• Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

creative problem solving articles

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Creative Problem-Solving & Why Is It Important?

Business team using creative problem-solving

  • 01 Feb 2022

One of the biggest hindrances to innovation is complacency—it can be more comfortable to do what you know than venture into the unknown. Business leaders can overcome this barrier by mobilizing creative team members and providing space to innovate.

There are several tools you can use to encourage creativity in the workplace. Creative problem-solving is one of them, which facilitates the development of innovative solutions to difficult problems.

Here’s an overview of creative problem-solving and why it’s important in business.

Access your free e-book today.

What Is Creative Problem-Solving?

Research is necessary when solving a problem. But there are situations where a problem’s specific cause is difficult to pinpoint. This can occur when there’s not enough time to narrow down the problem’s source or there are differing opinions about its root cause.

In such cases, you can use creative problem-solving , which allows you to explore potential solutions regardless of whether a problem has been defined.

Creative problem-solving is less structured than other innovation processes and encourages exploring open-ended solutions. It also focuses on developing new perspectives and fostering creativity in the workplace . Its benefits include:

  • Finding creative solutions to complex problems : User research can insufficiently illustrate a situation’s complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it.
  • Adapting to change : Business is constantly changing, and business leaders need to adapt. Creative problem-solving helps overcome unforeseen challenges and find solutions to unconventional problems.
  • Fueling innovation and growth : In addition to solutions, creative problem-solving can spark innovative ideas that drive company growth. These ideas can lead to new product lines, services, or a modified operations structure that improves efficiency.

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

Creative problem-solving is traditionally based on the following key principles :

1. Balance Divergent and Convergent Thinking

Creative problem-solving uses two primary tools to find solutions: divergence and convergence. Divergence generates ideas in response to a problem, while convergence narrows them down to a shortlist. It balances these two practices and turns ideas into concrete solutions.

2. Reframe Problems as Questions

By framing problems as questions, you shift from focusing on obstacles to solutions. This provides the freedom to brainstorm potential ideas.

3. Defer Judgment of Ideas

When brainstorming, it can be natural to reject or accept ideas right away. Yet, immediate judgments interfere with the idea generation process. Even ideas that seem implausible can turn into outstanding innovations upon further exploration and development.

4. Focus on "Yes, And" Instead of "No, But"

Using negative words like "no" discourages creative thinking. Instead, use positive language to build and maintain an environment that fosters the development of creative and innovative ideas.

Creative Problem-Solving and Design Thinking

Whereas creative problem-solving facilitates developing innovative ideas through a less structured workflow, design thinking takes a far more organized approach.

Design thinking is a human-centered, solutions-based process that fosters the ideation and development of solutions. In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase framework to explain design thinking.

The four stages are:

The four stages of design thinking: clarify, ideate, develop, and implement

  • Clarify: The clarification stage allows you to empathize with the user and identify problems. Observations and insights are informed by thorough research. Findings are then reframed as problem statements or questions.
  • Ideate: Ideation is the process of coming up with innovative ideas. The divergence of ideas involved with creative problem-solving is a major focus.
  • Develop: In the development stage, ideas evolve into experiments and tests. Ideas converge and are explored through prototyping and open critique.
  • Implement: Implementation involves continuing to test and experiment to refine the solution and encourage its adoption.

Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

Creative Problem-Solving Tools

While there are many useful tools in the creative problem-solving process, here are three you should know:

Creating a Problem Story

One way to innovate is by creating a story about a problem to understand how it affects users and what solutions best fit their needs. Here are the steps you need to take to use this tool properly.

1. Identify a UDP

Create a problem story to identify the undesired phenomena (UDP). For example, consider a company that produces printers that overheat. In this case, the UDP is "our printers overheat."

2. Move Forward in Time

To move forward in time, ask: “Why is this a problem?” For example, minor damage could be one result of the machines overheating. In more extreme cases, printers may catch fire. Don't be afraid to create multiple problem stories if you think of more than one UDP.

3. Move Backward in Time

To move backward in time, ask: “What caused this UDP?” If you can't identify the root problem, think about what typically causes the UDP to occur. For the overheating printers, overuse could be a cause.

Following the three-step framework above helps illustrate a clear problem story:

  • The printer is overused.
  • The printer overheats.
  • The printer breaks down.

You can extend the problem story in either direction if you think of additional cause-and-effect relationships.

4. Break the Chains

By this point, you’ll have multiple UDP storylines. Take two that are similar and focus on breaking the chains connecting them. This can be accomplished through inversion or neutralization.

  • Inversion: Inversion changes the relationship between two UDPs so the cause is the same but the effect is the opposite. For example, if the UDP is "the more X happens, the more likely Y is to happen," inversion changes the equation to "the more X happens, the less likely Y is to happen." Using the printer example, inversion would consider: "What if the more a printer is used, the less likely it’s going to overheat?" Innovation requires an open mind. Just because a solution initially seems unlikely doesn't mean it can't be pursued further or spark additional ideas.
  • Neutralization: Neutralization completely eliminates the cause-and-effect relationship between X and Y. This changes the above equation to "the more or less X happens has no effect on Y." In the case of the printers, neutralization would rephrase the relationship to "the more or less a printer is used has no effect on whether it overheats."

Even if creating a problem story doesn't provide a solution, it can offer useful context to users’ problems and additional ideas to be explored. Given that divergence is one of the fundamental practices of creative problem-solving, it’s a good idea to incorporate it into each tool you use.

Brainstorming

Brainstorming is a tool that can be highly effective when guided by the iterative qualities of the design thinking process. It involves openly discussing and debating ideas and topics in a group setting. This facilitates idea generation and exploration as different team members consider the same concept from multiple perspectives.

Hosting brainstorming sessions can result in problems, such as groupthink or social loafing. To combat this, leverage a three-step brainstorming method involving divergence and convergence :

  • Have each group member come up with as many ideas as possible and write them down to ensure the brainstorming session is productive.
  • Continue the divergence of ideas by collectively sharing and exploring each idea as a group. The goal is to create a setting where new ideas are inspired by open discussion.
  • Begin the convergence of ideas by narrowing them down to a few explorable options. There’s no "right number of ideas." Don't be afraid to consider exploring all of them, as long as you have the resources to do so.

Alternate Worlds

The alternate worlds tool is an empathetic approach to creative problem-solving. It encourages you to consider how someone in another world would approach your situation.

For example, if you’re concerned that the printers you produce overheat and catch fire, consider how a different industry would approach the problem. How would an automotive expert solve it? How would a firefighter?

Be creative as you consider and research alternate worlds. The purpose is not to nail down a solution right away but to continue the ideation process through diverging and exploring ideas.

Which HBS Online Entrepreneurship and Innovation Course is Right for You? | Download Your Free Flowchart

Continue Developing Your Skills

Whether you’re an entrepreneur, marketer, or business leader, learning the ropes of design thinking can be an effective way to build your skills and foster creativity and innovation in any setting.

If you're ready to develop your design thinking and creative problem-solving skills, explore Design Thinking and Innovation , one of our online entrepreneurship and innovation courses. If you aren't sure which course is the right fit, download our free course flowchart to determine which best aligns with your goals.

creative problem solving articles

About the Author

loading

How it works

For Business

Join Mind Tools

Article • 10 min read

Creative Problem Solving

Finding innovative solutions to challenges.

By the Mind Tools Content Team

creative problem solving articles

Imagine that you're vacuuming your house in a hurry because you've got friends coming over. Frustratingly, you're working hard but you're not getting very far. You kneel down, open up the vacuum cleaner, and pull out the bag. In a cloud of dust, you realize that it's full... again. Coughing, you empty it and wonder why vacuum cleaners with bags still exist!

James Dyson, inventor and founder of Dyson® vacuum cleaners, had exactly the same problem, and he used creative problem solving to find the answer. While many companies focused on developing a better vacuum cleaner filter, he realized that he had to think differently and find a more creative solution. So, he devised a revolutionary way to separate the dirt from the air, and invented the world's first bagless vacuum cleaner. [1]

Creative problem solving (CPS) is a way of solving problems or identifying opportunities when conventional thinking has failed. It encourages you to find fresh perspectives and come up with innovative solutions, so that you can formulate a plan to overcome obstacles and reach your goals.

In this article, we'll explore what CPS is, and we'll look at its key principles. We'll also provide a model that you can use to generate creative solutions.

About Creative Problem Solving

Alex Osborn, founder of the Creative Education Foundation, first developed creative problem solving in the 1940s, along with the term "brainstorming." And, together with Sid Parnes, he developed the Osborn-Parnes Creative Problem Solving Process. Despite its age, this model remains a valuable approach to problem solving. [2]

The early Osborn-Parnes model inspired a number of other tools. One of these is the 2011 CPS Learner's Model, also from the Creative Education Foundation, developed by Dr Gerard J. Puccio, Marie Mance, and co-workers. In this article, we'll use this modern four-step model to explore how you can use CPS to generate innovative, effective solutions.

Why Use Creative Problem Solving?

Dealing with obstacles and challenges is a regular part of working life, and overcoming them isn't always easy. To improve your products, services, communications, and interpersonal skills, and for you and your organization to excel, you need to encourage creative thinking and find innovative solutions that work.

CPS asks you to separate your "divergent" and "convergent" thinking as a way to do this. Divergent thinking is the process of generating lots of potential solutions and possibilities, otherwise known as brainstorming. And convergent thinking involves evaluating those options and choosing the most promising one. Often, we use a combination of the two to develop new ideas or solutions. However, using them simultaneously can result in unbalanced or biased decisions, and can stifle idea generation.

For more on divergent and convergent thinking, and for a useful diagram, see the book "Facilitator's Guide to Participatory Decision-Making." [3]

Core Principles of Creative Problem Solving

CPS has four core principles. Let's explore each one in more detail:

  • Divergent and convergent thinking must be balanced. The key to creativity is learning how to identify and balance divergent and convergent thinking (done separately), and knowing when to practice each one.
  • Ask problems as questions. When you rephrase problems and challenges as open-ended questions with multiple possibilities, it's easier to come up with solutions. Asking these types of questions generates lots of rich information, while asking closed questions tends to elicit short answers, such as confirmations or disagreements. Problem statements tend to generate limited responses, or none at all.
  • Defer or suspend judgment. As Alex Osborn learned from his work on brainstorming, judging solutions early on tends to shut down idea generation. Instead, there's an appropriate and necessary time to judge ideas during the convergence stage.
  • Focus on "Yes, and," rather than "No, but." Language matters when you're generating information and ideas. "Yes, and" encourages people to expand their thoughts, which is necessary during certain stages of CPS. Using the word "but" – preceded by "yes" or "no" – ends conversation, and often negates what's come before it.

How to Use the Tool

Let's explore how you can use each of the four steps of the CPS Learner's Model (shown in figure 1, below) to generate innovative ideas and solutions.

Figure 1 – CPS Learner's Model

creative problem solving articles

Explore the Vision

Identify your goal, desire or challenge. This is a crucial first step because it's easy to assume, incorrectly, that you know what the problem is. However, you may have missed something or have failed to understand the issue fully, and defining your objective can provide clarity. Read our article, 5 Whys , for more on getting to the root of a problem quickly.

Gather Data

Once you've identified and understood the problem, you can collect information about it and develop a clear understanding of it. Make a note of details such as who and what is involved, all the relevant facts, and everyone's feelings and opinions.

Formulate Questions

When you've increased your awareness of the challenge or problem you've identified, ask questions that will generate solutions. Think about the obstacles you might face and the opportunities they could present.

Explore Ideas

Generate ideas that answer the challenge questions you identified in step 1. It can be tempting to consider solutions that you've tried before, as our minds tend to return to habitual thinking patterns that stop us from producing new ideas. However, this is a chance to use your creativity .

Brainstorming and Mind Maps are great ways to explore ideas during this divergent stage of CPS. And our articles, Encouraging Team Creativity , Problem Solving , Rolestorming , Hurson's Productive Thinking Model , and The Four-Step Innovation Process , can also help boost your creativity.

See our Brainstorming resources within our Creativity section for more on this.

Formulate Solutions

This is the convergent stage of CPS, where you begin to focus on evaluating all of your possible options and come up with solutions. Analyze whether potential solutions meet your needs and criteria, and decide whether you can implement them successfully. Next, consider how you can strengthen them and determine which ones are the best "fit." Our articles, Critical Thinking and ORAPAPA , are useful here.

4. Implement

Formulate a plan.

Once you've chosen the best solution, it's time to develop a plan of action. Start by identifying resources and actions that will allow you to implement your chosen solution. Next, communicate your plan and make sure that everyone involved understands and accepts it.

There have been many adaptations of CPS since its inception, because nobody owns the idea.

For example, Scott Isaksen and Donald Treffinger formed The Creative Problem Solving Group Inc . and the Center for Creative Learning , and their model has evolved over many versions. Blair Miller, Jonathan Vehar and Roger L. Firestien also created their own version, and Dr Gerard J. Puccio, Mary C. Murdock, and Marie Mance developed CPS: The Thinking Skills Model. [4] Tim Hurson created The Productive Thinking Model , and Paul Reali developed CPS: Competencies Model. [5]

Sid Parnes continued to adapt the CPS model by adding concepts such as imagery and visualization , and he founded the Creative Studies Project to teach CPS. For more information on the evolution and development of the CPS process, see Creative Problem Solving Version 6.1 by Donald J. Treffinger, Scott G. Isaksen, and K. Brian Dorval. [6]

Creative Problem Solving (CPS) Infographic

See our infographic on Creative Problem Solving .

creative problem solving articles

Creative problem solving (CPS) is a way of using your creativity to develop new ideas and solutions to problems. The process is based on separating divergent and convergent thinking styles, so that you can focus your mind on creating at the first stage, and then evaluating at the second stage.

There have been many adaptations of the original Osborn-Parnes model, but they all involve a clear structure of identifying the problem, generating new ideas, evaluating the options, and then formulating a plan for successful implementation.

[1] Entrepreneur (2012). James Dyson on Using Failure to Drive Success [online]. Available here . [Accessed May 27, 2022.]

[2] Creative Education Foundation (2015). The CPS Process [online]. Available here . [Accessed May 26, 2022.]

[3] Kaner, S. et al. (2014). 'Facilitator′s Guide to Participatory Decision–Making,' San Francisco: Jossey-Bass.

[4] Puccio, G., Mance, M., and Murdock, M. (2011). 'Creative Leadership: Skils That Drive Change' (2nd Ed.), Thousand Oaks, CA: Sage.

[5] OmniSkills (2013). Creative Problem Solving [online]. Available here . [Accessed May 26, 2022].

[6] Treffinger, G., Isaksen, S., and Dorval, B. (2010). Creative Problem Solving (CPS Version 6.1). Center for Creative Learning, Inc. & Creative Problem Solving Group, Inc. Available here .

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Simplex thinking.

8 Steps for Solving Complex Problems

Book Insights

Solving Tough Problems: An Open Way of Talking, Listening, and Creating New Realities

Adam Kahane (Foreword by Peter Senge)

Add comment

Comments (0)

Be the first to comment!

creative problem solving articles

Get 30% off your first year of Mind Tools

Great teams begin with empowered leaders. Our tools and resources offer the support to let you flourish into leadership. Join today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article athqr54

Nine Ways to Get the Best From X (Twitter)

Article a0qi6ru

The Sales Funnel

Mind Tools Store

About Mind Tools Content

Discover something new today

Take the stress out of your life.

Expert Interviews

Eight Classic Mistakes Interviewers Make Infographic

Infographic Transcript

Infographic

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Project management for non-project managers.

Understanding the principles of project management

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

The Creative Problem Solving Group - Buffalo 

Useful resources, celebrating 50 years of reflective practice: versions of creative problem solving.

This article highlights 50 years of development based on Alex Osborn’s first introduction of Creative Problem Solving (CPS), and summarizes the major advances in deliberately developing creative talent.

Unleashing Creative Talent in Organizations

Learning and creativity are complex, multifaceted, and multilevel constructs, and when we examine the conceptual and practical linkages between them, many implications emerge.

Leadership’s Role in Creative Climate Creation

This chapter summarizes many of the factors that influences the work environment for creativity and innovation with a focus on how leaders can directly and indirectly influence this kind of climate.

A Compendium of Evidence for Creative Problem Solving

Creative Problem Solving (CPS) has been effectively applied and productively researched for over 65 years.  This resource contains over 1,000 citations and references that support CPS.

Enhancement of Creative Thinking Skills Using a Cognitive-Based Creativity Training

  • Original Article
  • Open access
  • Published: 07 October 2016
  • Volume 1 , pages 243–253, ( 2017 )

Cite this article

You have full access to this open access article

creative problem solving articles

  • Simone M. Ritter 1 &
  • Nel Mostert 2  

45k Accesses

111 Citations

15 Altmetric

Explore all metrics

Creative thinking skills can be considered one of the key competencies for the twenty-first century—they allow us to remain flexible and provide us with the capacity to deal with the opportunities and challenges that are part of our complex and fast-changing world. The increased focus on innovation combined with recent reports of decrements in creative performance brings attention to the need to develop creative thinking skills at both the educational and business levels. The main objective of the current project was to develop and scientifically test a brief, domain-unspecific creativity training. Undergraduate university students ( N  = 32) participated in the creativity training, which was a single session of 1.5 h and employed a cognitive approach (i.e., participants were shown how to apply creative thinking techniques in a systematic fashion). The effectiveness of the training was tested by means of a pre- and post-training comparison employing creativity measures that relied on divergent thinking, convergent thinking, and creative problem solving skills. To control for a possible instrumentation threat, two versions of each task were created and counterbalanced between the pre- and post-measure across participants. Following the creativity training, improvements were observed across a variety of creative performance measures. Importantly, the creativity level of the ideas generated during the divergent thinking task improved post-training. Moreover, the findings of the current study shed light on a possible underlying mechanism for these improvements in creativity, that is, cognitive flexibility. In addition to these divergent thinking skills, the training also improved convergent thinking and produced marginal improvements in creative problem solving skills. The current findings have important implications for educational and organizational settings, as they suggest that this brief creativity training (or one employing similar cognitive techniques) could be implemented to facilitate creative thinking skills.

Similar content being viewed by others

creative problem solving articles

Theories of Motivation in Education: an Integrative Framework

creative problem solving articles

The Gamification of Learning: a Meta-analysis

creative problem solving articles

Theory of Human Motivation—Abraham Maslow

Avoid common mistakes on your manuscript.

Introduction

Creative thinking can be considered one of the key competencies for the twenty-first century, and its effects are widespread. It allows us to fly to the moon, create art, develop computers, and cure illnesses. Creativity has not only been recognized in the sciences and the arts (Feist and Gorman 1998 ; MacKinnon 1962 ; Sternberg and Lubart 1996 ) but has also been shown to play an important role in everyday problem solving (Cropley 1990 ; Mumford et al. 1991 ; Runco 1994 ; Torrance 1971 ; Wallas 1926 ). The word creativity has its roots in the Latin term creō , which means “to create, to make,” and commonly refers to the ability to generate ideas or problem solutions that are original (i.e., novel) and useful (i.e., effective) (for example, Amabile 1983 ; Mumford 2003 ; Sternberg and Lubart 1999 ). In addition to its function of problem solving, creativity allows us to remain flexible. Cognitive flexibility provides us with the capacity to deal with the opportunities and changes that are part of our complex and fast-changing world (Cropley 1990 ; Reiter-Palmon et al. 1998 ). Due to its crucial role in innovation, the creation of new ideas and problem solutions has become a key concern for most organizations and businesses (Runco 2004 ), and some scholars refer to today’s economy as a creative economy (Florida 2002 ; Hawkins 2001 ). Supporting this trend, the US Council on Competitiveness has announced “innovation will be the single most important factor in determining […] success through the twenty-first century” (Wince-Smith 2006 ).

To meet the needs of the twenty-first century, academics, business leaders, and policy makers around the world have placed creativity high on their agenda. For example, 2009 was announced “the Year of Creativity and Innovation” to facilitate creative thinking skills among the entire population (European Commission 2008 ). Creativity is a skill that should be fostered in all disciplines and across all intellectual and social areas (UNESCO International Bureau of Education 2014 ). Initiatives to facilitate creativity are especially important since a creativity crisis has been identified, revealing significant decrements in creativity since the 1990s (Kim 2011 ; Kimbell 2000 ; Newton and Newton 2010 ). Both the heightened focus on creativity and innovation and the overall decline in creative performance bring attention to the need to develop creative thinking skills at both the educational and business levels. Creativity was long considered a topic not open to scientific research (Sternberg and Lubart 1999 ; Treffinger 2009 )—perhaps due to traditional beliefs that creativity has mystical origins—but in recent years, increasing insights have been gained into how creative ideas arise in the brain (e.g., see the review by Sawyer 2011 ). For example, it is now understood that creative thinking depends on fundamental cognitive processes, such as working memory, the ability to create new mental categories, and the ability to mentally manipulate objects (Ward et al. 1999 ). Creative thinking skills are thus inherent to normative cognitive functioning rather than an innate talent available to only a few genius minds. Importantly, research supports the idea that creative thinking can be trained (for a meta-analysis, see Scott et al. 2004a ).

Despite the urgent need for creativity, few curriculums devote much time or attention to developing creative thinking skills; in fact, the education system often discourages it (Edwards et al. 2006 ). This means that often, we are trained to consume knowledge but are not taught how to produce creative ideas and solutions. This is particularly problematic when graduates enter the workforce, as they have to be prepared for the needs of our creative economy (Florida 2002 ; Hawkins 2001 ). Similarly, those already established in work during adult life need to deal with twenty-first century problems but are not taught the creative thinking skills required to solve them. As such, people of all age groups could benefit from a training that enhances creative performance. Developing, evaluating, and implementing new content into the educational curriculum, such as creative thinking skills, take significant time. A valid alternative during this transition period might be to offer a short, well-developed, and scientifically tested creativity training—one that can be implemented easily in schools and business settings.

Previous creativity training approaches have been reported to differ across four main types of variables, including the cognitive processes targeted by the training, the techniques used in the training, the media used to deliver the training, and the types of exercises used during the training (for a more thorough discussion about these categories, see the meta-analysis of creativity training types by Scott et al. 2004b ). Of importance for the current study, the cluster analysis of creativity training techniques by Scott et al. ( 2004b ), revealed four broad themes: imagery training ( N  = 43, 27.6 %), idea production training ( N  = 83, 53.2 %), cognitive training ( N  = 17, 10.9 %), and thinking skills training ( N  = 13, 8.3 %). Thus, cognitive training approaches were found to be relatively uncommon. Although less common than idea production training, some cognitive training approaches (e.g., conceptual combination training) were found to have larger effects and higher success rates than did idea production training. These findings, plus the meta-analysis of training effectiveness by Scott et al. ( 2004a ), suggest that cognitive approaches will be effective, providing there is a focus on how to apply the technique (see Scott et al. 2004b ). One noted disadvantage of cognitive approaches, however, is that these techniques tend to be lengthy (see Scott et al. 2004b ). Thus, the length of cognitive training approaches could be a factor that limits the implementation of such creativity trainings in educational and business settings.

The aim of the current study was to develop and scientifically test a creativity training that anticipates these needs, and several requirements were specified for the training. First, it had to be domain unspecific ; that is, the training could be applied in various contexts irrespective of the trainee’s educational background. Second, the training had to employ a cognitive approach , as training programs that incorporate cognitive-oriented techniques have been shown to be effective (see Scott et al. 2004a ). Third, the training had to be brief (a single session, not exceeding 1.5 h) so that it could be implemented within an existing education program. Fourth, the current creativity training was developed by a scientist who holds a PhD in creativity and works as a creativity researcher, university teacher, and consultant and by a practitioner who has facilitated more than 900 creativity sessions with more than 14,000 participants worldwide. Thus, scientific insights and practical knowledge were combined when designing the training, which may strengthen the internal validity of the training (see Scott et al. 2004a ). Finally, the effectiveness of the training had to be scientifically tested by means of an extensive pre- and post-training assessment of participants’ creativity. We hypothesized that improvements in creative performance would be observed following the creativity training.

Materials and Methods

Participants.

A total of 32 (20 females) participants between the ages of 18 and 34 years old ( M  = 23.13, SD = 5.76) gave written informed consent to participate in the study, which was conducted according to the principles of the institutional review board (Ethics Committee Faculty of Social Sciences, Radboud University, the Netherlands) and the principles expressed in the Declarations of Helsinki. All the participants were Dutch and recruited for voluntary participation via the online research participation system (Sona) of Radboud University. The participants were from varied educational backgrounds, including MBO (EQ National Diploma or Vocational training; n  = 1), HAVO/VWO (EQ High School Diploma; n  = 2), HBO (EQ Applied Bachelor’s degree; n  = 2), and WO (EQ University Bachelor’s degree; n  = 27). Participants were given a choice of earning course credit (2.5 points) or €15 (approximately $16.70 USD) for their participation. Finally, the creativity training took place on March 30, 2015 at the laboratory of the Behavioural Science Institute, Radboud University, the Netherlands. Participants were subdivided across three training sessions (09:00–11:30, 10 participants; 11:45–14:15, 13 participants; 14:30–17:00, 9 participants). The same procedures were used during all sessions, which were conducted by the same experimenter and creativity trainer.

The overall effectiveness of the training was examined using a within-subjects design, with creative performance (pre, post) as the dependent variable. The techniques that were applied in the creativity training are described in the “ Training Techniques ” section, the measurement of creative performance is described in the “ Measures of Creative Performance ” section, and the procedure is described in the “ Procedure ” section.

Training Techniques

The training lasted 1.5 h. Based on the requirements outlined in the introduction, the following techniques were incorporated in the training: Silence , lines of evolution , random connections , and SCAMPER . Each of these techniques is described in detail below.

Technique 1: Silence

The participants were first provided with an explanation of the benefits of brainstorming individually and in silence. In particular, they were informed that brainstorming alone and in silence is beneficial for the creative process as it allows one to generate ideas without any restrictions, guidelines, or distractions. In addition, personal expertise and background knowledge can be used and individuals are not influenced by the ideas generated by other people. Moreover, during an individual brainstorming session, the creative thought process is not influenced by group processes (e.g., fear of criticism), idea loss due to turn-taking, and the dominance of certain group members (Nijstad and Stroebe 2006 ). If these group processes are at play at the beginning of a brainstorming session, the group may focus on a narrow range of idea directions—the ones mentioned by the participants who take the lead—and individual brainpower and expertise may be lost. After being introduced to the silent brainstorming technique, the participants generated ideas individually and in silence for 5 min.

Technique 2: Lines of Evolution

This technique relies on the findings of a Russian engineer, Genrikh Altshuller, who studied thousands of patents. He noticed that the evolution of breakthrough ideas—especially in the domain of technical innovation—follows universal principles. For example, a line of evolution could include changes in the form of an object using the following pattern: from solid, to powder or pieces, to liquid, to foam, to gel, to mechanics, to electronics, to spheres. A possible line of evolution for real-world inventions could be that what was once a chocolate bar can become mini chocolates or a chocolate drink, and what was once a solid $1 coin can become a virtual bit coin. This technique may facilitate the generation of creative ideas and solutions by examining how the current form of an idea or product can be changed into the next evolutionary form, that is, by “digging deeper.”

Technique 3: Random Connections

Creative ideas often come from making connections between seemingly unrelated concepts or objects. Accordingly, in some situations, creative thinking may not benefit from digging deeper, but instead from “digging elsewhere.” By digging elsewhere, one allows creative ideas to emerge from associative processes. The underlying approach of this technique is that one uses a random stimulus—for example, an object in the room or a picture in a newspaper—and tries to generate as many associations related to this stimulus as possible. Next, one can connect these associations to the problem that needs to be solved. To illustrate this process, imagine the following example: the problem at hand is “generate a new sun cream,” and the random object chosen is a “ballpoint pen.” Associations can be generated from the ballpoint pen, such as writing, color, and roller. By connecting these associations to the sun cream problem, one might generate the idea of colored sun cream (i.e., the sun cream is colored during application, which disappears once absorbed), a roll-on sun cream, or a roll-on sun cream containing colored sun cream. Thus, by facilitating the generation of random connections, this technique helps to create an environment that allows and encourages the generation of ideas that would very likely not emerge intentionally—a process which is called serendipitous creativity. The notion of serendipity is common throughout the history of creativity and scientific innovation, reportedly being involved in discoveries such as penicillin, the microwave, and the Post-it note.

Technique 4: Scamper

During the creative process, novel solutions may emerge when forced to think of possible changes to an existing idea or product. Hereby, a list of suggestions for possible changes can be helpful. A list with seven possible thinking techniques was provided using SCAMPER (Osborn 1953 ; Eberle 1971 ), and the participants could use any or all of the suggested approaches: substitute (remove some part of the accepted situation, thing, or concept and replace it with something else), combine (join, affiliate, or force together two or more elements of your subject matter and consider ways that such a combination might move you toward a solution), adapt (change some part of your problem so that it works where it did not before), modify (consider many of the attributes and change them if necessary; attributes can include size, shape, texture, color, attitude, position), purpose (put the product to some other use), eliminate (remove any or all elements of your subject, simplify it, or reduce it to its core functionality), reverse (change the direction or orientation; turn it upside-down, inside-out, or make it go backwards/against the direction it was intended to move or be used), and rearrange (modify the order of operations or any other hierarchy involved in the product). While applying these techniques, the participants have to remember the principle of force fitting; that is, if they cannot think of anything in response to the SCAMPER prompt they are using, they have to force a response (i.e., regardless of how ridiculous it seems) and then to think of ways to make any illogical responses work.

Measures of Creative Performance

Divergent thinking: the aut.

One of the creative skills to be developed by the current training program was divergent thinking, which is the capacity to generate multiple alternatives and solutions. There is a multitude of evidence suggesting that divergent thinking represents a distinct ability necessary for many forms of creative performance (Bachelor and Michael 1997 ; Mumford et al. 1998 ; Plucker and Renzulli 1999 ; Scott et al. 2004a ; Scratchley and Hakstian 2001 ; Sternberg and O’Hara 1999 ; Vincent et al. 2002 ). Divergent thinking tests can be considered the most widely used creativity test (Cropley 2000 ; Davis 2003 ), and they are applied in approximately 40 % of all creativity studies with college students and adults (Torrance and Presbury 1984 ). Divergent thinking can be assessed using open-ended tests, and several studies have documented its test-retest reliability (for example, see Yamamoto 1963a , 1963b ). Moreover, divergent thinking tests have been recommended as tests of effectiveness for creativity trainings (DeHaan 2011 ).

One of the most frequently used and well-validated divergent thinking test is the Alternative Uses task (AUT, Guilford 1967 ). During the AUT, the participants are asked to list as many different uses for a common object as possible and to make sure that the ideas they come up with are not too common and not completely impossible. The objects used in the current study were a brick and a newspaper and they were counterbalanced between the pre- and post-measure across the participants. The participants were given 3 min to perform the AUT and were instructed to list their ideas in the space provided. By coding the listed ideas, the participants’ creativity —the ability to generate ideas that are both novel and useful (for example, Amabile 1983 ; Mumford 2003 ; Sternberg and Lubart 1999 )—was examined. Moreover, the participant’s cognitive flexibility —the flexible switching among approaches—was assessed. Cognitive flexibility is characterized by global (as opposed to local) processing of information (for example, Ashby et al. 1999 ; Murray et al. 1990 ) and by the use of flat (as opposed to steep) associative hierarchies (for example, Mednick 1962 ). In other words, cognitive flexibility involves the ability to break cognitive patterns, to overcome functional fixedness, and to avoid a reliance on conventional ideas or solutions (Guilford 1967 ). Additionally, participant’s fluency —the total number of ideas generated by a participant—was measured. A more detailed description of the three measures is provided below.

Each idea was assigned a creativity score, ranging from not at all creative (=1) to very much creative (=5). Hereby, the two essential criteria of a creative idea—novelty and usefulness (for example, Amabile 1983 ; Mumford 2003 ; Sternberg and Lubart 1999 )—were taken into consideration. Two raters performed the creativity scoring. One rater assigned a creativity score to all of the ideas, and the other rater assigned creativity scores to 50 % of the ideas (50 % of the ideas generated for a brick and 50 % of those generated for a newspaper). The interrater reliability of the ratings was calculated using a two-way random intraclass correlation coefficient (ICC) analysis for consistency and can be considered substantial (ICC BothTasks  = 0.71, ICC Krant  = 0.65, ICC Baksteen  = 0.75). For each participant, across the ideas generated, a creativity sum score was calculated. The creativity sum score can be correlated with fluency (i.e., the total number of ideas generated by a participant). To control for the possibility that quantity confounds quality (e.g., that many less original and less useful ideas get a higher score than a few highly original and highly useful ideas) mean scores were calculated for each participant by dividing their creativity sum score by their fluency score.

Cognitive Flexibility

Cognitive flexibility can be quantified by the number of distinct idea categories used: each idea generated by a participant is assigned to a category from a predefined list of idea categories, and the total number of distinct idea categories is then calculated. For example, when asked to list possible uses for a brick, the ideas “build a house” and “build a bridge” would lead to a cognitive flexibility score of 1, as all ideas can be assigned to the category “building something.” On the other hand, the ideas build a house and “break a window” would lead to a score of 2, as the ideas can be assigned to two different idea categories (i.e., building something, and “destroying something”). For the flexibility scoring, a list of predefined idea categories was developed by two trained raters for each of the common objects (i.e., the brick and the newspaper). One of the raters assigned all of the ideas to the predefined idea categories, while the other rater did so for 50 % of the ideas (for 50 % of the ideas generated for a brick and for 50 % of those generated for a newspaper). The interrater reliability of the ratings was calculated using a two-way random ICC analysis for consistency and can be considered excellent (ICC BothTasks  = 0.97, ICC Krant  = 0.98, ICC Baksteen  = 0.95).

To calculate a participant’s fluency score, the number of complete and non-redundant ideas produced was counted.

Convergent Thinking: the RAT

Although important, divergent thinking is only one component of creative thinking. Many scholars emphasize the need for an additional cognitive ability, convergent thinking; that is, the cognitive process of deriving the single best, or most correct, answer to a problem or question (Fasko 2001 ; Guilford 1967 ; Nickerson 1999 ; Treffinger 1995 ). This component of creative thought was assessed using the Remote Associates Test (RAT), which was originally developed by Mednick ( 1962 ). In the RAT, the participants are presented with three-word combinations and are required to generate a fourth word that connects the three seemingly unrelated words (e.g., bar–dress–glass, fourth word: cocktail; cocktail bar, cocktail dress, cocktail glass). The structure of the RAT—finding a highly constrained, single solution—fits well with the concept of convergent thinking. As the English RAT version is rather difficult for non-native speakers of English (e.g., Estrada et al. 1994 ), in the current study, the Dutch version of the RAT (adapted from Chermahini et al. 2012 ) was used. The participants were presented with a list of ten three-word combinations. Two versions of the RAT were provided and counterbalanced between the pre- and post-measure across participants.

Creative Problem Solving

A creative activity that requires the interplay of divergent and convergent thinking is creative problem solving — the cognitive process of searching for a novel and inconspicuous solution to a problem. Creative problem solving can be blocked by fixations—a persistent impasse in problem solving in which unwarranted assumptions, typical thinking, or recent experiences block awareness of the solution. Two common forms are perceptual and functional fixations. The participants’ ability to overcome perceptual fixation was measured by a pattern perception task and the nine-dot-problem; the ability to overcome functional fixation was measured by insight tasks. Two different versions of the tasks were used and counterbalanced between the pre- and post-measure across participants.

In the pattern perception task, participants are presented with a picture consisting of various black patches on a white background and they have to indicate which pattern is presented in the picture. In the nine-dot-problem, nine dots are arranged in a square pattern. The task is to join the dots using four straight lines. Although there are no borders surrounding the task, people often feel constrained by the assumption that they must only draw within the square boundary formed by the dots. In fact, the task can only be solved if one draws outside of the square.

The insight tasks used in the current study were the two-string problem, the ball problem, the candle problem, and the switch problem. To solve these tasks, one has to use a displayed object in an unfamiliar manner (i.e., in the two-string and candle problems) or one has to complete the task in a manner which is different from prior experience or expectations (i.e., in the ball and switch problems). For example, in the two-string problem, participants are required to tie together two strings hanging from the ceiling. However, the strings are arranged so far apart that they cannot be reached at the same time. The solution requires the use of one of the objects available in the room so that one string can be set in motion as a pendulum. This swinging string can then be caught, while holding the other string, and thus can then be tied together.

Demographics

In addition to the various measures of creative performance, participants completed several demographic questions, determining the gender, age, nationality, and educational background of the participants.

Participants were welcomed individually at the BSI entrance. Once all of the participants who were scheduled for the training session had arrived, they were accompanied to the room in which the training was held. In the training room, the experimenter briefly introduced herself and the creativity trainer and informed the participants of how the 2.5-h session would be conducted.

During the first 20 min of the session, participants’ creative performance was measured (the pre-training, i.e., baseline measure) using several well-known creativity tasks (for information about the creativity tasks, see the “ Measures of creative performance ” section). Following the pre-training measure of creative performance, the participants received the creativity training for 1.5 h (for information about the training techniques, see the “ Training techniques ” section). The training itself started with a short word of welcome by the trainer as well as an explanation of the real-world problem that would be used for all brainstorming sessions during the training. The real-world problem required generating ideas for what the next generation sponge might look like (i.e., Hoe ziet de volgende generatie spons eruit? ). For each of the four techniques, the participants completed two procedures. First, the cognitive mechanism underlying the technique and how the technique can be applied were explained to them by the trainer. Second, the participants practiced and applied the technique to the real-world problem; first alone and then in a small group (the question whether brainstorming in groups has any benefit over-and-above brainstorming individually will be addressed in a separate paper). After the training, the post-measure of creative performance was administered. The post-measure lasted 20 min and employed equivalent versions of the tasks used in the creativity pre-measure (i.e., the versions did not differ in the types of questions nor in level of difficulty). To control for a possible instrumentation threat (i.e., the risk that an observed change from pre- to post-measure is due to the test that was used, rather than the training), two versions of each task were created and counterbalanced between the pre- and post-measure across participants. This meant that half of the participants performed one version as the pre-measure and the other version as the post-measure; the remaining half of the participants completed these versions in the reverse order. Finally, the participants ended the study by completing the demographic questions (for information about these questions, see the “ Demographics ” section). All questionnaires and training materials were provided on paper.

Impact of the Training on Creative Performance

The effectiveness of the training was scientifically tested by means of a pre- and post-test, employing creativity measures that relied on divergent thinking (the “ Divergent Thinking: the AUT ” section), convergent thinking (the “ Convergent Thinking: the RAT ” section), and creative problem solving skills (the “ Creative Problem Solving ” section).

An ANOVA was performed on the mean creativity rating of ideas generated during the AUT with training ( pre , post ) as the within-subjects variable and task order ( brick – newspaper , newspaper – brick ) as the between-subjects variable. The mean creativity level of ideas produced did not differ significantly across task order group ( F (1, 30) = 0.092, p  = .764), indicating that one group was not significantly more creative than the other, nor was a significant interaction effect found between task order and training ( F (1, 30) = 0.428, p  = .518). Importantly, a significant main effect for training was observed ( F (1, 30) = 5.709, p  = .023), suggesting that the mean creativity of the ideas generated following creativity training ( M  = 2.59, SD = 0.45) was significantly higher than that of the ideas generated prior to training ( M  = 2.36, SD = 0.41) (see Fig.  1 ).

Mean creativity of the ideas generated pre- and post-creativity training

Given that a significant improvement in creative performance was found following training, it is interesting to examine the possible mechanism for the observed change. Cognitive flexibility was examined as a possible mechanism, as the training employed a cognitive approach. That is, the increase in creativity after training could be partly explained by participants diversifying the categories of their given responses (Ritter et al. 2012 , 2014 ). As such, a 2 × 2 mixed ANOVA was performed on the number of distinct idea categories generated for the AUT ( cognitive flexibility ), with training (pre, post) as the within-subjects variable and task order (brick–newspaper, newspaper–brick) as the between-subjects variable. The analysis revealed that the cognitive flexibility of the participants in the different task order groups did not significantly differ ( F (1, 30) = 1.009, p  = .323), indicating that one group did not score higher on cognitive flexibility than the other. Importantly, a main effect of the training approached significance ( F (1, 30) = 3.788, p  = .061), suggesting that the mean number of idea categories generated on the AUT task could improve by approximately one distinct category from pre-training ( M  = 5.41, SD = 2.67) to post-training ( M  = 6.34, SD = 2.52), see Fig.  2 .

Cognitive flexibility pre- and post-creativity training

Finally, an interaction effect was found between training and task order ( F (1, 30) = 31.128, p  < .001) (see Fig.  2 ). Post hoc analyses revealed significant differences between the two tasks before and after training, such that the number of idea categories was higher for the newspaper task both prior to training ( p  < .001) and following training ( p  = .018). These results suggest that generating distinct ideas might be easier for the newspaper task overall, and this was confirmed by follow-up tests—the newspaper produced a larger number of distinct idea categories ( M  = 7.22, SD = 2.73) compared with the brick ( M  = 4.53, SD = 1.67; t (31) = 5.344, p  < .001). Importantly, follow up tests revealed that performance on the more difficult task (i.e., the brick) was significantly improved from pre-training ( M  = 3.75, SD = 1.18) to post-training ( M  = 7.06, SD = 2.74; t (30) = 2.970, p  = .006).

To examine whether the creativity training had any impact on divergent thinking, the participants’ number of correctly solved RAT word pairs prior to training were compared with that following creativity training. As no participants reported prior knowledge of the RAT word pairs used, all the participant responses were included in the analysis. Initially, a mixed ANOVA was performed to include an examination of task order. However, as no significant effects involving task order were found, a within-subjects t test was performed on the effect of creativity training on RAT scores (pre, post). The training appeared to have a significant impact on RAT task performance: on average, the participants solved approximately one more RAT word pair following creativity training ( M  = 4.73, SD = 2.32) compared with pre-training performance ( M  = 3.97, SD = 2.27; t (31) = 2.342, p  = .026) (see Fig.  3 ).

Performance on the RAT pre- and post-creativity training

To examine whether creativity training had any impact on creative problem solving skills, the problem solving performance scores prior to and following creativity training were calculated by adding the participants’ scores on the picture tasks, the dot problem task, and the two insight problems. Correct responses were excluded where participants reported prior knowledge of the task(s). Given the exclusion of scores for participants who reported prior knowledge of the tasks, mean problem solving scores were also calculated (i.e., an average score for the unknown tasks completed) and examined. As the overall findings did not differ for mean or sum scores, sum scores were retained in the analysis for improved ease of interpretation. A 2 × 2 mixed ANOVA was performed on the problem solving score with task order as the between-subjects variable. No significant main effect was found for task order ( F (1, 30) = 0.375, p  = .545), indicating that one group was not significantly better at solving the tasks than the other. Importantly, a main effect for training approached significance ( F (1, 30) = 3.695, p  = .064), such that performance on these tasks was higher following creativity training ( M  = 0.97, SD = 0.80) compared with performance prior to the training ( M  = 0.66, SD = 0.70).

In addition, the analyses revealed a significant interaction effect between training and task order ( F (1, 30) = 5.320, p  = .028). Post hoc tests indicated that prior to training, participants who completed the problem solving task set that included the ball and rope insight tasks performed significantly better than those who completed the set containing the candle and switch tasks ( p  = .041). Interestingly, no task order effect was observed post-training ( p  = .387). Moreover, participants who completed the set of problem solving tasks including the candle and switch insight tasks prior to training showed a significant improvement in task performance post-training ( p  = .006), while such a difference was not observed for the group who completed the problem solving tasks in the reverse order ( p  = .788). Taken together, these results suggest that the task set containing the candle and switch tasks were harder to solve than that containing the ball and rope problems and that the training increased performance for the more difficult tasks (Fig.  4 ).

Creative problem solving performance pre- and post-creativity training

Summary of Research Aims and Findings

Creativity has a crucial role in innovation, and the creation of new ideas and problem solutions has become a key concern for most organizations and businesses (Runco 2004 ). This goal is further supported by findings showing that creativity plays an important role in everyday problem solving (Cropley 1990 ; Mumford et al. 1991 ; Runco 1994 ; Torrance 1971 ; Wallas 1926 ) and in emotional health and well-being (Runco 2004 ; Simonton 2000 ). Given the importance of creativity and that creative thinking skills can be trained (Scott et al. 2004a ), the goal should be to train creative skills throughout the entire population. As such, there is a strong need for a well-developed, domain-unspecific creativity training that has been scientifically tested. In addition, such creativity training would be relatively easier to implement in educational and organizational settings if it was a single, brief session. Thus, the main objectives of the current research were to develop a brief creativity training that meets these requirements and to establish whether this training can enhance creative performance.

The findings of the current study demonstrate that a short training (i.e., a single training session of just 1.5 h), which develops cognitive skills necessary for creativity, can have an impact on creative performance. Following the creativity training session, improvements were observed across a variety of creative performance measures. Importantly, the creativity level of the ideas generated during the divergent thinking task improved post-training. In addition, the findings of the current study shed light on a possible underlying mechanism for these improvements in creativity, that is, cognitive flexibility. This is evidenced by a marginal improvement in the number of distinct idea categories generated post-training. Next to these divergent thinking skills, the training also improved convergent thinking, as improved performance on the RAT was observed post-training. Finally, the training provided marginal improvements in creative problem solving skills by reducing perceptual and functional fixations and mental blocks. Interestingly, it seems that the training benefitted the more difficult versions of some tasks, as demonstrated by the interaction effects for the AUT and the problem solving tasks.

The current findings provide support to the creative cognition model of creativity (for example, Ward et al. 1999 ), which states that individual differences in creativity can be explained by variations in the efficiency of cognitive processes underlying creativity (for example, Ward et al. 1999 ), and to the idea that creative thinking can be trained (Scott et al. 2004a ). Moreover, the current findings have important implications for educational and organizational settings. If the goal is to train creative skills among the entire population, effective creativity training programs need to be successfully implemented—this is particularly important if we want to meet the needs of the twenty-first century. The increases in creative performance reported here are impressive and promising since the training was only short (1.5 h), and the effects were demonstrated across a variety of well-validated measures.

Strengths and Contributions

Previous research has shown that creativity trainings with a focus on developing cognitive skills contribute to effectiveness (Scott et al. 2004a ). However, cognitive approaches tend to take longer to explain and implement and appear to be relatively less common (see Scott et al. 2004b ). The current training employed a cognitive approach, with the techniques used targeting multiple divergent, convergent, and problem-solving processes (i.e., not just idea generation) (see Scott et al. 2004a , b ). As such, the current creativity training makes a distinct contribution by employing a cognitive training approach in a brief, single-session, creativity training. Importantly, the exercises used during the creativity training differed from those used to evaluate the effectiveness of the training; that is, participants were not trained to the criterion (see Scott et al. 2004a ). Given that significant improvements were found following the current training employing a cognitive approach, this demonstrates a transfer of cognitive skills required for creative performance—and further supports the domain-unspecific nature of the training. In line with variables thought to strengthen training quality and efficacy (see Scott et al. 2004a ), the current creativity training did not include prizes, overt praise, or external motivation for creative performance.

Limitations and Suggestions for Future Research

While the current study provides evidence that the combined effects of various cognitive skills training methods work, there are some limitations of the study that should be addressed in future research. The current study included a within-subjects design with pre- and post-test creativity measures. Given the nature of the tasks included in the study, it is unlikely that the observed increase in creative performance on the post-measure was due to practice or learned effects (e.g., different objects were used in the AUT versions and different problems were presented in the insight task versions). Moreover, interaction effects were observed for some of the creativity measures (i.e., the training benefitted the more difficult task versions), suggesting that these effects would not be improved by practice alone. However, to eliminate any practice or learned effects on creative performance with certainty, a future study could employ a between-subjects design, or a mixed design, employing a control group. In future research, it could also be interesting to investigate whether the training is particularly effective for specific creativity domains. Importantly, the current study does not allow any conclusions to be made about the long-term effects of the training. In future research, a follow-up measure could be included to gain information about the maintained effects of creativity training.

The four techniques employed in the current study were carefully selected by the authors, and it was assumed that their combined effects would have a greater impact on creative performance. It remains unclear whether just one of the training methods would be necessary to obtain these observed effects or whether their combined effects were necessary to observe significant improvements in creative performance. Future research could answer this question by examining the impact of each of these techniques on creative performance in isolation. Such a test may, moreover, provide valuable information to further improve the form of the techniques applied during the training.

Finally, the western participant sample had a high education level and a relatively high proportion of females, which could limit the ecological validity of this study. On the other hand, findings of a meta-analysis by Scott et al. ( 2004a ) suggest that creativity training may be more effective in organizational than academic settings and may have greater effects on men than on women. Considering that this study relied on a population and setting for which the a priori chance of finding a training effect was not high, the ecological validity and generalizability of the current findings may be enhanced. However, it is still unknown what impact such training would have on eastern participants and on other age groups, for example, school-aged children and elderly people. Future research could include examining how this or a similar training can be adapted in eastern cultures and for other age groups.

Conclusions

Creative thinking can be considered one of the key competencies for the twenty-first century and is viewed as being essential for entrepreneurial activities and long-term economic growth (Amabile 1997 ; Wise 1992 ). If a goal is to train creative thinking skills, effective creativity training programs need to be developed and successfully implemented. The current study provided further evidence that creative potential is inherent to cognitive functioning and can be facilitated with training. Impressively, following a short (a single session lasting 1.5 h) domain-unspecific training, which develops cognitive skills necessary for creativity, improved creative performance on a variety of well-validated measures. These findings have important implications for educational and organizational settings, as they suggest that the present brief creativity training (or one employing similar cognitive techniques) could be implemented to facilitate creative thinking skills among the entire population.

Amabile, T. M. (1983). The social psychology of creativity: a componential conceptualization. Journal of Personality and Social Psychology, 45 (2), 357–376. doi: 10.1037/0022-3514.45.2.357 .

Article   Google Scholar  

Amabile, T. M. (1997). Motivating creativity in organizations: on doing what you love and loving what you do. California Management Review, 40 (1), 39–58. doi: 10.2307/41165921 .

Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106 (3), 529–550. doi: 10.1037/0033-295X.106.3.529 .

Article   PubMed   Google Scholar  

Bachelor, P. A., & Michael, W. B. (1997). The structure of intellect model revisited. In M. A. Runco (Ed.), The creativity research handbook: volume 1 (pp. 155–182). New York: Hampton Press.

Google Scholar  

Chermahini, S. A., Hickendorff, M., & Hommel, B. (2012). Development and validity of a Dutch version of the remote associates task: an item-response theory approach. Thinking Skills and Creativity, 7 (3), 177–186. doi: 10.1016/j.tsc.2012.02.003 .

Cropley, A. J. (1990). Creativity and mental health in everyday life. Creativity Research Journal, 3 (3), 167–178. doi: 10.1080/10400419009534351 .

Cropley, A. J. (2000). Defining and measuring creativity: are creativity tests worth using? Roeper Review, 23 (2), 72–79. doi: 10.1080/02783190009554069 .

Davis, G. A. (2003). Identifying creative students, teaching for creative growth. In N. Colangelo & G. A. Davis (Eds.), Handbook of gifted education (pp. 311–324). Boston: Allyn and Bacon.

DeHaan, R. L. (2011). Teaching creative science thinking. Science, 334 (6062), 1499–1500. doi: 10.1126/science.1207918 .

Eberle, R. (1971). SCAMPER games for imagination development . New York: DOK Publications.

Edwards, M., McGoldrick, C., & Oliver, M. (2006). Creativity and curricula in higher education: academics’ perspectives. In N. Jackson, M. Oliver, M. Shaw, & J. Wisdom (Eds.), Developing creativity in higher education: an imaginative curriculum (pp. 59–73). London: Routledge.

Estrada, C. A., Isen, A. M., & Young, M. J. (1994). Positive affect improves creative problem solving and influences reported source of practice satisfaction in physicians. Motivation and Emotion, 18 , 285–299.

European Commission. (2008). 2009 , European year of creativity and innovation . Retrieved from http://www.create2009.europa.eu

Fasko, D. (2001). Education and creativity. Creativity Research Journal, 13 (3-4), 317–327. doi: 10.1207/S15326934CRJ1334_09 .

Feist, G. J., & Gorman, M. E. (1998). The psychology of science: review and integration of a nascent discipline. Review of General Psychology, 2 (1), 3–47. doi: 10.1037/1089-2680.2.1.3 .

Florida, R. (2002). The raise of the creative class: and how it’s transforming work, leisure, community and everyday life . New York: Basic Books.

Guilford, J. P. (1967). Creativity: yesterday, today and tomorrow. Journal of Creative Behavior, 1 (1), 3–14. doi: 10.1002/j.2162-6057.1967.tb00002.x .

Hawkins, J. (2001). The creative economy: how people make money from ideas . London: Allen Lane.

Kim, K. H. (2011). The creativity crisis: the decrease in creative thinking scores on the torrance tests of creative thinking. Creativity Research Journal, 23 (4), 285–295. doi: 10.1080/10400419.2011.627805 .

Kimbell, R. (2000). Creativity in crisis. Journal of Design and Technology Education, 5 (3), 206–211.

MacKinnon, D. W. (1962). The nature and nurture of creative talent. American Psychologist, 17 (7), 484–495. doi: 10.1037/h0046541 .

Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69 (3), 220–232. doi: 10.1037/h0048850 .

Mumford, M. D. (2003). Where have we been, where are we going? Taking stock in creativity research. Creativity Research Journal, 15 (2-3), 107–120. doi: 10.1080/10400419.2003.9651403 .

Mumford, M. D., Mobley, M. I., Reiter‐Palmon, R., Uhlman, C. E., & Doares, L. M. (1991). Process analytic models of creative capacities. Creativity Research Journal, 4 (2), 91–122. doi: 10.1080/10400419109534380 .

Mumford, M. D., Marks, M. A., Connelly, M. S., Zaccaro, S. J., & Johnson, J. F. (1998). Domain-based scoring in divergent-thinking tests: validation evidence in an occupational sample. Creativity Research Journal, 11 (2), 151–163. doi: 10.1207/s15326934crj1102_5 .

Murray, N., Sujan, H., Hirt, E. R., & Sujan, M. (1990). The influence of mood on categorization: a cognitive flexibility interpretation. Journal of Personality and Social Psychology, 59 (3), 411–425. doi: 10.1037/0022-3514.59.3.411 .

Newton, L. D., & Newton, D. P. (2010). What teachers see as creative incidents in elementary science lessons. International Journal of Science Education, 32 (15), 1989–2005. doi: 10.1080/09500690903233249 .

Nickerson, R. S. (1999). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 392–430). Cambridge: Cambridge University Press.

Nijstad, B. A., & Stroebe, W. (2006). How the group affects the mind: a cognitive model of idea generation in groups. Personality and Social Psychology Review, 10 (3), 186–213. doi: 10.1207/s15327957pspr1003_1 .

Osborn, A. F. (1953). Applied imagination: principles and procedures of creative problem-solving . New York: Scribners.

Plucker, J. A., & Renzulli, J. S. (1999). Psychometric approaches to the study of human creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 35–61). Cambridge: Cambridge University Press.

Reiter-Palmon, R., Mumford, M. D., & Threlfall, K. V. (1998). Solving everyday problems creatively: the role of problem construction and personality type. Creativity Research Journal, 11 (3), 187–197. doi: 10.1207/s15326934crj1103_1 .

Ritter, S. M., Damian, R. I., Simonton, D. K., van Baaren, R. B., Strick, M., Derks, J., et al. (2012). Diversifying experiences enhance cognitive flexibility. Journal of Experimental Social Psychology, 48 (4), 961–964. doi: 10.1016/j.jesp.2012.02.009 .

Ritter, S. M., Kühn, S., Müller, B. C., Van Baaren, R. B., Brass, M., & Dijksterhuis, A. (2014). The creative brain: corepresenting schema violations enhances TPJ activity and boosts cognitive flexibility. Creativity Research Journal, 26 (2), 144–150. doi: 10.1080/10400419.2014.901061 .

Runco, M. A. (1994). Problem finding, problem solving, and creativity . California: Greenwood Publishing Group.

Runco, M. A. (2004). Everyone has creative potential. In R. J. Sternberg & E. L. Grigorenko (Eds.), Creativity: from potential to realization (pp. 21–30). Washington, D.C.: American Psychological Association.

Chapter   Google Scholar  

Sawyer, K. (2011). The cognitive neuroscience of creativity: a critical review. Creativity Research Journal, 23 (2), 137–154. doi: 10.1080/10400419.2011.571191 .

Scott, G., Leritz, L. E., & Mumford, M. D. (2004a). The effectiveness of creativity training: a quantitative review. Creativity Research Journal, 16 (4), 361–388. doi: 10.1080/10400410409534549 .

Scott, G., Leritz, L. E., & Mumford, M. D. (2004b). Types of creativity training: approaches and their effectiveness. Journal of Creative Behavior, 38 (3), 149–179. doi: 10.1002/j.2162-6057.2004.tb01238.x .

Scratchley, L. S., & Hakstian, A. R. (2001). The measurement and prediction of managerial creativity. Creativity Research Journal, 13 (3-4), 367–384. doi: 10.1207/S15326934CRJ1334_14 .

Simonton, D. K. (2000). Methodological and theoretical orientation and the long-term disciplinary impact of 54 eminent psychologists. Review of General Psychology, 4 (1), 13–24. doi: 10.1037/1089-2680.4.1.13 .

Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51 (7), 677–688. doi: 10.1037/0003-066X.51.7.677 .

Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: prospects and paradigms. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 3–15). Cambridge: Cambridge University Press.

Sternberg, R. J., & O’Hara, L. A. (1999). Creativity and intelligence. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 251–272). Cambridge: Cambridge University Press.

Torrance, E. P. (1971). Are the torrance tests of creative thinking biased against or in favor of “disadvantaged” groups? Gifted Child Quarterly, 15 (2), 75–80. doi: 10.1177/001698627101500201 .

Torrance, E. P., & Presbury, J. (1984). The criteria of success used in 242 recent experimental studies of creativity. Creative Child & Adult Quarterly, 9 (4), 238–242.

Treffinger, D. J. (1995). Creative problem solving: overview and educational implications. Educational Psychology Review, 7 (3), 301–312. doi: 10.1007/BF02213375 .

Treffinger, D. J. (2009). Myth 5: creativity is too difficult to measure. Gifted Child Quarterly . doi: 10.1177/0016986209346829 .

UNESCO International Bureau of Education (2014). Creativity. In Guiding Principles for Learning in the Twenty First Century (p. 15 – 18) . Retrieved from www.ecolint.ch/file/621/download?token=zhQHu7qg .

Vincent, A. S., Decker, B. P., & Mumford, M. D. (2002). Divergent thinking, intelligence, and expertise: a test of alternative models. Creativity Research Journal, 14 (2), 163–178. doi: 10.1207/S15326934CRJ1402_4 .

Wallas, G. (1926). The art of thought . New York: Harcourt Brace.

Ward, T. B., Smith, S. M., & Finke, R. A. (1999). Creative cognition. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 189–212). Cambridge: Cambridge University Press.

Wince-Smith, D. L. (2006). The creativity imperative: a national perspective. Peer Review, 8 (2), 12.

Wise, G. (1992). Inventor and corporations in the maturing electrical industry. In R. J. Weber & D. N. Perkins (Eds.), Inventive minds: creativity in technology (pp. 291–310). Oxford: Oxford University Press.

Yamamoto, K. (1963a). Creative writing and school achievement. School and Society, 91 , 307–308.

Yamamoto, K. (1963b). Relationships between creative thinking abilities of teachers and achievement and adjustment of pupils. The Journal of Experimental Education, 32 (1), 3–25. doi: 10.1080/00220973.1963.11010803 .

Download references

Acknowledgments

Financial support was provided by a Netherlands Organization for Scientific Research (NWO) Veni grant awarded to Simone M. Ritter (016.155.049. Veni 2014. Division Social Sciences).

We would like to thank Bernice Plant for her help with the data analysis and the writing of the paper.

Author information

Authors and affiliations.

Department of Social and Cultural Psychology, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands

Simone M. Ritter

Mostert Consultancy for Creativity and Innovation Management, Naaldwijk, The Netherlands

Nel Mostert

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Simone M. Ritter .

Ethics declarations

A total of 32 (20 females) participants between the ages of 18 and 34 years old ( M  = 23.13, SD = 5.76) gave written informed consent to participate in the study, which was conducted according to the principles of the institutional review board (Ethics Committee Faculty of Social Sciences, Radboud University, the Netherlands) and the principles expressed in the Declarations of Helsinki.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Ritter, S.M., Mostert, N. Enhancement of Creative Thinking Skills Using a Cognitive-Based Creativity Training. J Cogn Enhanc 1 , 243–253 (2017). https://doi.org/10.1007/s41465-016-0002-3

Download citation

Received : 08 June 2016

Accepted : 18 August 2016

Published : 07 October 2016

Issue Date : September 2017

DOI : https://doi.org/10.1007/s41465-016-0002-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Creativity training
  • Creative thinking techniques
  • Divergent thinking
  • Convergent thinking
  • Problem solving
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection

Logo of pheelsevier

Problem solving through values: A challenge for thinking and capability development

  • • This paper introduces the 4W framework of consistent problem solving through values.
  • • The 4W suggests when, how and why the explication of values helps to solve a problem.
  • • The 4W is significant to teach students to cope with problems having crucial consequences.
  • • The paper considers challenges using such framework of thinking in different fields of education.

The paper aims to introduce the conceptual framework of problem solving through values. The framework consists of problem analysis, selection of value(s) as a background for the solution, the search for alternative ways of the solution, and the rationale for the solution. This framework reveals when, how, and why is important to think about values when solving problems. A consistent process fosters cohesive and creative value-based thinking during problem solving rather than teaching specific values. Therefore, the framework discloses the possibility for enabling the development of value-grounded problem solving capability.The application of this framework highlights the importance of responsibility for the chosen values that are the basis for the alternatives which determine actions. The 4W framework is meaningful for the people’s lives and their professional work. It is particularly important in the process of future professionals’ education. Critical issues concerning the development of problem solving through values are discussed when considering and examining options for the implementation of the 4W framework in educational institutions.

1. Introduction

The core competencies necessary for future professionals include problem solving based on complexity and collaborative approaches ( OECD, 2018 ). Currently, the emphasis is put on the development of technical, technological skills as well as system thinking and other cognitive abilities (e.g., Barber, 2018 ; Blanco, Schirmbeck, & Costa, 2018 ). Hence, education prepares learners with high qualifications yet lacking in moral values ( Nadda, 2017 ). Educational researchers (e.g., Barnett, 2007 ; Harland & Pickering, 2010 ) stress that such skills and abilities ( the how? ), as well as knowledge ( the what? ), are insufficient to educate a person for society and the world. The philosophy of education underlines both the epistemological and ontological dimensions of learning. Barnett (2007) points out that the ontological dimension has to be above the epistemological one. The ontological dimension encompasses the issues related to values that education should foster ( Harland & Pickering, 2010 ). In addition, values are closely related to the enablement of learners in educational environments ( Jucevičienė et al., 2010 ). For these reasons, ‘ the why ?’ based on values is required in the learning process. The question arises as to what values and how it makes sense to educate them. Value-based education seeks to address these issues and concentrates on values transfer due to their integration into the curriculum. Yazdani and Akbarilakeh (2017) discussed that value-based education could only convey factual knowledge of values and ethics. However, such education does not guarantee the internalization of values. Nevertheless, value-based education indicates problem solving as one of the possibilities to develop values.

Values guide and affect personal behavior encompassing the ethical aspects of solutions ( Roccas, Sagiv, & Navon, 2017 ; Schwartz, 1992 , 2012 ; Verplanken & Holland, 2002 ). Therefore, they represent the essential foundation for solving a problem. Growing evidence indicates the creative potential of values ( Dollinger, Burke, & Gump, 2007 ; Kasof, Chen, Himsel, & Greenberger, 2007 ; Lebedeva et al., 2019) and emphasizes their significance for problem solving. Meanwhile, research in problem solving pays little attention to values. Most of the problem solving models (e.g., Newell & Simon, 1972 ; Jonassen, 1997 ) utilize a rational economic approach. Principally, the research on the mechanisms of problem solving have been conducted under laboratory conditions performing simple tasks ( Csapó & Funke, 2017 ). Moreover, some of the decision-making models share the same steps as problem solving (c.f., Donovan, Guss, & Naslund, 2015 ). This explains why these terms are sometimes used interchangeably ( Huitt, 1992 ). Indeed, decision-making is a part of problem solving, which emerges while choosing between alternatives. Yet, values, moral, and ethical issues are more common in decision-making research (e.g., Keeney, 1994 ; Verplanken & Holland, 2002 ; Hall & Davis, 2007 ; Sheehan & Schmidt, 2015 ). Though, research by Shepherd, Patzelt, and Baron (2013) , Baron, Zhao, and Miao (2015) has affirmed that contemporary business decision makers rather often leave aside ethical issues and moral values. Thus, ‘ethical disengagement fallacy’ ( Sternberg, 2017, p.7 ) occurs as people think that ethics is more relevant to others. In the face of such disengagement, ethical issues lose their prominence.

The analysis of the literature revealed a wide field of problem solving research presenting a range of more theoretical insights rather empirical evidence. Despite this, to date, a comprehensive model that reveals how to solve problems emphasizing thinking about values is lacking. This underlines the relevance of the chosen topic, i.e. a challenge for thinking and for the development of capabilities addressing problems through values. To address this gap, the following issues need to be investigated: When, how, and why a problem solver should take into account values during problem solving? What challenges may occur for using such framework of thinking in different fields of education? Aiming this, the authors of the paper substantiated the conceptual framework of problem solving grounded in consistent thinking about values. The substantiation consists of several parts. First, different approaches to solving problems were examined. Second, searching to reveal the possibilities of values integration into problem solving, value-based approaches significant for problem solving were critically analyzed. Third, drawing on the effect of values when solving a problem and their creative potential, the authors of this paper claim that the identification of values and their choice for a solution need to be specified in the process of problem solving. As a synthesis of conclusions coming from the literature review and conceptual extensions regarding values, the authors of the paper created the coherent framework of problem solving through values (so called 4W).

The novelty of the 4W framework is exposed by several contributions. First, the clear design of overall problem solving process with attention on integrated thinking about values is used. Unlike in most models of problem solving, the first stage encompass the identification of a problem, an analysis of a context and the perspectives that influence the whole process, i.e. ‘What?’. The stage ‘What is the basis for a solution?’ focus on values identification and their choice. The stage ‘Ways how?’ encourages to create alternatives considering values. The stage ‘Why?’ represent justification of a chosen alternative according particular issues. Above-mentioned stages including specific steps are not found in any other model of problem solving. Second, even two key stages nurture thinking about values. The specificity of the 4W framework allows expecting its successful practical application. It may help to solve a problem more informed revealing when and how the explication of values helps to reach the desired value-based solution. The particular significance is that the 4W framework can be used to develop capabilities to solve problems through values. The challenges to use the 4W framework in education are discussed.

2. Methodology

To create the 4W framework, the integrative literature review was chosen. According to Snyder (2019) , this review is ‘useful when the purpose of the review is not to cover all articles ever published on the topic but rather to combine perspectives to create new theoretical models’ (p.334). The scope of this review focused on research disclosing problem solving process that paid attention on values. The following databases were used for relevant information search: EBSCO/Hostdatabases (ERIC, Education Source), Emerald, Google Scholar. The first step of this search was conducted using integrated keywords problem solving model , problem solving process, problem solving steps . These keywords were combined with the Boolean operator AND with the second keywords values approach, value-based . The inclusion criteria were used to identify research that: presents theoretical backgrounds and/or empirical evidences; performed within the last 5 years; within an educational context; availability of full text. The sources appropriate for this review was very limited in scope (N = 2).

We implemented the second search only with the same set of the integrated keywords. The inclusion criteria were the same except the date; this criterion was extended up to 10 years. This search presented 85 different sources. After reading the summaries, introductions and conclusions of the sources found, the sources that do not explicitly provide the process/models/steps of problem solving for teaching/learning purposes and eliminates values were excluded. Aiming to see a more accurate picture of the chosen topic, we selected secondary sources from these initial sources.

Several important issues were determined as well. First, most researchers ground their studies on existing problem solving models, however, not based on values. Second, some of them conducted empirical research in order to identify the process of studies participants’ problem solving. Therefore, we included sources without date restrictions trying to identify the principal sources that reveal the process/models/steps of problem solving. Third, decision-making is a part of problem solving process. Accordingly, we performed a search with the additional keywords decision-making AND values approach, value-based decision-making . We used such inclusion criteria: presents theoretical background and/or empirical evidence; no date restriction; within an educational context; availability of full text. These all searches resulted in a total of 16 (9 theoretical and 7 empirical) sources for inclusion. They were the main sources that contributed most fruitfully for the background. We used other sources for the justification the wholeness of the 4W framework. We present the principal results of the conducted literature review in the part ‘The background of the conceptual framework’.

3. The background of the conceptual framework

3.1. different approaches of how to solve a problem.

Researchers from different fields focus on problem solving. As a result, there still seems to be a lack of a conventional definition of problem solving. Regardless of some differences, there is an agreement that problem solving is a cognitive process and one of the meaningful and significant ways of learning ( Funke, 2014 ; Jonassen, 1997 ; Mayer & Wittrock, 2006 ). Differing in approaches to solving a problem, researchers ( Collins, Sibthorp, & Gookin, 2016 ; Jonassen, 1997 ; Litzinger et al., 2010 ; Mayer & Wittrock, 2006 ; O’Loughlin & McFadzean, 1999 ; ect.) present a variety of models that differ in the number of distinct steps. What is similar in these models is that they stress the procedural process of problem solving with the focus on the development of specific skills and competences.

For the sake of this paper, we have focused on those models of problem solving that clarify the process and draw attention to values, specifically, on Huitt (1992) , Basadur, Ellspermann, and Evans (1994) , and Morton (1997) . Integrating the creative approach to problem solving, Newell and Simon (1972) presents six phases: phase 1 - identifying the problem, phase 2 - understanding the problem, phase 3 - posing solutions, phase 4 - choosing solutions, phase 5 - implementing solutions, and phase 6 - final analysis. The weakness of this model is that these phases do not necessarily follow one another, and several can coincide. However, coping with simultaneously occurring phases could be a challenge, especially if these are, for instance, phases five and six. Certainly, it may be necessary to return to the previous phases for further analysis. According to Basadur et al. (1994) , problem solving consists of problem generation, problem formulation, problem solving, and solution implementation stages. Huitt (1992) distinguishes four stages in problem solving: input, processing, output, and review. Both Huitt (1992) and Basadur et al. (1994) four-stage models emphasize a sequential process of problem solving. Thus, problem solving includes four stages that are used in education. For example, problem-based learning employs such stages as introduction of the problem, problem analysis and learning issues, discovery and reporting, solution presentation and evaluation ( Chua, Tan, & Liu, 2016 ). Even PISA 2012 framework for problem solving composes four stages: exploring and understanding, representing and formulating, planning and executing, monitoring and reflecting ( OECD, 2013 ).

Drawing on various approaches to problem solving, it is possible to notice that although each stage is named differently, it is possible to reveal some general steps. These steps reflect the essential idea of problem solving: a search for the solution from the initial state to the desirable state. The identification of a problem and its contextual elements, the generation of alternatives to a problem solution, the evaluation of these alternatives according to specific criteria, the choice of an alternative for a solution, the implementation, and monitoring of the solution are the main proceeding steps in problem solving.

3.2. Value-based approaches relevant for problem solving

Huitt (1992) suggests that important values are among the criteria for the evaluation of alternatives and the effectiveness of a chosen solution. Basadur et al. (1994) point out to visible values in the problem formulation. Morton (1997) underlines that interests, investigation, prevention, and values of all types, which may influence the process, inspire every phase of problem solving. However, the aforementioned authors do not go deeper and do not seek to disclose the significance of values for problem solving.

Decision-making research shows more possibilities for problem solving and values integration. Sheehan and Schmidt (2015) model of ethical decision-making includes moral sensitivity, moral judgment, moral motivation, and moral action where values are presented in the component of moral motivation. Another useful approach concerned with values comes from decision-making in management. It is the concept of Value-Focused Thinking (VFT) proposed by Keeney (1994) . The author argues that the goals often are merely means of achieving results in traditional models of problem solving. Such models frequently do not help to identify logical links between the problem solving goals, values, and alternatives. Thus, according to Keeney (1994) , the decision-making starts with values as they are stated in the goals and objectives of decision-makers. VFT emphasizes the core values of decision-makers that are in a specific context as well as how to find a way to achieve them by using means-ends analysis. The weakness of VFT is its restriction to this means-ends analysis. According to Shin, Jonassen, and McGee (2003) , in searching for a solution, such analysis is weak as the problem solver focuses simply on removing inadequacies between the current state and the goal state. The strengths of this approach underline that values are included in the decision before alternatives are created. Besides, values help to find creative and meaningful alternatives and to assess them. Further, they include the forthcoming consequences of the decision. As VFT emphasizes the significant function of values and clarifies the possibilities of their integration into problem solving, we adapt this approach in the current paper.

3.3. The effect of values when solving a problem

In a broader sense, values provide a direction to a person’s life. Whereas the importance of values is relatively stable over time and across situations, Roccas et al. (2017) argue that values differ in their importance to a person. Verplanken and Holland (2002) investigated the relationship between values and choices or behavior. The research revealed that the activation of a value and the centrality of a value to the self, are the essential elements for value-guided behavior. The activation of values could happen in such cases: when values are the primary focus of attention; if the situation or the information a person is confronted with implies values; when the self is activated. The centrality of a particular value is ‘the degree to which an individual has incorporated this value as part of the self’ ( Verplanken & Holland, 2002, p.436 ). Thus, the perceived importance of values and attention to them determine value-guided behavior.

According to Argandoña (2003) , values can change due to external (changing values in the people around, in society, changes in situations, etc.) and internal (internalization by learning) factors affecting the person. The research by Hall and Davis (2007) indicates that the decision-makers’ applied value profile temporarily changed as they analyzed the issue from multiple perspectives and revealed the existence of a broader set of values. The study by Kirkman (2017) reveal that participants noticed the relevance of moral values to situations they encountered in various contexts.

Values are tightly related to personal integrity and identity and guide an individual’s perception, judgment, and behavior ( Halstead, 1996 ; Schwartz, 1992 ). Sheehan and Schmidt (2015) found that values influenced ethical decision-making of accounting study programme students when they uncovered their own values and grounded in them their individual codes of conduct for future jobs. Hence, the effect of values discloses by observing the problem solver’s decision-making. The latter observations could explain the abundance of ethics-laden research in decision-making rather than in problem solving.

Contemporary researchers emphasize the creative potential of values. Dollinger et al. (2007) , Kasof et al. (2007) , Lebedeva, Schwartz, Plucker, & Van De Vijver, 2019 present to some extent similar findings as they all used Schwartz Value Survey (respectively: Schwartz, 1992 ; ( Schwartz, 1994 ), Schwartz, 2012 ). These studies disclosed that such values as self-direction, stimulation and universalism foster creativity. Kasof et al. (2007) focused their research on identified motivation. Stressing that identified motivation is the only fully autonomous type of external motivation, authors define it as ‘the desire to commence an activity as a means to some end that one greatly values’ (p.106). While identified motivation toward specific values (italic in original) fosters the search for outcomes that express those specific values, this research demonstrated that it could also inhibit creative behavior. Thus, inhibition is necessary, especially in the case where reckless creativity could have painful consequences, for example, when an architect creates a beautiful staircase without a handrail. Consequently, creativity needs to be balanced.

Ultimately, values affect human beings’ lives as they express the motivational goals ( Schwartz, 1992 ). These motivational goals are the comprehensive criteria for a person’s choices when solving problems. Whereas some problem solving models only mention values as possible evaluation criteria, but they do not give any significant suggestions when and how the problem solver could think about the values coming to the understanding that his/her values direct the decision how to solve the problem. The authors of this paper claim that the identification of personal values and their choice for a solution need to be specified in the process of problem solving. This position is clearly reflected in humanistic philosophy and psychology ( Maslow, 2011 ; Rogers, 1995 ) that emphasize personal responsibility for discovering personal values through critical questioning, honest self-esteem, self-discovery, and open-mindedness in the constant pursuit of the truth in the path of individual life. However, fundamental (of humankind) and societal values should be taken into account. McLaughlin (1997) argues that a clear boundary between societal and personal values is difficult to set as they are intertwined due to their existence in complex cultural, social, and political contexts at a particular time. A person is related to time and context when choosing values. As a result, a person assumes existing values as implicit knowledge without as much as a consideration. This is particularly evident in the current consumer society.

Moreover, McLaughlin (1997) stresses that if a particular action should be tolerated and legitimated by society, it does not mean that this action is ultimately morally acceptable in all respects. Education has possibilities to reveal this. One such possibility is to turn to the capability approach ( Sen, 1990 ), which emphasizes what people are effectively able to do and to be. Capability, according to Sen (1990) , reflects a person’s freedom to choose between various ways of living, i.e., the focus is on the development of a person’s capability to choose the life he/she has a reason to value. According to Webster (2017) , ‘in order for people to value certain aspects of life, they need to appreciate the reasons and purposes – the whys – for certain valuing’ (italic in original; p.75). As values reflect and foster these whys, education should supplement the development of capability with attention to values ( Saito, 2003 ). In order to attain this possibility, a person has to be aware of and be able to understand two facets of values. Argandoña (2003) defines them as rationality and virtuality . Rationality refers to values as the ideal of conduct and involves the development of a person’s understanding of what values and why he/she should choose them when solving a problem. Virtuality approaches values as virtues and includes learning to enable a person to live according to his/her values. However, according to McLaughlin (1997) , some people may have specific values that are deep or self-evidently essential. These values are based on fundamental beliefs about the nature and purpose of the human being. Other values can be more or less superficial as they are based on giving priority to one or the other. Thus, virtuality highlights the depth of life harmonized to fundamentally rather than superficially laden values. These approaches inform the rationale for the framework of problem solving through values.

4. The 4W framework of problem solving through values

Similar to the above-presented stages of the problem solving processes, the introduced framework by the authors of this paper revisits them (see Fig. 1 ). The framework is titled 4W as its four stages respond to such questions: Analyzing the Problem: W hat ? → Choice of the value(s): W hat is the background for the solution? → Search for the alternative w ays of the solution: How ? → The rationale for problem solution: W hy is this alternative significant ? The stages of this framework cover seven steps that reveal the logical sequence of problem solving through values.

Fig. 1

The 4 W framework: problem solving through values.

Though systematic problem solving models are criticized for being linear and inflexible (e.g., Treffinger & Isaksen, 2005 ), the authors of this paper assume a structural view of the problem solving process due to several reasons. First, the framework enables problem solvers to understand the thorough process of problem solving through values. Second, this framework reveals the depth of each stage and step. Third, problem solving through values encourages tackling problems that have crucial consequences. Only by understanding and mastering the coherence of how problems those require a value-based approach need to be addressed, a problem solver will be able to cope with them in the future. Finally, this framework aims at helping to recognize, to underline personal values, to solve problems through thinking about values, and to take responsibility for choices, even value-based. The feedback supports a direct interrelation between stages. It shapes a dynamic process of problem solving through values.

The first stage of problem solving through values - ‘ The analysis of the problem: What? ’- consists of three steps (see Fig. 1 ). The first step is ‘ Recognizing the problematic situation and naming the problem ’. This step is performed in the following sequence. First, the problem solver should perceive the problematic situation he/she faces in order to understand it. Dostál (2015) argues that the problematic situation has the potential to become the problem necessary to be addressed. Although each problem is limited by its context, not every problematic situation turns into a problem. This is related to the problem solver’s capability and the perception of reality: a person may not ‘see’ the problem if his/her capability to perceive it is not developed ( Dorst, 2006 ; Dostál, 2015 ). Second, after the problem solver recognizes the existence of the problematic situation, the problem solver has to identify the presence or absence of the problem itself, i.e. to name the problem. This is especially important in the case of the ill-structured problems since they cannot be directly visible to the problem solver ( Jonassen, 1997 ). Consequently, this step allows to determine whether the problem solver developed or has acquired the capability to perceive the problematic situation and the problem (naming the problem).

The second step is ‘ Analysing the context of the problem as a reason for its rise ’. At this step, the problem solver aims to analyse the context of the problem. The latter is one of the external issues, and it determines the solution ( Jonassen, 2011 ). However, if more attention is paid to the solution of the problem, it diverts attention from the context ( Fields, 2006 ). The problem solver has to take into account both the conveyed and implied contextual elements in the problematic situation ( Dostál, 2015 ). In other words, the problem solver has to examine it through his/her ‘contextual lenses’ ( Hester & MacG, 2017 , p.208). Thus, during this step the problem solver needs to identify the elements that shape the problem - reasons and circumstances that cause the problem, the factors that can be changed, and stakeholders that are involved in the problematic situation. Whereas the elements of the context mentioned above are within the problematic situation, the problem solver can control many of them. Such control can provide unique ways for a solution.

Although the problem solver tries to predict the undesirable results, some criteria remain underestimated. For that reason, it is necessary to highlight values underlying the various possible goals during the analysis ( Fields, 2006 ). According to Hester and MacG (2017) , values express one of the main features of the context and direct the attention of the problem solver to a given problematic situation. Hence, the problem solver should explore the value-based positions that emerge in the context of the problem.

The analysis of these contextual elements focus not only on a specific problematic situation but also on the problem that has emerged. This requires setting boundaries of attention for an in-depth understanding ( Fields, 2006 ; Hester & MacG, 2017 ). Such understanding influences several actions: (a) the recognition of inappropriate aspects of the problematic situation; (b) the emergence of paths in which identified aspects are expected to change. These actions ensure consistency and safeguard against distractions. Thus, the problem solver can now recognize and identify the factors that influence the problem although they are outside of the problematic situation. However, the problem solver possesses no control over them. With the help of such context analysis, the problem solver constructs a thorough understanding of the problem. Moreover, the problem solver becomes ready to look at the problem from different perspectives.

The third step is ‘ Perspectives emerging in the problem ’. Ims and Zsolnai (2009) argue that problem solving usually contains a ‘problematic search’. Such a search is a pragmatic activity as the problem itself induces it. Thus, the problem solver searches for a superficial solution. As a result, the focus is on control over the problem rather than a deeper understanding of the problem itself. The analysis of the problem, especially including value-based approaches, reveals the necessity to consider the problem from a variety of perspectives. Mitroff (2000) builds on Linstone (1989) ideas and claims that a sound foundation of both naming and solving any problem lays in such perspectives: the technical/scientific, the interpersonal/social, the existential, and the systemic (see Table 1 ).

The main characteristics of four perspectives for problem solving

Whereas all problems have significant aspects of each perspective, disregarding one or another may lead to the wrong way of solving the problem. While analysing all four perspectives is essential, this does not mean that they all are equally important. Therefore, it is necessary to justify why one or another perspective is more relevant and significant in a particular case. Such analysis, according to Linstone (1989) , ‘forces us to distinguish how we are looking from what we are looking at’ (p.312; italic in original). Hence, the problem solver broadens the understanding of various perspectives and develops the capability to see the bigger picture ( Hall & Davis, 2007 ).

The problem solver aims to identify and describe four perspectives that have emerged in the problem during this step. In order to identify perspectives, the problem solver search answers to the following questions. First, regarding the technical/scientific perspective: What technical/scientific reasons are brought out in the problem? How and to what extent do they influence a problem and its context? Second, regarding the interpersonal/social perspective: What is the impact of the problem on stakeholders? How does it influence their attitudes, living conditions, interests, needs? Third, regarding the existential perspective: How does the problem affect human feelings, experiences, perception, and/or discovery of meaning? Fourth, regarding the systemic perspective: What is the effect of the problem on the person → community → society → the world? Based on the analysis of this step, the problem solver obtains a comprehensive picture of the problem. The next stage is to choose the value(s) that will address the problem.

The second stage - ‘ The choice of value(s): What is the background for the solution?’ - includes the fourth and the fifth steps. The fourth step is ‘ The identification of value(s) as a base for the solution ’. During this step, the problem solver should activate his/her value(s) making it (them) explicit. In order to do this, the problem solver proceeds several sub-steps. First, the problem solver reflects taking into account the analysis done in previous steps. He/she raises up questions revealing values that lay in the background of this analysis: What values does this analyzed context allow me to notice? What values do different perspectives of the problem ‘offer’? Such questioning is important as values are deeply hidden ( Verplanken & Holland, 2002 ) and they form a bias, which restricts the development of the capability to see from various points of view ( Hall & Paradice, 2007 ). In the 4W framework, this bias is relatively eliminated due to the analysis of the context and exploration of the perspectives of a problem. As a result, the problem solver discovers distinct value-based positions and gets an opportunity to identify the ‘value uncaptured’ ( Yang, Evans, Vladimirova, & Rana, 2017, p.1796 ) within the problem analyzed. The problem solver observes that some values exist in the context (the second step) and the disclosed perspectives (the third step). Some of the identified values do not affect the current situation as they are not required, or their potential is not exploited. Thus, looking through various value-based lenses, the problem solver can identify and discover a congruence between the opportunities offered by the values in the problem’s context, disclosed perspectives and his/her value(s). Consequently, the problem solver decides what values he/she chooses as a basis for the desired solution. Since problems usually call for a list of values, it is important to find out their order of priority. Thus, the last sub-step requires the problem solver to choose between fundamentally and superficially laden values.

In some cases, the problem solver identifies that a set of values (more than one value) can lead to the desired solution. If a person chooses this multiple value-based position, two options emerge. The first option is concerned with the analysis of each value-based position separately (from the fifth to the seventh step). In the second option, a person has to uncover which of his/her chosen values are fundamentally laden and which are superficially chosen, considering the desired outcome in the current situation. Such clarification could act as a strategy where the path for the desired solution is possible going from superficially chosen value(s) to fundamentally laden one. When a basis for the solution is established, the problem solver formulates the goal for the desired solution.

The fifth step is ‘ The formulation of the goal for the solution ’. Problem solving highlights essential points that reveal the structure of a person’s goals; thus, a goal is the core element of problem solving ( Funke, 2014 ). Meantime, values reflect the motivational content of the goals ( Schwartz, 1992 ). The attention on the chosen value not only activates it, but also motivates the problem solver. The motivation directs the formulation of the goal. In such a way, values explicitly become a basis of the goal for the solution. Thus, this step involves the problem solver in formulating the goal for the solution as the desired outcome.

The way how to take into account value(s) when formulating the goal is the integration of value(s) chosen by the problem solver in the formulation of the goal ( Keeney, 1994 ). For this purpose the conjunction of a context for a solution (it is analyzed during the second step) and a direction of preference (the chosen value reveals it) serves for the formulation of the goal (that represents the desired solution). In other words, a value should be directly included into the formulation of the goal. The goal could lose value, if value is not included into the goal formulation and remains only in the context of the goal. Let’s take the actual example concerning COVID-19 situation. Naturally, many countries governments’ preference represents such value as human life (‘it is important of every individual’s life’). Thus, most likely the particular country government’s goal of solving the COVID situation could be to save the lifes of the country people. The named problem is a complex where the goal of its solution is also complex, although it sounds simple. However, if the goal as desired outcome is formulated without the chosen value, this value remains in the context and its meaning becomes tacit. In the case of above presented example - the goal could be formulated ‘to provide hospitals with the necessary equipment and facilities’. Such goal has the value ‘human’s life’ in the context, but eliminates the complexity of the problem that leads to a partial solution of the problem. Thus, this step from the problem solver requires caution when formulating the goal as the desired outcome. For this reason, maintaining value is very important when formulating the goal’s text. To avoid the loss of values and maintain their proposed direction, is necessary to take into account values again when creating alternatives.

The third stage - ‘ Search for the alternative ways for a solution: How? ’ - encompasses the sixth step, which is called ‘ Creation of value-based alternatives ’. Frequently problem solver invokes a traditional view of problem identification, generation of alternatives, and selection of criteria for evaluating findings. Keeney (1994) ; Ims and Zsolnai (2009) criticize this rational approach as it supports a search for a partial solution where an active search for alternatives is neglected. Moreover, a problematic situation, according to Perkins (2009) , can create the illusion of a fully framed problem with some apparent weighting and some variations of choices. In this case, essential and distinct alternatives to the solution frequently become unnoticeable. Therefore, Perkins (2009) suggest to replace the focus on the attempts to comprehend the problem itself. Thinking through the ‘value lenses’ offers such opportunities. The deep understanding of the problem leads to the search for the alternative ways of a solution.

Thus, the aim of this step is for the problem solver to reveal the possible alternative ways for searching a desired solution. Most people think they know how to create alternatives, but often without delving into the situation. First of all, the problem solver based on the reflection of (but not limited to) the analysis of the context and the perspectives of the problem generates a range of alternatives. Some of these alternatives represent anchored thinking as he/she accepts the assumptions implicit in generated alternatives and with too little focus on values.

The chosen value with the formulated goal indicates direction and encourages a broader and more creative search for a solution. Hence, the problem solver should consider some of the initial alternatives that could best support the achievement of the desired solution. Values are the principles for evaluating the desirability of any alternative or outcome ( Keeney, 1994 ). Thus, planned actions should reveal the desirable mode of conduct. After such consideration, he/she should draw up a plan setting out the actions required to implement each of considered alternatives.

Lastly, after a thorough examination of each considered alternative and a plan of its implementation, the problem solver chooses one of them. If the problem solver does not see an appropriate alternative, he/she develops new alternatives. However, the problem solver may notice (and usually does) that more than one alternative can help him/her to achieve the desired solution. In this case, he/she indicates which alternative is the main one and has to be implemented in the first place, and what other alternatives and in what sequence will contribute in searching for the desired solution.

The fourth stage - ‘ The rationale for the solution: Why ’ - leads to the seventh step: ‘ The justification of the chosen alternative ’. Keeney (1994) emphasizes the compatibility of alternatives in question with the values that guide the action. This underlines the importance of justifying the choices a person makes where the focus is on taking responsibility. According to Zsolnai (2008) , responsibility means a choice, i.e., the perceived responsibility essentially determines its choice. Responsible justification allows for discovering optimal balance when choosing between distinct value-based alternatives. It also refers to the alternative solution that best reflects responsibility in a particular value context, choice, and implementation.

At this stage, the problem solver revisits the chosen solution and revises it. The problem solver justifies his/her choice based on the following questions: Why did you choose this? Why is this alternative significant looking from the technical/scientific, the interpersonal/social, the existential, and the systemic perspectives? Could you take full responsibility for the implementation of this alternative? Why? How clearly do envisaged actions reflect the goal of the desired solution? Whatever interests and for what reasons do this alternative satisfies in principle? What else do you see in the chosen alternative?

As mentioned above, each person gives priority to one aspect or another. The problem solver has to provide solid arguments for the justification of the chosen alternative. The quality of arguments, according to Jonassen (2011) , should be judged based on the quality of the evidence supporting the chosen alternative and opposing arguments that can reject solutions. Besides, the pursuit of value-based goals reflects the interests of the individual or collective interests. Therefore, it becomes critical for the problem solver to justify the level of responsibility he/she takes in assessing the chosen alternative. Such a complex evaluation of the chosen alternative ensures the acceptance of an integral rather than unilateral solution, as ‘recognizing that, in the end, people benefit most when they act for the common good’ ( Sternberg, 2012, p.46 ).

5. Discussion

The constant emphasis on thinking about values as explicit reasoning in the 4W framework (especially from the choice of the value(s) to the rationale for problem solution) reflects the pursuit of virtues. Virtues form the features of the character that are related to the choice ( Argandoña, 2003 ; McLaughlin, 2005 ). Hence, the problem solver develops value-grounded problem solving capability as the virtuality instead of employing rationality for problem solving.

Argandoña (2003) suggests that, in order to make a sound valuation process of any action, extrinsic, transcendent, and intrinsic types of motives need to be considered. They cover the respective types of values. The 4W framework meets these requirements. An extrinsic motive as ‘attaining the anticipated or expected satisfaction’ ( Argandoña, 2003, p.17 ) is reflected in the formulation of the goal of the solution, the creation of alternatives and especially in the justification of the chosen alternative way when the problem solver revisits the external effect of his/her possible action. Transcendent motive as ‘generating certain effects in others’ ( Argandoña, 2003, p.17 ) is revealed within the analysis of the context, perspectives, and creating alternatives. When the learner considers the creation of alternatives and revisits the chosen alternative, he/she pays more attention to these motives. Two types of motives mentioned so far are closely related to an intrinsic motive that emphasizes learning development within the problem solver. These motives confirm that problem solving is, in fact, lifelong learning. In light of these findings, the 4W framework is concerned with some features of value internalization as it is ‘a psychological outcome of conscious mind reasoning about values’ ( Yazdani & Akbarilakeh, 2017, p.1 ).

The 4W framework is complicated enough in terms of learning. One issue is concerned with the educational environments ( Jucevičienė, 2008 ) required to enable the 4W framework. First, the learning paradigm, rather than direct instruction, lies at the foundation of such environments. Second, such educational environments include the following dimensions: (1) educational goal; (2) learning capacity of the learners; (3) educational content relevant to the educational goal: ways and means of communicating educational content as information presented in advance (they may be real, people among them, as well as virtual); (5) methods and means of developing educational content in the process of learners’ performance; (6) physical environment relevant to the educational goal and conditions of its implementation as well as different items in the environment; (7) individuals involved in the implementation of the educational goal.

Another issue is related to exercising this framework in practice. Despite being aware of the 4W framework, a person may still not want to practice problem solving through values, since most of the solutions are going to be complicated, or may even be painful. One idea worth looking into is to reveal the extent to which problem solving through values can become a habit of mind. Profound focus on personal values, context analysis, and highlighting various perspectives can involve changes in the problem solver’s habit of mind. The constant practice of problem solving through values could first become ‘the epistemic habit of mind’ ( Mezirow, 2009, p.93 ), which means a personal way of knowing things and how to use that knowledge. This echoes Kirkman (2017) findings. The developed capability to notice moral values in situations that students encountered changed some students’ habit of mind as ‘for having “ruined” things by making it impossible not to attend to values in such situations!’ (the feedback from one student; Kirkman, 2017, p.12 ). However, this is not enough, as only those problems that require a value-based approach are addressed. Inevitably, the problem solver eventually encounters the challenges of nurturing ‘the moral-ethical habit of mind’ ( Mezirow, 2009, p.93 ). In pursuance to develop such habits of mind, the curriculum should include the necessity of the practising of the 4W framework.

Thinking based on values when solving problems enables the problem solver to engage in thoughtful reflection in contrast to pragmatic and superficial thinking supported by the consumer society. Reflection begins from the first stage of the 4W framework. As personal values are the basis for the desired solution, the problem solver is also involved in self-reflection. The conscious and continuous reflection on himself/herself and the problematic situation reinforce each step of the 4W framework. Moreover, the fourth stage (‘The rationale for the solution: Why’) involves the problem solver in critical reflection as it concerned with justification of ‘the why , the reasons for and the consequences of what we do’ (italic, bold in original; Mezirow, 1990, p.8 ). Exercising the 4W framework in practice could foster reflective practice. Empirical evidence shows that reflective practice directly impacts knowledge, skills and may lead to changes in personal belief systems and world views ( Slade, Burnham, Catalana, & Waters, 2019 ). Thus, with the help of reflective practice it is possible to identify in more detail how and to what extent the 4W framework has been mastered, what knowledge gained, capabilities developed, how point of views changed, and what influence the change process.

Critical issues related to the development of problem solving through values need to be distinguished when considering and examining options for the implementation of the 4W framework at educational institutions. First, the question to what extent can the 4W framework be incorporated into various subjects needs to be answered. Researchers could focus on applying the 4W framework to specific subjects in the humanities and social sciences. The case is with STEM subjects. Though value issues of sustainable development and ecology are of great importance, in reality STEM teaching is often restricted to the development of knowledge and skills, leaving aside the thinking about values. The special task of the researchers is to help practitioners to apply the 4W framework in STEM subjects. Considering this, researchers could employ the concept of ‘dialogic space’ ( Wegerif, 2011, p.3 ) which places particular importance of dialogue in the process of education emphasizing both the voices of teachers and students, and materials. In addition, the dimensions of educational environments could be useful aligning the 4W framework with STEM subjects. As STEM teaching is more based on solving various special tasks and/or integrating problem-based learning, the 4W framework could be a meaningful tool through which content is mastered, skills are developed, knowledge is acquired by solving pre-prepared specific tasks. In this case, the 4W framework could act as a mean addressing values in STEM teaching.

Second is the question of how to enable the process of problem solving through values. In the current paper, the concept of enabling is understood as an integral component of the empowerment. Juceviciene et al. (2010) specify that at least two perspectives can be employed to explain empowerment : a) through the power of legitimacy (according to Freire, 1996 ); and b) through the perspective of conditions for the acquisition of the required knowledge, capabilities, and competence, i.e., enabling. In this paper the 4W framework does not entail the issue of legitimacy. This issue may occur, for example, when a teacher in economics is expected to provide students with subject knowledge only, rather than adding tasks that involve problem solving through values. Yet, the issue of legitimacy is often implicit. A widespread phenomenon exists that teaching is limited to certain periods that do not have enough time for problem solving through values. The issue of legitimacy as an organizational task that supports/or not the implementation of the 4W framework in any curriculum is a question that calls for further discussion.

Third (if not the first), the issue of an educator’s competence to apply such a framework needs to be addressed. In order for a teacher to be a successful enabler, he/she should have the necessary competence. This is related to the specific pedagogical knowledge and skills, which are highly dependent on the peculiarities of the subject being taught. Nowadays actualities are encouraging to pay attention to STEM subjects and their teacher training. For researchers and teacher training institutions, who will be interested in implementing the 4W framework in STEM subjects, it would be useful to draw attention to ‘a material-dialogic approach to pedagogy’ ( Hetherington & Wegerif, 2018, p.27 ). This approach creates the conditions for a deep learning of STEM subjects revealing additional opportunities for problem solving through values in teaching. Highlighting these opportunities is a task for further research.

In contrast to traditional problem solving models, the 4W framework is more concerned with educational purposes. The prescriptive approach to teaching ( Thorne, 1994 ) is applied to the 4W framework. This approach focuses on providing guidelines that enable students to make sound decisions by making explicit value judgements. The limitation is that the 4W framework is focused on thinking but not executing. It does not include the fifth stage, which would focus on the execution of the decision how to solve the problem. This stage may contain some deviation from the predefined process of the solution of the problem.

6. Conclusions

The current paper focuses on revealing the essence of the 4W framework, which is based on enabling the problem solver to draw attention to when, how, and why it is essential to think about values during the problem solving process from the perspective of it’s design. Accordingly, the 4W framework advocates the coherent approach when solving a problem by using a creative potential of values.

The 4W framework allows the problem solver to look through the lens of his/her values twice. The first time, while formulating the problem solving goal as the desired outcome. The second time is when the problem solver looks deeper into his/her values while exploring alternative ways to solve problems. The problem solver is encouraged to reason about, find, accept, reject, compare values, and become responsible for the consequences of the choices grounded on his/her values. Thus, the problem solver could benefit from the 4W framework especially when dealing with issues having crucial consequences.

An educational approach reveals that the 4W framework could enable the development of value-grounded problem solving capability. As problem solving encourages the development of higher-order thinking skills, the consistent inclusion of values enriches them.

The 4W framework requires the educational environments for its enablement. The enablement process of problem solving through values could be based on the perspective of conditions for the acquisition of the required knowledge and capability. Continuous practice of this framework not only encourages reflection, but can also contribute to the creation of the epistemic habit of mind. Applying the 4W framework to specific subjects in the humanities and social sciences might face less challenge than STEM ones. The issue of an educator’s competence to apply such a framework is highly important. The discussed issues present significant challenges for researchers and educators. Caring that the curriculum of different courses should foresee problem solving through values, both practicing and empirical research are necessary.

Declaration of interests

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Both authors have approved the final article.

  • Argandoña A. Fostering values in organizations. Journal of Business Ethics. 2003; 45 (1–2):15–28. https://link.springer.com/content/pdf/10.1023/A:1024164210743.pdf [ Google Scholar ]
  • Barber S. A truly “Transformative” MBA: Executive education for the fourth industrial revolution. Journal of Pedagogic Development. 2018; 8 (2):44–55. [ Google Scholar ]
  • Barnett R. McGraw-Hill Education; UK): 2007. Will to learn: Being a student in an age of uncertainty. [ Google Scholar ]
  • Baron R.A., Zhao H., Miao Q. Personal motives, moral disengagement, and unethical decisions by entrepreneurs: Cognitive mechanisms on the “slippery slope” Journal of Business Ethics. 2015; 128 (1):107–118. doi: 10.1007/s10551-014-2078-y. [ CrossRef ] [ Google Scholar ]
  • Basadur M., Ellspermann S.J., Evans G.W. A new methodology for formulating ill-structured problems. Omega. 1994; 22 (6):627–645. doi: 10.1016/0305-0483(94)90053-1. [ CrossRef ] [ Google Scholar ]
  • Blanco E., Schirmbeck F., Costa C. International Conference on Remote Engineering and Virtual Instrumentation . Springer; Cham: 2018. Vocational Education for the Industrial Revolution; pp. 649–658. [ Google Scholar ]
  • Chua B.L., Tan O.S., Liu W.C. Journey into the problem-solving process: Cognitive functions in a PBL environment. Innovations in Education and Teaching International. 2016; 53 (2):191–202. doi: 10.1080/14703297.2014.961502. [ CrossRef ] [ Google Scholar ]
  • Collins R.H., Sibthorp J., Gookin J. Developing ill-structured problem-solving skills through wilderness education. Journal of Experiential Education. 2016; 39 (2):179–195. doi: 10.1177/1053825916639611. [ CrossRef ] [ Google Scholar ]
  • Csapó B., Funke J., editors. The nature of problem solving: Using research to inspire 21st century learning. OECD Publishing; 2017. The development and assessment of problem solving in 21st-century schools. (Chapter 1). [ CrossRef ] [ Google Scholar ]
  • Dollinger S.J., Burke P.A., Gump N.W. Creativity and values. Creativity Research Journal. 2007; 19 (2-3):91–103. doi: 10.1080/10400410701395028. [ CrossRef ] [ Google Scholar ]
  • Donovan S.J., Guss C.D., Naslund D. Improving dynamic decision making through training and self-reflection. Judgment and Decision Making. 2015; 10 (4):284–295. http://digitalcommons.unf.edu/apsy_facpub/2 [ Google Scholar ]
  • Dorst K. Design problems and design paradoxes. Design Issues. 2006; 22 (3):4–17. doi: 10.1162/desi.2006.22.3.4. [ CrossRef ] [ Google Scholar ]
  • Dostál J. Theory of problem solving. Procedia-Social and Behavioral Sciences. 2015; 174 :2798–2805. doi: 10.1016/j.sbspro.2015.01.970. [ CrossRef ] [ Google Scholar ]
  • Fields A.M. Ill-structured problems and the reference consultation: The librarian’s role in developing student expertise. Reference Services Review. 2006; 34 (3):405–420. doi: 10.1108/00907320610701554. [ CrossRef ] [ Google Scholar ]
  • Freire P. Continuum; New York: 1996. Pedagogy of the oppressed (revised) [ Google Scholar ]
  • Funke J. Problem solving: What are the important questions?. Proceedings of the 36th Annual Conference of the Cognitive Science Society; Austin, TX: Cognitive Science Society; 2014. pp. 493–498. [ Google Scholar ]
  • Hall D.J., Davis R.A. Engaging multiple perspectives: A value-based decision-making model. Decision Support Systems. 2007; 43 (4):1588–1604. doi: 10.1016/j.dss.2006.03.004. [ CrossRef ] [ Google Scholar ]
  • Hall D.J., Paradice D. Investigating value-based decision bias and mediation: do you do as you think? Communications of the ACM. 2007; 50 (4):81–85. [ Google Scholar ]
  • Halstead J.M. Values and values education in schools. In: Halstead J.M., Taylor M.J., editors. Values in education and education in values. The Falmer Press; London: 1996. pp. 3–14. [ Google Scholar ]
  • Harland T., Pickering N. Routledge; 2010. Values in higher education teaching. [ Google Scholar ]
  • Hester P.T., MacG K. Springer; New York: 2017. Systemic decision making: Fundamentals for addressing problems and messes. [ Google Scholar ]
  • Hetherington L., Wegerif R. Developing a material-dialogic approach to pedagogy to guide science teacher education. Journal of Education for Teaching. 2018; 44 (1):27–43. doi: 10.1080/02607476.2018.1422611. [ CrossRef ] [ Google Scholar ]
  • Huitt W. Problem solving and decision making: Consideration of individual differences using the Myers-Briggs type indicator. Journal of Psychological Type. 1992; 24 (1):33–44. [ Google Scholar ]
  • Ims K.J., Zsolnai L. The future international manager. Palgrave Macmillan; London: 2009. Holistic problem solving; pp. 116–129. [ Google Scholar ]
  • Jonassen D. Supporting problem solving in PBL. Interdisciplinary Journal of Problem-based Learning. 2011; 5 (2):95–119. doi: 10.7771/1541-5015.1256. [ CrossRef ] [ Google Scholar ]
  • Jonassen D.H. Instructional design models for well-structured and III-structured problem-solving learning outcomes. Educational Technology Research and Development. 1997; 45 (1):65–94. doi: 10.1007/BF02299613. [ CrossRef ] [ Google Scholar ]
  • Jucevičienė P. Educational and learning environments as a factor for socioeducational empowering of innovation. Socialiniai mokslai. 2008; 1 :58–70. [ Google Scholar ]
  • Jucevičienė P., Gudaitytė D., Karenauskaitė V., Lipinskienė D., Stanikūnienė B., Tautkevičienė G. Technologija; Kaunas: 2010. Universiteto edukacinė galia: Atsakas XXI amžiaus iššūkiams [The educational power of university: the response to the challenges of the 21st century] [ Google Scholar ]
  • Kasof J., Chen C., Himsel A., Greenberger E. Values and creativity. Creativity Research Journal. 2007; 19 (2–3):105–122. doi: 10.1080/10400410701397164. [ CrossRef ] [ Google Scholar ]
  • Keeney R.L. Creativity in decision making with value-focused thinking. MIT Sloan Management Review. 1994; 35 (4):33–41. [ Google Scholar ]
  • Kirkman R. Problem-based learning in engineering ethics courses. Interdisciplinary Journal of Problem-based Learning. 2017; 11 (1) doi: 10.7771/1541-5015.1610. [ CrossRef ] [ Google Scholar ]
  • Lebedeva N., Schwartz S., Plucker J., Van De Vijver F. Domains of everyday creativity and personal values. Frontiers in Psychology. 2019; 9 :1–16. doi: 10.3389/fpsyg.2018.02681. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Linstone H.A. Multiple perspectives: Concept, applications, and user guidelines. Systems Practice. 1989; 2 (3):307–331. [ Google Scholar ]
  • Litzinger T.A., Meter P.V., Firetto C.M., Passmore L.J., Masters C.B., Turns S.R.…Zappe S.E. A cognitive study of problem solving in statics. Journal of Engineering Education. 2010; 99 (4):337–353. [ Google Scholar ]
  • Maslow A.H. Vaga; Vilnius: 2011. Būties psichologija. [Psychology of Being] [ Google Scholar ]
  • Mayer R., Wittrock M. Problem solving. In: Alexander P., Winne P., editors. Handbook of educational psychology. Psychology Press; New York, NY: 2006. pp. 287–303. [ Google Scholar ]
  • McLaughlin T. The educative importance of ethos. British Journal of Educational Studies. 2005; 53 (3):306–325. doi: 10.1111/j.1467-8527.2005.00297.x. [ CrossRef ] [ Google Scholar ]
  • McLaughlin T.H. Technologija; Kaunas: 1997. Šiuolaikinė ugdymo filosofija: demokratiškumas, vertybės, įvairovė [Contemporary philosophy of education: democracy, values, diversity] [ Google Scholar ]
  • Mezirow J. Jossey-Bass Publishers; San Francisco: 1990. Fostering critical reflection in adulthood; pp. 1–12. https://my.liberatedleaders.com.au/wp-content/uploads/2017/02/How-Critical-Reflection-triggers-Transformative-Learning-Mezirow.pdf [ Google Scholar ]
  • Mezirow J. Contemporary theories of learning. Routledge; 2009. An overview on transformative learning; pp. 90–105. (Chapter 6) [ Google Scholar ]
  • Mitroff I. Šviesa; Kaunas: 2000. Kaip neklysti šiais beprotiškais laikais: ar mokame spręsti esmines problemas. [How not to get lost in these crazy times: do we know how to solve essential problems] [ Google Scholar ]
  • Morton L. Teaching creative problem solving: A paradigmatic approach. Cal. WL Rev. 1997; 34 :375. [ Google Scholar ]
  • Nadda P. Need for value based education. International Education and Research Journal. 2017; 3 (2) http://ierj.in/journal/index.php/ierj/article/view/690/659 [ Google Scholar ]
  • Newell A., Simon H.A. Prentice-Hall; Englewood Cliffs, NJ: 1972. Human problem solving. [ Google Scholar ]
  • OECD . PISA, OECD Publishing; Paris: 2013. PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy . https://www.oecd.org/pisa/pisaproducts/PISA%202012%20framework%20e-book_final.pdf [ Google Scholar ]
  • OECD . PISA, OECD Publishing; 2018. PISA 2015 results in focus . https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf [ Google Scholar ]
  • O’Loughlin A., McFadzean E. Toward a holistic theory of strategic problem solving. Team Performance Management: An International Journal. 1999; 5 (3):103–120. [ Google Scholar ]
  • Perkins D.N. Decision making and its development. In: Callan E., Grotzer T., Kagan J., Nisbett R.E., Perkins D.N., Shulman L.S., editors. Education and a civil society: Teaching evidence-based decision making. American Academy of Arts and Sciences; Cambridge, MA: 2009. pp. 1–28. (Chapter 1) [ Google Scholar ]
  • Roccas S., Sagiv L., Navon M. Values and behavior. Cham: Springer; 2017. Methodological issues in studying personal values; pp. 15–50. [ Google Scholar ]
  • Rogers C.R. Houghton Mifflin Harcourt; Boston: 1995. On becoming a person: A therapist’s view of psychotherapy. [ Google Scholar ]
  • Saito M. Amartya Sen’s capability approach to education: A critical exploration. Journal of Philosophy of Education. 2003; 37 (1):17–33. doi: 10.1111/1467-9752.3701002. [ CrossRef ] [ Google Scholar ]
  • Schwartz S.H. Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. In: Zanna M.P., editor. Vol. 25. Academic Press; 1992. pp. 1–65. (Advances in experimental social psychology). [ Google Scholar ]
  • Schwartz S.H. Are there universal aspects in the structure and contents of human values? Journal of social issues. 1994; 50 (4):19–45. [ Google Scholar ]
  • Schwartz S.H. An overview of the Schwartz theory of basic values. Online Readings in Psychology and Culture. 2012; 2 (1):1–20. doi: 10.9707/2307-0919.1116. [ CrossRef ] [ Google Scholar ]
  • Sen A. Development as capability expansion. The community development reader. 1990:41–58. http://www.masterhdfs.org/masterHDFS/wp-content/uploads/2014/05/Sen-development.pdf [ Google Scholar ]
  • Sheehan N.T., Schmidt J.A. Preparing accounting students for ethical decision making: Developing individual codes of conduct based on personal values. Journal of Accounting Education. 2015; 33 (3):183–197. doi: 10.1016/j.jaccedu.2015.06.001. [ CrossRef ] [ Google Scholar ]
  • Shepherd D.A., Patzelt H., Baron R.A. “I care about nature, but…”: Disengaging values in assessing opportunities that cause harm. The Academy of Management Journal. 2013; 56 (5):1251–1273. doi: 10.5465/amj.2011.0776. [ CrossRef ] [ Google Scholar ]
  • Shin N., Jonassen D.H., McGee S. Predictors of well‐structured and ill‐structured problem solving in an astronomy simulation. Journal of Research in Science Teaching. 2003; 40 (1):6–33. doi: 10.1002/tea.10058. [ CrossRef ] [ Google Scholar ]
  • Slade M.L., Burnham T.J., Catalana S.M., Waters T. The impact of reflective practice on teacher candidates’ learning. International Journal for the Scholarship of Teaching and Learning. 2019; 13 (2):15. doi: 10.20429/ijsotl.2019.130215. [ CrossRef ] [ Google Scholar ]
  • Snyder H. Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 2019; 104 :333–339. doi: 10.1016/j.jbusres.2019.07.039. [ CrossRef ] [ Google Scholar ]
  • Sternberg R. Teaching for ethical reasoning. International Journal of Educational Psychology. 2012; 1 (1):35–50. doi: 10.4471/ijep.2012.03. [ CrossRef ] [ Google Scholar ]
  • Sternberg R. Speculations on the role of successful intelligence in solving contemporary world problems. Journal of Intelligence. 2017; 6 (1):4. doi: 10.3390/jintelligence6010004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Thorne D.M. Environmental ethics in international business education: Descriptive and prescriptive dimensions. Journal of Teaching in International Business. 1994; 5 (1–2):109–122. doi: 10.1300/J066v05n01_08. [ CrossRef ] [ Google Scholar ]
  • Treffinger D.J., Isaksen S.G. Creative problem solving: The history, development, and implications for gifted education and talent development. The Gifted Child Quarterly. 2005; 49 (4):342–353. doi: 10.1177/001698620504900407. [ CrossRef ] [ Google Scholar ]
  • Verplanken B., Holland R.W. Motivated decision making: Effects of activation and self-centrality of values on choices and behavior. Journal of Personality and Social Psychology. 2002; 82 (3):434–447. doi: 10.1037/0022-3514.82.3.434. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Webster R.S. Re-enchanting education and spiritual wellbeing. Routledge; 2017. Being spiritually educated; pp. 73–85. [ Google Scholar ]
  • Wegerif R. Towards a dialogic theory of how children learn to think. Thinking Skills and Creativity. 2011; 6 (3):179–190. doi: 10.1016/j.tsc.2011.08.002. [ CrossRef ] [ Google Scholar ]
  • Yang M., Evans S., Vladimirova D., Rana P. Value uncaptured perspective for sustainable business model innovation. Journal of Cleaner Production. 2017; 140 :1794–1804. doi: 10.1016/j.jclepro.2016.07.102. [ CrossRef ] [ Google Scholar ]
  • Yazdani S., Akbarilakeh M. The model of value-based curriculum for medicine and surgery education in Iran. Journal of Minimally Invasive Surgical Sciences. 2017; 6 (3) doi: 10.5812/minsurgery.14053. [ CrossRef ] [ Google Scholar ]
  • Zsolnai L. Transaction Publishers; New Brunswick and London: 2008. Responsible decision making. [ Google Scholar ]

Everything Baby Showers

Everything Baby Showers

12 Ways Schools Are Killing Creativity and How to Fight Back

Posted: May 16, 2024 | Last updated: May 16, 2024

<p>Today, creativity is a prized asset, essential for innovation and problem-solving. However, traditional educational systems often stifle creativity rather than nurture it. From standardized testing to rigid curriculum structures, schools unintentionally squash students’ creative potential. This article explores twelve ways schools inhibit creativity and provides strategies to combat these issues.</p>

Today, creativity is a prized asset, essential for innovation and problem-solving. However, traditional educational systems often stifle creativity rather than nurture it. From standardized testing to rigid curriculum structures, schools unintentionally squash students’ creative potential. This article explores twelve ways schools inhibit creativity and provides strategies to combat these issues.

Photo Credit: Shutterstock.

Standardized Testing Dominance

Standardized testing dominates the educational landscape, dictating what and how students learn. Focusing on test scores encourages rote memorization rather than critical thinking and creativity. Students spend valuable class time preparing for exams, leaving little room for exploration or creative expression. As a result, they may view learning as a means to an end rather than a journey of discovery. 

<p>Rigid curriculum guidelines restrict teachers’ flexibility in designing engaging and dynamic lessons. Subjects are taught in isolation, with little room for interdisciplinary connections or creative exploration. This narrow focus on predetermined learning outcomes limits students’ exposure to diverse ideas and perspectives. </p>

Strict Curriculum Guidelines

Rigid curriculum guidelines restrict teachers’ flexibility in designing engaging and dynamic lessons. Subjects are taught in isolation, with little room for interdisciplinary connections or creative exploration. This narrow focus on predetermined learning outcomes limits students’ exposure to diverse ideas and perspectives. 

Photo Credit: Shutterstock.

Fear of Failure

The fear of failure permeates many educational settings, discouraging students from taking risks or exploring new ideas. Students may hesitate to express themselves creatively for fear of being ridiculed. This fear of failure stifles innovation and creativity, as students opt for safe, familiar solutions rather than embracing uncertainty and experimentation. 

<p>The tradition of homecoming court, while intended to honor students for their contributions to the school community, often reinforces social hierarchies and exclusivity. The selection process for homecoming court can be based on popularity rather than merit, leading to feelings of alienation or resentment among students who do not fit traditional popularity standards. </p>

Emphasis on Conformity

Schools often prioritize conformity over individuality, expecting students to adhere to strict rules and norms. This emphasis on uniformity stifles creativity by discouraging students from expressing their unique perspectives and ideas. Students may feel pressured to conform to societal expectations rather than explore their interests and passions. 

<p>Just like adults, babies have distinct fingerprints formed early in fetal development. These patterns remain unchanged throughout their lives, serving as unique identifiers. Despite their tiny size, the ridges and loops on their fingertips are intricate and individualized. This biological phenomenon enables authorities to differentiate between individuals and plays a crucial role in forensic science. Remarkably, these fingerprints start forming around the 13th week of gestation, long before the baby is born. </p>

Limited Arts Education

Arts education is often marginalized in favor of more “academic” subjects despite its proven benefits for creativity and cognitive development. Budget cuts and resource constraints have led to the elimination of arts programs in many schools, depriving students of opportunities to explore their creative talents. This narrow focus on STEM subjects (science, technology, engineering, and math) neglects the importance of creativity in fostering well-rounded individuals. 

<p>Simon Says is a popular game that challenges players to follow the commands of the designated leader, “Simon.” However, commands that involve potentially harmful actions, such as jumping from heights or touching hot surfaces, can pose serious safety risks to participants. </p>

One-Size-Fits-All Approach

The one-size-fits-all approach to education fails to recognize students’ diverse learning styles and interests. Curriculum standards and instructional methods are often designed with the average student in mind, neglecting the needs of both struggling and advanced learners. This cookie-cutter approach limits opportunities for personalized learning and individualized instruction.

<p>Collaborative learning spaces are physical and virtual environments designed to promote student collaboration, communication, and creativity. Flexible seating arrangements, interactive technology tools, and project-based learning stations create dynamic and engaging learning environments where students can work together to solve problems and share ideas. Educators empower students to build meaningful connections with their peers, preparing them for success in an interconnected world.</p>

Lack of Time for Creativity

With an emphasis on standardized testing and core academic subjects, little time is left in the school day for creative pursuits. Elective courses and extracurricular activities are often sacrificed in favor of more “essential” subjects, leaving little room for students to explore their creative interests. This time crunch limits opportunities for creative expression and deprives students of valuable hands-on learning experiences.

<p>Restricting students’ autonomy regarding their learning experiences can diminish motivation, engagement, and ownership of learning outcomes. Educators foster a sense of agency and investment in the learning process by empowering students to co-create curriculum, set goals, and make choices about their learning.</p>

Fixed Mindset Culture

A fixed mindset culture, where intelligence is seen as innate and unchangeable, undermines students’ confidence in their creative abilities. Students may believe that creativity is a talent reserved for the “gifted few,” rather than a skill that can be developed through practice and perseverance. This fixed mindset discourages students from taking risks and embracing challenges, as they fear failure will reveal their lack of innate talent. 

<p>Standardized testing has long been criticized for its limitations in assessing students’ abilities and perpetuating inequality. Modernizing this could involve exploring alternative assessment methods, such as project-based assessments or portfolio evaluations, that provide a more holistic view of students’ skills and knowledge.</p>

Overemphasis on Grades

The relentless pursuit of high grades creates a culture of competition and perfectionism that stifles creativity. Students may prioritize academic achievement over creative exploration, fearing that failure to excel academically will jeopardize their prospects. This pressure to succeed can lead to anxiety and burnout and also undermines students’ confidence. 

<p>Before the era of Google and Wikipedia, research projects meant venturing into the depths of the school library to peruse dusty encyclopedias and reference books. Armed with index cards and highlighters, 90s kids spent hours meticulously transcribing information onto lined paper. </p>

Lack of Support for Creative Projects

Many schools lack support and resources for student-driven creative projects, relegating creativity to the sidelines of the curriculum. Students may struggle to find mentors or obtain funding for their creative endeavors, limiting their ability to pursue their passions. 

<p>The flipped classroom model revolutionizes traditional teaching by shifting the focus of classroom time from teacher-led instruction to student-centered activities. Students engage with instructional materials, such as videos or readings, outside of class, allowing for more active learning experiences during class time. This approach promotes self-directed learning, as students can review content independently. </p>

Limited Opportunities for Collaboration

Collaboration is essential for fostering creativity, as it exposes students to diverse perspectives and ideas. However, many schools prioritize individual achievement over teamwork, neglecting opportunities for collaborative learning experiences. Students may be accustomed to working in isolation, missing out on the benefits of collaboration, such as enhanced problem-solving skills.

<p>In the ’90s, parental involvement in education was often minimal, with many parents relying solely on schools for their children’s academic progress. There needed to be more emphasis on communication between parents and teachers, and fewer opportunities for parents to engage actively in their children’s learning. This lack of involvement could lead to missed opportunities for parents to support their children’s educational journey, address challenges, and foster a positive learning environment at home. </p>

Neglecting Real-World Applications

Traditional education often neglects the real-world applications of knowledge and skills, leaving students disconnected from the relevance of their learning. Students may struggle to see the value in their learning if they cannot envision how it applies to their lives outside of school. 

More for You

Don’t Do These 35 Things If You Want to Sell Your House

Don’t Do These 35 Things If You Want to Sell Your House

Fans Are In Agreement Over Caitlin Clark's Disappointing Start to WNBA Debut

Caitlin Clark Faces Backlash for Behavior Towards WNBA Referee in Indiana Fever Opener

15 TV Bloopers That Were Too Good To Cut

15 TV Bloopers That Were Too Good To Cut

The salary you need to be considered middle class in every U.S. state—it's close to $200,000 in 2 of them

The salary you need to be considered middle class in every U.S. state—it's close to $200,000 in 2 of them

Elon Musk has been the CEO of Tesla since 2008.

Where the 8 Richest People in the World Live

donald trump court

Donald Trump Could Face Grilling Over Gag Order Notes

7 CDs You Probably Owned, Threw Out and Now Are Worth Bank

7 CDs You Probably Owned, Threw Out and Now Are Worth Bank

Top 10 Ford Muscle Cars Of All Time

Top 10 Ford Muscle Cars Of All Time

actors refuse lines movies tv

17 movie and TV lines actors refused to say on screen: ‘I’m a self-respecting human being, I can’t do this’

What 50 famous musical acts looked like at the start of their careers

What 50 famous musicians looked like at the very start of their careers

Leaving These 13 Things by the Front Door Could Keep You Safe

Leaving These 13 Things by the Front Door Could Keep You Safe

A 24-year-old spent $140,000 buying and converting a Mercedes van. Take a look inside the luxury home on wheels.

A 24-year-old spent $140,000 buying and converting a Mercedes van. Take a look inside the luxury home on wheels.

20 Creepy Facts About 'The X-Files'

20 Creepy Facts About 'The X-Files'

33 Reliable Ways To Boost Your Income

33 Reliable Ways To Boost Your Income

Letitia James asked to turn over documents

Letitia James Asked to Turn Over Documents

Julia Koch and family

Powerful Women: 10 Female Billionaires Influencing the World

3 teams who were absolutely screwed by the NFL schedule, and 3 who weren’t

3 teams who were absolutely screwed by the NFL schedule, and 3 who weren’t

What Does a Red or Yellow Dot on Your Tires Mean?

What Does a Red or Yellow Dot on Your Tires Mean?

Daniel French promised his son, Nathan French, he would pay for his college expenses so Nathan wouldn't have to take out student loans.

Veteran who sacrificed his savings to pay for son's college calls student loan forgiveness a 'bitter pill'

For every supercar brand that has succeeded there have been plenty that have fallen by the wayside…

Supercars you (probably) forgot ever existed

ORIGINAL RESEARCH article

This article is part of the research topic.

Research on Teaching Strategies and Skills in Different Educational Stages

Shaping Future-Ready Graduates with Mindset Shifts: Studying the Impact of Integrating Critical and Design Thinking in Design Innovation Education Provisionally Accepted

  • 1 Singapore Institute of Technology, Singapore

The final, formatted version of the article will be published soon.

In an era marked by rapid change and complex global challenges, Institutes of Higher Learning (IHLs) are tasked with preparing students to navigate and address these evolving demands. This paper explores the critical role of Higher Education (HE) in equipping students with the necessary skills and mindsets to tackle real-world problems through innovative solutions. Integrating critical thinking and design thinking within a Design Innovation module is central to this exploration. The study is undergirded by a conceptual framework that blends critical, design, and futures thinking, focusing exclusively in this paper on applying critical thinking (CT) and design thinking (DT). The research investigates two primary questions: (1) How do students' DT and CT mindsets change after participation in a Design Innovation module? (2) Is CT a prerequisite for developing DT? This study aims to illuminate the shifts in students' mindsets from before to after the completion of the module, highlighting the importance of developing key dispositions for ethical and socially responsible problem-solving. Results show a statistically significant increase in CT and DT disposition scores from pre-to post-test, suggesting a shift to more positive CT and DT mindsets after going through the Design Innovation module. In addition, a significant moderation effect of pre-test CT mindset on the relationship between pre-test and post-test DT mindset scores was observed, implying that CT was a prerequisite for DT. The findings offer insights into the module's effectiveness in fostering future-ready graduates' thinking capabilities on innovating for real-world challenges and highlight the need for our future-ready students to achieve critical competence and creative confidence. Finally, we conclude the paper with recommendations for educators to integrate CT skill development intentionally and in tandem with DT skill development for a balanced approach to developing critical competence and creative confidence in interdisciplinary courses.

Keywords: Critical Thinking, design thinking, Design innovation, 21st-century skills and dispositions, interdisciplinary learning A. Tolerance for -Being comfortable with Ambiguity -Uncertainty

Received: 19 Dec 2023; Accepted: 15 May 2024.

Copyright: © 2024 Patel, Puah and Kok. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Nadya S. Patel, Singapore Institute of Technology, Singapore, Singapore

People also looked at

IMAGES

  1. Creative Problem Solving

    creative problem solving articles

  2. What Is Critical Thinking And Creative Problem Solving

    creative problem solving articles

  3. Problem-Solving Strategies: Definition and 5 Techniques to Try

    creative problem solving articles

  4. Creative Problem Solving: An Introduction, Fourth Edition by Donald J

    creative problem solving articles

  5. An introduction to creative problem solving

    creative problem solving articles

  6. Creative Problem Solving To Be Innovative

    creative problem solving articles

VIDEO

  1. Creative Problem Solving Final Project

  2. Creative Problem Solving Chapter 1

  3. Think Differently: Creative Problem Solving Masterclass

  4. Solving Articles + Novel Ch. (2) Great Expectations

  5. Problem Solving| Unlocking Solutions #shorts

  6. Creative way to solve problems

COMMENTS

  1. What Is Creative Problem-Solving & Why Is It Important?

    Its benefits include: Finding creative solutions to complex problems: User research can insufficiently illustrate a situation's complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it. Adapting to change: Business is constantly changing, and business leaders need to adapt.

  2. Developing Creative Potential: The Power of Process, People, and Place

    Abstract. Creativity is increasingly seen as a key human capability that can be deliberately developed. Correspondently, a proliferation of tools, techniques, and methods are available in the academic and popular literatures. Creative problem-solving (CPS) is one framework among these, and has a 70-year history of research and development.

  3. Creative Problem Solving as Overcoming a Misunderstanding

    Solving or attempting to solve problems is the typical and, hence, general function of thought. A theory of problem solving must first explain how the problem is constituted, and then how the solution happens, but also how it happens that it is not solved; it must explain the correct answer and with the same means the failure. The identification of the way in which the problem is formatted ...

  4. Creative Problem Solving

    Creative problem solving (CPS) is a way of solving problems or identifying opportunities when conventional thinking has failed. It encourages you to find fresh perspectives and come up with innovative solutions, so that you can formulate a plan to overcome obstacles and reach your goals. In this article, we'll explore what CPS is, and we'll ...

  5. The science behind creativity

    Specifically, creativity often involves coordination between the cognitive control network, which is involved in executive functions such as planning and problem-solving, and the default mode network, which is most active during mind-wandering or daydreaming (Beaty, R. E., et al., Cerebral Cortex, Vol. 31, No. 10, 2021).

  6. Creative problem solving in knowledge-rich contexts

    Highlights. Creative problem solving (CPS) relies on the reorganization of existing knowledge to serve new, problem-relevant functions. Extant creativity research, especially brain-based research, largely does not reflect the knowledge-rich contexts in which the application of previously-acquired knowledge is critical, as is frequently the case ...

  7. Creative Problem-Solving

    Humans are innate creative problem-solvers. Since early humans developed the first stone tools to crack open fruit and nuts more than 2 million years ago, the application of creative thinking to solve problems has been a distinct competitive advantage for our species (Puccio 2017).Originally used to solve problems related to survival, the tendency toward the use of creative problem-solving to ...

  8. An Evidence-Based Review of Creative Problem Solving Tools:

    Creative problem solving (CPS) requires solutions to be useful and original. Typically, its operations span problem finding, idea generation, and critical evaluation. The benefits of training CPS have been extolled in education, industry, and government with evidence showing it can enhance performance. However, although such training schemes ...

  9. PDF Creative Problem Solving

    CPS is a comprehensive system built on our own natural thinking processes that deliberately ignites creative thinking and produces innovative solutions. Through alternating phases of divergent and convergent thinking, CPS provides a process for managing thinking and action, while avoiding premature or inappropriate judgment. It is built upon a ...

  10. Design Thinking: A Creative Approach to Problem Solving

    Abstract. Design thinking—understanding the human needs related to a problem, reframing the problem in human-centric ways, creating many ideas in brainstorming sessions, and adopting a hands-on approach to prototyping and testing—offers a complementary approach to the rational problem-solving methods typically emphasized in business schools.

  11. Creativity in problem solving to improve complex health outcomes

    Despite the known importance of creativity in problem solving, relatively few studies detail how workers incorporate creativity into problem solving during the natural course of work—in health care or in other industries. 13 Prior research on creative problem solving in the workplace has been largely theoretical, 14 , 15 with some empirical ...

  12. Frontiers

    Our senior thesis course structure is based on the Creative Problem Solving (CPS) framework, a well-known and validated approach to creativity enhancement in educational settings. This approach emphasizes creative and critical thinking in instruction—both at an individual and a group level ( Baer, 1988 ; Isaksen et al., 1994 ; Treffinger et ...

  13. Creative problem solving

    A broad range of situations that call for creative behavior can be characterized as "problems," and the thought processes that lead to new and useful outcomes in those situations can be characterized as "problem solving.". The present chapter begins with a description of the core aspects of problems and creativity, and then examines the ...

  14. Research Articles

    A Compendium of Evidence for Creative Problem Solving. Creative Problem Solving (CPS) has been effectively applied and productively researched for over 65 years. This resource contains over 1,000 citations and references that support CPS.

  15. Full article: The challenge of supporting creativity in problem-solving

    Working on a creative science project may help developing students' creative abilities, and the interaction between teacher and students during the work on defining a problem and solving the problem, is an ideal forum for supporting students' creativity. Purpose .

  16. Full article: Motivation to learn and problem solving

    In addition to strategy use, the motivational component of perceived self-efficacy was the strongest predictor of students' creative problem-solving. To conclude these seven excellent and worth reading research articles, we can say that there are two general ways to promote learning and problem solving.

  17. Creative Problem Solving: 5 Tips for Creative Problem-Solving

    Level Up Your Team. See why leading organizations rely on MasterClass for learning & development. The creative problem-solving process is a brainstorming technique that promotes creative thinking and idea generation to find previously unknown solutions to complex problems.

  18. Enhancement of Creative Thinking Skills Using a Cognitive-Based

    Impact of the Training on Creative Performance. The effectiveness of the training was scientifically tested by means of a pre- and post-test, employing creativity measures that relied on divergent thinking (the "Divergent Thinking: the AUT" section), convergent thinking (the "Convergent Thinking: the RAT" section), and creative problem solving skills (the "Creative Problem Solving ...

  19. Full article: Creative thinking and insight problem-solving in Keats

    2. Writings on creativity. The issue of creativity as an insight problem experience has attracted increasing scholarly interest in the last two decades, from many different disciplines and fields of study: psychology, cognitive psychology, sociology, economy, and education (Sawyer, Citation 2012, p. 463).The domain of research on this aspect of creativity, together with its theoretical and ...

  20. Mind wandering in creative problem-solving: Relationships with

    Mind wandering may improve creative problem solving; however, it could also lead to negative moods and poor mental health. It has also been shown that some forms of mental illness are positively related to creativity. However, the three factors of mind wandering, divergent thinking, and mental health have not been examined simultaneously, so it ...

  21. Problem solving through values: A challenge for thinking and capability

    Integrating the creative approach to problem solving, Newell and Simon (1972) presents six phases: phase 1 - identifying the problem, phase 2 - understanding the problem, phase 3 - posing solutions, phase 4 - choosing solutions, phase 5 - implementing solutions, and phase 6 - final analysis. The weakness of this model is that these phases do ...

  22. Creative Problem Solving Collaborative Articles

    Dive into 100 collaborative articles on Creative Problem Solving and its various applications. Our collection of articles combines AI-generated content with insights and advice from industry ...

  23. Deputy Regional Inspector General Meridith Seife: Creative Problem

    Deputy Regional Inspector General Meridith Seife: Creative Problem Solving to Making Meaningful, Positive Change in People's Lives May 16, 2024 Media Contact. [email protected] 202-619-0088. In her free time away from her workplace duties writing policy-rich reports as a Deputy Regional Inspector General, Meridith Seife often spends hours ...

  24. 12 Ways Schools Are Killing Creativity and How to Fight Back

    Today, creativity is a prized asset, essential for innovation and problem-solving. However, traditional educational systems often stifle creativity rather than nurture it. From standardized ...

  25. Creativity vs. The Clock: How Americans Struggle To Satisfy Their

    It's not for lack of desire, but 71% of people surveyed say they don't have time for creativity. According to a new study conducted by OnePoll on behalf of Sharpie

  26. Frontiers

    In an era marked by rapid change and complex global challenges, Institutes of Higher Learning (IHLs) are tasked with preparing students to navigate and address these evolving demands. This paper explores the critical role of Higher Education (HE) in equipping students with the necessary skills and mindsets to tackle real-world problems through innovative solutions. Integrating critical ...

  27. GCSE Business: Dame Sharon White

    Most suited to 14-16-year-old pupils across the UK in developing their understanding of ethics and careers. In England, Northern Ireland and Wales it is relevant to GCSE business. In Scotland it ...

  28. AIHA Connect Keynote Speakers Focus on Problem Solving and Cognitive

    AIHA Connect event to feature keynotes by Dr. Samuel Ramsey and Dr. Helena Boschi on innovative approaches to workplace safety, problem-solving, and cognitive agility, May 20-22 in Columbus, Ohio.