Creativity and Critical Thinking

  • First Online: 31 January 2022

Cite this chapter

teaching critical thinking creativity problem solving pdf

  • Peter Ellerton 6 &
  • Robert Kelly 7  

1138 Accesses

1 Citations

The twenty-first century has seen a rapid growth of curriculum initiatives that consider the development of cross-curriculum competencies as a core issue, and significant for every discipline area. Both because of such cross-curriculum developments and because of the nature of STEM itself, the integration of the particular core competencies of ‘creativity’ and ‘critical thinking’ across the STEM disciplines has also grown rapidly in educational importance. Creativity and critical thinking in education are best viewed from the perspectives of both learner development and teacher expertise, with the attributes specific to each concept appropriately seen as increasing in sophistication or complexity over time. A broad examination of each of the two concepts and their interrelatedness, and the consequent implications for educational practice concerned with developing them, creates a lens through which to view the application of creativity and critical thinking across the complexity and diversity of the STEM disciplines and their integrated forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Altan, S., Lane, J. F., & Dottin, E. (2017). Using habits of mind, intelligent behaviors, and educational theories to create a conceptual framework for developing effective teaching dispositions. Journal of Teacher Education, 70 (2), 169–183. https://doi.org/10.1177/0022487117736024 .

Article   Google Scholar  

Amabile, T. (2012). The componential theory of creativity . Boston: Harvard Business School.

Google Scholar  

Amabile, T., & Pratt, M. (2017). The dynamic componential model of creativity and innovation in organizations: Making progress, making meaning. Research in Organizational Behavior, 37 , 157–183.

Annas, J. (1995). Virtue as a skill. International Journal of Philosophical Studies, 3 (2), 227–243. https://doi.org/10.1080/09672559508570812 .

Bailin, S., & Battersby, M. (2016). Fostering the virtues of inquiry. An International Review of Philosophy, 35 (2), 367–374. https://doi.org/10.1007/s11245-015-9307-6 .

Bowers, S. (2019). Irish teenager wins Google science award for microplastics project . Retrieved from https://www.irishtimes.com/news/science/irish-teenager-wins-google-science-award-for-microplastics-project-1.3971256

Dewey, J. (1938). Logic: The theory of inquiry . New York.

Dottin, E. (2009). Professional judgment and dispositions in teacher education. Teaching and Teacher Education, 25 , 83–88. https://doi.org/10.1016/j.tate.2008.06.005

Ellerton, P. (2015). Metacognition and critical thinking: Some pedagogical imperatives. In M. Davies & R. Barnett (Eds.), The Palgrave handbook of critical thinking in higher education (pp. 409–426). https://doi.org/10.1057/9781137378057_25 .

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations . Retrieved from http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED315423

Gloor, P. (2017). Swarm leadership and the collective mind . Bingley, UK: Emerald.

Book   Google Scholar  

Gotz, I. (1981). On defining creativity. Journal of Aesthetics and Art Criticism, 39 , 297–301.

Guilford, J. (1959). Traits of creativity. In H. Anderson (Ed.), Creativity and its cultivation (pp. 142–161). New York: Harper.

IDEO . (2012). Design thinking toolkit for educators (2nd ed.). Retrieved from https://designthinkingforeducators.com

Kallick, B., & Costa, A. L. (2008). Learning and leading with habits of mind: 16 essential characteristics for success. Association for Supervision & Curriculum Development . http://ebookcentral.proquest.com/lib/uql/detail.action?docID=410671

Kelly, R. (2012). Educating for creativity: A global conversation . Edmonton: Brush Education.

Kelly, R. (2016). Creative development: Transforming education through design thinking, innovation and invention . Edmonton: Brush Education.

Kelly, R. (2020). Collaborative creativity: Educating for creative development, innovation and entrepreneurship . Edmonton: Brush Education.

Lipman, M. (2003). Thinking in education (2nd ed.). Cambridge, UK: Cambridge University.

Lubart, T. I. (2000). Models of creative process: Past, present and future. Creativity Research Journal, 13 (3–4), 295–308.

Mead, G. H. (1910). The psychology of social consciousness implied in instruction. Science, 31 (801), 688–693.

Mulnix, J. W. (2010). Thinking critically about critical thinking. Educational Philosophy and Theory, 44 (5), 464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x .

OECD. (2018a). Teaching, assessing and learning creative and critical thinking skills in education . Retrieved from http://www.oecd.org/education/ceri/assessingprogressionincreativeandcriticalthinkingskillsineducation.htm

OECD. (2018b). Fostering and assessing students’ critical and creative thinking skills in higher education . Retrieved from https://www.oecd.org/education/ceri/Fostering-and-assessing-students-creative-and-critical-thinking-skills-in-higher-education.pdf

Osborn, A. (1963). Applied imagination . New York: Charles Schribner.

Partnership for 21st Century Learning (P21). (2018). Retrieved from http://www.p21.org/members-states/partner-states

Paul, R., & Elder, L. (2008). The miniature guide to critical thinking: Concepts and tools / by Richard Paul and Linda Elder (5th ed.). Dillon Beach, CA: Foundation for Critical Thinking.

Piirto, J. (2004). Understanding creativity . Scottsdale: Great Potential.

Plucker, J., Beghetto, R., & Dow, G. (2004). Why isn’t creativity more important to educational psychologists? Potentials, pitfalls, and future directions in creativity research. Educational Psychologist, 39 , 83–96.

Sawyer, R. K. (2012). Explaining creativity: The science of innovation . New York: Oxford University.

Scriven, M., & Paul, R. (2011, November 23). Defining critical thinking . Retrieved from http://www.criticalthinking.org/pages/defining-critical-thinking/766

United Nations. (2019). United Nations sustainable development goals . Retrieved from https://www.un.org/sustainabledevelopment/

Siegel, H. (1989). Epistemology, critical thinking, and critical thinking pedagogy. Argumentation, 3 (2), 127–140. https://doi.org/10.1007/bf00128144 .

Siegel, H. (2017). Education’s epistemology: Rationality, diversity, and critical thinking . https://doi.org/10.1093/oso/9780190682675.003.0007 .

Sperber, D., & Mercier, H. (2012). Reason as a social competence. In H. Landemore & J. Elster (Eds.), Collective wisdom—Principles and mechanisms (pp. 368–392). New York: Cambridge University.

Chapter   Google Scholar  

The Association of American Colleges and Universities. (2013). It takes more than a major: Employer priorities for college learning and student success . Retrieved from https://www.aacu.org/sites/default/files/files/LEAP/2013_EmployerSurvey.pdf

Topping, K. J., & Trickey, S. (2007). Impact of philosophical enquiry on school students’ interactive behaviour. Thinking Skills and Creativity, 2 (2), 73–84. https://doi.org/10.1016/j.tsc.2007.03.001 .

Van Gelder, T., Bissett, M., & Cumming, G. (2004). Cultivating expertise in informal reasoning. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 58 (2), 142–152. https://doi.org/10.1037/h0085794 .

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes . Cambridge\London: Harvard University.

Waks, L. J. (2014). Education 2.0: The learning web revolution and the transformation of the school . Boulder: Paradigm.

Wallas, G. (1926). The art of thought . New York: Harcourt Brace.

Willingham, D. T. (2008). Critical thinking: Why is it so hard to teach? Arts Education Policy Review, 109 , 21–32. https://doi.org/10.3200/AEPR.109.4.21-32 .

Willingham, D.T. (2019). How to teach critical thinking . Retrieved from https://education.nsw.gov.au/media/exar/How-to-teach-critical-thinking-Willingham.pdf

Download references

Author information

Authors and affiliations.

Faculty of Humanities and Social Sciences, University of Queensland, Brisbane, QLD, Australia

Peter Ellerton

Faculty of Arts, University of Calgary, Calgary, Canada

Robert Kelly

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Robert Kelly .

Editor information

Editors and affiliations.

Monash University, Clayton, VIC, Australia

Amanda Berry

University of Waikato, Hamilton, New Zealand

Cathy Buntting

Deborah Corrigan

Richard Gunstone

Alister Jones

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Ellerton, P., Kelly, R. (2021). Creativity and Critical Thinking. In: Berry, A., Buntting, C., Corrigan, D., Gunstone, R., Jones, A. (eds) Education in the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-85300-6_2

Download citation

DOI : https://doi.org/10.1007/978-3-030-85300-6_2

Published : 31 January 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-85299-3

Online ISBN : 978-3-030-85300-6

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

16k Accesses

16 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

teaching critical thinking creativity problem solving pdf

Testing theory of mind in large language models and humans

teaching critical thinking creativity problem solving pdf

Impact of artificial intelligence on human loss in decision making, laziness and safety in education

teaching critical thinking creativity problem solving pdf

Interviews in the social sciences

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis.

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

teaching critical thinking creativity problem solving pdf

Change Password

Your password must have 8 characters or more and contain 3 of the following:.

  • a lower case character, 
  • an upper case character, 
  • a special character 

Password Changed Successfully

Your password has been changed

  • Sign in / Register

Request Username

Can't sign in? Forgot your username?

Enter your email address below and we will send you your username

If the address matches an existing account you will receive an email with instructions to retrieve your username

Teaching Creativity and Inventive Problem Solving in Science

  • Robert L. DeHaan

Division of Educational Studies, Emory University, Atlanta, GA 30322

Search for more papers by this author

Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures.

INTRODUCTION

Dr. Dunne paces in front of his section of first-year college students, today not as their Bio 110 teacher but in the role of facilitator in their monthly “invention session.” For this meeting, the topic is stem cell therapy in heart disease. Members of each team of four students have primed themselves on the topic by reading selected articles from accessible sources such as Science, Nature, and Scientific American, and searching the World Wide Web, triangulating for up-to-date, accurate, background information. Each team knows that their first goal is to define a set of problems or limitations to overcome within the topic and to begin to think of possible solutions. Dr. Dunne starts the conversation by reminding the group of the few ground rules: one speaker at a time, listen carefully and have respect for others' ideas, question your own and others' assumptions, focus on alternative paths or solutions, maintain an atmosphere of collaboration and mutual support. He then sparks the discussion by asking one of the teams to describe a problem in need of solution.

Science in the United States is widely credited as a major source of discovery and economic development. According to the 2005 TAP Report produced by a prominent group of corporate leaders, “To maintain our country's competitiveness in the twenty-first century, we must cultivate the skilled scientists and engineers needed to create tomorrow's innovations.” ( www.tap2015.org/about/TAP_report2.pdf ). A panel of scientists, engineers, educators, and policy makers convened by the National Research Council (NRC) concurred with this view, reporting that the vitality of the nation “is derived in large part from the productivity of well-trained people and the steady stream of scientific and technical innovations they produce” ( NRC, 2007 ).

For many decades, science education reformers have promoted the idea that learners should be engaged in the excitement of science; they should be helped to discover the value of evidence-based reasoning and higher-order cognitive skills, and be taught to become innovative problem solvers (for reviews, see DeHaan, 2005 ; Hake, 2005 ; Nelson, 2008 ; Perkins and Wieman, 2008 ). But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, are not widely known or used. An invention session such as that led by the fictional Dr. Dunne, described above, may seem fanciful as a means of teaching students to think about science as something more than a body of facts and terms to memorize. In recent years, however, models for promoting creative problem solving were developed for classroom use, as detailed by Treffinger and Isaksen (2005) , and such techniques are often used in the real world of high technology. To promote imaginative thinking, the advertising executive Alex F. Osborn invented brainstorming ( Osborn, 1948 , 1979 ), a technique that has since been successful in stimulating inventiveness among engineers and scientists. Could such strategies be transferred to a class for college students? Could they serve as a supplement to a high-quality, scientific teaching curriculum that helps students learn the facts and conceptual frameworks of science and make progress along the novice–expert continuum? Could brainstorming or other instructional strategies that are specifically designed to promote creativity teach students to be more adaptive in their growing expertise, more innovative in their problem-solving abilities? To begin to answer those questions, we first need to understand what is meant by “creativity.”

What Is Creativity? Big-C versus Mini-C Creativity

How to define creativity is an age-old question. Justice Potter Stewart's famous dictum regarding obscenity “I know it when I see it” has also long been an accepted test of creativity. But this is not an adequate criterion for developing an instructional approach. A scientist colleague of mine recently noted that “Many of us [in the scientific community] rarely give the creative process a second thought, imagining one either ‘has it’ or doesn't.” We often think of inventiveness or creativity in scientific fields as the kind of gift associated with a Michelangelo or Einstein. This is what Kaufman and Beghetto (2008) call big-C creativity, borrowing the term that earlier workers applied to the talents of experts in various fields who were identified as particularly creative by their expert colleagues ( MacKinnon, 1978 ). In this sense, creativity is seen as the ability of individuals to generate new ideas that contribute substantially to an intellectual domain. Howard Gardner defined such a creative person as one who “regularly solves problems, fashions products, or defines new questions in a domain in a way that is initially considered novel but that ultimately comes to be accepted in a particular cultural setting” ( Gardner, 1993 , p. 35).

But there is another level of inventiveness termed by various authors as “little-c” ( Craft, 2000 ) or “mini-c” ( Kaufman and Beghetto, 2008 ) creativity that is widespread among all populations. This would be consistent with the workplace definition of creativity offered by Amabile and her coworkers: “coming up with fresh ideas for changing products, services and processes so as to better achieve the organization's goals” ( Amabile et al. , 2005 ). Mini-c creativity is based on what Craft calls “possibility thinking” ( Craft, 2000 , pp. 3–4), as experienced when a worker suddenly has the insight to visualize a new, improved way to accomplish a task; it is represented by the “aha” moment when a student first sees two previously disparate concepts or facts in a new relationship, an example of what Arthur Koestler identified as bisociation: “perceiving a situation or event in two habitually incompatible associative contexts” ( Koestler, 1964 , p. 95).

In this essay, I maintain that mini-c creativity is not a mysterious, innate endowment of rare individuals. Instead, I argue that creative thinking is a multicomponent process, mediated through social interactions, that can be explained by reference to increasingly well-understood mental abilities such as cognitive flexibility and cognitive control that are widely distributed in the population. Moreover, I explore some of the recent research evidence (though with no effort at a comprehensive literature review) showing that these mental abilities are teachable; like other higher-order cognitive skills (HOCS), they can be enhanced by explicit instruction.

Creativity Is a Multicomponent Process

Efforts to define creativity in psychological terms go back to J. P. Guilford ( Guilford, 1950 ) and E. P. Torrance ( Torrance, 1974 ), both of whom recognized that underlying the construct were other cognitive variables such as ideational fluency, originality of ideas, and sensitivity to missing elements. Many authors since then have extended the argument that a creative act is not a singular event but a process, an interplay among several interactive cognitive and affective elements. In this view, the creative act has two phases, a generative and an exploratory or evaluative phase ( Finke et al. , 1996 ). During the generative process, the creative mind pictures a set of novel mental models as potential solutions to a problem. In the exploratory phase, we evaluate the multiple options and select the best one. Early scholars of creativity, such as J. P. Guilford, characterized the two phases as divergent thinking and convergent thinking ( Guilford, 1950 ). Guilford defined divergent thinking as the ability to produce a broad range of associations to a given stimulus or to arrive at many solutions to a problem (for overviews of the field from different perspectives, see Amabile, 1996 ; Banaji et al. , 2006 ; Sawyer, 2006 ). In neurocognitive terms, divergent thinking is referred to as associative richness ( Gabora, 2002 ; Simonton, 2004 ), which is often measured experimentally by comparing the number of words that an individual generates from memory in response to stimulus words on a word association test. In contrast, convergent thinking refers to the capacity to quickly focus on the one best solution to a problem.

The idea that there are two stages to the creative process is consistent with results from cognition research indicating that there are two distinct modes of thought, associative and analytical ( Neisser, 1963 ; Sloman, 1996 ). In the associative mode, thinking is defocused, suggestive, and intuitive, revealing remote or subtle connections between items that may be correlated, or may not, and are usually not causally related ( Burton, 2008 ). In the analytical mode, thought is focused and evaluative, more conducive to analyzing relationships of cause and effect (for a review of other cognitive aspects of creativity, see Runco, 2004 ). Science educators associate the analytical mode with the upper levels (analysis, synthesis, and evaluation) of Bloom's taxonomy (e.g., Crowe et al. , 2008 ), or with “critical thinking,” the process that underlies the “purposeful, self-regulatory judgment that drives problem-solving and decision-making” ( Quitadamo et al. , 2008 , p. 328). These modes of thinking are under cognitive control through the executive functions of the brain. The core executive functions, which are thought to underlie all planning, problem solving, and reasoning, are defined ( Blair and Razza, 2007 ) as working memory control (mentally holding and retrieving information), cognitive flexibility (considering multiple ideas and seeing different perspectives), and inhibitory control (resisting several thoughts or actions to focus on one). Readers wishing to delve further into the neuroscience of the creative process can refer to the cerebrocerebellar theory of creativity ( Vandervert et al. , 2007 ) in which these mental activities are described neurophysiologically as arising through interactions among different parts of the brain.

The main point from all of these works is that creativity is not some single hard-to-measure property or act. There is ample evidence that the creative process requires both divergent and convergent thinking and that it can be explained by reference to increasingly well-understood underlying mental abilities ( Haring-Smith, 2006 ; Kim, 2006 ; Sawyer, 2006 ; Kaufman and Sternberg, 2007 ) and cognitive processes ( Simonton, 2004 ; Diamond et al. , 2007 ; Vandervert et al. , 2007 ).

Creativity Is Widely Distributed and Occurs in a Social Context

Although it is understandable to speak of an aha moment as a creative act by the person who experiences it, authorities in the field have long recognized (e.g., Simonton, 1975 ) that creative thinking is not so much an individual trait but rather a social phenomenon involving interactions among people within their specific group or cultural settings. “Creativity isn't just a property of individuals, it is also a property of social groups” ( Sawyer, 2006 , p. 305). Indeed, Osborn introduced his brainstorming method because he was convinced that group creativity is always superior to individual creativity. He drew evidence for this conclusion from activities that demand collaborative output, for example, the improvisations of a jazz ensemble. Although each musician is individually creative during a performance, the novelty and inventiveness of each performer's playing is clearly influenced, and often enhanced, by “social and interactional processes” among the musicians ( Sawyer, 2006 , p. 120). Recently, Brophy (2006) offered evidence that for problem solving, the situation may be more nuanced. He confirmed that groups of interacting individuals were better at solving complex, multipart problems than single individuals. However, when dealing with certain kinds of single-issue problems, individual problem solvers produced a greater number of solutions than interacting groups, and those solutions were judged to be more original and useful.

Consistent with the findings of Brophy (2006) , many scholars acknowledge that creative discoveries in the real world such as solving the problems of cutting-edge science—which are usually complex and multipart—are influenced or even stimulated by social interaction among experts. The common image of the lone scientist in the laboratory experiencing a flash of creative inspiration is probably a myth from earlier days. As a case in point, the science historian Mara Beller analyzed the social processes that underlay some of the major discoveries of early twentieth-century quantum physics. Close examination of successive drafts of publications by members of the Copenhagen group revealed a remarkable degree of influence and collaboration among 10 or more colleagues, although many of these papers were published under the name of a single author ( Beller, 1999 ). Sociologists Bruno Latour and Steve Woolgar's study ( Latour and Woolgar, 1986 ) of a neuroendocrinology laboratory at the Salk Institute for Biological Studies make the related point that social interactions among the participating scientists determined to a remarkable degree what discoveries were made and how they were interpreted. In the laboratory, researchers studied the chemical structure of substances released by the brain. By analysis of the Salk scientists' verbalizations of concepts, theories, formulas, and results of their investigations, Latour and Woolgar showed that the structures and interpretations that were agreed upon, that is, the discoveries announced by the laboratory, were mediated by social interactions and power relationships among members of the laboratory group. By studying the discovery process in other fields of the natural sciences, sociologists and anthropologists have provided more cases that further illustrate how social and cultural dimensions affect scientific insights (for a thoughtful review, see Knorr Cetina, 1995 ).

In sum, when an individual experiences an aha moment that feels like a singular creative act, it may rather have resulted from a multicomponent process, under the influence of group interactions and social context. The process that led up to what may be sensed as a sudden insight will probably have included at least three diverse, but testable elements: 1) divergent thinking, including ideational fluency or cognitive flexibility, which is the cognitive executive function that underlies the ability to visualize and accept many ideas related to a problem; 2) convergent thinking or the application of inhibitory control to focus and mentally evaluate ideas; and 3) analogical thinking, the ability to understand a novel idea in terms of one that is already familiar.

LITERATURE REVIEW

What do we know about how to teach creativity.

The possibility of teaching for creative problem solving gained credence in the 1960s with the studies of Jerome Bruner, who argued that children should be encouraged to “treat a task as a problem for which one invents an answer, rather than finding one out there in a book or on the blackboard” ( Bruner, 1965 , pp. 1013–1014). Since that time, educators and psychologists have devised programs of instruction designed to promote creativity and inventiveness in virtually every student population: pre–K, elementary, high school, and college, as well as in disadvantaged students, athletes, and students in a variety of specific disciplines (for review, see Scott et al. , 2004 ). Smith (1998) identified 172 instructional approaches that have been applied at one time or another to develop divergent thinking skills.

Some of the most convincing evidence that elements of creativity can be enhanced by instruction comes from work with young children. Bodrova and Leong (2001) developed the Tools of the Mind (Tools) curriculum to improve all of the three core mental executive functions involved in creative problem solving: cognitive flexibility, working memory, and inhibitory control. In a year-long randomized study of 5-yr-olds from low-income families in 21 preschool classrooms, half of the teachers applied the districts' balanced literacy curriculum (literacy), whereas the experimenters trained the other half to teach the same academic content by using the Tools curriculum ( Diamond et al. , 2007 ). At the end of the year, when the children were tested with a battery of neurocognitive tests including a test for cognitive flexibility ( Durston et al. , 2003 ; Davidson et al. , 2006 ), those exposed to the Tools curriculum outperformed the literacy children by as much as 25% ( Diamond et al. , 2007 ). Although the Tools curriculum and literacy program were similar in academic content and in many other ways, they differed primarily in that Tools teachers spent 80% of their time explicitly reminding the children to think of alternative ways to solve a problem and building their executive function skills.

Teaching older students to be innovative also demands instruction that explicitly promotes creativity but is rigorously content-rich as well. A large body of research on the differences between novice and expert cognition indicates that creative thinking requires at least a minimal level of expertise and fluency within a knowledge domain ( Bransford et al. , 2000 ; Crawford and Brophy, 2006 ). What distinguishes experts from novices, in addition to their deeper knowledge of the subject, is their recognition of patterns in information, their ability to see relationships among disparate facts and concepts, and their capacity for organizing content into conceptual frameworks or schemata ( Bransford et al. , 2000 ; Sawyer, 2005 ).

Such expertise is often lacking in the traditional classroom. For students attempting to grapple with new subject matter, many kinds of problems that are presented in high school or college courses or that arise in the real world can be solved merely by applying newly learned algorithms or procedural knowledge. With practice, problem solving of this kind can become routine and is often considered to represent mastery of a subject, producing what Sternberg refers to as “pseudoexperts” ( Sternberg, 2003 ). But beyond such routine use of content knowledge the instructor's goal must be to produce students who have gained the HOCS needed to apply, analyze, synthesize, and evaluate knowledge ( Crowe et al. , 2008 ). The aim is to produce students who know enough about a field to grasp meaningful patterns of information, who can readily retrieve relevant knowledge from memory, and who can apply such knowledge effectively to novel problems. This condition is referred to as adaptive expertise ( Hatano and Ouro, 2003 ; Schwartz et al. , 2005 ). Instead of applying already mastered procedures, adaptive experts are able to draw on their knowledge to invent or adapt strategies for solving unique or novel problems within a knowledge domain. They are also able, ideally, to transfer conceptual frameworks and schemata from one domain to another (e.g., Schwartz et al. , 2005 ). Such flexible, innovative application of knowledge is what results in inventive or creative solutions to problems ( Crawford and Brophy, 2006 ; Crawford, 2007 ).

Promoting Creative Problem Solving in the College Classroom

In most college courses, instructors teach science primarily through lectures and textbooks that are dominated by facts and algorithmic processing rather than by concepts, principles, and evidence-based ways of thinking. This is despite ample evidence that many students gain little new knowledge from traditional lectures ( Hrepic et al. , 2007 ). Moreover, it is well documented that these methods engender passive learning rather than active engagement, boredom instead of intellectual excitement, and linear thinking rather than cognitive flexibility (e.g., Halpern and Hakel, 2003 ; Nelson, 2008 ; Perkins and Wieman, 2008 ). Cognitive flexibility, as noted, is one of the three core mental executive functions involved in creative problem solving ( Ausubel, 1963 , 2000 ). The capacity to apply ideas creatively in new contexts, referred to as the ability to “transfer” knowledge (see Mestre, 2005 ), requires that learners have opportunities to actively develop their own representations of information to convert it to a usable form. Especially when a knowledge domain is complex and fraught with ill-structured information, as in a typical introductory college biology course, instruction that emphasizes active-learning strategies is demonstrably more effective than traditional linear teaching in reducing failure rates and in promoting learning and transfer (e.g., Freeman et al. , 2007 ). Furthermore, there is already some evidence that inclusion of creativity training as part of a college curriculum can have positive effects. Hunsaker (2005) has reviewed a number of such studies. He cites work by McGregor (2001) , for example, showing that various creativity training programs including brainstorming and creative problem solving increase student scores on tests of creative-thinking abilities.

Model creativity—students develop creativity when instructors model creative thinking and inventiveness.

Repeatedly encourage idea generation—students need to be reminded to generate their own ideas and solutions in an environment free of criticism.

Cross-fertilize ideas—where possible, avoid teaching in subject-area boxes: a math box, a social studies box, etc; students' creative ideas and insights often result from learning to integrate material across subject areas.

Build self-efficacy—all students have the capacity to create and to experience the joy of having new ideas, but they must be helped to believe in their own capacity to be creative.

Constantly question assumptions—make questioning a part of the daily classroom exchange; it is more important for students to learn what questions to ask and how to ask them than to learn the answers.

Imagine other viewpoints—students broaden their perspectives by learning to reflect upon ideas and concepts from different points of view.

How Is Creativity Related to Critical Thinking and the Higher-Order Cognitive Skills?

It is not uncommon to associate creativity and ingenuity with scientific reasoning ( Sawyer, 2005 ; 2006 ). When instructors apply scientific teaching strategies ( Handelsman et al. , 2004 ; DeHaan, 2005 ; Wood, 2009 ) by using instructional methods based on learning research, according to Ebert-May and Hodder ( 2008 ), “we see students actively engaged in the thinking, creativity, rigor, and experimentation we associate with the practice of science—in much the same way we see students learn in the field and in laboratories” (p. 2). Perkins and Wieman (2008) note that “To be successful innovators in science and engineering, students must develop a deep conceptual understanding of the underlying science ideas, an ability to apply these ideas and concepts broadly in different contexts, and a vision to see their relevance and usefulness in real-world applications … An innovator is able to perceive and realize potential connections and opportunities better than others” (pp. 181–182). The results of Scott et al. (2004) suggest that nontraditional courses in science that are based on constructivist principles and that use strategies of scientific teaching to promote the HOCS and enhance content mastery and dexterity in scientific thinking ( Handelsman et al. , 2007 ; Nelson, 2008 ) also should be effective in promoting creativity and cognitive flexibility if students are explicitly guided to learn these skills.

Creativity is an essential element of problem solving ( Mumford et al. , 1991 ; Runco, 2004 ) and of critical thinking ( Abrami et al. , 2008 ). As such, it is common to think of applications of creativity such as inventiveness and ingenuity among the HOCS as defined in Bloom's taxonomy ( Crowe et al. , 2008 ). Thus, it should come as no surprise that creativity, like other elements of the HOCS, can be taught most effectively through inquiry-based instruction, informed by constructivist theory ( Ausubel, 1963 , 2000 ; Duch et al. , 2001 ; Nelson, 2008 ). In a survey of 103 instructors who taught college courses that included creativity instruction, Bull et al. (1995) asked respondents to rate the importance of various course characteristics for enhancing student creativity. Items ranking high on the list were: providing a social climate in which students feels safe, an open classroom environment that promotes tolerance for ambiguity and independence, the use of humor, metaphorical thinking, and problem defining. Many of the responses emphasized the same strategies as those advanced to promote creative problem solving (e.g., Mumford et al. , 1991 ; McFadzean, 2002 ; Treffinger and Isaksen, 2005 ) and critical thinking ( Abrami et al. , 2008 ).

In a careful meta-analysis, Scott et al. (2004) examined 70 instructional interventions designed to enhance and measure creative performance. The results were striking. Courses that stressed techniques such as critical thinking, convergent thinking, and constraint identification produced the largest positive effect sizes. More open techniques that provided less guidance in strategic approaches had less impact on the instructional outcomes. A striking finding was the effectiveness of being explicit; approaches that clearly informed students about the nature of creativity and offered clear strategies for creative thinking were most effective. Approaches such as social modeling, cooperative learning, and case-based (project-based) techniques that required the application of newly acquired knowledge were found to be positively correlated to high effect sizes. The most clear-cut result to emerge from the Scott et al. (2004) study was simply to confirm that creativity instruction can be highly successful in enhancing divergent thinking, problem solving, and imaginative performance. Most importantly, of the various cognitive processes examined, those linked to the generation of new ideas such as problem finding, conceptual combination, and idea generation showed the greatest improvement. The success of creativity instruction, the authors concluded, can be attributed to “developing and providing guidance concerning the application of requisite cognitive capacities … [and] a set of heuristics or strategies for working with already available knowledge” (p. 382).

Many of the scientific teaching practices that have been shown by research to foster content mastery and HOCS, and that are coming more widely into use, also would be consistent with promoting creativity. Wood (2009) has recently reviewed examples of such practices and how to apply them. These include relatively small modifications of the traditional lecture to engender more active learning, such as the use of concept tests and peer instruction ( Mazur, 1996 ), Just-in-Time-Teaching techniques ( Novak et al. , 1999 ), and student response systems known as “clickers” ( Knight and Wood, 2005 ; Crossgrove and Curran, 2008 ), all designed to allow the instructor to frequently and effortlessly elicit and respond to student thinking. Other strategies can transform the lecture hall into a workshop or studio classroom ( Gaffney et al. , 2008 ) where the teaching curriculum may emphasize problem-based (also known as project-based or case-based) learning strategies ( Duch et al. , 2001 ; Ebert-May and Hodder, 2008 ) or “community-based inquiry” in which students engage in research that enhances their critical-thinking skills ( Quitadamo et al. , 2008 ).

Another important approach that could readily subserve explicit creativity instruction is the use of computer-based interactive simulations, or “sims” ( Perkins and Wieman, 2008 ) to facilitate inquiry learning and effective, easy self-assessment. An example in the biological sciences would be Neurons in Action ( http://neuronsinaction.com/home/main ). In such educational environments, students gain conceptual understanding of scientific ideas through interactive engagement with materials (real or virtual), with each other, and with instructors. Following the tenets of scientific teaching, students are encouraged to pose and answer their own questions, to make sense of the materials, and to construct their own understanding. The question I pose here is whether an additional focus—guiding students to meet these challenges in a context that explicitly promotes creativity—would enhance learning and advance students' progress toward adaptive expertise?

Assessment of Creativity

To teach creativity, there must be measurable indicators to judge how much students have gained from instruction. Educational programs intended to teach creativity became popular after the Torrance Tests of Creative Thinking (TTCT) was introduced in the 1960s ( Torrance, 1974 ). But it soon became apparent that there were major problems in devising tests for creativity, both because of the difficulty of defining the construct and because of the number and complexity of elements that underlie it. Tests of intelligence and other personality characteristics on creative individuals revealed a host of related traits such as verbal fluency, metaphorical thinking, flexible decision making, tolerance of ambiguity, willingness to take risks, autonomy, divergent thinking, self-confidence, problem finding, ideational fluency, and belief in oneself as being “creative” ( Barron and Harrington, 1981 ; Tardif and Sternberg, 1988 ; Runco and Nemiro, 1994 ; Snyder et al. , 2004 ). Many of these traits have been the focus of extensive research of recent decades, but, as noted above, creativity is not defined by any one trait; there is now reason to believe that it is the interplay among the cognitive and affective processes that underlie inventiveness and the ability to find novel solutions to a problem.

Although the early creativity researchers recognized that assessing divergent thinking as a measure of creativity required tests for other underlying capacities ( Guilford, 1950 ; Torrance, 1974 ), these workers and their colleagues nonetheless believed that a high score for divergent thinking alone would correlate with real creative output. Unfortunately, no such correlation was shown ( Barron and Harrington, 1981 ). Results produced by many of the instruments initially designed to measure various aspects of creative thinking proved to be highly dependent on the test itself. A review of several hundred early studies showed that an individual's creativity score could be affected by simple test variables, for example, how the verbal pretest instructions were worded ( Barron and Harrington, 1981 , pp. 442–443). Most scholars now agree that divergent thinking, as originally defined, was not an adequate measure of creativity. The process of creative thinking requires a complex combination of elements that include cognitive flexibility, memory control, inhibitory control, and analogical thinking, enabling the mind to free-range and analogize, as well as to focus and test.

More recently, numerous psychometric measures have been developed and empirically tested (see Plucker and Renzulli, 1999 ) that allow more reliable and valid assessment of specific aspects of creativity. For example, the creativity quotient devised by Snyder et al. (2004) tests the ability of individuals to link different ideas and different categories of ideas into a novel synthesis. The Wallach–Kogan creativity test ( Wallach and Kogan, 1965 ) explores the uniqueness of ideas associated with a stimulus. For a more complete list and discussion, see the Creativity Tests website ( www.indiana.edu/∼bobweb/Handout/cretv_6.html ).

The most widely used measure of creativity is the TTCT, which has been modified four times since its original version in 1966 to take into account subsequent research. The TTCT-Verbal and the TTCT-Figural are two versions ( Torrance, 1998 ; see http://ststesting.com/2005giftttct.html ). The TTCT-Verbal consists of five tasks; the “stimulus” for each task is a picture to which the test-taker responds briefly in writing. A sample task that can be viewed from the TTCT Demonstrator website asks, “Suppose that people could transport themselves from place to place with just a wink of the eye or a twitch of the nose. What might be some things that would happen as a result? You have 3 min.” ( www.indiana.edu/∼bobweb/Handout/d3.ttct.htm ).

In the TTCT-Figural, participants are asked to construct a picture from a stimulus in the form of a partial line drawing given on the test sheet (see example below; Figure 1 ). Specific instructions are to “Add lines to the incomplete figures below to make pictures out of them. Try to tell complete stories with your pictures. Give your pictures titles. You have 3 min.” In the introductory materials, test-takers are urged to “… think of a picture or object that no one else will think of. Try to make it tell as complete and as interesting a story as you can …” ( Torrance et al. , 2008 , p. 2).

Figure 1.

Figure 1. Sample figural test item from the TTCT Demonstrator website ( www.indiana.edu/∼bobweb/Handout/d3.ttct.htm ).

How would an instructor in a biology course judge the creativity of students' responses to such an item? To assist in this task, the TTCT has scoring and norming guides ( Torrance, 1998 ; Torrance et al. , 2008 ) with numerous samples and responses representing different levels of creativity. The guides show sample evaluations based upon specific indicators such as fluency, originality, elaboration (or complexity), unusual visualization, extending or breaking boundaries, humor, and imagery. These examples are easy to use and provide a high degree of validity and generalizability to the tests. The TTCT has been more intensively researched and analyzed than any other creativity instrument, and the norming samples have longitudinal validations and high predictive validity over a wide age range. In addition to global creativity scores, the TTCT is designed to provide outcome measures in various domains and thematic areas to allow for more insightful analysis ( Kaufman and Baer, 2006 ). Kim (2006) has examined the characteristics of the TTCT, including norms, reliability, and validity, and concludes that the test is an accurate measure of creativity. When properly used, it has been shown to be fair in terms of gender, race, community status, and language background. According to Kim (2006) and other authorities in the field ( McIntyre et al. , 2003 ; Scott et al. , 2004 ), Torrance's research and the development of the TTCT have provided groundwork for the idea that creative levels can be measured and then increased through instruction and practice.

SCIENTIFIC TEACHING TO PROMOTE CREATIVITY

How could creativity instruction be integrated into scientific teaching.

Guidelines for designing specific course units that emphasize HOCS by using strategies of scientific teaching are now available from the current literature. As an example, Karen Cloud-Hansen and colleagues ( Cloud-Hansen et al. , 2008 ) describe a course titled, “Ciprofloxacin Resistance in Neisseria gonorrhoeae .” They developed this undergraduate seminar to introduce college freshmen to important concepts in biology within a real-world context and to increase their content knowledge and critical-thinking skills. The centerpiece of the unit is a case study in which teams of students are challenged to take the role of a director of a local public health clinic. One of the county commissioners overseeing the clinic is an epidemiologist who wants to know “how you plan to address the emergence of ciprofloxacin resistance in Neisseria gonorrhoeae ” (p. 304). State budget cuts limit availability of expensive antibiotics and some laboratory tests to patients. Student teams are challenged to 1) develop a plan to address the medical, economic, and political questions such a clinic director would face in dealing with ciprofloxacin-resistant N. gonorrhoeae ; 2) provide scientific data to support their conclusions; and 3) describe their clinic plan in a one- to two-page referenced written report.

Throughout the 3-wk unit, in accordance with the principles of problem-based instruction ( Duch et al. , 2001 ), course instructors encourage students to seek, interpret, and synthesize their own information to the extent possible. Students have access to a variety of instructional formats, and active-learning experiences are incorporated throughout the unit. These activities are interspersed among minilectures and give the students opportunities to apply new information to their existing base of knowledge. The active-learning activities emphasize the key concepts of the minilectures and directly confront common misconceptions about antibiotic resistance, gene expression, and evolution. Weekly classes include question/answer/discussion sessions to address student misconceptions and 20-min minilectures on such topics as antibiotic resistance, evolution, and the central dogma of molecular biology. Students gather information about antibiotic resistance in N. gonorrhoeae , epidemiology of gonorrhea, and treatment options for the disease, and each team is expected to formulate a plan to address ciprofloxacin resistance in N. gonorrhoeae .

In this project, the authors assessed student gains in terms of content knowledge regarding topics covered such as the role of evolution in antibiotic resistance, mechanisms of gene expression, and the role of oncogenes in human disease. They also measured HOCS as gains in problem solving, according to a rubric that assessed self-reported abilities to communicate ideas logically, solve difficult problems about microbiology, propose hypotheses, analyze data, and draw conclusions. Comparing the pre- and posttests, students reported significant learning of scientific content. Among the thinking skill categories, students demonstrated measurable gains in their ability to solve problems about microbiology but the unit seemed to have little impact on their more general perceived problem-solving skills ( Cloud-Hansen et al. , 2008 ).

What would such a class look like with the addition of explicit creativity-promoting approaches? Would the gains in problem-solving abilities have been greater if during the minilectures and other activities, students had been introduced explicitly to elements of creative thinking from the Sternberg and Williams (1998) list described above? Would the students have reported greater gains if their instructors had encouraged idea generation with weekly brainstorming sessions; if they had reminded students to cross-fertilize ideas by integrating material across subject areas; built self-efficacy by helping students believe in their own capacity to be creative; helped students question their own assumptions; and encouraged students to imagine other viewpoints and possibilities? Of most relevance, could the authors have been more explicit in assessing the originality of the student plans? In an experiment that required college students to develop plans of a different, but comparable, type, Osborn and Mumford (2006) created an originality rubric ( Figure 2 ) that could apply equally to assist instructors in judging student plans in any course. With such modifications, would student gains in problem-solving abilities or other HOCS have been greater? Would their plans have been measurably more imaginative?

Figure 2.

Figure 2. Originality rubric (adapted from Osburn and Mumford, 2006 , p. 183).

Answers to these questions can only be obtained when a course like that described by Cloud-Hansen et al. (2008) is taught with explicit instruction in creativity of the type I described above. But, such answers could be based upon more than subjective impressions of the course instructors. For example, students could be pretested with items from the TTCT-Verbal or TTCT-Figural like those shown. If, during minilectures and at every contact with instructors, students were repeatedly reminded and shown how to be as creative as possible, to integrate material across subject areas, to question their own assumptions and imagine other viewpoints and possibilities, would their scores on TTCT posttest items improve? Would the plans they formulated to address ciprofloxacin resistance become more imaginative?

Recall that in their meta-analysis, Scott et al. (2004) found that explicitly informing students about the nature of creativity and offering strategies for creative thinking were the most effective components of instruction. From their careful examination of 70 experimental studies, they concluded that approaches such as social modeling, cooperative learning, and case-based (project-based) techniques that required the application of newly acquired knowledge were positively correlated with high effect sizes. The study was clear in confirming that explicit creativity instruction can be successful in enhancing divergent thinking and problem solving. Would the same strategies work for courses in ecology and environmental biology, as detailed by Ebert-May and Hodder (2008) , or for a unit elaborated by Knight and Wood (2005) that applies classroom response clickers?

Finally, I return to my opening question with the fictional Dr. Dunne. Could a weekly brainstorming “invention session” included in a course like those described here serve as the site where students are introduced to concepts and strategies of creative problem solving? As frequently applied in schools of engineering ( Paulus and Nijstad, 2003 ), brainstorming provides an opportunity for the instructor to pose a problem and to ask the students to suggest as many solutions as possible in a brief period, thus enhancing ideational fluency. Here, students can be encouraged explicitly to build on the ideas of others and to think flexibly. Would brainstorming enhance students' divergent thinking or creative abilities as measured by TTCT items or an originality rubric? Many studies have demonstrated that group interactions such as brainstorming, under the right conditions, can indeed enhance creativity ( Paulus and Nijstad, 2003 ; Scott et al. , 2004 ), but there is little information from an undergraduate science classroom setting. Intellectual Ventures, a firm founded by Nathan Myhrvold, the creator of Microsoft's Research Division, has gathered groups of engineers and scientists around a table for day-long sessions to brainstorm about a prearranged topic. Here, the method seems to work. Since it was founded in 2000, Intellectual Ventures has filed hundreds of patent applications in more than 30 technology areas, applying the “invention session” strategy ( Gladwell, 2008 ). Currently, the company ranks among the top 50 worldwide in number of patent applications filed annually. Whether such a technique could be applied successfully in a college science course will only be revealed by future research.

  • Abrami P. C., Bernard R. M., Borokhovski E., Wadem A., Surkes M. A., Tamim R., Zhang D. ( 2008 ). Instructional interventions affecting critical thinking skills and dispositions: a stage 1 meta-analysis . Rev. Educ. Res 78 , 1102-1134. Google Scholar
  • Amabile T. M. ( 1996 ). Creativity in Context , Boulder, CO: Westview Press. Google Scholar
  • Amabile T. M., Barsade S. G., Mueller J. S., Staw B. M. ( 2005 ). Affect and creativity at work . Admin. Sci. Q 50 , 367-403. Google Scholar
  • Ausubel D. ( 1963 ). The Psychology of Meaningful Verbal Learning , New York: Grune and Stratton. Google Scholar
  • Ausubel B. ( 2000 ). The Acquisition and Retention of Knowledge: A Cognitive View , Boston, MA: Kluwer Academic Publishers. Google Scholar
  • Banaji S., Burn A., Buckingham D. ( 2006 ). The Rhetorics of Creativity: A Review of the Literature , accessed 29 December 2008 London: Centre for the Study of Children, Youth and Media, www.creativepartnerships.com/data/files/rhetorics-of-creativity-12.pdf . Google Scholar
  • Barron F., Harrington D. M. ( 1981 ). Creativity, intelligence and personality . Ann. Rev. Psychol 32 , 439-476. Google Scholar
  • Beller M. ( 1999 ). Quantum Dialogue: The Making of a Revolution , Chicago, IL: University of Chicago Press. Google Scholar
  • Blair C., Razza R. P. ( 2007 ). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten . Child Dev 78 , 647-663. Medline ,  Google Scholar
  • Bodrova E., Leong D. J. ( 2001 ). The Tool of the Mind: a case study of implementing the Vygotskian approach In: American Early Childhood and Primary Classrooms , Geneva, Switzerland: UNESCO International Bureau of Education. Google Scholar
  • Bransford J. D.Brown A. L.Cocking R. R. ( 2000 ). How People Learn: Brain, Mind, Experience, and School , Washington, DC: National Academies Press. Google Scholar
  • Brophy D. R. ( 2006 ). A comparison of individual and group efforts to creatively solve contrasting types of problems . Creativity Res. J 18 , 293-315. Google Scholar
  • Bruner J. ( 1965 ). The growth of mind . Am. Psychol 20 , 1007-1017. Medline ,  Google Scholar
  • Bull K. S., Montgomery D., Baloche L. ( 1995 ). Teaching creativity at the college level: a synthesis of curricular components perceived as important by instructors . Creativity Res. J 8 , 83-90. Google Scholar
  • Burton R. ( 2008 ). On Being Certain: Believing You Are Right Even When You're Not , New York: St. Martin's Press. Google Scholar
  • Cloud-Hanson K. A., Kuehner J. N., Tong L., Miller S., Handelsman J. ( 2008 ). Money, sex and drugs: a case study to teach the genetics of antibiotic resistance . CBE Life Sci. Educ 7 , 302-309. Medline ,  Google Scholar
  • Craft A. ( 2000 ). Teaching Creativity: Philosophy and Practice , New York: Routledge. Google Scholar
  • Crawford V. M. ( 2007 ). Adaptive expertise as knowledge building in science teachers' problem solving accessed 1 July 2008 Proceedings of the Second European Cognitive Science Conference Delphi, Greece http://ctl.sri.com/publications/downloads/Crawford_EuroCogSci07Proceedings.pdf . Google Scholar
  • Crawford V. M., Brophy S. ( 2006 ). Adaptive Expertise: Theory, Methods, Findings, and Emerging Issues; September 2006 In: accessed 1 July 2008 Menlo Park, CA: SRI International, http://ctl.sri.com/publications/downloads/AESymposiumReportOct06.pdf . Google Scholar
  • Crossgrove K., Curran K. L. ( 2008 ). Using clickers in nonmajors- and majors-level biology courses: student opinion, learning, and long-term retention of course material . CBE Life Sci. Educ 7 , 146-154. Link ,  Google Scholar
  • Crowe A., Dirks C., Wenderoth M. P. ( 2008 ). Biology in bloom: implementing Bloom's taxonomy to enhance student learning in biology . CBE Life Sci. Educ 7 , 368-381. Link ,  Google Scholar
  • Davidson M. C., Amso D., Anderson L. C., Diamond A. ( 2006 ). Development of cognitive control and executive functions from 4–13 years: evidence from manipulations of memory, inhibition, and task switching . Neuropsychologia 44 , 2037-2078. Medline ,  Google Scholar
  • DeHaan R. L. ( 2005 ). The impending revolution in undergraduate science education . J. Sci. Educ. Technol 14 , 253-270. Google Scholar
  • Diamond A., Barnett W. S., Thomas J., Munro S. ( 2007 ). Preschool program improves cognitive control . Science 318 , 1387-1388. Medline ,  Google Scholar
  • Duch B. J., Groh S. E., Allen D. E. ( 2001 ). The Power of Problem-based Learning , Sterling, VA: Stylus Publishers. Google Scholar
  • Durston S., Davidson M. C., Thomas K. M., Worden M. S., Tottenham N., Martinez A., Watts R., Ulug A. M., Caseya B. J. ( 2003 ). Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI . Neuroimage 20 , 2135-2141. Medline ,  Google Scholar
  • Ebert-May D., Hodder J. ( 2008 ). Pathways to Scientific Teaching , Sunderland, MA: Sinauer. Google Scholar
  • Finke R. A., Ward T. B., Smith S. M. ( 1996 ). Creative Cognition: Theory, Research and Applications , Boston, MA: MIT Press. Google Scholar
  • Freeman S., O'Connor E., Parks J. W., Cunningham M., Hurley D., Haak D., Dirks C., Wenderoth M. P. ( 2007 ). Prescribed active learning increases performance in introductory biology . CBE Life Sci. Educ 6 , 132-139. Link ,  Google Scholar
  • Gabora L. ( 2002 ). Hewett T.Kavanagh E. Cognitive mechanisms underlying the creative process Proceedings of the Fourth International Conference on Creativity and Cognition 2002 October 13–16 Loughborough University, United Kingdom 126-133. Google Scholar
  • Gaffney J.D.H., Richards E., Kustusch M. B., Ding L., Beichner R. ( 2008 ). Scaling up education reform . J. Coll. Sci. Teach 37 , 48-53. Google Scholar
  • Gardner H. ( 1993 ). Creating Minds: An Anatomy of Creativity Seen through the Lives of Freud, Einstein, Picasso, Stravinsky, Eliot, Graham, and Ghandi In: New York: Harper Collins. Google Scholar
  • Gladwell M. ( 2008 ). In the air; who says big ideas are rare? The New Yorker accessed 19 May 2008 www.newyorker.com/reporting/2008/05/12/080512fa_fact_gladwell . Google Scholar
  • Guilford J. P. ( 1950 ). Creativity . Am. Psychol 5 , 444-454. Medline ,  Google Scholar
  • Hake R. ( 2005 ). The physics education reform effort: a possible model for higher education . Natl. Teach. Learn. Forum 15 , 1-6. Google Scholar
  • Halpern D. E., Hakel M. D. ( 2003 ). Applying the science of learning to the university and beyond . Change 35 , 36-42. Google Scholar
  • Handelsman J. ( 2004 ). Scientific teaching . Science 304 , 521-522. Medline ,  Google Scholar
  • Handelsman J, Miller S., Pfund C. ( 2007 ). Scientific Teaching , New York: W. H. Freeman and Co. Google Scholar
  • Haring-Smith T. ( 2006 ). Creativity research review: some lessons for higher education. Association of American Colleges and Universities . Peer Rev 8 , 23-27. Google Scholar
  • Hatano G., Ouro Y. ( 2003 ). Commentary: reconceptualizing school learning using insight from expertise research . Educ. Res 32 , 26-29. Google Scholar
  • Hrepic Z., Zollman D. A., Rebello N. S. ( 2007 ). Comparing students' and experts' understanding of the content of a lecture . J. Sci. Educ. Technol 16 , 213-224. Google Scholar
  • Hunsaker S. L. ( 2005 ). Outcomes of creativity training programs . Gifted Child Q 49 , 292-298. Google Scholar
  • Kaufman J. C., Baer J. ( 2006 ). Intelligent testing with Torrance . Creativity Res. J 18 , 99-102. Google Scholar
  • Kaufman J. C., Beghetto R. A. ( 2008 , Ed. R. L. DeHaanK.M.V. Narayan , Exploring mini-C: creativity across cultures In: Education for Innovation: Implications for India, China and America , Rotterdam, The Netherlands: Sense Publishers, 165-180. Google Scholar
  • Kaufman J. C., Sternberg R. J. ( 2007 ). Creativity . Change 39 , 55-58. Google Scholar
  • Kim K. H. ( 2006 ). Can we trust creativity tests: a review of the Torrance Tests of Creative Thinking (TTCT) . Creativity Res. J 18 , 3-14. Google Scholar
  • Knight J. K., Wood W. B. ( 2005 ). Teaching more by lecturing less . Cell Biol. Educ 4 , 298-310. Link ,  Google Scholar
  • Cetina Knorr K. ( 1995 , Ed. S. JasanoffG. MarkleJ. PetersenT. Pinch , Laboratory studies: the cultural approach to the study of science In: Handbook of Science and Technology Studies , Thousand Oaks, CA: Sage Publications, 140-166. Google Scholar
  • Koestler A. ( 1964 ). The Act of Creation , New York: Macmillan. Google Scholar
  • Latour B., Woolgar S. ( 1986 ). Laboratory Life: The Construction of Scientific Facts , Princeton, NJ: Princeton University Press. Google Scholar
  • MacKinnon D. W. ( 1978 , Ed. D. W. MacKinnon , What makes a person creative? In: In Search of Human Effectiveness , New York: Universe Books, 178-186. Google Scholar
  • Martindale C. ( 1999 , Ed. R. J. Sternberg , Biological basis of creativity In: Handbook of Creativity , Cambridge, United Kingdom: Cambridge University Press, 137-152. Google Scholar
  • Mazur E. ( 1996 ). Peer Instruction: A User's Manual , Upper Saddle River, NJ: Prentice Hall. Google Scholar
  • McFadzean E. ( 2002 ). Developing and supporting creative problem-solving teams: Part 1—a conceptual model . Manage. Decis 40 , 463-475. Google Scholar
  • McGregor G. D. ( 2001 ). Creative thinking instruction for a college study skills program: a case study. . Dissert Abstr. Intl 62 , 3293A UMI No. AAT 3027933. Google Scholar
  • McIntyre F. S., Hite R. E., Rickard M. K. ( 2003 ). Individual characteristics and creativity in the marketing classroom: exploratory insights . J. Mark. Educ 25 , 143-149. Google Scholar
  • Mestre J. P. ( 2005 ). Transfer of Learning: From a Modern Multidisciplinary Perspective , Greenwich, CT: Information Age Publishing. Google Scholar
  • Mumford M. D., Mobley M. I., Uhlman C. E., Reiter-Palmon R., Doares L. M. ( 1991 ). Process analytic models of creative capacities . Creativity Res. J 4 , 91-122. Google Scholar
  • National Research Council ( 2007 ). Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future, Committee on Science, Engineering and Public Policy In: Washington, DC: National Academies Press. Google Scholar
  • Neisser U. ( 1963 ). The multiplicity of thought . Br. J. Psychol 54 , 1-14. Medline ,  Google Scholar
  • Nelson C. E. ( 2008 ). Teaching evolution (and all of biology) more effectively: strategies for engagement, critical reasoning, and confronting misconceptions Integrative and Comparative Biology Advance Access accessed 15 September 2008 http://icb.oxfordjournals.org/cgi/reprint/icn027v1.pdf . Google Scholar
  • Novak G, Gavrin A., Christian W, Patterson E. ( 1999 ). Just-in-Time Teaching: Blending Active Learning with Web Technology , San Francisco, CA: Pearson Benjamin Cummings. Google Scholar
  • Osborn A. F. ( 1948 ). Your Creative Power , New York: Scribner. Google Scholar
  • Osborn A. F. ( 1979 ). Applied Imagination , New York: Scribner. Google Scholar
  • Osburn H. K., Mumford M. D. ( 2006 ). Creativity and planning: training interventions to develop creative problem-solving skills . Creativity Res. J 18 , 173-190. Google Scholar
  • Paulus P. B., Nijstad B. A. ( 2003 ). Group Creativity: Innovation through Collaboration , New York: Oxford University Press. Google Scholar
  • Perkins K. K., Wieman C. E. ( 2008 , Ed. R. L. DeHaanK.M.V. Narayan , Innovative teaching to promote innovative thinking In: Education for Innovation: Implications for India, China and America , Rotterdam, The Netherlands: Sense Publishers, 181-210. Google Scholar
  • Plucker J. A., Renzulli J. S. ( 1999 , Ed. R. J. Sternberg , Psychometric approaches to the study of human creativity In: Handbook of Creativity , Cambridge, United Kingdom: Cambridge University Press, 35-61. Google Scholar
  • Quitadamo I. J., Faiola C. L., Johnson J. E., Kurtz M. J. ( 2008 ). Community-based inquiry improves critical thinking in general education biology . CBE Life Sci. Educ 7 , 327-337. Link ,  Google Scholar
  • Runco M. A. ( 2004 ). Creativity . Annu. Rev. Psychol 55 , 657-687. Medline ,  Google Scholar
  • Runco M. A., Nemiro J. ( 1994 ). Problem finding, creativity, and giftedness . Roeper Rev 16 , 235-241. Google Scholar
  • Sawyer R. K. ( 2005 ). Educating for Innovation Thinking Skills Creativity accessed 13 August 2008 1 41-48 www.artsci.wustl.edu/∼ksawyer/PDFs/Thinkjournal.pdf . Google Scholar
  • Sawyer R. K. ( 2006 ). Explaining Creativity: The Science of Human Innovation , New York: Oxford University Press. Google Scholar
  • Schwartz D. L., Bransford J. D., Sears D. ( 2005 , Ed. J. P. Mestre , Efficiency and innovation in transfer In: Transfer of Learning from a Modern Multidisciplinary Perspective , Greenwich, CT: Information Age Publishing, 1-51. Google Scholar
  • Scott G., Leritz L. E., Mumford M. D. ( 2004 ). The effectiveness of creativity training: a quantitative review . Creativity Res. J 16 , 361-388. Google Scholar
  • Simonton D. K. ( 1975 ). Sociocultural context of individual creativity: a transhistorical time-series analysis . J. Pers. Soc. Psychol 32 , 1119-1133. Medline ,  Google Scholar
  • Simonton D. K. ( 2004 ). Creativity in Science: Chance, Logic, Genius, and Zeitgeist , Oxford, United Kingdom: Cambridge University Press. Google Scholar
  • Sloman S. ( 1996 ). The empirical case for two systems of reasoning . Psychol. Bull 9 , 3-22. Google Scholar
  • Smith G. F. ( 1998 ). Idea generation techniques: a formulary of active ingredients . J. Creative Behav 32 , 107-134. Google Scholar
  • Snyder A., Mitchell J., Bossomaier T., Pallier G. ( 2004 ). The creativity quotient: an objective scoring of ideational fluency . Creativity Res. J 16 , 415-420. Google Scholar
  • Sternberg R. J. ( 2003 ). What is an “expert student?” . Educ. Res. 32 , 5-9. Google Scholar
  • Sternberg R., Williams W. M. ( 1998 ). Teaching for creativity: two dozen tips accessed 25 March 2008 www.cdl.org/resource-library/articles/teaching_creativity.php . Google Scholar
  • Tardif T. Z., Sternberg R. J. ( 1988 , Ed. R. J. Sternberg , What do we know about creativity? In: The Nature of Creativity , New York: Cambridge University Press, 429-440. Google Scholar
  • Torrance E. P. ( 1974 ). Norms and Technical Manual for the Torrance Tests of Creative Thinking , Bensenville, IL: Scholastic Testing Service. Google Scholar
  • Torrance E. P. ( 1998 ). The Torrance Tests of Creative Thinking Norms—Technical Manual Figural (Streamlined) Forms A and B , Bensenville, IL: Scholastic Testing Service. Google Scholar
  • Torrance E. P., Ball O. E., Safter H. T. ( 2008 ). Torrance Tests of Creative Thinking: Streamlined Scoring Guide for Figural Forms A and B , Bensenville, IL: Scholastic Testing Service. Google Scholar
  • Treffinger D. J., Isaksen S. G. ( 2005 ). Creative problem solving: the history, development, and implications for gifted education and talent development . Gifted Child Q 49 , 342-357. Google Scholar
  • Vandervert L. R., Schimpf P. H., Liu H. ( 2007 ). How working memory and the cerebellum collaborate to produce creativity and innovation . Creativity Res. J 9 , 1-18. Google Scholar
  • Wallach M. A., Kogan N. ( 1965 ). Modes of Thinking in Young Children: A Study of the Creativity-Intelligence Distinction , New York: Holt, Rinehart and Winston. Google Scholar
  • Wood W. B. ( 2009 ). Innovations in undergraduate biology teaching and why we need them . Annu. Rev. Cell Dev. Biol in press. Medline ,  Google Scholar
  • ChatGPT improves creative problem-solving performance in university students: An experimental study 1 Jul 2024 | Computers & Education, Vol. 215
  • Are we teaching novice instructional designers to be creative? A qualitative case study 16 January 2024 | Instructional Science, Vol. 52, No. 3
  • Educators as agents of breadth-biased learning: using social reconstructionism as rationale for embracing media multitasking and enhancing teaching practices in higher education 3 April 2024 | Frontiers in Psychology, Vol. 15
  • Searching for creativity: How people search to generate new ideas 1 December 2023 | Journal of the Association for Information Science and Technology, Vol. 75, No. 4
  • Fostering creativity in low-engagement students through socratic dialogue: An experiment in an operations class 1 Mar 2024 | The International Journal of Management Education, Vol. 22, No. 1
  • Cognitive flexibility and academic performance: Individual and cross-national patterns among adolescents in 57 countries 1 Feb 2024 | Personality and Individual Differences, Vol. 217
  • What's in a word? Student beliefs and understanding about green chemistry 1 January 2024 | Chemistry Education Research and Practice, Vol. 25, No. 1
  • Preservice Physical Education Teachers’ Resistance to Change: The Importance of Occupational Socialization Experiences 26 October 2023 | Trends in Higher Education, Vol. 2, No. 4
  • How can we measure metacognition in creative problem-solving? Standardization of the MCPS scale 1 Sep 2023 | Thinking Skills and Creativity, Vol. 49
  • TOWARDS ENHANCING CREATIVITY AND INNOVATION IN EDUCATION SYSTEM FOR YOUTH IN HAIL REGION 1 August 2023 | Advanced Education, Vol. 10, No. 22
  • Investigating the impact of innovation competence instruction in higher engineering education 12 June 2023 | European Journal of Engineering Education, Vol. 10
  • Regaining creativity in science: insights from conversation 17 May 2023 | Royal Society Open Science, Vol. 10, No. 5
  • How transdisciplinary integration, creativity and student motivation interact in three STEAM projects for gifted education? 29 March 2023 | Gifted Education International, Vol. 39, No. 2
  • Does creative coursework predict educational, career, and community engagement outcomes for arts alumni? 15 November 2022 | Creativity Research Journal, Vol. 35, No. 2
  • Make science disruptive again 27 March 2023 | Nature Biotechnology, Vol. 41, No. 4
  • Promoting Creativity in Undergraduate Recreation and Leisure Services Classrooms: An Overview 19 March 2021 | SCHOLE: A Journal of Leisure Studies and Recreation Education, Vol. 38, No. 1
  • A Positive Association between Working Memory Capacity and Human Creativity: A Meta-Analytic Evidence 13 January 2023 | Journal of Intelligence, Vol. 11, No. 1
  • Students Creativity Through Digital Mind Map 26 July 2023
  • Pedagogical and School Practices to Foster Key Competences and Domain-General Literacy 23 August 2023
  • Coping with Challenges and Uncertainty in Scientific Research 13 Dec 2022 | Asia-Pacific Science Education, Vol. 8, No. 2
  • Teaching design thinking as a tool to address complex public health challenges in public health students: a case study 12 April 2022 | BMC Medical Education, Vol. 22, No. 1
  • ‘Allowing them to dream’: fostering creativity in mathematics undergraduates 26 May 2022 | Journal of Further and Higher Education, Vol. 46, No. 10
  • Interaction with metaphors enhances creative potential 1 July 2022 | Journal of Poetry Therapy, Vol. 35, No. 4
  • Creative problem solving in knowledge-rich contexts 1 Oct 2022 | Trends in Cognitive Sciences, Vol. 26, No. 10
  • Teaching Protein–Ligand Interactions Using a Case Study on Tau in Alzheimer’s Disease 1 July 2022 | Journal of Chemical Education, Vol. 99, No. 8
  • The Effectiveness of Collaborative Learning on Critical Thinking, Creative Thinking, and Metacognitive Skill Ability: Meta-Analysis on Biological Learning 15 July 2022 | European Journal of Educational Research, Vol. volume-11-2022, No. volume-11-issue-3-july-2022
  • Student approaches to creative processes when participating in an open-ended project in science 30 June 2022 | International Journal of Science Education, Vol. 44, No. 10
  • Arts, Machines, and Creative Education 24 Jun 2022
  • Perceived Learning Effectiveness and Student Satisfaction 6 May 2022
  • A Contribution to Scientific Creativity: A Validation Study Measuring Divergent Problem Solving Ability 3 September 2021 | Creativity Research Journal, Vol. 34, No. 2
  • Problem Solving and Digital Transformation: Acquiring Skills through Pretend Play in Kindergarten 28 January 2022 | Education Sciences, Vol. 12, No. 2
  • Growing Innovation and Collaboration Through Assessment and Feedback: A Toolkit for Assessing and Developing Students’ Soft Skills in Biological Experimentation 12 May 2022
  • The Role of Creativity in Teaching Mathematics Online 1 December 2022
  • Breathing Life Into Marketing Scholarship Through Creativity Learning and Teaching 1 Jan 2022
  • Mobilizing Research-Based Learning (RBL) in Higher Education 1 Jan 2022
  • Trends and opportunities by fostering creativity in science and engineering: a systematic review 2 September 2021 | European Journal of Engineering Education, Vol. 46, No. 6
  • The effect of a scientific board game on improving creative problem solving skills 1 Sep 2021 | Thinking Skills and Creativity, Vol. 41
  • Create Teaching Creativity through Training Management, Effectiveness Training, and Teacher Quality in the Covid-19 Pandemic 6 August 2021 | Journal of Ethnic and Cultural Studies, Vol. 8, No. 4
  • Creativity and technology in teaching and learning: a literature review of the uneasy space of implementation  11 January 2021 | Educational Technology Research and Development, Vol. 69, No. 4
  • Üstün Yetenekli Öğrencilerin Bilimsel Yaratıcılık ve Bilimsel Problem Çözme ile İlgili Öz Değerlendirmeleri 15 July 2021 | Yuzunci Yil Universitesi Egitim Fakultesi Dergisi
  • Cultivating creative thinking in engineering student teams: Can a computer‐mediated virtual laboratory help? 23 November 2020 | Journal of Computer Assisted Learning, Vol. 37, No. 2
  • Entrepreneurial competencies of undergraduate students: The case of universities in Nigeria 1 Mar 2021 | The International Journal of Management Education, Vol. 19, No. 1
  • Promoting Creativity in General Education Mathematics Courses 5 August 2019 | PRIMUS, Vol. 31, No. 1
  • Methodological Considerations for Understanding Students’ Problem Solving Processes and Affective Trajectories During Game-Based Learning: A Data Fusion Approach 3 July 2021
  • The main trends in the process of building the creative potential of engineering students 18 June 2021 | E3S Web of Conferences, Vol. 274
  • Research on the Present Situation and Countermeasures of Cultivating Graduate Students’ Innovation Ability under Cooperative Innovation Environment 1 Jan 2021 | Creative Education Studies, Vol. 09, No. 02
  • Innovation Centers and the Information Schools: The Influence of LIS Faculty 1 Dec 2020 | Journal of Education for Library and Information Science, Vol. 61, No. 4
  • Biomimetics: teaching the tools of the trade 28 September 2020 | FEBS Open Bio, Vol. 10, No. 11
  • STEM academic teachers’ experiences of undertaking authentic assessment-led reform: a mixed method approach 21 March 2019 | Studies in Higher Education, Vol. 45, No. 9
  • Problems of forming marketing competencies in the digital economy 1 Sep 2020 | IOP Conference Series: Materials Science and Engineering, Vol. 940, No. 1
  • Culturally Responsive Assessment of Physical Science Skills and Abilities: Development, Field Testing, Implementation, and Results 2 June 2020 | Journal of Advanced Academics, Vol. 31, No. 3
  • Culturally Responsive Assessment of Life Science Skills and Abilities: Development, Field Testing, Implementation, and Results 3 June 2020 | Journal of Advanced Academics, Vol. 31, No. 3
  • Curriculum Differentiation’s Capacity to Extend Gifted Students in Secondary Mixed-ability Science Classes 27 June 2020 | Talent, Vol. 10, No. 1
  • Student Motivation from and Resistance to Active Learning Rooted in Essential Science Practices 23 December 2017 | Research in Science Education, Vol. 50, No. 1
  • Integrating Entrepreneurship and Art to Improve Creative Problem Solving in Fisheries Education 27 February 2020 | Fisheries, Vol. 45, No. 2
  • Concepts Re-imagined: Relational Signs Beyond Definitional Rigidity 15 August 2020
  • Promoting Student Creativity and Inventiveness in Science and Engineering 24 October 2020
  • Teaching for Leadership, Innovation, and Creativity 1 Jan 2020
  • Problem Çözme Becerileri Eğitim Programının Çocukların Karar Verme Becerileri Üzerindeki Etkisi 30 December 2019 | Erzincan Üniversitesi Eğitim Fakültesi Dergisi, Vol. 21, No. 3
  • Mento’s change model in teaching competency-based medical education 27 December 2019 | BMC Medical Education, Vol. 19, No. 1
  • The Effects of Individual Preparations on Group Creativity 21 January 2020
  • The Value of Creativity for Enhancing Translational Ecologies, Insights, and Discoveries 9 July 2019 | Frontiers in Psychology, Vol. 10
  • Using the International Classification of Functioning, Disability, and Health to Guide Students' Clinical Approach to Aging With Pathology 1 Jul 2019 | Topics in Geriatric Rehabilitation, Vol. 35, No. 3
  • Impact of Brainstorming Strategy in Dealing With Knowledge Retention Skill: An Insight Into Special Learners' Needs In Saudi Arabia 1 January 2021 | MIER Journal of Educational Studies Trends & Practices
  • The potential of students’ creative disposition as a perspective to develop creative teaching and learning for senior high school biological science 12 March 2019 | Journal of Physics: Conference Series, Vol. 1157
  • Evaluating Remote Experiment from a Divergent Thinking Point of View 25 July 2018
  • Exploring Creative Education Practices and Implications: A Case study of National Chengchi University, Taiwan 4 April 2022 | Journal of Business and Economic Analysis, Vol. 02, No. 02
  • Exploring Creative Education Practices and Implications: A Case study of National Chengchi University, Taiwan 1 January 2020 | Journal of Business and Economic Analysis, Vol. 02, No. 02
  • Diverging from the Dogma: A Call to Train Creative Thinkers in Science 14 September 2018 | The Bulletin of the Ecological Society of America, Vol. 100, No. 1
  • Comparison of German and Japanese student teachers’ views on creativity in chemistry class 16 May 2018 | Asia-Pacific Science Education, Vol. 4, No. 1
  • The use of humour during a collaborative inquiry 27 August 2018 | International Journal of Science Education, Vol. 40, No. 14
  • Connecting creative coursework exposure and college student engagement across academic disciplines 29 August 2019 | Gifted and Talented International, Vol. 33, No. 1-2
  • Views of German chemistry teachers on creativity in chemistry classes and in general 1 January 2018 | Chemistry Education Research and Practice, Vol. 19, No. 3
  • Embedding Critical and Creative Thinking in Chemical Engineering Practice 1 Jul 2018
  • Introducing storytelling to educational robotic activities 1 Apr 2018
  • Investigating Undergraduates’ Perceptions of Science in Courses Taught Using the CREATE Strategy 1 Mar 2018 | Journal of Microbiology & Biology Education, Vol. 19, No. 1
  • Teachers’ learning on the workshop of STS approach as a way of enhancing inventive thinking skills 1 Jan 2018
  • Creativity Development Through Inquiry-Based Learning in Biomedical Sciences 1 Jan 2018
  • The right tool for the right task: Structured techniques prove less effective on an ill-defined problem finding task 1 Dec 2017 | Thinking Skills and Creativity, Vol. 26
  • The influential factors and hierarchical structure of college students’ creative capabilities—An empirical study in Taiwan 1 Dec 2017 | Thinking Skills and Creativity, Vol. 26
  • Teacher perceptions of professional role and innovative teaching at elementary schools in Taiwan 10 November 2017 | Educational Research and Reviews, Vol. 12, No. 21
  • Evaluation of creative problem-solving abilities in undergraduate structural engineers through interdisciplinary problem-based learning 28 July 2016 | European Journal of Engineering Education, Vol. 42, No. 6
  • What Shall I Write Next? 19 September 2017
  • Inquiry-based Laboratory Activities on Drugs Analysis for High School Chemistry Learning 3 October 2017 | Journal of Physics: Conference Series, Vol. 895
  • BARRIERS TO STUDENTS’ CREATIVE EVALUATION OF UNEXPECTED EXPERIMENTAL FINDINGS 25 June 2017 | Journal of Baltic Science Education, Vol. 16, No. 3
  • Kyle J. Frantz ,
  • Melissa K. Demetrikopoulos ,
  • Shari L. Britner ,
  • Laura L. Carruth ,
  • Brian A. Williams ,
  • John L. Pecore ,
  • Robert L. DeHaan , and
  • Christopher T. Goode
  • Elizabeth Ambos, Monitoring Editor
  • A present absence: undergraduate course outlines and the development of student creativity across disciplines 3 October 2016 | Teaching in Higher Education, Vol. 22, No. 2
  • Exploring differences in creativity across academic majors for high-ability college students 16 February 2018 | Gifted and Talented International, Vol. 32, No. 1
  • Creativity in chemistry class and in general – German student teachers’ views 1 January 2017 | Chemistry Education Research and Practice, Vol. 18, No. 2
  • IMPORTANCE OF CREATIVITY IN ENTREPRENEURSHIP 1 January 2017
  • Accessing the Finest Minds 1 Jan 2017
  • Science and Innovative Thinking for Technical and Organizational Development 1 Jan 2017
  • Learning High School Biology in a Social Context 1 Jan 2017 | Creative Education, Vol. 08, No. 15
  • Possibilities and limitations of integrating peer instruction into technical creativity education 6 September 2016 | Instructional Science, Vol. 44, No. 6
  • Creative Cognitive Processes in Higher Education 20 November 2014 | The Journal of Creative Behavior, Vol. 50, No. 4
  • An Evidence-Based Review of Creative Problem Solving Tools 6 April 2016 | Human Resource Development Review, Vol. 15, No. 2
  • Case-based exams for learning and assessment: Experiences in an information systems course 1 Apr 2016
  • Case exams for assessing higher order learning: A comparative social media analytics usage exam 1 Apr 2016
  • Beyond belief: Structured techniques prove more effective than a placebo intervention in a problem construction task 1 Mar 2016 | Thinking Skills and Creativity, Vol. 19
  • A Belief System at the Core of Learning Science 1 Jan 2016
  • Science and Innovative Thinking for Technical and Organizational Development 1 Jan 2016
  • Student Research Work and Modeled Situations in Order to Bridge the Gap between Basic Science Concepts and Those from Preventive and Clinical Practice. Meaningful Learning and Informed beneficience 1 Jan 2016 | Creative Education, Vol. 07, No. 07
  • FOSTERING FIFTH GRADERS’ SCIENTIFIC CREATIVITY THROUGH PROBLEM-BASED LEARNING 25 October 2015 | Journal of Baltic Science Education, Vol. 14, No. 5
  • Scaffolding for Creative Product Possibilities in a Design-Based STEM Activity 16 November 2014 | Research in Science Education, Vol. 45, No. 5
  • Intuition and insight: two concepts that illuminate the tacit in science education 18 June 2015 | Studies in Science Education, Vol. 51, No. 2
  • Arts and crafts as adjuncts to STEM education to foster creativity in gifted and talented students 28 March 2015 | Asia Pacific Education Review, Vol. 16, No. 2
  • Initiatives Towards an Education for Creativity 1 May 2015 | Procedia - Social and Behavioral Sciences, Vol. 180
  • Brian A. Couch ,
  • Tanya L. Brown ,
  • Tyler J. Schelpat ,
  • Mark J. Graham , and
  • Jennifer K. Knight
  • Michèle Shuster, Monitoring Editor
  • Kim Quillin , and
  • Stephen Thomas
  • Mary Lee Ledbetter, Monitoring Editor
  • The Design of IdeaWorks: Applying Social Learning Networks to Support Tertiary Education 21 July 2015
  • References 1 Jan 2015
  • Video Games and Malevolent Creativity 1 Jan 2015
  • Modelling a Laboratory for Ideas as a New Tool for Fostering Engineering Creativity 1 Jan 2015 | Procedia Engineering, Vol. 100
  • “Development of Thinking Skills” Course: Teaching TRIZ in Academic Setting 1 Jan 2015 | Procedia Engineering, Vol. 131
  • Leadership in the Future Experts’ Creativity Development with Scientific Research Activities 4 November 2014
  • Developing Deaf Children's Conceptual Understanding and Scientific Argumentation Skills: A Literature Review 3 January 2014 | Deafness & Education International, Vol. 16, No. 3
  • Leslie M. Stevens , and
  • Sally G. Hoskins
  • Nancy Pelaez, Monitoring Editor
  • 2014 | Cortex, Vol. 51
  • A Sociotechnological Theory of Discursive Change and Entrepreneurial Capacity: Novelty and Networks 1 Jan 2014 | SSRN Electronic Journal, Vol. 3
  • GEOverse: An Undergraduate Research Journal: Research Dissemination Within and Beyond the Curriculum 1 August 2013
  • Learning by Practice, High-Pressure Student Ateliers 2 August 2013
  • Relating Inter-Individual Differences in Verbal Creative Thinking to Cerebral Structures: An Optimal Voxel-Based Morphometry Study 5 November 2013 | PLoS ONE, Vol. 8, No. 11
  • 21st Century Biology: An Interdisciplinary Approach of Biology, Technology, Engineering and Mathematics Education 1 Nov 2013 | Procedia - Social and Behavioral Sciences, Vol. 102
  • Reclaiming creativity in the era of impact: exploring ideas about creative research in science and engineering 1 Nov 2013 | Studies in Higher Education, Vol. 38, No. 9
  • An Evaluation of Alternative Ways of Computing the Creativity Quotient in a Design School Sample 1 Jul 2013 | Creativity Research Journal, Vol. 25, No. 3
  • A.-M. Hoskinson ,
  • M. D. Caballero , and
  • J. K. Knight
  • Eric Brewe, Monitoring Editor
  • Understanding, attitude and environment 17 May 2013 | International Journal for Researcher Development, Vol. 4, No. 1
  • Promoting Student Creativity and Inventiveness in Science and Engineering 1 Jan 2013
  • Building creative thinking in the classroom: From research to practice 1 Jan 2013 | International Journal of Educational Research, Vol. 62
  • A Demonstration of a Mastery Goal Driven Learning Environment to Foster Creativity in Engineering Design 1 Jan 2013 | SSRN Electronic Journal, Vol. 111
  • The development of creative cognition across adolescence: distinct trajectories for insight and divergent thinking 8 October 2012 | Developmental Science, Vol. 16, No. 1
  • A CROSS-NATIONAL STUDY OF PROSPECTIVE ELEMENTARY AND SCIENCE TEACHERS’ CREATIVITY STYLES 10 September 2012 | Journal of Baltic Science Education, Vol. 11, No. 3
  • Evaluation of fostering students' creativity in preparing aided recalls for revision courses using electronic revision and recapitulation tools 2.0 1 Aug 2012 | Behaviour & Information Technology, Vol. 31, No. 8
  • Scientific Creativity: The Missing Ingredient in Slovenian Science Education 15 April 2012 | European Journal of Educational Research, Vol. volume-1-2012, No. volume1-issue2.html
  • Could the ‘evolution’ from biology to life sciences prevent ‘extinction’ of the subject field? 6 March 2012 | Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, Vol. 31, No. 1
  • Mobile innovations, executive functions, and educational developments in conflict zones: a case study from Palestine 1 October 2011 | Educational Technology Research and Development, Vol. 60, No. 1
  • Informing Pedagogy Through the Brain-Targeted Teaching Model 1 Jan 2012 | Journal of Microbiology & Biology Education, Vol. 13, No. 1
  • Teaching Creative Science Thinking 16 Dec 2011 | Science, Vol. 334, No. 6062
  • Sally G. Hoskins ,
  • David Lopatto , and
  • Leslie M. Stevens
  • Diane K. O'Dowd, Monitoring Editor
  • Embedding Research-Based Learning Early in the Undergraduate Geography Curriculum 1 Aug 2011 | Journal of Geography in Higher Education, Vol. 35, No. 3
  • Jared L. Taylor ,
  • Karen M. Smith ,
  • Adrian P. van Stolk , and
  • George B. Spiegelman
  • Debra Tomanek, Monitoring Editor
  • 2010 | IFAC Proceedings Volumes, Vol. 43, No. 17
  • Critical and Creative Thinking Activities for Engaged Learning in Graphics and Visualization Course
  • Creativity Development through Inquiry-Based Learning in Biomedical Sciences

Submitted: 31 December 2008 Revised: 14 May 2009 Accepted: 28 May 2009

© 2009 by The American Society for Cell Biology

IMAGES

  1. Ultimate Critical Thinking Cheat Sheet

    teaching critical thinking creativity problem solving pdf

  2. 6 Main Types of Critical Thinking Skills (With Examples)

    teaching critical thinking creativity problem solving pdf

  3. Creative Problem Solving Lesson Plan Reason Creativity

    teaching critical thinking creativity problem solving pdf

  4. How to promote Critical Thinking Skills

    teaching critical thinking creativity problem solving pdf

  5. What Is Critical Thinking And Creative Problem Solving

    teaching critical thinking creativity problem solving pdf

  6. Creative Problem Solving Teaching Strategies

    teaching critical thinking creativity problem solving pdf

VIDEO

  1. Teaching Critical Thinking is more important than teaching Facts

  2. Teacher De-Wokefies Student By Teaching Critical Thinking

  3. Teacher Education l Teaching Strategies in Developing Critical Thinking

  4. Revolutionizing the News: Teaching Critical Thinking Skills for a Smarter Society

  5. Quality Teaching

  6. Exploring Critical Thinking (Ex#6)

COMMENTS

  1. PDF Critical Thinking in the Classroom…and Beyond

    Problem solving is the ultimate intent of critical think-ing for many scholars who study the phenomenon. Skills in problem solving, issue analyses and decision making are increasingly expected of employees. Evidence is grow-ing that critical thinking is "expected" in the workplace. More than 400 senior HR professionals were asked in a

  2. PDF teaching critical thinking and Problem solving skills

    "critical thinking and problem-solving skills; active participation in the learning process including self-direction, identification of own learning needs, teamwork, creative discussion, and learning from peers; and the integration and synthesis

  3. AN INTRODUCTION TO CRITICAL THINKING AND CREATIVITY

    they are equally important for problem solving and they are not indepen-dent of each other. We need creativity in critical thinking to come up with arguments, counterexamples, and alternative explanations. And creativity needs critical thinking in evaluating and improving new ideas. They are both part of the essential thinking toolkit.

  4. PDF Teaching the 21st Century Learning Skills with the Critical Thinking

    teaching critical thinking skills and techniques based on the argumentation method can help students progress both cognitively and behaviorally. To this end, the goal of this qualitative case study is to ... creative problem-solving, and critical thinking. Secondly, professional qualities including adaptability and resilience, self-management ...

  5. (PDF) Improving Critical Thinking Skills in Teaching through Problem

    Critical thinking is an important skill for graduates in 21st century teaching and learning. One of the modern educational pedagogies which can be utilized by educators to inculcate students ...

  6. (PDF) Developing Creativity in the Classroom: Learning and Innovation

    Abstract. Developing Creativity in the Classroom applies the most current theory and research on creativity to support the design of teaching and learning. Creative thinking and problem solving ...

  7. Constructivism learning theory: A paradigm for students' critical

    Abstract. This study looks at whether creativity and critical thinking help students solve problems and improve their grades by mediating the link between 21 st century skills (learning motivation, cooperativity, and interaction with peers, engagement with peers, and a smart classroom environment). The mediating relationship between creativity and critical thinking was discovered using ...

  8. PDF How To Add Creativity In Problem Solving

    implementation plan. Prioritize. to be the most effective. • The USC Marshall Critical Thinking Initiative is an on-going school wide effort to enhance our students' critical thinking skills in order to make them more successful problem solvers. Its key components include... The 5 Step USC-CT Problem Solving Process which is designed to ...

  9. PDF Creative Problem Solving

    CPS is a comprehensive system built on our own natural thinking processes that deliberately ignites creative thinking and produces innovative solutions. Through alternating phases of divergent and convergent thinking, CPS provides a process for managing thinking and action, while avoiding premature or inappropriate judgment. It is built upon a ...

  10. PDF Creative Problem Solving (CPS): Powerful Tools for Managing Change and

    There are many approaches to studying creativity and problem solving, including more than 100 defi nitions of creativity in the literature, for example (Treffi nger, 2000a). We have used the example of a lake to organize and explain many perspectives on the nature and sources of creativity (e.g., Treffi nger, Isaksen, & Firestien, 1983; Treffi ...

  11. Creativity and Critical Thinking

    Creativity is a process that demands critical analysis and evaluation and shares with critical thinking the need for (to revisit Guilford) fluency, flexibility and originality of thought, the ability and dispositions to reinterpretation and challenge old ideas and to move forward in the face of ambiguity.

  12. Constructivism learning theory: A paradigm for students' critical

    a buffer between students' participation in offering peer feedback on critical thinking and creativity and their problem-solving and academic achievement (Al-Rahmi et al., 2021b). In education, motivation plays a crucial role in both teaching and learning, encouraging teachers

  13. The effectiveness of collaborative problem solving in promoting

    Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field ...

  14. Fostering Students' Creativity and Critical Thinking

    A portfolio of rubrics was developed during the OECD-CERI project Fostering and Assessing Creativity and Critical Thinking Skills in Education. Conceptual rubrics were designed to clarify "what counts" or "what sub-skills should be developed" in relation to creativity and critical thinking and to guide the design of lesson plans and ...

  15. (PDF) Constructivism learning theory: A paradigm for students' critical

    The hypotheses developed a model for measuring students' critical thinking and creativity, which affect problem-solving skills and thus students' academic performance in Saudi Arabian higher ...

  16. Teaching Creativity and Inventive Problem Solving in Science

    Creativity is an essential element of problem solving ( Mumford et al., 1991; Runco, 2004) and of critical thinking ( Abrami et al., 2008 ). As such, it is common to think of applications of creativity such as inventiveness and ingenuity among the HOCS as defined in Bloom's taxonomy ( Crowe et al., 2008 ). Thus, it should come as no surprise ...

  17. (PDF) Teaching Critical Thinking, Problem Solving, and Design Thinking

    Critical thinking and problem solving skills are included in the IS curriculum as foundational skills. IS education researchers recognize the importance of these skills for future IS practitioners ...

  18. Teaching Critical Thinking and Problem Solving Skills

    Critical thinking skills are important because they enable students "to deal effectively with social, scientific, and practical problems" (Shakirova, 2007, p. 42). Simply put, students who are able to think critically are able to solve problems effectively. Merely having knowledge or information is not enough.

  19. PDF Teaching Creative Problem-Solving

    It emphasizes speed, accuracy, logic, and the like and focuses on recognizing the familiar, reapplying set techniques, and accumulating information" (Cropley, 2006, p. 391). Convergent thinking is taking all the information available and coming up with the answer. Creative problem-solving focuses more on divergent thinking.

  20. How to Prevent Student Dependence on AI

    This promotes critical thinking and helps them learn from one another. 6. Use AI for Skill Enhancement. Automated Feedback: Leverage AI tools for providing feedback on assignments. However, encourage students to understand the feedback rather than blindly accepting it. Coding and Problem-Solving: Introduce students to AI-related coding tasks ...

  21. (PDF) Enhancing creativity and problem solving skills through creative

    problem solving to teach mathema tics, to achieve the enhancement of students' creative thinking and problem solving skills. is coincided with the in troduction of Kurik ulum Standa rd Sekolah ...