• USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Applying Critical Thinking
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Critical thinking refers to deliberately scrutinizing and evaluating theories, concepts, or ideas using reasoned reflection and analysis. The act of thinking critically involves moving beyond simply understanding information, but also questioning its source, its production, and its presentation in order to expose potential bias or researcher subjectivity [i.e., evidence of being influenced by personal opinions and feelings rather than by external determinants ] . Applying critical thinking to investigating a research problem involves actively challenging basic assumptions and questioning the choices and potential motives underpinning how a study was designed and executed and how the author arrived at particular conclusions or recommended courses of action.

Mintz, Steven. "How the Word "Critical" Came to Signify the Leading Edge of Cultural Analysis." Higher Ed Gamma Blog , Inside Higher Ed, February 13, 2024; Van Merriënboer, Jeroen JG and Paul A. Kirschner. Ten Steps to Complex Learning: A Systematic Approach to Four-component Instructional Design . New York: Routledge, 2017.

Thinking Critically

Applying Critical Thinking to Research and Writing

Professors like to use the term critical thinking; in fact, the idea of being a critical thinker permeates much of higher education writ large. In the classroom, the idea of thinking critically is often mentioned by professors when students ask how they should approach writing a research paper [other approaches your professor might mention include interdisciplinarity, compare and contrast, gendered perspective, global, etc.]. However, critical thinking is more than just an approach to research and writing. It is an acquired skill associated with becoming a complex learner capable of discerning important relationships among the elements of, as well as integrating multiple ways of understanding applied to, the research problem. Critical thinking is a lens through which you holistically interrogate a topic.

Given this, critical thinking encompasses a variety of inter-related connotations applied to writing a college-level research paper:

  • Integrated and Multi-Dimensional . Critical thinking is not focused on any one element of research, but instead, is applied holistically throughout the process of identifying the research problem, reviewing the literature, applying methods of analysis, describing the results, discussing their implications, and, if appropriate, offering recommendations for further research. It permeates the entire research endeavor from contemplating what to write about to proofreading the final product.
  • Humanizes the Research . Thinking critically can help humanize what is being studied by extending the scope of your analysis beyond the traditional boundaries of prior research. The scope of prior research, for example, could have involved only sampling homogeneous populations, only considering certain factors related to the investigation of a phenomenon, or was limited by the way the study was framed or contextualized. Critical thinking supports opportunities to think about incorporating the experiences of others into the research, leading to a more inclusive and representative examination of the topic.
  • Non-Linear . This refers to analyzing a research problem in ways that do not rely on sequential decision-making or rational forms of reasoning. Creative thinking relies on intuitive judgement, flexibility, and unconventional approaches to investigating complex phenomena in order to discover new insights, connections, and potential solutions . Thinking critically involves going back and modifying your thinking as new evidence emerges , perhaps multiple times throughout the research process, and then drawing conclusions from multiple perspectives.
  • Normative . This refers to the idea that critical thinking can be used to challenge prior assumptions in ways that advocate for social justice, equity, and resilience that can lead to research having a more transformative and expansive impact. In this respect, critical thinking can be viewed as a method for breaking away from dominant culture norms so as to produce research outcomes that illuminate previously hidden aspects of exploitation and injustice.
  • Power Dynamics . Research in the social sciences often includes examining aspects of power, focusing on how it operates, how it can be acquired, and how it can be maintained, thereby shaping social relations, organizations, institutions, and the production and maintenance of knowledge. Thinking critically can reveal how societal structures perpetuate power and influence in ways that marginalizes and oppresses specific groups or communities within the contexts of history , politics, economics, culture, and other factors.
  • Reflection . A key component of critical thinking is practicing reflexivity; the act of turning ideas and concepts back onto yourself in order to reveal and clarify your own beliefs, assumptions, and perspectives. Being critically reflexive is important because it can reveal hidden biases you may have that could unintentionally influence how you interpret and validate information. The more reflexive you are, the better able and more comfortable you are in opening yourself up to new modes of understanding.
  • Rigorous Questioning . Thinking critically is guided by asking questions that lead to addressing complex concepts, principles, theories, or problems more effectively, and in so doing, help distinguish what is known from from what is not known [or that may be hidden]. Critical thinking involves deliberately framing inquiries not only as hypotheses, but as a way to apply systematic, disciplined,  in-depth forms of questioning concerning the research problem and in relation to your positionality as a researcher.
  • Social Change . An overarching goal of critical thinking applied to research and writing is to seek to identify and challenge sources of inequality, exploitation, oppression, and marinalization that contribute to maintaining the status quo within institutions of society. This can include, for example, schools, court system, businesses, government agencies, or religious organizations that have been created and maintained through certain ways of thinking within the dominant culture.

Critical thinking permeates the entire research and writing process. However, it applies in particular to the literature review and discussion sections of your paper . These two sections of a research paper reflect the dual external and internal reasoning skills of critical thinking.

In reviewing the literature, it is important to reflect upon specific aspects of a study, such as, determining if the research design effectively establishes cause and effect relationships or provides insight into explaining why certain phenomena do or do not occur, assessing whether the method of gathering data or information supports the objectives of your study, and evaluating if the assumptions used t o arrive at a specific conclusion are evidence-based and relevant to addressing the topic. Critically thinking applies to these elements of reviewing prior research by evaluating how each source might perpetuate inequalities or hides the voices of others, thereby, limiting its applicability in understanding the research problem.

Critical thinking applies to the discussion section of your paper because this is where you contemplate the results of your study and explain its value and significance in relation to the research problem. Discussion involves more than just summarizing findings and describing outcomes. It includes deliberately considering their importance and providing reasoned explanations why your paper helps to fill a gap in the literature or expand knowledge and understanding in ways that inform practice. Critical thinking uses reflection to examine your own beliefs concerning the significance of the results in ways that avoid using biased judgment and decision making.

U sing Questions to Enable Critical Thinking

[CONTENT COMING SOON]

Behar-Horenstein, Linda S., and Lian Niu. “Teaching Critical Thinking Skills in Higher Education: A Review of the Literature.” Journal of College Teaching and Learning 8 (February 2011): 25-41; Bayou, Yemeserach and Tamene Kitila. "Exploring Instructors’ Beliefs about and Practices in Promoting Students’ Critical Thinking Skills in Writing Classes." GIST–Education and Learning Research Journal 26 (2023): 123-154; Butcher, Charity. "Using In-class Writing to Promote Critical Thinking and Application of Course Concepts." Journal of Political Science Education 18 (2022): 3-21; Loseke, Donileen R. Methodological Thinking: Basic Principles of Social Research Design. Thousand Oaks, CA: Sage, 2012; Mintz, Steven. "How the Word "Critical" Came to Signify the Leading Edge of Cultural Analysis." Higher Ed Gamma Blog , Inside Higher Ed, February 13, 2024; Hart, Claire et al. “Exploring Higher Education Students’ Critical Thinking Skills through Content Analysis.” Thinking Skills and Creativity 41 (September 2021): 100877; Lewis, Arthur and David Smith. "Defining Higher Order Thinking." Theory into Practice 32 (Summer 1993): 131-137; Sabrina, R., Emilda Sulasmi, and Mandra Saragih. "Student Critical Thinking Skills and Student Writing Ability: The Role of Teachers' Intellectual Skills and Student Learning." Cypriot Journal of Educational Sciences 17 (2022): 2493-2510. Suter, W. Newton. Introduction to Educational Research: A Critical Thinking Approach. 2nd edition. Thousand Oaks, CA: SAGE Publications, 2012; Van Merriënboer, Jeroen JG and Paul A. Kirschner. Ten Steps to Complex Learning: A Systematic Approach to Four-component Instructional Design. New York: Routledge, 2017; Vance, Charles M., et al. "Understanding and Measuring Linear–Nonlinear Thinking Style for Enhanced Management Education and Professional Practice." Academy of Management Learning and Education 6 (2007): 167-185; Yeh, Hui-Chin, Shih-hsien Yang, Jo Shan Fu, and Yen-Chen Shih. "Developing College Students’ Critical Thinking through Reflective Writing." Higher Education Research & Development 42 (2023): 244-259.

  • << Previous: Academic Writing Style
  • Next: Choosing a Title >>
  • Last Updated: Apr 24, 2024 10:51 AM
  • URL: https://libguides.usc.edu/writingguide

Bookmark this page

  • International Center for the Assessment of Higher Order Thinking
  • Our Team of Presenters
  • Fellows of the Foundation
  • Dr. Richard Paul
  • Dr. Linda Elder
  • Dr. Gerald Nosich
  • Permission to Use Our Work
  • Create a CriticalThinking.Org Account
  • Contributions to the Foundation for Critical Thinking
  • Contact Us - Office Information
  • Testimonials
  • Center for Critical Thinking
  • The National Council for Excellence in Critical Thinking
  • Library of Critical Thinking Resources
  • The Center for Critical Thinking Community Online
  • Customized Webinars and Online Courses for Faculty
  • Certification in the Paul-Elder Approach to Critical Thinking
  • Consulting for Leaders and Key Personnel at Your Organization
  • K-12 Instruction
  • Higher Education
  • Business & Professional Groups
  • Build a Local Critical Thinking Town Hall
  • Critical Thinking Training for Law Enforcement
  • Online Courses for Instructors
  • Critical Thinking Therapy
  • Bring Critical Thinking Into Your Website's Discussion
  • The State of Critical Thinking Today
  • Professional Development Model for K-12
  • Professional Development Model - College and University
  • Workshop Descriptions
  • Mentor Program
  • Inservice Information Request Form
  • Institutions Using Our Approach to Critical Thinking
  • Upcoming Events in Critical Thinking
  • 44th Annual International Conference on Critical Thinking
  • Focal Session Descriptions
  • Daily Schedule
  • Call for Proposals
  • Presuppositions of the 44th Annual International Conference on Critical Thinking
  • Recommended Reading
  • 2024 Fall Academy on Critical Thinking
  • Academy Presuppositions
  • Conference Archives
  • 43rd Annual International Conference on Critical Thinking
  • Guest Presentation Program
  • Register as an Ambassador
  • Testimonials from Past Attendees
  • Thank You to Our Donors
  • Presuppositions of the Conference
  • 42nd Annual International Conference on Critical Thinking
  • Overview of Sessions (Flyer)
  • Presuppositions of the Annual International Conference
  • Testimonials from Past Conferences
  • 41st Annual International Conference on Critical Thinking
  • Recommended Publications
  • Dedication to Our Donors
  • 40th Annual International Conference on Critical Thinking
  • Session Descriptions
  • Testimonials from Prior Conferences
  • International Critical Thinking Manifesto
  • Scholarships Available
  • 39th Annual International Conference on Critical Thinking
  • Travel and Lodging Info
  • FAQ & General Announcements
  • Focal and Plenary Session Descriptions
  • Program and Proceedings of the 39th Annual International Conference on Critical Thinking
  • The Venue: KU Leuven
  • Call for Critical Thinking Ambassadors
  • Conference Background Information
  • 38th Annual International Conference on Critical Thinking
  • Call for Ambassadors for Critical Thinking
  • Conference Focal Session Descriptions
  • Conference Concurrent Session Descriptions
  • Conference Roundtable Discussions
  • Conference Announcements and FAQ
  • Conference Program and Proceedings
  • Conference Daily Schedule
  • Conference Hotel Information
  • Conference Academic Credit
  • Conference Presuppositions
  • What Participants Have Said About the Conference
  • 37th Annual International Conference on Critical Thinking
  • Registration & Fees
  • FAQ and Announcements
  • Conference Presenters
  • 37th Conference Flyer
  • Program and Proceedings of the 37th Conference
  • 36th International Conference
  • Conference Sessions
  • Conference Flyer
  • Program and Proceedings
  • Academic Credit
  • 35th International Conference
  • Conference Session Descriptions
  • Available Online Sessions
  • Bertrand Russell Distinguished Scholar - Daniel Ellsberg
  • 35th International Conference Program
  • Concurrent Sessions
  • Posthumous Bertrand Russell Scholar
  • Hotel Information
  • Conference FAQs
  • Visiting UC Berkeley
  • 34th INTERNATIONAL CONFERENCE
  • Bertrand Russell Distinguished Scholar - Ralph Nader
  • Conference Concurrent Presenters
  • Conference Program
  • Conference Theme
  • Roundtable Discussions
  • Flyer for Bulletin Boards
  • 33rd INTERNATIONAL CONFERENCE
  • 33rd International Conference Program
  • 33rd International Conference Sessions
  • 33rd International Conference Presenters
  • The Bertrand Russell Distinguished Scholars Critical Thinking Conversations
  • 33rd International Conference - Fees & Registration
  • 33rd International Conference Concurrent Presenters
  • 33rd International Conference - Hotel Information
  • 33rd International Conference Flyer
  • 32nd INTERNATIONAL CONFERENCE
  • 32nd Annual Conference Sessions
  • 32nd Annual Conference Presenter Information
  • 32nd Conference Program
  • The Bertrand Russell Distinguished Scholars Critical Thinking Lecture Series
  • 32nd Annual Conference Concurrent Presenters
  • 32nd Annual Conference Academic Credit
  • 31st INTERNATIONAL CONFERENCE
  • 31st Conference Sessions
  • Comments about previous conferences
  • Conference Hotel (2011)
  • 31st Concurrent Presenters
  • Registration Fees
  • 31st International Conference
  • 30th INTERNATIONAL CONFERENCE ON CRITICAL THINKING
  • 30th International Conference Theme
  • 30th Conference Sessions
  • PreConference Sessions
  • 30th Concurrent Presenters
  • 30th Conference Presuppositions
  • Hilton Garden Inn
  • 29th International Conference
  • 29th Conference Theme
  • 29th Conference Sessions
  • 29th Preconference Sessions
  • 29th Conference Concurrent Sessions
  • 2008 International Conference on Critical Thinking
  • 2008 Preconference Sessions (28th Intl. Conference)
  • 2007 Conference on Critical Thinking (Main Page)
  • 2007 Conference Theme and sessions
  • 2007 Pre-Conference Workshops
  • 2006 Annual International Conference (archived)
  • 2006 International Conference Theme
  • 2005 International Conference (archived)
  • Prior Conference Programs (Pre 2000)
  • Workshop Archives
  • Spring 2022 Online Workshops
  • 2021 Online Workshops for Winter & Spring
  • 2019 Seminar for Military and Intelligence Trainers and Instructors
  • Transportation, Lodging, and Recreation
  • Seminar Flyer
  • 2013 Spring Workshops
  • Our Presenters
  • 2013 Spring Workshops - Hotel Information
  • 2013 Spring Workshops Flyer
  • 2013 Spring Workshops - Schedule
  • Spring Workshop 2012
  • 2012 Spring Workshop Strands
  • 2012 Spring Workshop Flier
  • 2011 Spring Workshop
  • Spring 2010 Workshop Strands
  • 2009 Spring Workshops on Critical Thinking
  • 2008 SPRING Workshops and Seminars on Critical Thinking
  • 2008 Ethical Reasoning Workshop
  • 2008 - On Richard Paul's Teaching Design
  • 2008 Engineering Reasoning Workshop
  • 2008 Academia sobre Formulando Preguntas Esenciales
  • Fellows Academy Archives
  • 2017 Fall International Fellows Academy
  • 4th International Fellows Academy - 2016
  • 3rd International Fellows Academy
  • 2nd International Fellows Academy
  • 1st International Fellows Academy
  • Academy Archives
  • October 2019 Critical Thinking Academy for Educators and Administrators
  • Transportation, Lodging, and Leisure
  • Advanced Seminar: Oxford Tutorial
  • Recreational Group Activities
  • Limited Scholarships Available
  • September 2019 Critical Thinking Educators and Administrators Academy
  • 2019 Critical Thinking Training for Trainers and Advanced Academy
  • Academy Flyer
  • Seattle, WA 2017 Spring Academy
  • San Diego, CA 2017 Spring Academy
  • 2016 Spring Academy -- Washington D.C.
  • 2016 Spring Academy -- Houston, TX
  • The 2nd International Academy on Critical Thinking (Oxford 2008)
  • 2007 National Academy on Critical Thinking Testing and Assessment
  • 2006 Cambridge Academy (archived)
  • 2006 Cambridge Academy Theme
  • 2006 Cambridge Academy Sessions
  • Accommodations at St. John's College
  • A Model for the National Assessment of Higher Order Thinking
  • International Critical Thinking Essay Test
  • Online Critical Thinking Basic Concepts Test
  • Online Critical Thinking Basic Concepts Sample Test
  • Consequential Validity: Using Assessment to Drive Instruction
  • News & Announcements
  • Newest Pages Added to CriticalThinking.Org
  • Critical Thinking Online Courses
  • Critical Thinking Blog
  • 2019 Blog Entries
  • 2020 Blog Entries
  • 2021 Blog Entries
  • 2022 Blog Entries
  • 2023 Blog Entries
  • Online Courses for Your Students
  • 2023 Webinar Archives
  • 2022 Webinar Archives
  • 2021 Webinar Archive
  • 2020 Webinar Archive
  • Guided Study Groups
  • Critical Thinking Channel on YouTube
  • CT800: Spring 2024

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Critical Thinking and Social Studies

Critical Thinking and the Social Studies Teacher

by Mike Yell

                        The advance of knowledge has been achieved not because the mind is capable of memorizing what teachers say but because it can be disciplined to ask probing questions and pursue them in a reasoned, self-critical way. Scholars pursuing knowledge submit their thinking to rigorous discipline. 

~Richard Paul

One of the most used and highlighted books in my professional library is Critical Thinking: How to Prepare Students for a Rapidly Changing World by Richard Paul, an international leader in critical thinking movement. We often hear about the need for critical thinking, but we seldom hear sound definitions, or, in my opinion, see comprehensive models that we can apply to what we do in our classrooms. To my mind the works of Richard Paul, and his colleagues Linda Elder Gerald Nosich, and others at the Foundation for Critical Thinking put flesh on the bones of the concept of critical thinking; a concept all too rarely made substantive.

While there are many different approaches to, and definitions of, critical thinking, the Paul/Elder view is that critical thinking is the development of discipline organized thinking that monitors itself and is guided by intellectual standards . Further, they hold that reasoning must be at the heart of good teaching, sound learning, and preparation for college, career, and civic life. Rather than lectures, worksheets, and didactic instruction, it is through reasoning and thinking their way through the curriculum, that students really learn. This approach to critical thinking, I believe, puts this model of critical thinking head and shoulders above others.

To read the full article, join the   Center for Critical Thinking Community Online   – the world’s leading online community dedicated to teaching and advancing critical thinking. Featuring the world's largest library of critical thinking articles, videos, and books, as well as learning activities, study groups, and a social media component, this interactive learning platform is essential to anyone dedicated to developing as an effective reasoner in the classroom, in the professions, in business and government, and throughout personal life.  

Join the community and learn explicit tools of critical thinking.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • CBE Life Sci Educ
  • v.17(1); Spring 2018

Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

Jason e. dowd.

† Department of Biology, Duke University, Durham, NC 27708

Robert J. Thompson, Jr.

‡ Department of Psychology and Neuroscience, Duke University, Durham, NC 27708

Leslie A. Schiff

§ Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455

Julie A. Reynolds

Associated data.

This study empirically examines the relationship between students’ critical-thinking skills and scientific reasoning as reflected in undergraduate thesis writing in biology. Writing offers a unique window into studying this relationship, and the findings raise potential implications for instruction.

Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students’ development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students’ writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students’ scientific reasoning in their writing.

INTRODUCTION

Critical-thinking and scientific reasoning skills are core learning objectives of science education for all students, regardless of whether or not they intend to pursue a career in science or engineering. Consistent with the view of learning as construction of understanding and meaning ( National Research Council, 2000 ), the pedagogical practice of writing has been found to be effective not only in fostering the development of students’ conceptual and procedural knowledge ( Gerdeman et al. , 2007 ) and communication skills ( Clase et al. , 2010 ), but also scientific reasoning ( Reynolds et al. , 2012 ) and critical-thinking skills ( Quitadamo and Kurtz, 2007 ).

Critical thinking and scientific reasoning are similar but different constructs that include various types of higher-order cognitive processes, metacognitive strategies, and dispositions involved in making meaning of information. Critical thinking is generally understood as the broader construct ( Holyoak and Morrison, 2005 ), comprising an array of cognitive processes and dispostions that are drawn upon differentially in everyday life and across domains of inquiry such as the natural sciences, social sciences, and humanities. Scientific reasoning, then, may be interpreted as the subset of critical-thinking skills (cognitive and metacognitive processes and dispositions) that 1) are involved in making meaning of information in scientific domains and 2) support the epistemological commitment to scientific methodology and paradigm(s).

Although there has been an enduring focus in higher education on promoting critical thinking and reasoning as general or “transferable” skills, research evidence provides increasing support for the view that reasoning and critical thinking are also situational or domain specific ( Beyer et al. , 2013 ). Some researchers, such as Lawson (2010) , present frameworks in which science reasoning is characterized explicitly in terms of critical-thinking skills. There are, however, limited coherent frameworks and empirical evidence regarding either the general or domain-specific interrelationships of scientific reasoning, as it is most broadly defined, and critical-thinking skills.

The Vision and Change in Undergraduate Biology Education Initiative provides a framework for thinking about these constructs and their interrelationship in the context of the core competencies and disciplinary practice they describe ( American Association for the Advancement of Science, 2011 ). These learning objectives aim for undergraduates to “understand the process of science, the interdisciplinary nature of the new biology and how science is closely integrated within society; be competent in communication and collaboration; have quantitative competency and a basic ability to interpret data; and have some experience with modeling, simulation and computational and systems level approaches as well as with using large databases” ( Woodin et al. , 2010 , pp. 71–72). This framework makes clear that science reasoning and critical-thinking skills play key roles in major learning outcomes; for example, “understanding the process of science” requires students to engage in (and be metacognitive about) scientific reasoning, and having the “ability to interpret data” requires critical-thinking skills. To help students better achieve these core competencies, we must better understand the interrelationships of their composite parts. Thus, the next step is to determine which specific critical-thinking skills are drawn upon when students engage in science reasoning in general and with regard to the particular scientific domain being studied. Such a determination could be applied to improve science education for both majors and nonmajors through pedagogical approaches that foster critical-thinking skills that are most relevant to science reasoning.

Writing affords one of the most effective means for making thinking visible ( Reynolds et al. , 2012 ) and learning how to “think like” and “write like” disciplinary experts ( Meizlish et al. , 2013 ). As a result, student writing affords the opportunities to both foster and examine the interrelationship of scientific reasoning and critical-thinking skills within and across disciplinary contexts. The purpose of this study was to better understand the relationship between students’ critical-thinking skills and scientific reasoning skills as reflected in the genre of undergraduate thesis writing in biology departments at two research universities, the University of Minnesota and Duke University.

In the following subsections, we discuss in greater detail the constructs of scientific reasoning and critical thinking, as well as the assessment of scientific reasoning in students’ thesis writing. In subsequent sections, we discuss our study design, findings, and the implications for enhancing educational practices.

Critical Thinking

The advances in cognitive science in the 21st century have increased our understanding of the mental processes involved in thinking and reasoning, as well as memory, learning, and problem solving. Critical thinking is understood to include both a cognitive dimension and a disposition dimension (e.g., reflective thinking) and is defined as “purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considera­tions upon which that judgment is based” ( Facione, 1990, p. 3 ). Although various other definitions of critical thinking have been proposed, researchers have generally coalesced on this consensus: expert view ( Blattner and Frazier, 2002 ; Condon and Kelly-Riley, 2004 ; Bissell and Lemons, 2006 ; Quitadamo and Kurtz, 2007 ) and the corresponding measures of critical-­thinking skills ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ).

Both the cognitive skills and dispositional components of critical thinking have been recognized as important to science education ( Quitadamo and Kurtz, 2007 ). Empirical research demonstrates that specific pedagogical practices in science courses are effective in fostering students’ critical-thinking skills. Quitadamo and Kurtz (2007) found that students who engaged in a laboratory writing component in the context of a general education biology course significantly improved their overall critical-thinking skills (and their analytical and inference skills, in particular), whereas students engaged in a traditional quiz-based laboratory did not improve their critical-thinking skills. In related work, Quitadamo et al. (2008) found that a community-based inquiry experience, involving inquiry, writing, research, and analysis, was associated with improved critical thinking in a biology course for nonmajors, compared with traditionally taught sections. In both studies, students who exhibited stronger presemester critical-thinking skills exhibited stronger gains, suggesting that “students who have not been explicitly taught how to think critically may not reach the same potential as peers who have been taught these skills” ( Quitadamo and Kurtz, 2007 , p. 151).

Recently, Stephenson and Sadler-McKnight (2016) found that first-year general chemistry students who engaged in a science writing heuristic laboratory, which is an inquiry-based, writing-to-learn approach to instruction ( Hand and Keys, 1999 ), had significantly greater gains in total critical-thinking scores than students who received traditional laboratory instruction. Each of the four components—inquiry, writing, collaboration, and reflection—have been linked to critical thinking ( Stephenson and Sadler-McKnight, 2016 ). Like the other studies, this work highlights the value of targeting critical-thinking skills and the effectiveness of an inquiry-based, writing-to-learn approach to enhance critical thinking. Across studies, authors advocate adopting critical thinking as the course framework ( Pukkila, 2004 ) and developing explicit examples of how critical thinking relates to the scientific method ( Miri et al. , 2007 ).

In these examples, the important connection between writing and critical thinking is highlighted by the fact that each intervention involves the incorporation of writing into science, technology, engineering, and mathematics education (either alone or in combination with other pedagogical practices). However, critical-thinking skills are not always the primary learning outcome; in some contexts, scientific reasoning is the primary outcome that is assessed.

Scientific Reasoning

Scientific reasoning is a complex process that is broadly defined as “the skills involved in inquiry, experimentation, evidence evaluation, and inference that are done in the service of conceptual change or scientific understanding” ( Zimmerman, 2007 , p. 172). Scientific reasoning is understood to include both conceptual knowledge and the cognitive processes involved with generation of hypotheses (i.e., inductive processes involved in the generation of hypotheses and the deductive processes used in the testing of hypotheses), experimentation strategies, and evidence evaluation strategies. These dimensions are interrelated, in that “experimentation and inference strategies are selected based on prior conceptual knowledge of the domain” ( Zimmerman, 2000 , p. 139). Furthermore, conceptual and procedural knowledge and cognitive process dimensions can be general and domain specific (or discipline specific).

With regard to conceptual knowledge, attention has been focused on the acquisition of core methodological concepts fundamental to scientists’ causal reasoning and metacognitive distancing (or decontextualized thinking), which is the ability to reason independently of prior knowledge or beliefs ( Greenhoot et al. , 2004 ). The latter involves what Kuhn and Dean (2004) refer to as the coordination of theory and evidence, which requires that one question existing theories (i.e., prior knowledge and beliefs), seek contradictory evidence, eliminate alternative explanations, and revise one’s prior beliefs in the face of contradictory evidence. Kuhn and colleagues (2008) further elaborate that scientific thinking requires “a mature understanding of the epistemological foundations of science, recognizing scientific knowledge as constructed by humans rather than simply discovered in the world,” and “the ability to engage in skilled argumentation in the scientific domain, with an appreciation of argumentation as entailing the coordination of theory and evidence” ( Kuhn et al. , 2008 , p. 435). “This approach to scientific reasoning not only highlights the skills of generating and evaluating evidence-based inferences, but also encompasses epistemological appreciation of the functions of evidence and theory” ( Ding et al. , 2016 , p. 616). Evaluating evidence-based inferences involves epistemic cognition, which Moshman (2015) defines as the subset of metacognition that is concerned with justification, truth, and associated forms of reasoning. Epistemic cognition is both general and domain specific (or discipline specific; Moshman, 2015 ).

There is empirical support for the contributions of both prior knowledge and an understanding of the epistemological foundations of science to scientific reasoning. In a study of undergraduate science students, advanced scientific reasoning was most often accompanied by accurate prior knowledge as well as sophisticated epistemological commitments; additionally, for students who had comparable levels of prior knowledge, skillful reasoning was associated with a strong epistemological commitment to the consistency of theory with evidence ( Zeineddin and Abd-El-Khalick, 2010 ). These findings highlight the importance of the need for instructional activities that intentionally help learners develop sophisticated epistemological commitments focused on the nature of knowledge and the role of evidence in supporting knowledge claims ( Zeineddin and Abd-El-Khalick, 2010 ).

Scientific Reasoning in Students’ Thesis Writing

Pedagogical approaches that incorporate writing have also focused on enhancing scientific reasoning. Many rubrics have been developed to assess aspects of scientific reasoning in written artifacts. For example, Timmerman and colleagues (2011) , in the course of describing their own rubric for assessing scientific reasoning, highlight several examples of scientific reasoning assessment criteria ( Haaga, 1993 ; Tariq et al. , 1998 ; Topping et al. , 2000 ; Kelly and Takao, 2002 ; Halonen et al. , 2003 ; Willison and O’Regan, 2007 ).

At both the University of Minnesota and Duke University, we have focused on the genre of the undergraduate honors thesis as the rhetorical context in which to study and improve students’ scientific reasoning and writing. We view the process of writing an undergraduate honors thesis as a form of professional development in the sciences (i.e., a way of engaging students in the practices of a community of discourse). We have found that structured courses designed to scaffold the thesis-­writing process and promote metacognition can improve writing and reasoning skills in biology, chemistry, and economics ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In the context of this prior work, we have defined scientific reasoning in writing as the emergent, underlying construct measured across distinct aspects of students’ written discussion of independent research in their undergraduate theses.

The Biology Thesis Assessment Protocol (BioTAP) was developed at Duke University as a tool for systematically guiding students and faculty through a “draft–feedback–revision” writing process, modeled after professional scientific peer-review processes ( Reynolds et al. , 2009 ). BioTAP includes activities and worksheets that allow students to engage in critical peer review and provides detailed descriptions, presented as rubrics, of the questions (i.e., dimensions, shown in Table 1 ) upon which such review should focus. Nine rubric dimensions focus on communication to the broader scientific community, and four rubric dimensions focus on the accuracy and appropriateness of the research. These rubric dimensions provide criteria by which the thesis is assessed, and therefore allow BioTAP to be used as an assessment tool as well as a teaching resource ( Reynolds et al. , 2009 ). Full details are available at www.science-writing.org/biotap.html .

Theses assessment protocol dimensions

In previous work, we have used BioTAP to quantitatively assess students’ undergraduate honors theses and explore the relationship between thesis-writing courses (or specific interventions within the courses) and the strength of students’ science reasoning in writing across different science disciplines: biology ( Reynolds and Thompson, 2011 ); chemistry ( Dowd et al. , 2015b ); and economics ( Dowd et al. , 2015a ). We have focused exclusively on the nine dimensions related to reasoning and writing (questions 1–9), as the other four dimensions (questions 10–13) require topic-specific expertise and are intended to be used by the student’s thesis supervisor.

Beyond considering individual dimensions, we have investigated whether meaningful constructs underlie students’ thesis scores. We conducted exploratory factor analysis of students’ theses in biology, economics, and chemistry and found one dominant underlying factor in each discipline; we termed the factor “scientific reasoning in writing” ( Dowd et al. , 2015a , b , 2016 ). That is, each of the nine dimensions could be understood as reflecting, in different ways and to different degrees, the construct of scientific reasoning in writing. The findings indicated evidence of both general and discipline-specific components to scientific reasoning in writing that relate to epistemic beliefs and paradigms, in keeping with broader ideas about science reasoning discussed earlier. Specifically, scientific reasoning in writing is more strongly associated with formulating a compelling argument for the significance of the research in the context of current literature in biology, making meaning regarding the implications of the findings in chemistry, and providing an organizational framework for interpreting the thesis in economics. We suggested that instruction, whether occurring in writing studios or in writing courses to facilitate thesis preparation, should attend to both components.

Research Question and Study Design

The genre of thesis writing combines the pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-­McKnight, 2016 ). However, there is no empirical evidence regarding the general or domain-specific interrelationships of scientific reasoning and critical-thinking skills, particularly in the rhetorical context of the undergraduate thesis. The BioTAP studies discussed earlier indicate that the rubric-based assessment produces evidence of scientific reasoning in the undergraduate thesis, but it was not designed to foster or measure critical thinking. The current study was undertaken to address the research question: How are students’ critical-thinking skills related to scientific reasoning as reflected in the genre of undergraduate thesis writing in biology? Determining these interrelationships could guide efforts to enhance students’ scientific reasoning and writing skills through focusing instruction on specific critical-thinking skills as well as disciplinary conventions.

To address this research question, we focused on undergraduate thesis writers in biology courses at two institutions, Duke University and the University of Minnesota, and examined the extent to which students’ scientific reasoning in writing, assessed in the undergraduate thesis using BioTAP, corresponds to students’ critical-thinking skills, assessed using the California Critical Thinking Skills Test (CCTST; August, 2016 ).

Study Sample

The study sample was composed of students enrolled in courses designed to scaffold the thesis-writing process in the Department of Biology at Duke University and the College of Biological Sciences at the University of Minnesota. Both courses complement students’ individual work with research advisors. The course is required for thesis writers at the University of Minnesota and optional for writers at Duke University. Not all students are required to complete a thesis, though it is required for students to graduate with honors; at the University of Minnesota, such students are enrolled in an honors program within the college. In total, 28 students were enrolled in the course at Duke University and 44 students were enrolled in the course at the University of Minnesota. Of those students, two students did not consent to participate in the study; additionally, five students did not validly complete the CCTST (i.e., attempted fewer than 60% of items or completed the test in less than 15 minutes). Thus, our overall rate of valid participation is 90%, with 27 students from Duke University and 38 students from the University of Minnesota. We found no statistically significant differences in thesis assessment between students with valid CCTST scores and invalid CCTST scores. Therefore, we focus on the 65 students who consented to participate and for whom we have complete and valid data in most of this study. Additionally, in asking students for their consent to participate, we allowed them to choose whether to provide or decline access to academic and demographic background data. Of the 65 students who consented to participate, 52 students granted access to such data. Therefore, for additional analyses involving academic and background data, we focus on the 52 students who consented. We note that the 13 students who participated but declined to share additional data performed slightly lower on the CCTST than the 52 others (perhaps suggesting that they differ by other measures, but we cannot determine this with certainty). Among the 52 students, 60% identified as female and 10% identified as being from underrepresented ethnicities.

In both courses, students completed the CCTST online, either in class or on their own, late in the Spring 2016 semester. This is the same assessment that was used in prior studies of critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). It is “an objective measure of the core reasoning skills needed for reflective decision making concerning what to believe or what to do” ( Insight Assessment, 2016a ). In the test, students are asked to read and consider information as they answer multiple-choice questions. The questions are intended to be appropriate for all users, so there is no expectation of prior disciplinary knowledge in biology (or any other subject). Although actual test items are protected, sample items are available on the Insight Assessment website ( Insight Assessment, 2016b ). We have included one sample item in the Supplemental Material.

The CCTST is based on a consensus definition of critical thinking, measures cognitive and metacognitive skills associated with critical thinking, and has been evaluated for validity and reliability at the college level ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ). In addition to providing overall critical-thinking score, the CCTST assesses seven dimensions of critical thinking: analysis, interpretation, inference, evaluation, explanation, induction, and deduction. Scores on each dimension are calculated based on students’ performance on items related to that dimension. Analysis focuses on identifying assumptions, reasons, and claims and examining how they interact to form arguments. Interpretation, related to analysis, focuses on determining the precise meaning and significance of information. Inference focuses on drawing conclusions from reasons and evidence. Evaluation focuses on assessing the credibility of sources of information and claims they make. Explanation, related to evaluation, focuses on describing the evidence, assumptions, or rationale for beliefs and conclusions. Induction focuses on drawing inferences about what is probably true based on evidence. Deduction focuses on drawing conclusions about what must be true when the context completely determines the outcome. These are not independent dimensions; the fact that they are related supports their collective interpretation as critical thinking. Together, the CCTST dimensions provide a basis for evaluating students’ overall strength in using reasoning to form reflective judgments about what to believe or what to do ( August, 2016 ). Each of the seven dimensions and the overall CCTST score are measured on a scale of 0–100, where higher scores indicate superior performance. Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and below) skills.

Scientific Reasoning in Writing

At the end of the semester, students’ final, submitted undergraduate theses were assessed using BioTAP, which consists of nine rubric dimensions that focus on communication to the broader scientific community and four additional dimensions that focus on the exhibition of topic-specific expertise ( Reynolds et al. , 2009 ). These dimensions, framed as questions, are displayed in Table 1 .

Student theses were assessed on questions 1–9 of BioTAP using the same procedures described in previous studies ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In this study, six raters were trained in the valid, reliable use of BioTAP rubrics. Each dimension was rated on a five-point scale: 1 indicates the dimension is missing, incomplete, or below acceptable standards; 3 indicates that the dimension is adequate but not exhibiting mastery; and 5 indicates that the dimension is excellent and exhibits mastery (intermediate ratings of 2 and 4 are appropriate when different parts of the thesis make a single category challenging). After training, two raters independently assessed each thesis and then discussed their independent ratings with one another to form a consensus rating. The consensus score is not an average score, but rather an agreed-upon, discussion-based score. On a five-point scale, raters independently assessed dimensions to be within 1 point of each other 82.4% of the time before discussion and formed consensus ratings 100% of the time after discussion.

In this study, we consider both categorical (mastery/nonmastery, where a score of 5 corresponds to mastery) and numerical treatments of individual BioTAP scores to better relate the manifestation of critical thinking in BioTAP assessment to all of the prior studies. For comprehensive/cumulative measures of BioTAP, we focus on the partial sum of questions 1–5, as these questions relate to higher-order scientific reasoning (whereas questions 6–9 relate to mid- and lower-order writing mechanics [ Reynolds et al. , 2009 ]), and the factor scores (i.e., numerical representations of the extent to which each student exhibits the underlying factor), which are calculated from the factor loadings published by Dowd et al. (2016) . We do not focus on questions 6–9 individually in statistical analyses, because we do not expect critical-thinking skills to relate to mid- and lower-order writing skills.

The final, submitted thesis reflects the student’s writing, the student’s scientific reasoning, the quality of feedback provided to the student by peers and mentors, and the student’s ability to incorporate that feedback into his or her work. Therefore, our assessment is not the same as an assessment of unpolished, unrevised samples of students’ written work. While one might imagine that such an unpolished sample may be more strongly correlated with critical-thinking skills measured by the CCTST, we argue that the complete, submitted thesis, assessed using BioTAP, is ultimately a more appropriate reflection of how students exhibit science reasoning in the scientific community.

Statistical Analyses

We took several steps to analyze the collected data. First, to provide context for subsequent interpretations, we generated descriptive statistics for the CCTST scores of the participants based on the norms for undergraduate CCTST test takers. To determine the strength of relationships among CCTST dimensions (including overall score) and the BioTAP dimensions, partial-sum score (questions 1–5), and factor score, we calculated Pearson’s correlations for each pair of measures. To examine whether falling on one side of the nonmastery/mastery threshold (as opposed to a linear scale of performance) was related to critical thinking, we grouped BioTAP dimensions into categories (mastery/nonmastery) and conducted Student’s t tests to compare the means scores of the two groups on each of the seven dimensions and overall score of the CCTST. Finally, for the strongest relationship that emerged, we included additional academic and background variables as covariates in multiple linear-regression analysis to explore questions about how much observed relationships between critical-thinking skills and science reasoning in writing might be explained by variation in these other factors.

Although BioTAP scores represent discreet, ordinal bins, the five-point scale is intended to capture an underlying continuous construct (from inadequate to exhibiting mastery). It has been argued that five categories is an appropriate cutoff for treating ordinal variables as pseudo-continuous ( Rhemtulla et al. , 2012 )—and therefore using continuous-variable statistical methods (e.g., Pearson’s correlations)—as long as the underlying assumption that ordinal scores are linearly distributed is valid. Although we have no way to statistically test this assumption, we interpret adequate scores to be approximately halfway between inadequate and mastery scores, resulting in a linear scale. In part because this assumption is subject to disagreement, we also consider and interpret a categorical (mastery/nonmastery) treatment of BioTAP variables.

We corrected for multiple comparisons using the Holm-Bonferroni method ( Holm, 1979 ). At the most general level, where we consider the single, comprehensive measures for BioTAP (partial-sum and factor score) and the CCTST (overall score), there is no need to correct for multiple comparisons, because the multiple, individual dimensions are collapsed into single dimensions. When we considered individual CCTST dimensions in relation to comprehensive measures for BioTAP, we accounted for seven comparisons; similarly, when we considered individual dimensions of BioTAP in relation to overall CCTST score, we accounted for five comparisons. When all seven CCTST and five BioTAP dimensions were examined individually and without prior knowledge, we accounted for 35 comparisons; such a rigorous threshold is likely to reject weak and moderate relationships, but it is appropriate if there are no specific pre-existing hypotheses. All p values are presented in tables for complete transparency, and we carefully consider the implications of our interpretation of these data in the Discussion section.

CCTST scores for students in this sample ranged from the 39th to 99th percentile of the general population of undergraduate CCTST test takers (mean percentile = 84.3, median = 85th percentile; Table 2 ); these percentiles reflect overall scores that range from moderate to superior. Scores on individual dimensions and overall scores were sufficiently normal and far enough from the ceiling of the scale to justify subsequent statistical analyses.

Descriptive statistics of CCTST dimensions a

a Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and lower) skills.

The Pearson’s correlations between students’ cumulative scores on BioTAP (the factor score based on loadings published by Dowd et al. , 2016 , and the partial sum of scores on questions 1–5) and students’ overall scores on the CCTST are presented in Table 3 . We found that the partial-sum measure of BioTAP was significantly related to the overall measure of critical thinking ( r = 0.27, p = 0.03), while the BioTAP factor score was marginally related to overall CCTST ( r = 0.24, p = 0.05). When we looked at relationships between comprehensive BioTAP measures and scores for individual dimensions of the CCTST ( Table 3 ), we found significant positive correlations between the both BioTAP partial-sum and factor scores and CCTST inference ( r = 0.45, p < 0.001, and r = 0.41, p < 0.001, respectively). Although some other relationships have p values below 0.05 (e.g., the correlations between BioTAP partial-sum scores and CCTST induction and interpretation scores), they are not significant when we correct for multiple comparisons.

Correlations between dimensions of CCTST and dimensions of BioTAP a

a In each cell, the top number is the correlation, and the bottom, italicized number is the associated p value. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

b This is the partial sum of BioTAP scores on questions 1–5.

c This is the factor score calculated from factor loadings published by Dowd et al. (2016) .

When we expanded comparisons to include all 35 potential correlations among individual BioTAP and CCTST dimensions—and, accordingly, corrected for 35 comparisons—we did not find any additional statistically significant relationships. The Pearson’s correlations between students’ scores on each dimension of BioTAP and students’ scores on each dimension of the CCTST range from −0.11 to 0.35 ( Table 3 ); although the relationship between discussion of implications (BioTAP question 5) and inference appears to be relatively large ( r = 0.35), it is not significant ( p = 0.005; the Holm-Bonferroni cutoff is 0.00143). We found no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions (unpublished data), regardless of whether we correct for multiple comparisons.

The results of Student’s t tests comparing scores on each dimension of the CCTST of students who exhibit mastery with those of students who do not exhibit mastery on each dimension of BioTAP are presented in Table 4 . Focusing first on the overall CCTST scores, we found that the difference between those who exhibit mastery and those who do not in discussing implications of results (BioTAP question 5) is statistically significant ( t = 2.73, p = 0.008, d = 0.71). When we expanded t tests to include all 35 comparisons—and, like above, corrected for 35 comparisons—we found a significant difference in inference scores between students who exhibit mastery on question 5 and students who do not ( t = 3.41, p = 0.0012, d = 0.88), as well as a marginally significant difference in these students’ induction scores ( t = 3.26, p = 0.0018, d = 0.84; the Holm-Bonferroni cutoff is p = 0.00147). Cohen’s d effect sizes, which reveal the strength of the differences for statistically significant relationships, range from 0.71 to 0.88.

The t statistics and effect sizes of differences in ­dimensions of CCTST across dimensions of BioTAP a

a In each cell, the top number is the t statistic for each comparison, and the middle, italicized number is the associated p value. The bottom number is the effect size. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

Finally, we more closely examined the strongest relationship that we observed, which was between the CCTST dimension of inference and the BioTAP partial-sum composite score (shown in Table 3 ), using multiple regression analysis ( Table 5 ). Focusing on the 52 students for whom we have background information, we looked at the simple relationship between BioTAP and inference (model 1), a robust background model including multiple covariates that one might expect to explain some part of the variation in BioTAP (model 2), and a combined model including all variables (model 3). As model 3 shows, the covariates explain very little variation in BioTAP scores, and the relationship between inference and BioTAP persists even in the presence of all of the covariates.

Partial sum (questions 1–5) of BioTAP scores ( n = 52)

** p < 0.01.

*** p < 0.001.

The aim of this study was to examine the extent to which the various components of scientific reasoning—manifested in writing in the genre of undergraduate thesis and assessed using BioTAP—draw on general and specific critical-thinking skills (assessed using CCTST) and to consider the implications for educational practices. Although science reasoning involves critical-thinking skills, it also relates to conceptual knowledge and the epistemological foundations of science disciplines ( Kuhn et al. , 2008 ). Moreover, science reasoning in writing , captured in students’ undergraduate theses, reflects habits, conventions, and the incorporation of feedback that may alter evidence of individuals’ critical-thinking skills. Our findings, however, provide empirical evidence that cumulative measures of science reasoning in writing are nonetheless related to students’ overall critical-thinking skills ( Table 3 ). The particularly significant roles of inference skills ( Table 3 ) and the discussion of implications of results (BioTAP question 5; Table 4 ) provide a basis for more specific ideas about how these constructs relate to one another and what educational interventions may have the most success in fostering these skills.

Our results build on previous findings. The genre of thesis writing combines pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). Quitadamo and Kurtz (2007) reported that students who engaged in a laboratory writing component in a general education biology course significantly improved their inference and analysis skills, and Quitadamo and colleagues (2008) found that participation in a community-based inquiry biology course (that included a writing component) was associated with significant gains in students’ inference and evaluation skills. The shared focus on inference is noteworthy, because these prior studies actually differ from the current study; the former considered critical-­thinking skills as the primary learning outcome of writing-­focused interventions, whereas the latter focused on emergent links between two learning outcomes (science reasoning in writing and critical thinking). In other words, inference skills are impacted by writing as well as manifested in writing.

Inference focuses on drawing conclusions from argument and evidence. According to the consensus definition of critical thinking, the specific skill of inference includes several processes: querying evidence, conjecturing alternatives, and drawing conclusions. All of these activities are central to the independent research at the core of writing an undergraduate thesis. Indeed, a critical part of what we call “science reasoning in writing” might be characterized as a measure of students’ ability to infer and make meaning of information and findings. Because the cumulative BioTAP measures distill underlying similarities and, to an extent, suppress unique aspects of individual dimensions, we argue that it is appropriate to relate inference to scientific reasoning in writing . Even when we control for other potentially relevant background characteristics, the relationship is strong ( Table 5 ).

In taking the complementary view and focusing on BioTAP, when we compared students who exhibit mastery with those who do not, we found that the specific dimension of “discussing the implications of results” (question 5) differentiates students’ performance on several critical-thinking skills. To achieve mastery on this dimension, students must make connections between their results and other published studies and discuss the future directions of the research; in short, they must demonstrate an understanding of the bigger picture. The specific relationship between question 5 and inference is the strongest observed among all individual comparisons. Altogether, perhaps more than any other BioTAP dimension, this aspect of students’ writing provides a clear view of the role of students’ critical-thinking skills (particularly inference and, marginally, induction) in science reasoning.

While inference and discussion of implications emerge as particularly strongly related dimensions in this work, we note that the strongest contribution to “science reasoning in writing in biology,” as determined through exploratory factor analysis, is “argument for the significance of research” (BioTAP question 2, not question 5; Dowd et al. , 2016 ). Question 2 is not clearly related to critical-thinking skills. These findings are not contradictory, but rather suggest that the epistemological and disciplinary-specific aspects of science reasoning that emerge in writing through BioTAP are not completely aligned with aspects related to critical thinking. In other words, science reasoning in writing is not simply a proxy for those critical-thinking skills that play a role in science reasoning.

In a similar vein, the content-related, epistemological aspects of science reasoning, as well as the conventions associated with writing the undergraduate thesis (including feedback from peers and revision), may explain the lack of significant relationships between some science reasoning dimensions and some critical-thinking skills that might otherwise seem counterintuitive (e.g., BioTAP question 2, which relates to making an argument, and the critical-thinking skill of argument). It is possible that an individual’s critical-thinking skills may explain some variation in a particular BioTAP dimension, but other aspects of science reasoning and practice exert much stronger influence. Although these relationships do not emerge in our analyses, the lack of significant correlation does not mean that there is definitively no correlation. Correcting for multiple comparisons suppresses type 1 error at the expense of exacerbating type 2 error, which, combined with the limited sample size, constrains statistical power and makes weak relationships more difficult to detect. Ultimately, though, the relationships that do emerge highlight places where individuals’ distinct critical-thinking skills emerge most coherently in thesis assessment, which is why we are particularly interested in unpacking those relationships.

We recognize that, because only honors students submit theses at these institutions, this study sample is composed of a selective subset of the larger population of biology majors. Although this is an inherent limitation of focusing on thesis writing, links between our findings and results of other studies (with different populations) suggest that observed relationships may occur more broadly. The goal of improved science reasoning and critical thinking is shared among all biology majors, particularly those engaged in capstone research experiences. So while the implications of this work most directly apply to honors thesis writers, we provisionally suggest that all students could benefit from further study of them.

There are several important implications of this study for science education practices. Students’ inference skills relate to the understanding and effective application of scientific content. The fact that we find no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions suggests that such mid- to lower-order elements of BioTAP ( Reynolds et al. , 2009 ), which tend to be more structural in nature, do not focus on aspects of the finished thesis that draw strongly on critical thinking. In keeping with prior analyses ( Reynolds and Thompson, 2011 ; Dowd et al. , 2016 ), these findings further reinforce the notion that disciplinary instructors, who are most capable of teaching and assessing scientific reasoning and perhaps least interested in the more mechanical aspects of writing, may nonetheless be best suited to effectively model and assess students’ writing.

The goal of the thesis writing course at both Duke University and the University of Minnesota is not merely to improve thesis scores but to move students’ writing into the category of mastery across BioTAP dimensions. Recognizing that students with differing critical-thinking skills (particularly inference) are more or less likely to achieve mastery in the undergraduate thesis (particularly in discussing implications [question 5]) is important for developing and testing targeted pedagogical interventions to improve learning outcomes for all students.

The competencies characterized by the Vision and Change in Undergraduate Biology Education Initiative provide a general framework for recognizing that science reasoning and critical-thinking skills play key roles in major learning outcomes of science education. Our findings highlight places where science reasoning–related competencies (like “understanding the process of science”) connect to critical-thinking skills and places where critical thinking–related competencies might be manifested in scientific products (such as the ability to discuss implications in scientific writing). We encourage broader efforts to build empirical connections between competencies and pedagogical practices to further improve science education.

One specific implication of this work for science education is to focus on providing opportunities for students to develop their critical-thinking skills (particularly inference). Of course, as this correlational study is not designed to test causality, we do not claim that enhancing students’ inference skills will improve science reasoning in writing. However, as prior work shows that science writing activities influence students’ inference skills ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ), there is reason to test such a hypothesis. Nevertheless, the focus must extend beyond inference as an isolated skill; rather, it is important to relate inference to the foundations of the scientific method ( Miri et al. , 2007 ) in terms of the epistemological appreciation of the functions and coordination of evidence ( Kuhn and Dean, 2004 ; Zeineddin and Abd-El-Khalick, 2010 ; Ding et al. , 2016 ) and disciplinary paradigms of truth and justification ( Moshman, 2015 ).

Although this study is limited to the domain of biology at two institutions with a relatively small number of students, the findings represent a foundational step in the direction of achieving success with more integrated learning outcomes. Hopefully, it will spur greater interest in empirically grounding discussions of the constructs of scientific reasoning and critical-thinking skills.

This study contributes to the efforts to improve science education, for both majors and nonmajors, through an empirically driven analysis of the relationships between scientific reasoning reflected in the genre of thesis writing and critical-thinking skills. This work is rooted in the usefulness of BioTAP as a method 1) to facilitate communication and learning and 2) to assess disciplinary-specific and general dimensions of science reasoning. The findings support the important role of the critical-thinking skill of inference in scientific reasoning in writing, while also highlighting ways in which other aspects of science reasoning (epistemological considerations, writing conventions, etc.) are not significantly related to critical thinking. Future research into the impact of interventions focused on specific critical-thinking skills (i.e., inference) for improved science reasoning in writing will build on this work and its implications for science education.

Supplementary Material

Acknowledgments.

We acknowledge the contributions of Kelaine Haas and Alexander Motten to the implementation and collection of data. We also thank Mine Çetinkaya-­Rundel for her insights regarding our statistical analyses. This research was funded by National Science Foundation award DUE-1525602.

  • American Association for the Advancement of Science. (2011). Vision and change in undergraduate biology education: A call to action . Washington, DC: Retrieved September 26, 2017, from https://visionandchange.org/files/2013/11/aaas-VISchange-web1113.pdf . [ Google Scholar ]
  • August D. (2016). California Critical Thinking Skills Test user manual and resource guide . San Jose: Insight Assessment/California Academic Press. [ Google Scholar ]
  • Beyer C. H., Taylor E., Gillmore G. M. (2013). Inside the undergraduate teaching experience: The University of Washington’s growth in faculty teaching study . Albany, NY: SUNY Press. [ Google Scholar ]
  • Bissell A. N., Lemons P. P. (2006). A new method for assessing critical thinking in the classroom . BioScience , ( 1 ), 66–72. https://doi.org/10.1641/0006-3568(2006)056[0066:ANMFAC]2.0.CO;2 . [ Google Scholar ]
  • Blattner N. H., Frazier C. L. (2002). Developing a performance-based assessment of students’ critical thinking skills . Assessing Writing , ( 1 ), 47–64. [ Google Scholar ]
  • Clase K. L., Gundlach E., Pelaez N. J. (2010). Calibrated peer review for computer-assisted learning of biological research competencies . Biochemistry and Molecular Biology Education , ( 5 ), 290–295. [ PubMed ] [ Google Scholar ]
  • Condon W., Kelly-Riley D. (2004). Assessing and teaching what we value: The relationship between college-level writing and critical thinking abilities . Assessing Writing , ( 1 ), 56–75. https://doi.org/10.1016/j.asw.2004.01.003 . [ Google Scholar ]
  • Ding L., Wei X., Liu X. (2016). Variations in university students’ scientific reasoning skills across majors, years, and types of institutions . Research in Science Education , ( 5 ), 613–632. https://doi.org/10.1007/s11165-015-9473-y . [ Google Scholar ]
  • Dowd J. E., Connolly M. P., Thompson R. J., Jr., Reynolds J. A. (2015a). Improved reasoning in undergraduate writing through structured workshops . Journal of Economic Education , ( 1 ), 14–27. https://doi.org/10.1080/00220485.2014.978924 . [ Google Scholar ]
  • Dowd J. E., Roy C. P., Thompson R. J., Jr., Reynolds J. A. (2015b). “On course” for supporting expanded participation and improving scientific reasoning in undergraduate thesis writing . Journal of Chemical Education , ( 1 ), 39–45. https://doi.org/10.1021/ed500298r . [ Google Scholar ]
  • Dowd J. E., Thompson R. J., Jr., Reynolds J. A. (2016). Quantitative genre analysis of undergraduate theses: Uncovering different ways of writing and thinking in science disciplines . WAC Journal , , 36–51. [ Google Scholar ]
  • Facione P. A. (1990). Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations . Newark, DE: American Philosophical Association; Retrieved September 26, 2017, from https://philpapers.org/archive/FACCTA.pdf . [ Google Scholar ]
  • Gerdeman R. D., Russell A. A., Worden K. J., Gerdeman R. D., Russell A. A., Worden K. J. (2007). Web-based student writing and reviewing in a large biology lecture course . Journal of College Science Teaching , ( 5 ), 46–52. [ Google Scholar ]
  • Greenhoot A. F., Semb G., Colombo J., Schreiber T. (2004). Prior beliefs and methodological concepts in scientific reasoning . Applied Cognitive Psychology , ( 2 ), 203–221. https://doi.org/10.1002/acp.959 . [ Google Scholar ]
  • Haaga D. A. F. (1993). Peer review of term papers in graduate psychology courses . Teaching of Psychology , ( 1 ), 28–32. https://doi.org/10.1207/s15328023top2001_5 . [ Google Scholar ]
  • Halonen J. S., Bosack T., Clay S., McCarthy M., Dunn D. S., Hill G. W., Whitlock K. (2003). A rubric for learning, teaching, and assessing scientific inquiry in psychology . Teaching of Psychology , ( 3 ), 196–208. https://doi.org/10.1207/S15328023TOP3003_01 . [ Google Scholar ]
  • Hand B., Keys C. W. (1999). Inquiry investigation . Science Teacher , ( 4 ), 27–29. [ Google Scholar ]
  • Holm S. (1979). A simple sequentially rejective multiple test procedure . Scandinavian Journal of Statistics , ( 2 ), 65–70. [ Google Scholar ]
  • Holyoak K. J., Morrison R. G. (2005). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press. [ Google Scholar ]
  • Insight Assessment. (2016a). California Critical Thinking Skills Test (CCTST) Retrieved September 26, 2017, from www.insightassessment.com/Products/Products-Summary/Critical-Thinking-Skills-Tests/California-Critical-Thinking-Skills-Test-CCTST .
  • Insight Assessment. (2016b). Sample thinking skills questions. Retrieved September 26, 2017, from www.insightassessment.com/Resources/Teaching-Training-and-Learning-Tools/node_1487 .
  • Kelly G. J., Takao A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing . Science Education , ( 3 ), 314–342. https://doi.org/10.1002/sce.10024 . [ Google Scholar ]
  • Kuhn D., Dean D., Jr. (2004). Connecting scientific reasoning and causal inference . Journal of Cognition and Development , ( 2 ), 261–288. https://doi.org/10.1207/s15327647jcd0502_5 . [ Google Scholar ]
  • Kuhn D., Iordanou K., Pease M., Wirkala C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? . Cognitive Development , ( 4 ), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006 . [ Google Scholar ]
  • Lawson A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery . Science Education , ( 2 ), 336–364. https://doi.org/­10.1002/sce.20357 . [ Google Scholar ]
  • Meizlish D., LaVaque-Manty D., Silver N., Kaplan M. (2013). Think like/write like: Metacognitive strategies to foster students’ development as disciplinary thinkers and writers . In Thompson R. J. (Ed.), Changing the conversation about higher education (pp. 53–73). Lanham, MD: Rowman & Littlefield. [ Google Scholar ]
  • Miri B., David B.-C., Uri Z. (2007). Purposely teaching for the promotion of higher-order thinking skills: A case of critical thinking . Research in Science Education , ( 4 ), 353–369. https://doi.org/10.1007/s11165-006-9029-2 . [ Google Scholar ]
  • Moshman D. (2015). Epistemic cognition and development: The psychology of justification and truth . New York: Psychology Press. [ Google Scholar ]
  • National Research Council. (2000). How people learn: Brain, mind, experience, and school . Expanded ed. Washington, DC: National Academies Press. [ Google Scholar ]
  • Pukkila P. J. (2004). Introducing student inquiry in large introductory genetics classes . Genetics , ( 1 ), 11–18. https://doi.org/10.1534/genetics.166.1.11 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Faiola C. L., Johnson J. E., Kurtz M. J. (2008). Community-based inquiry improves critical thinking in general education biology . CBE—Life Sciences Education , ( 3 ), 327–337. https://doi.org/10.1187/cbe.07-11-0097 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Kurtz M. J. (2007). Learning to improve: Using writing to increase critical thinking performance in general education biology . CBE—Life Sciences Education , ( 2 ), 140–154. https://doi.org/10.1187/cbe.06-11-0203 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Smith R., Moskovitz C., Sayle A. (2009). BioTAP: A systematic approach to teaching scientific writing and evaluating undergraduate theses . BioScience , ( 10 ), 896–903. https://doi.org/10.1525/bio.2009.59.10.11 . [ Google Scholar ]
  • Reynolds J. A., Thaiss C., Katkin W., Thompson R. J. (2012). Writing-to-learn in undergraduate science education: A community-based, conceptually driven approach . CBE—Life Sciences Education , ( 1 ), 17–25. https://doi.org/10.1187/cbe.11-08-0064 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Thompson R. J. (2011). Want to improve undergraduate thesis writing? Engage students and their faculty readers in scientific peer review . CBE—Life Sciences Education , ( 2 ), 209–215. https://doi.org/­10.1187/cbe.10-10-0127 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rhemtulla M., Brosseau-Liard P. E., Savalei V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions . Psychological Methods , ( 3 ), 354–373. https://doi.org/­10.1037/a0029315 . [ PubMed ] [ Google Scholar ]
  • Stephenson N. S., Sadler-McKnight N. P. (2016). Developing critical thinking skills using the science writing heuristic in the chemistry laboratory . Chemistry Education Research and Practice , ( 1 ), 72–79. https://doi.org/­10.1039/C5RP00102A . [ Google Scholar ]
  • Tariq V. N., Stefani L. A. J., Butcher A. C., Heylings D. J. A. (1998). Developing a new approach to the assessment of project work . Assessment and Evaluation in Higher Education , ( 3 ), 221–240. https://doi.org/­10.1080/0260293980230301 . [ Google Scholar ]
  • Timmerman B. E. C., Strickland D. C., Johnson R. L., Payne J. R. (2011). Development of a “universal” rubric for assessing undergraduates’ scientific reasoning skills using scientific writing . Assessment and Evaluation in Higher Education , ( 5 ), 509–547. https://doi.org/10.1080/­02602930903540991 . [ Google Scholar ]
  • Topping K. J., Smith E. F., Swanson I., Elliot A. (2000). Formative peer assessment of academic writing between postgraduate students . Assessment and Evaluation in Higher Education , ( 2 ), 149–169. https://doi.org/10.1080/713611428 . [ Google Scholar ]
  • Willison J., O’Regan K. (2007). Commonly known, commonly not known, totally unknown: A framework for students becoming researchers . Higher Education Research and Development , ( 4 ), 393–409. https://doi.org/10.1080/07294360701658609 . [ Google Scholar ]
  • Woodin T., Carter V. C., Fletcher L. (2010). Vision and Change in Biology Undergraduate Education: A Call for Action—Initial responses . CBE—Life Sciences Education , ( 2 ), 71–73. https://doi.org/10.1187/cbe.10-03-0044 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Zeineddin A., Abd-El-Khalick F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students . Journal of Research in Science Teaching , ( 9 ), 1064–1093. https://doi.org/10.1002/tea.20368 . [ Google Scholar ]
  • Zimmerman C. (2000). The development of scientific reasoning skills . Developmental Review , ( 1 ), 99–149. https://doi.org/10.1006/drev.1999.0497 . [ Google Scholar ]
  • Zimmerman C. (2007). The development of scientific thinking skills in elementary and middle school . Developmental Review , ( 2 ), 172–223. https://doi.org/10.1016/j.dr.2006.12.001 . [ Google Scholar ]

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

  • Reference Manager
  • Simple TEXT file

People also looked at

Original research article, critical thinking as a necessity for social science students capacity development: how it can be strengthened through project based learning at university.

critical thinking social sciences

  • 1 Department of Economics Education, Faculty of Teacher Training and Education, Universitas Tanjungpura, Pontianak, Indonesia
  • 2 Universitas Khairun, Ternate, Indonesia

Critical thinking is necessary for students because it empowers them to solve problems, especially during the learning stage and in real-life situations within society. Based on this fact, the present study proposes a citizenship project model that aims to enhance the Elementary School Teacher Education Study Program by emphasizing critical thinking among students during the teaching of Civic Education at universities in Indonesia. The research is of the experimental quasi-research type, which comprises two classes: an experimental class and a control class. Both the classes were conducted to compare the effectiveness of the proposed citizenship project learning model. The statistical package for the social sciences was used for data analysis. To attain the required results on the implementation of the citizenship project learning model, there were several stages, including problem identification, problem formulation, information gathering, documenting the process, showcasing the results, and reflective analysis of the model implementation process. The results have revealed a significant improvement in the critical thinking abilities of the students in the experimental class category compared to the control-class category. Thus, it is concluded that the adoption of a citizenship project learning model is appropriate for critical thinking skills' improvement of students taking up citizenship education study programs at universities.

Introduction

The development of critical thinking skills is very essential for every student of higher education today ( Kwangmuang et al., 2021 ). Globally, it has been found that 85% of teachers entail a belief that today's students have limited critical thinking abilities, mostly at the time of entry to university ( Jimenez et al., 2021 ). This development is coupled with the fact that, the world of present is facing rapid transformation in technology and scientific knowledge ( Kraus et al., 2021 ), something that is affecting people from all walks of life, including eroding their love for nationalism and affecting their attachment to nationalistic values ( Smith, 1983 ). This situation is also worsened by the existing learning models on citizenship ( Maitles, 2022 ), which are said to have not fully assisted students in developing critical thinking skills, thereby leading to difficulties in reasoning with the mindset of mature citizenry. This in turn affects their communication skills and leads to difficulties in responding to social phenomena that take place in society ( Castellano et al., 2017 ).

Because of the importance of critical thinking in solving problems related to students' learning, critical thinking cannot be separated from educational institutions ( Kim and Choi, 2018 ), especially from institutions of higher education ( Collier and Morgan, 2008 ), which are empowered to address challenges related to human resource development through the implementation of teaching and learning content. This development in turn influences students' change in mindset toward a positive direction by bringing about a change in their attitudes ( Sapriya, 2008 ). For this reason, when citizenship education is included in the realm of higher education it needs to contribute to the development of critical thinking skills as one of the compulsory subjects being taught to each student at any university in Indonesia, with the aim of achieving a 2045 Golden Indonesia ( Malihah, 2015 ). The main concern of such an educational course would be to create students who are able to instill a sense of nationalism and patriotism, as well as inculcate a sense of responsibility as future citizens who are competitive, intelligent, independent, and are able to defend their homeland, nation, and state ( Dirwan, 2018 ). Based on the above reasons, this paper focuses on the development of the critical thinking ability of student teachers by the lecturers of citizenship education by using a project-based citizenship learning model.

The concept of developing such critical thinking skills has paved the way for designing a Project Citizen model, which has been named a project-based citizenship learning model. This model has a twofold objective. Because it not only emphasizes the development of abilities in the form of mastery of skills alone, but more importantly, it emphasizes being critical in views and at decision-making, intellectually, and in character thinking ( CCE, 1998 ; Budimansyah, 2009 ; Nusarastriya et al., 2013 ; Falade et al., 2015 ; Adha et al., 2018 ) presented in practice through daily activities. To prepare students to realize the mastery of skills, such as critical thinking skills, positive mentality, and independent personality, a project-based citizenship learning model ( Adha et al., 2018 ) serves as an appropriate problem-based instructional treatment that can lead students to hone their critical thinking skills ( Brookfield, 2018 ).

The project citizen learning model is a strategy and art in the learning process to meet the learning objectives, especially students' critical thinking skills ( Susilawati, 2017 ). The Project Citizen model can develop students' abilities in terms of knowledge, skills, and civic character, as well as shape their democratic attitudes, and hence moral values ( Ching Te Lin et al., 2022 ). In addition, it can encourage student participation as citizens who are trained and prepared to learn to solve problems, both in the educational realms and government circles, as well as in society and family ( CCE, 1998 ; Budimansyah, 2009 ; Lukitoaji, 2017 ). The Project Citizen model can also encourage students acquire skillset such as intentional development through change. In fact, people can actively become involved in these changes, which may effectively take place on an ongoing basis ( Dharma and Siregar, 2015 ).

Therefore, the project citizenship model in Civic Education learning must be implemented because it is a major contributor to advancing students' critical thinking skills. This model works in such a way that it attracts or calls students to participate in dealing with social problems within a democratic and constitutional way of thinking in society through a Project Citizen-based learning process ( Budimansyah, 2009 ; Fry and Bentahar, 2013 ).

This research was conducted at Khairun Ternate University, a state university founded within the Province of North Maluku, Indonesia. Being one of the most favored universities in the region, its leadership ensures that the institution become a center of critical thinking and knowledge development, one of the soft skills required for national growth and development by shaping students and citizenship education students as future leaders. This study sought 1. To determine whether project-based citizenship education lectures can lead to improvement in critical thinking skills among students; 2. To examine students' critical thinking ability before taking up the study of Citizenship Education, we used a project-based citizenship learning model; and 3. To understand the difference in critical thinking ability between students who were taught using the project-based citizenship learning model and those who were taught using conventional models.

Basing on the above-mentioned aspects, this study sought to address and fill the gaps in students' thinking abilities, by sharpening their ways of looking at the varying citizenship challenges faced in the country. The author(s) implemented a project-based learning conceptual model, as it entailed the required aspects in improving students' thinking competences.

Literature review

Citizenship education as a compulsory subject at university.

The inclusion of subjects pertaining to Citizenship Education at all levels of education is required to sharpen and transform students into responsible stakeholders in nation building ( Gaynor, 2010 ; Kawalilak and Groen, 2019 ) of any given country. In Indonesia, Citizenship Education has of recent times attracted the attention of everyone by leading to varying discussions and policies ( Marsudi and Sunarso, 2019 ) on the program and steps for its implementation as a course or subject that promotes democratic values and shapes citizens into responsible persons who think positively and decide wisely.

Citizenship Education is also basically a vehicle for educating citizens to become democratic citizens ( Hahn, 1999 ). The implementation of this type of education program is carried out by carefully designing the material to be delivered from the curriculum so that it can be applied, assessed, and updated for the purposes of the community ( Callahan and Obenchain, 2013 ). This educational effort is believed to be an integral part of the process of transforming society in all aspects of life, whether social, political, economic, cultural, or spiritual.

By law, Citizenship Education is compulsory because it is enshrined in the Indonesian Constitution. According to Law No. 20 of 2003 on the National Education System ( Nurdin, 2015 ), Citizenship Education explicitly refers to the task of education, whereby it should be able to determine the potential of students and be able to change their morals and character for the better ( Raihani, 2014 ). The law explicitly states that the task of education is to improve the behavior of educated people. Changes in behavior and character have the potential to advance the nation and the state at large. Therefore, education must aim to develop the potential for students to become faithful and obedient servants of God, be healthy, knowledgeable, and competent. These abilities must meet three domains: knowledge, affective, and psychomotor abilities.

Philosophical basis for citizenship education

Every science has a philosophical foundation as a scientific root that can be used as the basis of knowledge ( Ginzburg, 1934 ). Likewise, Citizenship Education too has its own foundation, ontologically, epistemologically, and axiologically ( Uljens and Ylimaki, 2017 ). As it is known that Citizenship Education (Civics) developed from the civic concept with a lexical basis based on the word used in ancient Rome, namely, Civicus ( Cresshore, 1986 ; Winataputra, 2001 ). At that time, Civicus had the meaning of citizens. This term has been adapted especially in Indonesia as a concept called “Citizenship Education.”

Citizenship Education has developed both scientifically and in curricular form, hence, it touches on the broader aspects of sociocultural activities with the nature and various kinds of studies and dimensions ( Cresshore, 1986 ). Furthermore, the epistemological study of Citizenship Education focuses on the topic of “citizenship transmission,” the essence of the first social science study to obtain knowledge believed to be a tradition of self-evident truth. When drawn into learning, Citizenship Education lies at the core of social studies learning ( Anderson et al., 1997 ), which includes studies of scientific disciplines both in practice and concepts called “social studies” ( Barr et al., 1978 ; Soemantri, 2011 ). As a cross-disciplinary study, Citizenship Education is substantially driven by various types of scholarships, including political, social, and humanities. Although integrated into various studies, Citizenship Education can be held in the school sector, universities, and communities ( Winataputra, 2001 ).

From the description given above, it can be interpreted that the inclusion of Citizenship Education as a scientific area of specialization determines the study of what, how, and for what knowledge is constructed. We have long recognized terms in the study of Educational Philosophy, which include perennialism, essentialism, progressivism, and reconstructionism ( Brameld, 1955 ). The four terms of Educational Philosophy are related to Citizenship Education, among which philosophically Civic Education (Civics) is based on the concept of “reconstructed philosophy of education” which has a suitability to fulfill scholarship in terms of “perennialism, essentialism, progressivism, reconstructionism” ( Winataputra, 2001 ). The philosophy of essentialism looks at educational needs, which is the result of a proof that has been tested and experienced. The foundation is taken through an eclectic state that is philosophically centered on sophisticated knowledge (ideas) and reality (real).

The linkage between these educational philosophies makes this philosophical view sociopolitical in line with the Indonesian human conception, which is still an ideal–conceptual profile that must be realized and fought for continuously ( Winataputra and Budimansyah, 2007 ). Citizenship Education is expected to have an effect on three roles, namely; first, in the role of a curriculum that has a planned concept for educational institutions, both legally at the level of the education unit and outside of official activities; second, having an engagement plan to play an active role in the community in the context of social and cultural interaction; and third, having a role in the treasures of scientific knowledge, both in the sector of concept studies, academic ideas, and studies that have certain objects, systems, and methods for science. Such a role when examined has aspects, namely, the first aspect, the most important aspect is the academic subject as content that brings changes from their learning experience, for example, the standard content of Citizenship Education subjects, which determine scientific studies and determine the development of the study; the second aspect, in terms of scientific studies carried out including classroom action research, so that teachers will always reflect in every lesson they do ( Winataputra, 2001 ).

Critical thinking skills' development through citizenship education

As it is known, critical thinking in solving problems and finding solutions is indispensable to the learning of Civic Education for students as prospective teachers ( Ige, 2019 ). Moreover, at this time, digital students are challenged with a lot of information that can trap them in the flow of incorrect information (hoax); therefore, students must be critical and selective to the information available. To break down the problem of students' critical thinking ability, certainly not apart from educational institutions, especially college institutions, which are the right institutions to address this challenge, namely applying learning through content and touching the realm of thinking skills ( Sapriya, 2008 ; Aboutorabi, 2015 ; Borden and Holthaus, 2018 ; Japar, 2018 ).

One of the supports in critical thinking is hunting assumptions, which is one of the indicators of critical thinking ability in the Brookfield assumption. Critical thinking explores alternatives to decisions, actions, and practices from views mastered in a variety of contexts, as well as engaging in experience and information ( Brookfield, 2012 ). In this case, students are required to master critical thinking, namely, hunting assumptions, checking assumptions, seeing things from different viewpoints, and taking informed actions ( Brookfield et al., 2019 ). These four aspects help them by serving as the bases for critical thinking in a learning process that focuses on uncovering and examining assumptions, exploring alternative perspectives, and taking information-based actions as a result ( Brookfield, 2019 ). Critical thinking is best experienced as a social learning process, which is important to the learning of Civic Education, which is oriented toward society. This critical thinking ability is also necessary for students to participate in political and community life ( Banks, 1985 ; Sapriya, 2008 ; Budimansyah and Karim, 2009 ; Setiawan, 2009 ; Wahab, 2011 ; Brookfield, 2012 ). At this critical thinking stage, students can think more systematically and critically, and have high sensitivity to cultural differences, as well as local, national, and global perspectives, with a future orientation ( Kalidjernih, 2009 ; Shaw, 2014 ; Lilley et al., 2017 ). One approach can be implemented through education, by honing critical thinking skills during the learning process, to gain a high learning experience to face social problems from various aspects ( Raiyn and Tilchin, 2017 ; Alkhateeb and Milhem, 2020 ).

From the various opinions given above, the ability to think critically of hunting assumptions is needed in the course of the Civic Education field covering many topics and problems ( Cohen, 2010 ). The implementation of a Project Citizen-based learning model as one of the powerful ways to build an understanding in Civic Education aims to provide learning that focuses on the ability of students to solve problems, so that this provision can benefit them while facing and solving various problems of life.

These abilities are manifested not only in the form of mastery of skills, but more importantly, also by the ability to think critically, mentally, and characteristically ( CCE, 1998 ; Budimansyah, 2009 ; Nusarastriya et al., 2013 ; Falade et al., 2015 ; Adha et al., 2018 ). To prepare students to realize the mastery of skills, critical thinking skills, and mental and independent character, the Project Citizen learning model is a problem-based instructional treatment that can lead students to cultivate their critical thinking skills.

The Project Citizen learning model is a strategy and art in the learning process so as to meet the learning objectives that need to be achieved, particularly as regards the critical thinking skills of students ( Susilawati, 2017 ). This is because the Project Citizen model is able to develop the knowledge, proficiency, and character of democratic civic that allows and encourages the participation of students as democratic citizens. The said model can also help in dealing with problems that can be learned and trained according to the situation of self-condition of the environment faced by anyone, as many things are learned in terms of education, government, society, and family ( CCE, 1998 ; Budimansyah, 2009 ; Warren et al., 2013 ; Lukitoaji, 2017 ; Bentahar and O'Brien, 2019 ). The Project Citizen model is also able to encourage the development of change in an intentional manner, so that actively and effectively, the change occurs continuously ( Dharma and Siregar, 2015 ; Marzuki and Basariah, 2017 ). Therefore, it is important to apply the Project Citizen model to the learning of Civic Education as a major contribution to advancing students' critical thinking skills. This is because the learning model of Project Citizen invites students to participate in dealing with social problems in democracies and constitutional ways of thinking in the community through a learning process based on the project citizenship ( Budimansyah, 2009 ; Anker et al., 2010 ; Fry and Bentahar, 2013 ; Romlah and Syobar, 2021 ).

Thus, the learning model of citizen project lecturers and students can reflect on the studies they found during the course of their studies. The study was conducted by each group that was formed at the beginning of the meeting. Finally, lecturers and students hold joint discussions in the classroom by presenting data and information to create alternative solutions to the urgent problems they had to solve.

Methodology

In this study, a quasi-experimental research method was used. A quasi-experimental research approach is mostly referred to as nonrandomized, pre-post-test intervening research design (Harris et al., 200), which is used across fields of study. In the case of this study, the researchers used control groups and experimental groups but did not randomly segregate (non-random assignment) the participants into the two groups ( Creswell, 2017 ).

In this study, researchers want to see and learn more about the new learning model; therefore, they use two different classes, namely control and experimentation, to compare the classes that use project citizens (experimental) with classes that use the old method ( Sukmadinata, 2005 ). From both classes, researchers can compare the effectiveness of the experimental class learning model with that of the control class model. In addition, researchers will also observe how the results of both experiment and control classes reached high values. The researchers' approach is quantitative. This approach was determined by the researchers because it aimed to statistically test and compare both control and experimental classes. Furthermore, this approach emphasized testing to see an average comparison of the two groups that were statistically the same at the beginning of treatment.

Object and area of the study

This study was conducted at Khairun University in North Maluku Province, Indonesia. The research subjects were undergraduate students of the Elementary School Teacher Education Program and were basically those attending Civic Education courses as their major field of study. The research population comprised of all elementary school teacher Education Study Program students in Semester III totaling 100 of them, consisting of two classes, experimental classes and control classes. Each class consisted of 50 student teachers. The experimental classes of 42 females and 8 male students were experimented with a project-based citizenship learning model. In the control class, there were 44 female students and 6 male students using a conventional learning approach.

Data collection techniques

Data collection comes in various forms ( Gray and Bounegru, 2019 ), which can be either qualitative or quantitative data, comprised of either structured or unstructured data collection instruments or tools ( Pitcher et al., 2022 ). Data in its raw form may have no meaning, but due to the setting up of research targets, most research data are given meaning through interpretation by the authors, just like how the authors used with this study.

This means that data collection can be carried out with the help of written tests ( Silvia and Cotter, 2021 ). So in regard to this research too, the data were obtained through written tests, because this is a way the research chose so as to determine the critical thinking abilities of students, for both the experimental and control classes, before or after the treatment, with the method that had been chosen. This test was administered to students in the form of a detailed questionnaire. The question instrument used in the implementation of this research was a written test sheet that was formulated previously through the validation process by the validator. The hypothesis in this study is H 0 : there is no difference in hunting assumption ability between the experimental and control classes. H 1 : There are significant differences in hunting assumption ability between control-class experiments.

Normality test

Parametric statistical analyses were used to compare the average experimental and control classes. In the early stages of the test, a prerequisite test was conducted using a normality test, with the following results:

Based on Table 1 , the Sig. = 0.200 in the experiment, where G is the group. = 0.200 in the control group. The score is Sig. = 0.200 > 0.05 in both groups. Thus, it can be concluded that normally distributed data displayed a level of significance of = 0.05. A homogeneity test was also performed. = 0.344. This score is >0.05, indicating that the data are homogeneous. After conducting a prerequisite test, a t -test was performed on the Sig results. (2-tailed) = 0.259, with a significance level of a = 0.05.

www.frontiersin.org

Table 1 . Normality test results.

The score indicates that there are no significant differences between the experimental and control groups, so both groups are eligible to be subject to research. The average similarity between two groups is a measure of the effectiveness of a citizen's project-learning model. There was a significant difference at the final measurement after the intervention.

The findings and discussion are the answers to the formulation of the problem, which is the main focus of this study. This section presents the results of this study. Before implementing the lecture process of learning using the project-based citizenship model, the students were first given an initial trial test to establish the extent of their ability to think critically. Based on the initial proficiency tests conducted, the students' ability to think critically revealed no limitations in ability. The results of the students' initial ability tests are illustrated in Table 2 .

www.frontiersin.org

Table 2 . Abilities of students thinking critically.

From the exposure in Table 2 , the basic ability score of critical thinking for both the control class and experimentation descriptively obtained an average similarity that is not much different from the ability of early critical thinking of the students.

Furthermore, the initial ability to hunt assumptions students also conducted different tests in experimental and control classes using the static test. This was done to determine the difference in students' initial critical thinking ability based on the classification of low, medium, and high categories. The test results are listed in Table 3 .

www.frontiersin.org

Table 3 . Classification of basic abilities of the students' critical thinking.

The results of the category wise classification test in Table 3 indicate that the initial ability to display critical thinking skills in the experimental and control classes did not show significant differences. This is illustrated in the classification of the ability based on low, medium, and high categories, which also show no significant differences.

Therefore, it is necessary to implement a learning model that can maximize the ability to think critically by the students, that is: through the Citizen Project model. The Citizen Project model was implemented during the 10 meetings. Step-by-step, learning is underway to implement the learning model. The implementation of this Citizen Project learning model achieved the criteria and gained success in the ability to hunt assumptions for students. This can be seen in the tables that describe in general the classification of the low, medium, and high categories. This exposure resulted from the implementation of the learning model project. An explanation citing the success of the citizenship project-based learning is presented in the following table.

Based on the normality test in Table 4 , it can be seen that the total score of overall hunting assumptions of students in both class control and class normal distributed experiments can be calculated and then a t -test conducted. The t -test results showed a sig. (2-tailed) = 0.00 at =0.05, which means that Ha1 is received. Thus, it can be concluded that there are significant differences in critical thinking abilities between the control classes and the experiments.

www.frontiersin.org

Table 4 . General differences in student critical thinking ability.

Then, based on the normality tests in low-category students, the total hunting assumptions were scored in a normally distributed experimental class. However, if the control class is not normally distributed, then a t -test cannot be done for the Mann–Whitney U test. The Mann–Whitney U test results obtained were sig. =0.00 at = 0.05, which means that the Ha1 is received. Thus, it can be concluded that there is a significant difference in the hunting assumption ability of low-category students between experimental and control classes.

Then, for students in the moderate category based on the normality test given in the table, the total score of the hunting assumption's ability of moderate-category students either in the control group or in the normally distributed experimental group is calculated, and then a t- test conducted. The t -test results had a large score. (2-tailed) = 0.00 at =0.05, which means the Ha1 is received. Thus, it can be concluded that there are significant differences in hunting assumption capability in general for students in the moderate categories between the control classes and experiments.

For students in the high category based on the normality test for high-category students, the total hunting assumption's ability score in the normal distribution experiment class was reached but in the normal distribution control class, the t -test could not be performed for the Mann–Whitney U test. The Mann–Whitney U test results obtained were sig. =0.00 at = 0.05, which means that the Ha1 is received. Thus, it can be concluded that there is a significant difference in the hunting assumption ability of high-category students between experimental and control classes.

There are also differences in the ability of students to hunt assumptions after the implementation of the Citizen Project model learning in the low, medium, and high categories. The results are outlined in Table 5 .

www.frontiersin.org

Table 5 . Student critical thinking ability based on classification.

Based on the normality test in Table 5 , we can see the total score of the critical thinking ability of all students in the normally distributed control group. However, if the experimental group is not normally distributed, then a t -test cannot be performed to test the Mann–Whitney U test results which were obtained as sig. =0.00 at = 0.05, which means that H 1 is received. Thus, it can be concluded that there was a significant difference in the ability of students' critical thinking between the experimental and control classes.

Then, based on the normality test on the ability of thinking critically among the students in the low category if the total critical thinking skills' ability score in the experimental class and control is not normally distributed, then t -test cannot be conducted to test the results of the Mann–Whitney U test in both the control and experimental classes. The Mann–Whitney U test results obtained were sig. = 0.00 at = 0.05, which means that H 1 is received.

Thus, it can be concluded that there was a significant difference in the ability of thinking critically among students in the low category between the experimental and control classes. Then, for the ability of critical thinking, students in the moderate category based on the normality test mentioned in the table can be seen to reach the total score of student critical thinking ability in both class control and class normally distributed experiments. The t -test results had a large score. (2-tailed) = 0.00 at = 0.05 which means that H 1 is received.

Thus, it can be concluded that there are significant differences in the ability of critical thinking of the students in the moderate category between the control classes and experiments.

For high-category students, based on normality tests on the ability of critical thinking of the students in the high-category score, the total critical thinking ability is normally distributed, in control classes. However, if the experimental class is not normally distributed, then a t- t est cannot be performed to test the Mann–Whitney U test results obtained. = 0.00 at = 0.05, which means that H 1 is received.

Thus, it can be concluded that there was a significant difference in students' critical thinking abilities in the high category between the experimental and control classes. To perceive the difference in the development of hunting assumption's ability to conduct an analysis of pre-test and post-test scores, the analysis included the examination of the magnitude of N-Gain in each class, both control and experimentation. The analysis was conducted on both categories based on initial ability.

Based on the table, we can see the difference in improved hunting assumptions between the control classes and experiments that are reviewed from the initial ability. If we analyze the groups based on indicators of critical thinking ability, we can see that in the control group, the improvement of critical thinking skills' ability is almost entirely in the low category, both in the subclass based on the initial ability and on the ability to critical thinking that students are in a low category.

In the experimental class, hunting assumptions increased in the moderate category. There was no increase in the low category, and it was placed in the ability to critical thinking of students. An increase in high-category critical thinking was also not seen. Furthermore, if we analyze the ability to critical thinking based on the initial ability, it can be seen that the control class shows an increase in the ability to critical thinking in the low category. In the experimental class, although the increase was not classified as high, in all classes, critical thinking showed an increase in the moderate category in the experimental class, which was significantly higher compared to the control class on improved critical thinking ability.

The ability to think critically by the students has an important element in assuming, identifying thinking critical skills, comparing critical thinking abilities based on students' opinions, and performing actions and movements to change old habits by promoting the application of new habits properly ( Brookfield, 2012 ). A study on the ability to think critically is intended to give students an understanding of building hypotheses or assumptions, seeing from data and facts to be identified, tracing figures and experts to compare, and making movements as a form of application of student work as their ability to critical thinking present day required life skill ( Brookfield, 2018 ; Gonzalez et al., 2022 ). Thus, the citizen project learning model is suitable for improving students' critical thinking skills through six learning steps. The six steps were identifying problems, formulating or selecting problems, collecting information or data, creating portfolio file documents, displaying studies, and reflecting on the findings discussed together ( Budimansyah, 2009 ; Dewey, 2021 ). The project citizen learning model is based on strategy “inquiry learning, discovery learning, problem-solving learning, research-oriented learning” (learning through research, learning to find/disclose, learning problem-solving, and learning-based research).

This model is packaged by Dewey, who is called a project citizen. This model is appropriate when applied to Citizenship Education to increase students' awareness and thinking ability, as well as to build smart and good citizen characters ( Budimansyah, 2008 ; Rafzan et al., 2020 ). Thus, through the process of learning the citizen project model, lectures have combined theoretical and practical studies that allow the readiness of students with their groups to undergo a mature process. In particular, Civic Education courses have a wide scope of studies, with a project citizen learning model able to train students to improve critical thinking skills, especially critical thinking hunting assumptions.

Project citizen-based learning in Civic Education courses to improve critical thinking skills and sharpens the argumentative way of reasoning among students, hence making them obtain good results. The results of the analysis of the influence of learning on the ability to critical thinking based on the learning model of project citizenship learning conclude that: the ability of students to think critically in the experimental class, in general, differs significantly compared to the control class; the ability to think critically of students in the low category in experimental class among students differed significantly compared to the control class; the critical thinking ability of students with moderate categories in experimental class differed significantly compared to the control class; and lastly, the critical thinking ability of students in the high category in experimental class was significantly higher compared to the control class.

Based on the statistical analysis of critical thinking assumptions' ability, it can be concluded that the understanding of the student's capacity to think critically through experimental classes, using project citizen-based learning models to ensure students learn from low to medium, and attain high critical thinking skills has been enhanced by learning steps that lead them to be more active and productive in understanding information and critical opinions. This means that there is uniformity in the acquisition of value in understanding students' opinion through critical arguments, which indicate that the citizen's project model can improve the critical thinking ability of students, gauged through exchange of opinions.

From the description given above, it appears that the learning model of a project-based citizenship education model has a significant impact on students' development of the critical thinking skills' ability. This is because the implementation of citizenship-based project learning provides learning steps based on experience. Such an experience can help students develop their knowledge, skills, and skills (civic knowledge, civic skills, and civic disposition) ( Fry and Bentahar, 2013 ; Fajri et al., 2018 ).

Conclusively, a project-based citizenship learning model, as a social learning model, has been found to be effective in developing critical thinking skills that impact on all students' competencies. Competency is the ability of students to conduct a given task independently based on the citizenship-based project learning model applied in the course of Civic Education to enhance students' abilities in problem-solving from concept to real-life realization stage ( Medina-Jerez et al., 2010 ; Mitchell et al., 2017 ; Yusof et al., 2019 ). In other words, the project-based model used in this research is expected to contribute to improved students' reasoning capacity while at school and in a real-life situation.

The result is in accordance with Brookfield's (2012 , 2018) opinion about the aims and objectives of the student's critical thinking ability, who states that social problems could be solved by making decisions based on hypotheses and critical thinking. Based on a deeper analysis and investigation of the research findings and discussion, the application of the project-based citizenship learning model in the Civics Education course was able to create an effective learning atmosphere in sharpening students' critical thinking skills and motivating them to be good and responsible human beings. This statement is in line with the objectives of the Civic Education course, which emphasizes the process of creating students who are intelligent, have good character and required morals in society ( Banks, 1985 ; Branson, 1994 ; Budimansyah and Suryadi, 2008 ; Budimansyah, 2009 ; Setiawan, 2009 ). Thus, the results of the study confirmed that the project-based citizenship learning model is not only a proof of the evidence of the improvement in students' critical thinking skills, but the study also notes that the learning model can as well be effective in helping students develop reasoning abilities and good critical thinking abilities which may also help them in solving various issues within society.

Facilitating the growth of critical thinking abilities of a student leads to critical reasoning, hence encouraging productive discussions, which in turn leads to acceptable criticisms and an open exchange of ideas among students to be easily understood, including those ideas based on assumptions and hypotheses. Based on the exposure of the results and discussion of research on the ability to hunt assumptions, students who were engaged in a project-based citizenship learning model obtained better scores for their critical thinking abilities. This implies that such students experience an improvement in their hunting assumption ability compared to students studying through conventional learning. Assembling a project citizen learning model in Civic Education courses can improve students' ability to hunt assumptions. Thus, it can be concluded that Civic Education courses with the application of the learning model project-based citizenship learning model can improve students' critical thinking skills.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Ethics statement

Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

This study was funded by University Administration.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Aboutorabi, R. (2015). Heidegger, education, nation and race. Policy Fut. Educat. 13, 415–423. doi: 10.1177/1478210315571219

CrossRef Full Text | Google Scholar

Adha, M. M., Yanzi, H., and Nurmalisa, Y. (2018). The improvement of student intelectual and participatory skill through project citizen model in civic education classroom. Int. J. Pedago. Soc. Stud. 3, 39–50.

Google Scholar

Alkhateeb, M. A., and Milhem, O. A. Q. B. (2020). Student's concepts of and approaches to learning and the relationships between them. Cakrawala Pendidikan 39, 620–632. doi: 10.21831/cp.v39i3.33277

Anderson, C., Avery, P. G., Pederson, P. V., Smith, E. S., and Sullivan, J. L. (1997). Divergent perspectives on citizenship education: A Q-method study and survey of social studies teachers. Am. Educ. Res. J. 34, 333–364. doi: 10.3102/00028312034002333

Anker, A. E., Feeley, T. H., and Kim, H. (2010). Examining the attitude-behavior relationship in prosocial donation domains. J. Appl. Soc. Psychol. 40, 1293–1324. doi: 10.1111/j.1559-1816.2010.00619.x

Banks, J. A. (1985). Teaching Strategies for The Social Studies. Inquiry, Valuing, and Decision-Making. Longman.

Barr, R. D., Barth, J. L., and Shermis, S. S. (1978). The Nature of The Social Studies . Palm Spring: An ETS Pablication.

Bentahar, A., and O'Brien, J. L. (2019). Raising students' awareness of social justice through civic literacy. J. Soc. Stud. Educ. Res. 10, 193–218.

Borden, V. M. H., and Holthaus, G. C. (2018). Accounting for student success: academic and stakeholder perspectives that have shaped the discourse on student success in the United States. Int. J. Chin. Educ. 7, 150–173. doi: 10.1163/22125868-12340094

Brameld, T. (1955). Philosophies of Education in Cultural Perspective . New York, NY: Holt, Rinehart and Winston.

Branson, M. S. (1994). What Does Research on Political Attitudes and Behavior Tell us about the Need for Improving Education for Democracy? A paper delivered to The International Conference on Education for Democracy Serra Retreat, Malibu, California, USA . Available online at: https://www.civiced.org/papers/attitudes.html

Brookfield, S. D. (2012). Teaching for Critical Thinking Tools and Techniques to Help Students Question Their Assumptions . San Francisco, CA: Jossey-Bass.

Brookfield, S. D. (2018). Race, Teaching Racism, How to Help Students Unmask and Challenge . San Francisco, CA: Jossey-Bass Inc.

Brookfield, S. D. (ed). (2019). Teaching Race: How to Help Students Unmask and Challenge Racism. Jossey-Bass. p. 338.

Brookfield, S. D., Rudolph, J., and Yeo, E. (2019). The power of critical teaching. An interview with Professor Stephen D. Brookfield. J. Appl. Learn. Teach. 2, 76–90. doi: 10.37074/jalt.2019.2.2.11

Budimansyah, D. (2008). Pendidikan Kesadaran Kewarganegaraan Multidimensional. Bandung: Genesindo.

PubMed Abstract | Google Scholar

Budimansyah, D. (2009). Inovasi Pembelajaran Project Citizen Portofolio. Program Stidi Pedidikan Kewarganegaraan, Sekolah Pascasarjana (Bandung) . Universitas Pendidikan Indonesia Jl. Setiabudhi No. 299. Bandung: SPS; UPI.

Budimansyah, D., and Karim, S. (2009). PKn dan Masyarakat Multikultural. Program Studi Pendidikan Kewarganegaraan Universitas Pendidikan Indonesia . Bandung: Aksara Press.

Budimansyah, D., and Suryadi, K. (2008). PKn dan Masyarakat Multikultural. Bandung: UPI Program Studi Pendidikan Kewarganegaraan. Bandung: Prodi PKn SPs UPI.

Callahan, R. M., and Obenchain, K. M. (2013). Bridging worlds in the social studies classroom:teachers' practices and latino immigrant youths' civic and political development. Sociol. Stud. Child. Youth 16, 97–123. doi: 10.1108/S1537-4661(2013)0000016009

PubMed Abstract | CrossRef Full Text | Google Scholar

Castellano, J. F., Lightle, S., and Baker, B. (2017). A Strategy for Teaching Critical Thinking: The Sellmore Case. Accounting Faculty Publications . Available online at: https://ecommons.udayton.edu/acc_fac_pub/73 (accessed October 20, 2022).

CCE (1998). We the People: Project Citizen, Teacher's Guide . Calabasas: CCE.

Ching Te Lin, C. T., Wang, L. Y., Yang, C. C., Anggara, A. A., and Chen, K. W. (2022). Personality traits and purchase motivation, purchase intention among fitness club members in taiwan: moderating role of emotional sensitivity. Pak. J. Life Soc. Sci . 20, 80–95. doi: 10.57239/PJLSS-2022-20.1.0010

Cohen, A. (2010). Canadian social studies 44(1) Cohen 17 a theoretical model of four conceptions of civic education. Can. Soc. Stud. 4, 17–28.

Collier, P. J., and Morgan, D. L. (2008). “Is that paper really due today?”: differences in first-generation and traditional college students' understandings of faculty expectations. Higher Educ. 55, 425–446. doi: 10.1007/s10734-007-9065-5

Cresshore. (1986). “Education” The Citizen and Civics . VII. p. 204.

Creswell, J. W. (2017). Research Design, Approach, Method, Qualitative, Quantitative, and Mixed (Edisi Ke 4). Learning Library. New York, NY: Sage Publications.

Dewey, J. (2021). “The Influence of Darwinism on Philosophy: (1909),” in America's Public Philosopher: Essays on Social Justice, Economics, Education, and the Future of Democracy , eds E. T. Weber (Columbia University Press), 237–248.

Dharma, S., and Siregar, R. (2015). Internalisasi Karakter melalui Model Project Citizen pada Pembelajaran Pendidikan Pancasila dan Kewarganegaraan. Jupiis: Jurnal Pendidikan Ilmu-Ilmu Sosial . doi: 10.24114/jupiis.v6i2.2293

Dirwan, A. (2018). Improving nationalism through civic education among indonesian students (July 31, 2018). OIDA Int. J. Sustain. Develop . 11, 43–58.

Fajri, M., Marfu'ah, N., and Artanti, L. O. (2018). Aktivitas Antifungi Daun Ketepeng Cina (Cassia Alata L.) Fraksi Etanol, N- heksan dan Kloroform Terhadap Jamur Microsporium canis. Pharmasipha 2, 1–8. doi: 10.21111/pharmasipha.v2i1.2134

Falade, D., Adedayo, A., and Adeniyi, B. (2015). Civic education in nigeria's one hundred years of existence: problems and prospects. J. Emerg. Trends Educ. Res. Policy Stud. 6, 113.

Fry, S. W., and Bentahar, A. (2013). Student attitudes towards and impressions of project citizen. J. Soc. Stud. Educ. Res . 4, 1–23. Available online at: https://scholarworks.boisestate.edu/cgi/viewcontent.cgi?article=1120&context=cifs_facpubs

Gaynor, N. (2010). Between citizenship and clientship: the politics of participatory governance in Malawi. J. South. Afr. Stud. 36, 801–816. doi: 10.1080/03057070.2010.527637

Ginzburg, B. (1934). Probability and the philosophical foundations of scientific knowledge. Philos. Rev. 43, 258–278. doi: 10.2307/2179702

Gonzalez, H. C., Hsiao, E.-L., Dees, D. C., Noviello, S. R., and Gerber, B. L. (2022). Promoting critical thinking through an evidence-based skills fair intervention. J. Res. Innov. Teachi. Learn. 15, 41–54. doi: 10.1108/JRIT-08-2020-0041

Gray, J., and Bounegru, L. (2019). “What a difference a dataset makes: Data journalism and/as data activism,” in Data in Society: Challenging Statistics in an Age of Globalisation, 1st Edn , eds J. Evans, S. Ruane, and H. Southall (Bristol University Press), 365–374. doi: 10.2307/j.ctvmd84wn.42

Hahn, C. L. (1999). Citizenship education: an empirical study of policy, practices and outcomes. Oxford Rev. Educ . 25, 231–250. doi: 10.1080/030549899104233

Ige, O. (2019). Using action learning, concept-mapping, and value clarification to improve students' attainment in ict concepts in social studies: the case of rural learning ecologies. J. Soc. Stud. Educ. Res. 10, 301–322. doi: 10.21125/inted.2018.0260

Japar, M. (2018). The improvement of Indonesia students ‘engagement in civic education through case-based learning'. J. Soc. Stud. Educ . Res . 9, 27–44.

Jimenez, J. M., Lopez, M., Castro, M. J., Martin-Gil, B., Cao, M. J., and Fernandez-Castro, M. (2021). Development of critical thinking skills of undergraduate students throughout the 4 years of nursing degree at a public university in Spain: a descriptive study. BMJ Open 11, e049950. doi: 10.1136/bmjopen-2021-049950

Kalidjernih, F. K. (2009). Globalisasi dan Kewarganegaraan. Acta Civicus Jurnal Pendidikan Kewarganegaraan. 2.

Kawalilak, C., and Groen, J. (2019). Dialogue and reflection-perspectives from two adult educators. Reflect. Pract. 20, 777–789. doi: 10.1080/14623943.2019.168596

Kim, M., and Choi, D. (2018). Development of youth digital citizenship scale and implication for educational setting. J. Educ. Technol. Soc . 21, 155–171.

Kraus, S., Jones, P., Kailer, N., Weinmann, A., Chaparro-Banegas, N., and Roig-Tierno, N. (2021). Digital transformation: an overview of the current state of the art of research. SAGE Open . doi: 10.1177/21582440211047576

Kwangmuang, P., Jarutkamolpong, S., Sangboonraung, W., and Daungtod, S. (2021). The development of learning innovation to enhance higher order thinking skills for students in Thailand junior high schools. Heliyon 7, e07309. doi: 10.1016/j.heliyon.2021.e07309

Lilley, K., Barker, M., and Harris, N. (2017). The global citizen conceptualized: accommodating ambiguity. J. Stud. Int. Edu. 21, 6–21. doi: 10.1177/1028315316637354

Lukitoaji, B. D. (2017). Pembinaan Civic Disposition Melalui Model Pembelajaran Project Citizen Dalam Mata Kuliah Pendidikan Kewarganegaraan 2 Untuk Menumbuhkan Nilai Moral Mahasiswa Prodi Pgsd Fkip Upy. Jurnal Moral Kemasyarakatan . doi: 10.21067/jmk.v2i2.2172

Maitles, H. (2022). What Type of Citizenship Education; What Type of Citizen? Available online at: https://www.un.org/en/chronicle/article/what-type-citizenship-education-what-type-citizen (accessed January 15, 2022).

Malihah, E. (2015). An ideal Indonesian in an increasingly competitive world: Personal character and values required to realise a projected 2045 Golden Indonesia. Citizsh. Soc. Econ. Educ . 14, 148–156. doi: 10.1177/2047173415597143

Marsudi, K., and Sunarso, S. (2019). Contents analysis of the pancasila education and citizenship students' book for high school curriculum 2013. KnE Social Sci. 3, 447–459. doi: 10.18502/kss.v3i17.4670

Marzuki and Basariah. (2017). The influence of problem-based learning and project citizen model in the civic education learning on student's critical thinking ability and self discipline. Cakrawala Pendidikan 3, 43.

Medina-Jerez, W., Bryant, C., and Green, C. (2010). Project citizen: students practice democratic principles while conducting community projects. Sci. Scope. 33, 71–75. Available online at: http://www.jstor.org/stable/43184007

Mitchell, N., Triska, M., Liberatore, A., Ashcroft, L., Weatherill, R., and Longnecker, N. (2017). Benefits and challenges of incorporating citizen science into university education. PLoS ONE 12, e0186285. doi: 10.1371/journal.pone.0186285

Nurdin, E. S. (2015). The policies on civic education in developing national character in Indonesia. Int. Educ. Stud. doi: 10.5539/ies.v8n8p199

Nusarastriya, Y. H., Sapriya, W., and Budimansyah, D. (2013). Pengembangan berpikir kritis dalam pembelajaran pendidikan kewarganegaraan menggunakan project citizen. Jurnal Cakrawala Pendidikan 3, 444–449. doi: 10.21831/cp.v3i3.1631

Pitcher, B. D., Ravid, D. M., Mancarella, P. J., and Behrend, T. S. (2022). Social learning dynamics influence performance and career self-efficacy in career-oriented educational virtual environments. PLoS ONE. 17, e0273788. doi: 10.1371/journal.pone.0273788

Rafzan, R., Lazzavietamsi, F. A., and Ito, A. I. (2020). Civic competence pembelajaran pendidikan kewarganegaraan di SMA Negeri 2 Sungai Penuh. Jurnal Rontal Keilmuan PKn 6, 1–2.

Raihani (2014). Creating a culture of religious tolerance in an Indonesian school. South East Asia Res . 22, 541–560. doi: 10.5367/sear.2014.0234

Raiyn, J., and Tilchin, O. (2017). A model for assessing the development of hot skills in students. Am. J. Educ. Res. 5, 184–188. doi: 10.12691/education-5-2-12

Romlah, O. Y., and Syobar, K. (2021). Project citizen model to develop student's pro-social awareness. Jurnal Civics 18, 127–137. doi: 10.21831/jc.v18i1.37982

Sapriya. (2008). Pendidikan IPS [Laboratorium PKn UPI (ed.)].

Setiawan, D. (2009). Paradigama pendidikan kewarganegaraan demokratis di Era Global. Acta Civicus. 2.

Shaw, R. D. (2014). How critical is critical thinking? Music Edu. J. 101, 65–70. doi: 10.1177/0027432114544376

Silvia, P. J., and Cotter, K. N. (2021). “Designing self-report surveys,” in Researching Daily Life: A Guide to Experience Sampling and Daily Diary Methods , eds P. J. Silvia and K. N. Cotter (American Psychological Association), 35–51. doi: 10.1037/0000236-003

Smith, A. D. (1983). Nationalism and classical social theory. Br. J. Sociol. 34, 19–38. doi: 10.2307/590606

Soemantri, B. (2011). “The Making of Innovative Human Resources”: Makalah Seminar” dalam rangka dies natalis UKSW ke 55 .

Sukmadinata (2005). Metode Penelitian Pendidikan . Bandung: PT. Remaja Rosdakarya.

Susilawati, E. (2017). “Modeling learning strategy for students with competitive behavior and its impact on civic education learning achievement,” in Electrical Engineering and Informatics (ICELTICs) , 841–848. Available online at: http://www.jurnal.unsyiah.ac.id

Uljens, M., and Ylimaki, R. M. (2017). “Non-affirmative theory of education as a foundation for curriculum studies, didaktik and educational leadership,” in Bridging Educational Leadership, Curriculum Theory and Didaktik. Educational Governance Research, Vol. 5 , eds M. Uljens and R. Ylimaki (Cham: Springer).

Wahab, A. A. (2011). Politik Pendidikan dan Pendidikan Politik: Model Pendidikan Kewarganegaraan Indonesia Menuju Warganegara Global, Pidato Pengukuhan Guru. Bandung: Alfabeta.

Warren, S. J., Wakefield, J. S., and Mills, L. A. (2013). “Learning and teaching as communicative actions: Transmedia storytelling,” in Cutting-Edge Technologies in Higher Education, Vol. 6 (Emerald Group Publishing Limited).

Winataputra, U. S. (2001). Jati diri Pendidikan Kewarganegaraan Sebagai Wahana Sistemik Pendidikan Demokrasi (Suatu Kajian Konseptual dan Konteks Pendidikan IPS). Disertasi (tidak dipublikasikan). Bandung: Universitas Pendidikan Indonesia.

Winataputra, U. S., and Budimansyah, D. (2007). Civic Education: Konteks Landasan, Bahan Ajar, dan Kultur Kelas . Bandung: Sekolah Pascasarjana.

Yusof, N. A., Kamaruddin, S., Bakar, F. D. A., Mahadi, N. M., and Murad, A. M. A. (2019). Structural and functional insights into TRiC chaperonin from a psychrophilic yeast, Glaciozyma antarctica. Cell Stress Chaperones. 24, 351–368.

Keywords: citizenship education, citizenship learning project model, critical thinking skills, elementary education, teacher preparation, university curriculum, university education

Citation: Witarsa and Muhammad S (2023) Critical thinking as a necessity for social science students capacity development: How it can be strengthened through project based learning at university. Front. Educ. 7:983292. doi: 10.3389/feduc.2022.983292

Received: 01 July 2022; Accepted: 26 September 2022; Published: 09 January 2023.

Reviewed by:

Copyright © 2023 Witarsa and Muhammad. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

This article is part of the Research Topic

Design, Implementation, Assessment, and Effectiveness of Hybrid Problem-Based Learning

Rethinking critical thinking for social justice: Introducing a new measure of critical being that emphasizes thought, reflection, and action

  • Original Paper
  • Published: 30 September 2022
  • Volume 2 , article number  218 , ( 2022 )

Cite this article

critical thinking social sciences

  • K. C. Culver   ORCID: orcid.org/0000-0001-7929-2680 1 ,
  • Benjamin Selznick 1 , 2 &
  • Teniell L. Trolian 1 , 3  

164 Accesses

2 Citations

1 Altmetric

Explore all metrics

While postsecondary stakeholders agree that critical thinking is an essential college outcome, it is challenging to measure this outcome using rigorous and equitable theoretically derived instruments. Assessment of critical thinking in the US tends to focus on argument and evaluation, privileging individualistic, capitalist values. This study introduces a measure of critical being which expands notions of critical thinking beyond these cognitive skills to include affective and action-oriented lines of development. Close attention is paid to the creation of this measure, which utilized items from the Wabash National Study—a longitudinal study of over 17,000 undergraduates at 49 institutions. Analyses include item response techniques, confirmatory factor analysis, and robust validity testing. In addition to describing the development and validation of a critical being scale, we examine identity-based equity in students’ scores on critical being compared to their scores on a critical thinking test. Results provide support for use of this new measure and indicate its potential to improve equity in measuring this crucial college outcome. Discussion and implications for use are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

critical thinking social sciences

Similar content being viewed by others

Do critical thinkers drink too much alcohol, forget to do class assignments, or cheat on exams using a critical thinking measure to predict college students’ real-world outcomes.

critical thinking social sciences

On the Horizon: the Promise and Power of Higher Order, Critical, and Critical Analytical Thinking

The role and sources of individual differences in critical-analytic thinking: a capsule overview, data availability.

The data that support the findings of this study are available from the University of Iowa’s Center for Research on Undergraduate Education but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are, however, available from the authors upon reasonable request and with permission of the Center’s director.

Code availability

Stata code is available from the corresponding author, KC Culver, upon reasonable request.

American College Testing Program (ACT) (2010) ACT CAAP- Technical Handbook. http://www.act.org/content/dam/act/unsecured/documents/CAAP-TechnicalHandbook.pdf

Arum R, Roksa J (2011) Academically adrift: limited learning on college campuses. University of Chicago Press, Chicago

Google Scholar  

Association of American Colleges and Universities (2011) The LEAP vision for learning: Outcomes, practices, impact, and employers’ views. https://gened.psu.edu/sites/default/files/docs/leap_vision_summary.pdf

Association of American Colleges and Universities (2013) It takes more than a major: Employer priorities for college learning and student success. https://www.aacu.org/sites/default/files/files/LEAP/2013_EmployerSurvey.pdf

Astin AW, Astin HS, Boatsman KC, Bonous-Hammarth M, Chambers T, Goldberg LS (1996) A social change model of leadership development: Guidebook Version III. University of California, Los Angeles

Barnett R (1997) Higher education: a critical business. McGraw-Hill Education, New York

Bologna Working Group (2005) A Framework for Qualifications of the European Higher Education Area. Bologna Working Group Report on Qualifications Frameworks. Danish Ministry of Science, Technology and Innovation. http://ecahe.eu/w/index.php/Framework_for_Qualifications_of_the_European_Higher_Education_Area#Source

Brown TA (2014) Confirmatory factor analysis for applied research. Guilford Press, New York

Burbules NC, Berk R (1999) Critical thinking and critical pedagogy: relations, differences, and limits. In: Popkewitz T (ed) Critical theories in education: changing terrains of knowledge and politics. Routledge, London

Byrne BM (2006) Structural equation modeling with EQS: basic concepts, applications, and programming. Routledge, London

Cacioppo JT, Petty RE (1982) The need for cognition. J Pers Soc Psychol 42:116–131

Article   Google Scholar  

Comrey AL, Lee HB (1992) A first course in factor analysis. Lawrence Erlbaum Associates Inc, New York

Csikszentmihalyi M (1990) Flow: the psychology of optimal experience. Harper and Row, Manhattan

Davies M (2015) A model of critical thinking in higher education. In: Paulsen MB (ed) Higher education: handbook of theory and research 30. Springer, New York, pp 41–92

Chapter   Google Scholar  

Dillman DA, Smyth JD, Christian LM (2014) Internet, phone, mail, and mixed-mode surveys: the tailored design method. Wiley, Hoboken

Dugan JP (2006) Explorations using the social change model: leadership development among college men and women. J Coll Stud Dev 47:217–225

Ellerson S (2008) UWSP ACT CAAP critical thinking test results 2007–2008: Critical thinking assessment report. https://www.uwsp.edu/oire/Documents/surveys/Critical%20Thinking%20Report%202008.pdf

Embretson SE, Reise SP (2000) Item response theory for psychologists. Taylor & Francis, Milton Park

Ennis RH (1985) A logical basis for measuring critical thinking skills. Educ Leadersh 43(2):44–48

Ennis RH (2008) Nationwide testing of critical thinking for higher education: vigilance required. Teach Philos 31(1):1–26

Facione PA (1990) The Delphi report: critical thinking—a statement of expert consensus for purposes of educational assessment and instruction. California Academic Press, Oakland

Facione P (1998) Critical thinking: what it is and why it counts? California Academic Press, Oakland

Freire P (1972) Pedagogy of the oppressed. Penguin, New York

Fuertes J, Miville M, Mohr J, Sedlacek W, Gretchen D (2000) Factor structure and short form of the Miville-Guzman Universality-Diversity Scale. Meas Eval Couns Dev 33:157–169

Grant CA, Sleeter CE (2012) Doing multicultural education for achievement and equity. Routledge, London

Book   Google Scholar  

Groves RM, Fowler FJ Jr, Couper MP, Lepkowski JM, Singer E, Tourangeau R (2011) Survey methodology, 561. Wiley, Hoboken

Hooks B (2014) Teaching to transgress. Routledge/Taylor & Francis Group, London

Kim KH, Zabelina D (2015) Cultural bias in assessment: can creativity assessment help? Int J Crit Pedagogy 6(2):129–148

Kline R (2016) Principles and practice of structural equation modeling. Guilford Press, New York

Krosnick JA (1991) Response strategies for coping with the cognitive demands of attitude measures in surveys. Appl Cogn Psychol 5(3):213–236

Ku KY (2009) Assessing students’ critical thinking performance: urging for measurements using multi-response format. Think Skills Creat 4(1):70–76

Labaree DF (1997) Public goods, private goods: the American struggle over educational goals. Am Educ Res J 34(1):39–81

Lai ER (2011) Critical thinking: A literature review. Pearson’s Research Reports. http://www.pearsonassessments.com/research

Leppa CJ (1997) Standardized measures of critical thinking: experience with the California critical thinking tests. Nurse Educ 22:29–33

Loo R, Thorpe K (1999) A psychometric investigation of scores on the Watson–Glaser Critical Thinking Appraisal new forms. Educ Psychol Measur 59:995–1003

Lun VMC, Fischer R, Ward C (2010) Exploring cultural differences in critical thinking: is it about my thinking style or the language I speak? Learn Individ Differ 20(6):604–616

Markle R, Brenneman M, Jackson T, Burrus J, Robbins S (2013) Synthesizing frameworks of higher education student learning outcomes. Educational Testing Service, Princeton

Mayhew MJ, Rockenbach AN, Bowman NA, Seifert TA, Wolniak GC (2016) How college affects students: 21st century evidence that higher education works, vol 3. Jossey-Bass, San Francisco

McLaren P, Hammer R (1989) Critical pedagogy and the postmodern challenge. Educ Found 3(3):29–62

Miville M, Gelso C, Pannu R, Liu W, Touradji P, Holloway P, Fuertes J (1999) Appreciating similarities and valuing differences: the Miville-Guzman Universality-Diversity Scale. J Couns Psychol 46(3):291–307

National Center for Education Statistics (2008) Status and Trends in the Education of Racial and Ethnic Minorities. https://nces.ed.gov/pubs2010/2010015/tables.asp

National Center for Education Statistics (2010) Digest of education statistics: Table 155, ACT score averages, 1995–2010. https://nces.ed.gov/programs/digest/d10/tables/dt10_155.asp

Nelson-Laird TF, Shoup R, Kuh GD (2006) Measuring deep approaches to learning using the National Survey of Student Engagement. Paper presented at the Annual Forum of the Association for Institutional Research, Chicago, IL

Nelson-Laird TF, Shoup R, Kuh GD, Schwarz M (2008) The effects of discipline on deep approaches to student learning and college outcomes. Res High Educ 49(6):469–494

Noble J, Davenport M, Schiel J, Pommerich M (1999a) Relationships between the noncognitive characteristics, high school course work and grades, and test scores for ACT-tested students. ACT

Noble J, Davenport M, Schiel J, Pommerich M (1999b) High school academic and noncognitive variables related to the ACT scores of racial/ethnic and gender groups. ACT

Norenzayan A, Smith EE, Kim BJ, Nisbett RE (2002) Cultural preferences for formal versus intuitive reasoning. Cogn Sci 26(653):684

Padilla AM, Borsato GN (2008) Issues in culturally appropriate psychoeducational assessment. In: Suzuki LA, Ponterotto JG (eds) Handbook of multicultural assessment. Wiley, Hoboken, pp 5–21

Pascarella ET, et al (2007) Methodological report for the Wabash National Study of Liberal Arts Education. https://education.uiowa.edu/sites/education.uiowa.edu/files/documents/centers/crue/research_methods_draft_march2008.pdf

Pike GR (2006) Value-added measures and the collegiate learning assessment. Assess Update 18(4):5–7

Rest J, Narvaez D, Thoma S, Bebeau M (1999) DIT2: Devising and testing a revised instrument of moral judgment. J Educ Psychol 91:644–659

Ryff C (1989) Happiness is everything, or is it? Explorations on the meaning of psychological wellbeing. J Educ Psychol 57:1069–1081

Ryff C, Keyes C (1995) The structure of psychological well-being revisited. J Pers Soc Psychol 69:719–727

Samejima F (1997) Graded response model. In: Hand DJ (ed) Handbook of modern item response theory. Springer, Cham, pp 85–100

Selznick BS, Mayhew MJ (2018) Measuring undergraduates’ innovation capacities. Res High Educ 59(6):744–764

Sharkness J, DeAngelo L (2011) Measuring student involvement: a comparison of classical test theory and item response theory in the construction of scales from student surveys. Res High Educ 52(5):480–507

Smith DG (2020) Diversity’s promise for higher education: making it work. JHU Press, Baltimore

Sternberg RJ (1986) Critical thinking: Its nature, measurement, and improvement National Institute of Education. http://eric.ed.gov/PDFS/ED272882.pdf

Tabachnick BG, Fidell LS (2019) Using multivariate statistics. Pearson, London

Taube KT (1997) Critical thinking ability and disposition as factors of performance on a written critical thinking test. J Gen Educ 46(2):129–164

Templin J (n.d.) Introduction to latent trait measurement models (LTMM). Lecture slides. https://jonathantemplin.com/wp-content/uploads/2017/08/EPSY906_Lecture01_Intro_Items.pdf

The Council for Aid to Education (2017) Why CLA+ and CWRA+. http://cae.org/flagship-assessments-clacwra/why-cla-and-cwra

Verburgh A, François S, Elen J, Janssen R (2013) The assessment of critical thinking critically assessed in higher education: a validation study of the CCTT and the HCTA. Education Research International, London

Watson G, Glaser EM (1980) Watson–Glaser critical thinking appraisal, forms A and B manual. The Psychological Corporation, New York

Download references

The Wabash National Study of Liberal Arts Education was conducted through generous support from the Center of Inquiry on the Liberal Arts at Wabash College.

Author information

Authors and affiliations.

The University of Alabama, Tuscaloosa, USA

K. C. Culver, Benjamin Selznick & Teniell L. Trolian

James Madison University, Harrisonburg, USA

Benjamin Selznick

University at Albany, Albany, USA

Teniell L. Trolian

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to K. C. Culver .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Culver, K.C., Selznick, B. & Trolian, T.L. Rethinking critical thinking for social justice: Introducing a new measure of critical being that emphasizes thought, reflection, and action. SN Soc Sci 2 , 218 (2022). https://doi.org/10.1007/s43545-022-00531-4

Download citation

Received : 13 April 2022

Accepted : 21 September 2022

Published : 30 September 2022

DOI : https://doi.org/10.1007/s43545-022-00531-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Critical thinking
  • Critical being
  • Measurement
  • Critical quantitative
  • Latent construct development
  • Find a journal
  • Publish with us
  • Track your research
  • Departments, units, and programs
  • College leadership
  • Diversity, equity, and inclusion
  • Faculty and staff resources
  • LAS Strategic Plan

Facebook

  • Apply to LAS
  • Liberal arts & sciences majors
  • LAS Insider blog
  • Admissions FAQs
  • Parent resources
  • Pre-college summer programs

Quick Links

Request info

  • Academic policies and standing
  • Advising and support
  • College distinctions
  • Dates and deadlines
  • Intercollegiate transfers
  • LAS Lineup student newsletter
  • Programs of study
  • Scholarships
  • Certificates
  • Student emergencies

Student resources

  • Access and Achievement Program
  • Career services
  • First-Year Experience
  • Honors program
  • International programs
  • Internship opportunities
  • Paul M. Lisnek LAS Hub
  • Student research opportunities
  • Expertise in LAS
  • Research facilities and centers
  • Dean's Distinguished Lecture series
  • Alumni advice
  • Alumni award programs
  • Get involved
  • LAS Alumni Council
  • LAS@Work: Alumni careers
  • Study Abroad Alumni Networks
  • Update your information
  • Nominate an alumnus for an LAS award
  • Faculty honors
  • The Quadrangle Online
  • LAS News email newsletter archive
  • LAS social media
  • Media contact in the College of LAS
  • LAS Landmark Day of Giving
  • About giving to LAS
  • Building projects
  • Corporate engagement
  • Faculty support
  • Lincoln Scholars Initiative
  • Impact of giving

Why is critical thinking important?

What do lawyers, accountants, teachers, and doctors all have in common?

Students in the School of Literatures, Languages, Cultures, and Linguistics give a presentation in a classroom in front of a screen

What is critical thinking?

The Oxford English Dictionary defines critical thinking as “The objective, systematic, and rational analysis and evaluation of factual evidence in order to form a judgment on a subject, issue, etc.” Critical thinking involves the use of logic and reasoning to evaluate available facts and/or evidence to come to a conclusion about a certain subject or topic. We use critical thinking every day, from decision-making to problem-solving, in addition to thinking critically in an academic context!

Why is critical thinking important for academic success?

You may be asking “why is critical thinking important for students?” Critical thinking appears in a diverse set of disciplines and impacts students’ learning every day, regardless of major.

Critical thinking skills are often associated with the value of studying the humanities. In majors such as English, students will be presented with a certain text—whether it’s a novel, short story, essay, or even film—and will have to use textual evidence to make an argument and then defend their argument about what they’ve read. However, the importance of critical thinking does not only apply to the humanities. In the social sciences, an economics major , for example, will use what they’ve learned to figure out solutions to issues as varied as land and other natural resource use, to how much people should work, to how to develop human capital through education. Problem-solving and critical thinking go hand in hand. Biology is a popular major within LAS, and graduates of the biology program often pursue careers in the medical sciences. Doctors use critical thinking every day, tapping into the knowledge they acquired from studying the biological sciences to diagnose and treat different diseases and ailments.

Students in the College of LAS take many courses that require critical thinking before they graduate. You may be asked in an Economics class to use statistical data analysis to evaluate the impact on home improvement spending when the Fed increases interest rates (read more about real-world experience with Datathon ). If you’ve ever been asked “How often do you think about the Roman Empire?”, you may find yourself thinking about the Roman Empire more than you thought—maybe in an English course, where you’ll use text from Shakespeare’s Antony and Cleopatra to make an argument about Roman imperial desire.  No matter what the context is, critical thinking will be involved in your academic life and can take form in many different ways.

The benefits of critical thinking in everyday life

Building better communication.

One of the most important life skills that students learn as early as elementary school is how to give a presentation. Many classes require students to give presentations, because being well-spoken is a key skill in effective communication. This is where critical thinking benefits come into play: using the skills you’ve learned, you’ll be able to gather the information needed for your presentation, narrow down what information is most relevant, and communicate it in an engaging way. 

Typically, the first step in creating a presentation is choosing a topic. For example, your professor might assign a presentation on the Gilded Age and provide a list of figures from the 1870s—1890s to choose from. You’ll use your critical thinking skills to narrow down your choices. You may ask yourself:

  • What figure am I most familiar with?
  • Who am I most interested in? 
  • Will I have to do additional research? 

After choosing your topic, your professor will usually ask a guiding question to help you form a thesis: an argument that is backed up with evidence. Critical thinking benefits this process by allowing you to focus on the information that is most relevant in support of your argument. By focusing on the strongest evidence, you will communicate your thesis clearly.

Finally, once you’ve finished gathering information, you will begin putting your presentation together. Creating a presentation requires a balance of text and visuals. Graphs and tables are popular visuals in STEM-based projects, but digital images and graphics are effective as well. Critical thinking benefits this process because the right images and visuals create a more dynamic experience for the audience, giving them the opportunity to engage with the material.

Presentation skills go beyond the classroom. Students at the University of Illinois will often participate in summer internships to get professional experience before graduation. Many summer interns are required to present about their experience and what they learned at the end of the internship. Jobs frequently also require employees to create presentations of some kind—whether it’s an advertising pitch to win an account from a potential client, or quarterly reporting, giving a presentation is a life skill that directly relates to critical thinking. 

Fostering independence and confidence

An important life skill many people start learning as college students and then finessing once they enter the “adult world” is how to budget. There will be many different expenses to keep track of, including rent, bills, car payments, and groceries, just to name a few! After developing your critical thinking skills, you’ll put them to use to consider your salary and budget your expenses accordingly. Here’s an example:

  • You earn a salary of $75,000 a year. Assume all amounts are before taxes.
  • 1,800 x 12 = 21,600
  • 75,000 – 21,600 = 53,400
  • This leaves you with $53,400
  • 320 x 12 = 3,840 a year
  • 53,400-3,840= 49,560
  • 726 x 12 = 8,712
  • 49,560 – 8,712= 40,848
  • You’re left with $40,848 for miscellaneous expenses. You use your critical thinking skills to decide what to do with your $40,848. You think ahead towards your retirement and decide to put $500 a month into a Roth IRA, leaving $34,848. Since you love coffee, you try to figure out if you can afford a daily coffee run. On average, a cup of coffee will cost you $7. 7 x 365 = $2,555 a year for coffee. 34,848 – 2,555 = 32,293
  • You have $32,293 left. You will use your critical thinking skills to figure out how much you would want to put into savings, how much you want to save to treat yourself from time to time, and how much you want to put aside for emergency funds. With the benefits of critical thinking, you will be well-equipped to budget your lifestyle once you enter the working world.

Enhancing decision-making skills

Choosing the right university for you.

One of the biggest decisions you’ll make in your life is what college or university to go to. There are many factors to consider when making this decision, and critical thinking importance will come into play when determining these factors.

Many high school seniors apply to colleges with the hope of being accepted into a certain program, whether it’s biology, psychology, political science, English, or something else entirely. Some students apply with certain schools in mind due to overall rankings. Students also consider the campus a school is set in. While some universities such as the University of Illinois are nestled within college towns, New York University is right in Manhattan, in a big city setting. Some students dream of going to large universities, and other students prefer smaller schools. The diversity of a university’s student body is also a key consideration. For many 17- and 18-year-olds, college is a time to meet peers from diverse racial and socio-economic backgrounds and learn about life experiences different than one’s own.

With all these factors in mind, you’ll use critical thinking to decide which are most important to you—and which school is the right fit for you.

Develop your critical thinking skills at the University of Illinois

At the University of Illinois, not only will you learn how to think critically, but you will put critical thinking into practice. In the College of LAS, you can choose from 70+ majors where you will learn the importance and benefits of critical thinking skills. The College of Liberal Arts & Sciences at U of I offers a wide range of undergraduate and graduate programs in life, physical, and mathematical sciences; humanities; and social and behavioral sciences. No matter which program you choose, you will develop critical thinking skills as you go through your courses in the major of your choice. And in those courses, the first question your professors may ask you is, “What is the goal of critical thinking?” You will be able to respond with confidence that the goal of critical thinking is to help shape people into more informed, more thoughtful members of society.

With such a vast representation of disciplines, an education in the College of LAS will prepare you for a career where you will apply critical thinking skills to real life, both in and outside of the classroom, from your undergraduate experience to your professional career. If you’re interested in becoming a part of a diverse set of students and developing skills for lifelong success, apply to LAS today!

Read more first-hand stories from our amazing students at the LAS Insider blog .

  • Privacy Notice
  • Accessibility

IMAGES

  1. What is Critical Thinking?

    critical thinking social sciences

  2. Critical Thinking in Your Social Studies Lessons

    critical thinking social sciences

  3. Critical Thinking in Your Social Studies Lessons

    critical thinking social sciences

  4. How to promote Critical Thinking Skills

    critical thinking social sciences

  5. [PDF] The Epistemology Assumption of Critical Theory for Social Science

    critical thinking social sciences

  6. 6 Main Types of Critical Thinking Skills (With Examples)

    critical thinking social sciences

VIDEO

  1. Empowering Critical Thinking to Address Social Issues in South Africa

  2. Critical Thinking, Anger and Arguments in Today's World (Feat. Dr. Catherine Hundleby)

  3. quantitative and logical thinking social scores Odisha state Higher Education Council class 1

  4. Practical knowledge

  5. DISTRACTIONS FOR DUMMIES

  6. PART

COMMENTS

  1. Applying Critical Thinking

    Critical thinking refers to deliberately scrutinizing and evaluating theories, concepts, or ideas using reasoned reflection and analysis. The act of thinking critically involves moving beyond simply understanding information, but also questioning its source, its production, and its presentation in order to expose potential bias or researcher subjectivity [i.e., being influenced by personal ...

  2. Critical social thinking: A conceptual model and insights for training

    Marissa L. Shuffler, PhD, has over 9 years of experience conducting basic and applied research in the areas of team development, leadership, and organizational effectiveness.Dr. Shuffler is an Assistant Professor of Industrial/Organizational Psychology at Clemson University. Her areas of expertise include team and leader training and development, intercultural collaboration, multiteam systems ...

  3. 1.2: Critical Thinking Skills

    Critical Thinkers are independent Thinkers. They have the confidence to state their opinions and point of view to others who might disagree. They use the skills of critical thinking to support their positions and make their arguments. Critical thinkers seek a "dialogical" approach to the process of argument. "Dialogical" thinkers ...

  4. 1.1: Critical Thinking Defined

    Critical thinking is self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem-solving abilities, as well as a commitment to overcome our native egocentrism and socioicentrism."

  5. 1.3: The Critical Thinking Process

    Page ID. In the critical thinking process, many factors are taken into consideration before a decision is made. Critical thinking involves using logical, emotional, and ethical criteria as one strives to make up his or her mind. Decisions are reached only after a careful examination of all available data, and are made as a result of considering ...

  6. Critical Thinking Skills

    Critical Thinking, Cognitive Psychology of. D.F. Halpern, in International Encyclopedia of the Social & Behavioral Sciences, 2001 5.2 Skills Component. Critical thinking skills are sometimes referred to as 'higher order skills' to differentiate them from 'simpler' (i.e., lower order) skills, such as rote memorization or routinization. Critical thinking skills require judgment ...

  7. Critical Theory in Social Research: A Theoretical and ...

    Critical theory is an episteme of the deconstruction of knowledge that occupies a unique place in the philosophy of social sciences for its distinctive aims, methods, theories, and forms of explanation (Bohman, 2013; Thompson, 2017).With its distinctiveness, critical theory is supposed to be constructions of the basic principles which do not represent social order in the fixed form, rather it ...

  8. Bridging critical thinking and transformative learning: The role of

    She associates critical thinking with humanistic disciplines such as philosophy, but she does not claim that the humanities have a sole claim on critical thinking. She notes that disciplines within the sciences and social sciences are 'at their best' when they adopt 'the spirit of the humanities' (Nussbaum, 2010: 7). But what about ...

  9. Critical thinking, social education and the curriculum: foregrounding a

    In this article, I examine the extent to which, given how critical thinking has been most commonly conceptualised and taught in schools, the subject indeed develops modes of thinking, relating and reasoning that allow individuals to collectively work towards the appreciation and solution of social problems.

  10. Improving Social Studies Students' Critical Thinking

    Social studies is defined by the American National Council for Social Studies as "the integrated study of the social sciences and humanities to promote ... as well as the possible ways to develop student critical thinking in social studies education. Subsequently, we describe a blended learning approach that combines the use of blogcast ...

  11. 12

    The idea of a critical social science is, at best, unclear and, at worst, invested in a variety of outdated philosophical commitments of the early Frankfurt School. As Axel Honneth says in his contribution to this volume, many of the original ideas of this school seem, at least at first glance, to be "antiquated, dusty, and irretrievably lost ...

  12. Critical Thinking and Social Studies

    Critical Thinking and the Social Studies Teacher. by Mike Yell. The advance of knowledge has been achieved not because the mind is capable of memorizing what teachers say but because it can be disciplined to ask probing questions and pursue them in a reasoned, self-critical way. Scholars pursuing knowledge submit their thinking to rigorous ...

  13. Critical Social Science and Critical Theory

    A number of authors suggests there is considerable confusion about the term critical theory (Bohman, 2005; Fay, 1987; Gray & Webb, 2009) .For Bohman (2005, n.p.) this confusion is due to critical theory having both "a narrow and a broad meaning in philosophy and in the history of social sciences".The narrow sense is where critical theory is used to describe several generations of specific ...

  14. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  15. Critical thinking and the humanities: A case study of

    6 A cognitive science notion of critical thinking (the particular article I am citing in this section defines it as a subset of three general types of thinking: reasoning, making judgments and decisions, and problem-solving) is not necessarily fully commensurate with how the term has been conceptualized in higher education scholarship, even if ...

  16. SOC 305: Critical Thinking in Social Science (Lugo)

    It develops a critical thinking approach that integrates interdisciplinary principles and utilizes literary criticism, logic, argumentation, and persuasion to analyze and compare the content and validity of social problems. This course specifically explores how the media and scientific community collect, interpret, and report social data.

  17. Understanding the Complex Relationship between Critical Thinking and

    Critical thinking is generally understood as the broader construct (Holyoak and Morrison, 2005), comprising an array of cognitive processes and dispostions that are drawn upon differentially in everyday life and across domains of inquiry such as the natural sciences, social sciences, and humanities. Scientific reasoning, then, may be ...

  18. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  19. Frontiers

    Critical thinking is a necessity to students, because it empowers them in solving problems, especially during learning and also in the real-life situation within society. ... Citation: Witarsa and Muhammad S (2023) Critical thinking as a necessity for social science students capacity development: How it can be strengthened through project based ...

  20. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  21. Rethinking critical thinking for social justice: Introducing a new

    Critical thinking matters. It matters to employers (Association of American Colleges and Universities 2013) seeking to build a sophisticated twenty-first century workforce and to societies, from the perspective that education provides a means to greater democratic equality by preparing students to be engaged citizens (Labaree 1997).Yet, this consonance of values obscures the reality that there ...

  22. Understanding the Complex Relationship between Critical Thinking and

    tially in everyday life and across domains of inquiry such as the natural sciences, social sciences, and humanities. Scientific reasoning, then, may be interpreted as the subset of critical-thinking skills (cognitive and metacognitive processes and dis-positions) that 1) are involved in making meaning of information in scientific

  23. Why is critical thinking important?

    The importance of critical thinking can be found across a wide set of disciplines. They are not only used in the humanities but are also important to professionals in the social and behavioral sciences, physical sciences, and STEM—and the list does not end there. At the University of Illinois College of Liberal Arts & Sciences, you'll be ...

  24. 1: What is Critical Thinking?

    The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739.