract and full-text screen. All steps will be done independently by two researchers. Disagreement will lead to consultation of a third researcher.

Data extraction and synthesis

Two researchers will extract data from included records. At the conclusion of data extraction, these two researchers will meet with the lead author to resolve any discrepancies.

In order to follow a structured approach, an extraction form will be used. Key elements of the extraction form are information about design of the study (randomized, blinded, control), type of participants (alcohol use, screening tool used, socio-economic status, severity of alcohol use, age, sex, number of participants), study setting (primary health care setting, VA centers, co-located), type of intervention/model of care (separate elements of the models), type of health care worker (primary, secondary (co-located)), duration of follow-up, outcome measures used in the study, and funding sources. We do not anticipate having sufficient studies for a meta-analysis. As such, we plan to perform a narrative synthesis. We will synthesize the findings from the included articles by cohort characteristics, differential aspects of the intervention, controls, and type of outcome measures.

Sensitivity analyses will be conducted when issues suitable for sensitivity analysis are identified during the review process (e.g., major differences in quality of the included articles).

Potential meta-analysis

In the event that sufficient numbers of effect sizes can be extracted, a meta-analytic synthesis will be performed. We will extract effect sizes from each study accordingly. Two effect sizes will be extracted (and transformed where appropriate). Categorical outcomes will be given in log odds ratios and continuous measures will be converted into standardized mean differences. Variation in effect sizes attributable to real differences (heterogeneity) will be estimated using the inconsistency index ( I 2 ) [ 21 , 22 ]. We anticipate high degrees of variation among effect sizes, as a result moderation and subgroup-analyses will be employed as appropriate. In particular, moderation analysis will focus on the degree of heterogeneity attributable to differences in cohort population (pre-intervention drinking severity, age, etc.), type of model/intervention, and study quality. We anticipate that each model of care will require a sub-group analysis, in which case a separate meta-analysis will be performed for each type of model. Small study effect will be assessed with funnel plots and Egger’s symmetry tests [ 23 ]. When we cannot obtain enough effect sizes for synthesis or when the included studies are too diverse, we will aim to illustrate patterns in the data by graphical display (e.g., bubble plot) [ 24 ].

Critical appraisal of studies

All studies will be critically assessed by two researchers independently using the Revised Cochrane risk-of-bias tool (RoB 2) [ 25 ]. This tool facilitates systematic assessment of the quality of the article per outcome according to the five domains: bias due to (1) the randomization process, (2) deviations from intended interventions, (3) missing outcome data, (4) measurement of the outcome, and (5) selection of the reported results. An additional domain 1b must be used when assessing the randomization process for cluster-randomized studies.

Meta-biases such as outcome reporting bias will be evaluated by determining whether the protocol was published before recruitment of patients. Additionally, trial registries will be checked to determine whether the reported outcome measures and statistical methods are similar to the ones described in the registry. The gray literature search will be of assistance when checking for publication bias; however, completely eliminating the presence of publication bias is impossible.

Similar to article selection, any disagreement between the researchers will lead to discussion and consultation of a third researcher. The strength of the evidence will be graded according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach [ 26 ].

The primary outcome measure of this proposed systematic review is the consumption of alcohol at follow-up. Consumption of alcohol is often quantified in drinking quantity (e.g., number of drinks per week), drinking frequency (e.g., percentage of days abstinent), binge frequency (e.g., number of heavy drinking days), and drinking intensity (e.g., number of drinks per drinking day). Additionally, outcomes such as percentage/proportion included patients that are abstinent or considered heavy/risky drinkers at follow-up. We aim to report all these outcomes. The consumption of alcohol is often self-reported by patients. When studies report outcomes at multiple time points, we will consider the longest follow-up of individual studies as a primary outcome measure.

Depending on the included studies, we will also consider secondary outcome measures such as treatment engagement (e.g., number of visits or pharmacotherapy uptake), economic outcome measures, health care utilization, quality of life assessment (physical/mental), alcohol-related problems/harm, and mental health score for depression or anxiety.

This proposed systematic review will synthesize and evaluate differential models of care for the management of AUD in primary health care settings.

Given the complexities of researching models of care in primary care and the paucity of a focus on AUD treatment, there are likely to be only a few studies that sufficiently address the research question. Therefore, we will do a preliminary search without the search terms for model of care. Additionally, the search for online non-academic studies presents a challenge. However, the Gray Matters tool will be of guidance and will limit the possibility of missing useful studies. Further, due to diversity of treatment models, outcome measures, and limitations in research design, it is possible that a meta-analysis for comparative effectiveness may not be appropriate. Moreover, in the absence of large, cluster randomized controlled trials, it will be difficult to distinguish between the effectiveness of the treatment given and that of the model of care and/or implementation procedure. Nonetheless, we will synthesize the literature and provide a critical evaluation of the quality of the evidence.

This review will assist the design and implementation of models of care for the management of AUD in primary care settings. This review will thus improve the management of AUD in primary health care and potentially increase the uptake of evidence-based interventions for AUD.

Availability of data and materials

Not applicable.

Abbreviations

Alcohol use disorder

Alcohol Use Disorders Identification test

Canadian Agency for Drugs and Technologies in Health

The Comorbidity Alcohol Risk Evaluation

Cochrane Central Register of Controlled Trials

Diagnostic and Statistical Manual of Mental Disorders

Human immunodeficiency virus

10 - International Statistical Classification of Diseases and Related Health Problems

Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols

Screening, brief intervention, referral to specialized treatment

Standard drinks

World Health Organization

WHO. Global status report on alcohol and health: World health organization; 2018.

The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016. a systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry. 2018;5(12):987–1012.

Article   Google Scholar  

WHO. Global strategy to reduce the harmful use of alcohol: World health organization; 2010.

Rehm J, Allamani A, Elekes Z, Jakubczyk A, Manthey J, Probst C, et al. Alcohol dependence and treatment utilization in Europe - a representative cross-sectional study in primary care. BMC Fam Pract. 2015;16:90.

Morley KC, Logge W, Pearson SA, Baillie A, Haber PS. National trends in alcohol pharmacotherapy: findings from an Australian claims database. Drug Alcohol Depend. 2016;166:254–7.

Article   CAS   Google Scholar  

Morley KC, Logge W, Pearson SA, Baillie A, Haber PS. Socioeconomic and geographic disparities in access to pharmacotherapy for alcohol dependence. J Subst Abus Treat. 2017;74:23–5.

Rehm J, Anderson P, Manthey J, Shield KD, Struzzo P, Wojnar M, et al. Alcohol use disorders in primary health care: what do we know and where do we go? Alcohol Alcohol. 2016;51(4):422–7.

Le KB, Johnson JA, Seale JP, Woodall H, Clark DC, Parish DC, et al. Primary care residents lack comfort and experience with alcohol screening and brief intervention: a multi-site survey. J Gen Intern Med. 2015;30(6):790–6.

McLellan AT, Starrels JL, Tai B, Gordon AJ, Brown R, Ghitza U, et al. Can substance use disorders be managed using the chronic care model? review and recommendations from a NIDA consensus group. Public Health Rev. 2014;35(2).

Storholm ED, Ober AJ, Hunter SB, Becker KM, Iyiewuare PO, Pham C, et al. Barriers to integrating the continuum of care for opioid and alcohol use disorders in primary care: a qualitative longitudinal study. J Subst Abus Treat. 2017;83:45–54.

Mitchell AJ, Meader N, Bird V, Rizzo M. Clinical recognition and recording of alcohol disorders by clinicians in primary and secondary care: meta-analysis. Br J Psychiatry. 2012;201:93–100.

Babor TF, Ritson EB, Hodgson RJ. Alcohol-related problems in the primary health care setting: a review of early intervention strategies. Br J Addict. 1986;81(1):23–46.

Kaner EF, Beyer F, Dickinson HO, Pienaar E, Campbell F, Schlesinger C, et al. Effectiveness of brief alcohol interventions in primary care populations. Cochrane Database Syst Rev. 2007;(2):Cd004148.

O'Donnell A, Anderson P, Newbury-Birch D, Schulte B, Schmidt C, Reimer J, et al. The impact of brief alcohol interventions in primary healthcare: a systematic review of reviews. Alcohol Alcohol. 2014;49(1):66–78.

Bertholet N, Daeppen JB, Wietlisbach V, Fleming M, Burnand B. Reduction of alcohol consumption by brief alcohol intervention in primary care: systematic review and meta-analysis. Arch Intern Med. 2005;165(9):986–95.

Saitz R. ‘SBIRT’ is the answer? Probably not. Addiction. 2015;110(9):1416–7.

Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. Bmj. 2015;350:g7647.

Bodenheimer T, Wagner EH, Grumbach K. Improving primary care for patients with chronic illness. Jama. 2002;288(14):1775–9.

Bodenheimer T, Wagner EH, Grumbach K. Improving primary care for patients with chronic illness: the chronic care model, part 2. Jama. 2002;288(15):1909–14.

CADTH. Grey Matters: a practical tool for searching health-related grey literature Internet. 2018 (cited 2019 Feb 22).

Higgins JPT. Thompson SG. Quantifying heterogeneity in a meta-analysis. 2002;21(11):1539–58.

Google Scholar  

Higgins JPT, Thompson SG, Deeks JJ. Altman DG. Measuring inconsistency in meta-analyses. 2003;327(7414):557–60.

Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed). 1997;315(7109):629–34.

Higgins JPT, López-López JA, Becker BJ, Davies SR, Dawson S, Grimshaw JM, et al. Synthesising quantitative evidence in systematic reviews of complex health interventions. BMJ Glob Health. 2019;4(Suppl 1):e000858–e.

Higgins, J.P.T., Sterne, J.A.C., Savović, J., Page, M.J., Hróbjartsson, A., Boutron, I., Reeves, B., Eldridge, S. (2016). A revised tool for assessing risk of bias in randomized trials. In: Chandler, J., McKenzie, J., Boutron, I., Welch, V. (editors). Cochrane methods. Cochrane database of systematic reviews, 10 (Suppl 1). https://doi.org/10.1002/14651858.CD201601 .

Schünemann H, Brożek J, Guyatt G, Oxman A, editor(s). Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach (updated October 2013). GRADE Working Group, 2013. Available from gdt.guidelinedevelopment.org/app/handbook/handbook.html ).

Download references

Acknowledgements

There is no dedicated funding.

Author information

Authors and affiliations.

Discipline of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia

Susan A. Rombouts, Eva Louie, Paul Haber & Kirsten C. Morley

NHMRC Centre of Research Excellence in Indigenous Health and Alcohol, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia

James Conigrave

Drug Health Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia

You can also search for this author in PubMed   Google Scholar

Contributions

KM and PH conceived the presented idea of a systematic review and meta-analysis and helped with the scope of the literature. KM is the senior researcher providing overall guidance and the guarantor of this review. SR developed the background, search strategy, and data extraction form. SR and EL will both be working on the data extraction and risk of bias assessment. SR and JC will conduct the data analysis and synthesize the results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kirsten C. Morley .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Additional file 1..

PRISMA-P 2015 Checklist.

Additional file 2.

Draft search strategy MEDLINE. Search strategy.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article.

Rombouts, S.A., Conigrave, J., Louie, E. et al. Evidence-based models of care for the treatment of alcohol use disorder in primary health care settings: protocol for systematic review. Syst Rev 8 , 275 (2019). https://doi.org/10.1186/s13643-019-1157-7

Download citation

Received : 25 March 2019

Accepted : 13 September 2019

Published : 13 November 2019

DOI : https://doi.org/10.1186/s13643-019-1157-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Model of care
  • Primary health care
  • Systematic review

Systematic Reviews

ISSN: 2046-4053

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

research paper on alcoholism

research paper on alcoholism

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Home

News & Events

National Institute on Alcohol Abuse and Alcoholism (NIAAA)

Research insights into alcoholism and alcohol abuse highlighted in 10th special report.

Saturday, November 11, 2000

Secretary of Health and Human Services Donna E. Shalala has announced the availability of the 10th Special Report to the U.S. Congress on Alcohol and Health , produced by the National Institute on Alcohol Abuse and Alcoholism (NIAAA). The report highlights recent research advances on the causes, consequences, treatment, and prevention of alcohol addiction (alcoholism) and alcohol abuse.

The 492-page report, available in print and on the internet, documents the scope of alcohol’s impact on society. The effects range from violence to traffic crashes to lost productivity to illness and premature death—all of which, combined, cost our nation an estimated $184.6 billion per year. The report also conveys the rapid progress of research into the genetic and environmental factors that can lead to alcohol addiction. Scientists are using these insights to develop and test new ways of preventing and treating this disease. "Alcohol problems can yield to scientific investigation and medical intervention in the same way as other health conditions," writes DHHS Secretary Donna Shalala in the foreword.

The new report presents advances in alcohol research since 1997, when the last edition of Alcohol and Health was published. "This report reflects the tremendous growth in the scope of alcohol research," according to NIAAA Director Enoch Gordis, M.D. Contemporary alcohol research spans all life stages—from prenatal alcohol exposure to drinking problems in the elderly—and applies the latest methods of basic, epidemiological, clinical, behavioral, and social sciences research, often in multidisciplinary collaborations. The following research areas are among those detailed in the 10 th Report :

Genetics of alcoholism. Two studies have found evidence of genes on specific chromosomes influencing susceptibility to alcoholism. The ongoing Collaborative Study on the Genetics of Alcoholism (COGA), which involves 987 individuals from high-risk families, reported suggestive evidence of genes on chromosomes 1 and 7 involved in alcoholism. An early report from the study also reported weaker evidence of such a gene on chromosome 2. Another study from NIAAA’s Laboratory of Neurogenetics, based on 152 members of a southwestern Native American tribe, reported suggestive evidence for a gene influencing susceptibility to alcoholism on chromosome 11. Both studies reported finding evidence of a gene that was protective against alcoholism in a region of chromosome 4.

Heavy drinking during pregnancy and fetal brain development. Applying advances in neuroimaging and cellular and molecular biology, alcohol researchers are gaining an increasingly clear picture of the physical nature of alcohol-induced damage to the developing brain and the mechanisms that cause the damage. Imaging studies have demonstrated structural abnormalities in certain brain regions, whereas other regions seem to be spared. Research also shows that a number of deficits in cognitive and motor functions are linked to prenatal alcohol exposure, while other functions appear to remain intact. These studies, as well as basic research on the mechanisms of prenatal alcohol damage, support the notion that alcohol has specific, rather than global, effects on the developing brain.

Preventing underage drinking. One major study, the Community Trials Project, found that sales clerks in alcoholic beverage outlets were half as likely to sell alcohol to minors in communities with programs that trained clerks, enforced underage sales laws, and raised awareness of increased enforcement through the media. Another large study, Project Northland, showed that a multi-year program involving schools, parents, peers, policy-makers, and businesses can effectively reduce underage drinking—if the intervention begins before adolescents begin to use alcohol. The 10th Report also describes the search for the roots of alcohol problems in adolescence and later life stages, through multidisciplinary research on social, cultural, psychological, and biological influences.

Reducing alcohol-related traffic crashes. The 10 th Report presents many studies on the effectiveness of laws, public policies, community programs, and individual actions to deter drunk driving. A number of studies have focused on State laws that make it a criminal offense to drive with a blood alcohol concentration (BAC) over a certain limit, which in most States is 0.10 percent. New research shows that States that reduce the legal BAC limit to 0.08 percent experience a significant drop in fatal crashes related to alcohol, and that this decrease is distinct from the effects of other drunk driving measures.

Chronic alcohol use and the brain. Studies in animal models are revealing how changes in the brain from chronic alcohol consumption underlie such features of alcoholism as tolerance (lowered sensitivity to the intoxicating effects of alcohol), withdrawal, and craving. This work is helping scientists understand the biological basis for the motivation to drink too much and the mechanisms through which alcohol causes lasting damage to the brain in some individuals who consume alcohol heavily.

Damage to body organs. Research on how alcohol damages body organs is providing information that may be used in developing novel treatments. For example, a variety of evidence suggests that liver damage results from changes in immune function, suggesting the potential of immune-based treatments.

Helping patients to reduce alcohol use and related problems. When patients are found to be at-risk or problem drinkers, but not alcohol dependent, health care providers can significantly reduce alcohol use and related problems by providing a quick form of counseling called "brief intervention." Research shows that brief interventions delivered in primary care settings can decrease alcohol use for at least a year in persons who drink above recommended limits.

Medications for treating alcoholism. Advances in neuroscience have paved the way for medications that operate at the molecular level of brain processes that influence alcohol addiction. Studies show that the medication naltrexone and a similar compound, nalmefene, help reduce the chance of heavy drinking when abstinent individuals relapse; that a medication called acamprosate may prevent relapse; and that when patients with co-existing depression take antidepressants, their alcoholism treatment outcomes improve.

The report contains eight chapters: (1) Drinking Over the Life Span: Issues of Biology, Behavior and Risk, (2) Alcohol and the Brain: Neuroscience and Neurobehavior, (3) Genetic and Psychosocial Influences, (4) Medical Consequences, (5) Prenatal Exposure to Alcohol, (6) Economic and Health Services Perspectives, (7) Prevention, and (8) Treatment. Each chapter is divided into two to six subsections that can be downloaded individually in PDF format from the NIAAA website ( http://www.niaaa.nih.gov/ ). Bound copies of the entire 492-page report can also be ordered by writing to: National Institute on Alcohol Abuse and Alcoholism, Publications Distribution Center, P.O. Box 10686, Rockville, MD 20849-0686.

The NIAAA produced the 10 th Special Report to the U.S. Congress on Alcohol and Health with guidance from a distinguished editorial advisory board and contributions from some of the world’s leading alcohol researchers. A component of the National Institutes of Health, NIAAA funds more than 90 percent of the alcohol abuse and alcohol addiction (alcoholism) research in the United States.

About the National Institute on Alcohol Abuse and Alcoholism (NIAAA): The National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of the National Institutes of Health, is the primary U.S. agency for conducting and supporting research on the causes, consequences, diagnosis, prevention, and treatment of alcohol use disorder. NIAAA also disseminates research findings to general, professional, and academic audiences. Additional alcohol research information and publications are available at  www.niaaa.nih.gov .

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit  www.nih.gov .

Contact info : NIAAA Press Office 301-443-2857 [email protected]

niaaa.nih.gov

An official website of the National Institutes of Health and the National Institute on Alcohol Abuse and Alcoholism

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

The effects of alcohol use on academic achievement in high school

Ana i. balsa.

a Research Professor, Center for Applied Research on Poverty, Family, and Education, Department of Economics, Universidad de Montevideo; Prudencio de Pena 2440, Montevideo, 11600, Uruguay; Phone: (+598 2) 707 4461 ext 300; Fax: (+598 2) 707 4461 ext 325; yu.ude.mu@aslaba

Laura M. Giuliano

b Assistant Professor, Department of Economics, University of Miami, Coral Gables, FL 33124, United States; [email protected]

Michael T. French

c Professor of Health Economics, Health Economics Research Group, Department of Sociology, Department of Economics, and Department of Epidemiology and Public Health, University of Miami, Coral Gables, FL 33124, United States; ude.imaim@hcnerfm

This paper examines the effects of alcohol use on high school students’ quality of learning. We estimate fixed-effects models using data from the National Longitudinal Study of Adolescent Health. Our primary measure of academic achievement is the student’s GPA abstracted from official school transcripts. We find that increases in alcohol consumption result in small yet statistically significant reductions in GPA for male students and in statistically non-significant changes for females. For females, however, higher levels of drinking result in self-reported academic difficulty. The fixed-effects results are substantially smaller than OLS estimates, underscoring the importance of addressing unobserved individual heterogeneity.

1. Introduction

In the United States, one in four individuals between the ages of 12 and 20 drinks alcohol on a monthly basis, and a similar proportion of 12 th graders consumes five or more drinks in a row at least once every two weeks ( Newes-Adeyi, Chen, Williams, & Faden, 2007 ). Several studies have reported that alcohol use during adolescence affects educational attainment by decreasing the number of years of schooling and the likelihood of completing school ( Chatterji & De Simone, 2005 ; Cook & Moore, 1993 ; Gil-Lacruz & Molina, 2007 ; Koch & McGeary, 2005 ; McCluskey, Krohn, Lizotte, & Rodriguez, 2002 ; NIDA, 1998 ; Renna, 2007 ; Yamada, Kendrix, & Yamada, 1996 ) Other research using alternative estimation techniques suggests that the effects of teen drinking on years of education and schooling completion are very small and/or non-significant ( Chatterji, 2006 ; Dee & Evans, 2003 ; Koch & Ribar, 2001 ).

Despite a growing literature in this area, no study has convincingly answered the question of whether alcohol consumption inhibits high school students’ learning. Alcohol consumption could be an important determinant of how much a high school student learns without having a strong impact on his or her decision to stay in school or attend college. This question is fundamental and timely, given recent research showing that underage drinkers are susceptible to the immediate consequences of alcohol use, including blackouts, hangovers, and alcohol poisoning, and are at elevated risk of neurodegeneration (particularly in regions of the brain responsible for learning and memory), impairments in functional brain activity, and neurocognitive defects ( Zeigler et al., 2004 ).

A common and comprehensive measure of high school students’ learning is Grade Point Average (GPA). GPA is an important outcome because it is a key determinant of college admissions decisions and of job quality for those who do not attend college. Only a few studies have explored the association between alcohol use and GPA. Wolaver (2002) and Williams, Powell, and Wechsler (2003) have studied this association among college students, while DeSimone and Wolaver (2005) have investigated the effects of underage drinking on GPA during high school. The latter study found a negative association between high school drinking and grades, although it is not clear whether the effects are causal or the result of unobserved heterogeneity.

Understanding the relationship between teenage drinking and high school grades is pertinent given the high prevalence of alcohol use among this age cohort and recent research on adolescent brain development suggesting that early heavy alcohol use may have negative effects on the physical development of brain structure ( Brown, Tapert, Granholm, & Delis, 2000 ; Tapert & Brown, 1999 ). By affecting the quality of learning, underage drinking could have an impact on both college admissions and job quality independent of its effects on years of schooling or school completion.

In this paper, we estimate the effects of drinking in high school on the quality of learning as captured by high school GPA. The analysis employs data from Waves 1 and 2 of the National Longitudinal Study of Adolescent Health (Add Health), a nationally representative study that captures health-related behaviors of adolescents in grades 7 through 12 and their outcomes in young adulthood. Our analysis contributes to the literature in several ways. First, we focus on the effect of drinking on academic achievement during high school. To date, and to the best of our knowledge, only one other study in the literature has analyzed the consequences of underage drinking on high school GPA. Second, rather than rely on self-reported GPA, we use objective GPA data from academic transcripts, reducing the potential for systematic biases in the estimation results. Third, we take advantage of the longitudinal nature of the Add Health data and use fixed-effects models to purge the analysis of time invariant unobserved heterogeneity. Fixed-effects techniques are superior to instrumental variables (IV) estimation when the strength and reliability of the instruments are suspect ( French & Popovici, 2009 ). Finally, we explore a variety of mechanisms that could underlie a detrimental effect of alcohol use on grades. In addition to analyzing mediators related to exposure to education (days of school skipped), we investigate the effect of drinking on students’ ability to focus on and adhere to academic objectives.

2. Background and significance

Behavioral research has found that educational performance is highly correlated with substance abuse (e.g., Bukstein, Cornelius, Trunzo, Kelly, & Wood, 2005 ; Hawkins, Catalano, & Miller, 1992 ). Economic studies that look at the link between alcohol use and educational outcomes have customarily focused on measures of educational attainment such as graduation (from high school or college), college matriculation, and years of school completed (e.g., Bray, Zarkin, Ringwalt, & Qi, 2000 ; Chatterji, 2006 ; Cook & Moore, 1993 ; Dee & Evans 2003 ; Koch & Ribar, 2001 ; Mullahy & Sindelar, 1994 ; Renna, 2008 ; Yamada et al., 1996 ). Consistent with the behavioral research, early economic studies found that drinking reduced educational attainment. But the most rigorous behavioral studies and the early economic studies of attainment both faced the same limitation: they were cross-sectional and subject to potential omitted variables bias. Some of these cross-sectional economic studies attempted to improve estimation by using instrumental variables (IV). Cook and Moore (1993) and Yamada et al. (1996) found that heavy or frequent drinking in high school adversely affects high school and college completion. Nevertheless, the validity and reliability of the instruments in these studies are open to debate ( Chatterji, 2006 ; Dee & Evans, 2003 ; French & Popovici, 2009 ).

By contrast, more recent economic studies that arguably use better estimation methods have found that drinking has modest or negligible effects on educational attainment. Dee and Evans (2003) studied the effects of teen drinking on high school completion, college entrance, and college persistence. Employing changes in the legal drinking age across states over time as an instrument, they found no significant effect of teen drinking on educational attainment. Koch and Ribar (2001) reached a similar conclusion applying family fixed effects and instrumental variables to NLSY data. Though they found that drinking had a significant negative effect on the amount of schooling completed among men, the effect was small. Finally, Chatterji (2006) used a bivariate probit model of alcohol use and educational attainment to gauge the sensitivity of the estimates to various assumptions about the correlation of unobservable determinants of these variables. She concluded that there is no evidence of a causal relationship between alcohol use and educational attainment when the correlation coefficient is fixed at plausible levels.

Alcohol use could conceivably affect a student’s quality of learning and academic performance regardless of its impact on school completion. This possibility is suggested by Renna (2008) , who uses a research design similar to that used by Dee and Evans (2003) and finds that although binge drinking does not affect high school completion rates, it does significantly increase the probability that a student graduates with a GED rather than a high school diploma. Drinking could affect learning through a variety of mechanisms. Recent neurological research suggests that underage drinking can impair learning directly by causing alterations in the structure and function of the developing brain with consequences reaching far beyond adolescence ( Brown et al., 2000 ; White & Swartzwelder, 2004 ). Negative effects of alcohol use can emerge in areas such as planning and executive functioning, memory, spatial operations, and attention ( Brown et al., 2000 ; Giancola & Mezzich, 2000 ; Tapert & Brown, 1999 ). Alcohol use could also affect performance by reducing the number of hours committed to studying, completing homework assignments, and attending school.

We are aware of five economic studies that have examined whether drinking affects learning per se. Bray (2005) analyzed this issue indirectly by studying the effect of high school students’ drinking on subsequent wages, as mediated through human capital accumulation. He found that moderate high school drinking had a positive effect on returns to education and therefore on human capital accumulation. Heavier drinking reduced this gain slightly, but net effects were still positive. The other four studies approached the question directly by focusing on the association between drinking and GPA. Three of the GPA studies used data from the Harvard College Alcohol Study. Analyzing data from the study’s 1993 wave, both Wolaver (2002) and Williams et al. (2003) estimated the impact of college drinking on the quality of human capital acquisition as captured by study hours and GPA. Both studies found that drinking had a direct negative effect on GPA and an indirect negative effect through reduced study hours. Wolaver (2007) used data from the 1993 and 1997 waves and found that both high school and college binge drinking were associated with lower college GPA for males and females. For females, however, study time in college was negatively correlated with high school drinking but positively associated with college drinking.

To our knowledge, only one study has looked specifically at adolescent drinking and high school GPA. Analyzing data from the Youth Risk Behavior Survey, DeSimone and Wolaver (2005) used standard regression analysis to estimate whether drinking affected high school GPA. Even after controlling for many covariates, they found that drinking had a significant negative effect. Their results showed that the GPAs of binge drinkers were 0.4 points lower on average for both males and females. They also found that the effect of drinking on GPA peaked for ninth graders and declined thereafter and that drinking affected GPA more by reducing the likelihood of high grades than by increasing the likelihood of low grades.

All four GPA studies found that drinking has negative effects on GPA, but they each faced two limitations. First, they relied on self-reported GPA, which can produce biased results due to recall mistakes and intentional misreporting ( Zimmerman, Caldwell, & Bernat, 2006 ). Second, they used cross-sectional data. Despite these studies’ serious efforts to address unobserved individual heterogeneity, it remains questionable whether they identified a causal link between drinking and GPA.

In sum, early cross-sectional studies of educational attainment and GPA suggest that drinking can have a sizeable negative effect on both outcomes. By contrast, more recent studies of educational attainment that use improved estimation methods to address the endogeneity of alcohol use have found that drinking has negligible effects. The present paper is the first study of GPA that controls for individual heterogeneity in a fixed-effects framework, and our findings are consistent with the more recent studies of attainment that find small or negligible effects of alcohol consumption.

Add Health is a nationally representative study that catalogues health-related behaviors of adolescents in grades 7 through 12 and associated outcomes in young adulthood. An initial in-school survey was administered to 90,118 students attending 175 schools during the 1994/1995 school year. From the initial in-school sample, 20,745 students (and their parents) were administered an additional in-home interview in 1994–1995 and were re-interviewed one year later. In 2001–2002, Add Health respondents (aged 18 to 26) were re-interviewed in a third wave to investigate the influence of health-related behaviors during adolescence on individuals when they are young adults. During the Wave 3 data collection, Add Health respondents were asked to sign a Transcript Release Form (TRF) that authorized Add Health to identify schools last attended by study participants and request official transcripts from the schools. TRFs were signed by approximately 92% of Wave 3 respondents (about 70% of Wave 1 respondents).

The main outcome of interest, GPA, was abstracted from school transcripts and linked to respondents at each wave. Because most of the in-home interviews during Waves 1 and 2 were conducted during the Spring or Summer (at the end of the school year) and alcohol use questions referred to the past 12 months, we linked the in-home questionnaires with GPA data corresponding to the school year in which the respondent was enrolled or had just completed at the time of the interview.

The in-home questionnaires in Waves 1 and 2 offer extensive information on the student’s background, risk-taking behaviors, and other personal and family characteristics. These instruments were administered by computer assisted personal interview (CAPI) and computer assisted self-interview (CASI) techniques for more sensitive questions such as those on alcohol, drug, and tobacco use. Studies show that the mode of data collection can affect the level of reporting of sensitive behaviors. Both traditional self-administration and computer assisted self-administered interviews have been shown to increase reports of substance use or other risky behaviors relative to interviewer-administered approaches ( Azevedo, Bastos, Moreira, Lynch, & Metzger, 2006 ; Tourangeau & Smith, 1996 ; Wright, Aquilino, & Supple, 1998 ). Several measures of alcohol use were constructed on the basis of the CAPI/CASI questions: (1) whether the student drank alcohol at least once per week in the past 12 months, (2) whether the student binged (drank five or more drinks in a row) at least once per month in the past 12 months, (3) the average number of days per month on which the student drank in the past 12 months, (4) the average number of drinks consumed on any drinking day in the past 12 months, and (5) the total number of drinks per month consumed by the student in the past year.

Individual characteristics obtained from the in-home interviews included age, race, gender, grade in school, interview date, body mass index, religious beliefs and practices, employment status, health status, tobacco use, and illegal drug use. To capture environmental changes for respondents who changed schools, we constructed indicators for whether the respondent attended an Add Health sample school or sister school (e.g. the high school’s main feeder school) in each wave. We also considered family characteristics such as family structure, whether English was spoken at home, the number of children in the household, whether the resident mother and resident father worked, whether parents worked in blue- or white-collar jobs, and whether the family was on welfare. Finally, we took into account a number of variables describing interview and household characteristics as assessed by the interviewer: whether a parent(s) or other adults were present during the interview; whether the home was poorly kept; whether the home was in a rural, suburban, or commercial area; whether the home environment raised any safety concerns; and whether there was evidence of alcohol use in the household.

Respondents to the in-home surveys were also asked several questions about how they were doing in school. We constructed measures of how often the respondents skipped school, whether they had been suspended, and whether they were having difficulties paying attention in school, getting along with teachers, or doing their homework. We analyzed these secondary outcomes as possible mediators of an effect of alcohol use on GPA.

Our fixed-effects methodology required high school GPA data for Waves 1 and 2. For this reason, we restricted the sample to students in grades 9, 10, or 11 in Wave 1 (N=22,792) who were re-interviewed in Waves 2 and 3 (N=14,390), not mentally disabled (N=13,632), and for whom transcript data were available at Wave 3 (N=10,430). In addition, we excluded 1,846 observations that had missing values on at least one of the explanatory or control variables. 1 The final sample had 8,584 observations, which corresponded to Wave 1 and Wave 2 responses for 4,292 students with no missing information on high school GPA or other covariates across both waves. Male respondents accounted for 48% of the sample.

Table 1 shows summary statistics for the analysis sample by wave and gender. Abstracted GPA averages 2.5 for male students and 2.8 for female students, 2 with similar values in Waves 1 and 2. Approximately 9% of males and 6% of females reported drinking alcohol at least one time per week in Wave 1. The prevalence of binge drinking (consuming five or more drinks in a single episode) at least once a month is slightly higher: 11% among males and 7% among females. On average, the frequency of drinking in Wave 1 is 1.34 days per month for male respondents and 0.94 days per month for female respondents, while drinking intensity averages 2.8 drinks per episode for males and 2.2 drinks per episode for females. By Wave 2, alcohol consumption increases in all areas for both males and females. The increases for males are larger, ranging from an 18% increase in the average number of drinks per episode to a 55% increase in the fraction who binge monthly.

Summary Statistics

Note : Based on responses to survey questions regarding most recently completed school year.

Of the Wave 1 respondents, 87% of males and 90% of females had skipped school at least once in the past year, with males averaging 1.47 days skipped and females averaging 1.37 days. Further, 11% of males and 7% of females had been suspended at least once. Regarding the school difficulty measures, 50% of male respondents in Wave 1 reported at least one type of regular difficulty with school: 32% had difficulty paying attention, 15% did not get along with their teachers, and 35% had problems doing their homework. Among females, 40% had at least one difficulty: 25% with paying attention, 11% with teachers, and 26% with homework.

Table 2 tabulates changes in dichotomous measures of problem drinking by gender. Among males, 82.6% did not drink weekly in either wave; 8.1% became weekly drinkers in Wave 2; 4.8% stopped drinking weekly in Wave 2; and the remaining 4.5% drank weekly in both waves. Among females, 88.5% did not drink weekly in either wave; 5.3% became weekly drinkers in Wave 2; 3.7% stopped drinking weekly in Wave 2; and 2.5% drank weekly in both waves. The trends in monthly binging were similar, with the number of students who became monthly bingers exceeding that of students who stopped bingeing monthly in Wave 2. The proportion of respondents reporting binge-drinking monthly in both waves (6.6% and 3.4% for men and women, respectively) was higher than the fraction of students who reported drinking weekly in both waves.

Tabulation of Changes in Dichotomous Measures of Alcohol Use By Gender

4. Empirical methods and estimation issues

We examined the impact of adolescent drinking on GPA using fixed-effects estimation techniques. The following equation captures the relationship of interest:

where GPA it is grade point average of individual i during the Wave t school year, A it is a measure of alcohol consumption, X it is a set of other explanatory variables, c i are unobserved individual effects that are constant over time, ε it is an error term uncorrelated with A it and X it , and α, β a , and β x are parameters to estimate.

The coefficient of interest is β a , the effect of alcohol consumption on GPA. The key statistical problem in the estimation of β a is that alcohol consumption is likely to be correlated with individual-specific unobservable characteristics that also affect GPA. For instance, an adolescent with a difficult family background may react by shirking responsibilities at school and may, at the same time, be more likely to participate in risky activities. For this reason, OLS estimation of Equation (1) used with cross-sectional or pooled longitudinal data is likely to produce biased estimates of β a . In this paper, we took advantage of the two high school-administered waves in Add Health and estimated β a using fixed-effects techniques. Because Waves 1 and 2 were only one year apart, it is likely that most unobserved individual characteristics that are correlated with both GPA and alcohol use are constant over this short period. Subtracting the mean values of each variable over time, Equation (1) can be rewritten as:

Equation (2) eliminates time invariant individual heterogeneity ( c i ) and the corresponding bias associated with OLS estimation of Equation (1) .

We estimated Equation (2) using different sets of time-varying controls ( X it ). 3 We began by controlling only for unambiguously exogenous variables and progressively added variables that were increasingly likely to be affected by alcohol consumption. The first set of controls included only the respondent’s grade level, indicators for attending the sample school or sister school, and the date of the interview. In a second specification, we added household characteristics and interviewer remarks about the household and the interview. This specification includes indicators for the presence of parents and others during the interview and thus controls for a potentially important source of measurement error in the alcohol consumption variables. 4 The third specification added to the second specification those variables more likely to be endogenous such as BMI, religious beliefs/practices, employment, and health status. A fourth specification included tobacco and illegal drug use. By adding these behavioral controls, which could either be mediators or independent correlates of the drinking-GPA association, we examined whether the fixed-effects estimates were influenced by unmeasured time variant individual characteristics.

The fifth and sixth specifications were aimed at assessing possible mechanisms flowing from changes in alcohol use to changes in GPA. Previous research has found that part of the association between alcohol consumption and grades can be explained by a reduction in study hours. Add Health did not directly ask respondents about study effort. It did, however, ask about suspensions and days skipped from school. These school attendance variables were added to the set of controls to test whether an effect of alcohol use on human capital accumulation worked extensively through the quantity of, or exposure to, schooling. Alternatively, an effect of alcohol use on grades could be explained by temporary or permanent alterations in the structure and functioning of an adolescent’s developing brain with resulting changes in levels of concentration and understanding (an intensive mechanism). To test for the mediating role of this pathway, we added a set of dichotomous variables measuring whether the student reported having trouble at least once a week with each of the following: (i) paying attention in school, (ii) getting along with teachers, and (iii) doing homework.

Finally, we considered the number of days the student skipped school and the likelihood of having difficulties with school as two alternative outcomes and estimated the association between these variables and alcohol use, applying the same fixed-effects methodology as in Equation (2) . To analyze difficulties with school as an outcome, we constructed a dichotomous variable that is equal to one if the student faced at least one of the three difficulties listed above. We estimated the effect of alcohol use on this variable using a fixed-effects logit technique.

Separate regressions were run for male and female respondents. The literature shows that males and females behave differently both in terms of alcohol use ( Ham & Hope, 2003 ; Johnston, O’Malley, Bachman, & Schulenberg, 2007 ; Schulenberg, O’Malley, Bachman, Wadsworth, & Johnston, 1996 ; Wechsler, Davenport, Dowdall, Moeykens, & Castillo, 1994 ) and school achievement ( Dwyer & Johnson, 1997 ; Jacob, 2002 ; Kleinfeld, 1998 ). These gender differences are clearly evident in the summary statistics presented in Table 1 . Furthermore, the medical literature suggests that there may be gender differences in the impact of alcohol consumption on cognitive abilities (e.g. Hommer, 2003 ).

In addition to examining differential effects by gender, we tested for differential effects of alcohol use along three other dimensions: age, the direction of change in alcohol use (increases vs. decreases), and initial GPA. These tests, as well as other extensions and robustness checks, are described in Section 6.

Table 3 shows the fixed-effects estimates for β a from Equation (2) . Each cell depicts a different model specification defined by a particular measure of alcohol use and a distinctive set of control variables. Rows (a)-(d) denote the alcohol use variable(s) in each specification, and Columns (1)-(6) correspond to the different sets of covariates. Control variables are added hierarchically from (1) to (3). We first adjusted only by grade level, sample school and sister school indicators, and interview date (Column (1)). We then added time-varying household characteristics and interviewer assessments (Column (2)), followed by other individual time-varying controls (Column (3)). Column (4) adds controls for the use of other substances, which could either be correlates or consequences of alcohol use. Columns (5) and (6) consider other potential mediators of the effects found in (1)-(3) such as days skipped, suspensions from school, and academic difficulties.

Fixed effects Estimates; Dependent Variable = GPA

Notes : See Table 1 for list of control variables in each model specification. Robust standard errors in parentheses;

The results for males provide evidence of a negative yet small effect of alcohol use on GPA. No major changes were observed in the estimates across the different specifications that incrementally added more controls, suggesting that the results are probably robust to unmeasured time-varying characteristics. In what follows, therefore, we describe the results in Column (3), which controls for the greatest number of individual time-varying factors (with the exception of tobacco and illicit drug use). Weekly drinking and monthly binge drinking are both negatively associated with GPA, but neither of these coefficients is statistically significant (Rows (a) and (b)). The continuous measure of alcohol consumption has a statistically significant coefficient (Row (c)), suggesting that increasing one’s alcohol intake by 100 drinks per month reduces GPA by 0.07 points, or 2.8% relative to the mean. The results in Row (d) suggest that variation in both the frequency and the intensity of alcohol use contributes to the estimated effect on grades. An increase of one day per month in drinking frequency reduces GPA by 0.005 points, and consumption of one additional drink per episode reduces GPA by 0.004 points.

Columns (4)-(6) report the estimates of interest after controlling for use of other substances, days skipped or suspended from school, and difficulties with school. Relative to the effects identified in Column (3), controlling for tobacco and illegal drug use reduces the negative effect of total number of drinks on GPA by 9% or 0.006 GPA points (see row (c), Column (4)). Adding the school attendance variables to the set of controls in Column (3) results in a point estimate of −0.06 or 0.01 GPA points below the coefficient in Column (3) (see Column (5)). Adding the school difficulty variables results in a reduction in GPA of 0.007 GPA points or a 10% decrease relative to the estimate in Column (3). While not shown in the table, the inclusion of both school difficulty and attendance variables as controls explains approximately 20% of the effect of alcohol use on grades, with the alcohol use estimates remaining statistically significant at the 10% level.

For females, the estimated coefficients are much smaller than those for males, and for two measures (binge-drinking and drinking frequency), the estimates are actually positive. However, none of the coefficients are statistically significant at conventional levels. 5 Interestingly, after controlling for substance use, difficulties with school, and school attendance, the estimates become less negative or more positive. But they remain statistically non significant.

Table 4 shows the effect of alcohol use on the number of school days skipped during the past year. These results are qualitatively similar to the findings for GPA, suggesting some small and statistically significant effects for males but no significant effects for females. For males, increasing the number of drinks per month by 100 leads to an additional 0.72 days skipped (p<0.10) when controlling for household features, interviewer comments, and individual characteristics such as body mass index, religiosity, employment, and health status (see Column (3), Row (c)). Controlling for tobacco and illegal drug use reduces the coefficient slightly to 0.69 days. The results in Row (d) suggest that this effect is driven mainly by variation in drinking intensity, with an additional drink per episode resulting in an increase of 0.06 days skipped.

Fixed-effects Estimates; Dependent Variable = School Days Skipped

Notes : Robust standard errors in parentheses;

Table 5 contains estimates of the relationship between alcohol use and our dichotomous measure of having difficulty in school. For males, we found one small but statistically significant effect: consumption of an additional 100 drinks per month is associated with a 4% increase in the probability of having trouble in school. For females, the estimated coefficients are all positive and larger than those found for males, and four out of five are statistically significant. The probability of having trouble in school is roughly 11% higher for females who drink weekly relative to those who do not, and there is a similar effect for monthly binge drinking (Rows (a) and (b)). Furthermore, the likelihood of difficulties increases by 7% with an additional 100 drinks per month (Row (c)). These findings suggest that female students suffer adverse consequences from alcohol consumption, even if these effects do not translate into lower grades. Finally, in Row (d), we see that these adverse effects are driven by increases in drinking frequency rather than drinking intensity.

Fixed-effects Logit Estimates; Dependent Variable = Difficulty with School

Notes : Dependent variable is a dummy variable equal to one if respondent had trouble at least once a week with one or more of the following: (1) paying attention in school, (2) getting along with teachers, or (3) doing homework. Robust standard errors in parentheses;

Our main results thus far point to two basic conclusions. After controlling for individual fixed effects, alcohol use in high school has a relatively minor influence on GPA. But there are also some interesting gender differences in these effects. For males, we find small negative effects on GPA that are partially mediated by increased school absences and difficulties with school-related tasks. For females, on the other hand, we find that alcohol use does not significantly affect GPA, but female drinkers encounter a higher probability of having difficulties at school.

Our basic estimates of the effects of drinking on GPA complement those of Koch and Ribar (2001) , who find small effects of drinking on school completion for males and non-significant effects for females. However, our analysis of school-related difficulties suggests that females are not immune to the consequences of drinking. Namely, females are able to compensate for the negative effects of drinking (e.g., by working harder or studying more) so that their grades are unaffected. This interpretation is consistent with Wolaver’s (2007) finding that binge drinking in college is associated with increased study hours for women but with reduced study hours for men. It is also reminiscent of findings in the educational psychology and sociology literatures that girls get better grades than boys, and some of this difference can be explained by gender differences in classroom behavior ( Downey & Vogt Yuan, 2005 ) or by greater levels of self-discipline among girls ( Duckworth & Seligman, 2006 ).

When interpreting our results, there are some important caveats to keep in mind. First, we must emphasize that they reflect the contemporaneous effects of alcohol use. As such, they say nothing about the possible cumulative effects that several years of drinking might have on academic performance. Second, we can only examine the effect of alcohol use on GPA for those students who remain in school. Unfortunately, we cannot address potential selection bias due to high school dropouts because of the high rate of missing GPA data for those students who dropped out after Wave 1. 6 Third, we acknowledge that our fixed-effects results could still be biased if we failed to account for important time-varying individual characteristics that are associated with GPA differentials across waves. It is reassuring, however, that our results are generally insensitive to the subsequent inclusion of additional time-varying (and likely endogenous) characteristics, such as health status, employment, religiosity, tobacco use, and illicit drug use. Finally, we cannot rule out possible reverse causality whereby academic achievement affects alcohol use. Future research using new waves of the data may provide further insight on this issue. In the next section, we discuss some additional issues that we are able to explore via robustness checks and extensions.

6. Robustness checks and extensions

6.1. ols versus fixed effects.

In addition to running fixed-effects models, we estimated β a using OLS. Separate regressions were run by gender and by wave. We first regressed GPA on measures of alcohol use and the full set of time-varying controls used in the fixed-effects estimation (see Column (3), Table 3 ). Next, we added other time-invariant measures such as demographics, household characteristics, and school characteristics. Finally, we controlled for tobacco and illegal drug use. The comparison between fixed-effects and OLS estimates (Appendix Table A1 ) sheds light on the extent of the bias in β ^ a OLS . For males, OLS estimates for Wave 1 were 3 to 6 times larger (more negative) than fixed-effects estimates (depending on the measure of alcohol use), and OLS estimates in Wave 2 were 3 to 4 times larger than those from the fixed-effects estimation. The bias was even more pronounced for females. Contrary to the results in Table 3 , OLS estimates for females were statistically significant, quantitatively large, and usually more negative than the estimates for males.

OLS Cross-sectional Estimates; Dependent Variable = GPA

6.2. Outlier analysis

Concerns about misreporting at the extreme tails of the alcohol use distributions led us to re-estimate the fixed-effects model after addressing these outliers. A common method for addressing extreme outliers without deleting observations is to “winsorize” ( Dixon, 1960 ). This technique reassigns all outlier values to the closest value at the beginning of the user-defined tail (e.g., 1%, 5%, or 10% tails). For the present analysis, we used both 1% and 5% tails. As a more conventional outlier approach, we also re-estimated the models after dropping those observations in the 1% tails. In both cases we winsorized or dropped the tails using the full Wave 1 and Wave 2 distribution (in levels) and then estimated differential effects.

After making these outlier corrections, the estimates for males became larger in absolute value and more significant, but the estimates for females remained statistically non-significant with no consistent pattern of change. 7 For males, dropping the 1% tails increased the effect of 100 drinks per month on GPA to −0.15 points (from −0.07 points when analyzing the full sample). Winsorizing the 5% tails further increased the estimated effect size to −0.31 points.

We offer two possible interpretations of these results for males. First, measurement error is probably more substantial among heavier drinkers and among respondents with the biggest changes in alcohol consumption across waves, which could cause attenuation bias at the top end. 8 Second, the effect of drinks per month on GPA could be smaller among male heavier drinkers, suggesting non-linear effects. Interestingly, neither of these concerns appears to be important for the analysis of females.

6.3. Differential effects

Thus far we have reported the differential effects of alcohol use on GPA for males and females. Here, we consider differential effects along three other dimensions: age, direction of change in alcohol use (increases vs. decreases), and initial GPA. To examine the first two of these effects, we added to Equation (2) interactions of the alcohol use measure with dichotomous variables indicating (i) that the student was 16 or older, and (ii) that alcohol use had decreased between Waves 1 and 2. 9 For males, the negative effects of drinking on GPA were consistently larger among respondents who were younger than 16 years old. None of the interaction terms, however, were statistically significant. We found no consistent or significant differences in the effect of alcohol consumption between respondents whose consumption increased and those whose consumption decreased between Waves 1 and 2. All results were non-significant and smaller in magnitude for females. It should be noted, however, that the lack of significant effects could be attributed, at least in part, to low statistical power as some of the disaggregated groups had less than 450 observations per wave.

To examine whether drinking is more likely to affect low achievers (those with initial low GPA) than high achievers (higher initial GPA), we estimated two fixed-effects linear probability regressions. The first regression estimated the impact of alcohol use on the likelihood of having an average GPA of C or less, and the second regression explored the effect of drinking on the likelihood of having a GPA of B- or better. For males, we found that monthly binging was negatively associated with the probability of obtaining a B- or higher average and that increases in number of drinks per month led to a higher likelihood of having a GPA of C or worse. Frequency of drinking, rather than intensity, was the trigger for having a GPA of C or worse. For females, most coefficient estimates were not significant, although the frequency of drinking was negatively associated with the probability of having a GPA of C or worse.

6.4 Self-reported versus abstracted GPA

One of the key advantages of using Add Health data is the availability of abstracted high school grades. Because most educational studies do not have such objective data, we repeated the fixed-effects estimation of Equation (2) using self-reported GPA rather than transcript-abstracted GPA. To facilitate comparison, the estimation sample was restricted to observations with both abstracted and self-reported GPA (N=2,164 for males and 2,418 for females).

The results reveal another interesting contrast between males and females. For males, the results based on self-reported grades were fairly consistent with the results based on abstracted grades, although the estimated effects of binging and drinking intensity were somewhat larger (i.e., more negative) when based on self-reported grades. But for females, the results based on self-reported grades showed positive effects of alcohol consumption that were statistically significant at the 10% level for three out of five consumption measures (monthly binging, total drinks per month, and drinks per episode). Furthermore, with the exception of the frequency measure (drinking days per month), the estimated effects were all substantially larger (i.e., more positive) when based on self-reported GPA. This suggests that females who drink more intensively tend to inflate their academic performance in school, even though their actual performance is not significantly different from that of those who drink less. Males who drink more intensely, on the other hand, may tend to deflate their academic accomplishments.

6.5. Analysis of dropouts

In Table 3 , we estimated the effects of alcohol consumption on GPA conditional on being enrolled in school during the two observation years. While increased drinking could lead an adolescent to drop out of school, reduced drinking could lead a dropout to re-enroll. Our GPA results do not address either of these possible effects. Of those who were in 9 th grade in Wave 1, roughly 2.3% dropped out before Wave 2. Of those who were in 10 th and 11 th grades in Wave 1, the dropout rates were 3.7% and 5.0%, respectively. Our core estimates would be biased if the effect of alcohol use on GPA for non-dropouts differed systematically from the unobserved effect of alcohol use on GPA for dropouts and re-enrollers in the event that these students had stayed in school continuously.

To determine whether dropouts differed significantly from non-dropouts, we compared GPA and drinking patterns across the two groups. Unfortunately, dropouts were much more likely to have missing GPA data for the years they were in school, 10 so the comparison itself has some inherent bias. Nevertheless, for those who were not missing Wave 1 GPA data, we found that mean GPA was significantly lower for dropouts (1.11) than for those students who stayed in school at least another year (2.66). Dropouts were also older in Wave 1 (16.9 vs. 15.9 years old) and more likely to be male (54% vs. 48%). They also consumed alcohol more often and with greater intensity in the first wave. While there is evidence of differences across the two groups in Wave 1, it is unclear whether dropouts would have differed systematically with respect to changes in GPA and in drinking behavior over time if they had stayed in school. Due to the small number of dropout observations with Wave 1 GPA data, we could not reliably estimate a selection correction model.

6.6. Attrition and missing data

As described in the data section, a large fraction of the Add Health respondents who were in 9th, 10th, or 11th grade in Wave 1 were excluded from our analysis either because they did not participate in Waves 2 or 3, did not have transcript data, or had missing data for one or more variables used in the analysis. (The excluded sample consisted of 7,104 individuals out of a total of 11,396 potentially eligible.) Mean characteristics were compared for individuals in the sample under analysis (N=4,292) and excluded respondents (N=7,104) in Wave 1. Those in the analysis sample had higher GPAs (both self-reported and abstracted, when available) and were less likely to have difficulties at school, to have been suspended from school, or to have skipped school. They were less likely to drink or to drink intensively if they drank. They were more likely to be female and White, speak English at home, have highly educated parents, have a resident mother or father at home, and be in good health. They were less likely to have parents on welfare, live in commercial areas or poorly kept buildings, and smoke and use drugs.

The above comparisons suggest that our estimates are representative of the sample of adolescents who participated in Waves 2 and 3 but not necessarily of the full 9 th , 10 th , and 11 th grade sample interviewed at baseline. To assess the magnitude and sign of the potential attrition bias in our estimates, we considered comparing fixed-effects estimates for these two samples using self-reported GPA as the dependent variable. But self-reported GPA also presented a considerable number of missing values, especially for those in the excluded sample at Wave 2. Complete measures of self-reported GPA in Waves 1 and 2 were available for 60% of the individuals in the analysis sample and for less than 30% of individuals in the excluded sample.

As an alternative check, we used OLS to estimate the effects of alcohol use on self-reported GPA in Wave 1 for the excluded sample, and compared these to OLS coefficients for our analysis sample in Wave 1. The effects of alcohol use on self-reported grades were smaller for individuals excluded from our core analysis. Because the excluded individuals tend to consume more alcohol, the finding of smaller effects for these individuals is consistent with either of the two explanations discussed in Section 6.2 above. First, the effect of consuming alcohol on GPA could be smaller for those who drink more. And second, measurement error is probably more serious among heavier drinkers, potentially causing more attenuation bias in this sample.

To summarize, the analysis described above suggests that some caution should be exercised when extrapolating the results in this paper to other populations. Due to missing data, our analysis excludes many of the more extreme cases (in terms of grades, substance use, and socioeconomic status). However, our analysis suggests that the effects of alcohol use on grades are, if anything, smaller for these excluded individuals. It therefore supports our main conclusions that the effects of alcohol use on GPA tend to be small and that failure to account for unobserved individual heterogeneity is responsible for some of the large negative estimates identified in previous research.

7. Conclusion

Though a number of investigations have studied the associations between alcohol use and years of schooling, less is known about the impact of adolescent drinking on the process and quality of learning for those who remain in school. Moreover, studies that have examined the impact of drinking on learning have faced two important limitations. First, they have relied on self-reported grades as the key measure of learning and are therefore subject to potential biases that result from self-reporting. Second, they have relied on cross-sectional data and suffer from potential biases due either to unobserved individual heterogeneity or to weak or questionable instrumental variables.

In the present study, we contribute to the existing literature by exploiting several unique features of the nationally representative Add Health survey. First, we measure learning with grade point averages obtained from the respondents’ official school transcripts. Second, we exploit Add Health’s longitudinal design to estimate models with individual fixed effects. This technique eliminates the bias that results from time-invariant unobserved individual heterogeneity in the determinants of alcohol use and GPA. Finally, we explore a variety of pathways that could explain the association between alcohol use and grades. In particular, we examine the effects of alcohol consumption on both the quantity of schooling—as measured by days of school skipped—and the quality—as measured by difficulties with concentrating in school, getting along with teachers, or completing homework.

The main results show that, in general, increases in alcohol consumption result in statistically significant but quantitatively small reductions in GPA for male students and in statistically non-significant changes for females. For both males and females, comparisons of the fixed-effects models with standard cross-sectional models suggest that large biases can result from the failure to adequately control for unobserved individual heterogeneity. Our findings are thus closely aligned with those of Koch and Ribar (2001) and Dee and Evans (2003) , who reach a similar conclusion regarding the effects of drinking on school completion.

Our analysis also reveals some interesting gender differences in how alcohol consumption affects learning in high school. Our results suggest that for males, alcohol consumption has a small negative effect on GPA and this effect is partially mediated by increased school absences and by difficulties with school-related tasks. For females, however, we find that alcohol use does not significantly affect GPA, even though it significantly increases the probability of encountering difficulties at school. Gender differences in high school performance are well documented in the educational psychology and sociology literatures, yet no previous studies have estimated gender differences in high school learning that are directly associated with alcohol use. Our study is therefore unique in that regard.

Finally, our study also highlights the potential pitfalls of using self-reported grades to measure academic performance. Not only do we find evidence that use of self-reports leads to bias; we also find that the bias differs by gender, as drinking is associated with grade inflation among females and grade deflation among males. Hence, the conceptual discoveries uncovered in this research may be as important for future investigations as the empirical results are for current educational programs and policies.

Acknowledgements

Financial assistance for this study was provided by research grants from the National Institute on Alcohol Abuse and Alcoholism (R01 AA15695, R01 AA13167, and R03 AA016371) and the National Institute on Drug Abuse (RO1 DA018645). This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website ( http://www.cpc.unc.edu/addhealth ). No direct support was received from grant P01-HD31921 for this analysis. We gratefully acknowledge the input of several colleagues at the University of Miami. We are also indebted to Allison Johnson, William Russell, and Carmen Martinez for editorial and administrative assistance. The authors are entirely responsible for the research and results reported in this paper, and their position or opinions do not necessarily represent those of the University of Miami, the National Institute on Alcohol Abuse and Alcoholism, or the National Institute on Drug Abuse.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Due to a significant fraction of missing responses, we imputed household income and household welfare status using both predicted values on the basis of other covariates and the sample mean for households that were also missing some of the predicting covariates. We added dummy variables to indicate when an observation was imputed.

2 Grades and numerical grade-point equivalents have been established for varying levels of a student’s academic performance. These grade-point equivalents are used to determine a student’s grade-point average. Grades of A, A-, and B+ with respective grade-point equivalents of 4.00, 3.67, and 3.33 represent an “excellent” quality of performance. Grades of B, B−, and C+ with grade-point equivalents of 3.00, 2.67, and 2.33 represent a “good” quality of performance. A grade of C with grade-point equivalent of 2.00 represents a “satisfactory” level of performance, a grade of D with grade-point equivalent of 1.00 represents a “poor” quality of performance, and a grade of F with grade-point equivalent of 0.00 represents failure.

3 Note that some demographics (e.g., race, ethnicity) and other variables that are constant over time do not appear in Equation (2) because they present no variation across waves.

4 Of particular concern is the possibility that measurement error due to misreporting varies across waves—either because of random recall errors or because of changes in the interview conditions. (For example, the proportion of interviews in which others were present declined from roughly 42% to 25% between Wave 1 and Wave 2.) Such measurement error could lead to attenuation bias in our fixed-effects model. On the other hand, reporting biases that are similar and stable over time are eliminated by the fixed-effects specification.

5 We tested the significance of these differences by pooling males and females and including an interaction of a gender dummy with the alcohol consumption measure in each model. We found statistically significant differences in the effects of monthly bingeing, drinks per month, and drinking days per month.

6 If alcohol use has small or negligible effects on school completion - as found by Chatterji (2006) , Dee and Evans (2003) , and Koch and Ribar (2001) - then such selection bias will also be small.

7 These results are not presented in the tables but are available from the authors upon request.

8 Examination of the outliers showed that only 15% of those who reported a total number of drinks above the 95th percentile of the distribution did so in both waves.

9 These fixed-effects regressions were adjusted by the same set of controls as in Table (3) , Column (3).

10 More than two-thirds of those who dropped out between Waves 1 and 2 were missing Wave 1 GPA data

  • Azevedo Simoes A, Bastos FI, Moreira RI, Lynch KG, Metzger DS. A randomized trial of audio computer and in-person interview to assess HIV risk among drug and alcohol users in Rio De Janeiro, Brazil. Journal of Substance Abuse Treatment. 2006; 30 :237–243. [ PubMed ] [ Google Scholar ]
  • Bray JW. Alcohol use, human capital, and wages. Journal of Labor Economics. 2005; 23 (2):279–312. [ Google Scholar ]
  • Bray JW, Zarkin GA, Ringwalt C, Qi J. The relationship between marijuana initiation and dropping out of high school. Health Economics. 2000; 9 (1):9–18. [ PubMed ] [ Google Scholar ]
  • Brown SA, Tapert SF, Granholm E, Delis DC. Neurocognitive functioning of adolescents: effects of protracted alcohol use. Alcoholism: Clinical and Experimental Research. 2000; 24 (2):164–171. [ PubMed ] [ Google Scholar ]
  • Bukstein OG, Cornelius J, Trunzo AC, Kelly TM, Wood DS. Clinical predictors of treatment in a population of adolescents with alcohol use disorders. Addictive Behaviours. 2005; 30 (9):1663–1673. [ PubMed ] [ Google Scholar ]
  • Chatterji P. Does alcohol use during high school affect education attainment? Evidence from the National Education Longitudinal Study. Economics of Education Review. 2006; 25 :482–497. [ Google Scholar ]
  • Chatterji P, DeSimone J. Adolescent drinking and high school droupout. NBER Working Paper #11337. Cambridge, MA: 2005. Available online at SSRN: http://ssrn.com/abstract=723306 . [ Google Scholar ]
  • Cook PJ, Moore MJ. Drinking and schooling. Journal of Health Economics. 1993; 12 (4):411–419. [ PubMed ] [ Google Scholar ]
  • Dee TS, Evans WN. Teen drinking and educational attainment: evidence from two-sample instrumental variables estimates. Journal of Labor Economics. 2003; 21 (1):178–209. [ Google Scholar ]
  • DeSimone J, Wolaver A. Drinking and academic performance in high school. NBER Working Paper #11035. Cambridge, MA: 2005. [ Google Scholar ]
  • Dixon WJ. Simplified estimation from censored normal samples. The Annals of Mathematical Statistics. 1960; 31 (2):385–391. [ Google Scholar ]
  • Downey DB, Vogt Yuan AS. Sex differences in school performance during high school: Puzzling patterns and possible explanations. The Sociological Quarterly. 2005; 46 :29–321. [ Google Scholar ]
  • Duckworth AL, Seligman MEP. Self-discipline gives girls the edge: Gender in self-discipline, grades, and achievement test scores. Journal of Educational Psychology. 2006; 98 (1):198–208. [ Google Scholar ]
  • Dwyer CA, Johnson LM. Grades, accomplishments, and correlates. In: Willimgham W, Cole NS, editors. Gender and fair assessment. Mahwah, NJ: Lawrence Erlbaum Associates; 1997. pp. 127–156. [ Google Scholar ]
  • French MT, Popovici I. That instrument is lousy! In search of agreement when using instrumental variables estimation in substance use research. Health Economics. 2009 (– On line) DOI: 10.1002/hec.1572. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Giancola PR, Mezzich AC. Neuropsychological deficits in female adolescents with a substance use disorder: better accounted for conduct disorder. Journal of Studies on Alcohol. 2000; 61 (6):809–817. [ PubMed ] [ Google Scholar ]
  • Gil-Lacruz AI, Molina JA. Human development and alcohol abuse in adolescence. Applied Economics. 2007; 39 (10):1315–1323. [ Google Scholar ]
  • Ham LS, Hope DA. College students and problematic drinking: a review of the literature. Clinical Psychology Review. 2003; 23 (5):719–759. [ PubMed ] [ Google Scholar ]
  • Hawkins JD, Catalano RF, Miller JY. Risk and protective factors for alcohol and other drug problems in adolescence and early adulthood: implications for substance abuse prevention. Psychological Bulletin. 1992; 112 (1):64–105. [ PubMed ] [ Google Scholar ]
  • Hommer DW. Male and female sensitivity to alcohol-induced brain damage. Alcohol Research and Health. 2003; 27 (2):181–185. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Jacob BA. Where the boys aren’t: non-cognitive skills, returns to school and the gender gap in higher education. Economic Education Review. 2002; 21 :589–598. [ Google Scholar ]
  • Johnston LD, O’Malley PM, Bachman JG, Schulenberg JE. Monitoring the Future national results on adolescent drug use: overview of key findings, 2006. NIH Publication No. 07-6202. Bethesda, MD: National Institute on Drug Abuse; 2007. [ Google Scholar ]
  • Kleinfeld J. The myth that schools shortchange girls: social science in the service of deception. Women’s Freedom Network Document number ED 423 210. Washington, DC: Education Research Information Clearinghouse (ERIC); 1998. [ Google Scholar ]
  • Koch SF, Ribar DC. A siblings analysis of the effects of alcohol consumption onset on educational attainment. Contemporary Economic Policy. 2001; 19 (2):162–174. [ Google Scholar ]
  • Koch SF, McGeary KA. The effect of youth alcohol initiation on high school completion. Economic Inquiry. 2005; 43 (4):750–765. [ Google Scholar ]
  • McCluskey CP, Krohn MD, Lizotte AJ, Rodriguez ML. Early substance use and school achievement: an examination of Latino, white, and African-American youth. The Journal of Drug Issues. 2002; 32 :921–944. [ Google Scholar ]
  • Mullahy J, Sindelar JL. Alcoholism and income: the role of indirect effects. The Milbank Quarterly. 1994; 72 (2):359–375. [ PubMed ] [ Google Scholar ]
  • National Institute on Drug Abuse (NIDA) National survey results on drug use from the Monitoring the Future study, 1975–1997. Volume 1: Secondary School Students. Rockville, MD: National Institutes of Health; 1998. [ Google Scholar ]
  • Newes-Adeyi G, Chen CM, Williams GD, Faden VB. Trends in underage drinking in the United States, 1991–2005. Surveillance Report #81. Bethesda, MD: Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services; 2007. [ Google Scholar ]
  • Renna F. The economic cost of teen drinking: late graduation and lowered earnings. Health Economics. 2007; 16 (4):407–419. [ PubMed ] [ Google Scholar ]
  • Renna F. Teens’ alcohol consumption and schooling. Economics of Education Review. 2008; 27 :69–78. [ Google Scholar ]
  • Schulenberg J, O’Malley PM, Bachman JG, Wadsworth KN, Johnston LD. Getting drunk and growing up: trajectories of frequent binge drinking during the transition to young adulthood. Journal of Studies on Alcohol. 1996; 57 (3):289–304. [ PubMed ] [ Google Scholar ]
  • Tapert SF, Brown SA. Neuropsychological correlates of adolescent substance abuse: four-year outcomes. Journal of the International Neuropsychological Society. 1999; 5 :481–493. [ PubMed ] [ Google Scholar ]
  • Tourangeau R, Smith TW. Asking sensitive questions: The impact of data collection mode, question format, and question context. Public Opinion Quarterly. 1996; 60 :275–304. [ Google Scholar ]
  • Wechsler H, Davenport A, Dowdall GW, Moeykens B, Castillo S. Health and Behavioral Consequences of Binge Drinking at Colleges: a national survey of students at 140 campuses. Journal of the American Medical Association. 1994; 272 (21):1672–1677. [ PubMed ] [ Google Scholar ]
  • White AM, Swartzwelder HS. Hippocampal function during adolescence: a unique target of ethanol effects. Annals of the New York Academy of Sciences. 2004; 1021 :206–220. [ PubMed ] [ Google Scholar ]
  • Williams J, Powell LM, Wechsler H. Does alcohol consumption reduce human capital accumulation? Evidence from the College Alcohol Study. Applied Economics. 2003; 35 (1):1227–1239. [ Google Scholar ]
  • Wolaver A. Effects of heavy drinking in college on study effort, grade point average, and major choice. Contemporary Economic Policy. 2002; 20 (4):415–428. [ Google Scholar ]
  • Wolaver A. Does drinking affect grades more for women? Gender differences in the effects of heavy episodic drinking in college. The American Economist. 2007; 51 (2):72–88. [ Google Scholar ]
  • Wright DL, Aquilino WS, Supple AJ. A comparison of computer assisted and paper-and-pencil self- administered questionnaires in a survey on smoking alcohol and drug use. Public Opinion Quarterly. 1998; 62 :331–353. [ Google Scholar ]
  • Yamada T, Kendrix M, Yamada T. The impact of alcohol consumption and marijuana use on high school graduation. Health Economics. 1996; 5 (1):77–92. [ PubMed ] [ Google Scholar ]
  • Zeigler DW, Wang CC, Yoast RA, Dickinson BD, McCaffree MA, Rabinowitz CB, Sterling ML. The neurocognitive effects of alcohol on adolescents and college students. Preventive Medicine. 2004; 40 (1):23–32. [ PubMed ] [ Google Scholar ]
  • Zimmerman MA, Caldwell CH, Bernat DH. Discrepancy between self-report and school-record grade point average: correlates with psychosocial outcomes among African American adolescents. Journal of Applied Social Psychology. 2006; 32 (1):86–109. [ Google Scholar ]

Custom Essay, Term Paper & Research paper writing services

  • testimonials

Toll Free: +1 (888) 354-4744

Email: [email protected]

Writing custom essays & research papers since 2008

Alcoholism research paper: writing guide & topics.

Alcoholism Research Paper

Writing a research paper on alcoholism might seem like pushing a cart downhill; nevertheless, most students end up feeling frustrated. The need to bring out a new and captivating piece, in the end, remains a dream to many. But luckily, there’s a way out!

Read the sections that follow and forget about alcoholism research paper hangovers and blackouts.

How To Write an Alcoholism Research Paper Thesis

As earlier introduced, knowing the secret behind any successful paper puts you in the winning team. We need to note that such an article will majorly serve two essential purposes:

  • To fight alcoholism
  • To raise awareness among the people

The alcoholism outline for the research paper is as follows:

Alcoholism Research Paper Intro

An exciting introduction will hook the reader to your research paper. He/she will want to read more to feed his curiosity. Since the intro is the first paragraph that meets the reader’s eye, it should be outstanding as much as possible.

You can spice up your introduction in the following ways:

Present unexpected statistics and facts on alcoholism, Brief definitions of technical terms in your topic, if any Give the context of your research through background information Add a clear and precise thesis statement

The thesis statement serves as an anchor for your paper, determining your stance on the subject. Therefore, keep it short and sweet yet communicating the main point coherently.

It consists of all the arguments in support of your thesis statement. For a strong defense, ensure that you line up your undisputed and important ideas first as you move to the least. Some of the alcoholism research paper points to include in your body can be:

  • Social effects of alcoholism on students
  • How to help people struggling with alcoholism
  • Symptoms of alcoholism in teenagers

Arrange the points in an orderly way so that your reader can follow through quickly. Each body paragraph should have a well-stated topic sentence, followed by an elaborate explanation and relevant examples.

Conclusion For Alcoholism Research Paper

After presenting your case on alcoholism and defending it with supporting arguments, it’s time, to sum up, your paper. The conclusion for alcoholism research paper summarizes the discussion in short, clear, and precise sentences.

You should also restate the thesis statement to emphasize your main idea of the paper. In conclusion, the general rule of thumb applies, do not add any new information. Strife to make it as short as possible yet not devoid of meaning.

When writing papers on alcoholism, be sure to use factual arguments, especially for the symptoms, effects, and other related statistics. Remember to be sensitive to the choice of words not to end up stigmatizing your reader.

Whether it’s a paper on addiction or withdrawal symptoms, do not vocabularies that may blur the reader from the article’s full picture.

Below are professionally handpicked alcoholism research paper topics for your inspiration:

Teenage Alcoholism Research Paper Topics

  • Why do most teens think drinking alcohol is cool?
  • Reasons why most students in college’ want to fit in.’
  • Do parents who drink influence the teens also to start the habit?
  • Does alcohol make teens feel more comfortable around their friends?
  • Can alcohol raise the self-esteem of teens?
  • Why many teens opt for alcohol when they feel pressured
  • What are the withdrawal symptoms for teens addicted to alcohol?
  • How teens can battle anxiety and depression without taking alcohol

Topics For Research Paper on Alcoholism and Family

  • How alcohol makes parents neglect their essential duties
  • Why forgetfulness as a result of alcoholism may disrupt family relationships
  • Domestic violence as a result of excessive alcohol drinking
  • Financial instability in families with alcohol addicts
  • Can parents who drink alcohol help their children with homework?
  • Why do children from families where parents drink alcohol suffer depression?
  • Difficulty with intimate relationships among adults who drink alcohol
  • Mental and physical health issues as a result of alcoholism in the family

Topics on Risks of Alcoholism

  • Motor vehicle accidents arising from drinking and driving
  • Why cases of homicide are on the rise among those who drink
  • What causes alcohol poisoning?
  • Risky sexual behaviors as a result of irresponsible drinking
  • How mothers can experience miscarriage if they take excessive alcohol consumption
  • Why do alcohol drinking people develop high blood pressure?
  • Learning and memory difficulties as a result of alcoholism
  • Why you risk losing your job if you continue drinking

Topics on Alcoholism as a Disease

  • Can we classify alcoholism as a curable disease?
  • The pre-alcoholic phase of alcoholism as a disease
  • What is the relationship between increased heart rate and alcoholism?
  • How effective is the Intensive Outpatient alcoholism treatment Program?
  • Causes of relapse among patients recovering from alcoholism
  • Aftercare support programs for patients dealing with alcoholism
  • How scary is a diagnosis of alcoholism?
  • Medical treatment options for people struggling with alcohol addiction

Alcohol Abuse Research Paper Topics

  • The impact of alcohol abuse on relationships
  • How alcohol abuse can cause harm or injury
  • How alcohol abuse can harm the quality of your life
  • Sexual dysfunction complications as a result of alcohol abuse
  • Recommended ways of controlling alcohol abuse
  • Medications to reduce the symptoms of withdrawal among addicts
  • The role of support groups in reducing alcohol abuse
  • Warning signs that you are abusing alcohol

Addiction Research Paper Topics

  • Why is the youthful population the most affected with alcohol addiction?
  • Best approaches to dealing with alcohol addiction among adults
  • How drug addiction has led to increased crime rates in society
  • Does counseling help to deal with the problem of drug addiction?
  • Compare and contrast drug addiction between first and third world countries
  • What measures can the government institute curb drug addiction?
  • How drug addictions contribute to marriage breakups
  • Why most drug addicts cannot have gainful employment opportunities
  • How alcohol addiction impacts human health
  • Why are the majority of street children drug and substance addicts?
  • What are the policies legislating against drug addiction?
  • Why are more men drug addicts than women?
  • Rehabilitation systems of helping drug addicts
  • Sociological perspectives of drug addiction
  • A step by step approach to helping adolescents in drug addiction

In case the topics are not enough for you, we have professional research paper writing help for college students. Using our services will ensure that you attain that much-coveted A+.

Give it a try now!

hiv research paper

IMAGES

  1. 🏆 Alcoholism research paper topics. 210 Alcohol Titles & Essay Samples

    research paper on alcoholism

  2. (PDF) The Effect of Alcohol Consumption on the Academic Performance of

    research paper on alcoholism

  3. Alcohol:What You Should Know

    research paper on alcoholism

  4. Alcoholism and its effects on society Free Essay Example

    research paper on alcoholism

  5. Alcoholism: Symptoms and Treatment Research Paper Example

    research paper on alcoholism

  6. The Main Problems of Alcoholism

    research paper on alcoholism

VIDEO

  1. MORAL DILEMMA OF WORKING AT A LIQUOR STORE

  2. SOCIAL WORK PAPER 2 |LEC-32|

  3. Alcohol responsible for 3 million deaths worldwide: WHO

  4. WHEN YOU REALIZE THAT THE PAPER CAN'T SAVE YOU EP.5| YOUR ADDICTIONS/DEMONS

  5. MODERATION MYTH

  6. Double trouble: A drug for alcoholism can also treat cancer by targeting macrophages

COMMENTS

  1. Alcohol and Alcoholism

    Alcohol and Alcoholism welcomes submissions, publishing papers on the biomedical, psychological, and sociological aspects of alcoholism and alcohol research. To gain more information please see the Instructions to Authors page. Recommend to your library.

  2. Advances in the science and treatment of alcohol use disorder

    Abstract. Alcohol is a major contributor to global disease and a leading cause of preventable death, causing approximately 88,000 deaths annually in the United States alone. Alcohol use disorder is one of the most common psychiatric disorders, with nearly one-third of U.S. adults experiencing alcohol use disorder at some point during their lives.

  3. National Institute on Alcohol Abuse and Alcoholism (NIAAA)

    Alcohol Research Resource (R24 and R28) Awards. Resources include biological specimens, animals, data, materials, tools, or services made available to any qualified investigato r to accelerate alcohol-related research in a cost-effective manner. Current and potential alcohol research investigators and trainees are encouraged to subscribe to our ...

  4. Effects of Alcohol Consumption on Various Systems of the Human Body: A

    Alcohol exerts various effects on our CNS in various ways, the common ones being depression of the CNS, destruction of the brain cells, contraction of the tissues of the brain, suppression of the excitatory nerve pathway activity, neuronal injury, etc [ 3 ]. Alcohol's impact on the functioning of the brain ranges from mild and anxiolytic ...

  5. The Risks Associated With Alcohol Use and Alcoholism

    Alcohol consumption has been identified as an important risk factor for illness, disability, and mortality (Rehm et al. 2009b).In fact, in the last comparative risk assessment conducted by the World Health Organization (WHO), the detrimental impact of alcohol consumption on the global burden of disease and injury was surpassed only by unsafe sex and childhood underweight status but exceeded ...

  6. The Risks Associated With Alcohol Use and Alcoholism

    The growing scale of alcoholism, as well as its multidimensional consequences, justify the need for an in--depth analysis of this phenomenon. Harmful alcohol use and dependence is a risk factor ...

  7. Alcohol Research: Current Reviews

    Alcohol Research: Current Reviews (ARCR) ARCR, a peer-reviewed scientific journal published by the National Institute on Alcohol Abuse and Alcoholism at the National Institutes of Health, marks its 50th anniversary in 2024. Explore our "News & Notes" webpage for more on this historic accomplishment.

  8. Advances in the science and treatment of alcohol use disorder

    The morbidity and mortality associated with alcohol are largely due to the high rates of alcohol use disorder in the population. Alcohol use disorder is defined in the Diagnostic and Statistical Manual for Mental Disorders, 5th edition (DSM-5) as a pattern of alcohol consumption, leading to problems associated with 2 or more of 11 potential symptoms of alcohol use disorder (see Table 1 for ...

  9. Alcohol, Clinical and Experimental Research

    About the Journal. Alcohol, Clinical and Experimental Research provides direct access to the most significant and current research findings on the nature and management of alcoholism and alcohol-related disorders. Increase your chance of being published through our unaccepted manuscript Refer & Transfer program.

  10. Age-related differences in the effect of chronic alcohol on ...

    While most of our knowledge on the effects of alcohol on the brain and cognitive outcomes is based on research in adults, several recent reviews have examined the effects of alcohol on the brain ...

  11. Evidence-based models of care for the treatment of alcohol use disorder

    It is well recognized that alcohol use disorders (AUD) have a damaging impact on the health of the population. According to the World Health Organization (WHO), 5.3% of all global deaths were attributable to alcohol consumption in 2016 [].The 2016 Global Burden of Disease Study reported that alcohol use led to 1.6% (95% uncertainty interval [UI] 1.4-2.0) of total DALYs globally among females ...

  12. Substance Use Disorders and Addiction: Mechanisms, Trends, and

    The numbers for substance use disorders are large, and we need to pay attention to them. Data from the 2018 National Survey on Drug Use and Health suggest that, over the preceding year, 20.3 million people age 12 or older had substance use disorders, and 14.8 million of these cases were attributed to alcohol.When considering other substances, the report estimated that 4.4 million individuals ...

  13. Alcohol use in adolescence: a qualitative longitudinal study of

    Alcohol as a mediator. Inspired by the Actor Network Theory (ANT), we draw attention to how nonhuman objects - in this case alcohol - act on users, engage in practices, and operate in networks (assemblages) (Latour, Citation 2005, p. 68).The actor-network refers to the relations between human and non-human actors (Latour, Citation 1994), and in the context of this study, the relations ...

  14. National Institute on Alcohol Abuse and Alcoholism (NIAAA)

    Secretary of Health and Human Services Donna E. Shalala has announced the availability of the 10th Special Report to the U.S. Congress on Alcohol and Health, produced by the National Institute on Alcohol Abuse and Alcoholism (NIAAA). The report highlights recent research advances on the causes, consequences, treatment, and prevention of alcohol addiction (alcoholism) and alcohol abuse.

  15. (PDF) Alcoholism

    Abstract. From the perspective of the developmental psychopathologist, the understanding of alcoholism (or alcohol abuse and dependence, if one uses the most recent diagnostic parlance of the DSM ...

  16. The Past and Future of Research on Treatment of Alcohol Dependence

    Research on the treatment of alcoholism has gained significant ground over the past 40 years. Studies such as the National Institute on Alcohol Abuse and Alcoholism's Project MATCH, which examined the prospect of tailoring treatments for particular people to better suit their needs, and Project COMBINE, which examined in-depth, cognitive-behavioral therapy and medical management, helped ...

  17. (PDF) Psychosocial theories of alcohol abuse: an ...

    Abstract. Alcohol abuse is reflected as a major public health concern in worldwide. It impaired many areas of life, including familial, vocational, psychological, legal, social, or physical ...

  18. PDF Research on the Effectiveness of Alcoholism Treatment

    5. Research on the Effectiveness of Alcoholism Treatment. Despite the lack of well-controlled and general- izable research on the efficacy and effectiveness of treatments for alcoholism, there is a vast litera- ture that describes and analyzes treatment effects. The literature goes back as many years as alcohol- ism and alcohol abuse have been ...

  19. The Effects of Alcohol Use on Academic Performance Among College Students

    Alcohol and drug use can lead to poor decision making, like breaking the law, sexual abuse, getting in fights, etc. Of the respondents, 92.4% were white and the average age was 22.3 years. This study found that a little more than 68% reported using alcohol and/or drugs during the past year.

  20. Alcohol's Effects on Brain and Behavior

    In fact, evidence continues to accumulate that alcohol consumption can result in brain acetaldehyde levels that may be pharmacologically important ( Deng and Deitrich 2008 ). However, the role of acetaldehyde as a precursor of alkaloid condensation products is less compelling.

  21. The effects of alcohol use on academic achievement in high school

    Abstract. This paper examines the effects of alcohol use on high school students' quality of learning. We estimate fixed-effects models using data from the National Longitudinal Study of Adolescent Health. Our primary measure of academic achievement is the student's GPA abstracted from official school transcripts.

  22. The Effects of Alcohol Consumption on Academic Performance: A

    Abstract. Alcohol consumption is known to be an addiction that provides negative outcomes mainly on health, excessive drinking of alcohol brings adverse effects on human health, also on activities ...

  23. Alcoholism Research Paper: 40 Topics To Write About

    The conclusion for alcoholism research paper summarizes the discussion in short, clear, and precise sentences. You should also restate the thesis statement to emphasize your main idea of the paper. In conclusion, the general rule of thumb applies, do not add any new information. Strife to make it as short as possible yet not devoid of meaning.