Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

Search life-sciences literature (44,040,282 articles, preprints and more)

  • Full text links

Economic Forecasting with Big Data: A Literature Review

Preprint from Research Square , 29 Jul 2022 https://doi.org/10.21203/rs.3.rs-1893266/v1   PPR: PPR525438 

Preprint v1

Preprint version history

  • Version 1 [29 Jul 2022]

Abstract 

Full text links .

Read article at publisher's site: https://doi.org/10.21203/rs.3.rs-1893266/v1

Europe PMC is part of the ELIXIR infrastructure

  • Survey Paper
  • Open access
  • Published: 25 July 2020

Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities

  • Mahya Seyedan 1 &
  • Fereshteh Mafakheri   ORCID: orcid.org/0000-0002-7991-4635 1  

Journal of Big Data volume  7 , Article number:  53 ( 2020 ) Cite this article

113k Accesses

123 Citations

23 Altmetric

Metrics details

Big data analytics (BDA) in supply chain management (SCM) is receiving a growing attention. This is due to the fact that BDA has a wide range of applications in SCM, including customer behavior analysis, trend analysis, and demand prediction. In this survey, we investigate the predictive BDA applications in supply chain demand forecasting to propose a classification of these applications, identify the gaps, and provide insights for future research. We classify these algorithms and their applications in supply chain management into time-series forecasting, clustering, K-nearest-neighbors, neural networks, regression analysis, support vector machines, and support vector regression. This survey also points to the fact that the literature is particularly lacking on the applications of BDA for demand forecasting in the case of closed-loop supply chains (CLSCs) and accordingly highlights avenues for future research.

Introduction

Nowadays, businesses adopt ever-increasing precision marketing efforts to remain competitive and to maintain or grow their margin of profit. As such, forecasting models have been widely applied in precision marketing to understand and fulfill customer needs and expectations [ 1 ]. In doing so, there is a growing attention to analysis of consumption behavior and preferences using forecasts obtained from customer data and transaction records in order to manage products supply chains (SC) accordingly [ 2 , 3 ].

Supply chain management (SCM) focuses on flow of goods, services, and information from points of origin to customers through a chain of entities and activities that are connected to one another [ 4 ]. In typical SCM problems, it is assumed that capacity, demand, and cost are known parameters [ 5 ]. However, this is not the case in reality, as there are uncertainties arising from variations in customers’ demand, supplies transportation, organizational risks and lead times. Demand uncertainties, in particular, has the greatest influence on SC performance with widespread effects on production scheduling, inventory planning, and transportation [ 6 ]. In this sense, demand forecasting is a key approach in addressing uncertainties in supply chains [ 7 , 8 , 9 ].

A variety of statistical analysis techniques have been used for demand forecasting in SCM including time-series analysis and regression analysis [ 10 ]. With the advancements in information technologies and improved computational efficiencies, big data analytics (BDA) has emerged as a means of arriving at more precise predictions that better reflect customer needs, facilitate assessment of SC performance, improve the efficiency of SC, reduce reaction time, and support SC risk assessment [ 11 ].

The focus of this meta-research (literature review) paper is on “demand forecasting” in supply chains. The characteristics of demand data in today’s ever expanding and sporadic global supply chains makes the adoption of big data analytics (and machine learning) approaches a necessity for demand forecasting. The digitization of supply chains [ 12 ] and incoporporation Blockchain technologies [ 13 ] for better tracking of supply chains further highlights the role of big data analytics. Supply chain data is high dimensional generated across many points in the chain for varied purposes (products, supplier capacities, orders, shipments, customers, retailers, etc.) in high volumes due to plurality of suppliers, products, and customers and in high velocity reflected by many transactions continuously processed across supply chain networks. In the sense of such complexities, there has been a departure from conventional (statistical) demand forecasting approaches that work based on identifying statistically meannignful trends (characterized by mean and variance attributes) across historical data [ 14 ], towards intelligent forecasts that can learn from the historical data and intelligently evolve to adjust to predict the ever changing demand in supply chains [ 15 ]. This capability is established using big data analytics techniques that extract forecasting rules through discovering the underlying relationships among demand data across supply chain networks [ 16 ]. These techniques are computationally intensive to process and require complex machine-programmed algorithms [ 17 ].

With SCM efforts aiming at satisfying customer demand while minimizing the total cost of supply, applying machine-learning/data analytics algorithms could facilitate precise (data-driven) demand forecasts and align supply chain activities with these predictions to improve efficiency and satisfaction. Reflecting on these opportunities, in this paper, first a taxonmy of data sources in SCM is proposed. Then, the importance of demand management in SCs is investigated. A meta-research (literature review) on BDA applications in SC demand forecasting is explored according to categories of the algorithms utilized. This review paves the path to a critical discussion of BDA applications in SCM highlighting a number of key findings and summarizing the existing challenges and gaps in BDA applications for demand forecasting in SCs. On that basis, the paper concludes by presenting a number of avenues for future research.

Data in supply chains

Data in the context of supply chains can be categorized into customer, shipping, delivery, order, sale, store, and product data [ 18 ]. Figure  1 provides the taxonomy of supply chain data. As such, SC data originates from different (and segmented) sources such as sales, inventory, manufacturing, warehousing, and transportation. In this sense, competition, price volatilities, technological development, and varying customer commitments could lead to underestimation or overestimation of demand in established forecasts [ 19 ]. Therefore, to increase the precision of demand forecast, supply chain data shall be carefully analyzed to enhance knowledge about market trends, customer behavior, suppliers and technologies. Extracting trends and patterns from such data and using them to improve accuracy of future predictions can help minimize supply chain costs [ 20 , 21 ].

figure 1

Taxonomy of supply chain data

Analysis of supply chain data has become a complex task due to (1) increasing multiplicity of SC entities, (2) growing diversity of SC configurations depending on the homogeneity or heterogeneity of products, (3) interdependencies among these entities (4) uncertainties in dynamical behavior of these components, (5) lack of information as relate to SC entities; [ 11 ], (6) networked manufacturing/production entities due to their increasing coordination and cooperation to achieve a high level customization and adaptaion to varying customers’ needs [ 22 ], and finally (7) the increasing adoption of supply chain digitization practices (and use of Blockchain technologies) to track the acitivities across supply chains [ 12 , 13 ].

Big data analytics (BDA) has been increasingly applied in management of SCs [ 23 ], for procurement management (e.g., supplier selection [ 24 ], sourcing cost improvement [ 25 ], sourcing risk management [ 26 ], product research and development [ 27 ], production planning and control [ 28 ], quality management [ 29 ], maintenance, and diagnosis [ 30 ], warehousing [ 31 ], order picking [ 32 ], inventory control [ 33 ], logistics/transportation (e.g., intelligent transportation systems [ 34 ], logistics planning [ 35 ], in-transit inventory management [ 36 ], demand management (e.g., demand forecasting [ 37 ], demand sensing [ 38 ], and demand shaping [ 39 ]. A key application of BDA in SCM is to provide accurate forecasting, especially demand forecasting, with the aim of reducing the bullwhip effect [ 14 , 40 , 41 , 42 ].

Big data is defined as high-volume, high-velocity, high-variety, high value, and high veracity data requiring innovative forms of information processing that enable enhanced insights, decision making, and process automation [ 43 ]. Volume refers to the extensive size of data collected from multiple sources (spatial dimension) and over an extended period of time (temporal dimension) in SCs. For example, in case of freight data, we have ERP/WMS order and item-level data, tracking, and freight invoice data. These data are generated from sensors, bar codes, Enterprise resource planning (ERP), and database technologies. Velocity can be defined as the rate of generation and delivery of specific data; in other words, it refers to the speed of data collection, reliability of data transferring, efficiency of data storage, and excavation speed of discovering useful knowledge as relate to decision-making models and algorithms. Variety refers to generating varied types of data from diverse sources such as the Internet of Things (IoT), mobile devices, online social networks, and so on. For instance, the vast data from SCM are usually variable due to the diverse sources and heterogeneous formats, particularly resulted from using various sensors in manufacturing sites, highways, retailer shops, and facilitated warehouses. Value refers to the nature of the data that must be discovered to support decision-making. It is the most important yet the most elusive, of the 5 Vs. Veracity refers to the quality of data, which must be accurate and trustworthy, with the knowledge that uncertainty and unreliability may exist in many data sources. Veracity deals with conformity and accuracy of data. Data should be integrated from disparate sources and formats, filtered and validated [ 23 , 44 , 45 ]. In summary, big data analytics techniques can deal with a collection of large and complex datasets that are difficult to process and analyze using traditional techniques [ 46 ].

The literature points to multiple sources of big data across the supply chains with varied trade-offs among volume, velocity, variety, value, and veracity attributes [ 47 ]. We have summarized these sources and trade-offs in Table  1 . Although, the demand forecasts in supply chains belong to the lower bounds of volume, velocity, and variety, however, these forecasts can use data from all sources across the supply chains from low volume/variety/velocity on-the-shelf inventory reports to high volume/variety/velocity supply chain tracking information provided through IoT. This combination of data sources used in SC demand forecasts, with their diverse temporal and spatial attributes, places a greater emphasis on use of big data analytics in supply chains, in general, and demand forecasting efforts, in particular.

The big data analytics applications in supply chain demand forecasting have been reported in both categories of supervised and unsupervised learning. In supervised learning, data will be associated with labels, meaning that the inputs and outputs are known. The supervised learning algorithms identify the underlying relationships between the inputs and outputs in an effort to map the inputs to corresponding outputs given a new unlabeled dataset [ 48 ]. For example, in case of a supervised learning model for demand forecasting, future demand can be predicted based on the historical data on product demand [ 41 ]. In unsupervised learning, data are unlabeled (i.e. unknown output), and the BDA algorithms try to find the underlying patterns among unlabeled data [ 48 ] by analyzing the inputs and their interrelationships. Customer segmentation is an example of unsupervised learning in supply chains that clusters different groups of customers based on their similarity [ 49 ]. Many machine-learning/data analytics algorithms can facilitate both supervised learning (extracting the input–output relationships) and unsupervised learning (extracting inputs, outputs and their relationships) [ 41 ].

Demand management in supply chains

The term “demand management” emerged in practice in the late 1980s and early 1990s. Traditionally, there are two approaches for demand management. A forward approach which looks at potential demand over the next several years and a backward approach that relies on past or ongoing capabilities in responding to demand [ 50 ].

In forward demand management, the focus will be on demand forecasting and planning, data management, and marketing strategies. Demand forecasting and planning refer to predicting the quantities and timings of customers’ requests. Such predictions aim at achieving customers’ satisfaction by meeting their needs in a timely manner [ 51 ]. Accurate demand forecasting could improve the efficiency and robustness of production processes (and the associated supply chains) as the resources will be aligned with requirements leading to reduction of inventories and wastes [ 52 , 53 ].

In the light of the above facts, there are many approaches proposed in the literature and practice for demand forecasting and planning. Spreadsheet models, statistical methods (like moving averages), and benchmark-based judgments are among these approaches. Today, the most widely used demand forecasting and planning tool is Excel. The most widespread problem with spreadsheet models used for demand forecasting is that they are not scalable for large-scale data. In addition, the complexities and uncertainties in SCM (with multiplicity and variability of demand and supply) cannot be extracted, analyzed, and addressed through simple statistical methods such as moving averages or exponential smoothing [ 50 ]. During the past decade, traditional solutions for SC demand forecasting and planning have faced many difficulties in driving the costs down and reducing inventories [ 50 ]. Although, in some cases, the suggested solutions have improved the day’s payable, they have pushed up the SC costs as a burden to suppliers.

The era of big data and high computing analytics has enabled data processing at a large scale that is efficient, fast, easy, and with reduced concerns about data storage and collection due to cloud services. The emergence of new technologies in data storage and analytics and the abundance of quality data have created new opportunities for data-driven demand forecasting and planning. Demand forecast accuracy can be significantly improved with data-mining algorithms and tools that can sift through data, analyze the results, and learn about the relationships involved. This could lead to highly accurate demand forecasting models that learn from data and are scalable for application in SCM. In the following section, a review of BDA applications in SCM is presented. These applications are categorized based on the employed techniques in establishing the data-drive demand forecasts.

BDA for demand forecasting in SCM

This survey aims at reviewing the articles published in the area of demand and sales forecasting in SC in the presence of big data to provide a classification of the literature based on algorithms utilized as well as a survey of applications. To the best of our knowledge, no comprehensive review of the literature specifically on SC demand forecasting has been conducted with a focus on classification of techniques of data analytics and machine learning. In doing so, we performed a thorough search of the existing literature, through Scopus, Google Scholar, and Elsevier, with publication dates ranging from 2005 to 2019. The keywords used for the search were supply chain, demand forecasting, sales forecasting, big data analytics, and machine learning.

Figure  2 shows the trend analysis of publications in demand forecasting for SC appeared from 2005 to 2019. There is a steadily increasing trend in the number of publications from 2005 to 2019. It is expected that such growth continues in 2020. Reviewing the past 15 years of research on big data analysis/machine learning applications in SC demand forecasting, we identified 64 research papers (excluding books, book chapters, and review papers) and categorized them with respect to the methodologies adopted for demand forecasting. The five most frequently used techniques are listed in Table  2 that includes “Neural Network,” “Regression”, “Time-series forecasting (ARIMA)”, “Support Vector Machine”, and “Decision Tree” methods. This table implies the growing use of big data analysis techniques in SC demand forecasting. It shall be mentioned that there were a few articles using multiple of these techniques.

figure 2

Distribution of literature in supply chain demand forecasting from 2005 to 2019

It shall be mentioned that there are literature review papers exploring the use of big data analytics in SCM [ 10 , 16 , 23 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 ]. However, this study focuses on the specific topic of “demand forecasting” in SCM to explore BDA applications in line with this particular subtopic in SCM.

As Hofmann and Rutschmann [ 58 ] indicated in their literature review, the key questions to answer are why, what and how big data analytics/machine-learning algorithms could enhance forecasts’ accuracy in comparison to conventional statistical forecasting approaches.

Conventional methods have faced a number of limitations for demand forecasting in the context of SCs. There are a lot of parameters influencing the demand in supply chains, however, many of them were not captured in studies using conventional methods for the sake of simplicity. In this regard, the forecasts could only provide a partial understanding of demand variations in supply chains. In addition, the unexplained demand variations could be simply considered as statistical noise. Conventional approaches could provide shorter processing times in exchange for a compromise on robustness and accuracy of predictions. Conventional SC demand forecasting approaches are mostly done manually with high reliance on the planner’s skills and domain knowledge. It would be worthwhile to fully automate the forecasting process to reduce such a dependency [ 58 ]. Finally, data-driven techniques could learn to incorporate non-linear behaviors and could thus provide better approximations in demand forecasting compared to conventional methods that are mostly derived based on linear models. There is a significant level of non-linearity in demand behavior in SC particularly due to competition among suppliers, the bullwhip effect, and mismatch between supply and demand [ 40 ].

To extract valuable knowledge from a vast amount of data, BDA is used as an advanced analytics technique to obtain the data needed for decision-making. Reduced operational costs, improved SC agility, and increased customer satisfaction are mentioned among the benefits of applying BDA in SCM [ 68 ]. Researchers used various BDA techniques and algorithms in SCM context, such as classification, scenario analysis, and optimization [ 23 ]. Machine-learning techniques have been used to forecast demand in SCs, subject to uncertainties in prices, markets, competitors, and customer behaviors, in order to manage SCs in a more efficient and profitable manner [ 40 ].

BDA has been applied in all stages of supply chains, including procurement, warehousing, logistics/transportation, manufacturing, and sales management. BDA consists of descriptive analytics, predictive analytics, and prescriptive analytics. Descriptive analysis is defined as describing and categorizing what happened in the past. Predictive analytics are used to predict future events and discover predictive patterns within data by using mathematical algorithms such as data mining, web mining, and text mining. Prescriptive analytics apply data and mathematical algorithms for decision-making. Multi-criteria decision-making, optimization, and simulation are among the prescriptive analytics tools that help to improve the accuracy of forecasting [ 10 ].

Predictive analytics are the ones mostly utilized in SC demand and procurement forecasting [ 23 ]. In this sense, in the following subsections, we will review various predictive big data analytics approaches, presented in the literature for demand forecasting in SCM, categorized based on the employed data analytics/machine learning technique/algorithm, with elaborations of their purpose and applications (summarized in Table  3 ).

Time-series forecasting

Time series are methodologies for mining complex and sequential data types. In time-series data, sequence data, consisting of long sequences of numeric data, recorded at equal time intervals (e.g., per minute, per hour, or per day). Many natural and human-made processes, such as stock markets, medical diagnosis, or natural phenomenon, can generate time-series data. [ 48 ].

In case of demand forecasting using time-series, demand is recorded over time at equal size intervals [ 69 , 70 ]. Combinations of time-series methods with product or market features have attracted much attention in demand forecasting with BDA. Ma et al. [ 71 ] proposed and developed a demand trend-mining algorithm for predictive life cycle design. In their method, they combined three models (a) a decision tree model for large-scale historical data classification, (b) a discrete choice analysis for present and past demand modeling, and (c) an automated time-series forecasting model for future trend analysis. They tested and applied their 3-level approach in smartphone design, manufacturing and remanufacturing.

Time-series approach was used for forecasting of search traffic (service demand) subject to changes in consumer attitudes [ 37 ]. Demand forecasting has been achieved through time-series models using exponential smoothing with covariates (ESCov) to provide predictions for short-term, mid-term, and long-term demand trends in the chemical industry SCs [ 7 ]. In addition, Hamiche et al. [ 72 ] used a customer-responsive time-series approach for SC demand forecasting.

In case of perishable products, with short life cycles, having appropriate (short-term) forecasting is extremely critical. Da Veiga et al. [ 73 ] forecasted the demand for a group of perishable dairy products using Autoregressive Integrated Moving Average (ARIMA) and Holt-Winters (HW) models. The results were compared based on mean absolute percentage error (MAPE) and Theil inequality index (U-Theil). The HW model showed a better goodness-of-fit based on both performance metrics.

In case of ARIMA, the accuracy of predictions could diminish where there exists a high level of uncertainty in future patterns of parameters [ 42 , 74 , 75 , 76 ]. HW model forecasting can yield better accuracy in comparison to ARIMA [ 73 ]. HW is simple and easy to use. However, data horizon could not be larger than a seasonal cycle; otherwise, the accuracy of forecasts will decrease sharply. This is due to the fact that inputs of an HW model are themselves predicted values subject to longer-term potential inaccuracies and uncertainties [ 45 , 73 ].

Clustering analysis

Clustering analysis is a data analysis approach that partitions a group of data objects into subgroups based on their similarities. Several applications of clustering analysis has been reported in business analytics, pattern recognition, and web development [ 48 ]. Han et al. [ 48 ] have emphasized the fact that using clustering customers can be organized into groups (clusters), such that customers within a group present similar characteristic.

A key target of demand forecasting is to identify demand behavior of customers. Extraction of similar behavior from historical data leads to recognition of customer clusters or segments. Clustering algorithms such as K-means, self-organizing maps (SOMs), and fuzzy clustering have been used to segment similar customers with respect to their behavior. The clustering enhances the accuracy of SC demand forecasting as the predictions are established for each segment comprised of similar customers. As a limitation, the clustering methods have the tendency to identify the customers, that do not follow a pattern, as outliers [ 74 , 77 ].

Hierarchical forecasts of sales data are performed by clustering and categorization of sales patterns. Multivariate ARIMA models have been used in demand forecasting based on point-of-sales data in industrial bakery chains [ 19 ]. These bakery goods are ordered and clustered daily with a continuous need to demand forecasts in order to avoid both shortage or waste [ 19 ]. Fuel demand forecasting in thermal power plants is another domain with applications of clustering methods. Electricity consumption patterns are derived using a clustering of consumers, and on that basis, demand for the required fuel is established [ 77 ].

K-nearest-neighbor (KNN)

KNN is a method of classification that has been widely used for pattern recognition. KNN algorithm identifies the similarity of a given object to the surrounding objects (called tuples) by generating a similarity index. These tuples are described by n attributes. Thus, each tuple corresponds to a point in an n-dimensional space. The KNN algorithm searches for k tuples that are closest to a given tuple [ 48 ]. These similarity-based classifications will lead to formation of clusters containing similar objects. KNN can also be integrated into regression analysis problems [ 78 ] for dimensionality reduction of the data [ 79 ]. In the realm of demand forecasting in SC, Nikolopoulos et al. [ 80 ] applied KNN for forecasting sporadic demand in an automotive spare parts supply chain. In another study, KNN is used to forecast future trends of demand for Walmart’s supply chain planning [ 81 ].

Artificial neural networks

In artificial neural networks, a set of neurons (input/output units) are connected to one another in different layers in order to establish mapping of the inputs to outputs by finding the underlying correlations between them. The configuration of such networks could become a complex problem, due to a high number of layers and neurons, as well as variability of their types (linear or nonlinear), which needs to follow a data-driven learning process to be established. In doing so, each unit (neuron) will correspond to a weight, that is tuned through a training step [ 48 ]. At the end, a weighted network with minimum number of neurons, that could map the inputs to outputs with a minimum fitting error (deviation), is identified.

As the literature reveals, artificial neural networks (ANN) are widely applied for demand forecasting [ 82 , 83 , 84 , 85 ]. To improve the accuracy of ANN-based demand predictions, Liu et al. [ 86 ] proposed a combination of a grey model and a stacked auto encoder applied to a case study of predicting demand in a Brazilian logistics company subject to transportation disruption [ 87 ]. Amirkolaii et al. [ 88 ] applied neural networks in forecasting spare parts demand to minimize supply chain shortages. In this case of spare parts supply chain, although there were multiple suppliers to satisfy demand for a variety of spare parts, the demand was subject to high variability due to a varying number of customers and their varying needs. Their proposed ANN-based forecasting approach included (1) 1 input demand feature with 1 Stock-Keeping Unit (SKU), (2) 1 input demand feature with all SKUs, (3) 16 input demand features with 1 SKU, and (4) 16 input demand features with all SKUs. They applied neural networks with back propagation and compared the results with a number of benchmarks reporting a Mean Square Error (MSE) for each configuration scenario.

Huang et al. [ 89 ] compared a backpropagation (BP) neural network and a linear regression analysis for forecasting of e-logistics demand in urban and rural areas in China using data from 1997 to 2015. By comparing mean absolute error (MAE) and the average relative errors of backpropagation neural network and linear regression, they showed that backpropagation neural networks could reach higher accuracy (reflecting lower differences between predicted and actual data). This is due to the fact that a Sigmoid function was used as the transfer function in the hidden layer of BP, which is differentiable for nonlinear problems such as the one presented in their case study, whereas the linear regression works well with linear problems.

ANNs have also been applied in demand forecasting for server models with one-week demand prediction ahead of order arrivals. In this regard, Saha et al. [ 90 ] proposed an ANN-based forecasting model using a 52-week time-series data fitted through both BP and Radial Basis Function (RBF) networks. A RBF network is similar to a BP network except for the activation/transfer function in RBF that follows a feed-forward process using a radial basis function. RBF results in faster training and convergence to ANN weights in comparison with BP networks without compromising the forecasting precision.

Researchers have combined ANN-based machine-learning algorithms with optimization models to draw optimal courses of actions, strategies, or decisions for future. Chang et al. [ 91 ] employed a genetic algorithm in the training phase of a neural network using sales/supply chain data in the printed circuit board industry in Taiwan and presented an evolving neural network-forecasting model. They proposed use of a Genetic Algorithms (GA)-based cost function optimization to arrive at the best configuration of the corresponding neural network for sales forecast with respect to prediction precision. The proposed model was then compared to back-propagation and linear regression approaches using three performance indices of MAPE, Mean Absolute Deviation (MAD), and Total Cost Deviation (TCD), presenting its superior prediction precision.

Regression analysis

Regression models are used to generate continuous-valued functions utilized for prediction. These methods are used to predict the value of a response (dependent) variable with respect to one or more predictor (independent) variables. There are various forms of regression analysis, such as linear, multiple, weighted, symbolic (random), polynomial, nonparametric, and robust. The latter approach is useful when errors fail to satisfy normalcy conditions or when we deal with big data that could contain significant number of outliers [ 48 ].

Merkuryeva et al. [ 92 ] analyzed three prediction approaches for demand forecasting in the pharmaceutical industry: a simple moving average model, multiple linear regressions, and a symbolic regression with searches conducted through an evolutionary genetic programming. In this experiment, symbolic regression exhibited the best fit with the lowest error.

As perishable products must be sold due to a very short preservation time, demand forecasting for this type of products has drawn increasing attention. Yang and Sutrisno [ 93 ] applied and compared regression analysis and neural network techniques to derive demand forecasts for perishable goods. They concluded that accurate daily forecasts are achievable with knowledge of sales numbers in the first few hours of the day using either of the above methods.

Support vector machine (SVM)

SVM is an algorithm that uses a nonlinear mapping to transform a set of training data into a higher dimension (data classes). SVM searches for an optimal separating hyper-plane that can separate the resulting class from another) [ 48 ]. Villegas et al. [ 94 ] tested the applicability of SVMs for demand forecasting in household and personal care SCs with a dataset comprised of 229 weekly demand series in the UK. Wu [ 95 ] applied an SVM, using a particle swarm optimization (PSO) to search for the best separating hyper-plane, classifying the data related to car sales and forecasting the demand in each cluster.

Support vector regression (SVR)

Continuous variable classification problems can be solved by support vector regression (SVR), which is a regression implementation of SVM. The main idea behind SVR regression is the computation of a linear regression function within a high-dimensional feature space. SVR has been applied in financial/cost prediction problems, handwritten digit recognition, and speaker identification, object recognition, etc. [ 48 ].

Guanghui [ 96 ] used the SVR method for SC needs prediction. The use of SVR in demand forecasting can yield a lower mean square error than RBF neural networks due to the fact that the optimization (cost) function in SVR does not consider the points beyond a margin of distance from the training set. Therefore, this method leads to higher forecast accuracy, although, similar to SVM, it is only applicable to a two-class problem (such as normal versus anomaly detection/estimation problems). Sarhani and El Afia [ 97 ] sought to forecast SC demand using SVR and applied Particle swarm optimization (PSO) and GA to optimize SVR parameters. SVR-PSO and SVR-GA approaches were compared with respect to accuracy of predictions using MAPE. The results showed a superior performance by PSO in terms time intensity and MAPE when configuring the SVR parameters.

Mixed approaches

Some works in the literature have used a combination of the aforementioned techniques. In these studies, the data flow into a sequence of algorithms and the outputs of one stage become inputs of the next step. The outputs are explanatory in the form of qualitative and quantitative information with a sequence of useful information extracted out of each algorithm. Examples of such studies include [ 15 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 ].

In more complex supply chains with several points of supply, different warehouses, varied customers, and several products, the demand forecasting becomes a high dimensional problem. To address this issue, Islek and Oguducu [ 100 ] applied a clustering technique, called bipartite graph clustering, to analyze the patterns of sales for different products. Then, they combined a moving average model and a Bayesian belief network approaches to improve the accuracy of demand forecasting for each cluster. Kilimci et al. [ 101 ] developed an intelligent demand forecasting system by applying time-series and regression methods, a support vector regression algorithm, and a deep learning model in a sequence. They dealt with a case involving big amount of data accounting for 155 features over 875 million records. First, they used a principal component analysis for dimension reduction. Then, data clustering was performed. This is followed by demand forecasting for each cluster using a novel decision integration strategy called boosting ensemble. They concluded that the combination of a deep neural network with a boosting strategy yielded the best accuracy, minimizing the prediction error for demand forecasting.

Chen and Lu [ 98 ] combined clustering algorithms of SOM, a growing hierarchical self-organizing mapping (GHSOM), and K-means, with two machine-learning techniques of SVR and extreme learning machine (ELM) in sales forecasting of computers. The authors found that the combination of GHSOM and ELM yielded better accuracy and performance in demand forecasts for their computer retailing case study. Difficulties in forecasting also occur in cases with high product variety. For these types of products in an SC, patterns of sales can be extracted for clustered products. Then, for each cluster, a machine-learning technique, such as SVR, can be employed to further improve the prediction accuracy [ 104 ].

Brentan et al. [ 106 ] used and analyzed various BDA techniques for demand prediction; including support vector machines (SVM), and adaptive neural fuzzy inference systems (ANFIS). They combined the predicted values derived from each machine learning techniques, using a linear regression process to arrive at an average prediction value adopted as the benchmark forecast. The performance (accuracy) of each technique is then analyzed with respect to their mean square root error (RMSE) and MAE values obtained through comparing the target values and the predicted ones.

In summary, Table  3 provides an overview of the recent literature on the application of Predictive BDA in demand forecasting.

Discussions

The data produced in SCs contain a great deal of useful knowledge. Analysis of such massive data can help us to forecast trends of customer behavior, markets, prices, and so on. This can help organizations better adapt to competitive environments. To forecast demand in an SC, with the presences of big data, different predictive BDA algorithms have been used. These algorithms could provide predictive analytics using time-series approaches, auto-regressive methods, and associative forecasting methods [ 10 ]. The demand forecasts from these BDA methods could be integrated with product design attributes as well as with online search traffic mapping to incorporate customer and price information [ 37 , 71 ].

Predictive BDA algorithms

Most of the studies examined, developed and used a certain data-mining algorithm for their case studies. However, there are very few comparative studies available in the literature to provide a benchmark for understanding of the advantages and disadvantages of these methodologies. Additionally, as depicted by Table  3 , there is no clear trend between the choice of the BDA algorithm/method and the application domain or category.

Predictive BDA applicability

Most data-driven models used in the literature consider historical data. Such a backward-looking forecasting ignores the new trends and highs and lows in different economic environments. Also, organizational factors, such as reputation and marketing strategies, as well as internal risks (related to availability of SCM resources), could greatly influence the demand [ 107 ] and thus contribute to inaccuracy of BDA-based demand predictions using historical data. Incorporating existing driving factors outside the historical data, such as economic instability, inflation, and purchasing power, could help adjust the predictions with respect to unseen future scenarios of demand. Combining predictive algorithms with optimization or simulation can equip the models with prescriptive capabilities in response to future scenarios and expectations.

Predictive BDA in closed-loop supply chains (CLSC)

The combination of forward and reverse flow of material in a SC is referred to as a closed-loop supply chain (CLSC). A CLSC is a more complex system than a traditional SC because it consists of the forward and reverse SC simultaneously [ 108 ]. Economic impact, environmental impact, and social responsibility are three significant factors in designing a CLSC network with inclusion of product recycling, remanufacturing, and refurbishment functions. The complexity of a CLSC, compared to a common SC, results from the coordination between backward and forward flows. For example, transportation cost, holding cost, and forecasting demand are challenging issues because of uncertainties in the information flows from the forward chain to the reverse one. In addition, the uncertainties about the rate of returned products and efficiencies of recycling, remanufacturing, and refurbishment functions are some of the main barriers in establishing predictions for the reverse flow [ 5 , 6 , 109 ]. As such, one key finding from this literature survey is that CLSCs particularly deal with the lack of quality data for remanufacturing. Remanufacturing refers to the disassembly of products, cleaning, inspection, storage, reconditioning, replacement, and reassembling. As a result of deficiencies in data, optimal scheduling of remanufacturing functions is cumbersome due to uncertainties in the quality and quantity of used products as well as timing of returns and delivery delays.

IoT-based approaches can overcome the difficulties of collecting data in a CLSC. In an IoT environment, objects are monitored and controlled remotely across existing network infrastructures. This enables more direct integration between the physical world and computer-based systems. The results include improved efficiency, accuracy, and economic benefit across SCs [ 50 , 54 , 110 ].

Radio frequency identification (RFID) is another technology that has become very popular in SCs. RFID can be used for automation of processes in an SC, and it is useful for coordination of forecasts in CLSCs with dispersed points of return and varied quantities and qualities of returned used products [ 10 , 111 , 112 , 113 , 114 ].

Conclusions

The growing need to customer behavior analysis and demand forecasting is deriven by globalization and increasing market competitions as well as the surge in supply chain digitization practices. In this study, we performed a thorough review for applications of predictive big data analytics (BDA) in SC demand forecasting. The survey overviewed the BDA methods applied to supply chain demand forecasting and provided a comparative categorization of them. We collected and analyzed these studies with respect to methods and techniques used in demand prediction. Seven mainstream techniques were identified and studied with their pros and cons. The neural networks and regression analysis are observed as the two mostly employed techniques, among others. The review also pointed to the fact that optimization models or simulation can be used to improve the accuracy of forecasting through formulating and optimizing a cost function for the fitting of the predictions to data.

One key finding from reviewing the existing literature was that there is a very limited research conducted on the applications of BDA in CLSC and reverse logistics. There are key benefits in adopting a data-driven approach for design and management of CLSCs. Due to increasing environmental awareness and incentives from the government, nowadays a vast quantity of returned (used) products are collected, which are of various types and conditions, received and sorted in many collection points. These uncertainties have a direct impact on the cost-efficiency of remanufacturing processes, the final price of the refurbished products and the demand for these products [ 115 ]. As such, design and operation of CLSCs present a case for big data analytics from both supply and demand forecasting perspectives.

Availability of data and materials

The paper presents a review of the literature extracted from main scientific databases without presenting data.

Abbreviations

Adaptive neural fuzzy inference systems

Auto regressive integrated moving average

Artificial neural network

  • Big data analytics

Backpropagation

Closed-loop supply chain

Extreme learning machine

Enterprise resource planning

Genetic algorithms

Growing hierarchical self-organizing map

Holt-winters

Internet of things

K-nearest-neighbor

Mean absolute deviation

Mean absolute error

Mean absolute percentage error

Mean square error

Mean square root error

Radial basis function

Particle swarm optimization

Self-organizing maps

Stock-keeping unit

Supply chain analytics

Supply chain

  • Supply chain management

Support vector machine

Support vector regression

Total cost deviation

Theil inequality index

You Z, Si Y-W, Zhang D, Zeng X, Leung SCH, Li T. A decision-making framework for precision marketing. Expert Syst Appl. 2015;42(7):3357–67. https://doi.org/10.1016/J.ESWA.2014.12.022 .

Article   Google Scholar  

Guo ZX, Wong WK, Li M. A multivariate intelligent decision-making model for retail sales forecasting. Decis Support Syst. 2013;55(1):247–55. https://doi.org/10.1016/J.DSS.2013.01.026 .

Wei J-T, Lee M-C, Chen H-K, Wu H-H. Customer relationship management in the hairdressing industry: an application of data mining techniques. Expert Syst Appl. 2013;40(18):7513–8. https://doi.org/10.1016/J.ESWA.2013.07.053 .

Lu LX, Swaminathan JM. Supply chain management. Int Encycl Soc Behav Sci. 2015. https://doi.org/10.1016/B978-0-08-097086-8.73032-7 .

Gholizadeh H, Tajdin A, Javadian N. A closed-loop supply chain robust optimization for disposable appliances. Neural Comput Appl. 2018. https://doi.org/10.1007/s00521-018-3847-9 .

Tosarkani BM, Amin SH. A possibilistic solution to configure a battery closed-loop supply chain: multi-objective approach. Expert Syst Appl. 2018;92:12–26. https://doi.org/10.1016/J.ESWA.2017.09.039 .

Blackburn R, Lurz K, Priese B, Göb R, Darkow IL. A predictive analytics approach for demand forecasting in the process industry. Int Trans Oper Res. 2015;22(3):407–28. https://doi.org/10.1111/itor.12122 .

Article   MathSciNet   MATH   Google Scholar  

Boulaksil Y. Safety stock placement in supply chains with demand forecast updates. Oper Res Perspect. 2016;3:27–31. https://doi.org/10.1016/J.ORP.2016.07.001 .

Article   MathSciNet   Google Scholar  

Tang CS. Perspectives in supply chain risk management. Int J Prod Econ. 2006;103(2):451–88. https://doi.org/10.1016/J.IJPE.2005.12.006 .

Wang G, Gunasekaran A, Ngai EWT, Papadopoulos T. Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int J Prod Econ. 2016;176:98–110. https://doi.org/10.1016/J.IJPE.2016.03.014 .

Awwad M, Kulkarni P, Bapna R, Marathe A. Big data analytics in supply chain: a literature review. In: Proceedings of the international conference on industrial engineering and operations management, 2018(SEP); 2018, p. 418–25.

Büyüközkan G, Göçer F. Digital Supply Chain: literature review and a proposed framework for future research. Comput Ind. 2018;97:157–77.

Kshetri N. 1 Blockchain’s roles in meeting key supply chain management objectives. Int J Inf Manage. 2018;39:80–9.

Michna Z, Disney SM, Nielsen P. The impact of stochastic lead times on the bullwhip effect under correlated demand and moving average forecasts. Omega. 2019. https://doi.org/10.1016/J.OMEGA.2019.02.002 .

Zhu Y, Zhao Y, Zhang J, Geng N, Huang D. Spring onion seed demand forecasting using a hybrid Holt-Winters and support vector machine model. PLoS ONE. 2019;14(7):e0219889. https://doi.org/10.1371/journal.pone.0219889 .

Govindan K, Cheng TCE, Mishra N, Shukla N. Big data analytics and application for logistics and supply chain management. Transport Res Part E Logist Transport Rev. 2018;114:343–9. https://doi.org/10.1016/J.TRE.2018.03.011 .

Bohanec M, Kljajić Borštnar M, Robnik-Šikonja M. Explaining machine learning models in sales predictions. Expert Syst Appl. 2017;71:416–28. https://doi.org/10.1016/J.ESWA.2016.11.010 .

Constante F, Silva F, Pereira A. DataCo smart supply chain for big data analysis. Mendeley Data. 2019. https://doi.org/10.17632/8gx2fvg2k6.5 .

Huber J, Gossmann A, Stuckenschmidt H. Cluster-based hierarchical demand forecasting for perishable goods. Expert Syst Appl. 2017;76:140–51. https://doi.org/10.1016/J.ESWA.2017.01.022 .

Ali MM, Babai MZ, Boylan JE, Syntetos AA. Supply chain forecasting when information is not shared. Eur J Oper Res. 2017;260(3):984–94. https://doi.org/10.1016/J.EJOR.2016.11.046 .

Bian W, Shang J, Zhang J. Two-way information sharing under supply chain competition. Int J Prod Econ. 2016;178:82–94. https://doi.org/10.1016/J.IJPE.2016.04.025 .

Mourtzis D. Challenges and future perspectives for the life cycle of manufacturing networks in the mass customisation era. Logist Res. 2016;9(1):2.

Nguyen T, Zhou L, Spiegler V, Ieromonachou P, Lin Y. Big data analytics in supply chain management: a state-of-the-art literature review. Comput Oper Res. 2018;98:254–64. https://doi.org/10.1016/J.COR.2017.07.004 .

Choi Y, Lee H, Irani Z. Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector. Ann Oper Res. 2018;270(1–2):75–104. https://doi.org/10.1007/s10479-016-2281-6 .

Huang YY, Handfield RB. Measuring the benefits of erp on supply management maturity model: a “big data” method. Int J Oper Prod Manage. 2015;35(1):2–25. https://doi.org/10.1108/IJOPM-07-2013-0341 .

Miroslav M, Miloš M, Velimir Š, Božo D, Đorđe L. Semantic technologies on the mission: preventing corruption in public procurement. Comput Ind. 2014;65(5):878–90. https://doi.org/10.1016/J.COMPIND.2014.02.003 .

Zhang Y, Ren S, Liu Y, Si S. A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J Clean Prod. 2017;142:626–41. https://doi.org/10.1016/J.JCLEPRO.2016.07.123 .

Shu Y, Ming L, Cheng F, Zhang Z, Zhao J. Abnormal situation management: challenges and opportunities in the big data era. Comput Chem Eng. 2016;91:104–13. https://doi.org/10.1016/J.COMPCHEMENG.2016.04.011 .

Krumeich J, Werth D, Loos P. Prescriptive control of business processes: new potentials through predictive analytics of big data in the process manufacturing industry. Bus Inform Syst Eng. 2016;58(4):261–80. https://doi.org/10.1007/s12599-015-0412-2 .

Guo SY, Ding LY, Luo HB, Jiang XY. A Big-Data-based platform of workers’ behavior: observations from the field. Accid Anal Prev. 2016;93:299–309. https://doi.org/10.1016/J.AAP.2015.09.024 .

Chuang Y-F, Chia S-H, Wong J-Y. Enhancing order-picking efficiency through data mining and assignment approaches. WSEAS Transactions on Business and Economics. 2014;11(1):52–64.

Google Scholar  

Ballestín F, Pérez Á, Lino P, Quintanilla S, Valls V. Static and dynamic policies with RFID for the scheduling of retrieval and storage warehouse operations. Comput Ind Eng. 2013;66(4):696–709. https://doi.org/10.1016/J.CIE.2013.09.020 .

Alyahya S, Wang Q, Bennett N. Application and integration of an RFID-enabled warehousing management system—a feasibility study. J Ind Inform Integr. 2016;4:15–25. https://doi.org/10.1016/J.JII.2016.08.001 .

Cui J, Liu F, Hu J, Janssens D, Wets G, Cools M. Identifying mismatch between urban travel demand and transport network services using GPS data: a case study in the fast growing Chinese city of Harbin. Neurocomputing. 2016;181:4–18. https://doi.org/10.1016/J.NEUCOM.2015.08.100 .

Shan Z, Zhu Q. Camera location for real-time traffic state estimation in urban road network using big GPS data. Neurocomputing. 2015;169:134–43. https://doi.org/10.1016/J.NEUCOM.2014.11.093 .

Ting SL, Tse YK, Ho GTS, Chung SH, Pang G. Mining logistics data to assure the quality in a sustainable food supply chain: a case in the red wine industry. Int J Prod Econ. 2014;152:200–9. https://doi.org/10.1016/J.IJPE.2013.12.010 .

Jun S-P, Park D-H, Yeom J. The possibility of using search traffic information to explore consumer product attitudes and forecast consumer preference. Technol Forecast Soc Chang. 2014;86:237–53. https://doi.org/10.1016/J.TECHFORE.2013.10.021 .

He W, Wu H, Yan G, Akula V, Shen J. A novel social media competitive analytics framework with sentiment benchmarks. Inform Manage. 2015;52(7):801–12. https://doi.org/10.1016/J.IM.2015.04.006 .

Marine-Roig E, Anton Clavé S. Tourism analytics with massive user-generated content: a case study of Barcelona. J Destination Market Manage. 2015;4(3):162–72. https://doi.org/10.1016/J.JDMM.2015.06.004 .

Carbonneau R, Laframboise K, Vahidov R. Application of machine learning techniques for supply chain demand forecasting. Eur J Oper Res. 2008;184(3):1140–54. https://doi.org/10.1016/J.EJOR.2006.12.004 .

Article   MATH   Google Scholar  

Munir K. Cloud computing and big data: technologies, applications and security, vol. 49. Berlin: Springer; 2019.

Rostami-Tabar B, Babai MZ, Ali M, Boylan JE. The impact of temporal aggregation on supply chains with ARMA(1,1) demand processes. Eur J Oper Res. 2019;273(3):920–32. https://doi.org/10.1016/J.EJOR.2018.09.010 .

Beyer MA, Laney D. The importance of ‘big data’: a definition. Stamford: Gartner; 2012. p. 2014–8.

Benabdellah AC, Benghabrit A, Bouhaddou I, Zemmouri EM. Big data for supply chain management: opportunities and challenges. In: Proceedings of IEEE/ACS international conference on computer systems and applications, AICCSA, no. 11, p. 20–26; 2016. https://doi.org/10.1109/AICCSA.2016.7945828 .

Kumar M. Applied big data analytics in operations management. Appl Big Data Anal Oper Manage. 2016. https://doi.org/10.4018/978-1-5225-0886-1 .

Zhong RY, Huang GQ, Lan S, Dai QY, Chen X, Zhang T. A big data approach for logistics trajectory discovery from RFID-enabled production data. Int J Prod Econ. 2015;165:260–72. https://doi.org/10.1016/J.IJPE.2015.02.014 .

Varela IR, Tjahjono B. Big data analytics in supply chain management: trends and related research. In: 6th international conference on operations and supply chain management, vol. 1, no. 1, p. 2013–4; 2014. https://doi.org/10.13140/RG.2.1.4935.2563 .

Han J, Kamber M, Pei J. Data mining: concepts and techniques. Burlington: Morgan Kaufmann Publishers; 2013. https://doi.org/10.1016/B978-0-12-381479-1.00001-0 .

Book   MATH   Google Scholar  

Arunachalam D, Kumar N. Benefit-based consumer segmentation and performance evaluation of clustering approaches: an evidence of data-driven decision-making. Expert Syst Appl. 2018;111:11–34. https://doi.org/10.1016/J.ESWA.2018.03.007 .

Chase CW. Next generation demand management: people, process, analytics, and technology. Hoboken: Wiley; 2016.

Book   Google Scholar  

SAS Institute. Demand-driven forecasting and planning: take responsiveness to the next level. 13; 2014. https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper2/demand-driven-forecasting-planning-107477.pdf .

Acar Y, Gardner ES. Forecasting method selection in a global supply chain. Int J Forecast. 2012;28(4):842–8. https://doi.org/10.1016/J.IJFORECAST.2011.11.003 .

Ma S, Fildes R, Huang T. Demand forecasting with high dimensional data: the case of SKU retail sales forecasting with intra- and inter-category promotional information. Eur J Oper Res. 2016;249(1):245–57. https://doi.org/10.1016/J.EJOR.2015.08.029 .

Addo-Tenkorang R, Helo PT. Big data applications in operations/supply-chain management: a literature review. Comput Ind Eng. 2016;101:528–43. https://doi.org/10.1016/J.CIE.2016.09.023 .

Agrawal S, Singh RK, Murtaza Q. A literature review and perspectives in reverse logistics. Resour Conserv Recycl. 2015;97:76–92. https://doi.org/10.1016/J.RESCONREC.2015.02.009 .

Gunasekaran A, Kumar Tiwari M, Dubey R, Fosso Wamba S. Big data and predictive analytics applications in supply chain management. Comput Ind Eng. 2016;101:525–7. https://doi.org/10.1016/J.CIE.2016.10.020 .

Hazen BT, Skipper JB, Ezell JD, Boone CA. Big data and predictive analytics for supply chain sustainability: a theory-driven research agenda. Comput Ind Eng. 2016;101:592–8. https://doi.org/10.1016/J.CIE.2016.06.030 .

Hofmann E, Rutschmann E. Big data analytics and demand forecasting in supply chains: a conceptual analysis. Int J Logist Manage. 2018;29(2):739–66. https://doi.org/10.1108/IJLM-04-2017-0088 .

Jain A, Sanders NR. Forecasting sales in the supply chain: consumer analytics in the big data era. Int J Forecast. 2019;35(1):170–80. https://doi.org/10.1016/J.IJFORECAST.2018.09.003 .

Jin J, Liu Y, Ji P, Kwong CK. Review on recent advances in information mining from big consumer opinion data for product design. J Comput Inf Sci Eng. 2018;19(1):010801. https://doi.org/10.1115/1.4041087 .

Kumar R, Mahto D. Industrial forecasting support systems and technologies in practice: a review. Glob J Res Eng. 2013;13(4):17–33.

MathSciNet   Google Scholar  

Mishra D, Gunasekaran A, Papadopoulos T, Childe SJ. Big Data and supply chain management: a review and bibliometric analysis. Ann Oper Res. 2016;270(1):313–36. https://doi.org/10.1007/s10479-016-2236-y .

Ren S, Zhang Y, Liu Y, Sakao T, Huisingh D, Almeida CMVB. A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: a framework, challenges and future research directions. J Clean Prod. 2019;210:1343–65. https://doi.org/10.1016/J.JCLEPRO.2018.11.025 .

Singh Jain AD, Mehta I, Mitra J, Agrawal S. Application of big data in supply chain management. Mater Today Proc. 2017;4(2):1106–15. https://doi.org/10.1016/J.MATPR.2017.01.126 .

Souza GC. Supply chain analytics. Bus Horiz. 2014;57(5):595–605. https://doi.org/10.1016/J.BUSHOR.2014.06.004 .

Tiwari S, Wee HM, Daryanto Y. Big data analytics in supply chain management between 2010 and 2016: insights to industries. Comput Ind Eng. 2018;115:319–30. https://doi.org/10.1016/J.CIE.2017.11.017 .

Zhong RY, Newman ST, Huang GQ, Lan S. Big Data for supply chain management in the service and manufacturing sectors: challenges, opportunities, and future perspectives. Comput Ind Eng. 2016;101:572–91. https://doi.org/10.1016/J.CIE.2016.07.013 .

Ramanathan U, Subramanian N, Parrott G. Role of social media in retail network operations and marketing to enhance customer satisfaction. Int J Oper Prod Manage. 2017;37(1):105–23. https://doi.org/10.1108/IJOPM-03-2015-0153 .

Coursera. Supply chain planning. Coursera E-Learning; 2019. https://www.coursera.org/learn/planning .

Villegas MA, Pedregal DJ. Supply chain decision support systems based on a novel hierarchical forecasting approach. Decis Support Syst. 2018;114:29–36. https://doi.org/10.1016/J.DSS.2018.08.003 .

Ma J, Kwak M, Kim HM. Demand trend mining for predictive life cycle design. J Clean Prod. 2014;68:189–99. https://doi.org/10.1016/J.JCLEPRO.2014.01.026 .

Hamiche K, Abouaïssa H, Goncalves G, Hsu T. A robust and easy approach for demand forecasting in supply chains. IFAC-PapersOnLine. 2018;51(11):1732–7. https://doi.org/10.1016/J.IFACOL.2018.08.206 .

Da Veiga CP, Da Veiga CRP, Catapan A, Tortato U, Da Silva WV. Demand forecasting in food retail: a comparison between the Holt-Winters and ARIMA models. WSEAS Trans Bus Econ. 2014;11(1):608–14.

Murray PW, Agard B, Barajas MA. Forecasting supply chain demand by clustering customers. IFAC-PapersOnLine. 2015;48(3):1834–9. https://doi.org/10.1016/J.IFACOL.2015.06.353 .

Ramos P, Santos N, Rebelo R. Performance of state space and ARIMA models for consumer retail sales forecasting. Robot Comput Integr Manuf. 2015;34:151–63. https://doi.org/10.1016/J.RCIM.2014.12.015 .

Schaer O, Kourentzes N. Demand forecasting with user-generated online information. Int J Forecast. 2019;35(1):197–212. https://doi.org/10.1016/J.IJFORECAST.2018.03.005 .

Pang Y, Yao B, Zhou X, Zhang Y, Xu Y, Tan Z. Hierarchical electricity time series forecasting for integrating consumption patterns analysis and aggregation consistency; 2018. In: IJCAI international joint conference on artificial intelligence; 2018, p. 3506–12.

Goyal R, Chandra P, Singh Y. Suitability of KNN regression in the development of interaction based software fault prediction models. IERI Procedia. 2014;6:15–21. https://doi.org/10.1016/J.IERI.2014.03.004 .

Runkler TA. Data analytics (models and algorithms for intelligent data analysis). In: Revista Espanola de las Enfermedades del Aparato Digestivo (Vol. 26, Issue 4). Springer Fachmedien Wiesbaden; 2016. https://doi.org/10.1007/978-3-658-14075-5 .

Nikolopoulos KI, Babai MZ, Bozos K. Forecasting supply chain sporadic demand with nearest neighbor approaches. Int J Prod Econ. 2016;177:139–48. https://doi.org/10.1016/j.ijpe.2016.04.013 .

Gaur M, Goel S, Jain E. Comparison between nearest Neighbours and Bayesian network for demand forecasting in supply chain management. In: 2015 international conference on computing for sustainable global development, INDIACom 2015, May; 2015, p. 1433–6.

Burney SMA, Ali SM, Burney S. A survey of soft computing applications for decision making in supply chain management. In: 2017 IEEE 3rd international conference on engineering technologies and social sciences, ICETSS 2017, 2018, p. 1–6. https://doi.org/10.1109/ICETSS.2017.8324158 .

González Perea R, Camacho Poyato E, Montesinos P, Rodríguez Díaz JA. Optimisation of water demand forecasting by artificial intelligence with short data sets. Biosyst Eng. 2019;177:59–66. https://doi.org/10.1016/J.BIOSYSTEMSENG.2018.03.011 .

Vhatkar S, Dias J. Oral-care goods sales forecasting using artificial neural network model. Procedia Comput Sci. 2016;79:238–43. https://doi.org/10.1016/J.PROCS.2016.03.031 .

Wong WK, Guo ZX. A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. Int J Prod Econ. 2010;128(2):614–24. https://doi.org/10.1016/J.IJPE.2010.07.008 .

Liu C, Shu T, Chen S, Wang S, Lai KK, Gan L. An improved grey neural network model for predicting transportation disruptions. Expert Syst Appl. 2016;45:331–40. https://doi.org/10.1016/J.ESWA.2015.09.052 .

Yuan WJ, Chen JH, Cao JJ, Jin ZY. Forecast of logistics demand based on grey deep neural network model. Proc Int Conf Mach Learn Cybern. 2018;1:251–6. https://doi.org/10.1109/ICMLC.2018.8527006 .

Amirkolaii KN, Baboli A, Shahzad MK, Tonadre R. Demand forecasting for irregular demands in business aircraft spare parts supply chains by using artificial intelligence (AI). IFAC-PapersOnLine. 2017;50(1):15221–6. https://doi.org/10.1016/J.IFACOL.2017.08.2371 .

Huang L, Xie G, Li D, Zou C. Predicting and analyzing e-logistics demand in urban and rural areas: an empirical approach on historical data of China. Int J Performabil Eng. 2018;14(7):1550–9. https://doi.org/10.23940/ijpe.18.07.p19.15501559 .

Saha C, Lam SS, Boldrin W. Demand forecasting for server manufacturing using neural networks. In: Proceedings of the 2014 industrial and systems engineering research conference, June 2014; 2015.

Chang P-C, Wang Y-W, Tsai C-Y. Evolving neural network for printed circuit board sales forecasting. Expert Syst Appl. 2005;29(1):83–92. https://doi.org/10.1016/J.ESWA.2005.01.012 .

Merkuryeva G, Valberga A, Smirnov A. Demand forecasting in pharmaceutical supply chains: a case study. Procedia Comput Sci. 2019;149:3–10. https://doi.org/10.1016/J.PROCS.2019.01.100 .

Yang CL, Sutrisno H. Short-term sales forecast of perishable goods for franchise business. In: 2018 10th international conference on knowledge and smart technology: cybernetics in the next decades, KST 2018, p. 101–5; 2018. https://doi.org/10.1109/KST.2018.8426091 .

Villegas MA, Pedregal DJ, Trapero JR. A support vector machine for model selection in demand forecasting applications. Comput Ind Eng. 2018;121:1–7. https://doi.org/10.1016/J.CIE.2018.04.042 .

Wu Q. The hybrid forecasting model based on chaotic mapping, genetic algorithm and support vector machine. Expert Syst Appl. 2010;37(2):1776–83. https://doi.org/10.1016/J.ESWA.2009.07.054 .

Guanghui W. Demand forecasting of supply chain based on support vector regression method. Procedia Eng. 2012;29:280–4. https://doi.org/10.1016/J.PROENG.2011.12.707 .

Sarhani M, El Afia A. Intelligent system based support vector regression for supply chain demand forecasting. In: 2014 2nd world conference on complex systems, WCCS 2014; 2015, p. 79–83. https://doi.org/10.1109/ICoCS.2014.7060941 .

Chen IF, Lu CJ. Sales forecasting by combining clustering and machine-learning techniques for computer retailing. Neural Comput Appl. 2017;28(9):2633–47. https://doi.org/10.1007/s00521-016-2215-x .

Fasli M, Kovalchuk Y. Learning approaches for developing successful seller strategies in dynamic supply chain management. Inf Sci. 2011;181(16):3411–26. https://doi.org/10.1016/J.INS.2011.04.014 .

Islek I, Oguducu SG. A retail demand forecasting model based on data mining techniques. In: IEEE international symposium on industrial electronics; 2015, p. 55–60. https://doi.org/10.1109/ISIE.2015.7281443 .

Kilimci ZH, Akyuz AO, Uysal M, Akyokus S, Uysal MO, Atak Bulbul B, Ekmis MA. An improved demand forecasting model using deep learning approach and proposed decision integration strategy for supply chain. Complexity. 2019;2019:1–15. https://doi.org/10.1155/2019/9067367 .

Loureiro ALD, Miguéis VL, da Silva LFM. Exploring the use of deep neural networks for sales forecasting in fashion retail. Decis Support Syst. 2018;114:81–93. https://doi.org/10.1016/J.DSS.2018.08.010 .

Punam K, Pamula R, Jain PK. A two-level statistical model for big mart sales prediction. In: 2018 international conference on computing, power and communication technologies, GUCON 2018; 2019. https://doi.org/10.1109/GUCON.2018.8675060 .

Puspita PE, İnkaya T, Akansel M. Clustering-based Sales Forecasting in a Forklift Distributor. In: Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 1–17; 2019. https://doi.org/10.29137/umagd.473977 .

Thomassey S. Sales forecasts in clothing industry: the key success factor of the supply chain management. Int J Prod Econ. 2010;128(2):470–83. https://doi.org/10.1016/J.IJPE.2010.07.018 .

Brentan BM, Ribeiro L, Izquierdo J, Ambrosio JK, Luvizotto E, Herrera M. Committee machines for hourly water demand forecasting in water supply systems. Math Probl Eng. 2019;2019:1–11. https://doi.org/10.1155/2019/9765468 .

Mafakheri F, Breton M, Chauhan S. Project-to-organization matching: an integrated risk assessment approach. Int J IT Project Manage. 2012;3(3):45–59. https://doi.org/10.4018/jitpm.2012070104 .

Mafakheri F, Nasiri F. Revenue sharing coordination in reverse logistics. J Clean Prod. 2013;59:185–96. https://doi.org/10.1016/J.JCLEPRO.2013.06.031 .

Bogataj M. Closed Loop Supply Chain (CLSC): economics, modelling, management and control. Int J Prod Econ. 2017;183:319–21. https://doi.org/10.1016/J.IJPE.2016.11.020 .

Hopkins J, Hawking P. Big Data Analytics and IoT in logistics: a case study. Int J Logist Manage. 2018;29(2):575–91. https://doi.org/10.1108/IJLM-05-2017-0109 .

de Oliveira CM, Soares PJSR, Morales G, Arica J, Matias IO. RFID and its applications on supply chain in Brazil: a structured literature review (2006–2016). Espacios. 2017;38(31). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021922345&partnerID=40&md5=f062191611541391ded4cdb73eea55cb .

Griva A, Bardaki C, Pramatari K, Papakiriakopoulos D. Retail business analytics: customer visit segmentation using market basket data. Expert Syst Appl. 2018;100:1–16. https://doi.org/10.1016/J.ESWA.2018.01.029 .

Lee CKM, Ho W, Ho GTS, Lau HCW. Design and development of logistics workflow systems for demand management with RFID. Expert Syst Appl. 2011;38(5):5428–37. https://doi.org/10.1016/J.ESWA.2010.10.012 .

Mohebi E, Marquez L. Application of machine learning and RFID in the stability optimization of perishable foods; 2008.

Jiao Z, Ran L, Zhang Y, Li Z, Zhang W. Data-driven approaches to integrated closed-loop sustainable supply chain design under multi-uncertainties. J Clean Prod. 2018;185:105–27.

Levis AA, Papageorgiou LG. Customer demand forecasting via support vector regression analysis. Chem Eng Res Des. 2005;83(8):1009–18. https://doi.org/10.1205/CHERD.04246 .

Chi H-M, Ersoy OK, Moskowitz H, Ward J. Modeling and optimizing a vendor managed replenishment system using machine learning and genetic algorithms. Eur J Oper Res. 2007;180(1):174–93. https://doi.org/10.1016/J.EJOR.2006.03.040 .

Sun Z-L, Choi T-M, Au K-F, Yu Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst. 2008;46(1):411–9. https://doi.org/10.1016/J.DSS.2008.07.009 .

Efendigil T, Önüt S, Kahraman C. A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis. Expert Syst Appl. 2009;36(3):6697–707. https://doi.org/10.1016/J.ESWA.2008.08.058 .

Lee CC, Ou-Yang C. A neural networks approach for forecasting the supplier’s bid prices in supplier selection negotiation process. Expert Syst Appl. 2009;36(2):2961–70. https://doi.org/10.1016/J.ESWA.2008.01.063 .

Chen F-L, Chen Y-C, Kuo J-Y. Applying Moving back-propagation neural network and Moving fuzzy-neuron network to predict the requirement of critical spare parts. Expert Syst Appl. 2010;37(9):6695–704. https://doi.org/10.1016/J.ESWA.2010.04.037 .

Wu Q. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system. J Comput Appl Math. 2010;233(10):2481–91. https://doi.org/10.1016/J.CAM.2009.10.030 .

Babai MZ, Ali MM, Boylan JE, Syntetos AA. Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: theory and empirical analysis. Int J Prod Econ. 2013;143(2):463–71. https://doi.org/10.1016/J.IJPE.2011.09.004 .

Kourentzes N. Intermittent demand forecasts with neural networks. Int J Prod Econ. 2013;143(1):198–206. https://doi.org/10.1016/J.IJPE.2013.01.009 .

Lau HCW, Ho GTS, Zhao Y. A demand forecast model using a combination of surrogate data analysis and optimal neural network approach. Decis Support Syst. 2013;54(3):1404–16. https://doi.org/10.1016/J.DSS.2012.12.008 .

Arunraj NS, Ahrens D. A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting. Int J Prod Econ. 2015;170:321–35. https://doi.org/10.1016/J.IJPE.2015.09.039 .

Di Pillo G, Latorre V, Lucidi S, Procacci E. An application of support vector machines to sales forecasting under promotions. 4OR. 2016. https://doi.org/10.1007/s10288-016-0316-0 .

da Veiga CP, da Veiga CRP, Puchalski W, dos Coelho LS, Tortato U. Demand forecasting based on natural computing approaches applied to the foodstuff retail segment. J Retail Consumer Serv. 2016;31:174–81. https://doi.org/10.1016/J.JRETCONSER.2016.03.008 .

Chawla A, Singh A, Lamba A, Gangwani N, Soni U. Demand forecasting using artificial neural networks—a case study of American retail corporation. In: Applications of artificial intelligence techniques in wind power generation. Integrated Computer-Aided Engineering; 2018, p. 79–90. https://doi.org/10.3233/ica-2001-8305 .

Pereira MM, Machado RL, Ignacio Pires SR, Pereira Dantas MJ, Zaluski PR, Frazzon EM. Forecasting scrap tires returns in closed-loop supply chains in Brazil. J Clean Prod. 2018;188:741–50. https://doi.org/10.1016/J.JCLEPRO.2018.04.026 .

Fanoodi B, Malmir B, Jahantigh FF. Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models. Comput Biol Med. 2019;113:103415. https://doi.org/10.1016/J.COMPBIOMED.2019.103415 .

Sharma R, Singhal P. Demand forecasting of engine oil for automotive and industrial lubricant manufacturing company using neural network. Mater Today Proc. 2019;18:2308–14. https://doi.org/10.1016/J.MATPR.2019.07.013 .

Tanizaki T, Hoshino T, Shimmura T, Takenaka T. Demand forecasting in restaurants using machine learning and statistical analysis. Procedia CIRP. 2019;79:679–83. https://doi.org/10.1016/J.PROCIR.2019.02.042 .

Wang C-H, Chen J-Y. Demand forecasting and financial estimation considering the interactive dynamics of semiconductor supply-chain companies. Comput Ind Eng. 2019;138:106104. https://doi.org/10.1016/J.CIE.2019.106104 .

Download references

Acknowledgements

The authors are very much thankful to anonymous reviewers whose comments and suggestion were very helpful in improving the quality of the manuscript.

Author information

Authors and affiliations.

Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, H3G 1M8, Canada

Mahya Seyedan & Fereshteh Mafakheri

You can also search for this author in PubMed   Google Scholar

Contributions

The authors contributed equally to the writing of the paper. First author conducted the literature search. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Fereshteh Mafakheri .

Ethics declarations

Ethics approval.

Not applicable.

Competing interests

The authors declare no competing or conflicting interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Seyedan, M., Mafakheri, F. Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. J Big Data 7 , 53 (2020). https://doi.org/10.1186/s40537-020-00329-2

Download citation

Received : 05 April 2020

Accepted : 17 July 2020

Published : 25 July 2020

DOI : https://doi.org/10.1186/s40537-020-00329-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Demand forecasting
  • Closed-loop supply chains
  • Machine-learning

big data in forecasting research a literature review

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Big Data Analytics in Weather Forecasting: A Systematic Review

Profile image of Mostafa Haghi Kashani

2021, Archives of Computational Methods in Engineering (Springer)

Weather forecasting, as an important and indispensable procedure in people's daily lives, evaluates the alteration happening in the current condition of the atmosphere. Big data analytics is the process of analyzing big data to extract the concealed patterns and applicable information that can yield better results. Nowadays, several parts of society are interested in big data, and the meteorological institute is not excluded. Therefore, big data analytics will give better results in weather forecasting and will help forecasters to forecast weather more accurately. In order to achieve this goal and to recommend favorable solutions, several big data techniques and technologies have been suggested to manage and analyze the huge volume of weather data from different resources. By employing big data analytics in weather forecasting, the challenges related to traditional data management techniques and technology can be solved. This paper tenders a Systematic Literature Review (SLR) method for big data analytic approaches in weather forecasting (published between 2014 and August 2020). A feasible taxonomy of the current reviewed papers is proposed as technique-based, technology-based, and hybrid approaches. Moreover, this paper presents a comparison of the aforementioned categories regarding accuracy, scalability, execution time, and other Quality of Service (QoS) factors. The types of algorithms, measurement environments, modeling tools, and the advantages and disadvantages per paper are extracted. In addition, open issues and future trends are debated.

Related Papers

International Journal of Scientific Research in Science and Technology IJSRST

Big data has described an enormous quantity of data which needs new technologies to make potential to obtain value from it by analysis and capturing method. Data Analytics often includes scrutinizing past traditional data to research potential trends. Weather prognostication has been one of the most fascinating and exciting domain, and it performs an essential role in aerography. The weather situation is the state of the atmosphere at a given time regarding weather variables like wind direction, rainfall, cloud conditions, pressure, temperature, thunderstorm, etc. The Big data obtained by NCDC (National Climatic Data Center) has received over more than 116 weather locations and more than 1000 observations centers. The data produced by them is unstructured which grows a challenging job to explain it. In this paper, these enormous amounts of data have loaded onto the Apache Pig, Hadoop Distributed File System, Apache Hive is to process the data, which utilizes mappers and reducers to process the data. The above dataset has explained by using given methods and the final output of this project in the form of maximum, minimum and average temperature according to the given time and date.

big data in forecasting research a literature review

IRJET Journal

Baghavathi Priya S

0TBig data is defined as a large amount of data which requires new technologies to make possible to extract value from it by capturing and analysis process.0T Analytics often involves studying past historical data to research potential trends. Weather prediction has been one of the most interesting and fascinating domain and it plays a significant role in meteorology. Weather prediction is to estimate of future weather conditions. Weather condition is the state of atmosphere at a given time in terms of weather variables like rainfall, thunderstorm, cloud conditions, temperature, pressure, wind direction etc.Predicting the weather is essential to help preparing for the best and the worst of the climate. This paper presents the review of big data analytics for Weather Prediction and studies the benefit of using it.

IJSRD - International Journal for Scientific Research and Development

In the last few decades, the generation of data has increased and it is expected to increase in future. So that it is necessary to process a large amount of data set in weather and analyse the same using the traditional methods. In the existing system, it aims to forecast the chances of rainfall by using predictive analysis in Hadoop. It helps to predict the rainfall in minimum and maximum by taking the data as input. It uses the apache PIG. It have some disadvantages, so in proposed system we use a Naïve Bayse algorithm to predict earth quake, floods , etc., It focuses on meteorological data to predict the seasons to separate the weather data based on Longitudinal and Latitudinal which can be used to analyse the reliability factor of cyclone, earthquake, rainfall, temperature and humidity. It provides specific service to an assessment of pollution impacts from different organization and thermal power plants. It is easy and fast to predict class of test data set. It also performs well in multi class prediction.

Weather forecasts are made by collecting as much data as possible about the current state of the atmosphere to determine how the atmosphere evolves in the future. To handle such humongous data-"Big Data" is introduced. Big Data has become an imminent part of all industries and business sectors today. we propose a Pre-Processing Framework to address quality of data in weather monitoring. Hence, it is imperative to improve Data quality even it is absorbed and utilized in an industry's Big Data system. In this paper, we propose a Pre-Processing Framework to address quality of data in a weather monitoring and forecasting application that also takes into account global warming parameters and raises alerts/notifications to warn users and scientists in advance. MOTIVATION-We have conceptualized a Weather Monitoring and Forecasting Application to raises alerts/notifications to warn users and scientists in advance.

TEST Engineering & Management

keshani vyas

Nazar Elfadil

Currently analyzing large amounts of data has become a big challenge. This data could be medical, scientific, financial, climatological, or marketing. Several techniques are used to analysis meaningful information by use Big Data technologies. Weather one of area use big data technologies to support numerous important domain such as water resources, agriculture, air traffic, and tourism. Weather prediction is field of meteorology that is done by collecting data from the different stations related to the current state of the weather like Temperate, Humidity and Visibility. Thus, the most challenging problem for scientists to analysis this big amount of data. in this paper we focus on analyzing the weather data set using Hadoop/MapReduce and we used the historical data set from NOAA. The temperature, humidity and visibility attributes has been extracted from the dataset by the MapReduce Algorithm into structure data. Graphical analysis has been used to represent the result from the Ma...

IJCSMC Journal

Weather is the most critical for human in many aspects of life. The study and knowledge of how weather Temperature evolves over time in some location or country in the world can be beneficial for several purposes. Processing, Collecting and storing of huge amounts of weather data is necessary for accurate prediction of weather. Meteorological departments use different types of sensors such as temperature, humidity etc. to get the data. The sensors volume and velocity of data in each of the sensor make the data processing time consuming and complex. This project aims to build analytical Big Data prediction framework for weather temperature based on MapReduce algorithm. Information Mining Package, can perform administered grouping methodology on immense measures of information, normally alluded as large information, on a conveyed framework utilizing Hadoop MapReduce. The instrument has arrangement calculations actualized, taken from Support Vector Machines (SVM). The aftereffects of an exploratory examination utilizing a SVM classifier on informational collections of various sizes for various bunch designs like K-Means shows the capability of the apparatus, just as perspectives that influence its execution.

Saïd Khabba

Md. Nasfikur R. Khan

RELATED PAPERS

Revista Tecnologia e Sociedade

Reuber Fonseca

Anissa Nurfajri

Tomàs Andrés Blanch

FEDERICO CANGIALOSI

Diabetologia

Allan Johansen

Michael P. Johnson

گۆڤاری زانکۆی ڕاپهڕین

Rostam Salam Aziz

Emmanuel Taïeb

Fertility and Sterility

Sandra Cecconi

Revista médica de Chile

Sport-Orthopädie - Sport-Traumatologie - Sports Orthopaedics and Traumatology

Reinald Brunner

LINGUISTIK TERAPAN

ira lumbanbatu

Bruce Bernacki

Tidsskrift for Professionsstudier

Jens Erik Kristensen

Franco Ruiz

Developmental Psychology

Nicole Molina

Robin Canup

Madiha Rashid

Critical Perspectives on Accounting

david collins

Wellness And Healthy Magazine

Rini Wahyuni

Book of Abstracts

Sara Janowska

Physica A: Statistical Mechanics and its Applications

LEONARDO JOSE PAREDES REYES

Lecture Notes in Computer Science

Ameneh Shamekhi

Biogeochemistry

Jillian Gregg

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Big Data Analytics in Weather Forecasting: A Systematic Review

  • Review article
  • Published: 28 June 2021
  • Volume 29 , pages 1247–1275, ( 2022 )

Cite this article

big data in forecasting research a literature review

  • Marzieh Fathi 1 ,
  • Mostafa Haghi Kashani 2 ,
  • Seyed Mahdi Jameii   ORCID: orcid.org/0000-0002-9407-665X 2 &
  • Ebrahim Mahdipour 1  

7396 Accesses

60 Citations

Explore all metrics

A Correction to this article was published on 20 July 2021

This article has been updated

Weather forecasting, as an important and indispensable procedure in people’s daily lives, evaluates the alteration happening in the current condition of the atmosphere. Big data analytics is the process of analyzing big data to extract the concealed patterns and applicable information that can yield better results. Nowadays, several parts of society are interested in big data, and the meteorological institute is not excluded. Therefore, big data analytics will give better results in weather forecasting and will help forecasters to forecast weather more accurately. In order to achieve this goal and to recommend favorable solutions, several big data techniques and technologies have been suggested to manage and analyze the huge volume of weather data from different resources. By employing big data analytics in weather forecasting, the challenges related to traditional data management techniques and technology can be solved. This paper tenders a systematic literature review method for big data analytic approaches in weather forecasting (published between 2014 and August 2020). A feasible taxonomy of the current reviewed papers is proposed as technique-based, technology-based, and hybrid approaches. Moreover, this paper presents a comparison of the aforementioned categories regarding accuracy, scalability, execution time, and other Quality of Service factors. The types of algorithms, measurement environments, modeling tools, and the advantages and disadvantages per paper are extracted. In addition, open issues and future trends are debated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

big data in forecasting research a literature review

Similar content being viewed by others

big data in forecasting research a literature review

Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective

big data in forecasting research a literature review

Big Data Analytics: Applications, Prospects and Challenges

big data in forecasting research a literature review

Big Data Analytics: A Literature Review Paper

Change history, 20 july 2021.

A Correction to this paper has been published: https://doi.org/10.1007/s11831-021-09630-6

Xiao Z, Liu B, Liu H, Zhang D (2012) Progress in climate prediction and weather forecast operations in China. Adv Atmos Sci 29(5):943–957

Google Scholar  

Bengtsson L (1980) The weather forecast. Pure Appl Geophys 119(3):515–537

Kan L, Yu-Shu L (2005) A rough set based fuzzy neural network algorithm for weather prediction. In: 2005 International conference on machine learning and cybernetics, vol 3. pp 1888–1892

Kan L, Yu-Shu L (2002) Fuzzy case-based reasoning: weather prediction. In: Proceedings of the international conference on machine learning and cybernetics, vol 1. pp 107–110

Weiguo X (2010) The weather prediction method based on artificial immune system. In: 2010 International forum on information technology and applications, vol 2. pp 386–389

Haupt SE, Cowie J, Linden S, McCandless T, Kosovic B, Alessandrini S (2018) Machine learning for applied weather prediction. In: 2018 IEEE 14th international conference on e-science (e-Science). pp 276–277

Chung CYC, Kumar VR (1993) Knowledge acquisition using a neural network for a weather forecasting knowledge-based system. Neural Comput Appl 1(3):215–223

Pandey AK, Agrawal CP, Agrawal M (2017) A hadoop based weather prediction model for classification of weather data. In: 2017 Second international conference on electrical, computer and communication technologies (ICECCT). pp 1–5

Tsai C-W, Lai C-F, Chao H-C, Vasilakos AV (2015) Big data analytics: a survey. J Big Data 2(1):21

Rodríguez-Mazahua L, Rodríguez-Enríquez C-A, Sánchez-Cervantes JL, Cervantes J, García-Alcaraz JL, Alor-Hernández G (2016) A general perspective of big data: applications, tools, challenges and trends. J Supercomput 72(8):3073–3113

Talia D (2013) Clouds for scalable big data analytics. Computer 46(5):98–101

Selvaraj P, Marudappa P (2018) A survey of predictive analytics using big data with data mining. Int J Bioinf Res Appl 14:269

Sharma S, Mangat V (2015) Technology and trends to handle big data: survey. In: 2015 Fifth international conference on advanced computing and communication technologies. pp 266–271

Jain H, Jain R (2017) Big data in weather forecasting: applications and challenges. In: 2017 International conference on big data analytics and computational intelligence (ICBDAC). pp 138–142

Reddy PC, Babu AS (2017) Survey on weather prediction using big data analystics. In: 2017 Second international conference on electrical, computer and communication technologies (ICECCT). pp 1–6

Bendre MR, Thool RC, Thool VR (2015) Big data in precision agriculture: weather forecasting for future farming. In: 2015 1st international conference on next generation computing technologies (NGCT). pp 744–750

Mittal S, Sangwan OP (2019) Big data analytics using data mining techniques: a survey. In: Advanced informatics for computing research, Singapore. Springer Singapore, pp 264–273

Leu J-S, Su K-W, Chen C-T (2014) Ambient mesoscale weather forecasting system featuring mobile augmented reality. Multimed Tools Appl 72(2):1585–1609

Corne D, Dissanayake M, Peacock A, Galloway S, Owens E (2014) Accurate localized short term weather prediction for renewables planning. In: 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG). pp 1–8

Roudier P et al (2014) The role of climate forecasts in smallholder agriculture: lessons from participatory research in two communities in Senegal. Clim Risk Mana 2:42–55

Li J, Xu L, Tang L, Wang S, Li L (2018) Big data in tourism research: a literature review. Tour Manag 68:301–323

Scott D, Lemieux C (2010) Weather and climate information for tourism. Procedia Environ Sci 1:146–183

Hazyuk I, Ghiaus C, Penhouet D (2012) Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part I—Building modeling. Build Environ 51:379–387

Enríquez R, Jiménez MJ, Heras MdR (2016) Solar forecasting requirements for buildings MPC. Energy Procedia 91:1024–1032

Smith DA, Sherry L (2008) Decision support tool for predicting aircraft arrival rates from weather forecasts. In: 2008 Integrated communications, navigation and surveillance conference. pp 1–12

Zhang B, Tang L, Roemer M (2018) Probabilistic planning and risk evaluation based on ensemble weather forecasting. IEEE Trans Autom Sci Eng 15(2):556–566

Braman LM, van Aalst MK, Mason SJ, Suarez P, Ait-Chellouche Y, Tall A (2013) Climate forecasts in disaster management: red cross flood operations in West Africa, 2008. Disasters 37(1):144–164

Akhand MH (2003) Disaster management and cyclone warning system in Bangladesh. In: Zschau J, Küppers A (eds) Early warning systems for natural disaster reduction. Springer, Berlin, pp 49–64

Chen C, Duan S, Cai T, Liu B (2011) Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol Energy 85(11):2856–2870

Shi J, Lee W, Liu Y, Yang Y, Wang P (2012) Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Trans Ind Appl 48(3):1064–1069

Lazos D, Sproul AB, Kay M (2014) Optimisation of energy management in commercial buildings with weather forecasting inputs: a review. Renew Sustain Energy Rev 39:587–603

Casas DM, González JÁT, Rodríguez JEA, Pet JV (2009) Using data-mining for short-term rainfall forecasting. In: Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Springer, Berlin, pp 487–490

Katal A, Wazid M, Goudar RH (2013) Big data: issues, challenges, tools and good practices. In: 2013 Sixth international conference on contemporary computing (IC3). pp 404–409

Elgendy N, Elragal A (2014) Big data analytics: a literature review paper. In: Advances in data mining. Applications and theoretical aspects. Springer, Cham, pp 214–227

Shadroo S, Rahmani A (2018) Systematic survey of big data and data mining in internet of things. Comput Netw 139:19–47

Bazzaz Abkenar S, Mahdipour E, Jameii SM, Haghi Kashani M (2021) A hybrid classification method for Twitter spam detection based on differential evolution and random forest. Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.6381

Article   Google Scholar  

Pathak AR, Pandey M, Rautaray S (2018) Construing the big data based on taxonomy, analytics and approaches. Iran J Comput Sci 1(4):237–259

Bazzaz Abkenar S, Haghi Kashani M, Mahdipour E, Jameii SM (2021) Big data analytics meets social media: a systematic review of techniques, open issues, and future directions. Telemat Inform 57:101517

Khezr SN, Navimipour NJ (2017) MapReduce and its applications, challenges, and architecture: a comprehensive review and directions for future research. J Grid Comput 15(3):295–321

Amer A-B, Amr M, Salah H (2016) A survey on MapReduce implementations. Int J Cloud Appl Comput IJCAC 6(1):59–87

Senger H et al (2016) BSP cost and scalability analysis for MapReduce operations. Concurr Comput Pract Exp 28(8):2503–2527

Lee D, Kim JW, Maeng S (2014) Large-scale incremental processing with MapReduce. Future Gener Comput Syst 36:66–79

Idris M et al (2015) Context-aware scheduling in MapReduce: a compact review. Concurr Comput Pract Exp 27(17):5332–5349

Karimi Y, Haghi Kashani M, Akbari M, Mahdipour E (2021) Leveraging big data in smart cities: a systematic review. J Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.6379

Bakratsas M, Basaras P, Katsaros D, Tassiulas L (2018) Hadoop MapReduce performance on SSDs for analyzing social networks. Big Data Res 11:1–10

Shabestari F, Rahmani AM, Navimipour NJ, Jabbehdari S (2019) A taxonomy of software-based and hardware-based approaches for energy efficiency management in the Hadoop. J Netw Comput Appl 126:162–177

Patwardhan A, Verma AK, Kumar U (2016) A survey on predictive maintenance through big data. In: Current trends in reliability, availability, maintainability and safety. Springer, Cham, pp 437–445

Yang W, Liu X, Zhang L, Yang LT (2013) Big data real-time processing based on storm. In: 2013 12th IEEE international conference on trust, security and privacy in computing and communications. pp 1784–1787

Philip-Chen CL, Zhang C-Y (2014) Data-intensive applications challenges techniques and technologies: a survey on big data. Inf Sci 275:314–347

Lee J, Hong S, Lee J-H (2014) An efficient prediction for heavy rain from big weather data using genetic algorithm. In: Presented at the proceedings of the 8th international conference on ubiquitous information management and communication, Siem Reap, Cambodia

Sahasrabuddhe DV, Jamsandekar P (2015) Data structure for representation of big data of weather forecasting: a review. Int J Comput Sci Trends Technol IJCST 3(6):48–56

Priya SB A survey on weather forecasting to predict rainfall using big data analytics

Hassani H, Silva ES (2015) Forecasting with big data: a review. Ann Data Sci 2(1):5–19

Rao N (2017) Big data and climate smart agriculture-review of current status and implications for agricultural research and innovation in India. In: Proceedings Indian National Science Academy, Forthcoming

de Freitas Viscondi G, Alves-Souza SN (2019) A systematic literature review on big data for solar photovoltaic electricity generation forecasting. Sustain Energy Technol Assess 31:54–63

Vannitsem S et al (2021) Statistical postprocessing for weather forecasts: review, challenges, and avenues in a big data world. Bull Am Meteorol Soc 102(3):E681–E699

Cook DJ, Greengold NL, Ellrodt AG, Weingarten SR (1997) The relation between systematic reviews and practice guidelines. Ann Internal Med 127(3):210–216

Haghi Kashani M, Rahmani AM, Jafari Navimipour N (2020) Quality of service-aware approaches in fog computing. Int J Commun Syst 33(8):e4340

Rahimi M, Songhorabadi M, Haghi Kashani M (2020) Fog-based smart homes: a systematic review. J Netw Comput Appl 153:102531

Bazzaz Abkenar S, Haghi Kashani M, Akbari M, Mahdipour E (2020) Twitter spam detection: a systematic review. arXiv preprint arXiv: 2011.14754 .

Songhorabadi M, Rahimi M, Farid AMM, Kashani MH (2020) Fog computing approaches in smart cities: a state-of-the-art review. arXiv preprint arXiv: 2011.14732

Kashani MH, Ahmadzadeh A, Mahdipour E (2020) Load balancing mechanisms in fog computing: a systematic review. arXiv preprint arXiv: 2011.14706

Brereton P, Kitchenham BA, Budgen D, Turner M, Khalil M (2007) Lessons from applying the systematic literature review process within the software engineering domain. J Syst Softw 80(4):571–583

Sheikh Sofla M, Haghi Kashani M, Mahdipour E, Faghih Mirzaee R (2021) Towards effective offloading mechanisms in fog computing: a systematic survey. Multimed Tools Appl

Haghi Kashani M, Madanipour M, Nikravan M, Asghari P, Mahdipour E (2021) A systematic review of IoT in healthcare: applications, techniques, and trends. J Netw Comput Appl

Cheng Y, Zheng Z, Wang J, Yang L, Wan S (2019) Attribute reduction based on genetic algorithm for the coevolution of meteorological data in the industrial internet of things. Wirel Commun Mob Comput 2019:8

Cramer S, Kampouridis M, Freitas A (2016) A genetic decomposition algorithm for predicting rainfall within financial weather derivatives. In: Presented at the proceedings of the genetic and evolutionary computation conference 2016, Denver, Colorado, USA

Pooja SB, Siva-Balan RV, Anisha M, Muthukumaran MS, Jothikumar R (2020) Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting. Comput Commun 151:266–274

Kvinge H, Farnell E, Kirby M, Peterson C (2018) Monitoring the shape of weather, soundscapes, and dynamical systems: a new statistic for dimension-driven data analysis on large datasets. In: 2018 IEEE international conference on big data (big data). pp 1045–1051

Buszta A, Mazurkiewicz J (2015) Climate changes prediction system based on weather big data visualisation. In: Theory and engineering of complex systems and dependability. Springer, Cham, pp 75–86

Rasel RI, Sultana N, Meesad P (2018) An application of data mining and machine learning for weather forecasting. In: Recent advances in information and communication technology 2017. Springer, Cham, pp 169–178

Mahmood MR, Patra RK, Raja R, Sinha GR (2019) A novel approach for weather prediction using forecasting analysis and data mining techniques. In: Innovations in electronics and communication engineering. Springer, Singapore, pp 479–489

Azimi R, Ghofrani M, Ghayekhloo M (2016) A hybrid wind power forecasting model based on data mining and wavelets analysis. Energy Convers Manag 127:208–225

Doreswamy IG, Manjunatha BR (2018) Multi-label classification of big NCDC weather data using deep learning model. In: Soft computing systems. Springer, Singapore, pp 232–241

Venkatachalapathy K, Kamaleshwar T, Sundaranarayana D, Prakash VO (2016) An effective framework with N-client transfer dataset for weather prediction using data mining techniques. In: Presented at the proceedings of the international conference on informatics and analytics, Pondicherry, India

Choi C, Kim J, Kim J, Kim D, Bae Y, Kim HS (2018) Development of heavy rain damage prediction model using machine learning based on big data. Adv Meteorol 2018:11

Hubig N, Fengler P, Züfle A, Yang R, Günnemann S (2017) Detection and prediction of natural hazards using large-scale environmental data. In: Advances in spatial and temporal databases. Springer, Cham, pp 300–316

Yonekura K, Hattori H, Suzuki T (2018) Short-term local weather forecast using dense weather station by deep neural network. In: 2018 IEEE international conference on big data (big data). pp 1683–1690

Xu Q et al (2015) A short-term wind power forecasting approach with adjustment of numerical weather prediction input by data mining. IEEE Trans Sustain Energy 6(4):1283–1291

Jiang P, Dong Q (2015) A new hybrid model based on an intelligent optimization algorithm and a data denoising method to make wind speed predication. Math Probl Eng 2015:16

More PD, Nandgave S, Kadam M (2020) Weather data analytics using hadoop with map-reduce. In: ICCCE 2019. Springer, Singapore, pp 189–196

Wu H (2017) Big data management the mass weather logs. In: Smart computing and communication. Springer, Cham, pp 122–132

Ismail KA, Majid MA, Zain JM, Bakar NAA (2016) Big data prediction framework for weather temperature based on MapReduce algorithm. In: 2016 IEEE conference on open systems (ICOS). pp 13–17

Abdullahi AU, Ahmad R, Zakaria NM (2016) Big data: performance profiling of meteorological and oceanographic data on hive. In: 2016 3rd international conference on computer and information sciences (ICCOINS). pp 203–208

Oury DTM, Singh A (2018) Data analysis of weather data using hadoop technology. In: Smart computing and informatics. Springer, Singapore, pp 723–730

Manogaran G, Lopez D, Chilamkurti N (2018) In-mapper combiner based MapReduce algorithm for processing of big climate data. Future Gener Comput Syst 86:433–445

Jayanthi D, Sumathi G (2017) Weather data analysis using spark—an in-memory computing framework. In: 2017 Innovations in power and advanced computing technologies (i-PACT). pp 1–5

Palamuttam R et al (2015) SciSpark: Applying in-memory distributed computing to weather event detection and tracking. In: 2015 IEEE International conference on big data (big data). pp 2020–2026

Hassaan M, Elghandour I (2016) A real-time big data analysis framework on a CPU/GPU heterogeneous cluster: a meteorological application case study. In: 2016 IEEE/ACM 3rd international conference on big data computing applications and technologies (BDCAT). pp 168–177

Manogaran G, Lopez D (2018) Spatial cumulative sum algorithm with big data analytics for climate change detection. Comput Electr Eng 65:207–221

Madan S, Kumar P, Rawat S, Choudhury T (2018) Analysis of weather prediction using machine learning & big data. In: 2018 International conference on advances in computing and communication engineering (ICACCE). pp 259–264

Dhoot R, Agrawal S, Kumar MS (2019) Implementation and analysis of arima model and kalman filter for weather forcasting in spark computing environment. In: 2019 3rd international conference on computing and communications technologies (ICCCT). pp 105–112

Dhamodharavadhani S, Rathipriya R (2019) Region-wise rainfall prediction using mapreduce-based exponential smoothing techniques. In: Advances in big data and cloud computing. Springer, Singapore, pp 229–239

Namitha K, Jayapriya A, Kumar GS (2015) Rainfall prediction using artificial neural network on map-reduce framework. In: Presented at the proceedings of the third international symposium on women in computing and informatics, Kochi, India

Liu L, Lv J, Ma Z, Wan J, Jingjing M (2015) Toward the association rules of meteorological data mining based on cloud computing. In: Proceedings of the second international conference on mechatronics and automatic control. Springer, Cham, pp 1051–1059

Sahoo S (2017) A parallel forecasting approach using incremental K-means clustering technique. In: Computational intelligence in data mining. Springer, Singapore, pp 165–172

Fang W, Sheng VS, Wen X, Pan W (2014) Meteorological data analysis using MapReduce. Sci World J 2014:10

Hamzei M, Navimipour NJ (2018) Toward efficient service composition techniques in the internet of things. IEEE Internet Things J 5(5):3774–3787

Kumar V, Kumar D (2020) A systematic review on firefly algorithm: past, present, and future. Arch Comput Methods Eng 28(4):3269–3291

MathSciNet   Google Scholar  

Nikravan M, Kashani MH (2007) Parallel min–max ant colony system (MMAS) for dynamic process scheduling in distributed operating systems considering load balancing. In: Proceedings of the 21st ECMS international conference on high performance computing & simulation (HPCS), Prague, Czech Republic

Kashani MH, Sarvizadeh R (2011) A novel method for task scheduling in distributed systems using max–min ant colony optimization. In: 2011 3rd international conference on advanced computer control (ICACC). IEEE, pp 422–426

Kashani MH, Zarrabi H, Javadzadeh G (2017) A new metaheuristic approach to task assignment problem in distributed systems. In: 2017 IEEE 4th international conference on knowledge-based engineering and innovation (KBEI). IEEE, pp 0673–0677

Kashani MH, Sarvizadeh R, Jameii M (2012) A new distributed systems scheduling algorithm: a swarm intelligence approach. In: Fourth international conference on machine vision (ICMV 2011): computer vision and image analysis; pattern recognition and basic technologies. International Society for Optics and Photonics

Kashani MH, Jahanshahi M (2009) A new method based on memetic algorithm for task scheduling in distributed systems. Int J Simul Syst Sci Technol 10

Niu B, Wang H (2012) Bacterial colony optimization. Discrete Dyn Nat Soc 2012:28

MathSciNet   MATH   Google Scholar  

Kashani MH, Jahanshahi M (2009) Using simulated annealing for task scheduling in distributed systems. In: 2009 International conference on computational intelligence, modelling and simulation. pp 265–269

Dasgupta D, Ji Z, Gonzalez F (2003) Artificial immune system (AIS) research in the last five years. In: The 2003 congress on evolutionary computation, 2003. CEC '03., vol 1. pp 123–130

Jameii SM, Kashani MH, Karimi R (2015) LASPEA: Learning automata-based strength pareto evolutionary algorithm for multi-objective optimization. Int J Comput Sci Telecommun 6(9):14–19

Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

Yang X-S. Bat algorithm for multi-objective optimisation. arXiv e-prints, Accessed 01 Mar 2012. arXiv:1203.6571Y

Krishnanand KN, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3(2):87–124

Sarvizadeh R, Kashani MH, Zakeri FS, Jameii SM (2012) A novel bee colony approach to distributed systems scheduling. Int J Comput Appl 42(10):1–6

Saneja B, Rani R (2018) A hybrid approach for outlier detection in weather sensor data. In: 2018 IEEE 8th international advance computing conference (IACC). pp 321–326

Al-Madi N, Aljarah I, Ludwig S (2014) Parallel Glowworm Swarm Optimization Clustering Algorithm based on MapReduce

El-Alfy E-SM, Alshammari MA (2016) Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in MapReduce. Simul Model Pract Theory 64(13):18–29

Download references

Author information

Authors and affiliations.

Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Marzieh Fathi & Ebrahim Mahdipour

Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

Mostafa Haghi Kashani & Seyed Mahdi Jameii

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Seyed Mahdi Jameii .

Ethics declarations

Conflict of interest.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Fathi, M., Haghi Kashani, M., Jameii, S.M. et al. Big Data Analytics in Weather Forecasting: A Systematic Review. Arch Computat Methods Eng 29 , 1247–1275 (2022). https://doi.org/10.1007/s11831-021-09616-4

Download citation

Received : 27 December 2020

Accepted : 12 June 2021

Published : 28 June 2021

Issue Date : March 2022

DOI : https://doi.org/10.1007/s11831-021-09616-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) The Role of Big Data in Color Trend Forecasting: Scope and

    big data in forecasting research a literature review

  2. (PDF) Predictive Analysis of Big Data in Retail Industry Literature

    big data in forecasting research a literature review

  3. (PDF) Big Data Analytics and Firm Performance: A Systematic Review

    big data in forecasting research a literature review

  4. What's Big Data Analytics, It’s Workings, Benefits, and Challenges » DevOps

    big data in forecasting research a literature review

  5. (PDF) Economic Forecasting with Big Data: A Literature Review

    big data in forecasting research a literature review

  6. Summary of the literature review findings.

    big data in forecasting research a literature review

VIDEO

  1. Does forecast accuracy even matter?

  2. Optimize read from Relational Databases using Spark

  3. PR-068: DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

  4. WHAT TO WRITE IN RESEARCH LITERATURE REVIEW#RESEARCHWRITNGFORBEGINNERS

  5. Big data analysis in geoscience

  6. Forecasts evaluation Approaches using R

COMMENTS

  1. Big Data in Forecasting Research: A Literature Review

    Abstract. With the boom in Internet techniques and computer science, a variety of big data have been introduced into forecasting research, bringing new knowledge and improving prediction models. This paper is the first attempt to conduct a literature review on full-scale big data in forecasting research.

  2. Big Data in Forecasting Research: A Literature Review

    A review on full-scale big data in forecasting research is presented. •. Big data in forecasting research fell into UGC data, device data and log data. •. Three steps were taken: data collection, data process and prediction improvement. •. For each data type, what, where and how big data improved prediction are detailed.

  3. Economic forecasting with big data: A literature review

    Abstract. Big data technology has revolutionized the research paradigm of economic forecasting regardless of the data source, forecasting method, or forecasting result. This study evaluates the current literature on economic forecasting using big data and employs bibliometric approaches to offer a comprehensive analysis.

  4. Forecasting with Big Data: A Review

    Big Data is a revolutionary phenomenon which is one of the most frequently discussed topics in the modern age, and is expected to remain so in the foreseeable future. In this paper we present a comprehensive review on the use of Big Data for forecasting by identifying and reviewing the problems, potential, challenges and most importantly the related applications. Skills, hardware and software ...

  5. Big Data in Forecasting Research: A Literature Review

    TLDR. This paper tenders a systematic literature review method for big data analytic approaches in weather forecasting (published between 2014 and August 2020) and presents a comparison of the aforementioned categories regarding accuracy, scalability, execution time, and other Quality of Service factors. Expand.

  6. Big Data Analytics in Weather Forecasting: A Systematic Review

    This section demonstrates a road map for a systematic review of the research relevant to big data analytic mechanisms in weather forecasting. There is a difference between a systematic review and a common traditional one: A systematic literature review (SLR) increases transparency and uses precise and replicable steps [57,58,59,60,61,62].SLRs depend on clear and appraised review protocols to ...

  7. Big Data Analytics in Forecasting Research: A Literature Review

    This paper is the first attempt to conduct a literature review on full-scale big data analytics in forecasting research. By source, big data in forecasting research fell into user-generated ...

  8. Economic Forecasting with Big Data: A Literature Review

    Big data technology has changed the research paradigm of economic forecasting regardless of the data source, forecasting method or forecasting result. In this paper, by utilizing bibliometric ...

  9. [PDF] Forecasting with Big Data: A Review

    The review finds that at present, the fields of Economics, Energy and Population Dynamics have been the major exploiters of Big Data forecasting whilst Factor models, Bayesian models and Neural Networks are the most common tools adopted for forecasting with Big Data. Big Data is a revolutionary phenomenon which is one of the most frequently discussed topics in the modern age, and is expected ...

  10. Economic Forecasting with Big Data: A Literature Review

    Abstract. Big data technology has changed the research paradigm of economic forecasting regardless of the data source, forecasting method or forecasting result. In this paper, by utilizing bibliometric methods, we analyze the existing literature on big data economic forecasting with 821 articles, collected from the ''Web of Science Core ...

  11. Big Data in Forecasting Research: A Literature Review

    With the boom in Internet techniques and computer science, a variety of big data have been introduced into forecasting research, bringing new knowledge and improving prediction models. This paper is the first attempt to conduct a literature review on full-scale big data in forecasting research. By source, big data in forecasting research fell ...

  12. Economic Forecasting with Big Data: A Literature Review

    Abstract. Big data technology has changed the research paradigm of economic forecasting regardless of the data source, forecasting method or forecasting result. In this paper, by utilizing bibliometric methods, we analyze the existing literature on big data economic forecasting with 821 articles, collected from the ''Web of Science Core ...

  13. Tourism and Hospitality Forecasting With Big Data: A Systematic Review

    Empirical research has shown that incorporating big data into tourism and hospitality forecasting significantly improves prediction accuracy. This study presents a comprehensive review of big data forecasting in the tourism and hospitality industry, critically evaluating existing research and identifying five key research questions and trends that require further attention.

  14. Predictive big data analytics for supply chain demand forecasting

    The focus of this meta-research (literature review) paper is on "demand forecasting" in supply chains. The characteristics of demand data in today's ever expanding and sporadic global supply chains makes the adoption of big data analytics (and machine learning) approaches a necessity for demand forecasting.

  15. PDF Forecasting with Big Data: A Review

    Forecasting with Big Data: A Review ... Future research should concentrate on evaluating the applicability of such techniques for filtering the noise in Big Data to enable accurate and meaningful forecasts. 3.3 Hardware and Software Arribas-Bel [3] was of the view that current statistical software is not able to tackle ...

  16. Full article: A systematic literature review on the use of big data for

    4.3.1. Methods based on statistical analysis. The use of big data in sustainable tourism research should enable local communities to use statistical modelling and forecasting to look forward to what their needs are and mitigate the negative impacts in the future (Caringal et al., 2017 ). Tables 6.

  17. A Systematic Literature Review and Future Perspectives for Handling Big

    2.1 An Overview of Big Data: Definitions and Characteristics. Over the past few decades data has grown incredibly at an unforeseen rate. The volume of data is predicted to expand, as illustrated in Fig. 2, from a few zettabytes in 2010 to 163 zettabytes in 2025, according to the survey taken from International Data Corporation (IDC).As a result, the capacity of data storage has expanded from ...

  18. Economic forecasting with big data: A literature review

    Semantic Scholar extracted view of "Economic forecasting with big data: A literature review" by Wen-Zhung Lin et al. Semantic Scholar extracted view of "Economic forecasting with big data: A literature review" by Wen-Zhung Lin et al. ... This research proposes an intelligent case‐based reasoning (iCBR) approach to better predict kidney ...

  19. Big Data Analytics in Weather Forecasting: A Systematic Review

    This paper tenders a systematic literature review method for big data analytic approaches in weather forecasting (published between 2014 and August 2020). A feasible taxonomy of the current ...

  20. Big Data Analytics in Weather Forecasting: A Systematic Review

    The types of algorithms, measurement environments, modeling tools, and the advantages and disadvantages per paper are extracted. In addition, open issues and future trends are debated. Keywords: Weather forecasting, big data, systematic literature review, survey. 1. Introduction Originally weather forecasting started in the 19th century [1, 2].

  21. Big Data in Forecasting Research: A Literature Review

    Big Data in Forecasting Research: A Literature Review. https://doi.org/10.1016/j.bdr.2021.100289 Journal: Big Data Research, 2022, p. 100289 Publisher: Elsevier BV ...

  22. PDF Big Data Analytics in Weather Forecasting: A Systematic Review

    By employing big data analytics in weather forecasting, the challenges related to traditional data management techniques and technology can be solved. This paper tenders a systematic literature review method for big data analytic approaches in weather forecasting (published between 2014 and August 2020).

  23. Tourism and Hospitality Forecasting With Big Data: A Systematic Review

    This study presents a comprehensive review of big data forecasting in the tourism and hospitality industry, critically evaluating existing research and identifying five key research questions and trends that require further attention. Empirical research has shown that incorporating big data into tourism and hospitality forecasting significantly improves prediction accuracy.