U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Dermatol
  • v.62(5); Sep-Oct 2017

Summary and Synthesis: How to Present a Research Proposal

Maninder singh setia.

From the MGM Institute of Health Sciences, Navi Mumbai, Maharashtra, India

Saumya Panda

1 Department of Dermatology, KPC Medical College, Kolkata, West Bengal, India

This concluding module attempts to synthesize the key learning points discussed during the course of the previous ten sets of modules on methodology and biostatistics. The objective of this module is to discuss how to present a model research proposal, based on whatever was discussed in the preceding modules. The lynchpin of a research proposal is the protocol, and the key component of a protocol is the study design. However, one must not neglect the other areas, be it the project summary through which one catches the eyes of the reviewer of the proposal, or the background and the literature review, or the aims and objectives of the study. Two critical areas in the “methods” section that cannot be emphasized more are the sampling strategy and a formal estimation of sample size. Without a legitimate sample size, none of the conclusions based on the statistical analysis would be valid. Finally, the ethical parameters of the study should be well understood by the researchers, and that should get reflected in the proposal.

As we reach the end of an exhaustive module encompassing research methods and biostatistics, we need to summarize and synthesize the key learning points, to demonstrate how one may utilize the different sections of the module to undertake research projects of different kinds. After all, the practical purpose behind publishing such a module is to facilitate the preparation of high quality research proposals and protocols. This concluding part will make an attempt to provide a window to the different sections of the module, underlining the various aspects of design and analysis needed to formulate protocols applicable to different kinds of clinical research in dermatology.

Components of a Research Proposal

The goal of a research proposal is to present and justify the need to study a research problem and to present the practical ways in which the proposed study should be conducted. A research proposal is generally meant to be presented by an investigator to request an agency or a body to support research work in the form of grants. The vast majority of research proposals, in India, however, are not submitted to agency or body for grants, simply because of the paucity of such agencies, bodies, and research grants. Most are academic research proposals, self-financed, and submitted to scientific and ethics committee of an institution. The parts of a proposal include the title page, abstract/project summary, table of contents, introduction, background and review of literature, and the research protocol.

The title page should contain the personal data pertaining to the investigators, and title of the project, which should be concise and comprehensive at the same time. The table of contents, strictly speaking, is not necessary for short proposals. The introduction includes a statement of the problem, purpose, and significance of the research.

The protocol is the document that specifies the research plan. It is the single most important quality control tool for all aspects of a clinical research. It is the instrument where the researcher explains how data will be collected, including the calculation for estimating sample size, and what outcome variables to measure.

A complete clinical research protocol includes the following:

Study design

  • Precise definition of the disease or problem
  • Completely defined prespecified primary and secondary outcome measures, including how and when these will be assessed
  • Clear description of variables
  • Well-defined inclusion and exclusion criteria
  • Efficacy and safety parameters
  • Whenever applicable, stopping guidelines and parameters of interim analyses
  • Sample size calculation
  • Randomization details
  • Plan of statistical analysis
  • Detailed description of interventions
  • A chronogram of research flow (Gantt chart)
  • Informed consent document
  • Clinical research form
  • Details of budget; and
  • References.

(Modified from: Bagatin et al ., 2013).

Project Summary

The project summary is a brief document that consists of an overview, and discusses the intellectual merits, and broader impacts of the research project. Each of these three sections is required to be present and must be clearly defined. The project summary is one of the most important parts of the proposal. It is likely the first thing a reviewer will read, and is the investigators’ best chance to grab their interest, and convince them of the importance, and quality, of their research before they even read the proposal. Though it is the first proposal element in order, many applicants prefer to write the project summary last, after writing the protocol. This allows the writer to better avoid any inconsistencies between the two.

The overview specifies the research goal and it should demonstrate that this goal fits with the principal investigator's long-term research goals. It should specify the proposed research approach and the educational goal of the research project.

The intellectual merits (the contribution your research will make to your field) should specify the current state of knowledge in the field, and where it is headed. It should also clarify what your research will add to the state of knowledge in the field. Furthermore, important to state is what your research will do to enhance or enable other researches in the field. Finally, one should answer why your research is important for the advancement of the field.

The broader impacts (the contribution the research will make to the society) should answer the questions on the benefit to the society at large from the research, and the possible applications of the research, and why the general public would care. It should also clarify how the research can benefit the site of research (medical college or university, etc.) and the funding agency.

Background and Review of Literature

This is an important component of the research protocol. The review should discuss all the relevant literature, the method used in the literature, the lacunae in the literature, and justify the proposed research. We have provided a list of the useful databases in the section on systematic reviews and meta-analysis (Setia, 2017). Some of these are PubMed, Cochrane database, EMBASE, and LILACS.

Provide a critical analysis of the literature

The researcher should not provide a descriptive analysis of literature. For instance, the literature reviews should not be a list of one article followed by the next article. It should be a critical analysis of literature.

A study by XXXX et al . found that the prevalence of psoriasis was 20%. It was a hospital-based study conducted in North India. The prevalence was 35% in males and 12% in females.

Another study by YYYYY et al . found that the prevalence of psoriasis was 14%. The study was conducted in a private clinic in North India. The prevalence was 8% in males and 18% in females.

A third study by ZZZZZ et al . found that the prevalence of psoriasis was 5%. This study was a community-based study. The prevalence was 7% in males and 3% in females.

In this type of review, the researcher has described all the studies. However, it is useful to understand the findings of these three studies and summarize them in researcher's own words.

A possible option can be “ The reported prevalence of psoriasis in the Indian population varied from 5% to 20%. In general, it was higher in hospital-based studies and lower in community-based studies. There was no consistent pattern in the prevalence of psoriasis in males and females. Though some studies found the prevalence to be higher in males, others reported that females had a higher prevalence .”

Discuss the limitations and lacunae of these studies

The researcher should discuss the limitations of the studies. These could be the limitations that the authors have presented in the manuscript or the ones that the researcher has identified. Usually, the current research proposal should try to address the limitations of a previous study.

A study by BBBB et al : “ One of the main limitations of our study was the lack of objective criteria for assessing anemia in patients presenting with psoriasis. We classified the patients based on clinical assessment of pallor .”

The present proposal can mention “ Though previous studies have assessed the association between anemia and psoriasis, they have not used any objective criteria (such as hemoglobin or serum ferritin levels). Furthermore, pallor was evaluated by three clinicians; the authors have not described the agreement between these clinicians .”

In the above example, the authors have stated the limitation of their research in the manuscript. However, in the review of literature, the researcher has added another limitation. It is important to convince the reviewers that the researcher has read and understood the literature. It is also important that some or most of these lacunae should be addressed in the present proposal as far as possible.

Justify the present proposal by review

The researcher should adequately justify the present proposal based on the review of literature. The justification should not only be for the research question, but also the methods, study design, variables of interest, study instruments or measurements, and statistical methods of choice. Sometimes, the justification can be purely statistical. For example, all the previous studies have used cross-sectional data or cross-sectional analysis of longitudinal data in their manuscripts. The present proposal will use methods used for longitudinal data analysis. The researcher should justify the benefit of these methods over the previous statistical methods.

In short, the review should not be a “laundry list” of all the articles. The review should be able to convince the reader that the present research is required and it builds on the existing literature (either as a novel research question, new measurement of the outcome, a better study design, or advanced and appropriate statistical methods).

Kindly try to avoid this justification: “ It has not been done in our center .”

Aims and Objectives

The “aim” of the study is an overarching goal of the study. The objectives are measurable and help the researcher achieve the overall aim.

For example, the overall aim of our study is to assess the long-term health of patients of psoriasis.

The specific objectives are:

  • To record the changes in Psoriasis Area and Severity Index (PASI) score in patients with psoriasis over a period of 5 years
  • To study the side effects of medications in these patients over a period of 5 years.

It is important to clearly state the objectives, since the research proposal should be designed to achieve these objectives.

For example, the methods should describe the following:

  • How will the researcher answer the first objective?
  • Where will the researcher recruit the study participants (study site and population)?
  • Which patients of psoriasis will be recruited (inclusion and exclusion criteria)?
  • What will be the design of the study (cohort, etc.)?
  • What are all the variables to be measured to achieve the study outcomes (exposure and outcome variables)?
  • How will the researcher measure these variables (clinical evaluation, history, serological examination, etc.)?
  • How will the researcher record these data (clinical forms, etc.)?
  • How will the researcher analyze the data that have been collected?
  • Are there any limitations of these methods? If so, what has the researcher done to minimize the limitations?

All the ten modules on research methodology have to be read and grasped to plan and design any kind of research applicable to one's chosen field. However, some key areas have been outlined below with examples to appreciate the same in an easier manner.

The study setting must be specified. This should include both the geographical location and the population from which the study sample would be recruited.

“The study took place at the antiretroviral therapy clinic of Queen Elizabeth Central Hospital in Blantyre, Malawi, from January 2006 to April 2007. Blantyre is the major commercial city of Malawi, with a population of 1,000,000 and an estimated HIV prevalence of 27% in adults in 2004” (Ndekha et al ., 2009).

This is a perfect example of description of a study setting which underscores the importance of planning it in detail a priori .

Study population, sampling strategy, and sample size

Study population has to be clearly and precisely defined. For example, a study on atopic dermatitis may be conducted upon patients defined according to the UK Working Party's modified diagnostic criteria, or the Hanifin and Rajka's criteria, or some other criteria defined by the investigators. However, it should always be prespecified within the protocol.

Similarly, the eligibility criteria of the participants for the study must be explicit. One truism that is frequently forgotten is that the inclusion and exclusion criteria are mutually exclusive, and one is not the negative image of the other. Eligible cases are included according to a set of inclusion criteria, and this is followed by administration of the exclusion criteria. Thus, in fact, they can never be the negative image of each other.

“Eligible participants were all adults aged 18 or over with HIV who met the eligibility criteria for antiretroviral therapy according to the Malawian national HIV treatment guidelines (WHO clinical stage III or IV or any WHO stage with a CD4 count < 250/mm 3 ) and who were starting treatment with a BMI < 18.5. Exclusion criteria were pregnancy and lactation or participation in another supplementary feeding program” (Ndekha et al ., 2009).

To put in perspective the point we made about inclusion and exclusion criteria, in the above example, “age above 18 years” or “CD4 count >250/mm 3 ” cannot be exclusion criteria, as these have already been excluded.

Sampling strategy has been adequately discussed in the Module 5 of the Methodology series (Setia, 2016). A few points are worth repeating:

  • The sampling strategy should never be misrepresented. Example: If you have not done random sampling, no big deal. There are other legitimate sampling strategies available for your study. But once you have mentioned “random sampling” in your protocol, you cannot resort to purposive sampling
  • Sometimes, the researcher might want to know the characteristics of a certain problem within a specific population, without caring for generalizability of results. In such a scenario, purposive sampling may be resorted to
  • Nonprobability sampling methods such as consecutive consenting sampling or any such convenience sampling are perfectly legitimate and easy to do, particularly in case of dissertations where time and resources are limited.

Sample size is one of the most misunderstood, yet fundamentally important, issues among clinicians and has to be addressed once the study objectives have been set and the design has been finalized. Too small a sample means that there would be a failure to detect change following test intervention. A sample larger than necessary may also result in bad quality data. In either case, there would be ethical problems and wastage of resources. The researcher needs just enough samples to draw accurate inferences, which would be adequately powered (Panda, 2015).

Estimation of sample size has been dealt with adequately in the Module 5 biostatistics series (Hazra et al ., 2016), including the different mathematical derivations and the available software. Sample size determination is a statistical exercise based on the probability of errors in testing of hypothesis, power of the sample, and effect size. Although, relatively speaking, these are simple concepts to grasp, a large number of different study designs and analytical methods lead to a bewilderingly large number of formulae for determining sample size. Thus, the software are really handy and are becoming increasingly popular.

The study design defines the objectives and end points of the study, the type and manner of data collection, and the strategy of data analysis (Panda 2015). The different types of clinical studies have been depicted in Figure 1 . The suitability of various study designs vis-à-vis different types of research questions is summarized in Table 1 .

An external file that holds a picture, illustration, etc.
Object name is IJD-62-443-g001.jpg

Types of study (Source: Panda, 2015)

Research questions vis-a-vis study designs

An external file that holds a picture, illustration, etc.
Object name is IJD-62-443-g002.jpg

In our previous series of ten modules on methodology, we have discussed all these different kinds of studies and more. Some key issues that require reiteration are given below:

  • The control of a case–control study and that of a randomized controlled trial is more different from each other than chalk is from cheese. The former is an observational study, while the latter is an interventional one. Every study with a control group is not a case–control study. For a study to be classified as a case–control study, the study should be an observational study and the participants should be recruited based on their outcome status (Setia, 2016). Apparently, this is not so difficult to understand, yet even now we have publications which confuse between the different kinds of controls (Bhanja et al ., 2015)
  • Due to the fact that the outcome and exposure are assessed at the same time point in a cross-sectional study, it is pretty difficult, if not impossible, to derive causal relationships from such a study. At most, one may establish statistical association between exposures and outcomes by calculating the odds ratio. However, these associations must not be confused with causation.
  • It is generally said that a cohort design may not be efficient for rare outcomes. However, if the rare outcome is common in some exposures, it may be useful to follow a cohort design. For example, melanoma is a rare condition in India. Hence, if we follow individuals to study the incidence of melanoma, it may not be efficient. However, if we know that, in India, acral lentiginous melanoma is the most commonly reported variant, we should follow a cohort of individuals with acral lentiginous and study the incidence of melanoma in this group (Setia, 2016).

Clinical researchers should also be accustomed with observational designs beyond case–control, cohort, and cross-sectional studies. Sometimes, the unit of analysis has to be a group or aggregate rather than the individual. Consider the following example:

The government introduced the supplementation of salt with iodine for about 20 years. However, not all states have used the same level of iodine in salt. Certain hilly states have used higher quantities compared with other states. Incidentally, you read a report that high iodine levels are associated with psoriasis. You are intrigued to find if introduction of iodine has altered the picture of psoriasis in the country. You feel compelled to design a study to answer this question .

It is obvious that here the unit of study cannot be individuals, but a large population distributed in a certain geographical area. This is the domain of ecologic studies. An allied category of observational studies is named “natural experiments,” where the exposure is not assigned by the investigator (as in an interventional study), but through “natural processes.” These may be through changes in the existing regulations or public policies or, may be, through introduction of new laws (Setia, 2017).

Another category of research questions that cannot be satisfactorily captured by all the quantitative methods described earlier, like social stigma experienced by patients or their families with, say, vitiligo, leprosy, or sexually transmitted infections, are best dealt with by qualitative research. As can be seen by the examples given above, this is a type of research which is very relevant to medical research, yet to which the regular medical researcher has got a very poor exposure, if any. We shall encourage interested researchers to take a look at the 10 th Module of the Methodology series that specifically deals with qualitative research (Setia, 2017).

Clinical studies are experiments that are not conducted in laboratories but in controlled real-life settings on human subjects with some disease. Hence, designing a study involves many pragmatic considerations aside pure methodology. Thus, factors to consider when selecting a study design are objectives of the study, time frame, treatment duration, carryover effects, cost and logistics, patient convenience, statistical considerations, sample size, etc. (Panda, 2015).

Certain truisms regarding study designs should always be remembered: a study design has to be tailored to objectives. The same question may be answered by different designs. The optimum design has to be based on workforce, budgetary allocation, infrastructure, and clinical material that may be commanded by the researchers. Finally, no design is perfect, and there is no design to provide a perfect answer to all research questions relevant to a particular problem (Panda, 2015).

Variables of interest and collection of these variables

Data structure depends on the characteristics of the variables [ Figure 2 ]. A variable refers to a particular character on which a set of data are recorded. Data are thus the values of a variable (Hazra et al ., 2016).

An external file that holds a picture, illustration, etc.
Object name is IJD-62-443-g003.jpg

Types of data and variables (Source: Panda, 2015)

Quantitative data always have a proportional scale among values, and can be either discrete (e.g., number of moles) or continuous (e.g., age). Qualitative data can be either nominal (e.g., blood groups) or ordinal (e.g., Fitzpatrick's phototypes I-VI). Variables can be binary or dichotomous (male/female) or multinomial or polychotomous (homosexual/bisexual/heterosexual) (Panda, 2015).

Changing data scales is possible so that numerical data may become ordinal and ordinal data may become nominal. This may be done when the researcher is not confident about the accuracy of the measuring instrument, is unconcerned about the loss of fine detail, or where group numbers are not large enough to adequately represent a variable of interest. It may also make clinical interpretation easier (Hazra et al ., 2016).

The variables whose effects are observed on other variables are known as independent variables (e.g., risk factors). The latter kind of variables that change as a result of independent variables are known as dependent variables (i.e., outcome). Confounders are those variables that influence the relation between independent and dependent variables (e.g., the clinical effect of sunscreen used as part of a test intervention regimen in melasma). If the researcher fails to control or eliminate the confounder, it will damage the internal validity of an experiment (Panda, 2015).

Biostatistics begins with descriptive statistics that implies summarizing a collection of data from a sample or population. An excellent overview of descriptive statistics has been given in the Module 1 of the Biostatistics series (Hazra et al ., 2016). We would encourage every researcher to embark on designing and collecting data on their own to go through this particular module to have a clear idea on how to proceed further.

Statistical methods

As briefly discussed earlier, the “methods” section should also include a detailed description of statistical methods. It is best to describe the methods for each objective.

For example: Which statistical methods will the researcher use to study the changes in PASI score over time?

It is important to first identify the nature of the outcome – will it be linear or categorical?

  • It may be noticed that the PASI is a score and can range from 0 to 72. The researcher can measure the actual score and assess the changes in score. Thus, the researcher will use methods for statistical analysis of continuous data (such as means, standard deviations, t -test, or linear regressions)
  • However, the researcher may choose to cut off the PASI score at 60 (of course, there has to be justification!) and call it severe psoriasis. Thus, the researcher will have an outcome variable with two outcomes (Yes: >60 PASI, and No: <60 PASI). Thus, in this case, the researcher will use methods for statistical analysis of categorical data (proportions, Chi-square test, or logistic regression models).

The statistical methods have been described in detail in the Biostatistics section of the series. The reader is encouraged to read all the sections to understand these methods. However, the key points to remember are:

  • Identify the nature of the outcome for each objective
  • Describe the statistical methods separately for each objective
  • Identify the methods to handle confounding and describe them in the statistical methods
  • If the researcher is using advanced statistical methods or specific tools, please provide reference to these methods
  • Provide the name of the statistical software (including the version) that will be used for data analysis in the present study
  • Do not provide a laundry list of all the statistical methods. It just shows that the researcher has not understood the relevance of statistics in the study design.

Multivariate models

In general, multivariate analyses are used in studies and research proposals. These analyses are useful to adjust for confounding (though these are also useful to test for interaction, we shall discuss confounding in this section). For example, we propose to compare two different types of medications in psoriasis. We have used secondary clinical data for this study. The outcome of interest is PASI score. We have collected data on the type of medication, age, sex, and alcohol use. When we compare the PASI score in these two groups, we will use t -test (if linear comparison) or Chi-square test (if PASI is categorized – as described earlier). However, it is possible that age, sex, and alcohol use may also play a role in the clinical progression of psoriasis (which is measured as PASI score). Thus, the researcher would like to account for differences in these variables in the two groups. This can be done using multivariate analytical methods (such as linear regression for continuous variables and logistic regression for categorical dichotomous variables). This is a type of mathematical model in which we include multiple variables: the main explanatory variable (type of drug in this study) and potential confounders (age, sex, and alcohol use in this study). Thus, the outcome (PASI score) after multivariate analyses will be “adjusted” for age, sex, and alcohol use after multivariate analysis. We would like to encourage the readers to consult a statistician for these methods.

TRIVIA: The singular for “data” is “datum,” just as “stratum” is the singular for “strata.” Thus, “ data were analyzed …,” “ data were collected …,” and “ data have been ….”

Clinical Record Forms

We have discussed designing of questionnaires and clinical record forms (CRFs) in detail in two modules. We shall just highlight the most important aspects in this part. The CRF is an important part of the research protocol. The CRF should include all the variables of interest in the study. Thus, it is important to make a list of all parameters of interest before working on the CRF. This can be done by a thorough review of literature and discussion with experts. Once the questionnaire/CRF has been designed, the researcher should pilot it and change according to the feedback from the participants and one's own experience while administering the questionnaire or recording data in the CRF. The CRF should use coded responses (for close-ended questions), this will help in data entry and analysis. If the researcher has developed a scale, the reliability and validity should be tested (methods have been discussed in earlier sections). The CRF can be paper based or computer based (it will depend on the resources).

It is very important to describe the ethics for the present study. It should not be restricted to “ The study will be evaluated by an Institutional Review Committee …” The researcher should demonstrate that s/he has understood the various ethical issues in the present study. The three core principles for ethics are: autonomy (the participants have a right to decide whether to participate in the study or opt out), beneficence/nonmaleficence (the study should not be harmful to participants and the risk–benefit ratio should be adequately understood and described), and justice (all the risks and benefits of the present study should be equally distributed).

The researcher should try to address these issues in the section of “Ethics.” Currently, the National Institutes of Health has proposed the following seven principles of “Ethics in Clinical Research:” social and clinical value, scientific validity, fair subject selection, favorable risk–benefit ratio, independent review, informed consent, and respect for potential and enrolled subjects. The Indian Council of Medical Research has also published guidelines to conduct biomedical research in India. We strongly encourage the readers to be familiar with these guidelines. Furthermore, the researchers should keep themselves updated with changes in these regulations. If it is a clinical trial, the researcher should also be familiar with Schedule Y and Consent form requirements for these types of clinical trials.

Concluding Remarks

This module has been designed as a comprehensive guide for a dermatologist to enable him/her to embark on the exciting journey of designing studies of almost any kind that can be thought to be of relevance to clinical dermatology. There has been a conscious attempt to customize the discussion on design and analysis keeping not only dermatology, but also Indian conditions in mind. However, the module can be of help to any medical doctor embarking on the path to medical research. As contributors, it is our ardent hope that this module might act as a catalyst of good-quality research in the field of dermatology and beyond in India and elsewhere.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Bibliography

Advertisement

Issue Cover

  • Previous Issue
  • Previous Article
  • Next Article

Preparation of the Investigator for a Proposal

The research proposal, insights into the reviewer's perspective, conclusions, writing successful research proposals for medical science  .

(Schwinn) Professor of Anesthesiology and Surgery; Associate Professor of Pharmacology/Cancer Biology, Duke University Medical Center; Senior Fellow, Duke Pepper Aging Center.

(DeLong) Associate Professor, Division of Biometry and Medical Informatics, Duke University Medical Center.

(Shafer) Staff Anesthesiologist, Palo Alto VA Health Care System; Associate Professor of Anesthesia, Stanford University.

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Open the PDF for in another window
  • Cite Icon Cite
  • Get Permissions
  • Search Site

Debra A. Schwinn , Elizabeth R. DeLong , Steven L. Shafer; Writing Successful Research Proposals for Medical Science   . Anesthesiology 1998; 88:1660–1666 doi: https://doi.org/10.1097/00000542-199806000-00031

Download citation file:

  • Ris (Zotero)
  • Reference Manager

HIGH-QUALITY research proposals are required to obtain funds for the basic and clinical sciences. In this era of diminishing revenues, the ability to compete successfully for peer-reviewed research money is essential to create and maintain scientific programs. Ideally, the essentials of “grantsmanship” are learned through observation and participation in grant preparation, but the training environment experienced by most physicians typically focuses on clinical skills. Most physicians are never exposed to a research environment and therefore do not learn how to write grants. The result is that many clinical studies, even when designed by skilled clinicians and those that address important clinical questions, often do not compete successfully with proposals written by basic scientists. This creates a perception that clinical studies are not favorably viewed by research review committees. The opposite is probably closer to the truth; research review committees are very keen to fund excellent clinical research. Although greater numbers of researchers with Ph.D. degrees have applied for National Institutes of Health (NIH) grants compared with researchers with M.D. degrees over the last 10 yr, funding rates (percent applications funded) have remained approximately the same for these investigators ( Figure 1 ; 1995 success rates: all degrees, 6,759 [26.8%]; M.D. - Ph.D., 370 [23.1%]; M.D., 1,518 [28.1%]; Ph.D., 4,746 [26.8%]; other degree, 125 [23.1%]).[section]

Figure 1. Overall success rates for NIH funding of scientific applications, 1986 - 1995. No difference in funding rate is observed between applicants holding M.D. versus Ph.D. degrees. As the success rate for first-time applications was 11.3% in 1993, it is apparent that resubmission of a revised application significantly increases the overall chance of having research proposal ultimately funded.[section]

Figure 1. Overall success rates for NIH funding of scientific applications, 1986 - 1995. No difference in funding rate is observed between applicants holding M.D. versus Ph.D. degrees. As the success rate for first-time applications was 11.3% in 1993, it is apparent that resubmission of a revised application significantly increases the overall chance of having research proposal ultimately funded.[section]

Capable medical researchers ultimately write research proposals for funding by the NIH. Standards of excellence for NIH grants are high (only the top [almost equal to] 20% of grants are funded). Research questions posed must be hypothesis driven; the investigator must be qualified to perform the study; and preliminary evidence should be presented demonstrating that the research is feasible and will answer the questions posed. The goal of this article is to review important elements of successful research proposals, with emphasis on funding sources available to the anesthesiology community. Two important anesthesia-specific organizations exist to support anesthesia research - The Foundation for Anesthesia Education and Research (FAER, an organization under the auspices of the American Society of Anesthesiologists) and the International Anesthesiology Research Society (IARS).

Successful applications for research support from FAER and IARS have many of the characteristics of grants funded by the NIH and other peer-reviewed funding sources. These characteristics include (1) a highly qualified investigator(s);(2) for junior investigators, a mentor with a successful track record in scientific investigation, peer-reviewed funding, and mentorship of fellows and faculty;(3) a supportive academic environment; and (4) a scientifically sound proposal. Each of these characteristics is discussed in the subsequent sections.

Training of the Investigator

One of the most important components of a successful research proposal is a well-trained investigator. Training in clinical anesthesia is not training in research methodology or scientific thinking; it does not prepare an individual for a career in investigation. Although obvious for basic science research, clinical research also requires commitment of a minimum of 1 yr of dedicated training with a good mentor, and more typically 2 - 3 yr in the field of the proposed research. The applicant also needs to demonstrate commitment to a career in investigation. Several years of scientific training is the first demonstration of such commitment. Research proposals must document institutional support for nonclinical time, and the investigator must provide evidence that this time has been used wisely and will continue to be dedicated to the proposed research.

The research proposal must document a track record of productivity by the investigator. This expectation increases as the training and career of the investigator progresses. Fellowship awards do not have an expectation of prior research training, so publications from prior research are not expected. At the fellowship level, outstanding letters of recommendation, undergraduate and medical school performance, and related accomplishments are most important. Because previous training is not required of the fellowship applicant, prior success of the mentor (publications and track record with previous trainees) weighs heavily in the fellowship review. For junior faculty, peer-reviewed publications are expected from the fellowship period. Young Investigator Annoucements (from FAER) and several new IARS awards require several years as a successful junior faculty member, so expectations of demonstrated research success are further increased. The investigator must demonstrate (1) rigorous training, (2) commitment to research, (3) an appropriate career path, and (4) a track record of productive work. None of these are trivial issues, and none can be easily accomplished without making a commitment to research early in the academic career.

The quality of the mentor is another important aspect of awards granted to fellows and junior faculty. Identification of a mentor is explicitly required for FAER and certain junior level NIH grant applications. First and foremost, the mentor must be a successful investigator. Criteria for this include a track record of publication in the area of the proposed research, continued peer-reviewed funding, and a history of successfully training young investigators. Although mentorship is not considered heavily in more senior grant applications, input from a more experienced investigator often remains beneficial throughout one's career (as we can personally attest to). In addition to the mentor, high-quality coinvestigators, collaborators, and consultants also play important roles in strengthening a research proposal.

Environment

Good research is best accomplished in a supportive, cooperative environment. Because of the changing climate of clinical medicine, researchers (both clinical and basic science) face increasing pressure to minimize research time. It is not possible to become a successful investigator in one's spare time. Documentation of adequate nonclinical time for research (not for committee meetings or other unrelated tasks) is essential. Receiving funding at a junior level often enables the department to match funds or to guarantee nonclinical time to the budding investigator. In general, the more non-clinical time available to an investigator, the more competitive the application.

Other important elements of the environment include people, space, and institutional resources. People include mentors, consultants who can help with specific methodologies, statistical support, helpful colleagues, experienced technicians, a clinical research team, and a dedicated chairperson. There must be adequate space for performing the proposed studies, office space for research personnel, and storage space for equipment and supplies. Institutional resources include related departmental and interdepartmental seminar series, a critical mass of investigators in a related area, instrument development and repair shops, and necessary laboratory space and common facilities.

Criteria for a sound research proposal are the same whether the proposal is submitted to NIH, FAER, IARS, or other funding sources. In crafting a proposal, it is essential to consider the perspective of the reviewer; therefore, items of interest to the reviewer are listed after general definition of the grant proposal.

Review committees receive dozens of grants. NIH study sections may review as many as 150 proposals during one session. Typically, only two or three reviewers are assigned to read each grant in detail, but everyone is expected to read each abstract. Hence, the abstract is often one of the most important parts of the research proposal. The abstract should address the significance of the question and the overall topic, state the hypothesis, and point out key preliminary data. Additionally, the abstract should provide a synopsis of methodologies planned. In the end, the reviewer must be convinced that the applicant is uniquely (or ideally) suited to undertake this important study by the end of this concise paragraph.

Body of the Grant

Specific Aims. The specific aims section is critically important in a scientific proposal. It is here that the investigator crystallizes the overall goal of the research and states specific hypotheses.

Beginning with the specific aims, the proposal must be well written and logically organized. A poorly organized grant application is difficult to review, even if the science is otherwise excellent. Typically, the specific aims begin with a short introduction (one paragraph), followed by a formally stated hypothesis. The hypothesis must be answerable by the research methods proposed. Generally, two or three specific aims are outlined with subheadings where appropriate. Organization of the specific aims is often temporal, starting with a proposed mechanism or the first set of studies in a clinical project. In general, the specific aims section should be no longer than one page.

Background and Significance. The background section provides an opportunity to bring reviewers up to date on current research in the area of the proposal. This section should summarize succinctly studies from the literature and related work published by the investigator. The most crucial aspect of the background is to build a case for significance of the proposed research regarding the ultimate clinical application or mechanistic understanding. Ideally, the background section should demonstrate that the current proposal is a logical extension of previous studies in the field and will provide new information and novel insights. In general, the background section should be about one fourth of the length of the grant proposal.

Preliminary Data. Preliminary data provide the opportunity for the investigator to demonstrate his or her ability to perform the proposed research. The goal in presenting preliminary data is to convince the reviewer that the investigator is capable of performing the proposed studies and that the mechanisms proposed are plausible. Good preliminary data support novel (or even unlikely) hypotheses. Each experimental method proposed should be accompanied by preliminary data demonstrating facility and expertise with related preparations. For example, if the investigator proposes using a specific electrophysiologic technique to study an ion channel, evidence demonstrating that this technique has been used by the investigator with other ion channels and a Figure showingresults from pilot experiments on the channel of interest would suffice. In clinical studies, demonstration of a working investigative team and the ability to enroll a given number of patients per week is helpful. Figures or tables help to convey the message in a succinct manner. They also conserve space in the proposal and create a more impressive effect. Although it is best if the applicant has generated his or her own preliminary data, for training awards, preliminary data from the mentor's laboratory is entirely appropriate. An effective way to organize preliminary data is to present it in the same order as the specific aims (e.g., C.1 preliminary data corresponds to A.1 specific aims, C.2 preliminary data corresponds to A.2 specific aims, etc.). Presentation of preliminary data usually takes about one fourth to one third of the length of the grant application.

Methods. The methods are the guts of the research proposal. Unfortunately, many investigators run out of steam by the time they reach the methods, leaving reviewers unconvinced by the proposed methodology. Ideally, the model being investigated should be broken down into simple, logical components, each accompanied by a description of specific experiments/interventions to be performed. The investigator should assume that at least one reviewer is an expert in each method presented. Therefore, enough detail should be provided to convince an expert that the experiment or technique is being performed properly. Methods presented as a list of recipes, requiring the reviewer to guess which method applies to each study, are recipes for disaster. Individual experimental techniques should be state of the art. In addition, approaching a problem from several angles is often helpful. “Lingo” of the field should be avoided; it is very annoying to reviewers to have to look up unexplained abbreviations or to have models alluded to rather than described. For training grants, methods should involve techniques currently being performed in the laboratory of the mentor. An effective way to organize the methods section is to follow the same order as the preliminary data and specific aims sections (e.g., D.1 methods corresponds to C.1 preliminary data and A.1 specific aims, etc.).

The methods sections should include a description of the design, conduct, and analysis of each study being proposed. Common errors in design include lack of specification of primary outcome, lack of randomization or blinding in clinical trials, inadequate justification of sample size, failure to adjust the total study number for expected dropouts/failed experiments or patient refusal, and use of single drug doses or concentrations rather than development of dose - response or concentration - response relations. Common errors in conducting research include lack of confirmation of drug concentrations, inadequate reproducibility of final results, lack of standardization of procedures, inadequate follow-up, incomplete data recording, and overall lack of organization.

Inadequate or inappropriate statistical methods can be a major weakness of a grant proposal. Many investigators feel confident with all aspects of their methods except the statistical section. Because statistical issues underlie the design and analysis strategy for every study, the input of a biostatistician is essential in planning the research and writing the grant application. Statistical considerations include specification of the primary end points that drive power calculations. Common statistical errors in research proposals include lack of sample size/power calculations, treating continuous variables as dichotomous, repeated t tests when a more comprehensive modeling approach should be taken, application of statistical tests that assume normality without verifying assumptions, failure to consider covariate effects, and failure to distinguish between interindividual and intraindividual variability. The investigator should be familiar with the concept of statistical power and be prepared to estimate some of the quantities needed to formulate an alternative hypothesis appropriately. The statistical analysis should be clearly outlined with specific methodology directed toward the hypotheses of the study. A statistical reviewer is unlikely to be convinced by a statement that “appropriate statistical methodology will be used” or by a barrage of nonspecific statistical jargon. At least one full paragraph (and sometimes an entire page) of the research proposal should be devoted to statistical analysis. Often several smaller statistics sections are appropriately included after each method is presented.

Even the best methods have potential problems and weaknesses. It is critical that the methods section discuss potential problems that may be encountered during the study and state how the investigator proposes to deal with these problems creatively. Reviewers tend to be impressed when the investigator presents potential problems that never occurred to them, because it suggests that the investigator is an expert in this area of research. A time line and organizational plan (who will be responsible for what) should also be included in the methods section so the reviewers can determine whether the investigator is being realistic in his or her approach. The methods section is typically one third to one half of the length of the entire grant proposal.

Introduction to Revised Application. Because so few grant applications are funded on their first submission (11.5% in 1993), the new investigator should not be unduly alarmed if his or her application is not funded. When a grant application has been unsuccessful, an investigator should revise the application and reapply, even if the original score was “noncompetitive”(meaning the grant was in the lower 50% of applications). Often the reviewers suggest key changes that will improve the application significantly. When submitting a revised application, an introduction (placed before the specific aims section) is used to discuss how criticisms of the original grant have been addressed in the revised proposal. Because the reviewer's comments are intended to be helpful, it is important to address each concern carefully in the revised proposal (changed text should be highlighted in the revised application by italic, bold, or identifying lines in the margin), with changes outlined in the introduction section. Angry responses to reviewers do not facilitate funding of the revised application. Remember that reviewers usually have a copy of the prior review, and they expect corrections or, when appropriate, an explanation of why you have chosen not to incorporate some suggestions from a prior review. Time taken to revise an application is well spent; as Figure 1 demonstrates, investigators who persist in revising and resubmitting their applications have an increased chance ([almost equal to] 20% with no previous NIH support, [almost equal to] 35% if previously funded) of ultimately being funded.[section]

In writing a research grant, it is helpful to consider the reviewer's perspective. Key features considered by reviewers include significance, approach, and feasibility. It is wise for the investigator to reread his or her application before submission with these features in mind. The NIH recently has published two documents on-line that discuss review criteria; examination of these documents before submission of a research proposal may prove helpful. These include the Report of the Committee on Rating Grant Applications[double vertical bar] and Review Criteria for Rating Unsolicited Research Grants.#

Significance

First and foremost, is the investigator asking an important question? There are two general ways research studies can be significant. The first is to demonstrate clinical significance. The litmus test for clinical significance is whether the proposed research will improve patient care. The second is elucidation of fundamental mechanisms underlying disease or biologic processes. The ideal research question succeeds in being significant in both areas.

The reviewer assesses whether the research plan can support or refute the stated hypothesis. In addition, the reviewer assesses whether the methodologies used provide adequate or, better yet, elegant approaches to the problem. Recently, the NIH has mandated an increasing emphasis on innovation in research. [1] **

Review committees generally are composed of individuals with expertise in many scientific areas. Additionally, study sections often retain outside reviewers with expertise in the proposed research area. The investigator should assume that his or her methods will be critiqued by at least one expert. Therefore, the investigator should not propose a method that would strike the world's expert in the field as being simplistic, inappropriate, or nonsensical, because the world's expert just might be one of the reviewers. Conversely, some reviewers do not have expertise in the proposed area of research. To ensure that the nonexpert is convinced of the validity and importance of proposed methodologies, the overall proposal should be written with a logical flow of ideas that build from basic to sophisticated concepts. Beginning each portion of the methods section with a short introduction for the nonexpert, followed by a more detailed description of the proposed methods, is an effective strategy to address the needs of both expert and nonexpert reviewers.

Feasibility

The investigator must convince reviewers that the chosen approach is feasible. Preliminary data provide the best demonstration of feasibility. Feasibility is often demonstrated by a track record of publications or peer-reviewed grant support for the applicant or mentor using the proposed experimental approach. Feasibility also can be demonstrated by appropriate statistical analysis of the proposal. For example, a power analysis and corresponding data on the number of patients with the required characteristics at the investigator's institution helps convince reviewers that a clinical study is feasible.

Anesthesiology Funding Sources

Funding for research performed by anesthesiologists is available from many sources. Because the discipline of anesthesiology overlaps many other fields, anesthesiologists have the opportunity to apply for research funds from agencies as diverse as the American Academy of Pediatrics, American Cancer Society, American Heart Association (national and local), American Thoracic Society, American Society for Regional Anesthesiology, critical care societies, Department of Veterans Affairs, National Science Foundation, Shriners, Society for Cardiovascular Anesthesiology, Society for Obstetrics and Perinatology, National Aeronautics and Space Aviation, NIH, and many other private foundations. Grants from FAER and IARS are available specifically to the anesthesiology community.

It is important that anesthesiologists continue to apply for NIH grants. For fiscal year 1996, the NIH awarded 149 research grants (including career development grants, R29, R01, and program project grants) to departments of anesthesiology, totaling $21 million in direct costs ([almost equal to]$31 million in total costs). Because of the diversity of research projects in anesthesiology, these grants were awarded by 14 different institutes, centers, and divisions within the NIH. In analyzing data for three recent review sessions (June 1996, October 1996, and February 1997) from the surgery, anesthesiology, and trauma study section, 26% of anesthesiology applications scored in the top 20th percentile, and 31% scored in the top 25th percentile; clearly no bias exists against anesthesiology in this predominantly surgical study section, at least in this limited sample (Alison Cole, anesthesiology representative for the National Institute of General Medicine Science at the NIH, personal communication, December, 1997). Table 1  

Table 1. Number of Recipients of NIH Research Project Annoucements  

Table 1. Number of Recipients of NIH Research Project Annoucements 

A brief list of funding opportunities available to anesthesiologists early in their career is shown in Table 2 . Several sites are available on the World Wide Web ( Table 3 ) to facilitate access to grant/training resources for anesthesiologists. We have created an additional website ( http://pkpd.icon.palo-alto.med.va.gov/grants/grants.htm ), which provides access to more comprehensive lists of funding agencies and direct links to funding sources. This website also contains example grants designed to illustrate the grant writing principles discussed in this article.

Table 2. Potential Funding Sources  

Table 2. Potential Funding Sources 

Table 3. Grant/Training Resources on the WWW  

Table 3. Grant/Training Resources on the WWW 

Successful grant applications require a well-trained investigator who carefully outlines a hypothesis-driven research proposal. Unique to FAER and IARS research committees is that the reviewers are mostly investigators and practicing anesthesiologists. These reviewers fully appreciate the importance of clinical research and enthusiastically support high-quality clinical studies. Although descriptive clinical studies are interesting to practicing clinicians, from a scientific perspective, clinical research must be driven by testable hypotheses. Without a testable hypothesis, clinical research cannot pass the test of adequate significance required for funding.

It is our hope that by demystifying the grant writing and review process that more anesthesiologists will be encouraged to submit proposals for research funding. As part of this effort, we strongly encourage residents and fellows interested in research careers to obtain adequate research training and to apply for appropriate fellowship/junior faculty awards early in their careers.

[section] NIH Extramural Data and Trends, Fiscal Years 1986 - 1995. Bethesda, Office of Reports and Analysis (component of the Office of Extramural Research), National Institutes of Health. (Published on-line and periodically updated. http://www.nih.gov/grants/award/award.htm ).

[double vertical bar] Report of the Committee on Rating Grant Applications. Revised 5/17/96. Bethesda, National Institutes of Health. (Published on-line. http://www.nih.gov/grants/peer/rga.pdf ).

# Review Criteria for Rating Unsolicited Research Grants. NIH Guide, Vol. 26, No. 22, 6/27/97. Bethesda, National Institutes of Health. (Published on-line. http://www.nih.gov/grants/guide/1997/97.06.27/notice-review-criter9.html ).

** Brown KS: A winning strategy for grant application: Focus on impact. The Scientist 1997; April 8:13–4

Citing articles via

Most viewed, email alerts, related articles, social media, affiliations.

  • ASA Practice Parameters
  • Online First
  • Author Resource Center
  • About the Journal
  • Editorial Board
  • Rights & Permissions
  • Online ISSN 1528-1175
  • Print ISSN 0003-3022
  • Anesthesiology
  • ASA Monitor

Silverchair Information Systems

  • Terms & Conditions Privacy Policy
  • Manage Cookie Preferences
  • © Copyright 2024 American Society of Anesthesiologists

This Feature Is Available To Subscribers Only

Sign In or Create an Account

How to write a research proposal?

Affiliation.

  • 1 Department of Anaesthesiology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India.
  • PMID: 27729688
  • PMCID: PMC5037942
  • DOI: 10.4103/0019-5049.190617

Writing the proposal of a research work in the present era is a challenging task due to the constantly evolving trends in the qualitative research design and the need to incorporate medical advances into the methodology. The proposal is a detailed plan or 'blueprint' for the intended study, and once it is completed, the research project should flow smoothly. Even today, many of the proposals at post-graduate evaluation committees and application proposals for funding are substandard. A search was conducted with keywords such as research proposal, writing proposal and qualitative using search engines, namely, PubMed and Google Scholar, and an attempt has been made to provide broad guidelines for writing a scientifically appropriate research proposal.

Keywords: Guidelines; proposal; qualitative; research.

Publication types

  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

An Introduction to Clinical Research

  • < Previous chapter
  • Next chapter >

An Introduction to Clinical Research

87Chapter 4 Writing your research proposal

  • Published: November 2011
  • Cite Icon Cite
  • Permissions Icon Permissions

In many ways it’s a reflection of yourself as a researcher and an insight into your proposed work. A poorly written proposal has the ability to wreck a project and embarrass the researcher before it has even begun. Similarly, a well-constructed proposal bodes well for the success of the project and displays the researcher in a good light amongst their peers and supervisors. The research proposal identifies: • What the topic is, both in terms of background and the individual area of interest. • What you plan to accomplish and why it needs doing. • What in particular you are trying to find out, i.e. the research question. • How you will get the answer to your question, i.e. your methodology. • What others will learn from it and why it is worth learning. • How long it will take. • How much money it will cost. Through your research proposal you are attempting to convince potential supporters that your project is worth doing, you are scientifically competent to run it, and are in possession of the necessary management skills to ensure its completion. The proposal concisely describes the key elements of the study process, although in sufficient depth to permit evaluation. It is a stand-alone document that must contain evidence of an answerable question, demonstrate your grasp of the literature, and also clearly show that your methodology is sound. A research time-table is required to demonstrate a realistic appreciation of how the study will progress through time. The research proposal serves many purposes to many different parties. Amongst these purposes, some of the key ones are: • Acting as a route map and timetable for all involved in your project. • Giving a clear overview of your planned work to ensure favourable decision at ethical review. • Gaining funding to carry out your proposed study. • Securing a place to undertake a higher scientific degree. • Being an opportunity to ‘blow your own trumpet’ on paper. Although there are several bodies who will be obliged to see your proposal, there is a reasonable chance it will end up being wider read than this, so a coherent piece of work will reflect well on you.

Signed in as

Institutional accounts.

  • GoogleCrawler [DO NOT DELETE]
  • Google Scholar Indexing

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

LOGO: UC San Diego School of Medicine

ISP Proposal Samples 

You must have Adobe Acrobat Reader to view or print these PDF files. Click the button below to download a free copy:

Section 'Sub' Navigation:

  • Introduction
  • Role of Committee
  • Expectations
  • Past ISP Titles and Chairs
  • Sample Proposals
  • Helpful Hints
  • Proposal Review Process
  • Time Frames
  • Completing the ISP
  • Elective Credit
  • Contact ISP Coordinator
  • AudioVisual Support
  • Body Donation Program
  • Central Administration
  • Educational Technology
  • Professional Development Center
  • Simulation Training Center
  • MedEd Site Index

Page 'Breadcrumb' Navigation:

Site 'Main' Navigation:

  • ASA Divisional Offices/Centers
  • Admissions Office
  • Financial Aid Office
  • Student Affairs Office
  • Diversity & Community Partnerships
  • Global Health & Academic Concentration
  • Medical Scientist Training Program
  • Problem Based Learning Recruitment
  • Schedules and Calendars
  • Visiting Senior Students
  • SOM Block Schedule
  • UGME Divisional Offices/Centers
  • ACA Preceptor
  • Educational Support Services
  • ISP Handbook
  • Medical Education Technology and Evaluation
  • Medical Teaching Laboratory
  • Credentials Verification
  • House Officer
  • Benefits & Liability Insurance
  • Medical License, DEA Registration & EPCS Enrollment
  • Visiting Residents
  • Program Coordinators & Directors
  • Policies & Notices
  • Anonymous Feedback
  • GME Orientation
  • Continuing Medical Education
  • Alumni Affairs
  • Business Office
  • Equipment Replacement
  • MedEd Support Services
  • Medical Education Technology
  • Medical Education
  • School of Medicine
  • UC San Diego Health System
  • UC San Diego Health Sciences

LOGO: University of California, San Diego

Official Web Site of the University of California, San Diego. Copyright © 2024 Regents of the University of California. All rights reserved. Webmaster

Li Ka Shing

PDO MISSION: TURNING INNOVATIVE IDEAS INTO IMPACTFUL PROPOSALS

Li Ka Shing

PDO supported CIRM CLIN2 application funded in February Learn more

Li Ka Shing

School of Medicine Proposal Development Office

The proposal development office (pdo) enables stanford medicine faculty to pursue transformative biomedical research. we provide expert consultation on grant proposal strategy, proposal management and facilitation, grant writing and editing, and streamlined proposal administrative support. we also lead initiatives in the school of medicine that increase institutional competitiveness and enable strategic research growth. , based in the school of medicine research office , we are uniquely positioned to support teams of stanford medicine researchers pursuing interdisciplinary and cross-cutting funding opportunities. our current priority areas include large, complex, and strategic proposals and early-career faculty research grants., pdo interview with stanford's first arpa-h awardee - dr. mark skylar-scott, curious about arpa-h funding mechanism and have questions about how to apply and secure funding pd specialist, dr. lee fradkin, talks to dr. mark skylar-scott, the first ever recipient of arpa-h funding at stanford, to answer some common questions and provide an overview. review the guide for developing a clear program concept for arpa-h proposers., watch pdo interview with dr. seung kim on securing p and u funding, our services:.

Funding

242+ proposals

The PDO has assisted faculty from 27 School of Medicine departments submit more than 242 proposals.

Group

The PDO has supported more than 150 faculty members from across the School of Medicine.

Currency

The PDO has helped faculty secure over $613 million in research funding.

Green

Tamar Green, MD

PDO team was extremely responsive and professional. Working with PDO and RMG felt much more like teamwork, which greatly improved both the quality of the proposal and morale.

Tamar Green, MD, PI of NIH R01 "Neuropsychiatric and brain development trajectories in Ras-related syndrome, a longitudinal study"

Kyle Loh

Kyle Loh, PhD

It was a pleasure working together with the Proposal Development Office. Without the PDO's help, we definitely would not have been able to submit our consortium grant, that spanned six labs across two different institutions, on time. The team identified and resolved many issues that we were totally unaware of, and we were very grateful for the chance to work with them.

Kyle Loh, PhD, PI of AHA-AV “Discovering molecular mechanisms of Fontan resilience with human pluripotent stem cell-derived liver and lymphatic cells”

Melanie Hayden Gephart

Melanie Hayden Gephart, MD

The PDO team was truly fantastic! They were flexible, dedicated and knowledgeable. The team provided outstanding assistance in integrating and coordinating a complex multi-project application.

Melanie Hayden Gephart, MD, PI of NCI Metastasis Research Network U54 "Deconvolution and interruption of the cancer-neuro-immune axis facilitating brain metastases"

6+ SAMPLE Medical Research Proposal in PDF | MS Word

Medical research proposal | ms word, 6+ sample medical research proposal, what is a medical research proposal, things to think about to prepare for a medical research proposal, what should the medical research proposal contain, how to structure your medical research proposal, medical researches of various types, why is funding important for medical research, what distinguishes a good research proposal from a bad one, why are you required to submit a research proposal, what is the purpose of your research proposal, and why is it crucial, how long should my research proposal be.

Medical Student Research Proposal

Medical Student Research Proposal

Medical Research Request For Proposal

Medical Research Request For Proposal

Medical Health Research Project Proposal

Medical Health Research Project Proposal

Sample Medical Research Proposal

Sample Medical Research Proposal

Bio Medical Research Proposal

Bio-Medical Research Proposal

Medical Research Council Proposal

Medical Research Council Proposal

Medical Research Proposal in DOC

Medical Research Proposal in DOC

Share this post on your network, file formats, word templates, google docs templates, excel templates, powerpoint templates, google sheets templates, google slides templates, pdf templates, publisher templates, psd templates, indesign templates, illustrator templates, pages templates, keynote templates, numbers templates, outlook templates, you may also like these articles, 25+ sample construction company proposal in ms word.

sample construction company proposal

Navigating the intricate world of construction demands a seasoned company with a proven track record. Our comprehensive guide on the Construction Company Proposal is your blueprint to understanding the…

8+ SAMPLE Drama Proposal in PDF

sample drama proposal

Julia Child said: “Drama is very important in life: You have to come on with a bang. You never want to go out with a whimper. Everything can have…

browse by categories

  • Questionnaire
  • Description
  • Reconciliation
  • Certificate
  • Spreadsheet

Information

  • privacy policy
  • Terms & Conditions
  • AI Content Shield
  • AI KW Research
  • AI Assistant
  • SEO Optimizer
  • AI KW Clustering
  • Customer reviews
  • The NLO Revolution
  • Press Center
  • Help Center
  • Content Resources
  • Facebook Group

Medical Research Proposal Sample & Guide

Table of Contents

A medical research proposal sample is a great way to understand what your proposal should look like. It can give you the structure and guidance needed to create a successful proposal.  Well-written medical research proposals help researchers stand out from other applicants and boost their chances of being selected or funded. Read on to find out what a medical research proposal entails and how to write yours with our easy sample.

What Is a Medical Research Proposal?

A medical research proposal is a document that outlines the purpose and methodology of a proposed research project . It includes information about what the researcher intends to study, how they plan to conduct their research and measurement for success or failure.  The proposal also explains why the research is essential, what ethical considerations need to be considered, and the potential risks associated with it. 

Why Is a Medical Research Proposal Necessary?

A medical research proposal is essential because it outlines the critical information and details necessary to complete a project successfully.  This document ensures that everyone understands their position and how they will contribute resources, time, and effort to make the project successful. It also helps researchers to secure funding from sponsors and provide transparency for potential participants in the study. 

What to Include in a Medical Research Proposal?

A medical research proposal should include the following:

  • A brief description of the project, outlining the purpose and goals. 
  • An explanation of how you plan to collect data; through surveys or interviews with participants?
  • List any ethical considerations involved, including who will have access to the collected information and how it will be stored securely. 
  • Budget required for the research and any timeline associated with the completion of the study. 
  • Samples from past researchers, so you can learn more about what makes a successful medical research proposal. 

Steps on How to Write a Medical Research Proposal

It is important to remember that all proposals, no matter the topic, should follow specific steps to make them effective and organized. Here are a few steps to guide you:

person sitting while using laptop computer and green stethoscope near

Brainstorm and Outline the Problem

The first step is to brainstorm the project you are proposing, making sure that it has relevance in medicine. Determine what issue you are trying to address through your research and explain it clearly as a problem statement. 

Describe Your Project

Provide detailed information on your project, the aims, the expected outcomes, and any methods used to achieve them. 

Break It Into Small Sections

Once you have a clear vision of what you want to accomplish, break it down into small sections to effectively convey your thoughts. 

Set Your Objectives

Set specific objectives for your project and explain how you plan to achieve them. 

Outline Your Methodology

 Describe the processes used to collect data, analyze results, and draw conclusions from the research. 

Discuss Ethical Considerations

Explain any ethical considerations relevant to your proposed project, such as privacy and consent.

Write a Budget

Outline the cost of the project, including any equipment or materials needed.

Proofread the Proposal

Make sure to read through your proposal carefully before submitting it and ask someone else to do so, if possible. 

Medical Research Proposal Sample

To help you get started with your medical research proposal, here is an example: Project Aims:  This project aims to study air pollution’s effects on public health in a particular city.  Objectives:  To investigate how air pollution impacts public health in the target city and how to mitigate it. Methodology:  Data will be collected through surveys, interviews with residents, and environmental air quality sampling.  Ethical Considerations:  All participants in the project must be informed of the risks involved and consent to its use for research purposes. Personal information will be kept confidential and only used for research purposes.  Budget:  The budget allocated for this project is $5000. 

Developing a medical research proposal requires careful consideration and organization. Consequently, a medical research proposal sample might serve as an excellent starting point when writing your own project .

Medical Research Proposal Sample & Guide

Abir Ghenaiet

Abir is a data analyst and researcher. Among her interests are artificial intelligence, machine learning, and natural language processing. As a humanitarian and educator, she actively supports women in tech and promotes diversity.

Explore All Proposal Generator Articles

Creative terms and conditions agreement in business proposal.

In business, proposals are essential for securing contracts and agreements with clients. However, a proposal is only complete with terms…

  • Proposal Generator

Free guide to a statement of proposal sample

A statement of proposal is a document that outlines a proposed project or initiative in detail. It is typically used…

Free Proposal Letter for Training and Development for a Head Start

Training and development are essential to improve employees’ skills, knowledge, and productivity. A well-crafted training proposal can help an organization…

Detailed Guide to Free HR Consulting Proposal

HR consulting is an essential service for businesses of all sizes. HR consultants provide expert guidance to organizations on various…

Key Guide to Better Remote Work Proposal

The rise of remote work has been a significant trend in the business world over the last few years. With…

Guide to Free E-Commerce Proposal Template

E-commerce has become one of the most popular ways of doing business recently. With the increasing number of people using…

All Formats

Table of Contents

Proposal template bundle, 5 steps to make a medical research proposal, step 1: collect source material, step 2: devise a plan, step 3: identify problems, step 4: set goals, step 5: evaluate and assess, 17+ medical research proposal templates, 1. simple medical research proposal template, 2. undergraduate medical student research proposal, 3. medical research proposal template, 4. sample medical research proposal, 5. medical clinical research proposal example, 6. medical study research proposal in pdf, 7. basic medical research proposal in pdf, 8. medical ph.d. project research proposal, 9. bio-medical pharmacology research proposal template, 10. medical public health issues research proposal in pdf, 11. medical research request for proposal, 12. medical research proposal format, 13. medical student research proposal in pdf, 14. medical research proposal submission form, 15. medical research proposal format in doc, 16. medical research proposal in doc, 17. simple medical thesis research proposal template, 18. medical research proposal letter template, proposal templates, 17+ medical research proposal templates in pdf | doc.

To create a medical research proposal, you need to find valuable information and create a complicated document. The proposal is mainly devised for investors, academic heads, or other people who would value the legitimacy of your project proposal and assess the merit. For successful research proposals, you need to follow certain guidelines for efficiency. We have all sorts of medical research proposal templates for users with specific needs. Whether it’s for a clinical Ph.D. research on public health issues or an undergraduate letter over pharmacology, we got them all right here. Or if you are wondering, you can use proposal templates that bring ready-made documents for your benefit!

research proposal in medicine

  • Google Docs

medical proposal template

  • Apple Pages

medical student research proposal template

More in Proposal Templates

Nursing student thank you letter, medical joining letter, thank you letter for your service from customer template, sample florist business thank you letter template, medical excuse letter for work, medical assistant thank you letter after interview, medical leave request letter, medical bill dispute letter, thank you letter for medical support, medical assistant thank you letter.

  • Proposal Templates – 170+ Free Word, PDF, Format Download!
  • 57+ Training Proposal Templates in PDF | Google Docs | MS Word | Pages
  • 7+ Logistics Proposal Templates in PDF
  • 13+ Recruitment Proposal Templates in Google Docs | MS Word | Pages | PDF | MS Excel
  • 12+ Logistics Business Proposal Templates in PDF
  • 67+ Project Proposal in PDF , Docs
  • 39+ Sponsorship Proposal Templates – Free Word, Excel, PDF Format Download!
  • 23+ Funding Proposal Templates – DOC, PDF, Excel, Apple Pages, Google Docs
  • 22+ Bid Proposal Templates – Word, PDF, Google Docs, Apple Pages
  • 16+ School Project Proposal Templates – Word, PDF
  • 11+ Product Business Proposal Templates – Sample, Example
  • 10+ Travel Insurance Document Templates in Google Docs | Google Sheets | Excel | Word | Numbers | Pages | PDF
  • 10+ Auto Insurance Templates in Google Docs | Word | Pages | PDF
  • 10+ Homeowners Insurance Templates in Google Docs | Word | Pages | PDF
  • 25+ Small Business Proposal Templates – Word, PDF

File Formats

Word templates, google docs templates, excel templates, powerpoint templates, google sheets templates, google slides templates, pdf templates, publisher templates, psd templates, indesign templates, illustrator templates, pages templates, keynote templates, numbers templates, outlook templates.

Internal Medicine

  • Dermatology
  • Anesthesiology
  • Cardiology and CTVS
  • Critical Care
  • Diabetes and Endocrinology
  • Gastroenterology
  • Obstretics-Gynaecology
  • Ophthalmology
  • Orthopaedics
  • Pediatrics-Neonatology
  • Pulmonology
  • Laboratory Medicine
  • Paramedical
  • Physiotherapy
  • Doctor News
  • Government Policies
  • Hospital & Diagnostics
  • International Health News
  • Medical Organization News
  • Medico Legal News
  • Ayurveda Giuidelines
  • Ayurveda News
  • Homeopathy Guidelines
  • Homeopathy News
  • Siddha Guidelines
  • Siddha News
  • Unani Guidelines
  • Yoga Guidelines
  • Andaman and Nicobar Islands
  • Andhra Pradesh
  • Arunachal Pradesh
  • Chattisgarh
  • Dadra and Nagar Haveli
  • Daman and Diu
  • Himachal Pradesh
  • Jammu & Kashmir
  • Lakshadweep
  • Madhya Pradesh
  • Maharashtra
  • Uttar Pradesh
  • West Bengal
  • Ayush Education News
  • Dentistry Education News
  • Medical Admission News
  • Medical Colleges News
  • Medical Courses News
  • Medical Universities News
  • Nursing education News
  • Paramedical Education News
  • Study Abroad
  • Health Investment News
  • Health Startup News
  • Medical Devices News
  • CDSCO (Central Drugs Standard Control Organisation) News
  • Pharmacy Education News
  • Industry Perspective

ICMR Calls For Research Proposals for 2024-2025, All Details Here

Divyani Paul

New Delhi- Through a notice, the Indian Council of Medical Research (ICMR) has called for research proposals for the year 2024-2025. The online research proposals are invited from the eligible applicants from UGC-recognised universities, research institutions/medical/dental colleges/Institutes of National Importance.The Applications can be submitted online through the web portal of DHR, which...

New Delhi- Through a notice, the Indian Council of Medical Research (ICMR)  has called for research proposals for the year 2024-2025. The online research proposals are invited from the eligible applicants from UGC-recognised universities, research institutions/medical/dental colleges/Institutes of National Importance.

The Applications can be submitted online through the web portal of DHR, which is mentioned in the notice.

The research proposals are called for the following programs-

COMPONENTS OF THE SCHEME

I. Short-Term Studentship (STS)

II. MD/MS/DM/MCh/DNB/DrNB/MDS Thesis Support

III. MBBS/MD/MS-Ph.D. Program

IV. Non-medical fellowships for Ph.D.-NET (BRET)

V. Short-term Fellowship Abroad

VI. Long-term Fellowship Abroad 3

VII. Short-term Fellowship at Indian Institutes

VIII. Long-term Fellowship at Indian Institutes

IX. Women Scientist fellowship

X. Biomedical research grant for NRI/OCI/PIO

XI. Fellowship for best achievement in biomedical research

XII. International Travel Grant for non-DHR/ICMR scientists & researchers

XIII. Workshops funding grant in biomedical research

XIV. Support to Institutions and Scientific Professionals/Bodies/Associations

XV. Start-up Grant.

The Human Resource Development (HRD) Scheme aims to provide opportunities for advanced training in biomedical and health research to create a pool of trained & experienced human resources in India.

To view the notice, click the link below

Divyani Paul

I am a student of Journalism and Mass Communication and also a passionate writer and explorer. With a keen interest in medicine, I have joined Medical Dialogues as a Content Writer. Within this role, I curate various healthcare-related news including the latest updates on health, hospitals, and regulatory updates from NMC/DCI. For any query or information, feel free to reach out to me at [email protected]

sidekick

Why the Pandemic Probably Started in a Lab, in 5 Key Points

research proposal in medicine

By Alina Chan

Dr. Chan is a molecular biologist at the Broad Institute of M.I.T. and Harvard, and a co-author of “Viral: The Search for the Origin of Covid-19.”

This article has been updated to reflect news developments.

On Monday, Dr. Anthony Fauci returned to the halls of Congress and testified before the House subcommittee investigating the Covid-19 pandemic. He was questioned about several topics related to the government’s handling of Covid-19, including how the National Institute of Allergy and Infectious Diseases, which he directed until retiring in 2022, supported risky virus work at a Chinese institute whose research may have caused the pandemic.

For more than four years, reflexive partisan politics have derailed the search for the truth about a catastrophe that has touched us all. It has been estimated that at least 25 million people around the world have died because of Covid-19, with over a million of those deaths in the United States.

Although how the pandemic started has been hotly debated, a growing volume of evidence — gleaned from public records released under the Freedom of Information Act, digital sleuthing through online databases, scientific papers analyzing the virus and its spread, and leaks from within the U.S. government — suggests that the pandemic most likely occurred because a virus escaped from a research lab in Wuhan, China. If so, it would be the most costly accident in the history of science.

Here’s what we now know:

1 The SARS-like virus that caused the pandemic emerged in Wuhan, the city where the world’s foremost research lab for SARS-like viruses is located.

  • At the Wuhan Institute of Virology, a team of scientists had been hunting for SARS-like viruses for over a decade, led by Shi Zhengli.
  • Their research showed that the viruses most similar to SARS‑CoV‑2, the virus that caused the pandemic, circulate in bats that live r oughly 1,000 miles away from Wuhan. Scientists from Dr. Shi’s team traveled repeatedly to Yunnan province to collect these viruses and had expanded their search to Southeast Asia. Bats in other parts of China have not been found to carry viruses that are as closely related to SARS-CoV-2.

research proposal in medicine

The closest known relatives to SARS-CoV-2 were found in southwestern China and in Laos.

Large cities

Mine in Yunnan province

Cave in Laos

South China Sea

research proposal in medicine

The closest known relatives to SARS-CoV-2

were found in southwestern China and in Laos.

philippines

research proposal in medicine

The closest known relatives to SARS-CoV-2 were found

in southwestern China and Laos.

Sources: Sarah Temmam et al., Nature; SimpleMaps

Note: Cities shown have a population of at least 200,000.

research proposal in medicine

There are hundreds of large cities in China and Southeast Asia.

research proposal in medicine

There are hundreds of large cities in China

and Southeast Asia.

research proposal in medicine

The pandemic started roughly 1,000 miles away, in Wuhan, home to the world’s foremost SARS-like virus research lab.

research proposal in medicine

The pandemic started roughly 1,000 miles away,

in Wuhan, home to the world’s foremost SARS-like virus research lab.

research proposal in medicine

The pandemic started roughly 1,000 miles away, in Wuhan,

home to the world’s foremost SARS-like virus research lab.

  • Even at hot spots where these viruses exist naturally near the cave bats of southwestern China and Southeast Asia, the scientists argued, as recently as 2019 , that bat coronavirus spillover into humans is rare .
  • When the Covid-19 outbreak was detected, Dr. Shi initially wondered if the novel coronavirus had come from her laboratory , saying she had never expected such an outbreak to occur in Wuhan.
  • The SARS‑CoV‑2 virus is exceptionally contagious and can jump from species to species like wildfire . Yet it left no known trace of infection at its source or anywhere along what would have been a thousand-mile journey before emerging in Wuhan.

2 The year before the outbreak, the Wuhan institute, working with U.S. partners, had proposed creating viruses with SARS‑CoV‑2’s defining feature.

  • Dr. Shi’s group was fascinated by how coronaviruses jump from species to species. To find viruses, they took samples from bats and other animals , as well as from sick people living near animals carrying these viruses or associated with the wildlife trade. Much of this work was conducted in partnership with the EcoHealth Alliance, a U.S.-based scientific organization that, since 2002, has been awarded over $80 million in federal funding to research the risks of emerging infectious diseases.
  • The laboratory pursued risky research that resulted in viruses becoming more infectious : Coronaviruses were grown from samples from infected animals and genetically reconstructed and recombined to create new viruses unknown in nature. These new viruses were passed through cells from bats, pigs, primates and humans and were used to infect civets and humanized mice (mice modified with human genes). In essence, this process forced these viruses to adapt to new host species, and the viruses with mutations that allowed them to thrive emerged as victors.
  • By 2019, Dr. Shi’s group had published a database describing more than 22,000 collected wildlife samples. But external access was shut off in the fall of 2019, and the database was not shared with American collaborators even after the pandemic started , when such a rich virus collection would have been most useful in tracking the origin of SARS‑CoV‑2. It remains unclear whether the Wuhan institute possessed a precursor of the pandemic virus.
  • In 2021, The Intercept published a leaked 2018 grant proposal for a research project named Defuse , which had been written as a collaboration between EcoHealth, the Wuhan institute and Ralph Baric at the University of North Carolina, who had been on the cutting edge of coronavirus research for years. The proposal described plans to create viruses strikingly similar to SARS‑CoV‑2.
  • Coronaviruses bear their name because their surface is studded with protein spikes, like a spiky crown, which they use to enter animal cells. T he Defuse project proposed to search for and create SARS-like viruses carrying spikes with a unique feature: a furin cleavage site — the same feature that enhances SARS‑CoV‑2’s infectiousness in humans, making it capable of causing a pandemic. Defuse was never funded by the United States . However, in his testimony on Monday, Dr. Fauci explained that the Wuhan institute would not need to rely on U.S. funding to pursue research independently.

research proposal in medicine

The Wuhan lab ran risky experiments to learn about how SARS-like viruses might infect humans.

1. Collect SARS-like viruses from bats and other wild animals, as well as from people exposed to them.

research proposal in medicine

2. Identify high-risk viruses by screening for spike proteins that facilitate infection of human cells.

research proposal in medicine

2. Identify high-risk viruses by screening for spike proteins that facilitate infection of

human cells.

research proposal in medicine

In Defuse, the scientists proposed to add a furin cleavage site to the spike protein.

3. Create new coronaviruses by inserting spike proteins or other features that could make the viruses more infectious in humans.

research proposal in medicine

4. Infect human cells, civets and humanized mice with the new coronaviruses, to determine how dangerous they might be.

research proposal in medicine

  • While it’s possible that the furin cleavage site could have evolved naturally (as seen in some distantly related coronaviruses), out of the hundreds of SARS-like viruses cataloged by scientists, SARS‑CoV‑2 is the only one known to possess a furin cleavage site in its spike. And the genetic data suggest that the virus had only recently gained the furin cleavage site before it started the pandemic.
  • Ultimately, a never-before-seen SARS-like virus with a newly introduced furin cleavage site, matching the description in the Wuhan institute’s Defuse proposal, caused an outbreak in Wuhan less than two years after the proposal was drafted.
  • When the Wuhan scientists published their seminal paper about Covid-19 as the pandemic roared to life in 2020, they did not mention the virus’s furin cleavage site — a feature they should have been on the lookout for, according to their own grant proposal, and a feature quickly recognized by other scientists.
  • Worse still, as the pandemic raged, their American collaborators failed to publicly reveal the existence of the Defuse proposal. The president of EcoHealth, Peter Daszak, recently admitted to Congress that he doesn’t know about virus samples collected by the Wuhan institute after 2015 and never asked the lab’s scientists if they had started the work described in Defuse. In May, citing failures in EcoHealth’s monitoring of risky experiments conducted at the Wuhan lab, the Biden administration suspended all federal funding for the organization and Dr. Daszak, and initiated proceedings to bar them from receiving future grants. In his testimony on Monday, Dr. Fauci said that he supported the decision to suspend and bar EcoHealth.
  • Separately, Dr. Baric described the competitive dynamic between his research group and the institute when he told Congress that the Wuhan scientists would probably not have shared their most interesting newly discovered viruses with him . Documents and email correspondence between the institute and Dr. Baric are still being withheld from the public while their release is fiercely contested in litigation.
  • In the end, American partners very likely knew of only a fraction of the research done in Wuhan. According to U.S. intelligence sources, some of the institute’s virus research was classified or conducted with or on behalf of the Chinese military . In the congressional hearing on Monday, Dr. Fauci repeatedly acknowledged the lack of visibility into experiments conducted at the Wuhan institute, saying, “None of us can know everything that’s going on in China, or in Wuhan, or what have you. And that’s the reason why — I say today, and I’ve said at the T.I.,” referring to his transcribed interview with the subcommittee, “I keep an open mind as to what the origin is.”

3 The Wuhan lab pursued this type of work under low biosafety conditions that could not have contained an airborne virus as infectious as SARS‑CoV‑2.

  • Labs working with live viruses generally operate at one of four biosafety levels (known in ascending order of stringency as BSL-1, 2, 3 and 4) that describe the work practices that are considered sufficiently safe depending on the characteristics of each pathogen. The Wuhan institute’s scientists worked with SARS-like viruses under inappropriately low biosafety conditions .

research proposal in medicine

In the United States, virologists generally use stricter Biosafety Level 3 protocols when working with SARS-like viruses.

Biosafety cabinets prevent

viral particles from escaping.

Viral particles

Personal respirators provide

a second layer of defense against breathing in the virus.

DIRECT CONTACT

Gloves prevent skin contact.

Disposable wraparound

gowns cover much of the rest of the body.

research proposal in medicine

Personal respirators provide a second layer of defense against breathing in the virus.

Disposable wraparound gowns

cover much of the rest of the body.

Note: ​​Biosafety levels are not internationally standardized, and some countries use more permissive protocols than others.

research proposal in medicine

The Wuhan lab had been regularly working with SARS-like viruses under Biosafety Level 2 conditions, which could not prevent a highly infectious virus like SARS-CoV-2 from escaping.

Some work is done in the open air, and masks are not required.

Less protective equipment provides more opportunities

for contamination.

research proposal in medicine

Some work is done in the open air,

and masks are not required.

Less protective equipment provides more opportunities for contamination.

  • In one experiment, Dr. Shi’s group genetically engineered an unexpectedly deadly SARS-like virus (not closely related to SARS‑CoV‑2) that exhibited a 10,000-fold increase in the quantity of virus in the lungs and brains of humanized mice . Wuhan institute scientists handled these live viruses at low biosafet y levels , including BSL-2.
  • Even the much more stringent containment at BSL-3 cannot fully prevent SARS‑CoV‑2 from escaping . Two years into the pandemic, the virus infected a scientist in a BSL-3 laboratory in Taiwan, which was, at the time, a zero-Covid country. The scientist had been vaccinated and was tested only after losing the sense of smell. By then, more than 100 close contacts had been exposed. Human error is a source of exposure even at the highest biosafety levels , and the risks are much greater for scientists working with infectious pathogens at low biosafety.
  • An early draft of the Defuse proposal stated that the Wuhan lab would do their virus work at BSL-2 to make it “highly cost-effective.” Dr. Baric added a note to the draft highlighting the importance of using BSL-3 to contain SARS-like viruses that could infect human cells, writing that “U.S. researchers will likely freak out.” Years later, after SARS‑CoV‑2 had killed millions, Dr. Baric wrote to Dr. Daszak : “I have no doubt that they followed state determined rules and did the work under BSL-2. Yes China has the right to set their own policy. You believe this was appropriate containment if you want but don’t expect me to believe it. Moreover, don’t insult my intelligence by trying to feed me this load of BS.”
  • SARS‑CoV‑2 is a stealthy virus that transmits effectively through the air, causes a range of symptoms similar to those of other common respiratory diseases and can be spread by infected people before symptoms even appear. If the virus had escaped from a BSL-2 laboratory in 2019, the leak most likely would have gone undetected until too late.
  • One alarming detail — leaked to The Wall Street Journal and confirmed by current and former U.S. government officials — is that scientists on Dr. Shi’s team fell ill with Covid-like symptoms in the fall of 2019 . One of the scientists had been named in the Defuse proposal as the person in charge of virus discovery work. The scientists denied having been sick .

4 The hypothesis that Covid-19 came from an animal at the Huanan Seafood Market in Wuhan is not supported by strong evidence.

  • In December 2019, Chinese investigators assumed the outbreak had started at a centrally located market frequented by thousands of visitors daily. This bias in their search for early cases meant that cases unlinked to or located far away from the market would very likely have been missed. To make things worse, the Chinese authorities blocked the reporting of early cases not linked to the market and, claiming biosafety precautions, ordered the destruction of patient samples on January 3, 2020, making it nearly impossible to see the complete picture of the earliest Covid-19 cases. Information about dozens of early cases from November and December 2019 remains inaccessible.
  • A pair of papers published in Science in 2022 made the best case for SARS‑CoV‑2 having emerged naturally from human-animal contact at the Wuhan market by focusing on a map of the early cases and asserting that the virus had jumped from animals into humans twice at the market in 2019. More recently, the two papers have been countered by other virologists and scientists who convincingly demonstrate that the available market evidence does not distinguish between a human superspreader event and a natural spillover at the market.
  • Furthermore, the existing genetic and early case data show that all known Covid-19 cases probably stem from a single introduction of SARS‑CoV‑2 into people, and the outbreak at the Wuhan market probably happened after the virus had already been circulating in humans.

research proposal in medicine

An analysis of SARS-CoV-2’s evolutionary tree shows how the virus evolved as it started to spread through humans.

SARS-COV-2 Viruses closest

to bat coronaviruses

more mutations

research proposal in medicine

Source: Lv et al., Virus Evolution (2024) , as reproduced by Jesse Bloom

research proposal in medicine

The viruses that infected people linked to the market were most likely not the earliest form of the virus that started the pandemic.

research proposal in medicine

  • Not a single infected animal has ever been confirmed at the market or in its supply chain. Without good evidence that the pandemic started at the Huanan Seafood Market, the fact that the virus emerged in Wuhan points squarely at its unique SARS-like virus laboratory.

5 Key evidence that would be expected if the virus had emerged from the wildlife trade is still missing.

research proposal in medicine

In previous outbreaks of coronaviruses, scientists were able to demonstrate natural origin by collecting multiple pieces of evidence linking infected humans to infected animals.

Infected animals

Earliest known

cases exposed to

live animals

Antibody evidence

of animals and

animal traders having

been infected

Ancestral variants

of the virus found in

Documented trade

of host animals

between the area

where bats carry

closely related viruses

and the outbreak site

research proposal in medicine

Infected animals found

Earliest known cases exposed to live animals

Antibody evidence of animals and animal

traders having been infected

Ancestral variants of the virus found in animals

Documented trade of host animals

between the area where bats carry closely

related viruses and the outbreak site

research proposal in medicine

For SARS-CoV-2, these same key pieces of evidence are still missing , more than four years after the virus emerged.

research proposal in medicine

For SARS-CoV-2, these same key pieces of evidence are still missing ,

more than four years after the virus emerged.

  • Despite the intense search trained on the animal trade and people linked to the market, investigators have not reported finding any animals infected with SARS‑CoV‑2 that had not been infected by humans. Yet, infected animal sources and other connective pieces of evidence were found for the earlier SARS and MERS outbreaks as quickly as within a few days, despite the less advanced viral forensic technologies of two decades ago.
  • Even though Wuhan is the home base of virus hunters with world-leading expertise in tracking novel SARS-like viruses, investigators have either failed to collect or report key evidence that would be expected if Covid-19 emerged from the wildlife trade . For example, investigators have not determined that the earliest known cases had exposure to intermediate host animals before falling ill. No antibody evidence shows that animal traders in Wuhan are regularly exposed to SARS-like viruses, as would be expected in such situations.
  • With today’s technology, scientists can detect how respiratory viruses — including SARS, MERS and the flu — circulate in animals while making repeated attempts to jump across species . Thankfully, these variants usually fail to transmit well after crossing over to a new species and tend to die off after a small number of infections. In contrast, virologists and other scientists agree that SARS‑CoV‑2 required little to no adaptation to spread rapidly in humans and other animals . The virus appears to have succeeded in causing a pandemic upon its only detected jump into humans.

The pandemic could have been caused by any of hundreds of virus species, at any of tens of thousands of wildlife markets, in any of thousands of cities, and in any year. But it was a SARS-like coronavirus with a unique furin cleavage site that emerged in Wuhan, less than two years after scientists, sometimes working under inadequate biosafety conditions, proposed collecting and creating viruses of that same design.

While several natural spillover scenarios remain plausible, and we still don’t know enough about the full extent of virus research conducted at the Wuhan institute by Dr. Shi’s team and other researchers, a laboratory accident is the most parsimonious explanation of how the pandemic began.

Given what we now know, investigators should follow their strongest leads and subpoena all exchanges between the Wuhan scientists and their international partners, including unpublished research proposals, manuscripts, data and commercial orders. In particular, exchanges from 2018 and 2019 — the critical two years before the emergence of Covid-19 — are very likely to be illuminating (and require no cooperation from the Chinese government to acquire), yet they remain beyond the public’s view more than four years after the pandemic began.

Whether the pandemic started on a lab bench or in a market stall, it is undeniable that U.S. federal funding helped to build an unprecedented collection of SARS-like viruses at the Wuhan institute, as well as contributing to research that enhanced them . Advocates and funders of the institute’s research, including Dr. Fauci, should cooperate with the investigation to help identify and close the loopholes that allowed such dangerous work to occur. The world must not continue to bear the intolerable risks of research with the potential to cause pandemics .

A successful investigation of the pandemic’s root cause would have the power to break a decades-long scientific impasse on pathogen research safety, determining how governments will spend billions of dollars to prevent future pandemics. A credible investigation would also deter future acts of negligence and deceit by demonstrating that it is indeed possible to be held accountable for causing a viral pandemic. Last but not least, people of all nations need to see their leaders — and especially, their scientists — heading the charge to find out what caused this world-shaking event. Restoring public trust in science and government leadership requires it.

A thorough investigation by the U.S. government could unearth more evidence while spurring whistleblowers to find their courage and seek their moment of opportunity. It would also show the world that U.S. leaders and scientists are not afraid of what the truth behind the pandemic may be.

More on how the pandemic may have started

research proposal in medicine

Where Did the Coronavirus Come From? What We Already Know Is Troubling.

Even if the coronavirus did not emerge from a lab, the groundwork for a potential disaster had been laid for years, and learning its lessons is essential to preventing others.

By Zeynep Tufekci

research proposal in medicine

Why Does Bad Science on Covid’s Origin Get Hyped?

If the raccoon dog was a smoking gun, it fired blanks.

By David Wallace-Wells

research proposal in medicine

A Plea for Making Virus Research Safer

A way forward for lab safety.

By Jesse Bloom

The Times is committed to publishing a diversity of letters to the editor. We’d like to hear what you think about this or any of our articles. Here are some tips . And here’s our email: [email protected] .

Follow the New York Times Opinion section on Facebook , Instagram , TikTok , WhatsApp , X and Threads .

Alina Chan ( @ayjchan ) is a molecular biologist at the Broad Institute of M.I.T. and Harvard, and a co-author of “ Viral : The Search for the Origin of Covid-19.” She was a member of the Pathogens Project , which the Bulletin of the Atomic Scientists organized to generate new thinking on responsible, high-risk pathogen research.

  • Share full article

Advertisement

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

June 5, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

reputable news agency

Panel rejects psychedelic drug MDMA as a PTSD treatment in possible setback for advocates

by Matthew Perrone

Panel rejects psychedelic drug MDMA as a PTSD treatment in possible setback for advocates

A first-of-a-kind proposal to begin using the mind-altering drug MDMA as a treatment for PTSD was roundly criticized Tuesday—a potentially major setback to psychedelic advocates who hope to win a landmark federal approval and bring the banned drugs into the medical mainstream.

A panel of advisers to the Food and Drug Administration voted 10-1 against the overall benefits of MDMA when used to treat post-traumatic stress disorder. They cited flawed study data , questionable research conduct and significant drug risks, including the potential for heart problems , injury and abuse.

"It seems like there are so many problems with the data—each one alone might be OK, but when you pile them on top of each other … there's just a lot of questions I would have about how effective the treatment is," said Dr. Melissa Decker Barone, a psychologist with the Department of Veterans Affairs.

The FDA is not required to follow the group's advice and is expected to make its final decision by August, but the negative opinion could strengthen FDA's rationale for rejecting the treatment.

MDMA is the first in a series of psychedelics—including LSD and psilocybin—that are expected to come before the FDA for review in the next few years as part of a resurgence of interest into the drugs' medical potential, which advocates claim could transform the treatment of mental health disorders.

But FDA advisers spent most of Tuesday's meeting leveling pointed questions and criticisms at the research submitted on MDMA, which is sometimes called ecstasy or molly. Panelists pointed to flawed studies that could have skewed the results, missing follow-up data on patient outcomes and a lack of diversity among participants. The vast majority of patients studied were white, with only five Black patients receiving MDMA, raising questions about the generalizability of the results.

"The fact that this study has so many white participants is problematic because I don't want something to roll out that only helps this one group," said Elizabeth Joniak-Grant, the group's patient representative.

The FDA advisers also drew attention to allegations of misconduct in the trials that have recently surfaced in news stories and a report by the nonprofit Institute for Clinical and Economic Review , which evaluates experimental drug treatments. The incidents include a 2018 report of apparent sexual misconduct by a therapist interacting with a patient.

Lykos Therapeutics, the company behind the study, said it previously reported the incident to the FDA and regulators in Canada, where the therapist is based. Lykos is essentially a corporate spinoff of the nation's leading psychedelic advocacy group, the Multidisciplinary Association for Psychedelic Studies, or MAPS, which funded the studies. The group was founded in 1986 to promote the benefits of MDMA and other mind-altering substances.

Lykos and MAPS did not immediately respond to requests for comment Tuesday evening.

The negative panel ruling could further derail financial investments in the fledgling psychedelic industry, which has mainly been funded by a small number of wealthy backers. Dozens of startup companies have launched in recent years seeking to study psilocybin, ketamine and other drugs for conditions like depression and addiction, though many have struggled to raise money.

MDMA's main effect is triggering feelings of intimacy, connection and euphoria. When used to enhance talk therapy, the drug appears to help patients process their trauma and let go of disturbing thoughts and memories.

But the panel struggled with the reliability of those results, given the difficulties of objectively testing psychedelic drugs.

Because MDMA causes intense psychological experiences, almost all patients in two key studies of the drug were able to guess whether they had received the MDMA or a dummy pill. That's the opposite of the approach generally required for high-quality drug research, in which bias is minimized by "blinding" patients and researchers to whether they received the drug under investigation.

"I'm not convinced at all that this drug is effective based on the data I saw," said Dr. Rajesh Narendran, a University of Pittsburgh psychiatrist who chaired the panel.

Panelists also noted the difficulty of knowing how much of patients' improvement came from MDMA versus simply undergoing the extensive therapy, which totaled more than 80 hours for many patients. Results were further marred by other complicating factors, including a large number of patients who had previously used MDMA or other psychedelic drugs recreationally.

Nearly three dozen public speakers addressed the panel, including veterans who said they benefitted from MDMA therapy, medical professionals who advised against its use and journalists and independent researchers who reiterated the allegations of misconduct in the trials.

The meeting concluded with several experts encouraging Lykos and the FDA to continue studying psychedelics for PTSD, citing the field's potential to help patients.

"I think this is a really exciting treatment and I'm encouraged by the results to date," said Dr. Paul Holtzheimer of the VA's National Center for PTSD, "but from a safety and efficacy standpoint I feel it's still premature."

© 2024 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed without permission.

Explore further

Feedback to editors

research proposal in medicine

Genetics study points to potential treatments for restless leg syndrome

54 minutes ago

research proposal in medicine

Gene therapy trial restores hearing in both ears of children who were born deaf

research proposal in medicine

Commonly used alcohol-based mouthwash brand may disrupt the balance of your oral microbiome, scientists say

9 hours ago

research proposal in medicine

Women's mental agility is better during menstruation, shows study

10 hours ago

research proposal in medicine

Injury prediction rule could decrease radiographic imaging exposure in children, study shows

11 hours ago

research proposal in medicine

A promising vaccine approach to induce longer-lasting protective immunity against COVID-19

12 hours ago

research proposal in medicine

How tumor stiffness alters immune cell behavior to escape destruction

13 hours ago

research proposal in medicine

Veterans with service dogs found to have fewer PTSD symptoms, higher quality of life

14 hours ago

research proposal in medicine

Scientists reveal how a potassium ion channel reprograms energy production in cancer cells

research proposal in medicine

Virus that causes COVID-19 can remain in sperm for 110 days after infection

Related stories.

research proposal in medicine

Psychedelic drug MDMA faces FDA panel in bid to become first-of-a-kind PTSD medication

16 hours ago

research proposal in medicine

Illegal ecstasy takes step toward becoming legal drug for PTSD

May 31, 2024

research proposal in medicine

FDA asked to consider party drug MDMA as treatment for PTSD

Dec 13, 2023

research proposal in medicine

Psychoactive drugs are having a moment: The FDA will soon weigh in

Jun 3, 2024

research proposal in medicine

Psychedelic drug MDMA eases PTSD symptoms in a study that paves the way for possible US approval

Sep 17, 2023

research proposal in medicine

Australia to legalise MDMA and magic mushrooms for medical use

Feb 3, 2023

Recommended for you

research proposal in medicine

Study shows that opportunity costs influence when people leave social interactions

23 hours ago

research proposal in medicine

An anti-inflammatory curbs spread of fungi causing serious blood infections

research proposal in medicine

Study finds methods to quit smoking effective regardless of mental health history

15 hours ago

research proposal in medicine

Survey shows shift in language around mental health over 79 years

research proposal in medicine

Study indicates people underuse their visual working memory

17 hours ago

research proposal in medicine

Exploratory study associates childhood trauma with brain features in abusive mothers

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

  • Skip to Content
  • Skip to Main Navigation
  • Skip to Search

research proposal in medicine

Indiana University Bloomington Indiana University Bloomington IU Bloomington

Open Search

The College of Arts & Sciences

  • Department of History and Philosophy of Science and Medicine
  • Student Portal
  • News & Events
  • Departmental News + Events
  • News Archive
  • Evan Arnet Associate Research Development Specialist

Evan Arnet, Associate Research Development Specialist

Tuesday, June 13, 2023

research proposal in medicine

Evan Arnet, recent graduate of our program has accepted a position as Associate Research Development Specialist with Proposal Development Services at Indiana University, Bloomington Campus.

  • College of Arts & Sciences

research proposal in medicine

  • Medical Humanities Minor
  • Minor in Science, Technology, and Medicine in Society
  • Individualized Major Program
  • M.A. Degree
  • M.A., Studies in Scientific Research Literacy and Responsible Research
  • Combined M.A. and M.L.S. Degree
  • Qualifications
  • Dissertation
  • Ph.D. Double Major
  • Ph.D. Minor
  • Ph.D. Minor (6 credit)
  • Funding List
  • Travel Policy

Panel rejects psychedelic drug MDMA as PTSD treatment in possible setback for advocates

by Associated Press

FILE - In this photo made with a long exposure, a man is silhouetted against lights reflected in the waters off Cape Neddick in Maine on Dec. 11, 2017. Federal health advisers are considering the first request to approve the mind-altering club drug MDMA as a treatment for PTSD. The advisers to the Food and Drug Administration are scheduled to vote on the drug's safety and effectiveness Tuesday, June 4, 2024, potentially setting the stage for federal approval later this year. (AP Photo/Robert F. Bukaty, File)

WASHINGTON (AP) — Federal health advisers voted Tuesday against a first-of-a-kind proposal to begin using the mind-altering drug MDMA as a treatment for PTSD, handing a potentially major setback to psychedelic advocates who hope to win a landmark federal approval and bring the banned drugs into the medical mainstream.

The panel of advisers to the Food and Drug Administration sided 10-1 against the overall benefits of MDMA when used to treat post-traumatic stress disorder. They cited flawed study data, questionable research conduct and significant drug risks, including the potential for heart problems, injury and abuse.

It seems like there are so many problems with the data — each one alone might be OK, but when you pile them on top of each other there’s just a lot of questions I would have about how effective the treatment is,” said Dr. Melissa Decker Barone, a psychologist with the Department of Veterans Affairs.

The FDA is not required to follow the group’s advice and is expected to make its final decision by August, but the negative opinion could strengthen FDA’s rationale for rejecting the treatment.

The vote followed hours of pointed questions and criticisms about the research submitted on MDMA — sometimes called ecstasy or molly. Panelists pointed to flawed studies that could have skewed the results, missing follow-up data on patient outcomes and a lack of diversity among participants. The vast majority of patients studied were white, with only five Black patients receiving MDMA, raising questions about the generalizability of the results.

The fact that this study has so many white participants is problematic because I don’t want something to roll out that only helps this one group,” said Elizabeth Joniak-Grant, the group’s patient representative.

The FDA advisers also drew attention to allegations of misconduct in the trials that have recently surfaced in news stories and a report by the nonprofit Institute for Clinical and Economic Review, which evaluates experimental drug treatments. The incidents include a 2018 report of apparent sexual misconduct by a therapist interacting with a patient.

Lykos Therapeutics, the company behind the study, said it previously reported the incident to the FDA and regulators in Canada, where the therapist is based. Lykos is essentially a corporate spinoff of the nation’s leading psychedelic advocacy group, the Multidisciplinary Association for Psychedelic Studies, or MAPS, which funded the studies. The group was founded in 1986 to promote the benefits of MDMA and other mind-altering substances.

MDMA is the first in a series of psychedelics — including LSD and psilocybin — that are expected to come before the FDA in the next few years. The panel’s negative ruling could further derail financial investments in the fledgling industry, which has mainly been funded by a small number of wealthy backers.

MDMA’s main effect is triggering feelings of intimacy, connection and euphoria. When used to enhance talk therapy, the drug appears to help patients process their trauma and let go of disturbing thoughts and memories.

But the panel struggled with the reliability of those results, given the difficulties of objectively testing psychedelic drugs.

Because MDMA causes intense, psychological experiences, almost all patients in two key studies of the drug were able to guess whether they had received the MDMA or a dummy pill. That’s the opposite of the approach generally required for high-quality drug research, in which bias is minimized by “blinding” patients and researchers to whether they received the drug under investigation.

“I’m not convinced at all that this drug is effective based on the data I saw,” said Dr. Rajesh Narendran, a University of Pittsburgh psychiatrist who chaired the panel.

Panelists also noted the difficulty of knowing how much of patients’ improvement came from MDMA versus simply undergoing the extensive therapy, which totaled more than 80 hours for many patients. Results were further marred by other complicating factors, including a large number of patients who had previously used MDMA or other psychedelics drugs recreationally.

Nearly three dozen public speakers also addressed the panel, including veterans who said they benefitted from MDMA therapy, medical professionals who advised against its use and journalists and independent researchers who reiterated the allegations of misconduct in the trials.

research proposal in medicine

IMAGES

  1. FREE 10+ Clinical Research Proposal Samples in MS Word

    research proposal in medicine

  2. FREE 10+ Clinical Research Proposal Samples in MS Word

    research proposal in medicine

  3. FREE 11+ Student Research Proposal Samples [ Medical, Graduate, Sociology ]

    research proposal in medicine

  4. Writing A Health Research Proposal

    research proposal in medicine

  5. 17+ Medical Research Proposal Templates in PDF

    research proposal in medicine

  6. FREE 10+ Clinical Research Proposal Samples in MS Word

    research proposal in medicine

VIDEO

  1. Conducting proposal online session 20/7/2023

  2. Creating a research proposal

  3. Northwestern Medicine Healthcare AI Forum -- Feb 23, 2024

  4. Writing a robust study protocol using ICMR Ad-hoc Proposal format

  5. How to Write Research Proposal|Dr Bhupendra Shah|medicine classroom

  6. How to Write a MEDICAL RESEARCH PROPOSAL-How to make an ICMR STS RESEARCH PROPOSAL| ICMR Studentship

COMMENTS

  1. How to write a research proposal? A guide for medical professionals and students

    steps. It begins with selecting a study topic, reviewing. the literature, setting goals, choosing a study design and. appropriate statistical tools, and formulating a research proposal. to obtain ...

  2. How to write a research proposal?

    Writing the proposal of a research work in the present era is a challenging task due to the constantly evolving trends in the qualitative research design and the need to incorporate medical advances into the methodology. The proposal is a detailed plan or 'blueprint' for the intended study, and once it is completed, the research project ...

  3. PDF Sample Research Proposal

    1 Sample Research Proposal Resident: John Smith, PGY2 Research Mentor: Jane Doe, MD, Section of General Internal Medicine Date of Proposal: February 5, 2009 I. Title of Proposed Research Project Medical Students as Mediators of Change in Tobacco Use II. Specific Aims In conducting this study, we will accomplish the following specific aims:

  4. How to prepare a Research Proposal

    It puts the proposal in context. 3. The introduction typically begins with a statement of the research problem in precise and clear terms. 1. The importance of the statement of the research problem 5: The statement of the problem is the essential basis for the construction of a research proposal (research objectives, hypotheses, methodology ...

  5. PDF WRITING AN EFFECTIVE RESEARCH PROPOSAL

    The investigator specifies the maximum discrepancy between the sample and population proportion of ± 5%. To determine the sample size, the investigator would use the formula. n = (z/p)2π(1-π), n = the required sample size. p = the desired maximum discrepancy (i.e. ± 5%) π = the population proportion.

  6. How to Write a Research Proposal

    Research proposal examples. Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We've included a few for you below. Example research proposal #1: "A Conceptual Framework for Scheduling Constraint Management" Example research proposal #2: "Medical Students as Mediators of ...

  7. Summary and Synthesis: How to Present a Research Proposal

    The objective of this module is to discuss how to present a model research proposal, based on whatever was discussed in the preceding modules. The lynchpin of a research proposal is the protocol, and the key component of a protocol is the study design. ... It should also clarify how the research can benefit the site of research (medical college ...

  8. PDF Writing a Research Proposal Medical Research Council

    research grant proposal. − Receiving relevant and up-to-date information about new research methods. − Establishing collaborative associations with peers. − Constructive feedback on research proposals and throughout the research process. − Assistance in the development of a long-term research and writing plan.

  9. Writing & Submitting Proposals

    FINISH. The Department of Pediatrics is deeply committed to training the next generation of physician scientists and scientific leaders in biomedical research. An important aspect of this training is writing research proposals because developing a research proposal enables skill-building opportunities in thinking critically and communicating ideas.

  10. Writing Successful Research Proposals for Medical Science

    Writing Successful Research Proposals for Medical Science ... HIGH-QUALITY research proposals are required to obtain funds for the basic and clinical sciences. In this era of diminishing revenues, the ability to compete successfully for peer-reviewed research money is essential to create and maintain scientific programs. Ideally, the essentials ...

  11. PDF Medical Student Research Office

    Medical Student Research Office How to Prepare a Research Proposal Research proposals are frequently written in order to obtain either a job or funding for a project. As a student, you might need to write a research proposal if you want to apply for a Scholarly Year or a grant. That means you are in a situation in which you have to convince

  12. How to Write a Winning Clinical Research Proposal?

    3.3 Material/Methods/Study Design. This is the most technical part of your proposal and should be written as such. Hence, there is no need to "tell a story" but stay short, brief and to the point. In the following is a short bullet point list of elements that should be include in your material/method section:

  13. How to prepare a research proposal in the health sciences?

    Science*. Writing / standards*. Knowing how to properly prepare a research proposal is a real challenge - and being able to prepare an excellent research proposal is increasingly a requirement to compete for funding with assurances of success. With this in mind, we aim to share with the reader our experience (in many cases, unsucc ….

  14. How to write a research proposal?

    Abstract. Writing the proposal of a research work in the present era is a challenging task due to the constantly evolving trends in the qualitative research design and the need to incorporate medical advances into the methodology. The proposal is a detailed plan or 'blueprint' for the intended study, and once it is completed, the research ...

  15. 87Chapter 4 Writing your research proposal

    With the advent of the National Research Ethics Service (NRES) system (see Chapter 6), the potential for multiple, subtly different versions of the proposal is reduced as one copy is submitted and then disseminated to both ethical and R&D committees. However, you should aim to work entirely from one version, to ensure that commitments to sponsors are not made without receiving ethical opinion.

  16. 23 Questions to Guide the Writing of a Quantitative Medical ...

    2 director, Master of Medical Sciences in Medical Education, and associate professor of pediatrics, Harvard Medical School Academic Medicine: January 2022 - Volume 97 - Issue 1 - p 164 doi: 10.1097/ACM.0000000000003660

  17. Research Development and Proposal Writing

    The Division of Cardiovascular Medicine Strategic Research Development team actively supports our clinical fellows, postdoctoral fellows, and junior faculty in project development & proposal writing. Priorities include: Services Include: Our model of 1:1 grant support is designed to enable the PI to focus on the science:

  18. 7 tips for writing a winning med ed research proposal

    If you plan to apply for a medical education research grant, writing a strong proposal can help you rise above the competition. These expert recommendations will be useful as you pursue future funding opportunities.. Writing a compelling grant proposal requires strategic thinking and research, especially if you want to increase your chances of attracting a particular funder, according to a ...

  19. Sample Proposals

    ISP Proposal Samples . Analysis of a Scientific or Medical Problem: Community Service & Leadership: Medical Education: Scientific Research: Focused Clinical Multidisciplinary: SMP1 - [71 kb] CS1 - [17 kb] CS2 - [19 kb] CS3 - [22 kb] MedEd1. MedEd2. ... UC San Diego • School of Medicine ...

  20. Stanford Research Development Office

    The Proposal Development Office (PDO) enables Stanford Medicine faculty to pursue transformative biomedical research. We provide expert consultation on grant proposal strategy, proposal management and facilitation, grant writing and editing, and streamlined proposal administrative support. We also lead initiatives in the School of Medicine that ...

  21. 6+ SAMPLE Medical Research Proposal in PDF

    The majority of students and young researchers have a misunderstanding of what a medical research proposal is and how important it is. Society didn't come up with medical solutions and treatment plan for sickness and the alike in an instant. It took years of dedicated research and loss of sleep to complete the data that was being studied.

  22. Medical Research Proposal Sample & Guide

    A medical research proposal is a document that outlines the purpose and methodology of a proposed research project. It includes information about what the researcher intends to study, how they plan to conduct their research and measurement for success or failure. The proposal also explains why the research is essential, what ethical ...

  23. 17+ Medical Research Proposal Templates in PDF

    To create a medical research proposal, you need to find valuable information and create a complicated document. The proposal is mainly devised for investors, academic heads, or other people who would value the legitimacy of your project proposal and assess the merit. For successful research proposals, you need to follow certain guidelines for ...

  24. Health Equity Research Pilot Grant Call for Proposals

    30 North Mario Capecchi Dr, 3rd floor Salt Lake City, Utah 84112 801-581-7606

  25. ICMR Calls For Research Proposals for 2024-2025, All Details Here

    ICMR Calls For Research Proposals for 2024-2025, All Details Here Written by Divyani Paul Published On 2024-05-26T11:30:41+05:30 | Updated On 26 May 2024 6:01 AM GMT New Delhi- Through a notice, the Indian Council of Medical Research (ICMR) has called for research proposals for the year 2024-2025.

  26. Why the Pandemic Probably Started in a Lab, in 5 Key Points

    In 2021, The Intercept published a leaked 2018 grant proposal for a research project named Defuse, which had been written as a collaboration between EcoHealth, the Wuhan institute and Ralph Baric ...

  27. Panel rejects psychedelic drug MDMA as a PTSD ...

    A first-of-a-kind proposal to begin using the mind-altering drug MDMA as a treatment for PTSD was roundly criticized Tuesday—a potentially major setback to psychedelic advocates who hope to win ...

  28. Microsoft Word

    May 29, 2024. Introduction: The UofL School of Public Health and Information Sciences (SPHIS) and School of Medicine (SOM) are soliciting applications for pilot projects funded with support from Deans Cardarelli and Bumpous. The Pilot Project Program was implemented to foster novel research forming the basis for new NIH R01 grant applications.

  29. Evan Arnet, Associate Research Development Specialist

    Evan Arnet, recent graduate of our program has accepted a position as Associate Research Development Specialist with Proposal Development Services at Indiana University, Bloomington Campus.

  30. Panel rejects psychedelic drug MDMA as PTSD treatment in possible

    MDMA PTSD FDA Psychedelic Treatment Advisers Research Panel. WASHINGTON (AP) — Federal health advisers voted Tuesday against a first-of-a-kind proposal to begin using the mind-altering drug MDMA ...