News from the Columbia Climate School

Six Tough Questions About Climate Change

NASA's supercomputer model created this simulation of carbon dioxide in the atmosphere. Photo: NASA/GSFC

Whenever the focus is on climate change, as it is right now at the  Paris climate conference , tough questions are asked concerning the costs of cutting carbon emissions, the feasibility of transitioning to renewable energy, and whether it’s already too late to do anything about climate change. We posed these questions to Laura Segafredo , manager for the Deep Decarbonization Pathways Project . The decarbonization project comprises energy research teams from 16 of the world’s biggest greenhouse gas emitting countries that are developing concrete strategies to reduce emissions in their countries. The Deep Decarbonization Pathways Project is an initiative of the Sustainable Development Solutions Network .

  • Will the actions we take today be enough to forestall the direct impacts of climate change? Or is it too little too late?

There is still time and room for limiting climate change within the 2˚C limit that scientists consider relatively safe, and that countries endorsed in Copenhagen and Cancun. But clearly the window is closing quickly. I think that the most important message is that we need to start really, really soon, putting the world on a trajectory of stabilizing and reducing emissions. The temperature change has a direct relationship with the cumulative amount of emissions that are in the atmosphere, so the more we keep emitting at the pace that we are emitting today, the more steeply we will have to go on a downward trajectory and the more expensive it will be.

Today we are already experiencing an average change in global temperature of .8˚. With the cumulative amount of emissions that we are going to emit into the atmosphere over the next years, we will easily reach 1.5˚ without even trying to change that trajectory.

Assateague Island National Seashore where the potential for storm surges and flooding is higher due to sea level rise.

Two degrees might still be doable, but it requires significant political will and fast action. And even 2˚ is a significant amount of warming for the planet, and will have consequences in terms of sea level rise, ecosystem changes, possible extinctions of species, displacements of people, diseases, agriculture productivity changes, health related effects and more. But if we can contain global warming within those 2˚, we can manage those effects. I think that’s really the message of the Intergovernmental Panel on Climate Change reports—that’s why the 2˚ limit was chosen, in a sense. It’s a level of warming where we can manage the risks and the consequences. Anything beyond that would be much, much worse.

  • Will taking action make our lives better or safer, or will it only make a difference to future generations?

It will make our lives better and safer for sure. For example, let’s think about what it means to replace a coal power plant with a cleaner form of energy like wind or solar. People that live around the coal power plant are going to have a lot less air pollution, which means less asthma for children, and less time wasted because of chronic or acute diseases. In developing countries, you’re talking about potentially millions of lives saved by replacing dirty fossil fuel based power generation with clean energy.

It will also have important consequences for agricultural productivity. There’s a big risk that with the concentration of carbon and other gases in the atmosphere,   agricultural yields will be reduced, so preventing that means more food for everyone.

Light rail in Seattle. Photo: Michael B.

And then think about cities. If you didn’t have all that pollution from cars, we could live in cities that are less noisy, where the air’s much better, and have potentially better transportation. We could live in better buildings where appliances are more efficient. And investing in energy efficiency would basically leave more money in our pockets. So there are a lot of benefits that we can reap almost immediately, and that’s without even considering the biggest benefit—leaving a planet in decent condition for future generations.

  • How will measures to cut carbon emissions affect my life in terms of cost?

To build a climate resilient economy, we need to incorporate the three pillars of energy system transformation that we focus on in all the deep decarbonization pathways. Number one is improving energy efficiency in every part of the economy—buildings, what we use inside buildings, appliances, industrial processes, cars…everything you can think of can perform the same service, but using less energy. What that means is that you will have a slight increase in the price in the form of a small investment up front, like insulating your windows or buying a more efficient car, but you will end up saving a lot more money over the life of the equipment in terms of decreased energy costs.

Tehachapi wind farm, CA. Photo: Stan Shebs

The second pillar is making electricity, the power sector, carbon-free by replacing dirty power generation with clean power sources. That’s clearly going to cost a little money, but those costs are coming down so quickly. In fact there are already a lot of clean technologies that are at cost parity with fossil fuels— for example, onshore wind is already as competitive as gas—and those costs are only coming down in the future. We can also expect that there are going to be newer technologies. But in any event, the fact that we’re going to use less power because of the first pillar should actually make it a wash in terms of cost.

The Australian deep decarbonization teams have estimated that even with the increased costs of cleaner cars, and more efficient equipment for the home, etc., when the power system transitions to where it’s zero carbon, you still have savings on your energy bills compared to the previous situation.

The third pillar that we think about are clean fuels, essentially zero-carbon fuels. So we either need to electrify everything— like cars and heating, once the power sector is free of carbon—or have low-carbon fuels to power things that cannot be electrified, such as airplanes or big trucks. But once you have efficiency, these types of equipment are also more efficient, and you should be spending less money on energy.

Saving money depends on the three pillars together, thinking about all this as a whole system.

  • Given that renewable sources provide only a small percentage of our energy and that nuclear power is so expensive, what can we realistically do to get off fossil fuels as soon as possible?

There are a lot of studies that have been done for the U.S. and for Europe that show that it’s very realistic to think of a power sector that is almost entirely powered by renewables by 2050 or so. It’s actually feasible—and this considers all the issues with intermittency, dealing with the networks, and whatever else represents a technological barrier—that’s all included in these studies. There’s also the assumption that energy storage, like batteries, will be cheaper in the future.

That is the future, but 2050 is not that far away. 35 years for an energy transition is not a long time. It’s important that this transition start now with the right policy incentives in place. We need to make sure that cars are more efficient, that buildings are more efficient, that cities are built with more public transit so less fossil fuels are needed to transport people from one place to another.

I don’t want people to think that because we’re looking at 2050, that means that we can wait—in order to be almost carbon free by 2050, or close to that target, we need to act fast and start now.

  • Will the remedies to climate change be worse than the disease? Will it drive more people into poverty with higher costs?

I actually think the opposite is true. If we just let climate go the way we are doing today by continuing business as usual, that will drive many people into poverty. There’s a clear relationship between climate change and changing weather patterns, so more significant and frequent extreme weather events, including droughts, will affect the livelihoods of a large portion of the world population. Once you have droughts or significant weather events like extreme precipitation, you tend to see displacements of people, which create conflict, and conflict creates disease.

Syrian Kurdish refugees enter Turkey. Photo: EC/ECHO

I think Syria is a good example of the world that we might be going towards if we don’t do anything about climate change. Syria is experiencing a once-in-a-century drought, and there’s a significant amount of desertification going on in those areas, so you’re looking at more and more arid areas. That affects agriculture, so people have moved from the countryside to the cities and that has created a lot of pressure on the cities. The conflict in Syria is very much related to the drought, and the drought can be ascribed to climate change.

And consider the ramifications of the Syrian crisis: the refugee crisis in Europe, terrorism, security concerns and 7 million-plus people displaced. I think that that’s the world that we’re going towards. And in a world like that, when you have to worry about people being safe and alive, you certainly cannot guarantee wealth and better well-being, or education and health.

  • So finally, doing what needs to be done to combat climate change all comes down to political will?

The majority of the American public now believe that climate change is real, that it’s human induced and that we should do something about it.

Photo: Matt Brown

But there’s seems to be a disconnect between what these numbers seem to indicate and what the political discourse is like… I can’t understand it, yet it seems to be the situation.

I’m a little concerned because other more immediate concerns like terrorism and safety always come first. Because the effects of climate change are going to be felt a little further away, people think that we can always put it off. The Department of Defense, its top-level people, have made the connection between climate change and conflict over the next few decades. That’s why I would argue that Syria is actually a really good example to remind us that if we are experiencing security issues today, it’s also because of environmental problems. We cannot ignore them.

The reality is that we need to do something about climate change fast—we don’t have time to fight this over the next 20 years. We have to agree on this soon and move forward and not waste another 10 years debating.

Read the Deep Decarbonization Pathways Project 2015 report . The full report will be released Dec. 2.

LAURA bigger

Laura Segafredo was a senior economist at the ClimateWorks Foundation, where she focused on best practice energy policies and their impact on emission trajectories. She was a lead author of the 2012 UNEP Emissions Gap Report and of the Green Growth in Practice Assessment Report. Before joining ClimateWorks, Segafredo was a research economist at Electricité de France in Paris.

She obtained her Ph.D. in energy studies and her BA in economics from the University of Padova (Italy), and her MSc in economics from the University of Toulouse (France).

COP21_ad2

Related Posts

New Report Provides a Ranking of Sustainability Around the World

New Report Provides a Ranking of Sustainability Around the World

The Hidden Language of Ocean Coral

The Hidden Language of Ocean Coral

Food Systems Expert Jessica Fanzo Reflects on Receiving One of Science’s Highest Honors

Food Systems Expert Jessica Fanzo Reflects on Receiving One of Science’s Highest Honors

Banner featuring a collage of extreme heat images.

Recent record-breaking heat waves have affected communities across the world. The Extreme Heat Workshop will bring together researchers and practitioners to advance the state of knowledge, identify community needs, and develop a framework for evaluating risks with a focus on climate justice. Register by June 15

guest

Many find low wages prohibits saving. Changing personal vehicles and heating systems costs. Will there be financial support for people on low wages?

Julie Ament

The energy innovation and dividend bill has already been introduced in the house. It’s a carbon fee and dividend plan. The carbon fee rises every year and 100% of it goes back directly into the hands of the people by a check each month. This helps offset rising costs, especially for lower income folks.

Andrea

81 cosponsors now Tell your rep in Congress to support this HR 763!

Alex

Results show that yields for all four crops grown at levels of carbon dioxide remaining at 2000 levels would experience severe declines in yield due to higher temperatures and drier conditions. But when grown at doubled carbon dioxide levels, all four crops fare better due to increased photosynthesis and crop water productivity, partially offsetting the impacts from those adverse climate changes. For wheat and soybean crops, in terms of yield the median negative impacts are fully compensated, and rice crops recoup up to 90 percent and maize up to 60 percent of their losses.

Gary

When is Russia, China, and Mexico going to work toward a better environment instead of the United States trying to do it all? They continue to pollute like they have for years. Who is going to stop the deforestation of the rain forest?

blake leinberger

I’m curious if climate change has any effect on seismic activity. It seems with ice melting on the poles and increasing water dispersement and temp of that water, it might cause the plates to shift to compensate. Is there any evidence of this?

RILEs

this isn’t because of doldrums or jet streams. the pattern keeps having the same action. we must save trees :3

Guy Bernard Lalanne

How long do we have, before it’s too late?

rose

Climate Change isn’t nearly as big of a deal as everyone makes it out to be. Meaning no disrespect to the author, but I really don’t see how this is something that we should be worrying about given that one human recycling their soda cans or getting their old phone refurbished rather than dumping it isn’t going to restore the polar ice caps or lower the temperature of the planet. And supposedly agriculture is the problem, but I point-blank refuse to give up my beef night, or bacon and eggs for breakfast on Saturdays. Also, nuclear power is supposed to be a solution, but the building of the power plants is going to add more greenhouse gases than the plant will take out. The whole planet needs a reality check. Earth isn’t going to explode because it’s slightly hotter than it used to be!

Dayandan Villegas

Thank you and I need in your help

Get the Columbia Climate School Newsletter

climate change research paper questions

Explore your training options in 10 minutes Get Started

  • Graduate Stories
  • Partner Spotlights
  • Bootcamp Prep
  • Bootcamp Admissions
  • University Bootcamps
  • Coding Tools
  • Software Engineering
  • Web Development
  • Data Science
  • Tech Guides
  • Tech Resources
  • Career Advice
  • Online Learning
  • Internships
  • Apprenticeships
  • Tech Salaries
  • Associate Degree
  • Bachelor's Degree
  • Master's Degree
  • University Admissions
  • Best Schools
  • Certifications
  • Bootcamp Financing
  • Higher Ed Financing
  • Scholarships
  • Financial Aid
  • Best Coding Bootcamps
  • Best Online Bootcamps
  • Best Web Design Bootcamps
  • Best Data Science Bootcamps
  • Best Technology Sales Bootcamps
  • Best Data Analytics Bootcamps
  • Best Cybersecurity Bootcamps
  • Best Digital Marketing Bootcamps
  • Los Angeles
  • San Francisco
  • Browse All Locations
  • Digital Marketing
  • Machine Learning
  • See All Subjects
  • Bootcamps 101
  • Full-Stack Development
  • Career Changes
  • View all Career Discussions
  • Mobile App Development
  • Cybersecurity
  • Product Management
  • UX/UI Design
  • What is a Coding Bootcamp?
  • Are Coding Bootcamps Worth It?
  • How to Choose a Coding Bootcamp
  • Best Online Coding Bootcamps and Courses
  • Best Free Bootcamps and Coding Training
  • Coding Bootcamp vs. Community College
  • Coding Bootcamp vs. Self-Learning
  • Bootcamps vs. Certifications: Compared
  • What Is a Coding Bootcamp Job Guarantee?
  • How to Pay for Coding Bootcamp
  • Ultimate Guide to Coding Bootcamp Loans
  • Best Coding Bootcamp Scholarships and Grants
  • Education Stipends for Coding Bootcamps
  • Get Your Coding Bootcamp Sponsored by Your Employer
  • GI Bill and Coding Bootcamps
  • Tech Intevriews
  • Our Enterprise Solution
  • Connect With Us
  • Publication
  • Reskill America
  • Partner With Us

Career Karma

  • Resource Center
  • Bachelor’s Degree
  • Master’s Degree

The Top 10 Most Interesting Climate Change Research Topics

Finishing your environmental science degree may require you to write about climate change research topics. For example, students pursuing a career as environmental scientists may focus their research on environmental-climate sensitivity or those studying to become conservation scientists will focus on ways to improve the quality of natural resources.

Climate change research paper topics vary from anthropogenic climate to physical risks of abrupt climate change. Papers should focus on a specific climate change research question. Read on to learn more about examples of climate change research topics and questions.

Find your bootcamp match

What makes a strong climate change research topic.

A strong climate change research paper topic should be precise in order for others to understand your research. You must use research methods to find topics that discuss a concern about climate issues. Your broader topic should be of current importance and a well-defined discourse on climate change.

Tips for Choosing a Climate Change Research Topic

  • Research what environmental scientists say. Environmental scientists study ecological problems. Their studies include the threat of climate change on environmental issues. Studies completed by these professionals are a good starting point.
  • Use original research to review articles for sources. Starting with a general search is a good place to get ideas. However, as you begin to refine your search, use original research papers that have passed through the stage of peer review.
  • Discover the current climatic conditions of the research area. The issue of climate change affects each area differently. Gather information on the current climate and historical climate conditions to help bolster your research.
  • Consider current issues of climate change. You want your analyses on climate change to be current. Using historical data can help you delve deep into climate change effects. First, however, it needs to back up climate change risks.
  • Research the climate model evaluation options. There are different approaches to climate change evaluation. Choosing the right climate model evaluation system will help solidify your research.

What’s the Difference Between a Research Topic and a Research Question?

A research topic is a broad area of study that can encompass several different issues. An example might be the key role of climate change in the United States. While this topic might make for a good paper, it is too broad and must be narrowed to be written effectively.

A research question narrows the topic down to one or two points. The question provides a framework from which to start building your paper. The answers to your research question create the substance of your paper as you report the findings.

How to Create Strong Climate Change Research Questions

To create a strong climate change research question, start settling on the broader topic. Once you decide on a topic, use your research skills and make notes about issues or debates that may make an interesting paper. Then, narrow your ideas down into a niche that you can address with theoretical or practical research.

Top 10 Climate Change Research Paper Topics

1. climate changes effect on agriculture.

Climate change’s effect on agriculture is a topic that has been studied for years. The concern is the major role of climate as it affects the growth of crops, such as the grains that the United States cultivates and trades on the world market. According to the scientific journal Nature , one primary concern is how the high levels of carbon dioxide can affect overall crops .

2. Economic Impact of Climate Change

Climate can have a negative effect on both local and global economies. While the costs may vary greatly, even a slight change could cost the United States a loss in the Global Domestic Product (GDP). For example, rising sea levels may damage the fiber optic infrastructure the world relies on for trade and communication.

3. Solutions for Reducing the Effect of Future Climate Conditions

Solutions for reducing the effect of future climate conditions range from reducing the reliance on fossil fuels to reducing the number of children you have. Some of these solutions to climate change are radical ideas and may not be accepted by the general population.

4. Federal Government Climate Policy

The United States government’s climate policy is extensive. The climate policy is the federal government’s action for climate change and how it hopes to make an impact. It includes adopting the use of electric vehicles instead of gas-powered cars. It also includes the use of alternative energy systems such as wind energy.

5. Understanding of Climate Change

Understanding climate change is a broad climate change research topic. With this, you can introduce different research methods for tracking climate change and showing a focused effect on specific areas, such as the impact on water availability in certain geographic areas.

6. Carbon Emissions Impact of Climate Change

Carbon emissions are a major factor in climate change. Due to the greenhouse effect they cause, the world is seeing a higher number of devastating weather events. An increase in the number and intensity of tsunamis, hurricanes, and tornados are some of the results.

7. Evidence of Climate Change

There is ample evidence of climate change available, thanks to the scientific community. However, some of these implications of climate change are hotly contested by those with poor views about climate scientists. Proof of climate change includes satellite images, ice cores, and retreating glaciers.

8. Cause and Mitigation of Climate Change

The causes of climate change can be either human activities or natural causes. Greenhouse gas emissions are an example of how human activities can alter the world’s climate. However, natural causes such as volcanic and solar activity are also issues. Mitigation plans for these effects may include options for both causes.

9. Health Threats and Climate Change

Climate change can have an adverse effect on human health. The impacts on health from climate change can include extreme heat, air pollution, and increasing allergies. The CDC warns these changes can cause respiratory threats, cardiovascular issues, and heat-related illnesses.

10. Industrial Pollution and the Effects of Climate Change

Just as car emissions can have an adverse effect on the climate, so can industrial pollution. It is one of the leading factors in greenhouse gas effects on average temperature. While the US has played a key role in curtailing industrial pollution, other countries need to follow suit to mitigate the negative impacts it causes.

Other Examples of Climate Change Research Topics & Questions

Climate change research topics.

  • The challenge of climate change faced by the United States
  • Climate change communication and social movements
  • Global adaptation methods to climate change
  • How climate change affects migration
  • Capacity on climate change and the effect on biodiversity

Climate Change Research Questions

  • What are some mitigation and adaptation to climate change options for farmers?
  • How do alternative energy sources play a role in climate change?
  • Do federal policies on climate change help reduce carbon emissions?
  • What impacts of climate change affect the environment?
  • Do climate change and social movements mean the end of travel?

Choosing the Right Climate Change Research Topic

Choosing the correct climate change research paper topic takes continuous research and refining. Your topic starts as a general overview of an area of climate change. Then, after extensive research, you can narrow it down to a specific question.

You need to ensure that your research is timely, however. For example, you don’t want to address the effects of climate change on natural resources from 15 or 20 years ago. Instead, you want to focus on views about climate change from resources within the last five years.

Climate Change Research Topics FAQ

A climate change research paper has five parts, beginning with introducing the problem and background before moving into a review of related sources. After reviewing, share methods and procedures, followed by data analysis . Finally, conclude with a summary and recommendations.

A thesis statement presents the topic of your paper to the reader. It also helps you as you begin to organize your paper, much like a mission statement. Therefore, your thesis statement may change during writing as you start to present your arguments.

According to the US Forest Service, climate change issues are related to topics regarding forest management, biodiversity, and species distribution. Climate change is a broad focus that affects many topics.

To write a research paper title, a good strategy is not to write the title right away. Instead, wait until the end after you finish everything else. Then use a short and to-the-point phrase that summarizes your document. Use keywords from the paper and avoid jargon.

About us: Career Karma is a platform designed to help job seekers find, research, and connect with job training programs to advance their careers. Learn about the CK publication .

What's Next?

icon_10

Get matched with top bootcamps

Ask a question to our community, take our careers quiz.

Denise Sullivan

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Apply to top tech training programs in one click

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

Kashif abbass.

1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China

Muhammad Zeeshan Qasim

2 Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People’s Republic of China

Huaming Song

Muntasir murshed.

3 School of Business and Economics, North South University, Dhaka, 1229 Bangladesh

4 Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Haider Mahmood

5 Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942 Saudi Arabia

Ijaz Younis

Associated data.

Data sources and relevant links are provided in the paper to access data.

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig1_HTML.jpg

Methodology search for finalized articles for investigations.

Source : constructed by authors

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig2_HTML.jpg

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig3_HTML.jpg

Global deaths from natural disasters, 1978 to 2020.

Source EMDAT ( 2020 )

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table ​ (Table1). 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Main natural danger statistics for 1985–2020 at the global level

Source: EM-DAT ( 2020 )

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig4_HTML.jpg

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig5_HTML.jpg

A typical interaction between the susceptible and resistant strains.

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table ​ (Table2 2 ).

Examples of how various environmental changes affect various infectious diseases in humans

Source: Aron and Patz ( 2001 )

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table ​ Table3 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Essential considerations while mitigating the climate change impacts on the forestry sector

Source : Fischer ( 2019 )

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig6_HTML.jpg

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

  • The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Author contribution

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Availability of data and material

Declarations.

Not applicable.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Kashif Abbass, Email: nc.ude.tsujn@ssabbafihsak .

Muhammad Zeeshan Qasim, Email: moc.kooltuo@888misaqnahseez .

Huaming Song, Email: nc.ude.tsujn@gnimauh .

Muntasir Murshed, Email: [email protected] .

Haider Mahmood, Email: moc.liamtoh@doomhamrediah .

Ijaz Younis, Email: nc.ude.tsujn@sinuoyzaji .

  • Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054
  • Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech
  • Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14 [ PubMed ]
  • Abbass K, Song H, Shah SM, Aziz B. Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff. 2019; 8 (370):2167–0234. [ Google Scholar ]
  • Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan
  • Abraham E, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988; 10 (4):677. [ PubMed ] [ Google Scholar ]
  • Adger WN, Arnell NW, Tompkins EL. Successful adaptation to climate change across scales. Glob Environ Chang. 2005; 15 (2):77–86. doi: 10.1016/j.gloenvcha.2004.12.005. [ CrossRef ] [ Google Scholar ]
  • Akkari C, Bryant CR. The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research. 2016; 5 (2):162–173. doi: 10.1007/s40003-016-0208-8. [ CrossRef ] [ Google Scholar ]
  • Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740
  • Ali A, Erenstein O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag. 2017; 16 :183–194. doi: 10.1016/j.crm.2016.12.001. [ CrossRef ] [ Google Scholar ]
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010; 259 (4):660–684. doi: 10.1016/j.foreco.2009.09.001. [ CrossRef ] [ Google Scholar ]
  • Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. 10.1007/s10668-021-01716-2
  • Araus JL, Slafer GA, Royo C, Serret MD. Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci. 2008; 27 (6):377–412. doi: 10.1080/07352680802467736. [ CrossRef ] [ Google Scholar ]
  • Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press
  • Arshad MI, Iqbal MA, Shahbaz M. Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research. 2018; 23 (2):121–132. doi: 10.1080/10941665.2017.1410192. [ CrossRef ] [ Google Scholar ]
  • Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports. 2015; 2 (1):95–106. doi: 10.1007/s40572-014-0037-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543
  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D. Uncertainty in simulating wheat yields under climate change. Nat Clim Chang. 2013; 3 (9):827–832. doi: 10.1038/nclimate1916. [ CrossRef ] [ Google Scholar ]
  • Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.
  • Ayers J, Huq S, Wright H, Faisal A, Hussain S. Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev. 2014; 6 :293–305. doi: 10.1080/17565529.2014.977761. [ CrossRef ] [ Google Scholar ]
  • Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451
  • Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy. 2022; 185 :1441–1455. doi: 10.1016/j.renene.2021.10.059. [ CrossRef ] [ Google Scholar ]
  • Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank
  • Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)
  • Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang. 2014; 26 :27–38. doi: 10.1016/j.gloenvcha.2014.03.009. [ CrossRef ] [ Google Scholar ]
  • Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009; 323 (5911):240–244. doi: 10.1126/science.1164363. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T. Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish. 2019; 28 (3):434–445. doi: 10.1111/eff.12466. [ CrossRef ] [ Google Scholar ]
  • Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916 [ PMC free article ] [ PubMed ]
  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015; 13 (5):310–317. doi: 10.1038/nrmicro3439. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J. Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol. 2010; 16 (2):587–598. doi: 10.1111/j.1365-2486.2009.02014.x. [ CrossRef ] [ Google Scholar ]
  • Blum A, Klueva N, Nguyen H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica. 2001; 117 (2):117–123. doi: 10.1023/A:1004083305905. [ CrossRef ] [ Google Scholar ]
  • Bonacci O. Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia) Acta Hydrotechnica. 2019; 32 (57):135–150. doi: 10.15292/acta.hydro.2019.10. [ CrossRef ] [ Google Scholar ]
  • Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214 [ PMC free article ] [ PubMed ]
  • Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S. Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol. 2018; 250 :47–63. doi: 10.1016/j.agrformet.2017.11.036. [ CrossRef ] [ Google Scholar ]
  • Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN. Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio. 2014; 43 (6):759–769. doi: 10.1007/s13280-014-0493-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bujosa A, Riera A, Torres CM. Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage. 2015; 47 :233–239. doi: 10.1016/j.tourman.2014.09.023. [ CrossRef ] [ Google Scholar ]
  • Calderini D, Abeledo L, Savin R, Slafer GA. Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci. 1999; 132 (4):453–459. doi: 10.1017/S0021859699006504. [ CrossRef ] [ Google Scholar ]
  • Cammell M, Knight J. Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res. 1992; 22 :117–162. doi: 10.1016/S0065-2504(08)60135-X. [ CrossRef ] [ Google Scholar ]
  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci. 2014; 111 (2):723–727. doi: 10.1073/pnas.1315800111. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF
  • Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag
  • Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513
  • Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587
  • Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol. 2018; 18 (1):1–14. doi: 10.1186/s12874-018-0545-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M. Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet. 2009; 373 (9676):1693–1733. doi: 10.1016/S0140-6736(09)60935-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, 10.7208/9780226315072
  • Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare [ PMC free article ] [ PubMed ]
  • Davidson D. Gaps in agricultural climate adaptation research. Nat Clim Chang. 2016; 6 (5):433–435. doi: 10.1038/nclimate3007. [ CrossRef ] [ Google Scholar ]
  • Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M. Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci. 2017; 114 (19):4881–4886. doi: 10.1073/pnas.1618082114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dimri A, Kumar D, Choudhary A, Maharana P. Future changes over the Himalayas: mean temperature. Global Planet Change. 2018; 162 :235–251. doi: 10.1016/j.gloplacha.2018.01.014. [ CrossRef ] [ Google Scholar ]
  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang: Nature Publishing Group; 2012. [ Google Scholar ]
  • Dupuis I, Dumas C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 1990; 94 (2):665–670. doi: 10.1104/pp.94.2.665. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Otegui ME. Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res. 2013; 142 :58–67. doi: 10.1016/j.fcr.2012.11.009. [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Carpici EB, Sammarro D, Otegui M. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res. 2011; 123 (2):62–73. doi: 10.1016/j.fcr.2011.04.015. [ CrossRef ] [ Google Scholar ]
  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J. Trees, forests and water: Cool insights for a hot world. Glob Environ Chang. 2017; 43 :51–61. doi: 10.1016/j.gloenvcha.2017.01.002. [ CrossRef ] [ Google Scholar ]
  • Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem. 2021; 36 (1):384–393. doi: 10.1080/14756366.2020.1868450. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be
  • EPA U (2018) United States Environmental Protection Agency, EPA Year in Review
  • Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience
  • Fand BB, Kamble AL, Kumar M. Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ. 2012; 2 (11):1–14. [ Google Scholar ]
  • FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.
  • Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204
  • Farooq M, Bramley H, Palta JA, Siddique KH. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci. 2011; 30 (6):491–507. doi: 10.1080/07352689.2011.615687. [ CrossRef ] [ Google Scholar ]
  • Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18
  • Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770
  • Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T. Changing climates, changing forests: a western North American perspective. J Forest. 2013; 111 (3):214–228. doi: 10.5849/jof.12-085. [ CrossRef ] [ Google Scholar ]
  • Fischer AP. Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan. 2019; 188 :72–79. doi: 10.1016/j.landurbplan.2018.09.024. [ CrossRef ] [ Google Scholar ]
  • Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manage. 2013; 294 :54–61. doi: 10.1016/j.foreco.2012.10.022. [ CrossRef ] [ Google Scholar ]
  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang. 2015; 5 (7):673–677. doi: 10.1038/nclimate2647. [ CrossRef ] [ Google Scholar ]
  • Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer
  • Gambín BL, Borrás L, Otegui ME. Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res. 2006; 95 (2–3):316–326. doi: 10.1016/j.fcr.2005.04.002. [ CrossRef ] [ Google Scholar ]
  • Gambín B, Borrás L. Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology. 2010; 156 (1):91–102. doi: 10.1111/j.1744-7348.2009.00367.x. [ CrossRef ] [ Google Scholar ]
  • Gampe D, Nikulin G, Ludwig R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ. 2016; 573 :1503–1518. doi: 10.1016/j.scitotenv.2016.08.053. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • García GA, Dreccer MF, Miralles DJ, Serrago RA. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol. 2015; 21 (11):4153–4164. doi: 10.1111/gcb.13009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res. 2019; 151 :75–86. doi: 10.1016/j.watres.2018.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785
  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010; 327 (5967):812–818. doi: 10.1126/science.1185383. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509
  • Gorst A, Dehlavi A, Groom B. Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ. 2018; 23 (6):679–701. doi: 10.1017/S1355770X18000232. [ CrossRef ] [ Google Scholar ]
  • Gosling SN, Arnell NW. A global assessment of the impact of climate change on water scarcity. Clim Change. 2016; 134 (3):371–385. doi: 10.1007/s10584-013-0853-x. [ CrossRef ] [ Google Scholar ]
  • Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G. Consumer behaviour and demand response of tourists to climate change. Ann Tour Res. 2012; 39 (1):36–58. doi: 10.1016/j.annals.2011.11.002. [ CrossRef ] [ Google Scholar ]
  • Gourdji SM, Sibley AM, Lobell DB. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett. 2013; 8 (2):024041. doi: 10.1088/1748-9326/8/2/024041. [ CrossRef ] [ Google Scholar ]
  • Grieg E Responsible Consumption and Production
  • Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)
  • Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D. On climate change skepticism and denial in tourism. J Sustain Tour. 2015; 23 (1):4–25. doi: 10.1080/09669582.2014.953544. [ CrossRef ] [ Google Scholar ]
  • Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018; 218 (1):15–28. doi: 10.1111/nph.15048. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 2015; 10 :4–10. doi: 10.1016/j.wace.2015.08.001. [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D. Climate impacts on agriculture: implications for crop production. Agron J. 2011; 103 (2):351–370. doi: 10.2134/agronj2010.0303. [ CrossRef ] [ Google Scholar ]
  • Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019; 10 (1):1124. doi: 10.1038/s41467-019-08853-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06
  • Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C. Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res. 2016; 7 (4):247–252. doi: 10.1016/j.accre.2016.12.003. [ CrossRef ] [ Google Scholar ]
  • Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853
  • Hubbart JA, Guyette R, Muzika R-M. More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ. 2016; 566 :463–467. doi: 10.1016/j.scitotenv.2016.05.108. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess. 2020; 192 (1):48. doi: 10.1007/s10661-019-7956-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR. Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod. 2018; 200 :791–808. doi: 10.1016/j.jclepro.2018.07.272. [ CrossRef ] [ Google Scholar ]
  • Intergov. Panel Clim Chang 33 from 10.1017/CBO9781107415324
  • Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R. Towards a formal framework of vulnerability to climate change. Environ Model Assess. 2009; 14 (1):1–16. doi: 10.1007/s10666-008-9179-x. [ CrossRef ] [ Google Scholar ]
  • IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep
  • Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham
  • Izaguirre C, Losada I, Camus P, Vigh J, Stenek V. Climate change risk to global port operations. Nat Clim Chang. 2021; 11 (1):14–20. doi: 10.1038/s41558-020-00937-z. [ CrossRef ] [ Google Scholar ]
  • Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science [ PubMed ]
  • Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC. Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE. 2020; 15 (3):e0229588. doi: 10.1371/journal.pone.0229588. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jurgilevich A, Räsänen A, Groundstroem F, Juhola S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett. 2017; 12 (1):013002. doi: 10.1088/1748-9326/aa5508. [ CrossRef ] [ Google Scholar ]
  • Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference
  • Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991
  • Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018; 26 (3):220–228. doi: 10.1016/j.tim.2017.09.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF. Role of marine biology in glacial-interglacial CO2 cycles. Science. 2005; 308 (5718):74–78. doi: 10.1126/science.1105375. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kongsager R. Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land. 2018; 7 (4):158. doi: 10.3390/land7040158. [ CrossRef ] [ Google Scholar ]
  • Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008; 452 (7190):987. doi: 10.1038/nature06777. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875
  • Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414 [ PubMed ]
  • Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE. Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett. 2017; 44 (14):7419–7428. doi: 10.1002/2017GL074117. [ CrossRef ] [ Google Scholar ]
  • Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons
  • Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo
  • Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ. 2018; 640 :1548–1565. doi: 10.1016/j.scitotenv.2018.05.376. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020
  • Lobell DB, Field CB. Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett. 2007; 2 (1):014002. doi: 10.1088/1748-9326/2/1/014002. [ CrossRef ] [ Google Scholar ]
  • Lobell DB, Gourdji SM. The influence of climate change on global crop productivity. Plant Physiol. 2012; 160 (4):1686–1697. doi: 10.1104/pp.112.208298. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ma L, Li B, Zhang T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 2019; 152 :191–201. doi: 10.1016/j.watres.2018.12.069. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza
  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier
  • Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070
  • Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier
  • Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ. Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett. 2018; 13 (4):044002. doi: 10.1088/1748-9326/aaae3a. [ CrossRef ] [ Google Scholar ]
  • Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science. 2001; 4 (2):90–93. doi: 10.1626/pps.4.90. [ CrossRef ] [ Google Scholar ]
  • Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228
  • Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing
  • Mihiretu A, Okoyo EN, Lemma T. Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences. 2021; 1 (2):1–18. [ Google Scholar ]
  • Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015; 349 (6250):823–826. doi: 10.1126/science.aaa9933. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210 [ PMC free article ] [ PubMed ]
  • Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332
  • Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. 10.1007/s11356-020-09497-3 [ PMC free article ] [ PubMed ]
  • Murshed M. Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption. 2022; 30 :396–412. doi: 10.1016/j.spc.2021.12.016. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Dao NTT. Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. 2020 doi: 10.1007/s10708-020-10270-9. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Abbass K, Rashid S. Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco. 2021; 26 (4):5425–5450. doi: 10.1002/ijfe.2073. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Elheddad M, Ahmed R. Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res. 2020; 27 (31):38951–38973. doi: 10.1007/s11356-020-09593-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. 10.1080/15567249.2022.2038730
  • Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR. Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour. 2015; 11 :64–79. doi: 10.1016/j.jort.2015.06.010. [ CrossRef ] [ Google Scholar ]
  • npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.
  • Ogden LE. Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience. 2018; 68 (10):733–739. doi: 10.1093/biosci/biy101. [ CrossRef ] [ Google Scholar ]
  • Ortiz AMD, Outhwaite CL, Dalin C, Newbold T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth. 2021; 4 (1):88–101. doi: 10.1016/j.oneear.2020.12.008. [ CrossRef ] [ Google Scholar ]
  • Ortiz R. Crop genetic engineering under global climate change. Ann Arid Zone. 2008; 47 (3):343. [ Google Scholar ]
  • Otegui MAE, Bonhomme R. Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res. 1998; 56 (3):247–256. doi: 10.1016/S0378-4290(97)00093-2. [ CrossRef ] [ Google Scholar ]
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc
  • Pal JK. Visualizing the knowledge outburst in global research on COVID-19. Scientometrics. 2021; 126 (5):4173–4193. doi: 10.1007/s11192-021-03912-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Panda R, Behera S, Kashyap P. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag. 2003; 63 (1):37–56. doi: 10.1016/S0378-3774(03)00099-4. [ CrossRef ] [ Google Scholar ]
  • Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv. 2019; 5 (3):eaau9124. doi: 10.1126/sciadv.aau9124. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press
  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005; 438 (7066):310–317. doi: 10.1038/nature04188. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000; 30 (12–13):1395–1405. doi: 10.1016/S0020-7519(00)00141-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ. Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol. 2012; 133 (1):295–313. doi: 10.1007/s10658-012-9936-1. [ CrossRef ] [ Google Scholar ]
  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci. 2004; 101 (27):9971–9975. doi: 10.1073/pnas.0403720101. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A. Essential biodiversity variables. Science. 2013; 339 (6117):277–278. doi: 10.1126/science.1229931. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Perera K, De Silva K, Amarasinghe M. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change. 2018; 161 :162–171. doi: 10.1016/j.gloplacha.2017.12.016. [ CrossRef ] [ Google Scholar ]
  • Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham
  • Phillips JD. Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA. 2018; 169 :107–118. doi: 10.1016/j.catena.2018.05.036. [ CrossRef ] [ Google Scholar ]
  • Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228 [ PMC free article ] [ PubMed ]
  • Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect. 2013; 121 (8):878–885. doi: 10.1289/ehp.1206446. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S. The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res. 2020; 27 (1):133–142. doi: 10.1007/s11356-019-06554-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity
  • Rahman M, Alam K. Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate. 2016; 4 (1):12. doi: 10.3390/cli4010012. [ CrossRef ] [ Google Scholar ]
  • Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH. Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol. 2018; 69 :789–815. doi: 10.1146/annurev-arplant-042817-040256. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460
  • Reichstein M, Carvalhais N. Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys. 2019; 40 (4):693–707. doi: 10.1007/s10712-019-09551-x. [ CrossRef ] [ Google Scholar ]
  • Reidsma P, Ewert F, Boogaard H, van Diepen K. Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst. 2009; 100 (1–3):51–60. doi: 10.1016/j.agsy.2008.12.009. [ CrossRef ] [ Google Scholar ]
  • Ritchie H, Roser M (2014) Natural disasters. Our World in Data
  • Rizvi AR, Baig S, Verdone M. Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. Gland, Switzerland: IUCN; 2015. p. 48. [ Google Scholar ]
  • Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol. 2013; 14 (3):187–198. doi: 10.1016/j.baae.2013.01.003. [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014; 111 (9):3268–3273. doi: 10.1073/pnas.1222463110. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests
  • Sadras VO, Slafer GA. Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res. 2012; 127 :215–224. doi: 10.1016/j.fcr.2011.11.014. [ CrossRef ] [ Google Scholar ]
  • Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004; 120 (2):179–186. doi: 10.1111/j.0031-9317.2004.0173.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F. Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE. 2021; 16 (5):e0252071. doi: 10.1371/journal.pone.0252071. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757 [ PMC free article ] [ PubMed ]
  • Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci. 2009; 106 (37):15594–15598. doi: 10.1073/pnas.0906865106. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schoene DH, Bernier PY. Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ. 2012; 24 :12–19. doi: 10.1016/j.forpol.2011.04.007. [ CrossRef ] [ Google Scholar ]
  • Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press
  • Scott D. Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability. 2021; 13 (4):1966. doi: 10.3390/su13041966. [ CrossRef ] [ Google Scholar ]
  • Scott D, McBoyle G, Schwartzentruber M. Climate change and the distribution of climatic resources for tourism in North America. Climate Res. 2004; 27 (2):105–117. doi: 10.3354/cr027105. [ CrossRef ] [ Google Scholar ]
  • Semenov MA. Impacts of climate change on wheat in England and Wales. J R Soc Interface. 2009; 6 (33):343–350. doi: 10.1098/rsif.2008.0285. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shaffril HAM, Krauss SE, Samsuddin SF. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ. 2018; 644 :683–695. doi: 10.1016/j.scitotenv.2018.06.349. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614
  • Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690
  • Sharma R. Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev. 2012; 32 (4):480–486. doi: 10.1659/MRD-JOURNAL-D-12-00068.1. [ CrossRef ] [ Google Scholar ]
  • Sharma R, Sinha A, Kautish P. Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res. 2020; 27 (29):36970–36982. doi: 10.1007/s11356-020-09659-3. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer
  • Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20 [ PMC free article ] [ PubMed ]
  • Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759
  • Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH. Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr. 2015; 42 (5):880–890. doi: 10.1111/jbi.12466. [ CrossRef ] [ Google Scholar ]
  • Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p
  • Stone P, Nicolas M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol. 1994; 21 (6):887–900. doi: 10.1071/PP9940887. [ CrossRef ] [ Google Scholar ]
  • Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018; 616 :453–461. doi: 10.1016/j.scitotenv.2017.10.318. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S. Livelihoods, forests, and conservation in developing countries: an overview. World Dev. 2005; 33 (9):1383–1402. doi: 10.1016/j.worlddev.2004.10.004. [ CrossRef ] [ Google Scholar ]
  • Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4 [ PMC free article ] [ PubMed ]
  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol. 2006; 138 (1–4):82–92. doi: 10.1016/j.agrformet.2006.03.014. [ CrossRef ] [ Google Scholar ]
  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA. Going to the extremes. Clim Change. 2006; 79 (3–4):185–211. doi: 10.1007/s10584-006-9051-4. [ CrossRef ] [ Google Scholar ]
  • Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
  • Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst
  • Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003; 14 (3):207–222. doi: 10.1111/1467-8551.00375. [ CrossRef ] [ Google Scholar ]
  • UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest
  • Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780
  • Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28
  • Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P. Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy. 2022; 183 :90–102. doi: 10.1016/j.renene.2021.10.067. [ CrossRef ] [ Google Scholar ]
  • Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515
  • Usman M, Khalid K, Mehdi MA. What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy. 2021; 168 :1165–1176. doi: 10.1016/j.renene.2021.01.012. [ CrossRef ] [ Google Scholar ]
  • Urban MC. Accelerating extinction risk from climate change. Science. 2015; 348 (6234):571–573. doi: 10.1126/science.aaa4984. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer
  • Vedwan N, Rhoades RE. Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res. 2001; 19 (2):109–117. doi: 10.3354/cr019109. [ CrossRef ] [ Google Scholar ]
  • Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001; 41 (3):748–754. doi: 10.2135/cropsci2001.413748x. [ CrossRef ] [ Google Scholar ]
  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci. 2016; 113 (48):13791–13796. doi: 10.1073/pnas.1610725113. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers
  • Waheed A, Fischer TB, Khan MI. Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage. 2021; 67 (5):793–810. doi: 10.1007/s00267-021-01449-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank
  • Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A. Health and climate change: policy responses to protect public health. The Lancet. 2015; 386 (10006):1861–1914. doi: 10.1016/S0140-6736(15)60854-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weed AS, Ayres MP, Hicke JA. Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr. 2013; 83 (4):441–470. doi: 10.1890/13-0160.1. [ CrossRef ] [ Google Scholar ]
  • Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)
  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK. Climate-driven regime shift of a temperate marine ecosystem. Science. 2016; 353 (6295):169–172. doi: 10.1126/science.aad8745. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • WHO (2018) WHO, 2018. Antimicrobial resistance
  • Wilkinson DM, Sherratt TN. Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers. 2016; 9 (2):127–140. doi: 10.1080/17550874.2016.1178353. [ CrossRef ] [ Google Scholar ]
  • Wiranata IJ, Simbolon K. Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations. 2021; 5 (2):129–146. doi: 10.22303/pir.5.2.2021.129-146. [ CrossRef ] [ Google Scholar ]
  • Wiréhn L. Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy. 2018; 77 :63–74. doi: 10.1016/j.landusepol.2018.04.059. [ CrossRef ] [ Google Scholar ]
  • Wu D, Su Y, Xi H, Chen X, Xie B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 2019; 158 :11–21. doi: 10.1016/j.watres.2019.03.010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier
  • Wu H, Qian H, Chen J, Huo C. Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management. 2017; 31 (5):1557–1574. doi: 10.1007/s11269-017-1594-9. [ CrossRef ] [ Google Scholar ]
  • Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev
  • Xu J, Sharma R, Fang J, Xu Y. Critical linkages between land-use transition and human health in the Himalayan region. Environ Int. 2008; 34 (2):239–247. doi: 10.1016/j.envint.2007.08.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M. Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol. 2015; 17 (2):179–184. doi: 10.54386/jam.v17i2.1000. [ CrossRef ] [ Google Scholar ]
  • Yang B, Usman M. Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons. 2021; 28 :893–910. [ Google Scholar ]
  • Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16
  • Zarnetske PL, Skelly DK, Urban MC. Biotic multipliers of climate change. Science. 2012; 336 (6088):1516–1518. doi: 10.1126/science.1222732. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol. 2017; 546 :44–59. doi: 10.1016/j.jhydrol.2016.12.040. [ CrossRef ] [ Google Scholar ]
  • Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. 10.1016/j.renene.2022.03.050

Climate change, energy, environment and sustainability topics research guide

What is climate change.

Climate change refers to long-term shifts in temperatures and weather patterns. The world is now warming faster than at any point in recorded history, which disrupts the usual balance of nature and is a threat to human beings and other forms of life on Earth. This topic guide includes sample keywords and search terms, databases to find sources, and samples of online books.

Example keywords and subtopics

Example keywords or search terms:  

  • Climate change
  • global warming
  • greenhouse effect or greenhouse gas
  • climate crisis
  • environmental change
  • clean energy
  • alternative energy or renewable energy
  • green energy or renewable energy or clean energy
  • Low carbon or carbon neutral
  • Carbon offsetting
  • sustainability environment or sustainability
  • environmental protection
  • pollution or contamination
  • impact or effect or influence
  • cost or price or expense or money or financial
  • fossil fuels or coal or oil or gas

Tip: This is a big topic with lots written so you can often focus on one or two subtopics. This will help to find more relevant sources, more quickly and be a better fit for an assignment. 

Possible subtopics ideas:  Pick one or two subtopics and then add those words to your search.

  • Health impacts of climate changes (e.g. air pollution, water pollution, etc.)
  • impacts on a specific city, state, region or country
  • political impacts (e.g. voting, government policy, etc.)
  • impact on specific population or culture (e.g. children, elderly, racial or ethic group, country, etc.)
  • specific types of renewable or alternative energy (e.g. solar, wind, bio, etc.) 
  • example of new technology (e.g. electric cars or electric vehicles or hybrid vehicles
  • economic impacts (e.g. business, employment, industry (e.g. oil, coal, etc.)
  • weather and impacts (e.g. rising sea levels, flooding, droughts or heat waves, etc.)
  • media aspects (e.g. news coverage, advertising, misinformation, movies, music, etc.) 
  • Tutorial: Creating an effective search strategy

Creating an effective search strategy tutorial video. 3 minutes 24 seconds.

  • Use meaningful keywords to find the best sources
  • Apply search strategies like AND and OR to connect keywords
  • Tutorial: What is a library database and why should I use one?

What is a library database and why should I use one tutorial video. 3 minutes.

  • Identify what a library database is
  • Recognize the two main types of library databases
  • Know why you should use them
  • Understand why searching a library database is different than searching the general internet

Databases for finding sources

Article Databases - 

Use articles to find new research, specific information and evidence to support or refute a claim. You can also look at the bibliography or works cited to find additional sources. Some articles give an overview of a specific topic -- sometimes called "review articles" or "meta-analyses" or "systematic review." Databases are like mini-search engines for finding articles (e.g. Business Source Premier database searches business journals, business magazines and business newspapers). Pick a database that searches the subject of articles you want to find. 

  • Agricultural & Environmental Science Database Search journals and literature on agriculture, pollution, animals, environment, policy, natural resources, water issues and more. Searches tools like AGRICOLA, Environmental Sciences & Pollution Management (ESPM), and Digests of Environmental Impact Statements (EIS) databases.
  • GreenFILE Collection of scholarly, government and general-interest titles. Multidisciplinary by nature, GreenFILE draws on the connections between the environment and agriculture, education, law, health and technology. Topics covered include global climate change, green building, pollution, sustainable agriculture, renewable energy, recycling, and more.
  • Ethnic NewsWatch Ethnic NewsWatch is a current resource of full-text newspapers, magazines, and journals of the ethnic and minority press from 1990, providing researchers access to essential, often overlooked perspectives.
  • Opposing Viewpoints in Context Find articles on current issues, including viewpoint articles, topic overviews, statistics, primary documents, magazine and newspaper articles.

Sample of online books

Below are a selection of online books and readings on the broad topic. We have more online books, journal articles, and sources in our Libraries Search and article databases.  

Cover Art

  • A climate policy revolution : what the science of complexity reveals about saving our planet by Roland Kupers ISBN: 9780674246812 Publication Date: 2020 "In this book, Roland Kupers argues that the climate crisis is well suited to the bottom-up, rapid, and revolutionary change complexity science theorizes; he succinctly makes the case that complexity science promises policy solutions to address climate change."

Cover Art

Get help from the U Libraries - Online!

  • Peer Research Consultants Make an online 30 minute appointment for one-on-one peer assistance with your research. Get help with researching your topic, finding sources, citing sources and more. Peer Research Consultants can also help you get started with faculty-sponsored research.
  • Chat 24/7 online with the Libraries Ask us anything! Chat with a librarian, 24 hours a day, 7 days a week with any research or library questions.
  • Meet with a librarian Schedule an online consultations for personalized research support primarily for University of Minnesota faculty, instructors, graduate and undergraduate students and staff.

Loading metrics

Open Access

Peer-reviewed

Research Article

Climate change knowledge, attitude and perception of undergraduate students in Ghana

Roles Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected] , [email protected]

Affiliation Department of Animal Biology and Conservation Science, University of Ghana, Legon-Accra, Ghana

ORCID logo

Roles Data curation, Formal analysis, Software, Validation, Visualization, Writing – original draft, Writing – review & editing

Affiliations Department of Animal Biology and Conservation Science, University of Ghana, Legon-Accra, Ghana, Department of Pharmacy, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana

Roles Data curation, Investigation, Methodology, Resources, Writing – review & editing

Affiliation Department of Sociology, University of Ghana, Legon-Accra, Ghana

Roles Data curation, Formal analysis, Investigation, Project administration, Software, Visualization, Writing – review & editing

Roles Data curation, Funding acquisition, Investigation, Resources, Writing – review & editing

Affiliations Department of Animal Biology and Conservation Science, University of Ghana, Legon-Accra, Ghana, Center for Climate Change and Sustainability studies, University of Ghana, Legon-Accra, Ghana

  • Benjamin Y. Ofori, 
  • Evans P. K. Ameade, 
  • Fidelia Ohemeng, 
  • Yahaya Musah, 
  • Jones K. Quartey, 
  • Erasmus H. Owusu

PLOS

  • Published: June 7, 2023
  • https://doi.org/10.1371/journal.pclm.0000215
  • Reader Comments

Fig 1

Anthropogenic climate change is a serious global environmental issue that threatens food and water security, energy production, and human health and wellbeing, ultimately jeopardizing the attainment of the UN Sustainable Development Goals (SDGs). A good understanding of climate change is essential for societies to adapt to or mitigate it. Yet, studies reveal that most people have limited knowledge, misconceptions and misunderstanding about climate change. Sub-Saharan Africa is projected to experience disproportionately higher adverse effects of climate change, but there is paucity of information about climate change knowledge in the region. Here, we assessed climate change knowledge, attitude and perception of undergraduate students in Ghana and the influential factors using a cross-sectional study and semi-structured questionnaire. The study population was full-time undergraduate students at the University of Ghana, Legon. The data was analyzed using descriptive statistics, logistic regressions, t-test and One-Way ANOVA. The results revealed that a strong majority of the respondents believe that climate change is real and largely human-induced, and they expressed concern about it. Yet, students lack basic knowledge and had some misconceptions about the causes and consequences of climate change. The overall knowledge score of the students on climate change was average (66.9%), although majority (92%) of the respondents claimed they had adequate (75–85%) knowledge of climate change. Our data also showed that respondents’ level of education, programme of study, ethnicity, religion and mother’s occupation had statistically significant association with their knowledge, perception and attitude on aspects of climate change. Our findings highlight knowledge gaps in climate change among undergraduate students in Ghana, underscoring the need to integrate climate change science into the education curricula at all levels of pre-tertiary schools and university for both the science and non-science programme.

Citation: Ofori BY, Ameade EPK, Ohemeng F, Musah Y, Quartey JK, Owusu EH (2023) Climate change knowledge, attitude and perception of undergraduate students in Ghana. PLOS Clim 2(6): e0000215. https://doi.org/10.1371/journal.pclm.0000215

Editor: Shah Md Atiqul Haq, Shahjalal University of Science and Technology, BANGLADESH

Received: June 6, 2022; Accepted: April 21, 2023; Published: June 7, 2023

Copyright: © 2023 Ofori et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All the data is included in the manuscript.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Anthropogenic climate change is one of the major global environmental problems of the 21 st century. Climate Change has been defined as a change in the state of the climate that can be identified by changes in the mean and/or the variability of its properties (e.g., temperature, precipitation, humidity, incident radiation, isothermality, wind patterns), and that persists for an extended period, typically decades or longer [ 1 ]. The reality of anthropogenic climate change has been established ‘beyond reasonable doubt’ by leading scientists worldwide. The reports of the Intergovernmental Panel on Climate Change (IPCC) indicate the increasing extent and impact of anthropogenic climate change at the planetary scale [ 2 , 3 ]. According to [ 3 ], the global mean surface air temperature of the Earth has increased from 0.3 to about 0.6°C over the past 100 years, and could increase from about 1.4 to 5.8°C over the next 100 years depending on the amounts of greenhouse gases emitted. The global sea level has risen by 1.8 mm annually, while the Arctic sea ice is retreating by 2.7% per decade since 1961 [ 3 ].

Although climate change may be caused by natural events such as the Earth’s orbit, volcanic eruptions, meteoroids and asteroids reaching the Earth’s surface [ 4 , 5 ], accumulating evidence suggests that 21 st century climate change is caused by increased greenhouse gas concentrations in the Earth’s atmosphere due to human activities [ 6 ]. The main greenhouse gases (GHGs) are carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF 6 ) [ 7 , 8 ]. The socio-economic drivers that increase the concentrations of GHGs in the atmosphere include household energy use, manufacturing, transportation, unsustainable consumption patterns and population growth [ 5 ].

Climate change has already impacted and will continue to have negative consequences on all aspect of human life and wellbeing, including food and water supplies, energy production and use, human health, socio-economics, lifestyles, governance, political stability, international trade and migration [ 9 ]. Climate change has also had noticeable effects on many natural systems, including marine and terrestrial ecosystems, such as alterations in species the distribution, timing of seasonal biological events (phenology), community composition and biotic interactions as well as increases in invasion of alien species, pests and diseases [ 10 – 15 ]. The adverse impact of climate change on human health and wellbeing, biodiversity and ecosystems threatens the attainment of the UN Sustainable Development Goals [ 16 ].

There are two main strategies for addressing the climate change challenge, notably mitigation and adaptation [ 3 ]. Mitigation focuses on measures to reduce GHG concentrations of the atmosphere, while adaptation deals with reducing vulnerability to the impacts of climate change by adjusting social, economic and ecological systems [ 16 , 17 ]. Both mitigation and adaptation measures require political and ethical choices, technical innovations, and changes in people’s lifestyle [ 18 ]. Adaptation behaviour is of critical importance to reduce or avoid the negative impacts of climate change, and many studies have examined the factors that motivate individuals to adapt [ 19 ].

People’s knowledge and perception of climate change can have far-reaching consequences for their behaviour towards its mitigation [ 20 , 21 ]. Knowledge has been defined as a highly valued state in which a person is in cognitive contact with reality [ 22 ], while perception is the process by which information or stimuli is received and transformed into psychological awareness to construct meaningful experiences of the environment and the world at large [ 23 ]. Climate change knowledge therefore is a person’s cognitive contact with the reality or facts about climate change, while climate change perception is how information about the subject is received and transformed into psychological awareness, i.e., how people view and assess climate change in all its facets [ 24 ]. The behaviour needed to mitigate the negative impacts of climate change may be strongly influenced by how individuals and communities perceive the risks and impacts of climate change [ 21 ]. Therefore, the accuracy of people’s climate change knowledge and perception is of paramount importance for societies to undergo the transformations needed to mitigate and/or adapt to climate change [ 25 , 26 ]. However, studies show that many people have limited knowledge, misconceptions, and misunderstanding about the causes and impacts of climate change [ 27 – 30 ].

Developing countries, particularly those in sub-Sahara Africa, including Ghana, are projected to experience disproportionately higher adverse effects of climate change because they depend heavily on climate-sensitive economic processes such as agriculture and hydro-electric power, and also have limited resources to respond to these threats [ 31 ]. However, the environmental and economic policy agenda of these countries do not feature prominently issues related to climate change [ 32 ]. Additionally, there is scant information on climate change knowledge among the general public in sub-Sahara African countries, including Ghana [ 33 , 34 ]. A recent study revealed that climate change awareness levels in Africa are extremely low, with the proportion of people who have never heard about climate change reaching two-thirds of the adult populations in South Africa and Nigeria [ 35 ]. In Ghana, there remain huge gaps in the level of knowledge and awareness of the causes and effects of climate change among the general public [ 27 , 37 ].

Young people in high schools and university are being positioned as future leaders and will become key persons who can promote public discourse on climate change and help cultivate the ethical choices and lifestyle needed to minimize the carbon footprint within their local communities [ 36 , 37 ]. It is therefore imperative for them to have a better understanding of climate change. Further, since climate change education is an integral aspect in the sectoral and global approach to mitigating the negative impact of climate change, evaluating the knowledge and perceptions of climate change among university students can highlight the role higher academic institutions are playing to address the climate change challenge.

The present study therefore assessed undergraduate students’ understanding of climate change in Ghana using a cross-sectional study and de novo self-administered semi-structured paper questionnaire. Specifically, we evaluated undergraduate students’ (i) knowledge of climate change and its causes, and how they acquired such knowledge, (ii) their perception and attitude towards actions to mitigate and adapt to climate change and (iii) the respondents’ characteristics that influence their climate change knowledge, attitude and perception. Our findings can be taken into account when promoting climate change education by either including the issue in existing science courses or mounting new programme that focus primarily on climate change science at the pre-university and university levels of education.

Ethics statement

The ethics committee of the College of Basic and Applied Sciences, University of Ghana, Legon, granted ethical clearance for this study (ECBAS 047/17-18). Also, the consent of the participant was sought after clearly articulating the purpose of the research to them. The preamble on the questionnaire explained the purpose of the research and stated clearly that completing the questionnaire was indicative of respondents’ consent. To ensure confidentiality, the names and residential status of the respondents were not required.

Study design and setting

We used a cross-sectional sampling design to investigate the climate change knowledge, perception and attitude of undergraduate student at the university of Ghana, Legon. The study was conducted between March and May 2019, at the University of Ghana, Legon main campus. The University of Ghana, Legon was established in 1948, and is the premier university in Ghana. It offers courses leading to diploma, undergraduate, and graduate degrees (MA. MPhil, PhD). The university is structured around a Colleges, Faculties, Institutes/Schools, Departments and Centre of research and learning. The university offers programme in Sciences and Humanities (Arts, Social Sciences, Law and Business). The undergraduate programme are typically for four years. Students enrolled at the university typically would have completed senior high school. Ghana’s educational system consist of seven years basic (primary) education, three years each of junior high and senior high school. Therefore, students enrolling in a tertiary school would have gone through 12 years of pre-tertiary education. At the senior high school, students choose their programme of study and the programme run include General Arts, General Science, Visual Arts, and Business. When they get to university, majority of students continue in their disciplines from the high school.

Participants

The sample population consisted of 1st, 2nd, 3 rd , and 4th year regular undergraduate students at the University of Ghana, Legon main campus. This privileged group of individuals are likely to form the country’s future political, bureaucratic, financial and business elite.

We employed a de novo self-administered semi-structured paper questionnaire ( S1 Text ) in this study. The questionnaire was initially piloted among 25 students to provide face validity and to detect any ambiguities. The final questionnaire, which underwent some few changes was then administered to the students. The questionnaire was divided into four sections to gather data on the sociodemographic characteristics and evaluate the basic, effects, action and source knowledge on climate change of the respondents. Section A was for the collection of data on the respondents’ socio-demographic characteristics (independent variables). Indeed, several socio-demographic factors including gender, age, level of education, program of study, ethnicity, religion, employment status, socioeconomic status, and political ideology have been shown to influence the accuracy of climate change knowledge and perception [ 38 – 42 ]. In this study, we considered gender, ethnicity, religion, level of education, programme of study, and socio-economic status as the independent variables and climate change knowledge, perception and attitude as the dependent variables.

We asked respondents their gender, ethnicity and religion. Gender was a binary question of male or female. Studies in developed and developing countries show that climate change knowledge, perception and concerns vary between males and females, but the findings are largely inconclusive. While some studies found that men are more knowledgeable than women about climate change [ 43 , 44 ], other studies report that women exhibit greater knowledge and concern about climate change than men [ 45 – 47 ]. It was therefore important to know what the situation is concerning gender and climate change knowledge, attitude and perception in Ghana.

Ethnic affiliation is an important independent variable that explains a wide range of behaviours and orientations [ 48 ]. In Ghana, ethnicity is diverse and is mainly based on language as people who speak the same or similar languages see themselves as on group [ 49 ]. Ghana has a high degree of linguistic heterogeneity, with over 100 languages and about 50 sub-groups that can be categorized into 10 major language groups, which are largely defined by geographic location [ 48 ]. For convenience, these ethnic groups are further grouped into 5 broad categories, notably Akan, Ewe, Ga-Adangbe, Mole-Dagbani and others. The Akans are the largest (45.7%) ethnic group, occupying the southern and middle parts of the country, followed by the Mole-Dagbani (18.5%), who occupy the northern part, the Ewes (12.8%), who predominate in the south-eastern quarter of Ghana and Ga-Dangme (7.1%), who occupy the southern coast of the country. The middle and southern areas are characterized by rain forests. Northern Ghana has only one raining season (May-September), while southern Ghana has two raining seasons (April-July, and September-November).

Ghanaians are very religious and the situational importance of religion in Ghana cannot be overlooked. The Ghanaian outlook on religion is holistic, touching all aspects of lives, including thinking, social life and economic and environmental events [ 50 ]. There are three main religions in Ghana, notably Christianity, Islam and Traditional religions. According to the 2010 government census, approximately 71% of the Ghanaian population are Christians, 18% are Muslims, 5% are Traditional believers and 6% belongs to other religious groups or has no religious beliefs. The belief in God or Supreme Being as the controller of all things, including health and wellbeing, socio-economic, political and environmental events and comforter at all times is strongly preached in all religions in Ghana [ 51 ]. Therefore, understanding the perception and attitude of Ghanaians towards environmental event such as climate change cannot be dissociated from religion.

We also asked respondents their level of study (1 st , 2 nd , 3 rd or 4 th year), programme of study (Science or Humanities), household size, and the occupation of their parents, i.e., whether their parents work in the informal sector, formal sector or unemployed/retirees. The level and programme of study can influence the knowledge and perception of undergraduate students in Ghana as shown in studies from other countries [ 52 , 53 ]. Generally, students pursuing science and environment related programme are more knowledgeable and have a better perception of climate change than those pursuing Humanities programme [ 52 , 53 ]. Also, the higher the level of education, the more knowledgeable and the better the perception of people about climate change [ 54 , 55 ]. Therefore, we expected undergraduate student who are in the science programme and those at highest level (i.e., level 400 students) to be more knowledgeable and have better perception and attitude toward climate change.

According to [ 56 , 57 ], climate change knowledge and perception are associated with socioeconomic status. In both developing and developed countries, people’s perception about their socioeconomic status positively correlates with their environmental concern [ 57 ]. Wealthier people tend to have a better knowledge and greater concern about issues related to the environment and climate change than poor people [ 56 ]. We used parents’ level of education and employment status as a proxy for their socio-economic status. Parents with tertiary education and employment in the formal sector were considered to have “high socio-economic status, while those with no formal education and were unemployed were considered to have “low socio-economic status”. Household size has also been shown to influence individuals and households action on climate change, with individuals from small household size more likely to have higher mitigation performance and perceived mitigation efforts on climate change [ 58 ].

Section B had five questions to assess students’ basic knowledge on climate change, its causes and effects, as well as the sources from which they acquired the information. The questions asked in this section were basic facts about climate change that are unanimously agreed upon by IPCC and climate scientists globally. Section C evaluated the perception (which also mostly measured basic-, effects- and action-related-knowledge) of students about climate change using six questions. Finally, Section D, which had eight questions, evaluated students’ attitude towards climate change adaptation and mitigation. This section thus measured action-related knowledge of climate change and the respondents’ willingness to implement their action-related knowledge about climate change.

Study sample size determination

The sample size for this study was estimated using the online sample size calculator based on the Cochran formula. The population size of the undergraduate students at the time of the study (2019) was 15,167. Therefore, using a 95% confidence level, 4% precision and a worst case scenario of 50% of the respondents choosing the right answers, the minimum recommended sample size was estimated to be 577.

Sampling procedure

Students within the inclusive criteria, i.e., 1 st , 2 nd , 3 rd and 4 th year undergraduates were sampled using the convenience sampling method. The questionnaires were administered to students who were present in the lecture theatre during one of their main core subjects. The questionnaires were self-administered by the students in English and were received after they had completed them. Assuming a 70% return rate, we gave out 824 copies of the paper questionnaires in order to achieve the minimum acceptable sample size of 577.

Study variable measurements

The socio-demographic data were treated as the independent variables, whiles climate change knowledge, perception and attitude scores were considered as the dependent variables. A score of 1 was awarded to a correct (‘True’) answer, while a score of zero was awarded to incorrect (‘False’ or ‘Not Sure’) answer for the knowledge questions, giving a total score of 5 (100%). The respondents were said to have “very good-excellent” knowledge of climate change if they had a score of 90% and above, “adequate” knowledge of climate change if they scored from 75 to 89%, “average” knowledge of climate change if they scored 50 to 74% and “inadequate” or “poor” knowledge on climate change if they scored below 50%. For the perception, choosing ‘Agree’ gives a score of 1, while ‘Disagree’ and ‘Not sure’ attracted a score of 0, with a total score of 6 (100%). The respondents were said to have “very accurate” perception of climate change if they had a score of 90% and above, “accurate” perception of climate change if they scored from 75 to 89%, “fairly accurate” perception of climate change if they scored 50 to 74% and “in accurate” or “poor” perception of climate change if they scored below 50%. The maximum score for the attitude questions was 8 (100%) with a ‘Yes’ answer scoring 1 and a ‘No’ or ‘Not at all’ answer scoring 0. Again, the respondents were said to have “very good-excellent” attitude towards climate change if they had a score of 90% and above, “good” attitude towards climate change if they scored from 75 to 89%, “fairly good” attitude towards climate change if they scored 50 to 74% and “poor” attitude towards climate change if they scored below 50%.

Data analysis

Data obtained from the study was entered into Microsoft Excel and then analyzed with Statistical Package for the Social Sciences (SPSS, Version 25) and R software. Frequencies with their percentages in Tables and Charts were used to represent descriptive statistics, while logistic regression, t-test and One-Way ANOVA at a confidence interval of 95% were used to determine the association between the respondents’ sociodemographic characteristics (independent variables) and their knowledge, perception and attitude towards climate change (dependent variables). Statistical significance was assumed when p ≤ 0.05.

Socio-demographic characteristics of respondents

Out of the 824 copies of the paper questionnaires given out to students to complete, 711 were filled out and returned, giving a return rate of 86.3%. After cleaning the data by removing incomplete and inconsistent responses, 620 completed questionnaires were retained for downstream analysis. Most of the respondents were offering programme in the Humanities (53.1%). Also, females (61.3%) and second year students (60%) formed majority of the respondents. Students of the Akan speaking ethnic group (59.7%), followers of the Christianity religion (95.8%) and living in households with between 5 and 7 persons (55.3%) were in the majority ( Table 1 ). Further, 46.8% of the respondents had their fathers working in the formal sectors, but the mothers of the majority (68.9%) of respondents were self-employed. In terms of education, the fathers of majority (56.8%) of the respondents had tertiary education, while 51.3% of the respondents’ mothers had secondary or vocational education ( Fig 1 ).

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pclm.0000215.g001

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.t001

Self-confessed adequacy of knowledge on climate change

The majority (93.5%) of the respondents claimed they had adequate knowledge about climate change and its causes, while only 6.5% said they were either unsure about their level of knowledge or had inadequate knowledge about climate change.

Sources of knowledge on climate change

School was the most important source of knowledge on climate change for 42.8% of the respondents, followed by radio and television (24.9%) and the internet (13.1%). The print media (7.4%) and other sources (0.6%) were the least common sources of information on climate change for the respondents ( Fig 2 ).

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.g002

Students’ knowledge on climate change

Emission of Greenhouse gases (GHGs) into the atmosphere being responsible for climate change (82.6%) and forests’ ability to reduce climate change by decreasing the amount of GHGs in the atmosphere (76.8%), were the top two best answered questions. Students were worst at knowing that carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) are all greenhouse gases (43.9%). The overall knowledge score of the students on climate change was 3.44 out of 5.0 or (68.8%), which is “average” ( Fig 3 ).

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.g003

Association between socio-demographic characteristics and knowledge on climate change

Male students both in the Science programme and Humanities programme, were more knowledgeable on matters related to climate change than their female counterparts, although the difference was not significant (Overall male: female = 3.51: 3.40, p = 0.64; Science students male: female = 3.67: 3.56, p = 0.41; Humanities students male: female = 3.34: 3.27, p = 0.63). Also, students from the Mole-Dagbani ethnic group showed the highest knowledge about climate change, but this was not statistically significant compared to the other ethnic groups (3.54 vrs 3.27–3.49). Students of the Christian faith scored higher than those of other faiths (3.45 vrs 2.00–3.28) and those from households with more than seven members (3.50 vrs 3.40–3.45) exhibited better knowledge of climate change, but the differences were not statistically significant. The highest educational qualifications of both parents showed no association with the student’s knowledge of climate change, but in both cases, students whose parents had tertiary level of education were more knowledgeable [Mother (3.56 vrs 3.34–3.38); Father (3.49 vrs 3.34–3.37)]. The programme and the level of study of the students had significant associations with their knowledge of climate change issues. Students studying Science-based courses recorded better scores than their Humanities counterparts (3.61 vrs 3.29; p = 0.001), whereas final year students obtained the highest scores (4.37 vrs 3.36–3.57; p = 0.005). Students whose mothers and fathers were employed in the formal sector were more knowledgeable than those whose parents were unemployed or employed in the informal sector, but the difference was not statistically significant ( Table 1 ).

Regarding students’ response to each of the questions posed to assess their knowledge on climate change, the logistic regression analysis showed that gender had no significant influence on their knowledge of aspects of climate change ( S1 Table ). Also, none of the independent variables considered in this study was significantly associated with the respondents’ knowledge of the definition of climate change (KQ1) and the role trees play in modulating local climate (KQ5). However, the respondents’ programme of study, ethnicity, level of study, and mother’s level of education had significant influence on their knowledge concerning aspects of climate change. For example, the odds ratio (OR) of science students compared to students in the Humanities programme, knowing that emissions of GHGs into the atmosphere is responsible for anthropogenic climate change (KQ2) was 2.91 and this was significant at p-value of 0.001 (n = 534). Students of the Mole-Dagbani ethnic group were more likely to know that emissions of GHGs into the atmosphere is responsible for anthropogenic climate change, compared to students from Ga-Adangbe ethnic group (n = 534, Log odds LO = 1.45, OR = 4.27, p = 0.001). Also, the odds ratio of Level 400 (final year) students compared to Level 100 (first year) and Level 200 (second year) students, knowing that carbon dioxide is the principal greenhouse gas (KQ3) were 1.59 and 1.56, respectively, and these were significant at p-value of 0.05 (n = 533). Moreover, students whose mothers had secondary (n = 532, LO = 0.7, OR = 2.14, p = 0.03) or tertiary education (n = 533, LO = 1.12, Odds ratio = 3.04, p = 0.01), were more likely to know the greenhouse gases (KQ4) than those whose mothers had no formal education or had only primary education ( Table 2 ).

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.t002

Students’ perception about climate change

The top two best perception about climate change exhibited by the students were about climate change being real (97.9%) and human activities being responsible for the 21 st century climate change (96.6%). The least perceived issue related to climate change by the students is on how climate change can increase the incidence of food-borne and water borne diseases, such as diarrhoea (52.9%, Fig 4 ). The overall score for student’s perception about climate change (mean ± standard deviation) was 5.04 ± 0.996 out of 6.0, which is 85.2%.

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.g004

Association between socio-demographic characteristics and students’ overall perception about climate change

Overall, students with mothers (5.17 vrs 4.85–5.11, p > 0.05) in formal employment had a better perception of climate change than those with unemployed or informal sectors parents, but the differences were not statistically significant. Also, students whose fathers were unemployed had a better perception of climate change (5.33 vrs 5.05–5.16, p > 0.05) than those father were employed in the formal or informal sector, but the difference was not significant. Students of the Mole Dagbani ethnic group (5.32 vrs 5.02–5.12, p > 0.05) had the best perception of climate change among other ethnic groupings. Also, Christians (5.13 vrs 4.50–4.76, p > 0.05) were better than students of other faiths, but again, the difference was not statistically significant. The male students showed a better, but not significant perception of climate change than their female counterparts (5.12 vrs 5.11, p > 0.05).

Our study revealed that students in science programme had significantly better perception about climate change than students in Humanities (5.28 vrs 4.97; p = 0.001). Also, final year students exhibited the best and statistically significant perception about climate change than those in their 1 st , 2 nd or 3 rd year (5.63 vrs 4.95–5.17; p = 0.001). Students whose mothers attained tertiary level education had a better perception about climate change than those whose mothers had lower level or no education, but the difference was not significant (5.23 vrs 4.99–5.08; p > 0.05, Table 3 ).

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.t003

The association between the socio-demographic characteristics of the respondents and their perception about aspects of climate change is shown in Table 4 and S2 Table . The respondents’ level of study, household size, fathers’ occupation and fathers’ level of education had no significant influence on their perception towards aspects of climate change (i.e., the individual questions asked). However, their mother’s occupation and level of education significantly influenced their perception on whether anthropogenic climate change is real (PQ1). Students whose mothers were employed in the informal sector (n = 535, Log odds (LO) = 3.77, Odds ratio (OR) = 43.64, p = 0.019) and had tertiary education (n = 535, LO = 3.95, OD = 52.09, p = 0.02), were more likely to accept that climate change is real than those whose mothers were unemployed and only had primary education or no formal education. Also, students whose mothers were employed in the informal sector (n = 535, LO = 3.39, OR = 29.78, p = 0.019) and had tertiary education (n = 535, LO = 2.32, OD = 10.18, p = 0.02), were more likely to accept that human activities are responsible for climate change (PQ2) than those whose mothers were unemployed and had primary education or no formal education. The odds ratio of students who share the Christian faith compared to those of Islam, accepting that human activities are responsible for climate change was 0.06, and this was statistically significant at p-value of 0.01 ( Table 4 ).

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.t004

Ethnicity influenced students’ perception on whether climate change will affect human health, food security and the environment (PQ3). The odds ratio of students of the Ga-Adangbe ethnic group compared to those of the Ewe ethnicity, believing that climate change will affect human health, food security and the environment was 0.22, and this was significant at p-value of 0.05. Also, the programme of study, ethnicity, and religion were strongly associated with students’ perception on whether climate change will increase the incidence of food- and water-borne diseases (PQ4). The odd ratio of students pursuing science programme compared to humanities students, in accepting that climate change will increase the incidence of food- and water-borne diseases was 2.02, which was significant at p-value of 0.001. Student of the Akan (n = 534, LO = 0.5, OD = 1.69, p = 0.041) and Mole-Dagbani (n = 534, LO = 1.10, OD = 3.01, p = 0.012) ethic groups were more likely to accept that climate change will increase the incidence of food- and water-borne diseases, and so were the students of the Christian faith compared to those of Islam (n = 534, LO = 1.43, OD = 0.24, p = 0.032). Students whose mothers had tertiary education were more likely to believe that climate change will increase the incidence of flooding, fire and drought (PQ5) than those whose mothers had primary education or no formal education (n = 534, LO = 1.27, OR = 3.59, p = 0.007).

More so, respondents’ gender, religion and mother’s level of education was strongly associated with the perception that education can play a key role in mitigating the effects of climate change (PQ6). Males were more likely to agree that education can play a key role in mitigating the effects of climate change (n = 534, LO = 0.89, OR = 2.44, p = 0.011), and were students of the Christian faith (n = 534, LO = 3.45, OR = 0.028, p = 0.037) compared to those of other religion (excluding Islam and Traditional religion), and those whose mother had tertiary education (n = 534, LO = 1.46, OR = 4.29, p = 0.028) compared to students whose mother had no formal education or had primary education ( Table 4 ).

Students’ attitude towards climate change issues

The overall score of the students’ attitude towards climate change issues was 6.12 over 8 or 76.5%. Questions to which students had attitude scores of more than 80% were; willingness to plant trees in order to reduce the impact of climate change (92.4%), preparedness to learn a lot more about climate change (86.7%) and being happy to reduce energy use in order to decrease the impacts of climate change (82.6%). Areas with attitude scores of less than 70% include willingness to join any climate change advocacy group (69.7%), willingness to take a climate change course as a free elective (65.8%) and readiness to use public transport in order to reduce the impacts of climate change (63.4%, Fig 5 ).

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.g005

Association between socio-demographic characteristics and students’ attitude towards climate change issues

Overall, male students had a better attitude than their female counterparts (6.19 vrs 6.08, p > 0.05), but the difference was not statistically significant. Students of Mole-Dagbani ethnic origin had the best attitude towards climate change (6.22 vrs 5.78–6.21). Followers of the Christian faith had a significantly better attitude towards climate change issues than students of other faiths (6.15 vrs 3.25–5.95. p = 0.016). Occupation of parents of respondents had significant association with students’ attitudes towards climate change. Students with mothers in informal occupation had a significantly better attitude that those whose mothers were employed in the formal sector or were unemployed (6.20 vrs 5.25–6.08; p = 0.005). In contrast, students whose fathers were unemployed showed significantly better attitude than those whose fathers were employed either in the formal or informal sectors (6.50 vrs 6.08–6.17; p = 0.023). Respondents whose mothers (6.23 vrs 5.92–6.04, p > 0.05) and fathers (6.17 vrs 5.84–6.13, p > 0.05) had secondary/vocational education had the best attitude, but the differences were not significant. The level of education, i.e., either in first year, second year, third year or fourth year of study, did not have any significant influence on the respondents’ attitude towards climate change, although students in their final year of study had the best attitude scores (6.96 vrs 5.79–6.19, p > 0.05) ( Table 5 ).

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.t005

In terms of the individual questions posed to evaluate students’ attitude towards climate change, the logistic regression analysis showed that the programme of study, household size, fathers’ level of education, fathers’ occupation and mothers’ level of education showed no significant association with the students’ response ( S3 Table ). However, the respondents’ gender, religion, ethnicity, level of study and mothers’ occupation significantly influenced their attitude towards aspects of climate change mitigation measures ( Table 6 ). For example, students whose mothers were employed in the formal sector (n = 532, LO = 2.23, OR = 9.29, p = 0.01) and informal sector (n = 532, LO = 2.16, OR = 7.14, p = 0.01) were more willing to learn more about climate change (AQ1) than those whose mothers were unemployed. Also, male students were more in agreement than females (n = 533, LO = 0.49, that the study of climate change should be made mandatory for undergraduate students (AQ3). The religious affiliations and level of study of the respondents significantly influenced their willingness to join climate change advocacy groups (AQ4), with Christians more willing to join such groups compared to those of the Islamic faith (n = 532, LO = 1.15, OR = 0.32, p = 0.04). First year students were also less willing to join climate change advocacy groups than final year students (n = 532, LO = 1.6, OR = 0.2, p = 0.02).

thumbnail

https://doi.org/10.1371/journal.pclm.0000215.t006

Female students (n = 534, LO = 0.9, OR = 0.41, p = 0.04) and students of the Ewe ethnic group compared to those of the Ga-Adangbe ethnicity (n = 534, LO = 3.01, OR = 20.2, p = 0.02), were more willing to plant trees to modulate the local climate. Also, students of the Akan, Ewe and Mole-Dagbani ethnic groups, compared to Ga-Adangbe students, were more willing to pay for cleaner source of energy in order to reduce their carbon footprint (Akan: n = 534, LO = 0.9, OR = 2.49, p < 0.001; Ewe: n = 534, LO = 0.94, OR = 2.57, p = 0.02; Mole-Dagbani: n = 534, LO = 1.03, OR = 2.79, p = 0.05). So also were students in their final year compared to those in their third year of study (n = 534, LO = 2.43, OR = 0.09, p = 0.03), as well as students whose mothers were employed compared to those whose mothers were unemployed (mothers employed in the formal sector: n = 534, Lo = 2.0, OR = 7.42, p = 0.02; mothers employed in the informal sector: n = 534, LO = 1.98, OR = 7.22, p = 0.01, Table 6 ).

Self-confessed and actual adequacy of climate change knowledge

Over the last two decades a vast body of literature has emerged that highlights how human activities since the industrial revolution has significantly altered global climate systems. Although the issue of climate change has recently received high publicity globally, many people still have inadequate knowledge and misconceptions about the subject. A better understanding of the causes and consequences of climate change is required for citizens to participation in the democratic discourse concerning this all-important environmental issue [ 27 , 45 ]. When individuals and communities are well-informed about climate change issues, they can positively contribute to the development of their communities by adopting climate smart behaviours and practices [ 21 ]. Consequently, inadequate knowledge and misunderstanding about climate change could be a major barrier to its mitigation and adaptation [ 46 ].

The present study evaluated the knowledge, perception and attitude of climate change of undergraduate students in the University of Ghana, Legon, Ghana. Our data revealed that overall, undergraduate students in the University of Ghana had average (66.9%) knowledge about climate change and its causes, albeit majority (92%) of the respondents self-confessing that they have adequate (75–89%) knowledge of climate change. Interestingly, but disappointingly, only 41.5% of the respondents knew that carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) are all greenhouse gases. Also, as high as 34% of the respondents were not aware that CO 2 is the principal greenhouse gas. Although majority (≥ 95%) of the respondents expressed concern about climate change, more than half (52%) of the respondents did not believe that climate change can increase the incidence of food and water borne diseases such as diarrhoea. These clearly underscore their lack of accurate basic knowledge and understanding of the causes and effects of climate change on human health and wellbeing. The over-exaggeration of their self-confessed climate change knowledge can have detrimental implications on their behaviour and actions to addressing the challenge of climate change.

These findings are in agreement with the outcome of other studies, for instance, it has been found that 40% of college students in their sample group were unaware that CO 2 is a greenhouse gas [ 59 ]. Similarly, [ 60 ] found that 35% of college students did not recognize carbon dioxide as a greenhouse. Also, [ 61 ] found that only 29.08% of university student who are prospective primary teachers correctly named carbon dioxide as the main greenhouse gas, and only few could name other greenhouse gases such as methane, water vapor, or CFCs. In their study of Middle school student’s perception of climate change at Boyolali District, Indonesia, [ 62 ] noted that over 50% of the respondents did not know greenhouse gases and only 43% knew that carbon dioxide, methane, and water vapour are greenhouse gases. [ 34 ] noted that a high percentage of the Ghanaian public did not have a clear understanding of climate change.

High school was the most important source of climate change education for 50% of the respondents in the present study, followed by radio and television (24.8%) and the internet (13.1%). Indeed, society’s knowledge and opinions of climate change feed on information from school and various media sources. The information about climate change that is given in schools originates from the field of science and is therefore more credible. However, the information from various media platforms may not originate from the field of science and therefore may be inaccurate [ 46 ]. Given that school was the most important source of climate change education for the majority of the respondent, we expected that their climate change knowledge will be at least adequate, but this was not so. This suggests that the climate change education at the pre-tertiary level is either inadequate or not effectively taught. In fact, a study evaluating the role of selected science curricula in climate change education of pre-tertiary education in Ghana revealed that the curriculum for primary, Grades 1 to 3 (age = 6–9 years) and integrated science curriculum of primary, Grades 4 to 6 (age = 9–12 years) had no climate change content [ 63 ]. Only the integrated science syllabuses of the junior and senior high schools had climate change content [ 63 ]. The study also claimed that the teaching and learning methods for climate change were inadequate and ineffective [ 63 ]. Indeed, a recent study by [ 64 ] showed lack of basic knowledge and understanding of climate change even at the teacher trainee level. The teacher trainees are individuals being trained at the Training Colleges to equip them to teach at the pre-tertiary level in Ghana. This situation may not be peculiar to Ghana, as pre-tertiary teachers’ misconceptions and inadequate knowledge about climate change have been revealed by studies from other countries [ 61 , 65 , 66 ].

Climate change knowledge, perception, attitude, and their influential factors

In terms of the association between demographic factors and climate change knowledge, attitude and perception, respondents who were of the Christian faith and those from households with 5 to 7 members had better knowledge, attitude and perception about climate change. This observation could be an artifact of sampling because these categories were in the majority. For instance, Christians formed 94.4% of the respondents, while those from households with five to seven members formed 54.8%. Although males (40.8%), Science students (38.2%), final year students (4.5%) and respondents from the Mole Dagbani (6.8%) and Ewe (13.7%) ethnic groups were in the minority, they had better knowledge, attitude and perception about climate change.

Gender has been recognized as an important predictor of climate change knowledge and perception [ 27 ]. Indeed, many studies have demonstrated the variation of perception about environmental issues and climate change between men and women, with men exhibiting more accurate knowledge and perception about climate change than women [ 43 , 44 ]. In general, most women expressed lesser confidence in their science and math abilities and tend to underestimate their climate change knowledge [ 38 ]. Yet, in many countries women hold stronger attitudes, tend to be more concerned and engage more in environmental issues and climate change than men [ 40 , 57 , 59 , 60 ]. In developed countries such as USA, UK and Germany, women conveyed greater knowledge and concern about climate change than men [ 61 , 67 ]. A recent global study suggested that in wealthier industrialized countries, women tend to be more concerned about climate change [ 63 ]. However, in Ethiopia, a developing country in East Africa, a higher percentage of women were more aware of climate changes [ 68 ]. Thus, our data and the global literature suggest that the factors driving gender inequalities in climate change knowledge and perception are complex and multifaceted.

We found that the programme of study (Science or Humanities) and level of educational (Level 100, 200, 300, or 400) influenced the accuracy of climate change knowledge and perception. As expected, students pursuing science programme and final year students were more knowledgeable about climate change. Students pursuing Humanity/Arts programme may be apathetic about science and its related disciplines, such as climate change. Also, the course content of most of the subjects taught in the Humanities may not have much climate change content. Indeed, an analysis of the content of undergraduate programme in the University of Ghana revealed that there is very limited climate change courses even in the science programme [ 52 ]. For example, there was no environmental and climate change related content in the courses taught at the Business, Law, Arts, Agriculture and Consumer Science, Allied and Health Sciences programme. Only 10 and 13 courses in the Social Sciences and Basic and Applied Sciences, respectively, had environmental and climate change related content. These findings are in agreement with the outcome of other studies from across the world, showing that students with a science background are more likely to have a better understanding of climate change. For instance, [ 69 ] found that among Nigerian university graduates, students pursuing environmental sciences had more class experience on climate change than those in other disciplines. A study at a South African university found that science and agriculture students had a better understanding of climate change than health science students [ 36 ]. In the United States, science, agriculture, and natural resources teachers had a deeper understanding of climate change than engineering, business, and management teachers [ 61 ].

The level of education has also been identified as one of the most important predictors of people’s awareness about climate change [ 27 , 54 , 55 ]. Consequently, it was not surprising that the final year students had a better knowledge, attitude and perception about climate change. The fact that the final year students had a better understanding of climate change suggested that the climate change content of the undergraduate programme is little, and are mostly taught during the final year. Indeed, an analysis of the content of undergraduate programme in the University of Ghana revealed that there is very limited climate change courses even in the science programme [ 52 ].

It was interesting to note that the respondents from the Mole Dagbani ethnic group had a better knowledge, attitude, and perception about climate change, even though they were in the minority. Indeed, recent studies show that personal experience play a role in the knowledge, attitude and perception of climate change [ 55 ]. People with a long history of interaction with their environment, have developed intricate and complex systems of first-hand knowledge of the weather, climate change and climate variability. The climate where the Mole-Dagbani ethnic resides in the most arid and vulnerable to climate change. These people are mostly yam, cereals, vegetable, and livestock farmers and currently experiencing unprecedented prolong dry season and short rainy season which are impacting negatively on their water bodies, farming, and socio-economic systems. Also, because the northern part of Ghana is the most vulnerable to climate change, most of the NGOs involved in climate change and adaptation education and awareness creation are based in communities in northern Ghana and their work seems to be having a positive impact on the climate change knowledge, attitude, and perception of the local people.

Our data suggested that respondents from high socio-economic background (parents had tertiary education and were employed in the formal sector) had a better knowledge and perception about climate change than those from low socio-economic background (parents had no formal education and were unemployed). This supports the proposition that knowledge about climate change is associated with socioeconomic status and that wealthier people have a better knowledge and greater concern about issues related to the environment [ 57 ]. In both less developed and developed countries, people’s perception about their socioeconomic status positively correlates with environmental concern [ 56 ]. Among European populations, [ 57 ] found that climate change denial and uncertainty are more common in individuals who feel insecure about their economic future, and in more rural and less prosperous regions. Also, [ 70 ] found that in Lao People’s Democratic Republic households, participants’ knowledge about climate change was significantly associated with their socioeconomic status.

Conclusion and recommendations

Our study contributes to the scant literature on climate change knowledge and perception in sub-Saharan Africa. More importantly, it highlights the knowledge gaps in climate change science among undergraduate students in the University of Ghana, Legon. Our findings have broader implications for further research and policy recommendations. Given that climate change education is an essential element in the global approach to solving the climate change challenge, our findings underscore the urgent need to intensify climate change education and awareness creation among undergraduate students in Ghana and the Ghanaian public at large. We call on the Ministry of Education of Ghana to take steps to integrate climate change science into the primary, high school and university education curricula for both science and non-science programme. The teaching and learning of climate change in the schools should be participatory, interdisciplinary, creative, and affect-driven.

Teachers should be well trained in climate science and during the teaching and learning process, they should highlight the causal linkages between climate change and the little things that the students do on a daily basis. Various environment-related student clubs should include climate change in their discourse and where such clubs are non-existent, their establishment should be encouraged. Climate change-related organisations are also encouraged to increase their public engagement, especially in schools. Community education should involve partnerships between various public and private stakeholders, such as the local councils, universities, NGOs, resource management bodies and community groups. The mass media has been shown to have strong effect on people’s perception and attitudes towards climate change, and could play a pivotal role in climate change education and awareness creation in Ghana.

This is study used a cross-sectional approach and therefore suffered from the limitations of a cross-sectional study. Although our findings are only statistically representative for the selected students, we assumed that the participants are qualitatively representative of the larger undergraduate students in Ghana. We made wider inferences based on this assumption, which may not necessarily be so. Given that the participants in this study may not be qualitatively representative of the larger undergraduate students in Ghana, further studies should be conducted across many of the countries universities in order to get a better picture of the climate change knowledge, perception and attitude of undergraduate students in Ghana.

Supporting information

S1 text. questionnaire on climate change knowledge, perception and attitude of undergraduate students..

https://doi.org/10.1371/journal.pclm.0000215.s001

S1 Table. Association between the sociodemographic characteristics of the students and their knowledge of each of the climate change questions KQ1-KQ5 posed (n = sample size).

https://doi.org/10.1371/journal.pclm.0000215.s002

S2 Table. Association between the sociodemographic characteristics of the students and their perception towards each of the climate change questions PQ1-PQ6 posed (n = sample size).

https://doi.org/10.1371/journal.pclm.0000215.s003

S3 Table. Association between the sociodemographic characteristics of the students and their attitude towards each of the climate change questions AQ1-AQ8 posed (n = sample size).

https://doi.org/10.1371/journal.pclm.0000215.s004

Acknowledgments

We wish to acknowledge all the lecturers who gave us part of their lecture time to distribute the questionnaires to the students. We also thank all the research assistants who supported this research, particularly John Bosu Mensah and Hellen Sedem Addom.

  • 1. Field CB, Barros VR, editors. Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects. Cambridge University Press; 2014. pp. 1–9.
  • 2. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Solomon S, Qin D, and Manning M, Cambridge Univ. Press, Cambridge, U. K LA. Meyer (eds.)], IPCC, Geneva, Switzerland. 2007. pp. 117–130.
  • 3. Intergovernmental Panel on Climate Change IPCC. Annex II: Glossary K. Mach J, Planton S, Stechow C von(Eds.), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: The Scientific Basis-Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press (New York); 2014.
  • View Article
  • Google Scholar
  • PubMed/NCBI
  • 17. Chen WY, Suzuki T, Lackner M, editors. Handbook of climate change mitigation and adaptation. Springer International Publishing; 2017.
  • 23. Van den Ban AW, Hawkins HS. Agricultural Extension, 2nd Edn. Oxford: Blackwell Science; 2000.

CSIRO Logo

Quick links

  • Climate change
  • COVID-19 research
  • Staff profiles

Climate change questions and answers

Why is our climate changing? What are the impacts? Here we address some of the common questions raised about the changing climate and the science involved in studying it.

What is climate change?

Climate change refers to any long-term trends or shifts in climate over many decades.

How has climate changed in the past?

There is a great deal of evidence that the Earth's climate has warmed over the past century, with recent years the warmest on record.

Why do sea levels change?

Sea levels can change for a variety of reasons over a range of different time scales.

How are large scale climate processes responding in a changing climate?

Large-scale climate processes, such as El Niño and the Indian Ocean Dipole, affect Australia’s climate. Climate change may make the impacts of these processes more extreme.

How is climate likely to change in the future?

The Earth's future climate will depend on whether the world manages to slow or reduce greenhouse gas emissions, but warming is likely to continue.

How do greenhouse gases warm the planet?

The greenhouse effect keeps the Earth’s climate liveable, but human activities have increased the amounts of carbon dioxide and other greenhouse gases in the air, warming the planet and changing our climate.

What are the sources of carbon dioxide in the atmosphere?

About 90 per cent of the world’s carbon emissions comes from the burning of fossil fuels, and most of Australia’s emissions also comes from energy production, followed by transport, agriculture, and industrial processes.

How are greenhouse gases measured, estimated, and reported?

The Australian Government uses a ‘bottom-up’ approach to estimate the country’s greenhouse emissions, which is complemented by CSIRO measurements to provide ‘top-down’ estimates.

How can we address the causes of climate change?

We need to address climate change through mitigation and adaptation. Mitigation addresses the cause of climate change, primarily through emissions reductions.

How can we adapt to climate change?

Adaption to climate change can prepare communities, industries and infrastructure for the future. Adaptation can build resilience and reduce the risks posed by climate change, but there are barriers and limits. Some risks are unavoidable.

How does CSIRO contribute to climate change knowledge?

Our climate researchers contribute significantly to the international effort of weather and climate understanding.

What are the impacts of extreme weather and climate events?

Increases in extreme climate events pose challenges for Australia now and in the future.

How will climate extremes change Australia?

Australia experiences many different climate types across its large area, including a range of climate extremes from freezing mountains to scorching deserts. As climate changes, Australia’s weather and climate extremes will also change.

How fast is the climate changing?

While our climate has always changed, it is now changing at a rate that is unprecedented for many thousands of years and is due to human activities that emit greenhouse gases into the air.

How confident are we about the science of climate change?

The main impacts and mechanisms of physical climate change are scientifically well-understood, but specific estimates of these impacts are uncertain.

Where can I find more information about climate change?

Check where information comes from to ensure it is based on reliable and quality-assured sources of climate change science, such as peer-reviewed papers.

Find out how we can help you and your business. Get in touch using the form below and our experts will get in contact soon!

CSIRO will handle your personal information in accordance with the Privacy Act 1988 (Cth) and our Privacy Policy .

Enter a valid email address, for example [email protected]

A Country value must be provided

First name must be filled in

Surname must be filled in

Please choose an option

Organisation must be filled in

Please provide a subject for the enquriy

We'll need to know what you want to contact us about so we can give you an answer

We have received your enquiry and will reply soon.

We're Sorry

The contact form is currently unavailable. Please try again later. If this problem persists, please call us with your enquiry on 1300 363 400 or +61 3 9545 2176. We are available from 9.00 am to 4.00 pm AEST Monday - Friday.

climate change research paper questions

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

JavaScript appears to be disabled on this computer. Please click here to see any active alerts .

Climate Change Research

Fifth national climate assessment.

Check out NCA5, the most comprehensive analysis of the state of climate change in the United States.

Explore NCA5

EPA’s Climate Change Research seeks to improve our understanding of how climate change impacts human health and the environment.

Air Quality

Fluffy clouds in front of a blue sky, slightly obscuring the sun.

Researching how changes in climate can affect air quality.

Community Resilience

Aerial view of Chicago cityscape on a sunny day

Research to empower communities to become more resilient to climate change.

Ecosystems & Water Quality

Florida nature preserve, wetland area.

Research to understand how climate change is affecting these resources now and in the future.

Windmills and industry smoke stacks

Researching how energy production will impact climate and the environment.

Human Health

Family silhouette and a sunset sky

Research to understand how a changing climate will impact human health.

Tools & Resources

Illustration of gears and puzzle pieces. Monotone blue color scheme.

Decision support tools, models & databases, research grants, outreach, and educational resources.

More Resources

  • Publications, Presentations, and Other Research Products in Science Inventory
  • Climate Change Research Milestones
  • EPA's Climate Change Homepage
  • EPA's Climate Adaptation Plan

Advertisement

Advertisement

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

  • Review Article
  • Published: 04 April 2022
  • Volume 29 , pages 42539–42559, ( 2022 )

Cite this article

climate change research paper questions

  • Kashif Abbass 1 ,
  • Muhammad Zeeshan Qasim 2 ,
  • Huaming Song 1 ,
  • Muntasir Murshed   ORCID: orcid.org/0000-0001-9872-8742 3 , 4 ,
  • Haider Mahmood   ORCID: orcid.org/0000-0002-6474-4338 5 &
  • Ijaz Younis 1  

211k Accesses

430 Citations

31 Altmetric

Explore all metrics

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Similar content being viewed by others

climate change research paper questions

Morocco’s climate change impacts, adaptation and mitigation—a stocktake

climate change research paper questions

Climate change adaptation (CCA) research in Nepal: implications for the advancement of adaptation planning

climate change research paper questions

A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan

Avoid common mistakes on your manuscript.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

figure 1

Source : constructed by authors

Methodology search for finalized articles for investigations.

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

figure 2

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

figure 3

Source EMDAT ( 2020 )

Global deaths from natural disasters, 1978 to 2020.

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

figure 4

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

figure 5

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

A typical interaction between the susceptible and resistant strains.

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table 2 ).

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

figure 6

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Seasonal variations and cultivation practices

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

New varieties of crops

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

Changes in management and other input factors

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Availability of data and material

Data sources and relevant links are provided in the paper to access data.

Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054

Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech

Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14

Abbass K, Song H, Shah SM, Aziz B (2019) Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff 8(370):2167–0234

Google Scholar  

Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan

Abraham E, Chain E (1988) An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 10(4):677

CAS   Google Scholar  

Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 15(2):77–86

Article   Google Scholar  

Akkari C, Bryant CR (2016) The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research 5(2):162–173

Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740

Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. https://doi.org/10.1007/s10668-021-01716-2

Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press

Arshad MI, Iqbal MA, Shahbaz M (2018) Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research 23(2):121–132

Ashbolt NJ (2015) Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports 2(1):95–106

Article   CAS   Google Scholar  

Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543

Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3(9):827–832

Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.

Ayers J, Huq S, Wright H, Faisal A, Hussain S (2014) Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev 6:293–305

Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451

Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M (2022) The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy 185:1441–1455

Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank

Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)

Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK (2014) Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang 26:27–38

Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T (2019) Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish 28(3):434–445

Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916

Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317

Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16(2):587–598

Blum A, Klueva N, Nguyen H (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117(2):117–123

Bonacci O (2019) Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia). Acta Hydrotechnica 32(57):135–150

Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214

Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S (2018) Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol 250:47–63

Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN (2014) Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio 43(6):759–769

Bujosa A, Riera A, Torres CM (2015) Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage 47:233–239

Calderini D, Abeledo L, Savin R, Slafer GA (1999) Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci 132(4):453–459

Cammell M, Knight J (1992) Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res 22:117–162

Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci 111(2):723–727

Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF

Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag

Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513

Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587

Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R (2018) Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol 18(1):1–14

Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M (2009) Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet 373(9676):1693–1733

Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, https://doi.org/10.7208/9780226315072

Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare

Davidson D (2016) Gaps in agricultural climate adaptation research. Nat Clim Chang 6(5):433–435

Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci 114(19):4881–4886

Dimri A, Kumar D, Choudhary A, Maharana P (2018) Future changes over the Himalayas: mean temperature. Global Planet Change 162:235–251

Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Publishing Group, Nat Clim Chang

Book   Google Scholar  

Dupuis I, Dumas C (1990) Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol 94(2):665–670

Edreira JR, Otegui ME (2013) Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res 142:58–67

Edreira JR, Carpici EB, Sammarro D, Otegui M (2011) Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res 123(2):62–73

Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J (2017) Trees, forests and water: Cool insights for a hot world. Glob Environ Chang 43:51–61

Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER (2021) Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem 36(1):384–393

EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be

EPA U (2018) United States Environmental Protection Agency, EPA Year in Review

Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience

Fand BB, Kamble AL, Kumar M (2012) Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ 2(11):1–14

FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.

Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204

Farooq M, Bramley H, Palta JA, Siddique KH (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30(6):491–507

Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18

Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770

Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T (2013) Changing climates, changing forests: a western North American perspective. J Forest 111(3):214–228

Fischer AP (2019) Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan 188:72–79

Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM (2013) Global wildland fire season severity in the 21st century. For Ecol Manage 294:54–61

Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang 5(7):673–677

Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer

Gambín BL, Borrás L, Otegui ME (2006) Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res 95(2–3):316–326

Gambín B, Borrás L (2010) Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology 156(1):91–102

Gampe D, Nikulin G, Ludwig R (2016) Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ 573:1503–1518

García GA, Dreccer MF, Miralles DJ, Serrago RA (2015) High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol 21(11):4153–4164

Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA (2019) Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res 151:75–86

Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509

Gorst A, Dehlavi A, Groom B (2018) Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ 23(6):679–701

Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Change 134(3):371–385

Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G (2012) Consumer behaviour and demand response of tourists to climate change. Ann Tour Res 39(1):36–58

Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8(2):024041

Grieg E Responsible Consumption and Production

Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)

Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D (2015) On climate change skepticism and denial in tourism. J Sustain Tour 23(1):4–25

Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218(1):15–28

Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10:4–10

Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J (2019) Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 10(1):1124

Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06

Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C (2016) Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res 7(4):247–252

Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853

Hubbart JA, Guyette R, Muzika R-M (2016) More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ 566:463–467

Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192(1):48

Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR (2018) Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod 200:791–808

Intergov. Panel Clim Chang 33 from  https://doi.org/10.1017/CBO9781107415324

Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R (2009) Towards a formal framework of vulnerability to climate change. Environ Model Assess 14(1):1–16

IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep

Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham

Izaguirre C, Losada I, Camus P, Vigh J, Stenek V (2021) Climate change risk to global port operations. Nat Clim Chang 11(1):14–20

Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science

Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC (2020) Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE 15(3):e0229588

Jurgilevich A, Räsänen A, Groundstroem F, Juhola S (2017) A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett 12(1):013002

Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference

Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991

Karkman A, Do TT, Walsh F, Virta MP (2018) Antibiotic-resistance genes in waste water. Trends Microbiol 26(3):220–228

Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF (2005) Role of marine biology in glacial-interglacial CO2 cycles. Science 308(5718):74–78

Kongsager R (2018) Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land 7(4):158

Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987

Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875

Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414

Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE (2017) Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett 44(14):7419–7428

Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons

Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo

Lipczynska-Kochany E (2018) Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ 640:1548–1565

livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020

Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):014002

Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697

Ma L, Li B, Zhang T (2019) New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res 152:191–201

Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza

Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier

Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070

Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier

Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ (2018) Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett 13(4):044002

Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science 4(2):90–93

Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228

Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing

Mihiretu A, Okoyo EN, Lemma T (2021) Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences 1(2):1–18

Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826

Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210

Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332

Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. https://doi.org/10.1007/s11356-020-09497-3

Murshed M (2022) Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption 30:396–412. https://doi.org/10.1016/j.spc.2021.12.016

Murshed M, Dao NTT (2020) Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. https://doi.org/10.1007/s10708-020-10270-9

Murshed M, Abbass K, Rashid S (2021) Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco 26(4):5425–5450

Murshed M, Nurmakhanova M, Elheddad M, Ahmed R (2020) Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res 27(31):38951–38973. https://doi.org/10.1007/s11356-020-09593-4

Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. https://doi.org/10.1080/15567249.2022.2038730

Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR (2015) Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour 11:64–79

npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.

Ogden LE (2018) Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience 68(10):733–739

Ortiz AMD, Outhwaite CL, Dalin C, Newbold T (2021) A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth 4(1):88–101

Ortiz R (2008) Crop genetic engineering under global climate change. Ann Arid Zone 47(3):343

Otegui MAE, Bonhomme R (1998) Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res 56(3):247–256

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc

Pal JK (2021) Visualizing the knowledge outburst in global research on COVID-19. Scientometrics 126(5):4173–4193

Panda R, Behera S, Kashyap P (2003) Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag 63(1):37–56

Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T (2019) Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv 5(3):eaau9124

Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press

Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317

Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13):1395–1405

Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol 133(1):295–313

Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101(27):9971–9975

Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A (2013) Essential biodiversity variables. Science 339(6117):277–278

Perera K, De Silva K, Amarasinghe M (2018) Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change 161:162–171

Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham

Phillips JD (2018) Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA 169:107–118

Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228

Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121(8):878–885

Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S (2020) The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res 27(1):133–142

Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity

Rahman M, Alam K (2016) Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate 4(1):12

Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH (2018) Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol 69:789–815

Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460

Reichstein M, Carvalhais N (2019) Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys 40(4):693–707

Reidsma P, Ewert F, Boogaard H, van Diepen K (2009) Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst 100(1–3):51–60

Ritchie H, Roser M (2014) Natural disasters. Our World in Data

Rizvi AR, Baig S, Verdone M (2015) Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. IUCN, Gland, Switzerland, p 48

Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D (2013) What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol 14(3):187–198

Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273

Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests

Sadras VO, Slafer GA (2012) Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res 127:215–224

Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F (2021) Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE 16(5):e0252071

Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757

Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106(37):15594–15598

Schoene DH, Bernier PY (2012) Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ 24:12–19

Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press

Scott D (2021) Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability 13(4):1966

Scott D, McBoyle G, Schwartzentruber M (2004) Climate change and the distribution of climatic resources for tourism in North America. Climate Res 27(2):105–117

Semenov MA (2009) Impacts of climate change on wheat in England and Wales. J R Soc Interface 6(33):343–350

Shaffril HAM, Krauss SE, Samsuddin SF (2018) A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ 644:683–695

Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614

Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690

Sharma R (2012) Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev 32(4):480–486

Sharma R, Sinha A, Kautish P (2020) Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res 27(29):36970–36982

Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer

Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20

Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759

Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH (2015) Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr 42(5):880–890

Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p

Stone P, Nicolas M (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol 21(6):887–900

Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G (2018) Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ 616:453–461

Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S (2005) Livelihoods, forests, and conservation in developing countries: an overview. World Dev 33(9):1383–1402

Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4

Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol 138(1–4):82–92

Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Change 79(3–4):185–211

Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as

Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst

Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14(3):207–222

UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest

Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780

Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28

Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P (2022b) Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy 183:90–102

Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515

Usman M, Khalid K, Mehdi MA (2021) What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy 168:1165–1176

Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer

Vedwan N, Rhoades RE (2001) Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res 19(2):109–117

Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR (2001) Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci 41(3):748–754

Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci 113(48):13791–13796

Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers

Waheed A, Fischer TB, Khan MI (2021) Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage 67(5):793–810

Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank

Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A (2015) Health and climate change: policy responses to protect public health. The Lancet 386(10006):1861–1914

Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83(4):441–470

Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)

Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353(6295):169–172

WHO (2018) WHO, 2018. Antimicrobial resistance

Wilkinson DM, Sherratt TN (2016) Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers 9(2):127–140

Wiranata IJ, Simbolon K (2021) Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations 5(2):129–146

Wiréhn L (2018) Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy 77:63–74

Wu D, Su Y, Xi H, Chen X, Xie B (2019) Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res 158:11–21

Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier

Wu H, Qian H, Chen J, Huo C (2017) Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management 31(5):1557–1574

Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev

Xu J, Sharma R, Fang J, Xu Y (2008) Critical linkages between land-use transition and human health in the Himalayan region. Environ Int 34(2):239–247

Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M (2015) Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol 17(2):179–184

Yang B, Usman M (2021) Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons 28:893–910

Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16

Zarnetske PL, Skelly DK, Urban MC (2012) Biotic multipliers of climate change. Science 336(6088):1516–1518

Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S (2017) A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol 546:44–59

Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. https://doi.org/10.1016/j.renene.2022.03.050

Download references

Author information

Authors and affiliations.

School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, People’s Republic of China

Kashif Abbass, Huaming Song & Ijaz Younis

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094, People’s Republic of China

Muhammad Zeeshan Qasim

School of Business and Economics, North South University, Dhaka, 1229, Bangladesh

Muntasir Murshed

Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942, Saudi Arabia

Haider Mahmood

You can also search for this author in PubMed   Google Scholar

Contributions

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Corresponding author

Correspondence to Huaming Song .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Abbass, K., Qasim, M.Z., Song, H. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29 , 42539–42559 (2022). https://doi.org/10.1007/s11356-022-19718-6

Download citation

Received : 26 August 2021

Accepted : 10 March 2022

Published : 04 April 2022

Issue Date : June 2022

DOI : https://doi.org/10.1007/s11356-022-19718-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Climate change
  • Antimicrobial resistance
  • Biodiversity
  • Mitigation measures
  • Find a journal
  • Publish with us
  • Track your research
  • Get involved

A research paper contest on "Climate change and human rights"

The Commissioner for Human Rights (Ombudsman) of the Republic of Azerbaijan and the United Nations Development Programme announce a research paper competition on the topic of "Climate Change and Human Rights

June 5, 2024

climate change research paper questions

Considering that 2024 was declared the “Year of Solidarity for Green World” in Azerbaijan and our country will host the 29th session of the Parties to the United Nations Framework Convention on Climate Change (UNFCC)-COP29, the Ombudsman of Azerbaijan organizes public awareness-raising events in relation to the impacts of climate change on human rights.  

Climate change, as one of the global issues currently discussed, creates numerous challenges for the protection and promotion of human rights, along with its impacts on other areas. States, international institutions, civil society organizations, and academia hold discussions on the relevant issue to address it. 

For youngsters to contribute to this topic by conducting research and improving their teamwork skills, the Ombudsman and United Nations Development Programme (UNDP) jointly announce a research paper competition on the topic of “ Climate Change and Human Rights ” during the “Human Rights Month-Long Campaign.” The competition will be held under the theme “Youth Vision for Climate Change.”  

The 45-minute information sessions about the competition will be held at Baku State University, State Academy of Public Administration, Academy of the State Customs Committee, ADA University, and National Aviation Academy.  

The papers will be evaluated by judges, consisting of three independent experts – scholars who do not represent the parties conducting the competition.

For more detailed information please follow the link: https://ombudsman.az/az/news/1970

  • Our Program Divisions
  • Our Three Academies
  • Government Affairs
  • Statement on Diversity and Inclusion
  • Our Study Process
  • Conflict of Interest Policies and Procedures
  • Project Comments and Information
  • Read Our Expert Reports and Published Proceedings
  • Explore PNAS, the Flagship Scientific Journal of NAS
  • Access Transportation Research Board Publications
  • Coronavirus Disease 2019 (COVID-19)
  • Diversity, Equity, and Inclusion
  • Economic Recovery
  • Fellowships and Grants
  • Publications by Division
  • Division of Behavioral and Social Sciences and Education
  • Division on Earth and Life Studies
  • Division on Engineering and Physical Sciences
  • Gulf Research Program
  • Health and Medicine Division
  • Policy and Global Affairs Division
  • Transportation Research Board
  • National Academy of Sciences
  • National Academy of Engineering
  • National Academy of Medicine
  • Publications by Topic
  • Agriculture
  • Behavioral and Social Sciences
  • Biography and Autobiography
  • Biology and Life Sciences
  • Computers and Information Technology
  • Conflict and Security Issues
  • Earth Sciences
  • Energy and Energy Conservation
  • Engineering and Technology
  • Environment and Environmental Studies
  • Food and Nutrition
  • Health and Medicine
  • Industry and Labor
  • Math, Chemistry, and Physics
  • Policy for Science and Technology
  • Space and Aeronautics
  • Surveys and Statistics
  • Transportation and Infrastructure
  • Searchable Collections
  • New Releases

Climate Change Science: An Analysis of Some Key Questions

VIEW LARGER COVER

Climate Change Science

An analysis of some key questions.

The warming of the Earth has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. Climate Change Science: An Analysis of Some Key Questions , a new report by a committee of the National Research Council, characterizes the global warming trend over the last 100 years, and examines what may be in store for the 21st century and the extent to which warming may be attributable to human activity.

RESOURCES AT A GLANCE

  • Press Release
  • Earth Sciences — Climate, Weather and Meteorology
  • Environment and Environmental Studies — Climate Change

Suggested Citation

National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions . Washington, DC: The National Academies Press. https://doi.org/10.17226/10139. Import this citation to: Bibtex EndNote Reference Manager

Publication Info

  • Paperback:  978-0-309-07574-9
  • Ebook:  978-0-309-18335-2

What is skim?

The Chapter Skim search tool presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter. You may select key terms to highlight them within pages of each chapter.

Copyright Information

The National Academies Press (NAP) has partnered with Copyright Clearance Center's Marketplace service to offer you a variety of options for reusing NAP content. Through Marketplace, you may request permission to reprint NAP content in another publication, course pack, secure website, or other media. Marketplace allows you to instantly obtain permission, pay related fees, and print a license directly from the NAP website. The complete terms and conditions of your reuse license can be found in the license agreement that will be made available to you during the online order process. To request permission through Marketplace you are required to create an account by filling out a simple online form. The following list describes license reuses offered by the NAP through Marketplace:

  • Republish text, tables, figures, or images in print
  • Post on a secure Intranet/Extranet website
  • Use in a PowerPoint Presentation
  • Distribute via CD-ROM

Click here to obtain permission for the above reuses. If you have questions or comments concerning the Marketplace service, please contact:

Marketplace Support International +1.978.646.2600 US Toll Free +1.855.239.3415 E-mail: [email protected] marketplace.copyright.com

To request permission to distribute a PDF, please contact our Customer Service Department at [email protected] .

What is a prepublication?

What is a prepublication image

An uncorrected copy, or prepublication, is an uncorrected proof of the book. We publish prepublications to facilitate timely access to the committee's findings.

What happens when I pre-order?

The final version of this book has not been published yet. You can pre-order a copy of the book and we will send it to you when it becomes available. We will not charge you for the book until it ships. Pricing for a pre-ordered book is estimated and subject to change. All backorders will be released at the final established price. As a courtesy, if the price increases by more than $3.00 we will notify you. If the price decreases, we will simply charge the lower price. Applicable discounts will be extended.

Downloading and Using eBooks from NAP

What is an ebook.

An ebook is one of two file formats that are intended to be used with e-reader devices and apps such as Amazon Kindle or Apple iBooks.

Why is an eBook better than a PDF?

A PDF is a digital representation of the print book, so while it can be loaded into most e-reader programs, it doesn't allow for resizable text or advanced, interactive functionality. The eBook is optimized for e-reader devices and apps, which means that it offers a much better digital reading experience than a PDF, including resizable text and interactive features (when available).

Where do I get eBook files?

eBook files are now available for a large number of reports on the NAP.edu website. If an eBook is available, you'll see the option to purchase it on the book page.

View more FAQ's about Ebooks

Types of Publications

Consensus Study Report: Consensus Study Reports published by the National Academies of Sciences, Engineering, and Medicine document the evidence-based consensus on the study’s statement of task by an authoring committee of experts. Reports typically include findings, conclusions, and recommendations based on information gathered by the committee and the committee’s deliberations. Each report has been subjected to a rigorous and independent peer-review process and it represents the position of the National Academies on the statement of task.

  • Go back to Main Menu
  • Client Log In
  • MSCI Client Support Site
  • Barra PortfolioManager
  • MSCI ESG Manager
  • MSCI ESG Direct
  • Global Index Lens
  • MSCI Real Assets Analytics Portal
  • RiskManager 3
  • CreditManager
  • RiskManager 4
  • Index Monitor
  • MSCI Datscha
  • MSCI Real Capital Analytics
  • Total Plan/Caissa
  • MSCI Fabric
  • MSCI Carbon Markets

climate change research paper questions

Navigation Menu

  • Our Clients

Insights on MSCI One

Institutional client designed indexes (icdis), total portfolio footprinting, esg trends to watch, factor models, visualizing investment data, our solutions.

  • Go back to Our Solutions
  • Analytics Overview
  • Crowding Solutions
  • Fixed Income Analytics
  • Managed Solutions
  • Multi-asset Class Factor Models
  • Portfolio Management
  • Quantitative Investment Solutions
  • Regulatory Solutions
  • Risk Insights
  • Climate Investing
  • Climate Investing Overview

Implied Temperature Rise

Trends 2024.

  • Biodiversity
  • Carbon Markets

Climate Lab Enterprise

Real estate climate solutions, sustainable investing.

  • Sustainable Investing Overview

ESG and Climate Funds in Focus

What is esg, role of capital in the net-zero revolution, sustainability reporting services.

  • Factor Investing
  • Factor Investing Overview

MSCI Japan Equity Factor Model

  • Equity Factor Models
  • Factor Indexes
  • Indexes Overview

Index Education

Msci climate action corporate bond indexes.

  • Client-Designed
  • Direct Indexing
  • Fixed Income
  • Private Real Assets

Thematic Exposure Standard

  • Go back to Indexes
  • Resources Overview

MSCI Indexes Underlying Exchange Traded Products

  • Communications
  • Equity Factsheets
  • Derivatives
  • Methodology
  • Performance
  • Private Capital
  • Private Capital Overview

Global Private Capital Performance Review

  • Total Plan (formerly Caissa)
  • Carbon Footprinting
  • Private Capital Indexes
  • Private Company Data Connect
  • Real Assets
  • Real Assets Overview

2024 Trends to Watch in Real Assets

  • Index Intel
  • Portfolio Services
  • Property Intel
  • Private Real Assets Indexes
  • Real Capital Analytics
  • Research & Insights
  • Go back to Research & Insights
  • Research & Insights Overview
  • Multi-Asset Class
  • Real Estate
  • Sustainability
  • Events Overview

Capital for Climate Action Conference

  • Data Explorer
  • Developer Community
  • Technology and Data

2022 Annual Report

  • Go back to Who We Are
  • Corporate Responsibility
  • Corporate Responsibility Overview
  • Enabling Sustainable Investing
  • Environmental Sustainability
  • Governance Practices
  • Social Practices
  • Sustainability Reports and Policies
  • Diversity, Equity and Inclusion

Henry A. Fernandez

  • Recognition

Main Search

Esg investing banner, why esg investing, why sustainable investing.

Sustainable investing has experienced significant growth in recent years, but it has also faced increasing scrutiny, as more investors and companies use sustainability and climate data and tools to support their investment decision making. Sustainable investing at MSCI began in 1988. 1 Our first ESG index was launched in 1990. 2 We’ve been rating companies based on industry material environmental, social and governance risks since 1999. 3

We’re proud to work with over 3,000 clients worldwide including leading pension funds, asset managers, consultants, advisers, banks and insurers. If you’d like to learn more about integrating sustainability and climate considerations into your investment processes and how MSCI can help, please contact us .

Contact sales

ESG Investing buttons

New to esg, our clients.

We understand that when it comes to sustainable investing one size does not fit all. Our experience with sustainability data, climate data and frameworks as well as our role developing solutions for many of the world’s investors, has helped us identify common use cases by investor type.

Contact us to learn more about how we can help you integrate sustainability and climate insights.

Our products

We aim to be your one-stop-shop for sustainability and climate solutions. Our award-winning, 5 gold-standard 6 ESG ratings and climate data and research are developed in-house and are integrated across our index, analytics and real asset solutions.

ESG Investing - Our Products

Esg ratings.

MSCI ESG Ratings aim to measure a company’s management of financially relevant ESG risks and opportunities.

Sustainability and Climate Data and Solutions

Our team of experts is focused on in-depth research, ratings and analysis of the environmental, social and governance-related business practices of thousands of global companies.

ESG Indexes

MSCI ESG Indexes are designed to represent the performance of the most common ESG investment approaches by including, re-weighting or excluding companies by leveraging ESG criteria.

Climate Indexes

MSCI offers climate indexes for both Equity & Fixed Income that aim to meet the variety of needs of institutional investors who wish to address climate change.

Our Sustainability and Climate reports are designed to manage evolving regulatory requirements and address your growing reporting needs through a scalable reporting framework, giving you a clear vision of the risks and opportunities ahead.

Real Estate Climate Value-at-Risk (Climate VaR), a forward-looking and return-based valuation assessment for individual assets and portfolios.

ESG Transparency Tools

Transparency tools, esg transparency tools content part 1.

Explore the Implied Temperature Rise, Decarbonization Targets, MSCI ESG Rating and Key ESG Issues of over 2,900 companies.

Explore E, S & G Key Issues by GICS® sub-industry or sector and their contribution to companies' ESG Ratings.

ESG Fund Ratings aim to measure the resilience of mutual funds and ETFs to long term risks and opportunities.

Explore ESG and climate metrics for all MSCI equity, fixed income and blended indexes regulated by the EU.

ESG Investing Related Cards

Related content.

Connect with ESG client service.

Climate Lab Enterprise provides the tools and data needed to align portfolios with climate targets for a net-zero future.

Climate and Net-Zero Solutions

MSCI offers a suite of tools to help institutional investors benchmark, measure and manage portfolio exposure to climate risk, identify low carbon investment opportunities, and support investors seeking to set a net-zero target.

Sustainable Finance

ESG and climate regulation and disclosure resource center for institutional investors, managers and advisors.

ESG Funds in Focus

We bring focus to more than 52,000 funds through ratings, research and insights into the latest ESG trends driving risk and opportunities.

ESG and Climate Guide for Advisers

Advisers with the knowledge and tools to understand the nuances of ESG and Climate investing and position client portfolios accordingly can deliver additional value to clients and strengthen relationships.

ESG Investing footnotes

MSCI ESG Research LLC. is a Registered Investment Adviser under the Investment Adviser Act of 1940. The most recent SEC Form ADV filing, including Form ADV Part 2A, is available on the U.S. SEC’s website at www.adviserinfo.sec.gov  (opens in a new tab) .

MIFID2/MIFIR notice: MSCI ESG Research LLC does not distribute or act as an intermediary for financial instruments or structured deposits, nor does it deal on its own account, provide execution services for others or manage client accounts. No MSCI ESG Research product or service supports, promotes or is intended to support or promote any such activity. MSCI ESG Research is an independent provider of ESG data, reports and ratings based on published methodologies and available to clients on a subscription basis. 

ESG ADV 2A (PDF, 355 KB)  (opens in a new tab) ESG ADV 2B (brochure supplement) (PDF, 232 KB)  (opens in a new tab)

1 Through our legacy companies KLD, Innovest, IRRC, and GMI Ratings. ESG and climate data, research and ratings are produced by MSCI ESG Research LLC and are used as an input to the MSCI ESG indexes, calculated by MSCI, Inc.

2 MSCI KLD 400 Index https://www.msci.com/msci-kld-400-social-index

3 Origins of MSCI ESG Ratings established in 1999. Produced time series data since 2007.

4 MSCI ESG Research LLC clients

5 The Extel & SRI Connect Independent Research in Responsible Investment (IRRI) Survey – 2015, 2016, 2017 & 2018/19

6 Deep Data Delivery Standard http://www.deepdata.ai/

UtmAnalytics

climate change research paper questions

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 04 June 2024

Global groundwater warming due to climate change

  • Susanne A. Benz   ORCID: orcid.org/0000-0002-6092-5713 1 , 2 ,
  • Dylan J. Irvine   ORCID: orcid.org/0000-0002-3543-6221 3 ,
  • Gabriel C. Rau 4 ,
  • Peter Bayer   ORCID: orcid.org/0000-0003-4884-5873 5 ,
  • Kathrin Menberg 6 ,
  • Philipp Blum 6 ,
  • Rob C. Jamieson 1 ,
  • Christian Griebler 7 &
  • Barret L. Kurylyk   ORCID: orcid.org/0000-0002-8244-3838 1  

Nature Geoscience ( 2024 ) Cite this article

163 Altmetric

Metrics details

  • Climate-change impacts
  • Projection and prediction

Aquifers contain the largest store of unfrozen freshwater, making groundwater critical for life on Earth. Surprisingly little is known about how groundwater responds to surface warming across spatial and temporal scales. Focusing on diffusive heat transport, we simulate current and projected groundwater temperatures at the global scale. We show that groundwater at the depth of the water table (excluding permafrost regions) is conservatively projected to warm on average by 2.1 °C between 2000 and 2100 under a medium emissions pathway. However, regional shallow groundwater warming patterns vary substantially due to spatial variability in climate change and water table depth. The lowest rates are projected in mountain regions such as the Andes or the Rocky Mountains. We illustrate that increasing groundwater temperatures influences stream thermal regimes, groundwater-dependent ecosystems, aquatic biogeochemical processes, groundwater quality and the geothermal potential. Results indicate that by 2100 following a medium emissions pathway, between 77 million and 188 million people are projected to live in areas where groundwater exceeds the highest threshold for drinking water temperatures set by any country.

Similar content being viewed by others

climate change research paper questions

Evapotranspiration depletes groundwater under warming over the contiguous United States

climate change research paper questions

Recent and projected precipitation and temperature changes in the Grand Canyon area with implications for groundwater resources

climate change research paper questions

Global peak water limit of future groundwater withdrawals

Earth’s climatic system warms holistically in response to the radiative imbalance from increased concentrations of greenhouse gases 1 . While the ocean absorbs most of this additional heat 2 , the terrestrial subsurface and groundwater also function as a heat sink. With a stable climate, seasonal temperature variation penetrates to a depth of 10–20 m, below which temperatures generally increase with depth in accordance with the geothermal gradient 3 . However, present-day borehole temperature–depth profiles frequently show an inversion (that is, temperature decreasing with depth) for up to 100 m due to recent, decadal surface warming 4 . Deviations from steady-state subsurface temperatures in deep boreholes (for example, >300 m) have been used to evaluate terrestrial heat storage and to estimate past, pre-observational surface temperature changes at a global scale 5 . Previous multi-continental synthesis studies on subsurface warming provide critical information on climate dynamics, but impacts on groundwater resources and associated implications are commonly ignored.

With the advent of the Gravity Recovery and Climate Experiment (GRACE) satellites, global datasets and global hydrological models, there is an emerging body of global-scale groundwater research 6 , 7 , 8 , 9 . However, global-scale groundwater studies so far have focused on resource quantity (for example, levels, recharge rates and gravity signals), whereas global-scale research into groundwater quality, including temperature, is rare. Furthermore, prominent syntheses of the relationship between anthropogenic climate change and groundwater (for example, refs. 10 , 11 ) concentrate on quantity leaving quality aspects unexplored 12 . Water temperature, sometimes known as the ‘master environmental variable’ (ref. 13 ), is an understudied groundwater quality parameter in the context of climate change.

Whereas global studies of river and lake warming have been conducted 14 , 15 , there are no global assessments of climate change impacts on groundwater temperatures (GWTs). This is despite the high importance of groundwater, which represents the largest global reservoir of unfrozen freshwater 16 , providing at least part of the water supply for half the world 17 and close to half of the global irrigation demand 18 . It also sustains terrestrial and aquatic ecosystems 19 , particularly in the face of climate change 10 . Given the role of temperature as an overarching water quality variable and observational evidence of groundwater warming in different countries in response to recent climate change 4 , 20 , 21 , the potential impact of climate warming on groundwater temperatures at a global scale remains a critical knowledge gap.

Groundwater temperature influences a suite of biogeochemical processes that alter groundwater quality 22 . For example, an increase in temperatures reduces gas solubility and raises metabolism of organisms, with an increased rate of oxygen consumption and a shift in redox conditions 23 . Because many aquifers already possess low oxygen concentrations, a small change in temperature could trigger a shift from an oxic to a hypoxic or even an anoxic regime 24 , 25 . This switch can in turn facilitate the mobilization of redox-sensitive constituents such as arsenic, manganese and phosphorus 26 , 27 . Increases in soluble phosphorus in groundwater discharging to surface water can trigger harmful algal blooms 28 , and elevated arsenic and manganese contents in potable water supplies pose direct risks to human health 29 . Groundwater warming will also cause a shift in groundwater community composition with a challenge to biodiversity and the risk of an impaired cycling of carbon and nutrients 24 , 25 . Shallow soil and groundwater warming may also cause temperatures in water distribution networks to cross critical thresholds, with potential health implications such as the growth of pathogens such as Legionella spp. 30 .

Diffusive discharge of thermally stable groundwater to surface water bodies modulates their temporal thermal regimes 30 . Also, focused groundwater inflows can create cold-water plumes that provide thermal refuge for stressed aquatic species 31 , including many prize cold-water fish. Accordingly, groundwater warming will increase ambient water temperatures in surface water bodies and the temperatures of groundwater-sourced thermal refuges. Spring ecosystems will also be affected. For example, crenobionts (true spring water species) have a very narrow temperature optimum and tolerance; hence, warming groundwater near the mouths of springs will lead to changes in their reproduction cycles, food web interactions and finally a loss of sensitive species 32 .

Groundwater warming can also have positive effects as the accumulated thermal energy can be recycled through shallow, low-carbon geothermal energy systems 33 . Whereas studies typically focus on recycling the waste heat from anthropogenic sources, particularly from subsurface urban heat islands 34 , the subsurface heat accumulating due to climate change also has the potential to sustainably satisfy local heating demands 35 . However, increased warming will make cooling systems less efficient 36 .

Here we develop and apply a global-scale heat-transport model (thermal diffusion) to quantify groundwater temperatures in space and time and their response to recent and projected climate change (Fig. 1a,b ). Our objective is to reveal the potential magnitude and long-term implications of ongoing shallow groundwater warming and to identify ‘hotspots’ of concern. The model utilizes standard climate projections to drive global groundwater warming down to 100 m below ground surface but with a focus on temperatures at the depth of the water table. We discuss (1) where aquifer warming will influence the viability of shallow geothermal heat recycling in the shallow subsurface (Fig. 1c ), (2) given how it impacts microbial activity and groundwater chemistry, where groundwater temperature may cross key thresholds set by drinking water standards (Fig. 1d ) and (3) where discharge of warmed groundwater will have the most pronounced impact on river temperatures and aquatic ecosystems (Fig. 1e ). Our model is global, and its resolution limits detailed capture of small-scale processes, producing conservative results based on tested hydraulic and thermal assumptions, including realistic advection from basin-scale recharge. More localized processes may lead to higher groundwater temperatures in areas with increased downward flow (for example, river-based recharge) or elevated surface temperatures (for example, urban heat islands) (Supplementary Note 1 provides details).

figure 1

a – e , Increases in surface air and ground surface temperatures ( a ) drive increases in groundwater temperatures ( b ) that, in turn, impact the geothermal potential for shallow geothermal energy systems ( c ), groundwater chemistry and microbiology, which in turn impacts water quality ( d ) and groundwater-dependent ecosystems ( e ). Figure created with images from the UMCES IAN Media Library under a Creative Commons license CC BY-SA 4.0 .

Groundwater temperatures

We use gridded data to calculate transient subsurface temperature–depth profiles across the globe ( Methods ). Besides past and current temperatures, we present potential (modest mitigation) and worst-case (no mitigation) projections to 2100 based on the Shared Socioeconomic Pathway (SSP) 2–4.5 or SSP 5–8.5 climate scenarios of phase 6 the Coupled Model Intercomparison Project (CMIP6) (ref. 37 ). Results can be accessed and visually explored using an interactive Google Earth Engine app available at https://susanneabenz.users.earthengine.app/view/subsurface-temperature-profiles . Figure 2a–c displays maps of mean GWT at the depth of the water table and at 5 and 30 m below ground surface for 2020.

figure 2

a – c , Map of modelled mean annual temperatures at the depth of the water table ( a ), at 5 m below ground surface ( b ) and at 30 m below ground surface ( c ) in 2020. d , Comparison of modelled and observed groundwater temperatures. Blue markers are (multi-) annual mean temperatures observed between 2000 and 2015 at an unspecified depth against modelled temperatures of the same time period at 30 m depth. Grey markers are temperatures of a single point in time versus modelled temperatures of the same time and depth. A histogram of the errors (observed minus modelled temperatures) is shown in the upper left corner. e , Modelled temperature–depth profiles showing mean annual temperatures and the seasonal envelope for the locations displayed in a . Please note that we use bulk thermal properties, and the water table depth is thus not an input parameter into our model.

Comparison with measured data demonstrates a good accuracy of the model given the global scale with a root mean square error of 1.4 °C and a coefficient of determination of 0.75 (Fig. 2d ). An in-depth discussion on model reliability, uncertainty and limitations is given in Supplementary Note 2 .

The median GWT at the water table in 2020 was 21.0 °C (5.6 °C, 29.3 °C; 10th, 90th percentile; Fig. 2a ). In comparison, using the same ECMWF re-analysis (ERA-5) data product, air temperatures in 2020 were lower at 17.6 °C (1.4 °C, 27.0 °C). This thermal offset is attributable to various processes and conditions including snow pack insulation in colder climates 38 and increased temperatures with depth following the geothermal gradient.

Simulated temperature–depth profiles are displayed at six example locations in Fig. 2e , including their seasonal envelope. Supplementary Note 3 provides a discussion of seasonality. Whereas all locations show an inversion of the temperature–depth profile, the depth at which this thermal gradient ‘inflection point’ (ref. 4 ) is reached varies greatly based on the rate and duration of recent climate change. At the example location in Mexico, temperatures begin to increase with depth (as expected based on the local geothermal gradient) from approximately 10 m downwards, whereas at the example location in Brazil, the inflection point reaches a depth of 45 m (Fig. 2c ). Globally, it has reached 15 (<1, 40) m (Extended Data Fig. 1a ). Heat advection from vertical groundwater flow may also influence the depth of the inflection point 4 , but only heat diffusion is considered in our model as this is the dominant heat-transport mechanism at the modelled spatial scale ( Methods ).

To better assess the impact of recent climate change on groundwater temperatures at the water table depth, we compare annual mean GWTs from 2000 and 2020. Over this 20-year period, GWTs increased on average by 0.3 (0.0, 0.8) °C (Fig. 3a ). We do not find any distinct large-scale patterns. However, some of the highest temperature increases occur in parts of Russia (for example, > + 1. 5 ∘ C north of Novosibirsk), while parts of Canada experienced cooling (for example, < −0. 5 °C in Saskatoon) between the two years. Both regions have shallow water tables, with GWTs tightly coupled to seasonal surface temperature variations and short-term intra-annual changes, rather than just the long-term surface temperature signals. As such, one hot summer can drastically alter the modelled GWT difference between 2000 and 2020. The influence of weather conditions for a given year is also notable in the depth profiles for six selected locations (Fig. 3d ). Noticeable variations occur in the upper 5 m of mean temperature range profiles with temperature changes of 1.1 °C at the location in Australia, compared with 0.5 °C at the location in Nigeria. These effects of intra-annual and short-term interannual variations in weather are attenuated at greater depths (for example, 30 m). Long-term (climate change) effects penetrate deeper, although groundwater warming may be less pronounced with depth due to the time lag between surface and subsurface temperature signals (Fig. 3c ).

figure 3

a – d , Recent (2000 to 2020) changes. e – h , Projected (2000–2100) changes. a , e , Map of the change in annual mean temperature at the depth of the water table. The line in the legend indicates 0 °C. b , c , f , g , Temperature change 5 m below the land surface ( b , f ) and 30 m below the land surface ( c , g ). d , h , Change in temperatures between 2000 and 2020 ( d ) and difference between 2000 and 2100 ( h ) as depth profiles for selected locations (symbols in a and e ). Lines in h indicate median projections, whereas 25th to 75th percentiles (pct.) are presented as shading.

Over the entire century (between 2000 and 2100), groundwater warming is also projected to increase; globally averaged GWTs at the water table (at its current level) increase by 2.1 (0.8, 3.0) °C following SSP 2–4.5 median projections (Fig. 3e–g ; Extended Data Fig. 2 for 25th (1.7 (0.6, 2.5) °C) and 75th percentile (2.6 (1.0, 3.6) °C) projections) and by 3.5 (1.0, 5.5) °C following SSP 5–8.5 median projections (Extended Data Figs. 3a–d and 4 ; 25th percentile projections 3.0 (0.8, 5.8) °C; 25th percentile projections 4.6 (1.3, 7.1) °C).

We observe a clear signal of climate change by studying the depth down to which the temperature profile is reversed and temperatures are decreasing outside of seasonal effects. In 2100 the geothermal gradient inflection point is projected to reach 45 (9, 90) m on average following SSP 2–4.5 median projections (40 (6, 90) m for 25th percentile and 45 (15, 80) m for 75th percentile projections) or 60 (40, 100) m following SSP 5–8.5 median projections (60 (35, >100) m for 25th percentile and 60 (45, >100) m for 75th percentile projections; Extended Data Figs. 1b,c and 5 ).

Accumulated energy

The overall increase in GWT can be quantified as accumulated energy ( Methods ). By 2020, a net energy amount of 14 × 10 21  J has already been absorbed by the terrestrial subsurface (Fig. 4a ; 119 (45, 202) MJ m −2 ) since the beginning of the industrial revolution. In comparison, 436 × 10 21  J or about 25 times more has been absorbed by the oceans over a similar time period 39 . A review of Earth’s energy imbalance identifies a total heat gain of 358 × 10 21  J for the time period 1971–2018 only, attributing about 6% of that to land areas including permafrost regions (21 × 10 21  J, that is, a similar magnitude as our estimate) 40 . In a similar range is the 23.8 × 10 21  J that was stored in the continental landmass since 1960 following a recent study; 90% is from heat storage 41 .

figure 4

a – c , Current status in 2020. d – f , Projected status in 2100 under SSP 2–4.5. a , d , Accumulated heat from the surface to 100 m depth. The line in the legend indicates 0 MJ m −2 . b , e , Map showing locations where maximum monthly GWTs at the thermal gradient inflection point (coldest depth) are above guidelines for drinking water temperatures (DWTs) 43 . c , f , GWT changes between 2000 and 2020 ( c ) and between 2000 and 2100 ( f ) at stream sites with a groundwater signature 49 . The line in the legend indicates 0 °C.

We project that by 2100 accumulated subsurface energy will be 41 × 10 21  J following SSP 2–4.5 median projections (343 (251, 463) MJ m −2 ; Fig. 4d ), 30 × 10 21  J following 25th percentile projections (255 (162, 361) MJ m −2 ) and 50 × 10 21  J following 75th percentile projections (424 (324, 560) MJ m −2 ; Extended Data Fig. 6 ). Under SSP 5–8.5 we get 62 × 10 21  J for the median projections (518 (384, 689) MJ m −2 ; Extended Data Fig. 3e ), 49 × 10 21  J for the 25th percentile projections (412 (285, 564) MJ m −2 ) and 77 × 10 21  J for the 75th percentile projections (644 (493, 844) MJ m −2 ; Extended Data Fig. 7 ). This accumulated heat can be extracted from the subsurface through wells in productive aquifers, but in lower-permeability zones and the unsaturated zone, less-efficient borehole heat exchangers would be necessary 33 . Hence, we assessed the energy accumulated in the saturated zone only (below the current water table) in Extended Data Fig. 8 —on average, there is 68 (13, 133) MJ m −2 of heat in the global subsurface saturated zone in 2020.

By comparing the accumulated aquifer thermal energy in the United States (about 45 MJ m −2 ) with local residential heating demands (about 35,000 MJ per household in 2015 following the US Energy Information Administration 2015 Energy Consumption Survey), we find that, if recycled, the energy accumulated below an average home (250 m 2 for the floor area in new single-family houses following the 2015 ‘Characteristics of new housing’ report, US Department of Commerce) in 2020 would fulfil about four months of heating demands. However, by 2100, global heat storage in the saturated zone is projected to increase to 233 (75, 363) MJ m −2 following SSP 2–4.5 and 352 (105, 536) MJ m −2 following SSP 5–8.5 median projections (Extended Data Figs. 8 and 9 for 25th and 75th percentile projections). With heating demands projected to decline due to higher temperatures and improved building insulation, recycling this subsurface heat will therefore become more feasible and is a carbon-reduced heat source that will benefit from climate change 35 . Conversely, cooling systems that rely on geothermal sources will be less efficient.

Implications for drinking water quality

Whereas groundwater warming offers benefits for geothermal heating systems, the accumulated heat also threatens water quality. In many developing countries or in poor and rural areas within developed countries, groundwater may be consumed directly without treatment or storage. It may also indirectly impact temperatures of drinking water within pipes 42 . In these regions in particular, the changes in water chemistry or microbiology that are associated with groundwater warming have to be carefully considered.

According to the World Health Organization, only 18 of 125 countries have temperature guidelines for drinking water 43 . These temperature guidelines, which are often aesthetic guidelines, range from 15 °C to 34 °C, with a median of 25 °C. Figure 4b shows where annual maximum groundwater temperatures at the geothermal gradient inflection point, that is, the most conservative depth as it is the coldest point in the temperature–depth profile, are above these thresholds in 2020. At this time, more than 29 million people live in areas where our modelled maximum GWT exceeded 34 °C. If water is extracted at the depth of the water table, this increases to close to 31 million (Extended Data Fig. 10 ). Following SSP 2–4.5 median projections by 2100, these numbers will increase to 77 million to 188 million depending on the depth of extraction (72 to 101 for 25th percentile projection; 86 to 395 for 75th percentile projections; Fig. 4d and Extended Data Figs. 5 and 9 ). Following SSP 5–8.5 median projections, 59 million to 588 million people will live in areas where maximum GWTs exceed the highest thresholds for drinking water temperatures (54 to 314 for 25th percentile projection; 66 to 1,078 for 75th percentile projections; Extended Data Figs. 3f , 6 and 9 ). Due to the different population distributions, SSP 5–8.5 projects fewer people at risk than SSP 2–4.5 for the lower estimates.

Implications for groundwater-dependent ecosystems

The ecosystems most dependent on groundwater are those in the aquifers themselves. A temperature increase may threaten groundwater biodiversity and ecosystem services 44 , 45 . Also, the increased metabolic rates of microbes caused by warming will accelerate the cycling of organic and inorganic matter, additionally fuelled by the increasing importance of dissolved organic carbon to the subsurface 46 . Combined with decreasing groundwater recharge as projected for many North African, southern European and Latin American countries 47 , this may transform oxic subsurface environments into anoxic 24 .

Groundwater warming also threatens many riverine groundwater-dependent ecosystems and the industries (for example, fisheries) that they support 48 . To capitalize on past continental-scale research related to groundwater, river temperature and ecosystems, we compare our modelled spatial patterns of groundwater warming in the conterminous United States to a recent distributed analysis of 1,729 stream sites 49 . The amplitude and phase of seasonal temperature signals in these surface water bodies were used to reveal the thermal influence and source depth of groundwater discharge to these streams, with about 40% classified as groundwater dominated. Our results show that GWT at the water table for the groundwater-dominated stream sites increased by 0.1 (0.0, 0.4) °C between 2000 and 2020 and 1.3 (0.3, 2.6) °C and 1.9 (0.4, 4.5) °C between 2000 and 2100 following SSP 2–4.5 and SSP 5–8.5 median projections, respectively (Fig. 4c,f and Extended Data Fig. 3g ). Twenty-fifth percentile projections reveal 0.7 (−0.1, 1.5) °C and 1.0 (0.0, 2.9) °C and 75th percentile projections 2.0 (0.5, 4.0) °C and 2.9 (0.6, 6.7) °C between 2000 and 2100 following SSP 2–4.5 and SSP 5–8.5, respectively (Extended Data Figs. 6 and 7 ).

The warming groundwater will inevitably raise the ambient temperature of surface water systems thermally influenced by groundwater discharge. Furthermore, such groundwater warming will even more strongly impact the thermal regimes of groundwater-fed thermal refuges (for example, at the outlets of springs or groundwater-dominated tributaries flowing into rivers) and cause them to more regularly cross critical temperature thresholds for resident species seeking relief from thermal stress. Given the connection between aquifer thermal regimes and river sediment temperatures 50 , groundwater warming also threatens the thermal suitability of benthic ecosystems and spawning areas for fish 51 , posing a major risk to fisheries and other dependent industries.

Summary and model application

In summary, global climate change is leading to increased atmospheric and surface water temperatures, both of which have already been assessed across spatial scales ranging from local to global. Here we contribute to the global analyses of environmental temperature change and of groundwater resources through the presentation of projected groundwater temperature change to 2100 at a global scale. Our analyses are based on reasonable hydraulic and thermal assumptions providing conservative estimates and allow for both the hindcasting and forecasting of groundwater temperatures. Future groundwater temperature forecasts are based on both SSP 2–4.5 and 5–8.5 climate scenarios. We provide global temperature maps at the depth of the water table, 5 and 30 m below land surface, and these highlight that places with shallow water tables and/or high rates of atmospheric warming will experience the highest groundwater warming rates globally. Importantly, given the vertical dimension of the subsurface, groundwater warming is inherently a three-dimensional (3D) phenomenon with increased lagging of warming with depth, making aquifer warming dynamics distinct from the warming of shallow or well-mixed surface water bodies.

To facilitate more detailed future analyses, the temperature maps are included in a Google Earth Engine app at https://susanneabenz.users.earthengine.app/view/subsurface-temperature-profiles . The gridded GWT output could be integrated with global river temperature models 52 to more holistically understand future warming in aquifers and connected rivers. Whereas the warming of Earth’s groundwater poses some opportunities for geothermal energy production, it increasingly threatens ecosystems and the industries depending on them, and it will degrade drinking water quality, primarily in less-developed regions.

Diffusive heat transport

We hindcast monthly subsurface temperatures (and therefore also groundwater temperatures (GWTs) based on the assumption of local equilibrium) from the surface to a depth of 100 m for the years 2000 to 2020. We also force our model with future projections following SSP 2–4.5 and SSP 5–8.5 up to the year 2100. Subsurface temperatures in the shallow crust are generally controlled by one-dimensional (1D) (vertical) diffusive heat transport. Heat advection due to water flow plays a lesser and often inconsequential role in controlling subsurface temperatures 54 , 55 , 56 , particularly at larger spatial scales that average out focused groundwater flows in faults and fractures and groundwater exchange with surface water bodies. We adopt our 1D diffusion-dominated approach rather than a 3D numerical model of coupled groundwater flow and heat transfer as there are presently neither the parameterization data nor the computing power to enable such a coupled, 3D water and thermal transport model at a global scale. Also, whereas the influence of heat advection on steady-state or transient, subsurface temperature–depth profiles can be detected with precise temperature loggers and yields valuable insight into vertical groundwater fluxes when heat is used as a groundwater tracer 57 , the rate of shallow groundwater warming is often not thought to be strongly influenced by typical basin-average, vertical groundwater flux rates. Accordingly, heat advection has been ignored in some past local-scale groundwater warming studies (for example, ref. 58 ). However, to further investigate the thermal effects of multi-dimensional flow, we run a suite of scenarios and find that advection only exerts a minor influence on groundwater warming rates for typical groundwater flow conditions (Supplementary Note 1 ), enabling us to employ our approach.

Appropriate initial conditions can be far more important for reliable simulation of temperature–depth profiles than the inclusion of heat advection 59 . To ensure our initial conditions are not influenced by any preceding climate change, we initiate our model in 1880 when the industrial revolution had not yet increased atmospheric greenhouse gasses and the climate was relatively stable. As default initial setting, we define a temperature–depth profile that increases linearly with depth z from the surface T S in accordance with the geothermal gradient a : T ( z ) =  T S  +  a z (ref. 55 ). In permafrost regions, warming above critical thresholds requires latent heat to thaw ground in addition to the sensible heat to raise the temperature. As we do not include latent heat effects, model results are not presented for permafrost regions 60 .

We use the following analytical solution to the transient 1D heat diffusion equation for a semi-infinite homogeneous medium subject to a series of n step changes in surface temperature 55 :

where j is a step change counter (counting by month), t is time, T S ( t ) is the time series of the ground surface temperature, D is the thermal diffusivity and erfc is the complementary error function. This equation is often used in an inverse manner to reconstruct pre-observational ground surface temperature history from observed, deep temperature–depth profiles, demonstrating its utility for investigating the response of subsurface thermal regimes to surface warming.

We run our model in Google Earth Engine (GEE) 61 , and the results are presented in the form of a Google Earth Engine app openly accessible at https://susanneabenz.users.earthengine.app/view/subsurface-temperature-profiles . The application presents zoomable maps of annual mean, maximum and minimum GWT at different depths and seasonal variability (maximum minus minimum) for selected years and climate scenarios. All datasets were created at a native 5 km resolution at Earth’s surface. However, Google Earth Engine automatically rescales images shown on the map based on the zoom level of the user. Charts that represent temperatures at a given location at a 5 km scale are created by clicking on the map and can be exported in CSV, SVQ or PNG file formats. For all analyses showing annual mean data at the water table depth, we first calculate monthly temperatures at the associated monthly groundwater level before averaging the results.

Ground surface temperatures

We use two distinct ground surface temperature time series: (1) one for the analysis of current (2020) temperatures based primarily on the ERA-5 data 62 and (2) one for the analysis of projected changes based on CMIP6 data 37 . On the basis of available computational power and data, we are not able to utilize monthly temperatures for the entire time period between the years 1880 and 2100. Instead, we present monthly temperatures from 1981 onwards and annual mean temperatures for 1880. The threshold 1981 is selected as ERA-5 data were available in Google Earth Engine from this point on when developing the model.

As these data are input into the analytical step function model (equation ( 1 )), we supplement them with mean temperatures of the early 1980s (that is, three-year mean 1981 to 1984) to reduce artefacts of the sudden onset of seasonal signals in our data. An example of the ground surface temperature time series is shown in Supplementary Fig. 11 .

For the analysis of current GWT, we use monthly mean soil temperature at 0–7 cm depth for the years 1981 to 2022 based on the ERA-5-Land monthly average reanalysis product 62 to form the ground surface temperature boundary condition for equation ( 1 ). These data have a native resolution of 9 km at the surface and are available through the GEE data catalogue. We also used annual ground temperature anomalies of 1880 of the top layer following the Goddard Institute for Space Studies (GISS) atmospheric model E 63 . This dataset gives the temperature difference between 1880 and 1980 in a horizontal resolution of 4° × 5° (approximately 444 km × 555 km at the equator) and can be extracted from https://data.giss.nasa.gov/modelE/transient/Rc_ij.1.11.html . To obtain absolute temperatures of 1880, we subtract the anomalies from three-year mean temperatures (1981 to 1984) of the ERA-5 data.

Future projections of ground surface temperatures are based on monthly soil temperatures closest to the surface for scenarios SSP 2–4.5 and SSP 5–8.5 from the CMIP6 programme available from 2015 to 2100. Model selection and methodology follow previous work 64 , but were updated to CMIP6 based on availability. In total we use nine models: BCC-CSM2-MR, CanESM5, GFDL-ESM4, GISS-E2-1-G, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR, NorESM2-MM. Where available, we used data from the variant label r1i1p1f1; however, for GISS-E2-1-G and HadGEM3-GC31-LL, these were not available, and we had to use r1i1p1f2 or r1i1p1f3 instead. Furthermore NorESM2-MM was missing data for January 2015; thus, we replaced them with data from December 2014 from the historic scenario. Data were collected from the World Climate Research Programme at https://esgf-node.llnl.gov/search/cmip6/ . In addition, monthly data of the historic scenario were prepared for January 1981 to December 2014 and the annual mean data for 1880. To account for the difference between the CMIP6 models and ERA-5 reanalysis, we adjust the CMIP6 outputs based on mean temperatures \(\overline{T}\) from ERA-5 between 1981 and 2014 (that is, the overlap between ERA-5 and the CMIP6 historic scenario) for each of the CMIP6 models separately as follows:

Temperatures are determined for each model before being presented as the median and the 25th and 75th percentiles.

Thermal diffusivity

For our analysis we use the ground thermal diffusivity D :

where λ (W m −1  °C −1 ) is the bulk thermal conductivity and C V (J m −3  °C −1 ) is the bulk volumetric heat capacity. Ground thermal conductivity and volumetric heat capacity for various water saturation values are derived following previous examples 35 , 65 . This method links λ and C V values for different soil and/or rock types following the VDI 4640 guidelines 66 to a global map of soil and/or rock type. This map is based on grain size information of the unconsolidated sediment map database (GUM) 67 . Where there is no available sediment class, we link to soil type in GUM. When this is also not available, we rely on the global lithological map database (GLiM) 68 . All required datasets were uploaded to Google Earth Engine in their native resolution. For assigned values, refer to Supplementary Table 1 .

We acknowledge that the distribution of subsurface thermal properties is heterogeneous. However, specific heat capacity and thermal conductivity for rocks are both well constrained to within less than half an order of magnitude 69 , 70 compared with the many orders of magnitude for hydraulic conductivity 71 . We also note that water saturation can change the individual thermal properties and have accordingly run our model for six example locations with three different diffusivity values: (1) a dry soil, (2) a moist soil (default) and (3) a water saturated soil (Supplementary Fig. 12 ). The influence of water saturation on thermal diffusivity can be complex as both the heat capacity and thermal conductivity increase with water content (equation ( 3 )). Overall, for locations with unconsolidated material in the shallow subsurface, groundwater warming rates increase with water saturation. However, the effect is nonlinear and the overall impact of water saturation on the thermal diffusivity is negligible for relative saturation values between 0.5 and 1 (ref. 72 ). A map of the diffusivity utilized here is given in Supplementary Fig. 13a .

Geothermal gradient

When advection is absent, the geothermal gradient a (°C m −1 ; equation ( 1 )) is the rate of temperature change with depth due to the geothermal heat flow Q (W m −2 ) and thermal conductivity λ (W m −1  °C −1 ):

with global values for λ derived as described earlier, and the mean heat flow Q available as a global 2° equal area grid (about 222 km at the equator) 73 . Due to their resolution, these data do not incorporate fractures and major faults, and we thus are not able to estimate groundwater temperatures at these locations properly. The grid was uploaded to GEE in its native resolution for analysis (Supplementary Fig. 13b ).

Water table depth

Much of our analysis and interpretation focuses on the future projection of temperatures at the water table depth. We therefore use the results of a previously published global groundwater model 74 , 75 with a 30 sec grid (about 1 km at the equator) to obtain the mean water table depth for 2004 to 2014. These data are available as monthly averages that we uploaded to GEE in their native resolution. In temperate climates, the model underestimates the observed water table depth by 1.5 m, and we therefore set the minimum water table depth to 1.5 m as was done in a previous study 35 . Still, whereas the global-scale hydro(geo)logical model of Fan et al. 74 , 75 can reveal large-scale patterns, it is of limited use for small-scale analysis and must be used with caution. Hence we run additional information for best- and worst-case scenarios where we add or subtract 10 m to the depth of the water table (Supplementary Note 4 ).

To calculate mean annual GWTs at the water table, temperatures for each month were determined at the corresponding water table depth by setting z in equation ( 1 ) to this depth. Future changes of water table elevation are challenging to predict, and we therefore base our analysis on the assumption that future water table elevations are unchanging. If we assume that the water table will rise, then warming would be more extreme; should the water table lower, warming as projected here is overestimated. A more detailed discussion, modelling water table changes of ± 10 m, can be found in Supplementary Note 4 . However, we note that a modelled temperature–depth profile (equation ( 1 )) is not impacted by the choice of the water table depth, and thus the results at 10 and 30 m are independent of the water table model.

Model evaluation

To assess the performance of our GWT calculations, we use two datasets of measured GWT or borehole temperatures. First, we compare our data to (multi-)annual mean shallow GWTs introduced in Benz et al. 35 . These data comprise more than 8,000 individual locations, primarily in Europe, where GWTs were measured at least twice between 2000 and 2015 at less than 60 m depth. Measurements are filtered based on their seasonal radius, a measure describing if a well was observed uniformly over the seasons and mean temperatures are therefore free of seasonal bias 76 . Second, we compare our data to temperature–depth profiles from the Borehole Temperatures and Climate Reconstruction Database at https://geothermal.earth.lsa.umich.edu/core.html . For these data, an exact date and depth of measurement are known. We filter the database based on time of measurement and depth of the first measurement, using only data taken after the year 2000 and starting at less than 30 m depth, resulting in 72 borehole measurements. To evaluate the model, we compare it to the observed groundwater temperatures described above. We compare the shallow (multi-)annual mean temperatures to mean temperatures at 30 m depth (the middle between 0 m and 60 m, the maximum depth of the observations) between 2000 and 2015. For the dataset of one-time borehole temperature–depth profiles, we compare the shallowest data points to temperatures from our model at the same depth (rounded to the nearest metre), month and year.

Example locations

We use six locations distributed over all latitudes as examples in many of our figures, with locations in Australia (longitude 149.12°, latitude −35.28°), Brazil (−47.92°, −15.77°), China (116.39°, 39.90°), Mexico (−99.12°, 19.46°), Norway (10.74°, 59.91°) and Nigeria (7.49°, 9.05°). For convenience, each point is at the location of the capital city. However, as our model is not able to adequately describe the impact of urban heat on measured groundwater temperatures, groundwater at these locations is expected to be warmer, potentially by several degrees. Our focus is on the rate of warming in response to climate change.

Depth of the geothermal gradient ‘inflection point’

To find the depth d i down to which annual mean temperature–depth profiles T ( z ) are inverted (that is, decrease with depth as opposed to increase following the geothermal gradient 4 ), we find the maximum depth where T ( d i ) >  T ( d i +1 ). Given our computational resources, we test this at a resolution of 1-m steps for the first 10 m, then in 5-m steps down to 50 m depth and lastly in 10-m steps down to the maximal depth of 100 m.

To quantify shallow subsurface accumulated energy I (J m −2 ), we compare mean annual temperature–depth profiles down to 100 m depth to the initial conditions T ( z ) =  T S ( t  = 1,880) +  a z by solving the following integral in 1-m steps:

This analysis utilizes annual mean subsurface temperatures \(\overline{T}(z)\) for 2020 or 2100 for the current and projected analyses, respectively. The volumetric heat capacity C V ( z ) of the unsaturated zone (for z above the water table) and the saturated zone (for z below the water table) uses discrete values given in Supplementary Table 1 .

Drinking water temperature thresholds

To assess the impact of groundwater warming on drinking water resources, we compare annual maximum groundwater temperatures to thresholds for drinking water temperatures summarized by the World Health Organization 43 . We do so for temperatures at the depth of the thermal gradient inflection point, the coldest point in the temperature profile and thus a best-case scenario, and for the depth of the water table to capture the 6% to 20% of wells that are no more than 5 m deeper than the water table 77 . To quantify populations at risk of exceeding the threshold, we compare the resulting maps with population counts. For temperatures in 2022, we use the 2015 United Nations-adjusted population density from the Population of World Version 4.11 Model 78 . For future scenarios, we rely on the global population projection grids for 2100 from the SSPs 79 , 80 . These data are available through the socioeconomic data and applications centre.

Impact on surface water bodies

Temperatures in surface water bodies are strongly influenced by atmospheric heat fluxes, but groundwater discharge and other processes can decouple temperatures in the atmosphere and water column. In the United States, 1,729 stream sites have been analysed by Hare et al. 49 to determine the dominance of groundwater discharge and to ascertain the relative depth (shallow or deep) of the associated aquifers. We use these sites to extract changes in mean annual groundwater temperature at the depth of the water table from our results to assess the impact of groundwater warming on these surface water bodies.

Data availability

Raster files (5 km resolution, in the GeoTIFF format) and tables (.CSV) used to create all figures of this study are made available at the Scholars Portal Dataverse at https://doi.org/10.5683/SP3/GE4VEQ (ref. 81 ). An online tool to facilitate exploration of our groundwater temperature model is available at https://susanneabenz.users.earthengine.app/view/subsurface-temperature-profiles .

Code availability

All codes used are also available at the Scholars Portal Dataverse under https://doi.org/10.5683/SP3/GE4VEQ (ref. 81 ). This includes codes written with Jupyter Notebook (Python) and Google Earth Engine (Javascript and GoogleColab/Python) and a detailed description of the process (readme.txt).

Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10 , 2057–2116 (2017).

Article   CAS   Google Scholar  

Arias, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 33–144 (Cambridge Univ. Press, 2021).

Kurylyk, B. L. & Irvine, D. J. Heat: an overlooked tool in the practicing hydrogeologist’s toolbox. Groundwater 57 , 517–524 (2019).

Bense, V. F. & Kurylyk, B. L. Tracking the subsurface signal of decadal climate warming to quantify vertical groundwater flow rates. Geophys. Res. Lett. https://doi.org/10.1002/2017gl076015 (2017).

Smerdon, J. E. & Pollack, H. N. Reconstructing earth’s surface temperature over the past 2000 years: the science behind the headlines. WIREs Climate Change 7 , 746–771 (2016).

Article   Google Scholar  

Döll, P. & Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 12 , 863–885 (2008).

Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4 , 945–948 (2014).

Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. https://doi.org/10.1029/2010gl044571 (2010).

Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9 , 161–167 (2015).

Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3 , 322–329 (2012).

Green, T. R. et al. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405 , 532–560 (2011).

Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557 , 651–659 (2018).

Hannah, D. M. & Garner, G. River water temperature in the United Kingdom. Prog. Phys. Geogr. 39 , 68–92 (2015).

Bosmans, J. et al. FutureStreams, a global dataset of future streamflow and water temperature. Sci. Data https://doi.org/10.1038/s41597-022-01410-6 (2022).

O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. https://doi.org/10.1002/2015gl066235 (2015).

Ferguson, G. et al. Crustal groundwater volumes greater than previously thought. Geophys. Res. Lett. https://doi.org/10.1029/2021gl093549 (2021).

Zektser, I. S. & Everett, L. G. Groundwater Resources of the World and Their Use (UNESCO, 2004).

Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14 , 1863–1880 (2010).

de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H. R., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574 , 90–94 (2019).

Chen, C.-H. et al. in Groundwater and Subsurface Environments (ed. Taniguchi, M.) 185–199 (Springer, 2011).

Benz, S. A., Bayer, P., Winkler, G. & Blum, P. Recent trends of groundwater temperatures in Austria. Hydrol. Earth Syst. Sci. 22 , 3143–3154 (2018).

Riedel, T. Temperature-associated changes in groundwater quality. J. Hydrol. 572 , 206–212 (2019).

Cogswell, C. & Heiss, J. W. Climate and seasonal temperature controls on biogeochemical transformations in unconfined coastal aquifers. J. Geophys. Res. https://doi.org/10.1029/2021jg006605 (2021).

Griebler, C. et al. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. https://doi.org/10.1007/s12665-016-6207-z (2016).

Retter, A., Karwautz, C. & Griebler, C. Groundwater microbial communities in times of climate change. Curr. Issues Mol. Biol. 41 , 509–538 (2021).

Bonte, M. et al. Impacts of shallow geothermal energy production on redox processes and microbial communities. Environ. Sci. Technol. 47 , 14476–14484 (2013).

Bonte, M., van Breukelen, B. M. & Stuyfzand, P. J. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res. 47 , 5088–5100 (2013).

Brookfield, A. E. et al. Predicting algal blooms: are we overlooking groundwater? Sci. Total Environ. 769 , 144442 (2021).

Bondu, R., Cloutier, V. & Rosa, E. Occurrence of geogenic contaminants in private wells from a crystalline bedrock aquifer in western Quebec, Canada: geochemical sources and health risks. J. Hydrol. 559 , 627–637 (2018).

Agudelo-Vera, C. et al. Drinking water temperature around the globe: understanding, policies, challenges and opportunities. Water 12 , 1049 (2020).

Mejia, F. H. et al. Closing the gap between science and management of cold-water refuges in rivers and streams. Glob. Chang. Biol. 29 , 5482–5508 (2023).

Jyväsjärvi, J. et al. Climate-induced warming imposes a threat to north European spring ecosystems. Glob. Chang. Biol. 21 , 4561–4569 (2015).

Stauffer, F., Bayer, P., Blum, P., Molina Giraldo, N. & Kinzelbach, W. Thermal Use of Shallow Groundwater (CRC Press, 2013).

Epting, J., Müller, M. H., Genske, D. & Huggenberger, P. Relating groundwater heat-potential to city-scale heat-demand: a theoretical consideration for urban groundwater resource management. Appl. Energy 228 , 1499–1505 (2018).

Benz, S. A., Menberg, K., Bayer, P. & Kurylyk, B. L. Shallow subsurface heat recycling is a sustainable global space heating alternative. Nat. Commun. https://doi.org/10.1038/s41467-022-31624-6 (2022).

Schüppler, S., Fleuchaus, P. & Blum, P. Techno-economic and environmental analysis of an aquifer thermal energy storage (ATES) in germany. Geotherm. Energy https://doi.org/10.1186/s40517-019-0127-6 (2019).

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9 , 1937–1958 (2016).

Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev. Geophys. 43 , RG4002 (2005).

Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl Acad. Sci. USA 116 , 1126–1131 (2019).

von Schuckmann, K. et al. Heat stored in the earth system: where does the energy go? Earth Syst. Sci. Data 12 , 2013–2041 (2020).

Cuesta-Valero, F. J. et al. Continental heat storage: contributions from the ground, inland waters, and permafrost thawing. Earth Syst. Dyn. 14 , 609–627 (2023).

Nissler, E. et al. Heat transport from atmosphere through the subsurface to drinking-water supply pipes. Vadose Zone J. 22 , 270–286 (2023).

A Global Overview of National Regulations and Standards for Drinking-Water Quality 2nd edn (WHO, 2021); https://apps.who.int/iris/handle/10665/350981

Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34 , 355–367 (2015).

Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. BioScience 69 , 641–650 (2019).

McDonough, L. K. et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. https://doi.org/10.1038/s41467-020-14946-1 (2020).

Atawneh, D. A., Cartwright, N. & Bertone, E. Climate change and its impact on the projected values of groundwater recharge: a review. J. Hydrol. 601 , 126602 (2021).

Meisner, J. D., Rosenfeld, J. S. & Regier, H. A. The role of groundwater in the impact of climate warming on stream salmonines. Fisheries 13 , 2–8 (1988).

2.0.CO;2" data-track-action="article reference" href="https://doi.org/10.1577%2F1548-8446%281988%29013%3C0002%3ATROGIT%3E2.0.CO%3B2" aria-label="Article reference 48" data-doi="10.1577/1548-8446(1988)013 2.0.CO;2">Article   Google Scholar  

Hare, D. K., Helton, A. M., Johnson, Z. C., Lane, J. W. & Briggs, M. A. Continental-scale analysis of shallow and deep groundwater contributions to streams. Nat. Commun. 12 , 1450 (2021).

Caissie, D., Kurylyk, B. L., St-Hilaire, A., El-Jabi, N. & MacQuarrie, K. T. Streambed temperature dynamics and corresponding heat fluxes in small streams experiencing seasonal ice cover. J. Hydrol. 519 , 1441–1452 (2014).

Wondzell, S. M. The role of the hyporheic zone across stream networks. Hydrol. Process. 25 , 3525–3532 (2011).

Liu, S. et al. Global river water warming due to climate change and anthropogenic heat emission. Glob. Planet. Change 193 , 103289 (2020).

Tissen, C., Benz, S. A., Menberg, K., Bayer, P. & Blum, P. Groundwater temperature anomalies in central Europe. Environ. Res. Lett. 14 , 104012 (2019).

Bodri, L. & Cermak, V. Borehole Climatology (Elsevier, 2007).

Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford Univ. Press, 1986).

Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2014).

Kurylyk, B. L., Irvine, D. J. & Bense, V. F. Theory, tools, and multidisciplinary applications for tracing groundwater fluxes from temperature profiles. WIREs Water https://doi.org/10.1002/wat2.1329 (2018).

Taylor, C. A. & Stefan, H. G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 375 , 601–612 (2009).

Bense, V. F., Kurylyk, B. L., van Daal, J., van der Ploeg, M. J. & Carey, S. K. Interpreting repeated temperature-depth profiles for groundwater flow. Water Resour. Res. 53 , 8639–8647 (2017).

Brown, J., Ferrians, O., Heginbottom, J. A. & Melnikov, E. Circum-Arctic map of permafrost and ground-ice conditions, version 2. NSIDC https://nsidc.org/data/GGD318/versions/2 (2002).

Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202 , 18–27 (2017).

ERA5-Land monthly averaged data from 2001 to present. Copernicus Climate Data Store https://cds.climate.copernicus.eu/doi/10.24381/cds.68d2bb30 (2019).

Hansen, J. et al. Climate simulations for 1880–2003 with GISS modelE. Clim. Dyn. 29 , 661–696 (2007).

Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res. https://doi.org/10.1029/2019jg005266 (2020).

Huscroft, J., Gleeson, T., Hartmann, J. & Börker, J. Compiling and mapping global permeability of the unconsolidated and consolidated earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0). Geophys. Res. Lett. 45 , 1897–1904 (2018).

VDI 4640—Thermal Use of the Underground (VDI-Gesellschaft Energie und Umwelt, 2010).

Börker, J., Hartmann, J., Amann, T. & Romero-Mujalli, G. Terrestrial sediments of the earth: development of a global unconsolidated sediments map database (GUM). Geochem. Geophys. Geosyst. 19 , 997–1024 (2018).

Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the earth surface. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2012gc004370 (2012).

Clauser, C. in Thermal Storage and Transport Properties of Rocks, I: Heat Capacity and Latent Heat (ed. Gupta, H. K.) 1423–1431 (Springer, 2011).

Clauser, C. in Thermal Storage and Transport Properties of Rocks, II: Thermal Conductivity and Diffusivity (ed. Gupta, H. K.) 1431–1448 (Springer, 2011).

Rau, G. C., Andersen, M. S., McCallum, A. M., Roshan, H. & Acworth, R. I. Heat as a tracer to quantify water flow in near-surface sediments. Earth Sci. Rev. 129 , 40–58 (2014).

Halloran, L. J., Rau, G. C. & Andersen, M. S. Heat as a tracer to quantify processes and properties in the vadose zone: a review. Earth Sci. Rev. 159 , 358–373 (2016).

Davies, J. H. Global map of solid earth surface heat flow. Geochem. Geophys. Geosyst. 14 , 4608–4622 (2013).

Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339 , 940–943 (2013).

Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114 , 10572–10577 (2017).

Benz, S. A., Bayer, P. & Blum, P. Global patterns of shallow groundwater temperatures. Environ. Res. Lett. 12 , 034005 (2017).

Jasechko, S. & Perrone, D. Global groundwater wells at risk of running dry. Science 372 , 418–421 (2021).

Gridded population of the world, version 4 (GPWv4): population density adjusted to match 2015 revision UN WPP country totals, revision 11. CIESIN https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11 (2018).

Gao, J. Global 1-km downscaled population base year and projection grids based on the shared socioeconomic pathways, revision 01. CIESIN https://doi.org/10.7927/q7z9-9r69 (2020).

Gao, J. Downscaling Global Spatial Population Projections from 1/8-Degree to 1-km Grid Cells (NCAR/UCAR, 2017); https://opensky.ucar.edu/islandora/object/technotes:553

Benz, S. Global groundwater warming due to climate change. Borealis https://doi.org/10.5683/SP3/GE4VEQ (2024).

Download references

Acknowledgements

S.A.B. was supported through a Banting postdoctoral fellowship, administered by the government of Canada, and since October 2022 as a Freigeist fellow of the Volkswagen Foundation. B.L.K. was supported through the Canada Research Chairs programme. K.M. was supported by the Margarete von Wrangell programme of the Ministry of Science, Research and the Arts Baden-Württemberg (MWK). We thank C. Tissen for sharing data she collected in her study on groundwater temperature anomalies in Europe 53 and the many other people and agencies collecting groundwater temperature data and making them available through (publicly accessible) databases. Without these data, successful validation of our method would not have been possible.

Open access funding provided by Karlsruher Institut für Technologie (KIT).

Author information

Authors and affiliations.

Centre for Water Resources Studies and Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada

Susanne A. Benz, Rob C. Jamieson & Barret L. Kurylyk

Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, Germany

Susanne A. Benz

Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia

Dylan J. Irvine

School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia

Gabriel C. Rau

Department of Applied Geology, Martin Luther University Halle-Wittenberg, Halle, Germany

Peter Bayer

Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany

Kathrin Menberg & Philipp Blum

Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria

Christian Griebler

You can also search for this author in PubMed   Google Scholar

Contributions

S.A.B., B.L.K. and D.J.I. designed the study. S.A.B., B.L.K., D.J.I., G.C.R., P. Blum, K.M. and P. Bayer developed the methodology. S.A.B. prepared all data and code for analysis and designed figures. D.J.I. designed Fig. 1 . D.J.I. and G.C.R. designed, performed and led the discussion of the analysis in Supplementary Note 1 . S.A.B., B.L.K., D.J.I. and G.C.R. wrote the manuscript. All authors interpreted results and edited the manuscript together.

Corresponding authors

Correspondence to Susanne A. Benz or Barret L. Kurylyk .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Geoscience thanks Maria Klepikova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended data fig. 1 depth to the inflection point..

Shown is the depth down to which we can trace the impact of climate change in form of inverted temperature-depth profiles, that is temperature is decreasing with depth and not increasing with depth as expected based on the geothermal gradient. a and b , The depth to the geothermal inflection point in 2020 and 2100 following SSP 2-4.5. c , The depth to the geothermal inflection point in 2100 following SSP 5-8.5.

Extended Data Fig. 2 Change in groundwater temperatures following SSP 2-4.5, 25th and 75th percentile projections.

a – f , Map of the change in annual mean temperature between 2000 and 2100 following SSP 2-4.5 at the depth of the water table (under consideration of its seasonal variation). Temperatures in 2000 are based on the historic CMIP6 scenario. The line in the legend indicates 0 ∘ C. b and e , Annual mean groundwater temperature 5 m below the surface. c and f , Annual mean groundwater temperature 30 m below the surface. a – c , Annual mean groundwater temperature 25th percentile projected changes. d – f , Annual mean groundwater temperature 75th percentile projected changes.

Extended Data Fig. 3 Change in groundwater temperatures between 2000 and 2100 and implications following SSP 5-8.5.

a , Map of the change in annual mean temperature between 2000 and 2100 following SSP 5-8.5 (median projections) at the depth of the water table (under consideration of its seasonal variation). Temperatures in 2000 are based on the historic CMIP6 scenario. The line in the legend indicates 0 ∘ C. b , temperature change 5 m below the surface, and c , 30 m below the surface. d , Change in temperatures between 2000 and 2100 as depth profiles for selected locations. Lines indicate median projections whereas 25th to 75th percentile are presented as shading. e , Accumulated heat down to 100 m depth. The line in the legend indicates 0 MJ per m 2 . f , Map showing locations where maximum monthly GWTs at the thermal gradient inflection point (that is coldest depth) in 2100 are above guidelines for drinking water temperatures (DWTs). g , GWT changes between 2000 and 2100 at stream sites with a groundwater signature.

Extended Data Fig. 4 Change in groundwater temperatures following SSP5-8.5, 25th and 75th percentile projections.

a and d , Map of the change in annual mean temperature between 2000 and 2100 following SSP5-8.5 at the depth of the water table (under consideration of its seasonal variation). Temperatures in 2000 are based on the historic CMIP6 scenario. The line in the legend indicates 0 ∘ C. b and e , Annual mean groundwater temperature 5 m below the surface. c and f , Annual mean groundwater temperature 30 m below the surface. a to c , Annual mean groundwater temperature 25th percentile projected changes. d to f , Annual mean groundwater temperature 75th percentile projected changes.

Extended Data Fig. 5 Depth to the inflection point for 25th and 75th SSP projections.

The depth down to which we can trace the impact of climate change in form of inverted temperature-depth profiles, that is temperature is decreasing with depth and not increasing with depth as expected based on the geothermal gradient. a and b , The inflection point for SSP2-4.5 in 2100 based on 25th percentile or 75th percentile projections, respecively. c and d , The inflection point for SSP5-8.5 in 20100 based on 25th percentile or rather 75th percentile projections.

Extended Data Fig. 6 Implication of groundwater warming for SSP 2-4.5 25th and 75th percentile projections.

a and d , Accumulated heat down to 100 m depth for SSP 2-4.5 25th and 75th percentile projections, respectively. The line in the legend indicates 0 MJ per m 2 . b and e , Locations where maximum monthly GWTs at the thermal gradient inflection point (that is coldest depth) in 2100 are above guidelines for drinking water temperatures (DWTs) for SSP 2-4.5 25th and 75th percentile projections, respectively. c and f , GWT changes between 2000 and 2100 at stream sites with a groundwater signature for SSP 2-4.5 25th and 75th percentile projections, respectively.

Extended Data Fig. 7 Implication of groundwater warming for SSP 5-8.5 25th and 75th percentile projections.

a and d , Accumulated heat down to 100 m depth for SSP 5-8.5 25th and 75th percentile projections, respectively. The line in the legend indicates 0 MJ per m 2 . b and e , Locations where maximum monthly GWTs at the thermal gradient inflection point (that is coldest depth) in 2100 are above guidelines for drinking water temperatures (DWTs) for SSP 5-8.5 25th and 75th percentile projections, respectively. c and f , GWT changes between 2000 and 2100 at stream sites with a groundwater signature for SSP 5-8.5 25th and 75th percentile projections, respectively.

Extended Data Fig. 8 Accumulated heat in the saturated zone (that is, below the water table) down to 100 m depth.

a , Accumulated heat in the saturated zone in 2020. b and c , Accumulated heat in the saturated zone in 2100 following median projections of SSP2-4.5 and SSP5-8.5, respectively.

Extended Data Fig. 9 Accumulated heat in the saturated zone (defined as below the water table down to 100 m depth) and maximum temperatures (based on monthly GWTs) at the depth of the geothermal inflection point showing exceedence of guideline thresholds for drinking water temperatures (DWTs) for 25th and 75th percentile SSP projections.

a and b , Accumulated heat in the saturated zone for SSP 2-4.5 25th and 75th percentile projections, respectively. c and d , Locations where maximum temperatures exceed guideline thresholds for drinking water temperatures (DWTs) for SSP 2-4.5 25th and 75th percentile projections, respectively. e and f , Accumulated heat in the saturated zone for SSP 5-8.5 25th and 75th percentile projections, respectively. g and h , Locations where maximum temperatures exceed guideline thresholds for DWTs for SSP 5-8.5 25th and 75th percentile projections, respectively.

Extended Data Fig. 10 Locations where maximum monthly GWTs at the depth of the water table exceed guideline thresholds for drinking water temperatures (DWTs).

a , Maximum monthly GWTs at the depth of the water table in 2020. b and c , Maximum monthly GWTs at the depth of the water table in 2100 following median projections of SSP2-4.5 and SSP5-8.5, respectively.

Supplementary information

Supplementary information.

Supplementary Notes 1–4, Figs. 1–17 and Tables 1–5.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Benz, S.A., Irvine, D.J., Rau, G.C. et al. Global groundwater warming due to climate change. Nat. Geosci. (2024). https://doi.org/10.1038/s41561-024-01453-x

Download citation

Received : 31 May 2023

Accepted : 12 April 2024

Published : 04 June 2024

DOI : https://doi.org/10.1038/s41561-024-01453-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

climate change research paper questions

IMAGES

  1. Climate change introduction for research paper

    climate change research paper questions

  2. Climate Change Science White Paper

    climate change research paper questions

  3. ≫ Global Climate Change Free Essay Sample on Samploon.com

    climate change research paper questions

  4. Survey on Climate Change Interactive for 8th

    climate change research paper questions

  5. ≫ Human Activities as the Reason of Climate Change Free Essay Sample on

    climate change research paper questions

  6. Fact Sheet

    climate change research paper questions

COMMENTS

  1. 100 Best Climate Change Topics For Research Papers

    Perhaps, you want to write an essay or paper about something interesting. In that case, consider this list of interesting climate change research paper topics. Climate change across the globe- What experts say. Development, climate change, and disaster reduction. Critical review- Climate change and agriculture.

  2. Six Tough Questions About Climate Change

    Renée Cho. NASA's supercomputer model created this simulation of carbon dioxide in the atmosphere. Whenever the focus is on climate change, as it is right now at the Paris climate conference, tough questions are asked concerning the costs of cutting carbon emissions, the feasibility of transitioning to renewable energy, and whether it's ...

  3. Climate Change Research Topics

    Climate change research paper topics vary from anthropogenic climate to physical risks of abrupt climate change. Papers should focus on a specific climate change research question. Read on to learn more about examples of climate change research topics and questions. ... To create a strong climate change research question, start settling on the ...

  4. A review of the global climate change impacts, adaptation, and

    Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig. 2.

  5. Climate change, energy, environment and sustainability topics research

    Climate change refers to long-term shifts in temperatures and weather patterns. The world is now warming faster than at any point in recorded history, which disrupts the usual balance of nature and is a threat to human beings and other forms of life on Earth. ... 24 hours a day, 7 days a week with any research or library questions. Meet with a ...

  6. Climate change and ecosystems: threats, opportunities and solutions

    The rapid anthropogenic climate change that is being experienced in the early twenty-first century is intimately entwined with the health and functioning of the biosphere. ... The papers in this section advance our thinking about the effects of climate change on ecosystem properties (biological diversity, trophic webs or energy flux, nutrient ...

  7. Climate change research and the search for solutions: rethinking

    In particular, the search for solutions to climate change forces us to examine the way different disciplines interact in this process, most prominently through interdisciplinary research approaches (Castree et al. 2014 ). In response to pressure for concrete, urgent, and actionable information, however, researchers often shear away detail, and ...

  8. Research for climate adaptation

    Adaptation is the process of adjustment to actual or expected climate change and its effects. Regardless of how quickly societies decarbonize, global temperatures are already more than 1 °C above ...

  9. How researchers can help fight climate change in 2022 and beyond

    There are signs of renewed support for research and innovation in helping to address climate change. In Glasgow, 22 countries, as well as the European Commission (EC), announced plans to cooperate ...

  10. Climate change

    RSS Feed. Climate change refers to a statistically defined change in the average and/or variability of the climate system, this includes the atmosphere, the water cycle, the land surface, ice and ...

  11. Leading research on climate change

    Leading research on climate change. Climate change is a topic of vital interest to academia and to society at large. The rise in average global temperatures and associated environmental, economic and socio-political impacts, have generated huge amounts of research and comment. Sage sets the agenda in this subject area with its Climate Change ...

  12. Climate change research and the search for solutions: rethinking

    Growing political pressure to find solutions to climate change is leading to increasing calls for multiple disciplines, in particular those that are not traditionally part of climate change research, to contribute new knowledge systems that can offer deeper and broader insights to address the problem. Recognition of the complexity of climate change compels researchers to draw on ...

  13. Climate change knowledge, attitude and perception of ...

    Introduction. Anthropogenic climate change is one of the major global environmental problems of the 21 st century. Climate Change has been defined as a change in the state of the climate that can be identified by changes in the mean and/or the variability of its properties (e.g., temperature, precipitation, humidity, incident radiation, isothermality, wind patterns), and that persists for an ...

  14. PDF Climate Change: Impacts, Vulnerabilities and Adaptation in ...

    This book outlines the impact of climate change in four developing country regions: Africa, Asia, Latin America and small island developing States; the vulnerability of these regions to future climate change; current adaptation plans, strategies and actions; and future adaptation options and needs.

  15. Climate change questions and answers

    Here we address some of the common questions raised about the changing climate and the science involved in studying it. ... Research Work with us Careers Education ... Check where information comes from to ensure it is based on reliable and quality-assured sources of climate change science, such as peer-reviewed papers.

  16. Climate Change Research

    Access Climate Change Research Tools & Resources. Contact Us to ask a question, provide feedback, or report a problem. Last updated on May 1, 2024. EPA conducts research to understand the environmental and health impacts of climate change and to provide sustainable solutions for adapting to and reducing the impact from a changing climate.

  17. A review of the global climate change impacts, adaptation, and

    Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector's vulnerability is a globally concerning scenario, as ...

  18. Carbon dioxide and a warming climate are not problems

    Climate change mitigation, according to AR6, means curtailing the use of fossil fuels, even though fossil fuels are still abundant and inexpensive. Since the current climate is arguably better than the pre-industrial climate and we have observed no increase in extreme weather or climate mortality, we conclude that we can plan to adapt to any ...

  19. Research articles

    Climate change has led to increased fire activity in parts of the globe due to observed increases in fire weather extremes. These trends are driven predominantly by decreasing relative humidity ...

  20. PDF Climate Change Survey Measures: Exploring Perceived Bias and Question

    the public's understandings of climate change causes and eff ects (Bostrom et al. 1994; Read et al. 1994) and associated value judgments (Kempton 1991; Kempton et al. 1996). Early survey research eff orts found that the public tends to believe that climate change is occurring as a result of human activity and views it as an important

  21. The Scientific Consensus on Climate Change

    The question of what to do about climate change is also still open. But there is a scientific consensus on the reality of anthropogenic climate change. ... the paper was not about climate change. ... to my research assistants S. Luis and G. Law; and to D. C. Agnew, K. Belitz, J. R. Fleming, M. T. Greene, H. Leifert, and R. C. J. Somerville for ...

  22. A research paper contest on "Climate change and human rights"

    For youngsters to contribute to this topic by conducting research and improving their teamwork skills, the Ombudsman and United Nations Development Programme (UNDP) jointly announce a research paper competition on the topic of "Climate Change and Human Rights" during the "Human Rights Month-Long Campaign." The competition will be held ...

  23. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  24. Climate Change Science: An Analysis of Some Key Questions

    Buy Ebook: $23.99. Epub, Kindle, MobiPocket. What is an Ebook? The warming of the Earth has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. Climate Change Science: An Analysis of Some Key Questions, a new report by a committee of the National Research Council ...

  25. Research articles

    Climate change will affect the adoption of residential rooftop solar photovoltaics by changing the patterns of both electricity generation and demand. This research projects that climate change ...

  26. Evaluating the impacts of climate-induced east Africa's recent

    Recurrent droughts, exacerbated by the climate, are becoming the greatest threat to the people of eastern Africa. In this region, including eastern Ethiopia, pastoralism is the prime source of livelihood. Due to susceptible means of living this area is mostly affected by droughts and related climatic shocks. Coordinated actions, therefore, demanded to reduce extreme vulnerability and increase ...

  27. Reserach Proposald- Topic Assignment .edited (docx)

    2 Research Proposal: Topic Assignment Topic The impact of climate change on the agriculture value chain Problem Statement Climate change and the increased severity of weather events impact farmers, who can be compensated for losses through the Federal Crop Insurance program. The inputs such as seed and nutrient products used by the farmers' crop are not purchased from suppliers.

  28. Sustainable Investing

    Our award-winning, 5 gold-standard 6 ESG ratings and climate data and research are developed in-house and are integrated across our index, analytics and real asset solutions. ESG Investing - Our Products ... for both Equity & Fixed Income that aim to meet the variety of needs of institutional investors who wish to address climate change.

  29. Global groundwater warming due to climate change

    a-d, Recent (2000 to 2020) changes.e-h, Projected (2000-2100) changes.a,e, Map of the change in annual mean temperature at the depth of the water table.The line in the legend indicates 0 °C.

  30. ChatGPT

    Write a message that goes with a kitten gif for a friend on a rough day (opens in a new window)