Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Impact of agile management on project performance: Evidence from I.T sector of Pakistan

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Validation, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliation Department of Management Science, COMSATS University Islamabad, Wah Cantt, Pakistan

ORCID logo

Roles Project administration, Supervision, Writing – review & editing

Roles Data curation, Methodology, Project administration, Writing – original draft

Affiliation Department of Management Science, Riphah International University, Rawalpindi, Pakistan

Roles Conceptualization, Data curation, Methodology, Project administration, Supervision

Affiliation Department of Civil Engineering, COMSATS University Islamabad, Wah Cantt, Pakistan

Roles Project administration, Resources, Supervision, Validation

Roles Project administration, Resources, Validation, Writing – review & editing

Roles Data curation, Formal analysis, Investigation, Project administration, Validation

Roles Resources, Software, Supervision, Validation, Writing – review & editing

Affiliation Department of Computer Science, COMSATS University Islamabad, Wah Cantt, Pakistan

  • Umer Muhammad, 
  • Tahira Nazir, 
  • Najam Muhammad, 
  • Ahsen Maqsoom, 
  • Samina Nawab, 
  • Syeda Tamkeen Fatima, 
  • Khuram Shafi, 
  • Faisal Shafique Butt

PLOS

  • Published: April 5, 2021
  • https://doi.org/10.1371/journal.pone.0249311
  • Peer Review
  • Reader Comments

Table 1

Over the past several years, global project management teams have been facing dynamic challenges that continue to grow exponentially with the increasing number of complexities associated with the undertaken tasks. The ever-evolving organizational challenges demand project managers to adapt novel management practices to accomplish organizational goals rather than following traditional management practices. Considering which, the current study aims to explain the effect of agile management practices upon project performance directly as well as while being mediated through project complexity. Furthermore, the aforementioned mediatory relationship is evaluated in terms of the moderating effect of leadership competencies. The current study utilized the survey approach to collect the data from registered I.T firms deployed in the potential metropolitans of each province of Pakistan including, Peshawar, Islamabad, Lahore, Sialkot, Faisalabad, Hyderabad, Sukkur, and Karachi. A total of 176 responses were utilized for statistical evaluations. As result, it was observed that the negative influence anticipated by project complexity on project performance was compensated by the agile management practices. Further, the leadership competencies played a pivotal role in managing project complexity while implementing agile management practices and therefore enhancing project performance. The current study abridges the potential knowledge gap conceptually by evaluating the direct impact of agile management upon project performance while considering all of its aspects, exploring the mediatory role of project performance and evaluating the moderating role of leadership competencies in attaining optimum project performance. In contextual terms, the current study fills the knowledge gap by gauging the implications of agile management practices within the I.T sector of Pakistan. The results of the current study can be a potential guide for both the academicians and the industry professionals.

Citation: Muhammad U, Nazir T, Muhammad N, Maqsoom A, Nawab S, Fatima ST, et al. (2021) Impact of agile management on project performance: Evidence from I.T sector of Pakistan. PLoS ONE 16(4): e0249311. https://doi.org/10.1371/journal.pone.0249311

Editor: Dejan Dragan, Univerza v Mariboru, SLOVENIA

Received: October 1, 2020; Accepted: March 16, 2021; Published: April 5, 2021

Copyright: © 2021 Muhammad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper and its Supporting information files.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Introduction

The agile management approach in terms of project development process remains rather a novel practice for most of the organizations of today to adapt and practice. Regardless, recent studies have indicated that organizations around the globe considering their long terms benefits are adapting the agile management practices more, in comparison to the traditionally followed waterfall management practices; especially in the IT sector. Research so far has highlighted the relevance of the agile management practices as well as has justified its constructive impact on the performance of an organization [ 1 , 2 ]. In specific to the management trends being followed, a recent global report of PMI comprising opinion of 727 executive members deployed on 3,234 projects across Europe, Asia Pacific, North America, Latin American, Middle East, Africa, and Caribbean Regions, proposed the implementation of agile management practices as a potential reason to trigger organizational productivity. Therefore, signifying the impact of agile management practices upon the performance of the firms [ 3 ]. Moreover, another recent study conducted by Ambysoft indicated agile management practices to deliver a success rate of 55% in comparison to the waterfall management practices with a success rate of 29% only. The report further indicated that 36% of the projects completed under the agile management practices remained challenged and required limited fulfillment of constraints to accomplish the projects. In contrast, the waterfall management practices were credited 67% of the challenged projects. The study also revealed the agile management practices to be attributed with only a mere 3% of project failure rate [ 4 ]. Thus, justifying the constructive impact of agile management practices in terms of enhanced performance measures. Regardless, the precise study indicating the impact of implementing agile management practices upon the project performance while considering all of its related aspects is yet to be explored [ 5 , 6 ]. Considering the potential research gap, the current study took into account of all relevant aspects of project performance including ‘time’, ‘finances’, ‘magnitude of efforts’, ‘work environment moral’, ‘fulfillment of quality criterions’ as well as the ‘satisfaction of regarding stakeholders’ and further observed the variation, in terms of the implementation of the agile management practices.

Considering the organizational accomplishment related aspect of the current research, the performance associated with the projects is often challenged by the magnitude of the complexity faced by the firms. Complexity, if not addressed timely can rile up to potential risks and consequently result in declined performance to a limit where it can jeopardize the existence of an organization itself. Considering which, research so far has indicted that implementation of relevant management practices can enable the mitigation of complexity associated to a project [ 7 , 8 ]. As Sohi, Hertogh [ 9 ] in their recent study were able to justify the association of agile management practices with the abridged level of project complexity to some extent. It was further speculated by the researchers to enhance the project performance of any given firm. Therefore, to address the existing knowledge gap the current study took into account the mediating role of project complexity, to be able to analyze the direct impact of agility upon project complexity as well as the project performance. Moreover, justify the theorized impact of agility in terms of reduced project complexity and enhanced project performance.

Taking into account the managerial aspect of the current study, prior studies have indicated that the efficient and effective implementation of management practices for the most part has remained predominated by the human factor, and of which leadership competencies is of most vital consideration [ 10 ]. In various contexts, the effective implementation of leadership competencies has been found to have a significant impact on the overall organizational performance of any given firm [ 11 , 12 ]. In relevance, a consolidated view of the implementation of leadership competencies to mitigate the organizational complexities and enhance performance measures is yet to be evaluated [ 13 ]. It is very much expectant of the agile management practices to depict enhanced performance as a result of effective leadership competency mitigating the magnitude of dynamic organizational challenges. Considering which, the current study evaluated the moderating role of leadership competencies to observe the controlled impact of professional complexities and the delivered project performance. Therefore, filling in the existing conceptual knowledge gap indicated by prior researchers.

Furthermore, in specific to filling in the contextual research gap, the current study explored the implication of the targeted variables within the I.T sector of Pakistan, which itself has seen significant progression over the years.

The present study aims to accomplish the following research objectives:

  • RO1 : Determine the effect of agile management practices on project performance .
  • RO2 : Evaluate the mediating role of project complexity between agile management practices and project performance .
  • RO3 : Gauge the moderating role of leadership competencies between agile management practices and project complexity .

The following sections of the study comprises of the detailed literature review of all the opted variables of the current study as well as their hypothetical development. Further, the methodological approach to collect the data from the targeted population is presented, which is then further statistically evaluated and explained in the results and analysis section. Followed to which, the deduction based upon the evaluated results are presented in the discussion. Lastly, the outcomes of the current research are deduced in the conclusion section.

Literature review

Agile management..

The concept of agile management got tossed in 1991 when the term agility was defined in a report by the Lacocca Institute, as “the ability to thrive in rapidly changing, fragmented markets”. As the concept evolved, agility was redefined as, “the state or quality of being able to move quickly in an easy fashion”. Therefore, for any firm labeled as agile is expectant to resolve unforeseeable challenges. Therefore, assuring the organizational sustainability in uncertain environments [ 14 , 15 ]. The concept of agile management is multifaceted in nature and the remnants of its implementation have been observed across various disciplines over last few decades. Most early implementation of agile management practices was embraced by the manufacturing sector. At time, agility was defined as, “the capability of an organization to meet changing market requirements, maximize customer service levels and resultantly minimize the cost of goods” [ 16 ]. The agile management practices for a decade and more remained implemented within the manufacturing industry only [ 17 ]. It wasn’t until the commercialization of the internet in 1995 when the agile management practices attained maturity in other industrial sectors as well, especially the software development [ 18 ]. To formalize the agility practices in terms of the software development process the OOPSA conference held in the same year played a momentous role when Ken Schwaber and Jeff Sutherland defined the cardinal principles for the implementation of agility on an organizational scale. Later, the agility saw minuscule implementation in the years to come, till 2001. It happened when various professionals, practitioners, and theorists came up with “Agile Manifesto”, which was mutually signed and published on the internet. The manifesto challenged the implications of traditionally followed management practices onto the project-related outcomes with a higher level of uncertainties. Further, in addition to declaring the traditional management practices misaligned towards the dynamically natured projects, the report emphasized the induction of agile management practices in such environments. Thus, effectively managing organizational objectives, minimizing project complexity, and delivering efficiency in terms of organizational performance [ 16 , 19 ].

To understand what made the implementation of agile management practices a success in the software industry as well as its spread across the globe on the exponential rate in contrast to any other industry, one has to take into consideration the following factors on which the dynamics of agile management rely onto and further draw a comparison of them with the traditionally followed management practices [ 2 , 20 ] (See Table 1 ).

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0249311.t001

The software industry has for most part evolved over the past 30 years. But the last decade has depicted a significant surge in the industry’s growth and its respective performance. The reason justifying the phenomena has been the broader application of agile management practices, that replaced the traditionally followed management practices over time. The earlier research has justified the execution of agility in terms of ensuring enhanced performance, and also have supported the fact that implementation of agility is most suitable for the business environs that are dynamic in nature. Since, it has very vividly been observed that the implementation of software project development requires the dynamic implementation of operational measures as the problems are evolving real-time, which justifies the complexity associated with the software industry. Considering which, the software development sector is a perfect fit to adapt agile management practices [ 5 ].

Apart from the software products and services, one of the major parts of the project development process is the interaction between the stakeholders which plays a pivotal in determining the performance of the project. Considering which, Uludag, Kleehaus [ 22 ] and Hobbs and Petit [ 23 ] in their respective studies indicated that agile management practices allow organizations for its internal stakeholders to communicate freely as well as maintain a consistent stream of feedback from the external stakeholders. Thus, assuring the regarding organization to achieve optimal performance levels.

Considering the ability of agile management practices to enable its utilizers to accomplish projects in a dynamic environment and be able to deliver optimized performance while considering its respective dimensions i.e., competency, flexibility, quickness, and responsiveness, the current study took into account the implementation of agile management practices in relation to all the aspects of performance.

  • H1: Agile management practices will significantly impact the project performance, in a positive manner.

Project complexity.

Any given organization that functions onto various organizational factors either human or non-human operating in parallel to one another, is bound to face unexpected challenges to manage through and accomplish its goals. Considering which, the software industry has been the most critical one on the list [ 24 ]. It has been so because regardless of the business type, every operational entity is reliant on the software utilization either it is in form of communication, logistics, traveling, academia, and even fields as critical as healthcare. Therefore, justifying the software industry to be the one facing crucial levels of complexity [ 25 ].

Typically, for a large-scale operation with a higher magnitude of complexity, like software development, is often considered as a project rather than a routine-based operation/task, by most of the organizations. This demands a persistent application of relevant management practices under effective supervision to tackle the complexity.

For the successful accomplishment of a project, opting relevant management approach plays a pivotal role in tackling the complexities associated with the environment. Since only the right management approach can enable the managers to make correct calculations to allocate the right percentage of resources to the right places at the right time. Moreover, the application of a relevant management approach enables the mitigation of risk and the magnitude of projected losses [ 2 , 26 ].

Prior studies have indicated a directly proportionate relationship between the complexity and the respective performance of an organization and the projects associated with it. This suggests that if the complexities associated with any given project are not handled effectively on time, are probable to cause an escalation in the level of hindrances associated with the project and may even result in failure of the project itself [ 27 , 28 ].

Project complexity attributed to any given project is determined upon the variation in the number of tasks, their respective types, individuals deployed, and numerous other considerations. Considering which, effective prioritization of the entities involved, and the correct allocation of resources is necessary. All of which is only possible through the application of the relevant management approach [ 8 ].

Past decades have seen an evolution in terms of management practices and their respective application. Which have encouraged both academia as well as practitioners to extend the knowledge upon. As a matter of fact, among the two widely practiced project development management approaches i.e. waterfall and agile, it is the agile management approach that has proved itself to be more efficient to accomplish projects, across the world [ 29 ].

Considering which, Zhu and Mostafavi [ 8 ] in their study indicated the ability of agile management practices to manage through complex settings more effectively and efficiently. Thus, suggesting to lead the project towards better performance. Moreover, in another study Maylor and Turner [ 27 ] highlighted the aspect of stakeholder’s involvement in the development process, which justified the mitigation of project complexity to a greater extent. As agile management encourages the internal stakeholders of the project to seek continuous feedback from one another as well as from the clients throughout the process. Doing so reduces the amount of ambiguity from the development phase as much as possible and induce desired changes along the process. Thus, the finished project is much more of a reflection of the client’s expectations and assurance of enhanced performance. Moreover, in specific to the software industry the nature of projects is bound to change much more rapidly than any other industry, which classifies the software industry with the highest level of complexity attributed to it. For its resolution, the agile management approach suggests breaking down of complex scenarios into smaller tasks with reduced complexity. Thus, resulting in the effective and focused application of management practices, which would further result in mitigation of complexity associated with the project as well as elevated project performance [ 18 , 27 ].

Considering, the ability of agile management practices to mitigate the magnitude of complexity associated with the project and enhance the chances of the performance associated to the regarding project accomplish projects in a dynamic environment, the current study took into account the direct implementation of agile management practices in relation to the diminished project complexity. Moreover, the project complexity was evaluated in terms of a mediator.

  • H2: Agile management practices will significantly impact the project complexity, in a negative manner.
  • H3: Project complexity will significantly impact the project performance, in a negative manner.
  • H4: Project complexity will significantly mediate the relationship between agile management practices and project performance.

Leadership competencies.

The opting of management practices is not enough for an organization to function properly. Rather it is the effective implementation of those defined policies that ensure the magnitude of performance delivered and subsequently the overall sustainability of an organization. For which, it is the human factor in terms of leadership, within an organization that contributes the most towards it. This is where leadership and its respective competencies come into play. Andriukaitienė, Voronkova [ 30 ] in their study defined project manager competence as a combination of knowledge (qualification), skills (ability to do a task), and core personality characteristics (motives, traits, self-concepts) that lead to superior results.

In the project management literature, few topics are too frequently discussed yet are very rarely agreed upon; such as the aspect of project performance [ 2 ]. The last two decades have extended the scope of project performance far beyond the measures of cost, time, and functionality. The project performance measures of today demand to fulfill the satisfaction criterion of the stakeholder associated with the given project, attainment of business/organizational goals, product success, and development of the team involved. All of which is very much reliant upon the effectiveness of the implied organizational practice under human supervision [ 31 ]. Refereed to which, Maqbool, Sudong [ 32 ] in their study identified the possible shortcoming that may hinder the performance associated to any given project. The findings identified the hindering effects as the ineffective management practice observed in the planning, organization, and controlling of the project. Furthermore, Alvarenga, Branco [ 33 ] identified various performance measures associated with well-executed projects. Overall, the findings reflected the leadership competency in terms of maintaining effective communication and problem solving resulted in enhanced project performance. While, the absence of leadership competency in terms of inadequate administration/supervision, human skills, and emotional influencing skills (IQ & EQ) resulted in declined performance or even failure in some cases. Ahmed and Anantatmula [ 34 ] in his study suggested that the manager’s perception of performance and belief in his/her ability can play a significant role in determining the performance delivered. Thus, deeming the leadership competency to play a pivotal role in the accomplishment of a project. Akin to which, Turner came up with the seven forces model to define the factors influencing the project’s performance. The model highlights the people as the cardinal force to drive the project towards accomplishment; which is only possible through leadership competencies, teamwork, and industrial relations. Hassan, Bashir [ 35 ] in their studies brought up the subject that despite the vast research on the project performance and its related measures the organizations still fail to satisfy its stakeholders. It was because most of the research done so far was considering time, cost, and quality as the only measure to determine the project performance delivered. Hassan, Bashir [ 35 ] and Maqbool, Sudong [ 32 ] indicated the criticality of including the human factor in terms of leadership competence/ability to determine the performance of the project. Zuo, Zhao [ 36 ] and Gunter [ 37 ] as well in their studies reviewed the impact of leadership’s competence and style to determine the project’s outcomes and concluded the fact that the existing literature has for most part overlooked the impact of leadership competence on the project’s performance. Therefore, to evaluate the controlling effect of leadership competency to observe change in the magnitude of the performance delivered, the current study proposed the following hypothesis (See Fig 1 ).

thumbnail

https://doi.org/10.1371/journal.pone.0249311.g001

  • H5: Leadership competencies will significantly impact the project performance, in a positive manner.
  • H6: Leadership competencies will significantly moderate the relationship between project complexity and project performance.

Research methodology

project management research articles

The survey questionnaire was composed of 48 items in total. To determine the application of agile management practices on the organizational level a 20 relevant items were adapted from the scale developed by Zhang and Sharifi [ 42 ]. The scale itself was based upon four dimensions i.e. ability, flexibility, quickness, and responsiveness. To determine the leadership competencies of managers on various hierarchical levels of an organization, an 10 items were adapted from the scale developed by Chung-Herrera, Enz [ 43 ]. The scale was composed of 8 unique dimensions i.e. self-management, strategic positioning, implementation, critical thinking, communication, interpersonal, leadership, and industry knowledge. To determine the overall magnitude of complexity associated with the project under study, 12 items were adapted from the scale developed by Xia and Lee [ 44 ]. To determine the overall performance of the undertaken projects, a 6 items scale developed by Yusuf, Sarhadi [ 45 ] was utilized in the current study. The responses were recorded upon the 5-Point Likert scale, which had (1) to refer to “Strongly Disagree” up to (5) referring to “Strongly Agree” [ 46 ].

The current study included the opinion of the respondents recorded in terms of quantitative scale. During the data collection process, no confidential information (personal/organizational) was inquired about. Also, the presented research did not categorize the involved workers in terms of race/ethnicity, age, disease/disabilities, religion, sex/gender, sexual orientation, or other socially constructed groupings. Therefore, COMSATS University Islamabad’s Ethics Review Committee declared the current study exempted from the requirement of consent from the respondents. Considering which, a total of 250 questionnaires were disseminated to survey the professionals of the Pakistani IT industry. By the end of the survey process, a total of 190 responses got collected. Thus, the overall response rate of the study was 76%. Further, 7% of the responses were discarded as a result of being incomplete or erroneous. Since both incomplete or redundant data can affect the results adversely [ 47 ]. Followed to the collection of data the next phase demanded the application of appropriate statistical tools and respective data analysis techniques to make deductions regarding the objectives of the study. For which the current study utilized the SmartPLS GmbH’s SMART Partial Least Squares (SMART PLS 3.0) to analyze the dataset. Various studies in recent years have utilized a similar tool and respective techniques to analyze the data and make respective deductions [ 48 , 49 ].

Statistical results & analysis

To begin with, the information was gauged to assess the instrument’s reliability and validity. Further, the instrument’s fitness was evaluated in terms of factor loadings. The results identified few unfit components associated with the variables under study. Suggested to which, the identified unfit components of the hypothesized model were then removed. Followed by which, the information was evaluated to gauge the direct and indirect effects of variables, in alignment with the hypothesized model. Finally, the hypothesized model was concluded upon the evaluation of the total impact of the predictor variables upon the dependent variable [ 50 , 51 ].

Demographical classification

The respondents of the study had variating attributions associated with them in terms of demographics. The current study classified the respondents in terms of age, tenure of employment, sector of employment, the status of employment, and the geographical location of their organization.

As a response to which 63.6 percent of employees were aged between 20–29 years, 21.6 percent were aged between 30–39 years, 10.8 percent were aged between 40–49 years and 4.0 percent were aged 50 years or above.

In specific to the tenure of employment or the managerial experience, 27.8 percent of respondents had an experience of less than 1 year, 20.5 percent had experience ranged between 1–2 years, 19.3 percent had experience ranged between 2–5 years, 9.1 percent had experience ranged between 5–10 years and, 23.3 percent had an experience of 10 years or over.

In terms of the employment sector, 53.9 percent of the individuals were employed in the public sector. While 46.1 percent of the individuals were employed in the private sector.

In terms of the geographical placement of the surveyed organizations, 12.5 percent of the firm were deployed in the Khyber Pakhtunkhwa and Gilgit Baltistan, 50 percent of the firm were deployed in Punjab, 25 percent of the firm were deployed in the Sindh and, 12.5 percent of the firm were deployed in the Balochistan. Thus, deeming the study to utilize the equivalently proportionate responses from each province, that were aligned with the proportion of firms in each province, nationwide.

Structural equation modeling

Structural equation modeling is a multivariate based statistical evaluation approach that is utilized to determine structural associations between the components of a hypothesized model [ 52 , 53 ]. The adapted approach is a combination of factor analysis and multiple- regression analysis. The current study took a two-stage approach to conduct SEM. The first stage involved the application of confirmatory factor analysis (CFA), which justified the consistency of the research instrument and its associated components/items. Followed by which, the research instrument was tested for its respective reliability and validity in the first stage of SEM, as commended by prior research [ 53 ]. The second stage of SEM involved the evaluation of measuring the magnitude of impact existent between the observed and latent variables under discussion. Which were further justifies in terms of their significance and their respective relevance in alignment to the hypothesized relationships [ 54 ].

SEM (stage 1).

To begin with, the first stage of the SEM tested the measurement model for its reliability, validity (convergent, discriminant), and consistency to the components towards the research instrument, utilizing the CFA approach. CFA is a commended approach to test adapted research instruments for their consistency [ 49 , 55 ].

Instrument’s reliability.

The reliability of a research instrument is its ability to give consistent results with negligible variation regardless of the environment it is utilized in. SEM utilizes Cronbach’s Alpha as the criterion of reliability associated with a research instrument. For a research instrument and its respective components to be reliable the value of Cronbach’s Alpha is commended to be higher than 0.70 [ 56 ]. Keeping that in view, the values of Cronbach’s Alpha associated with all the variables under study were above 0.70 (See Table 2 ). Thus, deeming the respective research instrument to be reliable.

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t002

Instrument’s validity (convergent).

The validity of a research instrument is defined as its ability to measure the phenomena that it is supposed to measure. There are two types of validity i.e. convergent and discriminant [ 57 , 58 ]. The convergent validity associated with a research instrument is the measure to determine the relatability of research items to their respective variable. SEM utilizes Average Variance Extracted (AVE) as the criterion of validity associated with a research instrument. For a research instrument and its respective components to be convergently valid, the value of AVE is commended to be higher than 0.5 [ 49 , 59 ]. Keeping, that in view the values of AVE associated with all the variables under study were above 0.5 (See Table 3 ). Thus, deeming the respective research instrument to be convergently valid.

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t003

Instrument’s validity (discriminant).

The discriminant validity associated with a research instrument is the measure to determine the magnitude of dissimilarity of research items associated with a variable towards the research items of the rest of the variables under study. SEM utilizes Fornell-Larcker Criterion as the criterion of discriminant validity associated with a research instrument. For a research instrument and its respective components to be discriminately valid, the correlative value of Fornell-Larcker Criterion of a variable with its components is commended to be higher than the correlative value of other variables in the study [ 48 , 49 ]. Keeping, that in view the values of the Fornell-Larcker Criterion associated with all the variables under study were comparatively higher than the correlative values of other variables in the study (See Table 4 ). Thus, deeming the respective research instrument to be discriminately valid.

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t004

Another measure to determine, the discriminant validity associated to a research instrument is the Cross Loadings. For a research instrument and its respective components to be discriminately valid, the correlative values of Cross Loadings of the items of a variable are commended to be higher than the correlative values of similar items with other variables in the study [ 49 ]. Keeping, that in view the values of Cross Loadings associated to all the items of the variables under study were comparatively higher than the correlative values of similar items with rest of the variables in the study (See Table 5 ). Thus, deeming the respective research instrument to be discriminately valid.

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t005

Lastly, in terms of evaluating the discriminant validity, the Heterotrait-Monotrait Ratio (HTMT) is considered as the most precise measurement. HTMT is based upon a higher level of specificity that is ranged between the measurement precision of 97%-99%. On the contrary, the measures of Cross Loadings followed by the Fornell-Larcker Criterion can only depict a measurement precision ranged between 0.00%-20.82% [ 49 , 60 ]. In terms of HTMT, for a research instrument to be valid, the correlational terms must be valued lower than the 0.90. Keeping that in view, the correlation values associated with all the variables were below 0.90 (See Table 6 ). Thus, deeming the respective research instrument to be discriminately valid.

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t006

Multi-collinearity.

Multi-Collinearity is the state of higher correlation existent between the variables and the indicators associated with them. Which can further lead to unreliable statistical projections and inferences. To test a variable and its respective indicators for collinearity, the proposed criterion of VIF is followed. The referred criterion suggests for all the indicators of the regarding variable to have a VIF value lower than 5 to be fit in terms of collinearity measure [ 48 ]. Keeping that in view all the indicators associated with the variables under study were found to have VIF value under 5 (See Table 7 ).

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t007

Factor loadings.

Followed to fulfilling the criterion of the research instrument’s reliability and validity the respective components must fulfill the criterion of factor analysis that is measured in terms of Factor Loadings. Factor Loadings are determinant of the variability and correlation associated with the items of the observed variables under study. For an item associated with a variable to fulfill the Factor Loading criterion, must be valued above 0.7 [ 61 , 62 ]. In comparison to which, selective items associated with agile management (AM13) and project complexity (PC2, PC4) were found below the commended threshold value (See Table 8 ). Thus, these items were removed from the measurement model, to enhance the overall fit.

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t008

SEM (stage 2).

After the deletion of unfit components of the measurement model, the second stage involved the reassessment of the measurement model. The model was retested in terms of Factor Loadings, which depicted all of the values to be ranged above the minimum threshold of 0.70 [ 62 ] (See Table 9 ).

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t009

Path coefficients.

After conforming to the component fitness criterion, the structural model was evaluated in terms of the magnitude of the effect the observed variables had on the latent variables. The said magnitude was evaluated utilizing the measure of Path Coefficients. The value associated to the measure of path coefficient varies between ±1, which suggests the positive and negative relationship between the variables under consideration [ 48 , 63 , 64 ]. The effect of agile management practices over the project performance was valued at 0.473. The effect of agile management practices over the project complexity was valued as 0.703. The effect of leadership competencies over the project performance was valued at 0.664. Lastly, the effect of project complexity over the project performance was valued at 0.149. The evaluated effects were further justified in terms of the level of significance attributed to them i.e. p-value ≤ 0.05. Since all the results fulfilled the significance criterion, for which the evaluated effects were considered as accepted (See Table 10 ). Thus, justifying the following hypothesized relationships between the variables under study:

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t010

Coefficient of determination ( r 2 ).

Coefficient of Determination ( r 2 ) is representative of the amount of variance the exogenous variable/s can cause in the associated endogenous variable/s. The value of the Coefficient of Determination (r2) varies between 0–1. The higher the value of r 2 the higher the magnitude of impact implied by the exogenous variables [ 65 ]. Keeping that in view, the exogenous variables of the study i.e. (Agile Management, Project Complexity, and Leadership Competencies) impacted the endogenous variable i.e. (Project Performance) with an r 2 valued at 0.582. Thus, justifying 58.20% of the variance explained (See Table 11 ).

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t011

Effect size ( f 2 ).

Effect Size ( f 2 ) is representative of the magnitude of effect an exogenous variable can have on an endogenous variable. The respective magnitude of the effect is classified into three tiers. For a given relationship the values of Effect Size ( f 2 ) ranged between 0.02–0.14 are attributed as a small effect. Likewise, values ranged between 0.15–0.35 are attributed as a medium effect, and values ranged 0.36 and above are attributed as a large effect [ 48 , 51 ]. Keeping that in view, both the agile management and project complexity had a medium impact. While leadership competencies and project complexity had a large effect on their respective dependent variables. (See Table 12 ).

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t012

Mediation analysis.

A mediatory variable of the study is known to add an explanation or justify the effect of an exogenous variable over an endogenous variable. The current study took project complexity as a mediator to explain the effect of agile management over the project performance. SmartPLS explains the mediation in terms of Indirect Effects and its respective significance [ 66 , 67 ]. Keeping, that in view the hypothesized mediation was approved (See Table 13 ). Thus, accepting the following hypothesis:

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t013

Moderation analysis.

A moderating variable of the study is known to control the magnitude of the effect of an exogenous variable over an endogenous variable. This effect can be tilted either positively or negatively in presence of a moderator. The current study took leadership competencies as a moderator to control the effect of project complexity over the project performance. SmartPLS explains the moderation in terms of inducing a product indicator term in the structural model and its respective significance [ 68 ]. Keeping, that in view the hypothesized moderation was approved (See Table 14 ). Thus, accepting the following hypothesis:

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t014

Results summary.

The proposed hypotheses for the current study were accepted while considering their significance. The respective summary is depicted in the following Table 15 .

thumbnail

https://doi.org/10.1371/journal.pone.0249311.t015

To begin with, the first research hypothesis stated, “Are the agile management practices a significant predictor of project performance?”. Keeping that in view, the current study depicted a significantly positive influence of implementing agile management practices onto the overall performance of the projects undertaken. This suggests, that resolving a project into smaller functional proportions and responding timely is a commendable approach to enhance the performance of the undertaken projects.

Furthermore, the statistical findings in accordance with the dimensions of the agile management the significance of the relationship emphasized that an organization must undertake only the projects that it is competent enough to accomplish. Moreover, for a project that is undertaken, must be resolved down to work units that can be matched with the competency level of the employed individual. This would enable them to achieve the targeted goals with fewer hurdles faced along the process. Similar results were concluded by Alvarenga, Branco [ 33 ] in their study conducted on 257 project managers; each having an extensive experience of over 10 years. As it was indicated that it is the competency associated to the employed individuals in an organization that assures the efficient and effective execution of organizational task and result in accomplishment of the undertaken projects. Followed to which, agile management commends the adaption of flexibility in the project development process that allows the project team to incorporate the changes more easily than the traditional implementation of the projects. Similarly, the loss incurred during the development process is relatively less. Since the failure is often observed in one or a few modules at a time, which doesn’t affect the rest of the development process in any way. Most importantly, agile management is most responsible for responding quickly to the areas of projects that demand prioritized completion or technical handling. The respective findings were found in alignment to the study conducted by Serrador and Pinto [ 5 ] on 1002 projects deployed across various nations, that depicted a similar notion of a positive impact of implementing agile management to attain enhanced organizational outcomes. In another mixed-mode study conducted by Drury-Grogan [ 69 ] on various teams utilizing agile tools in the I.T sector as well suggested that application of the referred tools resulted in enhancing the success associated with the regarding projects.

The second research hypothesis stated, “Are the agile management practices a significant predictor of project-related complexities?” Keeping that in view, the current study depicted a significantly negative influence of implementing agile management on the project complexity. This suggests that the implementation of agile management enabled the regarding project managers to be able to effectively foresee the undertaken projects to a greater extent by adapting agile management practices than they would otherwise have had by adapting traditional management practices. The respective findings were found in alignment with the study conducted by Sohi, Hertogh [ 9 ] on 67 projects of complex nature, depicted that in a hybrid system with agile management practices coupled with traditional management approach was able to mitigate the magnitude of complexity faced by the regarding firms. In another subjective study conducted by Maylor and Turner [ 7 ] projected deduction being based upon 43 workshops and the opinion of 1100 managers. The results suggested an agile management approach as possibly the most effective approach to diminish the project complexity to commendable levels. Akin to which, in an extensive literature review conducted by Bergmann and Karwowski [ 70 ] also concluded the similar findings that adaptation of agile management is very effective in terms of mitigating the project related complexities and a accomplishing project outcomes.

The third research hypothesis stated, “Is the project complexity a significant predictor of project performance?” Keeping that in view, the current study depicted a significantly negative influence of project complexity on the overall performance of the projects. This suggests that the uncertainties faced by the project manager may hinder the accomplishment of the project. This would further possibly result in causing unnecessary delays, financial losses, overused employee efforts, working environment with moral, quality compromises, and unsatisfied clients. The respective findings were found in alignment with the study conducted by Floricel, Michela [ 71 ] on 81 projects deployed 5 across continents, depicted the possible negative impact of complexities on the overall performance of the organizations; that may be faced at each step of the development process. In another hybrid study conducted by Zhu and Mostafavi [ 8 ] on various senior project managers employed in the construction sector as well opinionated that complexities associated with organizations can deter the performance observed across their respective projects. Likewise, Luo, He [ 72 ] compile the opinion of 245 project managers that expressed the fact that project complexity can jeopardize the accomplishment of desired organizational outcomes. Therefore, their mitigation is a necessity for an organization to thrive.

The fourth research hypothesis stated, “Are leadership competencies a significant predictor of project performance?” Keeping that in view, the current study depicted a significant relationship between leadership competencies and project performance. This suggests that effective leadership can play a pivotal role in enabling an organization to attain the desired performance targets associated to its respective project. The respective findings were found in alignment to the study conducted by Ahmed and Anantatmula [ 34 ] on 286 project managers serving various construction firms in Pakistan, suggested leadership competencies be an effective measure to enhance the performance of the projects it is utilized onto. In another hybrid study conducted by Berssaneti and Carvalho [ 73 ] on 336 project managers deployed across various Brazilian firms opinionated that effective supervision and managerial support can prove itself to be a potential factor in enabling a firm to deliver desired outcomes.

The fifth research hypothesis stated, “Does the project complexity mediate the relationship between agile management practices and project performance?” Keeping that in view, the current study depicted a significant relationship between agile management and project performance while considering leadership competencies as a moderator. This suggests that effective implementation of agile management practices in a project can prove themselves to be effective in elevating project performance. Though the magnitude of complexity associated with the project can explain the possible decline observed in project performance; regardless of the management practices being observed. Though the observed decline can be minimized to a laudable extent through the utilization of agile management practices. The respective findings were found in alignment with an in-depth correlational study conducted by Sohi, Hertogh [ 9 ] on 67 project managers supervising various projects. The results suggested that inducing agile management practices within any compatible system can enable an organization to manage through its professional challenges which can possibly lead an organization to perform better.

The sixth research hypothesis stated, “Do the leadership competencies moderate the relationship between agile management practices and project performance?” Keeping that in view, the current study depicted a significant relationship between project complexity and project performance while considering leadership competencies as a moderator. Which suggests that effective implication of human factor in terms of leadership competencies can play a vital role in mitigating the hindrances faced during the project development process and can further result in enhanced performance. On the contrary, the absence of required leadership competencies can result in augmentation of adversities that may lead to a decline in the project performance. The respective findings were found in alignment to a mixed-mode study conducted by Aurélio de Oliveira, Veriano Oliveira Dalla Valentina [ 74 ] on 32 highly skilled and influential project managers in the field of R&D; who have served various forms globally. The correlational study depicted a possibly potential impact of an appropriate leadership approach to resolve organizational situations and deliver targeted performance.

Considering the hypothetical contemplations of the current study, various deductions have been made. To begin with, the implementation of agile management practices in the Pakistani I.T industry proves itself to be effective in terms of enhancing the overall performance of the undertaken projects. Thus, ensuring the sustainability of organizations in the industry. Moreover, it was observed that agile management practices enabled its utilizers to cope up with the complexities, by breaking down tasks into smaller work units and implementing the supervision on a horizontal scale rather than top-down. This approach not only made managing tasks effectively and efficiently but also made the decision making swift. Though it was observed that the organizations that weren’t able to take on the implementation of agile management practices on a full scale, faced complexities in various organizational terms, that would lead to declined performance. In addition to the mitigation of complexities through the implementation of agile management practices, it was the effective consideration of human factors in terms of leadership competencies that extended the reduction of organizational complexities and upscaled the magnitude of performance delivered.

The current study offers a pathway to understanding the application of agile management practices in the IT sector. Though it faces various shortcomings in both contextual and conceptual manner, which can further serve as a pathway to future researchers and professionals to look into and extend the knowledge pool.

In conceptual terms, the current study only took into account one mediatory variable i.e., project complexity to explain the implications of agile management onto the project performance. Akin to which, only one moderating variable was considered to evaluate the variability in the magnitude of project performance. Both of these are not enough of a consideration to depict the full potential of application of agile management practices in determining the project performance. Referred to which, it is commended for the future researchers and professionals to look into considering other variables that can explain the phenomena of agile management to variate the magnitude of project performance delivered. In alignment to which, it will also be interesting to see the implementation of agile management to enhance the organizational accomplishments such as, attaining competitive advantage, innovation, industrial sustainability, and more.

In contextual terms, the current study has targeted the IT sector of Pakistan; a developing nation. Since other industries as well are realizing the necessity of agile management and embracing its practices, it will be interesting to see the application of similar study in other developing nations, as well as other industrial sectors.

Supporting information

S1 appendix..

https://doi.org/10.1371/journal.pone.0249311.s001

S1 Dataset.

https://doi.org/10.1371/journal.pone.0249311.s002

  • View Article
  • Google Scholar
  • 2. Kerzner H, Kerzner HR. Project management: a systems approach to planning, scheduling, and controlling: John Wiley & Sons; 2017.
  • 3. Langley MA. Success Rates Rise: Transforming the high cost of low performance. In: PMI, editor. Pulse of the Profession2017. p. 32.
  • 4. Ambler SW. 2018 IT Project Success Rates Survey Results. Ambysoft, 2018.
  • 12. Northouse PG. Leadership: Theory and practice: Sage publications; 2018.
  • PubMed/NCBI
  • 14. Denning S. How major corporations are making sense of Agile. Strategy & Leadership. 2018.
  • 15. Denning S. Succeeding in an increasingly Agile world. Strategy & Leadership. 2018.
  • 16. Levy R, Short M, Measey P, editors. Agile Foundations: Principles, practices and frameworks2015: BCS.
  • 18. Abrahamsson P, Salo O, Ronkainen J, Warsta J. Agile software development methods: Review and analysis. 2017.
  • 19. Marcus Ries DS. Agile Project Management, A Complete Beginner’s Guide To Agile Project Management: Ries Publications, New York; 2016.
  • 20. Turk D, France R, Rumpe B. Limitations of agile software processes. Third International Conference on Extreme Programming and Flexible Processes in Software Engineering. 2014:43–6.
  • 21. Kerzner H. Project management: a systems approach to planning, scheduling, and controlling: John Wiley & Sons; 2017.
  • 22. Uludag Ö, Kleehaus M, Caprano C, Matthes F, editors. Identifying and structuring challenges in large-scale agile development based on a structured literature review. 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC); 2018: IEEE.
  • 27. Maylor H, Turner N. Understand, reduce, respond: project complexity management theory and practice. International Journal of Operations & Production Management. 2017.
  • 28. Morcov S, Pintelon L, Kusters RJ. Definitions, characteristics and measures of IT project complexity-a systematic literature review. International Journal of Information Systems and Project Management. 2020.
  • 31. Larson EW, Gray CF, editors. A Guide to the Project Management Body of Knowledge: PMBOK ( ® ) Guide2015: Project Management Institute.
  • 33. Alvarenga JC, Branco RR, Guedes ALA, Soares CAP, e Silva WdS. The project manager core competencies to project success. International Journal of Managing Projects in Business. 2019.
  • 36. Zuo J, Zhao X, Nguyen QBM, Ma T, Gao S. Soft skills of construction project management professionals and project success factors. Engineering, Construction and Architectural Management. 2018.
  • 37. Gunter RC. Emotional Intelligence and Its Relationship to Project Manager Leadership Competencies and Project Success: Saint Leo University; 2020.
  • 38. Association PSH. P@SHA IT Industry Report 2017. Report. 2017 Contract No.: 1.
  • 39. Neuman WL. Understanding research: Pearson; 2016.
  • 41. Hox JJ, Moerbeek M, van de Schoot R. Multilevel analysis: Techniques and applications: Routledge; 2017.
  • 47. Heeringa SG, West BT, Berglund PA. Applied survey data analysis: Chapman and Hall/CRC; 2017.
  • 50. Ringle CM, Da Silva D, Bido DdS. Structural equation modeling with the SmartPLS. 2015.
  • 51. Ringle C, Wende S, Becker J. SmartPLS—Statistical Software For Structural Equation Modeling. 2017.
  • 52. Bowen NK, Guo S. Structural equation modeling: Oxford University Press; 2011.
  • 53. Klem L. Structural equation modeling. 2000.
  • 55. Byrne BM. Structural equation modeling with AMOS: Basic concepts, applications, and programming: Routledge; 2016.
  • 56. Gliem JA, Gliem RR, editors. Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales2003: Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education.
  • 60. Ab Hamid M, Sami W, Sidek MM, editors. Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion. Journal of Physics: Conference Series; 2017: IOP Publishing.
  • 63. Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL. Multivariate data analysis: Prentice hall Upper Saddle River, NJ; 1998.
  • 64. Hair Jr JF, Hult GTM, Ringle C, Sarstedt M. A primer on partial least squares structural equation modeling (PLS-SEM): Sage Publications; 2016.
  • 65. Di Bucchianico A. Coefficient of determination (R2). Encyclopedia of Statistics in Quality and Reliability. 2008.
  • 68. Bae B. Analyses of moderating and mediating effects with SPSS/Amos/LISREL/SmartPLS. Seoul: Chungram Publishing. 2015.
  • 70. Bergmann T, Karwowski W, editors. Agile project management and project success: A literature review. International Conference on Applied Human Factors and Ergonomics; 2018: Springer.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CAREER COLUMN
  • 10 April 2019

How agile project management can work for your research

  • Laura Pirro 0

Laura Pirro is a PhD student in chemical engineering at the Laboratory for Chemical Technology at Ghent University, Belgium.

You can also search for this author in PubMed   Google Scholar

If you’ve ever written a research proposal, the chances are that you will have planned the work as a list of sequential activities, often visualized in a Gantt chart.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

doi: https://doi.org/10.1038/d41586-019-01184-9

This is an article from the Nature Careers Community, a place for Nature readers to share their professional experiences and advice. Guest posts are encouraged. You can get in touch with the editor at [email protected].

Sutherland, J. Scrum: The Art of Doing Twice the Work in Half the Time (Random House Business, 2015).

Google Scholar  

Stark, E. Agile Project Management: Quick Start Guide (ClydeBank Media, 2014).

Download references

Related Articles

project management research articles

How to run a creative and diverse PhD programme

project management research articles

  • Research management

Japan can embrace open science — but flexible approaches are key

Correspondence 07 MAY 24

US funders to tighten oversight of controversial ‘gain of function’ research

US funders to tighten oversight of controversial ‘gain of function’ research

News 07 MAY 24

France’s research mega-campus faces leadership crisis

France’s research mega-campus faces leadership crisis

News 03 MAY 24

I’m worried I’ve been contacted by a predatory publisher — how do I find out?

I’m worried I’ve been contacted by a predatory publisher — how do I find out?

Career Feature 15 MAY 24

How I fled bombed Aleppo to continue my career in science

How I fled bombed Aleppo to continue my career in science

Career Feature 08 MAY 24

Illuminating ‘the ugly side of science’: fresh incentives for reporting negative results

Illuminating ‘the ugly side of science’: fresh incentives for reporting negative results

How to stop students cramming for exams? Send them to sea

How to stop students cramming for exams? Send them to sea

News & Views 30 APR 24

How young people benefit from Swiss apprenticeships

How young people benefit from Swiss apprenticeships

Spotlight 17 APR 24

Ready or not, AI is coming to science education — and students have opinions

Ready or not, AI is coming to science education — and students have opinions

Career Feature 08 APR 24

Senior Research Assistant in Human Immunology (wet lab)

Senior Research Scientist in Human Immunology, high-dimensional (40+) cytometry, ICS and automated robotic platforms.

Boston, Massachusetts (US)

Boston University Atomic Lab

project management research articles

Postdoctoral Fellow in Systems Immunology (dry lab)

Postdoc in systems immunology with expertise in AI and data-driven approaches for deciphering human immune responses to vaccines and diseases.

Global Talent Recruitment of Xinjiang University in 2024

Recruitment involves disciplines that can contact the person in charge by phone.

Wulumuqi city, Ürümqi, Xinjiang Province, China

Xinjiang University

project management research articles

Tenure-Track Assistant Professor, Associate Professor, and Professor

Westlake Center for Genome Editing seeks exceptional scholars in the many areas.

Westlake Center for Genome Editing, Westlake University

project management research articles

Faculty Positions at SUSTech School of Medicine

SUSTech School of Medicine offers equal opportunities and welcome applicants from the world with all ethnic backgrounds.

Shenzhen, Guangdong, China

Southern University of Science and Technology, School of Medicine

project management research articles

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Project management: Recent developments and research opportunities

  • Published: 16 June 2012
  • Volume 21 , pages 129–143, ( 2012 )

Cite this article

project management research articles

  • Nicholas G. Hall 1  

4390 Accesses

46 Citations

Explore all metrics

This paper studies the business process known as project management. This process has exhibited a remarkable growth in business interest over the last 15 years, as demonstrated by a 1000% increase in membership in the Project Management Institute since 1996. This growth is largely attributable to the emergence of many new diverse business applications that can be successfully managed as projects. The new applications for project management include IT implementations, research and development, new product and service development, corporate change management, and software development. The characteristics of modern projects are typically very different from those of traditional projects such as construction and engineering, which necessitates the development of new project management techniques. We discuss these recent practical developments. The history of project management methodology is reviewed, from CPM and PERT to the influential modern directions of critical chain project management and agile methods. We identify one important application area for future methodological change as new product and service development. A list of specific research topics within project management is discussed. The conclusions suggest the existence of significant research opportunities within project management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

project management research articles

Open Source vs Proprietary Project Management Tools

project management research articles

Closing Thoughts

project management research articles

Further Research Opportunities in Project Management

agilemanifesto.org. (2001). Manifesto for Agile Software Development. Available via DIALOG. http://agilemanifesto.org/

Amram, M. & Kulatilaka, N. (1999). Real Options: Managing Strategic Investment in an Uncertain World. Harvard Business School Press, Boston, MA

Google Scholar  

Aumann, R. & Serrano, R. (2008). An economic index of riskiness. Journal of Political Economy, 116: 810–836

Article   Google Scholar  

Bertsimas, D. & Sim, M. (2004). The price of robustness. Operations Research, 52: 35–53

Article   MathSciNet   MATH   Google Scholar  

Brânzei, R., Ferrari, G., Fragnelli, V. & Tijs, S. (2002). Two approaches to the problem of sharing delay costs in joint projects. Annals of Operations Research, 109: 359–374

Brown, D.B. & Sim, M. (2009). Satisficing measures for analysis of risky positions. Management Science, 55: 71–84

Article   MATH   Google Scholar  

Cai, X., Hall, N.G. & Zhang, F. (2012). Cooperation and contract design in project management. Working paper, Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong

Castro, J., Gómez, D. & Tejada, J. (2008). A polynomial rule for the problem of sharing delay costs in PERT networks. Computers & Operations Research, 35: 2376–2387

Cooper, R.G., Edgett, S.J. & Kleinschmidt, E.J. (2000). New problems, new solutions: making portfolio management more effective. Research-Technology Management, 43: 18–33

Corbett, C. & Muthulingam, S. (2007). Adoption of voluntary environmental standards: the role of signaling and intrinsic benets in the diffusion of the LEED green building standards. Working paper, Anderson Graduate School of Management, UCLA

Dickinson, M.W., Thornton, A.C. & Graves, S. (2001). Technology portfolio management: optimizing interdependent projects over multiple time periods. IEEE Transactions on Engineering Management, 48: 518–527

Fox, G.E., Baker, N.R. & Bryant, L.J. (1984). Economic models for R&D project selection in the presence of project interactions. Management Science, 30: 890–902

Goh, J. & Hall, N.G. (2012). Total cost control in project management via satisficing. Working paper, revised for publication, Fisher College of Business, The Ohio State University, Columbus, Ohio

Goh, J. & Sim, M. (2010). Distributionally robust optimization and its tractable approximations. Operations Research, 58: 902–917

Goldratt, E.M. (1997). The Critical Chain. North River Press, Great Barrington, MA

Hall, N.G., Long, Z., Qi, J. & Sim, M. (2011). Managing underperformance risk in project portfolio selection. Working paper, Fisher College of Business, The Ohio State University, Columbus, Ohio

Huchzermeier, A. & Loch, C.H. (2001). Project management under risk: using the real options approach to evaluate exibility in R&D. Management Science, 47: 85–101

Hurwicz, L. (1972). On informationally decentralized systems. In: McGuire, C.B., Radner, R. (eds.), Decisions and Organization. North-Holland, Amsterdam, Netherlands

Kellerer, H., Pferschy, U. & Pisinger, D. (2004). Knapsack Problems. Springer, Berlin, Germany

MATH   Google Scholar  

Kerzner, H. (2009). Project Management: A Systems Approach to Planning, Scheduling, and Controlling, 10 th edition. Wiley, Hoboken, NJ

Kim, Y.W. & Ballard, G. (2000). Is the earned-value method an enemy of work flow? Working paper, Department of Civil and Environmental Enginering, University of California at Berkeley, Berkeley, CA

Klastorin, T.D. (2004). Project Management: Tools and Trade-Offs, 1 st edition. Wiley, Hoboken, NJ

Kotnour, T. (2000). Organizational learning practices in the project management environment. International Journal of Quality & Reliability Management, 17: 393–406

Lukas, J.A. (2008). Earned value analysis — Why it doesn’t work. AACE International Transactions, EVM.01.1-EVM.01.10

Markowitz, H.M. (1959). Portfolio Selection: Efficient Diversification of Investments. Wiley, New York

Myerson, R. (1979). Incentive compatibility and the bargaining problem. Econometrica, 47: 61–73

MSDN Blogs. (2009). Architecture makes agile processes scalable. Available via DIALOG. http://blogs.msdn.com/b/nickmalik/archive/2009/05/19/architecture-makes-agile-processesscalable.aspx . Cited May 19, 2012

objectmentor.com. (2012). Agile/XP object mentor success stories. Available via DIALOG. http://www.objectmentor.com/omSolutions/agile_customers.html

Parkinson, C.N. (1955). Parkinson’s law. Economist, November 19

Parkinson, C.N. (1958). Parkinson’s Law: The Pursuit of Progress. John Murray, London, UK

Patrick, F.S. (1998). Critical chain scheduling and buffer management: getting out from between Parkinson’s rock and Murphy’s hard place. Available via DIALOG. http://www.focusedperformance.com

Peleg, B. & Sudhölter, P. (2003). Introduction to the Theory of Cooperative Games. Kluwer, Boston, MA

Book   Google Scholar  

Pich, M.T., Loch, C.H. & De Meyer, A. (2002). On uncertainty, ambiguity, and complexity in project management. Management Science, 48: 1008–1023

Project Management Institute. (2008). A Guide to the Project Management Body of Knowledge, 4th edition

Raz, T., Barnes, R. & Dvir, D. (2003). A critical look at critical chain project management. Project Management Journal, 36: 24–32

Roy, A.D. (1952). Safety-first and the holding of assets. Econometrica, 20: 431–449

Royal Commission on Environmental Pollution. (2007). The urban environment. Available via DIALOG http://www.official-documents.gov.uk/document/cm70/7009/7009.pdf

Schindler, M. & Eppler, M.J. (2003). Harvesting project knowledge: a review of project learning methods and success factors. International Journal of Project Management, 21: 219–228

Schonberger, R.J. (1981). Why projects are always late: a rationale based on manual simulation of a PERT/CPM network. Interfaces, 11: 66–70

Smith, P.G. (2007). Flexible Product Development: Building Agility for Changing Markets. John Wiley, Hoboken, NJ

White, D. & Fortune, J. (2002). Current practice in project management: an empirical study. International Journal of Project Management, 20: 1–11

Wikipedia. (2011). Parkinson’s law. Available via DIALOG. http://en.wikipedia.org/wiki/Parkinson’s_Law

Wikipedia. (2012). Earned value management. Available via DIALOG. http://en.wikipedia.org/wiki/Earned_value_management

wwwF. (2010). Living planet report. Available via DIALOG. http://wwf.panda.org/about_our_earth/all_publications/living_planet_report

Download references

Author information

Authors and affiliations.

Department of Management Sciences Fisher College of Business, The Ohio State University, Ohio, USA

Nicholas G. Hall

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Nicholas G. Hall .

Additional information

Nicholas G. Hall is Professor of Management Sciences in the Fisher College of Business at The Ohio State University. He holds B.A., M.A. degrees in economics from the University of Cambridge, a professional qualification in accounting, and a Ph.D. (1986) from the University of California at Berkeley. His main research interests are in tactical operations issues, especially project management, scheduling and pricing, public policy and sports management problems. He is the author of over 70 refereed publications, and has given over 260 academic presentations, including 88 invited presentations in 20 countries, 6 conference keynote presentations and 6 INFORMS tutorials. A 2008 citation study ranked him 13th among 1,376 scholars in the operations management field. He is a Fellow of the Institute for Decision Making under Uncertainty of the Chinese Academy of Sciences. He won the Faculty Outstanding Research Award of the Fisher College of Business in 1998 and 2005.

Rights and permissions

Reprints and permissions

About this article

Hall, N.G. Project management: Recent developments and research opportunities. J. Syst. Sci. Syst. Eng. 21 , 129–143 (2012). https://doi.org/10.1007/s11518-012-5190-5

Download citation

Published : 16 June 2012

Issue Date : June 2012

DOI : https://doi.org/10.1007/s11518-012-5190-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Project management
  • recent practical developments
  • opportunities for research
  • Find a journal
  • Publish with us
  • Track your research

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

How AI Will Transform Project Management

  • Antonio Nieto-Rodriguez
  • Ricardo Viana Vargas

project management research articles

Steps you can take now to prepare for the future.

Only 35% of projects today are completed successfully. One reason for this disappointing rate is the low level of maturity of technologies available for project management. This is about to change. Researchers, startups, and innovating organizations, are beginning to apply AI, machine learning, and other advanced technologies to project management, and by 2030 the field will undergo major shifts. Technology will soon improve project selection and prioritization, monitor progress, speed up reporting, and facilitate testing. Project managers, aided by virtual project assistants, will find their roles more focused on coaching and stakeholder management than on administration and manual tasks. The author show how organizations that want to reap the benefits of project management technologies should begin today by gathering and cleaning project data, preparing their people, and dedicating the resources necessary to drive this transformation.

Sometime in the near future, the CEO of a large telecom provider is using a smartphone app to check on her organization’s seven strategic initiatives. Within a few taps, she knows the status of every project and what percentage of expected benefits each one has delivered. Project charters and key performance indicators are available in moments, as are each team member’s morale level and the overall buy-in of critical stakeholders.

project management research articles

  • Antonio Nieto-Rodriguez is the author of the Harvard Business Review Project Management Handbook , five other books, and the HBR article “ The Project Economy Has Arrived. ” His research and global impact on modern management have been recognized by Thinkers50. A pioneer and leading authority in teaching and advising executives the art and science of strategy implementation and modern project management, Antonio is a visiting professor in seven leading business schools and founder of Projects & Co mpany and co-founder Strategy Implementation Institute and PMOtto . You can follow Antonio through his  website , his LinkedIn newsletter  Lead Projects Successfully , and his online course  Project Management Reinvented for Non–Project Managers .
  • Ricardo Viana Vargas, Ph.D. is the founder and managing director of  Macrosolutions , a consulting firm with international operations in energy, infrastructure, IT, oil, and finance. He has managed more than $20 billion in international projects in the past 25 years. Ricardo created and led the Brightline Initiative  from 2016 to 2020 and was the director of project management and infrastructure at the  United Nations , leading more than 1,000 humanitarian and development projects. He has written 16 books in the field and hosts the 5 Minutes Podcast , which has reached 12 million views.

Partner Center

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.20; 2019 Oct 25

Managing Ideas, People, and Projects: Organizational Tools and Strategies for Researchers

Samuel pascal levin.

1 Beverly, MA 01915, USA

Michael Levin

2 Allen Discovery Center at Tufts University, Suite 4600, 200 Boston Avenue, Medford, MA 02155-4243, USA

Primary Investigators at all levels of their career face a range of challenges related to optimizing their activity within the constraints of deadlines and productive research. These range from enhancing creative thought and keeping track of ideas to organizing and prioritizing the activity of the members of the group. Numerous tools now exist that facilitate the storage and retrieval of information necessary for running a laboratory to advance specific project goals within associated timelines. Here we discuss strategies and tools/software that, together or individually, can be used as is or adapted to any size scientific laboratory. Specific software products, suggested use cases, and examples are shown across the life cycle from idea to publication. Strategies for managing the organization of, and access to, digital information and planning structures can greatly facilitate the efficiency and impact of an active scientific enterprise. The principles and workflow described here are applicable to many different fields.

Graphical Abstract

An external file that holds a picture, illustration, etc.
Object name is fx1.jpg

Information Systems; Knowledge Management

Introduction

Researchers, at all stages of their careers, are facing an ever-increasing deluge of information and deadlines. Additional difficulties arise when one is the Principal Investigator (PI) of those researchers: as group size and scope of inquiry increases, the challenges of managing people and projects and the interlocking timelines, finances, and information pertaining to those projects present a continuous challenge. In the immediate term, there are experiments to do, papers and grants to write, and presentations to construct, in addition to teaching and departmental duties. At the same time, however, the PI must make strategic decisions that will impact the future direction(s) of the laboratory and its personnel. The integration of deep creative thought together with the practical steps of implementing a research plan and running a laboratory on a day-to-day basis is one of the great challenges of the modern scientific enterprise. Especially difficult is the fact that attention needs to span many orders of scale, from decisions about which problems should be pursued by the group in the coming years and how to tackle those problems to putting out regular “fires” associated with the minutiae of managing people and limited resources toward the committed goals.

The planning of changes in research emphasis, hiring, grant-writing, etc. likewise occur over several different timescales. The optimization of resources and talent toward impactful goals requires the ability to organize, store, and rapidly access information that is integrated with project planning structures. Interestingly, unlike other fields such as business, there are few well-known, generally accepted guidelines for best practices available to researchers. Here we lay out a conceptual taxonomy of the life cycle of a project, from brainstorming ideas through to a final deliverable product. We recommend methods and software/tools to facilitate management of concurrent research activities across the timeline. The goal is to optimize the organization, storage, and access to the necessary information in each phase, and, crucially, to facilitate the interconnections between static information, action plans, and work product across all phases. We believe that the earlier in the career of a researcher such tools are implemented and customized, the more positive impact they will exert on the productivity of their enterprise.

This overview is intended for anyone who is conducting research or academic scholarship. It consists of a number of strategies and software recommendations that can be used together or independently (adapted to suit a given individual's or group's needs). Some of the specific software packages mentioned are only usable on Apple devices, but similar counterparts exist in the Windows and Linux ecosystems; these are indicated in Table 1 (definitions of special terms are given in Table 2 ). These strategies were developed (and have been continuously updated) over the last 20 years based on the experiences of the Levin group and those of various collaborators and other productive researchers. Although very specific software and platforms are indicated, to facilitate the immediate and practical adoption by researchers at all levels, the important thing is the strategies illustrated by the examples. As software and hardware inevitably change over the next few years, the fundamental principles can be readily adapted to newer products.

Software Packages and Alternatives

A Glossary of Special Terms

Basic Principles

Although there is a huge variety of different types of scientific enterprises, most of them contain one or more activities that can be roughly subsumed by the conceptual progression shown in Figure 1 . This life cycle progresses from brainstorming and ideation through planning, execution of research, and then creation of work products. Each stage requires unique activities and tools, and it is crucial to establish a pipeline and best practices that enable the results of each phase to effectively facilitate the next phase. All of the recommendations given below are designed to support the following basic principles:

  • • Information should be easy to find and access, so as to enable the user to have to remember as little as possible—this keeps the mind free to generate new, creative ideas. We believe that when people get comfortable with not having to remember any details and are completely secure in the knowledge that the information has been offloaded to a dependable system and will be there when they need it, a deeper, improved level of thinking can be achieved.
  • • Information should be both organized hierarchically (accessible by drill-down search through a rational structure) and searchable by keywords.
  • • Information should be reachable from anywhere in the world (but secure and access restricted). Choose software that includes a cell phone/tablet platform client.
  • • No information should ever be lost—the systems are such that additional information does not clog up or reduce efficiency of use and backup strategies ensure disaster robustness; therefore, it is possible to save everything.
  • • Software tools optimized for specific management tasks should be used; select those tools based on interoperability, features, and the ability to export into common formats (such as XML) in case it becomes expedient someday to switch to a newer product.
  • • One's digital world should be organized into several interlocking categories, which utilize different tools: activity (to-dos, projects, research goals) and knowledge (static information).
  • • One's activity should be hierarchically organized according to a temporal scale, ranging from immediate goals all the way to career achievement objectives and core mission.
  • • Storage of planning data should allow integration of plans with the information needed to implement them (using links to files and data in the various tools).
  • • There should be no stored paper—everything should be obtained and stored in a digital form (or immediately digitized, using one of the tools described later in this document).
  • • The information management tasks described herein should not occupy so much time as to take away from actual research. When implemented correctly, they result in a net increase in productivity.

An external file that holds a picture, illustration, etc.
Object name is gr1.jpg

The Life Cycle of Research Activity

Various projects occupy different places along a typical timeline. The life cycle extends from creative ideation to gathering information, to formulating a plan, to the execution for the plan, and then to producing a work product such as a grant or paper based on the results. Many of these phases necessitate feedback to a prior phase, shown in thinner arrows (for example, information discovered during a literature search or attempts to formalize the work plan may require novel brainstorming). This diagram shows the product (end result) of each phase and typical tools used to accomplish them.

These basic principles can be used as the skeleton around which specific strategies and new software products can be deployed. Whenever possible, these can be implemented via external administration services (i.e., by a dedicated project manager or administrator inside the group), but this is not always compatible with budgetary constraints, in which case they can readily be deployed by each principal investigator. The PIs also have to decide whether they plan to suggest (or insist) that other people in the group also use these strategies, and perhaps monitor their execution. In our experience, it is most essential for anyone leading a complex project or several to adopt these methods (typically, a faculty member or senior staff scientist), whereas people tightly focused on one project and with limited concurrent tasks involving others (e.g., Ph.D. students) are not essential to move toward the entire system (although, for example, the backup systems should absolutely be ensured to be implemented among all knowledge workers in the group). The following are some of the methods that have proven most effective in our own experience.

Information Technology Infrastructure

Several key elements should be pillars of your Information Technology (IT) infrastructure ( Figure 2 ). You should be familiar enough with computer technology that you can implement these yourself, as it is rare for an institutional IT department to be able to offer this level of assistance. Your primary disk should be a large (currently, ∼2TB) SSD drive or, better, a disk card (such as the 2TB SSD NVMe PCIe) for fast access and minimal waiting time. Your computer should be so fast that you spend no time (except in the case of calculations or data processing) waiting for anything—your typing and mouse movement should be the rate-limiting step. If you find yourself waiting for windows or files to open, obtain a better machine.

An external file that holds a picture, illustration, etc.
Object name is gr2.jpg

Schematic of Data Flow and Storage

Three types of information: data (facts and datasets), action plans (schedules and to-do lists), and work product (documents) all interact with each other in defining a region of work space for a given research project. All of this should be hosted on a single PC (personal computer). It is accessed by a set of regular backups of several types, as well as by the user who can interact with raw files through the file system or with organized data through a variety of client applications that organize information, schedules, and email. See Table 2 for definitions of special terms.

One key element is backups—redundant copies of your data. Disks fail—it is not a question of whether your laptop or hard drive will die, but when. Storage space is inexpensive and researchers' time is precious: team members should not tolerate time lost due to computer snafus. The backup and accessibility system should be such that data are immediately recoverable following any sort of disaster; it only has to be set up once, and it only takes one disaster to realize the value of paranoia about data. This extends also to laboratory inventory systems—it is useful to keep (and back up) lists of significant equipment and reagents in the laboratory, in case they are needed for the insurance process in case of loss or damage.

The main drive should be big enough to keep all key information (not primary laboratory data, such as images or video) in one volume—this is to facilitate cloning. You should have an extra internal drive (which can be a regular disk) of the same size or bigger. Use something like Carbon Copy Cloner or SuperDuper to set up a nightly clone operation. When the main disk fails (e.g., the night before a big grant is due), boot from the clone and your exact, functioning system is ready to go. For Macs, another internal drive set up as a Time Machine enables keeping versions of files as they change. You should also have an external drive, which is likewise a Time Machine or a clone: you can quickly unplug it and take it with you, if the laboratory has to be evacuated (fire alarm or chemical emergency) or if something happens to your computer and you need to use one elsewhere. Set a calendar reminder once a month to check that the Time Machine is accessible and can be searched and that your clone is actually updated and bootable. A Passport-type portable drive is ideal when traveling to conferences: if something happens to the laptop, you can boot a fresh (or borrowed) machine from the portable drive and continue working. For people who routinely install software or operating system updates, I also recommend getting one disk that is a clone of the entire system and applications and then set it to nightly clone the data only , leaving the operating system files unchanged. This guarantees that you have a usable system with the latest data files (useful in case an update or a new piece of software renders the system unstable or unbootable and it overwrites the regular clone before you notice the problem). Consider off-site storage. CrashPlan Pro is a reasonable choice for backing up laboratory data to the cloud. One solution for a single person's digital content is to have two extra external hard drives. One gets a clone of your office computer, and one is a clone of your home computer, and then you swap—bring the office one home and the home one to your office. Update them regularly, and keep them swapped, so that should a disaster strike one location, all of the data are available. Finally, pay careful attention (via timed reminders) to how your laboratory machines and your people's machines are being backed up; a lot of young researchers, especially those who have not been through a disaster yet, do not make backups. One solution is to have a system like CrashPlan Pro installed on everyone's machines to do automatic backup.

Another key element is accessibility of information. Everyone should be working on files (i.e., Microsoft Word documents) that are inside a Dropbox or Box folder; whatever you are working on this month, the files should be inside a folder synchronized by one of these services. That way, if anything happens to your machine, you can access your files from anywhere in the world. It is critical that whatever service is chosen, it is one that s ynchronizes a local copy of the data that live on your local machine (not simply keeps files in the cloud) —that way, you have what you need even if the internet is down or connectivity is poor. Tools that help connect to your resources while on the road include a VPN (especially useful for secure connections while traveling), SFTP (to transfer files; turn on the SFTP, not FTP, service on your office machine), and Remote Desktop (or VNC). All of these exist for cell phone or tablet devices, as well as for laptops, enabling access to anything from anywhere. All files (including scans of paper documents) should be processed by OCR (optical character recognition) software to render their contents searchable. This can be done in batch (on a schedule), by Adobe Acrobat's OCR function, which can be pointed to an entire folder of PDFs, for example, and left to run overnight. The result, especially with Apple's Spotlight feature, is that one can easily retrieve information that might be written inside a scanned document.

Here, we focus on work product and the thought process, not management of the raw data as it emerges from equipment and experimental apparatus. However, mention should be made of electronic laboratory notebooks (ELNs), which are becoming an important aspect of research. ELNs are a rapidly developing field, because they face a number of challenges. A laboratory that abandons paper notebooks entirely has to provide computer interfaces anywhere in the facility where data might be generated; having screens, keyboards, and mice at every microscope or other apparatus station, for example, can be expensive, and it is not trivial to find an ergonomically equivalent digital substitute for writing things down in a notebook as ideas or data appear. On the other hand, keeping both paper notebooks for immediate recording, and ELNs for organized official storage, raises problems of wasted effort during the (perhaps incomplete) transfer of information from paper to the digital version. ELNs are also an essential tool to prevent loss of institutional knowledge as team members move up to independent positions. ELN usage will evolve over time as input devices improve and best practices are developed to minimize the overhead of entering meta-data. However, regardless of how primary data are acquired, the researcher will need specific strategies for transitioning experimental findings into research product in the context of a complex set of personal, institutional, and scientific goals and constraints.

Facilitating Creativity

The pipeline begins with ideas, which must be cultivated and then harnessed for subsequent implementation ( Altshuller, 1984 ). This step consists of two components: identifying salient new information and arranging it in a way that facilitates novel ideas, associations, hypotheses, and strategic plans for making impact.

For the first step, we suggest an automated weekly PubCrawler search, which allows Boolean searches of the literature. Good searches to save include ones focusing on specific keywords of interest, as well as names of specific people whose work one wants to follow. The resulting weekly email of new papers matching specific criteria complements manual searches done via ISI's Web of Science, Google Scholar, and PubMed. The papers of interest should be immediately imported into a reference manager, such as Endnote, along with useful Keywords and text in the Notes field of each one that will facilitate locating them later. Additional tools include DevonAgent and DevonSphere, which enable smart searches of web and local resources, respectively.

Brainstorming can take place on paper or digitally (see later discussion). We have noticed that the rate of influx of new ideas is increased by habituating to never losing a new idea. This can be accomplished by establishing a voicemail contact in your cell phone leading to your own office voicemail (which allows voice recordings of idea fragments while driving or on the road, hands-free) and/or setting up Endnote or a similar server-synchronized application to record (and ideally transcribe) notes. It has been our experience that the more one records ideas arising in a non-work setting, the more often they will pop up automatically. For notes or schematics written on paper during dedicated brainstorming, one tool that ensures that nothing is lost is an electronic pen. For example, the Livescribe products are well integrated with Evernote and ensure that no matter where you are, anything you write down becomes captured in a form accessible from anywhere and are safe no matter what happens to the original notebook in which they were written.

Enhancing scientific thought, creative brainstorming, and strategic planning is facilitated by the creation of mind maps: visual representations of spatial structure of links between concepts, or the mapping of planned activity onto goals of different timescales. There are many available mind map software packages, including MindNode; their goal is to enable one to quickly set down relationships between concepts with a minimum of time spent on formatting. Examples are shown in Figures 3 A and 3B. The process of creating these mind maps (which can then be put on one's website or discussed with the laboratory members) helps refine fuzzy thinking and clarifies the relationships between concepts or activities. Mind mappers are an excellent tool because their light, freeform nature allows unimpeded brainstorming and fluid changes of idea structure but at the same time forces one to explicitly test out specific arrangements of plans or ideas.

An external file that holds a picture, illustration, etc.
Object name is gr3.jpg

Mind Mapping

(A and B) The task of schematizing concepts and ideas spatially based on their hierarchical relationships with each other is a powerful technique for organizing the creative thought process. Examples include (A), which shows how the different projects in our laboratory relate to each other. Importantly, it can also reveal disbalances or gaps in coverage of specific topics, as well as help identify novel relationships between sub-projects by placing them on axes (B) or even identify novel hypotheses suggested by symmetry.

(C) Relationships between the central nervous system (CNS) and regeneration, cancer, and embryogenesis. The connecting lines in black show typical projects (relationships) already being pursued by our laboratory, and the lack of a project in the space between CNS and embryogenesis suggests a straightforward hypothesis and project to examine the role of the brain in embryonic patterning.

It is important to note that mind maps can serve a function beyond explicit organization. In a good mapped structure, one can look for symmetries (revealing relationships that are otherwise not obvious) between the concepts involved. An obvious geometric pattern with a missing link or node can help one think about what could possibly go there, and often identifies new relationships or items that had not been considered ( Figure 3 C), in much the same way that gaps in the periodic table of the elements helped identify novel elements.

Organizing Information and Knowledge

The input and output of the feedback process between brainstorming and literature mining is information. Static information not only consists of the facts, images, documents, and other material needed to support a train of thought but also includes anything needed to support the various projects and activities. It should be accessible in three ways, as it will be active during all phases of the work cycle. Files should be arranged on your disk in a logical hierarchical structure appropriate to the work. Everything should also be searchable and indexed by Spotlight. Finally, some information should be stored as entries in a data management system, like Evernote or DevonThink, which have convenient client applications that make the data accessible from any device.

Notes in these systems should include useful lists and how-to's, including, for example:

  • • Names and addresses of experts for specific topics
  • • Emergency protocols for laboratory or animal habitats
  • • Common recipes/methods
  • • Lists and outlines of papers/grants on the docket
  • • Information on students, computers, courses, etc.
  • • Laboratory policies
  • • Materials and advice for students, new group members, etc.
  • • Lists of editors, and preferred media contacts
  • • Lists of Materials Transfer Agreements (MTAs), contract texts, info on IP
  • • Favorite questions for prospective laboratory members

Each note can have attachments, which include manuals, materials safety sheets, etc. DevonThink needs a little more setup but is more robust and also allows keeping the server on one's own machine (nothing gets uploaded to company servers, unlike with Evernote, which might be a factor for sensitive data). Scientific papers should be kept in a reference manager, whereas books (such as epub files and PDFs of books and manuscripts) can be stored in a Calibre library.

Email: A Distinct Kind of Information

A special case of static information is email, including especially informative and/or actionable emails from team members, external collaborators, reviewers, and funders. Because the influx of email is ever-increasing, it is important to (1) establish a good infrastructure for its management and (2) establish policies for responding to emails and using them to facilitate research. The first step is to ensure that one only sees useful emails, by training a good Bayesian spam filter such as SpamSieve. We suggest a triage system in which, at specific times of day (so that it does not interfere with other work), the Inbox is checked and each email is (1) forwarded to someone better suited to handling it, (2) responded quickly for urgent things that need a simple answer, or (3) started as a Draft email for those that require a thoughtful reply. Once a day or a couple of times per week, when circumstances permit focused thought, the Draft folder should be revisited and those emails answered. We suggest a “0 Inbox” policy whereby at the end of a day, the Inbox is basically empty, with everything either delegated, answered, or set to answer later.

We also suggest creating subfolders in the main account (keeping them on the mail server, not local to a computer, so that they can be searched and accessed from anywhere) as follows:

  • • Collaborators (emails stating what they are going to do or updating on recent status)
  • • Grants in play (emails from funding agencies confirming receipt)
  • • Papers in play (emails from journals confirming receipt)
  • • Waiting for information (emails from people for whom you are waiting for information)
  • • Waiting for miscellaneous (emails from people who you expect to do something)
  • • Waiting for reagents (emails from people confirming that they will be sending you a physical object)

Incoming emails belonging to those categories (for example, an email from an NIH program officer acknowledging a grant submission, a collaborator who emailed a plan of what they will do next, or someone who promised to answer a specific question) should be sorted from the Inbox to the relevant folder. Every couple of weeks (according to a calendar reminder), those folders should be checked, and those items that have since been dealt with can be saved to a Saved Messages folder archive, whereas those that remain can be Replied to as a reminder to prod the relevant person.

In addition, as most researchers now exchange a lot of information via email, the email trail preserves a record of relationships among colleagues and collaborators. It can be extremely useful, even years later, to be able to go back and see who said what to whom, what was the last conversation in a collaboration that stalled, who sent that special protocol or reagent and needs to be acknowledged, etc. It is imperative that you know where your email is being stored, by whom, and their policy on retention, storage space limits, search, backup, etc. Most university IT departments keep a mail server with limited storage space and will delete your old emails (even more so if you move institutions). One way to keep a permanent record with complete control is with an application called MailSteward Pro. This is a front-end client for a freely available MySQL server, which can run on any machine in your laboratory. It will import your mail and store unlimited quantities indefinitely. Unlike a mail server, this is a real database system and is not as susceptible to data corruption or loss as many other methods.

A suggested strategy is as follows. Keep every single email, sent and received. Every month (set a timed reminder), have MailSteward Pro import them into the MySQL database. Once a year, prune them from the mail server (or let IT do it on their own schedule). This allows rapid search (and then reply) from inside a mail client for anything that is less than one year old (most searches), but anything older can be found in the very versatile MailStewardPro Boolean search function. Over time, in addition to finding specific emails, this allows some informative data mining. Results of searches via MailStewardPro can be imported into Excel to, for example, identify the people with whom you most frequently communicate or make histograms of the frequency of specific keywords as a function of time throughout your career.

With ideas, mind maps, and the necessary information in hand, one can consider what aspects of the current operations plan can be changed to incorporate plans for new, impactful activity.

Organizing Tasks and Planning

A very useful strategy involves breaking down everything according to the timescales of decision-making, such as in the Getting Things Done (GTD) philosophy ( Figure 4 ) ( Allen, 2015 ). Activities range from immediate (daily) tasks to intermediate goals all the way to career-scale (or life-long) mission statements. As with mind maps, being explicit about these categories not only force one to think hard about important aspects of their work, but also facilitate the transmission of this information to others on the team. The different categories are to be revisited and revised at different rates, according to their position on the hierarchy. This enables you to make sure that effort and resources are being spent according to priorities.

An external file that holds a picture, illustration, etc.
Object name is gr4.jpg

Scales of Activity Planning

Activities should be assigned to a level of planning with a temporal scale, based on how often the goals of that level get re-evaluated. This ranges from core values, which can span an entire career or lifetime, all the way to tactics that guide day-to-day activities. Each level should be re-evaluated at a reasonable time frame to ensure that its goals are still consistent with the bigger picture of the level(s) above it and to help re-define the plans for the levels below it.

We also strongly recommend a yearly personal scientific retreat. This is not meant to be a vacation to “forget about work” but rather an opportunity for freedom from everyday minutiae to revisit, evaluate, and potentially revise future activity (priorities, action items) for the next few years. Every few years, take more time to re-map even higher levels on the pyramid hierarchy; consider what the group has been doing—do you like the intellectual space your group now occupies? Are your efforts having the kind of impact you realistically want to make? A formal diagram helps clarify the conceptual vision and identify gaps and opportunities. Once a correct level of activity has been identified, it is time to plan specific activities.

A very good tool for this purpose, which enables hierarchical storage of tasks and subtasks and their scheduling, is OmniFocus ( Figure 5 ). OmniFocus also enables inclusion of files (or links to files or links to Evernote notes of information) together with each Action. It additionally allows each action to be marked as “Done” once it is complete, providing not only a current action plan but a history of every past activity. Another interesting aspect is the fact that one can link individual actions with specific contexts: visualizing the database from the perspective of contexts enables efficient focus of attention on those tasks that are relevant in a specific scenario. OmniFocus allows setting reminders for specific actions and can be used for adding a time component to the activity.

An external file that holds a picture, illustration, etc.
Object name is gr5.jpg

Project Planning

This figure shows a screenshot of the OmniFocus application, illustrating the nested hierarchy of projects and sub-projects, arranged into larger groups.

The best way to manage time relative to activity (and to manage the people responsible for each activity) is to construct Gantt charts ( Figure 6 ), which can be used to plan out project timelines and help keep grant and contract deliverables on time. A critical feature is that it makes dependencies explicit, so that it is clear which items have to be solved/done before something else can be accomplished. Gantt charts are essential for complex, multi-person, and/or multi-step projects with strict deadlines (such as grant deliverables and progress reports). Software such as OmniPlanner can also be used to link resources (equipment, consumables, living material, etc.) with specific actions and timelines. Updating and evaluation of a Gantt chart for a specific project should take place on a time frame appropriate to the length of the next immediate phase; weekly or biweekly is typical.

An external file that holds a picture, illustration, etc.
Object name is gr6.jpg

Timeline Planning

This figure shows a screenshot of a typical Gantt chart, in OmniPlan software, illustrating the timelines of different project steps, their dependencies, and specific milestones (such as a due date for a site visit or grant submission). Note that Gantt software automatically moves the end date for each item if its subtasks' timing changes, enabling one to see a dynamically correct up-to-date temporal map of the project that adjusts for the real-world contingencies of research.

In addition to the comprehensive work plan in OmniFocus or similar, it is helpful to use a Calendar (which synchronizes to a server, such as Microsoft Office calendar with Exchange server). For yourself, make a task every day called “Monday tasks,” etc., which contains all the individual things to be accomplished (which do not warrant their own calendar reminder). First thing in the morning, one can take a look at the day's tasks to see what needs to be done. Whatever does not get done that day is to be copied onto another day's tasks. For each of the people on your team, make a timed reminder (weekly, for example, for those with whom you meet once a week) containing the immediate next steps for them to do and the next thing they are supposed to produce for your meeting. Have it with you when you meet, and give them a copy, updating the next occurrence as needed based on what was decided at the meeting to do next. This scheme makes it easy for you to remember precisely what needs to be covered in the discussion, serves as a record of the project and what you walked about with whom at any given day (which can be consulted years later, to reconstruct events if needed), and is useful to synchronize everyone on the same page (if the team member gets a copy of it after the meeting).

Writing: The Work Products

Writing, to disseminate results and analysis, is a central activity for scientists. One of the OmniFocus library's sections should contain lists of upcoming grants to write, primary papers that are being worked on, and reviews/hypothesis papers planned. Microsoft Word is the most popular tool for writing papers—its major advantage is compatibility with others, for collaborative manuscripts (its Track Changes feature is also very well implemented, enabling collaboration as a master document is passed from one co-author to another). But Scrivener should be seriously considered—it is an excellent tool that facilitates complex projects and documents because it enables WYSIWYG text editing in the context of a hierarchical structure, which allows you to simultaneously work on a detailed piece of text while seeing the whole outline of the project ( Figure 7 ).

An external file that holds a picture, illustration, etc.
Object name is gr7.jpg

Writing Complex Materials

This figure shows a screenshot from the Scrivener software. The panel on the left facilitates logical and hierarchical organization of a complex writing project (by showing where in the overall structure any given text would fit), while the editing pane on the right allows the user to focus on writing a specific subsection without having to scroll through (but still being able to see) the major categories within which it must fit.

It is critical to learn to use a reference manager—there are numerous ones, including, for example, Endnote, which will make it much easier to collaborate with others on papers with many citations. One specific tip to make collaboration easier is to ask all of the co-authors to set the reference manager to use PMID Accession Number in the temporary citations in the text instead of the arbitrary record number it uses by default. That way, a document can have its bibliography formatted by any of the co-authors even if they have completely different libraries. Although some prefer collaborative editing of a Google Doc file, we have found a “master document” system useful, in which a file is passed around among collaborators by email but only one can make (Tracked) edits at a time (i.e., one person has the master doc and everyone makes edits on top of that).

One task most scientists regularly undertake is writing reviews of a specific subfield (or Whitepapers). It is often difficult, when one has an assignment to write, to remember all of the important papers that were seen in the last few years that bear on the topic. One method to remedy this is to keep standing document files, one for each topic that one might plausibly want to cover and update them regularly. Whenever a good paper is found, immediately enter it into the reference manager (with good keywords) and put a sentence or two about its main point (with the citation) into the relevant document. Whenever you decide to write the review, you will already have a file with the necessary material that only remains to be organized, allowing you to focus on conceptual integration and not combing through literature.

The life cycle of research can be viewed through the lens of the tools used at different stages. First there are the conceptual ideas; many are interconnected, and a mind mapper is used to flesh out the structure of ideas, topics, and concepts; make it explicit; and share it within the team and with external collaborators. Then there is the knowledge—facts, data, documents, protocols, pieces of information that relate to the various concepts. Kept in a combination of Endnote (for papers), Evernote (for information fragments and lists), and file system files (for documents), everything is linked and cross-referenced to facilitate the projects. Activities are action items, based on the mind map, of what to do, who is doing what, and for which purpose/grant. OmniFocus stores the subtasks within tasks within goals for the PI and everyone in the laboratory. During meetings with team members, these lists and calendar entries are used to synchronize objectives with everyone and keep the activity optimized toward the next step goals. The product—discovery and synthesis—is embodied in publications via a word processor and reference manager. A calendar structure is used to manage the trajectory from idea to publication or grant.

The tools are currently good enough to enable individual components in this pipeline. Because new tools are continuously developed and improved, we recommend a yearly overview and analysis of how well the tools are working (e.g., which component of the management plan takes the most time or is the most difficult to make invisible relative to the actual thinking and writing), coupled to a web search for new software and updated versions of existing programs within each of the categories discussed earlier.

A major opportunity exists for software companies in the creation of integrated new tools that provide all the tools in a single integrated system. In future years, a single platform will surely appear that will enable the user to visualize the same research structure from the perspective of an idea mind map, a schedule, a list of action items, or a knowledge system to be queried. Subsequent development may even include Artificial Intelligence tools for knowledge mining, to help the researcher extract novel relationships among the content. These will also need to dovetail with ELN platforms, to enable a more seamless integration of project management with primary data. These may eventually become part of the suite of tools being developed for improving larger group dynamics (e.g., Microsoft Teams). One challenge in such endeavors is ensuring the compatibility of formats and management procedures across groups and collaborators, which can be mitigated by explicitly discussing choice of software and process, at the beginning of any serious collaboration.

Regardless of the specific software products used, a researcher needs to put systems in place for managing information, plans, schedules, and work products. These digital objects need to be maximally accessible and backed up, to optimize productivity. A core principle is to have these systems be so robust and lightweight as to serve as an “external brain” ( Menary, 2010 )—to maximize creativity and deep thought by making sure all the details are recorded and available when needed. Although the above discussion focused on the needs of a single researcher (perhaps running a team), future work will address the unique needs of collaborative projects with more lateral interactions by significant numbers of participants.

Acknowledgments

We thank Joshua Finkelstein for helpful comments on a draft of the manuscript. M.L. gratefully acknowledges support by an Allen Discovery Center award from the Paul G. Allen Frontiers Group (12171) and the Barton Family Foundation.

  • Allen D. Revised edition. Penguin Books; 2015. Getting Things Done: The Art of Stress-free Productivity. [ Google Scholar ]
  • Altshuller G.S. Gordon and Breach Science Publishers; 1984. Creativity as an Exact Science: The Theory of the Solution of Inventive Problems. [ Google Scholar ]
  • Menary R. MIT Press; 2010. The Extended Mind. [ Google Scholar ]

ORIGINAL RESEARCH article

The impact of improper waste disposal on human health and the environment: a case of umgungundlovu district municipality in kwazulu natal province of south africa provisionally accepted.

  • 1 University of the Free State, South Africa

The final, formatted version of the article will be published soon.

Waste generation has increased drastically worldwide in recent decades, with less than 20% of waste recycled each year, and onethird of all food produced wasted. With Sustainable Development Goal 12 advocating for changing how we consume, produce, and dispose of items, the cruciality of driving a more sustainable future lies in how we dispose of our waste. Improper waste disposal has always been a global concern. This study assessed the impacts of improper waste disposal on human health and the environment in the KwaZulu Natal Province of South Africa. The study applied a mixed-method approach to a semi-structured questionnaire.Using Statistical Package for Social Scientists (SPSS) and Microsoft Excel, the study applied a series of Chi-Squared tests of independence, regression, and descriptive statistics to the data. This study shed light on the complex dynamics surrounding the awareness and perception of risks associated with improper waste disposal. While a fair level of knowledge exists concerning the general risks, there are notable gaps in understanding specific human health risks related to improper waste disposal. The statistically insignificant relationships between demographic variables and critical questions regarding risk awareness suggest that demographic factors do not significantly influence awareness. This implies a need for targeted educational campaigns that transcend demographic boundaries to address the identified gaps in knowledge. Furthermore, the findings highlight a critical disparity in awareness regarding specific human health risks associated with improper waste disposal. This underscores the importance of enhancing public education and outreach programs to ensure a comprehensive understanding of the potential dangers to human health. The insignificant relationship between information availability and community concern about health impacts emphasizes the need for improved communication strategies. Efforts should focus on delivering accurate and accessible information to communities, fostering a sense of concern and responsibility regarding the health implications of improper waste disposal. The statistically significant relationship revealed by the regression model on the cost of clean-up for the municipality and waste generation necessitates re-evaluating waste management policies. The study municipality should explore sustainable waste management practices to mitigate the economic burden posed by increased waste generation.

Keywords: Nelisiwe Manqele: Conceptualization, Formal analysis, Funding acquisition, investigation, methodology, project administration, resources, Software

Received: 14 Feb 2024; Accepted: 13 May 2024.

Copyright: © 2024 Raphela, Manqele and Erasmus. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Tlou Raphela, University of the Free State, Bloemfontein, South Africa

People also looked at

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Professor Emeritus David Lanning, nuclear engineer and key contributor to the MIT Reactor, dies at 96

Black and white 1950s-era portrait of David Lanning wearing a suit and tie against a curtained background

Previous image Next image

David Lanning, MIT professor emeritus of nuclear science and engineering and a key contributor to the MIT Reactor project, passed away on April 26 at the Lahey Clinic in Burlington, Massachusetts, at the age of 96.

Born in Baker, Oregon, on March 30, 1928, Lanning graduated in 1951 from the University of Oregon with a BS in physics. While taking night classes in nuclear engineering, in lieu of an available degree program at the time, he started his career path working for General Electric in Richland, Washington. There he conducted critical-mass studies for handling and designing safe plutonium-bearing systems in separation plants at the Hanford Atomic Products Operation, making him a pioneer in nuclear fuel cycle management.

Lanning was then involved in the design, construction, and startup of the Physical Constants Testing Reactor (PCTR). As one of the few people qualified to operate the experimental reactor, he trained others to safely assess and handle its highly radioactive components.

Lanning supervised experiments at the PCTR to find the critical conditions of various lattices in a safe manner and conduct reactivity measurements to determine relative flux distributions. This primed him to be an indispensable asset to the MIT Reactor (MITR), which was being constructed on the opposite side of the country.

An early authority in nuclear engineering comes to MIT

Lanning came to MIT in 1957 to join what was being called the “MIT Reactor Project” after being recruited by the MITR’s designer and first director, Theos “Tommy” J. Thompson, to serve as one of the MITR’s first operating supervisors. With only a handful of people on the operations team at the time, Lanning also completed the emergency plan and startup procedures for the MITR, which achieved criticality on July 21, 1958.

In addition to becoming a faculty member in the Department of Nuclear Engineering in 1962, Lanning’s roles at the MITR went from reactor operations superintendent in the 1950s and early 1960s, to assistant director in 1962, and then acting director in 1963, when Thompson went on sabbatical.

In his faculty position, Lanning took responsibility for supervising lab subjects and research projects at the MITR, including the Heavy Water Lattice Project. This project supported the thesis work of more than 30 students doing experimental studies of sub-critical uranium fuel rods — including Lanning’s own thesis. He received his PhD in nuclear engineering from MIT in fall 1963.

Lanning decided to leave MIT in July 1965 and return to Hanford as the manager of their Reactor Neutronics Section. Despite not having plans to return to work for MIT, Lanning agreed when Thompson requested that he renew his MITR operator’s license shortly after leaving.

“Because of his thorough familiarity with our facility, it is anticipated that Dr. Lanning may be asked to return to MIT for temporary tours of duty at our reactor. It is always possible that there may be changes in the key personnel presently operating the MIT Reactor and the possible availability of Dr. Lanning to fill in, even temporarily, could be a very important factor in maintaining a high level of competence at the reactor during its continued operation,” Theos J. Thompson wrote in a letter to the Atomic Energy Commission on Sept. 21, 1965

One modification, many changes

This was an invaluable decision to continue the MITR’s success as a nuclear research facility. In 1969 Thompson accepted a two-year term appointment as a U.S. atomic energy commissioner and requested Lanning to return to MIT to take his place during his temporary absence. Thompson initiated feasibility studies for a new MITR core design and believed Lanning was the most capable person to continue the task of seeing the MITR redesign to fruition.

Lanning returned to MIT in July 1969 with a faculty appointment to take over the subjects Thompson was teaching, in addition to being co-director of the MITR with Lincoln Clark Jr. during the redesign. Tragically, Thompson was killed in a plane accident in November 1970, just one week after Lanning and his team submitted the application for the redesign’s construction permit.

Thompson’s death meant his responsibilities were now Lanning’s on a permanent basis. Lanning continued to completion the redesign of the MITR, known today as the MITR-II. The redesign increased the neutron flux level by a factor of three without changing its operating power — expanding the reactor’s research capabilities and refreshing its status as a premier research facility.

Construction and startup tests for the MITR-II were completed in 1975 and the MITR-II went critical on Aug. 14, 1975. Management of the MITR-II was transferred the following year from the Nuclear Engineering Department to its own interdepartmental research center, the Nuclear Reactor Laboratory , where Lanning continued to use the MITR-II for research.

Beyond the redesign

In 1970, Lanning combined two reactor design courses he inherited and introduced a new course in which he had students apply their knowledge and critique the design and economic considerations of a reactor presented by a student in a prior term. He taught these courses through the late 1990s, in addition to leading new courses with other faculty for industry professionals on reactor safety.

Co-author of over 70 papers , many on the forefront of nuclear engineering, Lanning’s research included studies to improve the efficiency, cycle management, and design of nuclear fuel, as well as making reactors safer and more economical to operate.

Lanning was part of an ongoing research project team that introduced and demonstrated digital control and automation in nuclear reactor control mechanisms before any of the sort were found in reactors in the United States. Their research improved the regulatory barriers preventing commercial plants from replacing aging analog reactor control components with digital ones. The project also demonstrated that reactor operations would be more reliable, safe, and economical by introducing automation in certain reactor control systems. This led to the MITR being one of the first reactors in the United States licensed to operate using digital technology to control reactor power.

Lanning became professor emeritus in May 1989 and retired in 1994, but continued his passion for teaching through the late 1990s as a thesis advisor and reader. His legacy lives on in the still-operational MITR-II, with his former students following in his footsteps by working on fuel studies for the next version of the MITR core. 

Lanning is predeceased by his wife of 60 years, Gloria Lanning, and is survived by his two children, a brother, and his many grandchildren .

Share this news article on:

Related links.

  • MIT Nuclear Reactor Laboratory
  • Department of Nuclear Science and Engineering

Related Topics

  • Nuclear science and engineering
  • Nuclear power and reactors

Related Articles

Portrait photo of Professor Emeritus Sow-Hsin Chen, dressed in a suit and tie and standing in front of a blackboard.

Professor Emeritus Sow-Hsin Chen, global expert in neutron science and devoted mentor, dies at 86

Photo of the late Michael Driscoll at a podium

Professor Emeritus Michael Driscoll, leader in nuclear engineering and beloved mentor, dies at 86

Sara Hauptman stands in the control room of MIT's Nuclear Reactor Lab.

Sara Hauptman: Learning to operate a nuclear reactor

Retirement dinner honors 155 community members.

Previous item Next item

More MIT News

27 circular grayscale headshots labeled with names on a blue background

2024 MIT Supply Chain Excellence Awards given to 35 undergraduates

Read full story →

Portrait photo of Reimi Hicks standing next to an indoor stairway abutting a wall of windows

Faces of MIT: Reimi Hicks

John Joannopoulos sits in his office full of stacks of paper, binders, and folders.

John Joannopoulos receives 2024-2025 Killian Award

Evan Lieberman, holding a microphone, speaks at a lectern bearing an open laptop

Q&A: Exploring ethnic dynamics and climate change in Africa

Bianca Champenois poses against a concrete wall with her bicycle

The MIT Bike Lab: A place for community, hands-on learning

A kitchen faucet runs, and it has a unique filter filled with bead-like objects. An inset shows that the beads are hydrogel capsules containing many bean-shaped yeast.

Repurposed beer yeast may offer a cost-effective way to remove lead from water

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

IMAGES

  1. (PDF) Innovative approaches in project management research

    project management research articles

  2. (PDF) 3 Summaries of Harvard Business Review Articles on Project Management

    project management research articles

  3. (PDF) New Insights into Project Management Research: A Natural Sciences

    project management research articles

  4. Exploring Research in Project Management: Nine Schools of Project

    project management research articles

  5. (PDF) Analyzing project management research: Perspectives from top

    project management research articles

  6. (PDF) Project-as-Practice: In Search of Project Management Research

    project management research articles

VIDEO

  1. Projects, Operations, Programs & Portfolio

  2. Project Scope definition & Management

  3. Do all managers need project management skills?

  4. Understanding Project Management: Targets & Monitoring

  5. Foundations of Project Management: X Path to becoming a project manager

  6. The State of Project Management Annual Report 2021

COMMENTS

  1. Project Management Journal: Sage Journals

    Project Management Journal. Project Management Journal® is the academic and research journal of the Project Management Institute and features state-of-the-art research, techniques, theories, and applications in project management. View full journal description.

  2. Project management

    Innovation Research. Ronald Klingebiel; ... This exercise introduces the basic tools of project management: the project timeline, the task list, and the Gantt chart. It is an exercise for the FIELD...

  3. Published Research

    Published Research. Since 1997, PMI has sponsored academic research projects. This knowledge enables stakeholders to make informed decisions and assess industry trends and challenges. It supports professional development, fosters a community that values continuous learning and innovation, and contributes to the overall advancement of knowledge ...

  4. International Journal of Project Management

    The International Journal of Project Management is the leading journal for the field of project management and organization studies. The International Journal of Project Management aims to publish leading edge innovative research that significantly advances the field of project management and project organizing. It publishes new knowledge on ...

  5. Project Management Journal

    NEW PMJ Practitioner Insights Series. PMJ Practitioner Insights is a series of short, empirically relevant articles that disseminate research findings to project practitioners and also benefit academics and students in the field of project management. The series features condensed versions of academic research papers in a language accessible to ...

  6. Impact of agile management on project performance: Evidence from ...

    Abbasi A, Jaafari A. Evolution of Project Management Research and Industry-focused Innovations. The Journal of Modern Project Management. 2018;6(1). View Article Google Scholar 30. Andriukaitienė R, Voronkova V, Kyvliuk O, Maksimenyuk M, Sakun A. Theoretical insights into expression of leadership competencies in the process of management. ...

  7. How agile project management can work for your research

    With this approach, real scientific insights are reached only in the final stage of the work. An agile PhD experimental protocol would involve the following. 1. Splitting the work. Slice a big ...

  8. What the Next Generation of Project Management Will Look Like

    Rachel Longhurst is a director within the Gartner IT Leaders and Tech Professionals research practice advising clients on strategic portfolio management, including project and portfolio management ...

  9. Project Management Trends and New Challenges 2020+

    Past studies of project management practices have focused on PM tools and techniques and recognized the importance of strategic assets. Globalization, digital transformations, and hyper ...

  10. Project management: Recent developments and research opportunities

    His main research interests are in tactical operations issues, especially project management, scheduling and pricing, public policy and sports management problems. He is the author of over 70 refereed publications, and has given over 260 academic presentations, including 88 invited presentations in 20 countries, 6 conference keynote ...

  11. How AI Will Transform Project Management

    How AI Will Transform Project Management. Summary. Only 35% of projects today are completed successfully. One reason for this disappointing rate is the low level of maturity of technologies ...

  12. Digitalization of project management: Opportunities in research and

    Project management researchers should also promote research in the application of technologies to techniques. An example is the usage of machine learning within project risk management (Mhlari, 2020). Research focus area 2 focuses on the project management processes and deliverables that are objects of digitalization.

  13. (PDF) Project management in research projects

    Project Management (PM) may be described as a set of. activities which enabl es successful implementation of a. project. In developm ent projects, the term "successful. implementation" usual ...

  14. A Systematic Literature Review of Project Management Tools and Their

    included in this research: • agile project management • the extent of project management software used to improve efficiency • quality management • project risk management tools such as PERT . 3 • Monte Carlo simulation • project portfolio management (PPM).

  15. Project leadership: A research agenda for a changing world

    Project leadership increasingly occurs in the context of ecological risks, whether from a viral pandemic or an anthropogenically changing climate. It requires adaptability to change, especially as projects grow in complexity, becoming seen as interventions into wider systems. In this paper, we take a socialized perspective, synthesising recent ...

  16. Artificial Intelligence Enabled Project Management: A Systematic ...

    In the Industry 5.0 era, companies are leveraging the potential of cutting-edge technologies such as artificial intelligence for more efficient and green human-centric production. In a similar approach, project management would benefit from artificial intelligence in order to achieve project goals by improving project performance, and consequently, reaching higher sustainable success. In this ...

  17. Full article: Large-Scale Agile Project Management in Safety-Critical

    These hybrid modes of project management include components from traditional and agile project management. Future research is needed into how safety-critical industrial companies can effectively balance the need for flexibility with the need for traditional upfront planning to meet regulatory requirements. Additional research can investigate ...

  18. 9 Project Management Trends to Know in 2024

    9 trends in project management in 2024. The work world is transforming faster than ever, and project management is evolving alongside it. Here are nine major trends that are set to shape the field this year: 1. The influence of generative AI will grow. Generative AI, such as and , is quickly transforming how professionals across every kind of ...

  19. Managing Ideas, People, and Projects: Organizational Tools and

    Introduction. Researchers, at all stages of their careers, are facing an ever-increasing deluge of information and deadlines. Additional difficulties arise when one is the Principal Investigator (PI) of those researchers: as group size and scope of inquiry increases, the challenges of managing people and projects and the interlocking timelines, finances, and information pertaining to those ...

  20. Using Bibliometrics and Grounded Theory in Investigating Factors ...

    Integrated project delivery (IPD) has gained significant attention as an effective alternative to traditional project delivery models. Profit distribution is a crucial aspect of IPD projects, influencing their overall success. This study aims to investigate the key factors impacting profit distribution to offer strategic guidance for project management practices. The study employs a ...

  21. The benefits of 'slow' development: towards a best practice for

    Defining 'slow' development: inspiration and application within digital humanities practice. For the purposes of technical development in the field of digital humanities, this article will both propose and use the following definition: 'slow' development is an approach to technical creation and project scalability that prioritizes people, reusability and sustainability, and ethical ...

  22. ORIGINAL RESEARCH article

    Waste generation has increased drastically worldwide in recent decades, with less than 20% of waste recycled each year, and onethird of all food produced wasted. With Sustainable Development Goal 12 advocating for changing how we consume, produce, and dispose of items, the cruciality of driving a more sustainable future lies in how we dispose of our waste. Improper waste disposal has always ...

  23. Professor Emeritus David Lanning, nuclear engineer and key contributor

    David Lanning, MIT professor emeritus of nuclear science and engineering and a key contributor to the MIT Reactor project, passed away on April 26 at the Lahey Clinic in Burlington, Massachusetts, at the age of 96. ... MIT has been a world leader in supply chain management education and research for more than five decades.