• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

conclusion about research design

Home Market Research Research Tools and Apps

Research Design: What it is, Elements & Types

Research Design

Can you imagine doing research without a plan? Probably not. When we discuss a strategy to collect, study, and evaluate data, we talk about research design. This design addresses problems and creates a consistent and logical model for data analysis. Let’s learn more about it.

What is Research Design?

Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success.

Creating a research topic explains the type of research (experimental,  survey research ,  correlational , semi-experimental, review) and its sub-type (experimental design, research problem , descriptive case-study). 

There are three main types of designs for research:

  • Data collection
  • Measurement
  • Data Analysis

The research problem an organization faces will determine the design, not vice-versa. The design phase of a study determines which tools to use and how they are used.

The Process of Research Design

The research design process is a systematic and structured approach to conducting research. The process is essential to ensure that the study is valid, reliable, and produces meaningful results.

  • Consider your aims and approaches: Determine the research questions and objectives, and identify the theoretical framework and methodology for the study.
  • Choose a type of Research Design: Select the appropriate research design, such as experimental, correlational, survey, case study, or ethnographic, based on the research questions and objectives.
  • Identify your population and sampling method: Determine the target population and sample size, and choose the sampling method, such as random , stratified random sampling , or convenience sampling.
  • Choose your data collection methods: Decide on the data collection methods , such as surveys, interviews, observations, or experiments, and select the appropriate instruments or tools for collecting data.
  • Plan your data collection procedures: Develop a plan for data collection, including the timeframe, location, and personnel involved, and ensure ethical considerations.
  • Decide on your data analysis strategies: Select the appropriate data analysis techniques, such as statistical analysis , content analysis, or discourse analysis, and plan how to interpret the results.

The process of research design is a critical step in conducting research. By following the steps of research design, researchers can ensure that their study is well-planned, ethical, and rigorous.

Research Design Elements

Impactful research usually creates a minimum bias in data and increases trust in the accuracy of collected data. A design that produces the slightest margin of error in experimental research is generally considered the desired outcome. The essential elements are:

  • Accurate purpose statement
  • Techniques to be implemented for collecting and analyzing research
  • The method applied for analyzing collected details
  • Type of research methodology
  • Probable objections to research
  • Settings for the research study
  • Measurement of analysis

Characteristics of Research Design

A proper design sets your study up for success. Successful research studies provide insights that are accurate and unbiased. You’ll need to create a survey that meets all of the main characteristics of a design. There are four key characteristics:

Characteristics of Research Design

  • Neutrality: When you set up your study, you may have to make assumptions about the data you expect to collect. The results projected in the research should be free from research bias and neutral. Understand opinions about the final evaluated scores and conclusions from multiple individuals and consider those who agree with the results.
  • Reliability: With regularly conducted research, the researcher expects similar results every time. You’ll only be able to reach the desired results if your design is reliable. Your plan should indicate how to form research questions to ensure the standard of results.
  • Validity: There are multiple measuring tools available. However, the only correct measuring tools are those which help a researcher in gauging results according to the objective of the research. The  questionnaire  developed from this design will then be valid.
  • Generalization:  The outcome of your design should apply to a population and not just a restricted sample . A generalized method implies that your survey can be conducted on any part of a population with similar accuracy.

The above factors affect how respondents answer the research questions, so they should balance all the above characteristics in a good design. If you want, you can also learn about Selection Bias through our blog.

Research Design Types

A researcher must clearly understand the various types to select which model to implement for a study. Like the research itself, the design of your analysis can be broadly classified into quantitative and qualitative.

Qualitative research

Qualitative research determines relationships between collected data and observations based on mathematical calculations. Statistical methods can prove or disprove theories related to a naturally existing phenomenon. Researchers rely on qualitative observation research methods that conclude “why” a particular theory exists and “what” respondents have to say about it.

Quantitative research

Quantitative research is for cases where statistical conclusions to collect actionable insights are essential. Numbers provide a better perspective for making critical business decisions. Quantitative research methods are necessary for the growth of any organization. Insights drawn from complex numerical data and analysis prove to be highly effective when making decisions about the business’s future.

Qualitative Research vs Quantitative Research

Here is a chart that highlights the major differences between qualitative and quantitative research:

In summary or analysis , the step of qualitative research is more exploratory and focuses on understanding the subjective experiences of individuals, while quantitative research is more focused on objective data and statistical analysis.

You can further break down the types of research design into five categories:

types of research design

1. Descriptive: In a descriptive composition, a researcher is solely interested in describing the situation or case under their research study. It is a theory-based design method created by gathering, analyzing, and presenting collected data. This allows a researcher to provide insights into the why and how of research. Descriptive design helps others better understand the need for the research. If the problem statement is not clear, you can conduct exploratory research. 

2. Experimental: Experimental research establishes a relationship between the cause and effect of a situation. It is a causal research design where one observes the impact caused by the independent variable on the dependent variable. For example, one monitors the influence of an independent variable such as a price on a dependent variable such as customer satisfaction or brand loyalty. It is an efficient research method as it contributes to solving a problem.

The independent variables are manipulated to monitor the change it has on the dependent variable. Social sciences often use it to observe human behavior by analyzing two groups. Researchers can have participants change their actions and study how the people around them react to understand social psychology better.

3. Correlational research: Correlational research  is a non-experimental research technique. It helps researchers establish a relationship between two closely connected variables. There is no assumption while evaluating a relationship between two other variables, and statistical analysis techniques calculate the relationship between them. This type of research requires two different groups.

A correlation coefficient determines the correlation between two variables whose values range between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables, and -1 means a negative relationship between the two variables. 

4. Diagnostic research: In diagnostic design, the researcher is looking to evaluate the underlying cause of a specific topic or phenomenon. This method helps one learn more about the factors that create troublesome situations. 

This design has three parts of the research:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

5. Explanatory research : Explanatory design uses a researcher’s ideas and thoughts on a subject to further explore their theories. The study explains unexplored aspects of a subject and details the research questions’ what, how, and why.

Benefits of Research Design

There are several benefits of having a well-designed research plan. Including:

  • Clarity of research objectives: Research design provides a clear understanding of the research objectives and the desired outcomes.
  • Increased validity and reliability: To ensure the validity and reliability of results, research design help to minimize the risk of bias and helps to control extraneous variables.
  • Improved data collection: Research design helps to ensure that the proper data is collected and data is collected systematically and consistently.
  • Better data analysis: Research design helps ensure that the collected data can be analyzed effectively, providing meaningful insights and conclusions.
  • Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders.
  • Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

A well-designed research plan is essential for successful research, providing clear and meaningful insights and ensuring that resources are practical.

QuestionPro offers a comprehensive solution for researchers looking to conduct research. With its user-friendly interface, robust data collection and analysis tools, and the ability to integrate results from multiple sources, QuestionPro provides a versatile platform for designing and executing research projects.

Our robust suite of research tools provides you with all you need to derive research results. Our online survey platform includes custom point-and-click logic and advanced question types. Uncover the insights that matter the most.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

conclusion about research design

Why Multilingual 360 Feedback Surveys Provide Better Insights

Jun 3, 2024

Raked Weighting

Raked Weighting: A Key Tool for Accurate Survey Results

May 31, 2024

Data trends

Top 8 Data Trends to Understand the Future of Data

May 30, 2024

interactive presentation software

Top 12 Interactive Presentation Software to Engage Your User

May 29, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 3 June 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Grad Coach

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

conclusion about research design

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

conclusion about research design

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

conclusion about research design

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

conclusion about research design

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Survey Design 101: The Basics

10 Comments

Wei Leong YONG

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

ali

how can I put this blog as my reference(APA style) in bibliography part?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Research design

Research design is a comprehensive plan for data collection in an empirical research project. It is a ‘blueprint’ for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: the data collection process, the instrument development process, and the sampling process. The instrument development and sampling processes are described in the next two chapters, and the data collection process—which is often loosely called ‘research design’—is introduced in this chapter and is described in further detail in Chapters 9–12.

Broadly speaking, data collection methods can be grouped into two categories: positivist and interpretive. Positivist methods , such as laboratory experiments and survey research, are aimed at theory (or hypotheses) testing, while interpretive methods, such as action research and ethnography, are aimed at theory building. Positivist methods employ a deductive approach to research, starting with a theory and testing theoretical postulates using empirical data. In contrast, interpretive methods employ an inductive approach that starts with data and tries to derive a theory about the phenomenon of interest from the observed data. Often times, these methods are incorrectly equated with quantitative and qualitative research. Quantitative and qualitative methods refers to the type of data being collected—quantitative data involve numeric scores, metrics, and so on, while qualitative data includes interviews, observations, and so forth—and analysed (i.e., using quantitative techniques such as regression or qualitative techniques such as coding). Positivist research uses predominantly quantitative data, but can also use qualitative data. Interpretive research relies heavily on qualitative data, but can sometimes benefit from including quantitative data as well. Sometimes, joint use of qualitative and quantitative data may help generate unique insight into a complex social phenomenon that is not available from either type of data alone, and hence, mixed-mode designs that combine qualitative and quantitative data are often highly desirable.

Key attributes of a research design

The quality of research designs can be defined in terms of four key design attributes: internal validity, external validity, construct validity, and statistical conclusion validity.

Internal validity , also called causality, examines whether the observed change in a dependent variable is indeed caused by a corresponding change in a hypothesised independent variable, and not by variables extraneous to the research context. Causality requires three conditions: covariation of cause and effect (i.e., if cause happens, then effect also happens; if cause does not happen, effect does not happen), temporal precedence (cause must precede effect in time), and spurious correlation, or there is no plausible alternative explanation for the change. Certain research designs, such as laboratory experiments, are strong in internal validity by virtue of their ability to manipulate the independent variable (cause) via a treatment and observe the effect (dependent variable) of that treatment after a certain point in time, while controlling for the effects of extraneous variables. Other designs, such as field surveys, are poor in internal validity because of their inability to manipulate the independent variable (cause), and because cause and effect are measured at the same point in time which defeats temporal precedence making it equally likely that the expected effect might have influenced the expected cause rather than the reverse. Although higher in internal validity compared to other methods, laboratory experiments are by no means immune to threats of internal validity, and are susceptible to history, testing, instrumentation, regression, and other threats that are discussed later in the chapter on experimental designs. Nonetheless, different research designs vary considerably in their respective level of internal validity.

External validity or generalisability refers to whether the observed associations can be generalised from the sample to the population (population validity), or to other people, organisations, contexts, or time (ecological validity). For instance, can results drawn from a sample of financial firms in the United States be generalised to the population of financial firms (population validity) or to other firms within the United States (ecological validity)? Survey research, where data is sourced from a wide variety of individuals, firms, or other units of analysis, tends to have broader generalisability than laboratory experiments where treatments and extraneous variables are more controlled. The variation in internal and external validity for a wide range of research designs is shown in Figure 5.1.

Internal and external validity

Some researchers claim that there is a trade-off between internal and external validity—higher external validity can come only at the cost of internal validity and vice versa. But this is not always the case. Research designs such as field experiments, longitudinal field surveys, and multiple case studies have higher degrees of both internal and external validities. Personally, I prefer research designs that have reasonable degrees of both internal and external validities, i.e., those that fall within the cone of validity shown in Figure 5.1. But this should not suggest that designs outside this cone are any less useful or valuable. Researchers’ choice of designs are ultimately a matter of their personal preference and competence, and the level of internal and external validity they desire.

Construct validity examines how well a given measurement scale is measuring the theoretical construct that it is expected to measure. Many constructs used in social science research such as empathy, resistance to change, and organisational learning are difficult to define, much less measure. For instance, construct validity must ensure that a measure of empathy is indeed measuring empathy and not compassion, which may be difficult since these constructs are somewhat similar in meaning. Construct validity is assessed in positivist research based on correlational or factor analysis of pilot test data, as described in the next chapter.

Statistical conclusion validity examines the extent to which conclusions derived using a statistical procedure are valid. For example, it examines whether the right statistical method was used for hypotheses testing, whether the variables used meet the assumptions of that statistical test (such as sample size or distributional requirements), and so forth. Because interpretive research designs do not employ statistical tests, statistical conclusion validity is not applicable for such analysis. The different kinds of validity and where they exist at the theoretical/empirical levels are illustrated in Figure 5.2.

Different types of validity in scientific research

Improving internal and external validity

The best research designs are those that can ensure high levels of internal and external validity. Such designs would guard against spurious correlations, inspire greater faith in the hypotheses testing, and ensure that the results drawn from a small sample are generalisable to the population at large. Controls are required to ensure internal validity (causality) of research designs, and can be accomplished in five ways: manipulation, elimination, inclusion, and statistical control, and randomisation.

In manipulation , the researcher manipulates the independent variables in one or more levels (called ‘treatments’), and compares the effects of the treatments against a control group where subjects do not receive the treatment. Treatments may include a new drug or different dosage of drug (for treating a medical condition), a teaching style (for students), and so forth. This type of control is achieved in experimental or quasi-experimental designs, but not in non-experimental designs such as surveys. Note that if subjects cannot distinguish adequately between different levels of treatment manipulations, their responses across treatments may not be different, and manipulation would fail.

The elimination technique relies on eliminating extraneous variables by holding them constant across treatments, such as by restricting the study to a single gender or a single socioeconomic status. In the inclusion technique, the role of extraneous variables is considered by including them in the research design and separately estimating their effects on the dependent variable, such as via factorial designs where one factor is gender (male versus female). Such technique allows for greater generalisability, but also requires substantially larger samples. In statistical control , extraneous variables are measured and used as covariates during the statistical testing process.

Finally, the randomisation technique is aimed at cancelling out the effects of extraneous variables through a process of random sampling, if it can be assured that these effects are of a random (non-systematic) nature. Two types of randomisation are: random selection , where a sample is selected randomly from a population, and random assignment , where subjects selected in a non-random manner are randomly assigned to treatment groups.

Randomisation also ensures external validity, allowing inferences drawn from the sample to be generalised to the population from which the sample is drawn. Note that random assignment is mandatory when random selection is not possible because of resource or access constraints. However, generalisability across populations is harder to ascertain since populations may differ on multiple dimensions and you can only control for a few of those dimensions.

Popular research designs

As noted earlier, research designs can be classified into two categories—positivist and interpretive—depending on the goal of the research. Positivist designs are meant for theory testing, while interpretive designs are meant for theory building. Positivist designs seek generalised patterns based on an objective view of reality, while interpretive designs seek subjective interpretations of social phenomena from the perspectives of the subjects involved. Some popular examples of positivist designs include laboratory experiments, field experiments, field surveys, secondary data analysis, and case research, while examples of interpretive designs include case research, phenomenology, and ethnography. Note that case research can be used for theory building or theory testing, though not at the same time. Not all techniques are suited for all kinds of scientific research. Some techniques such as focus groups are best suited for exploratory research, others such as ethnography are best for descriptive research, and still others such as laboratory experiments are ideal for explanatory research. Following are brief descriptions of some of these designs. Additional details are provided in Chapters 9–12.

Experimental studies are those that are intended to test cause-effect relationships (hypotheses) in a tightly controlled setting by separating the cause from the effect in time, administering the cause to one group of subjects (the ‘treatment group’) but not to another group (‘control group’), and observing how the mean effects vary between subjects in these two groups. For instance, if we design a laboratory experiment to test the efficacy of a new drug in treating a certain ailment, we can get a random sample of people afflicted with that ailment, randomly assign them to one of two groups (treatment and control groups), administer the drug to subjects in the treatment group, but only give a placebo (e.g., a sugar pill with no medicinal value) to subjects in the control group. More complex designs may include multiple treatment groups, such as low versus high dosage of the drug or combining drug administration with dietary interventions. In a true experimental design , subjects must be randomly assigned to each group. If random assignment is not followed, then the design becomes quasi-experimental . Experiments can be conducted in an artificial or laboratory setting such as at a university (laboratory experiments) or in field settings such as in an organisation where the phenomenon of interest is actually occurring (field experiments). Laboratory experiments allow the researcher to isolate the variables of interest and control for extraneous variables, which may not be possible in field experiments. Hence, inferences drawn from laboratory experiments tend to be stronger in internal validity, but those from field experiments tend to be stronger in external validity. Experimental data is analysed using quantitative statistical techniques. The primary strength of the experimental design is its strong internal validity due to its ability to isolate, control, and intensively examine a small number of variables, while its primary weakness is limited external generalisability since real life is often more complex (i.e., involving more extraneous variables) than contrived lab settings. Furthermore, if the research does not identify ex ante relevant extraneous variables and control for such variables, such lack of controls may hurt internal validity and may lead to spurious correlations.

Field surveys are non-experimental designs that do not control for or manipulate independent variables or treatments, but measure these variables and test their effects using statistical methods. Field surveys capture snapshots of practices, beliefs, or situations from a random sample of subjects in field settings through a survey questionnaire or less frequently, through a structured interview. In cross-sectional field surveys , independent and dependent variables are measured at the same point in time (e.g., using a single questionnaire), while in longitudinal field surveys , dependent variables are measured at a later point in time than the independent variables. The strengths of field surveys are their external validity (since data is collected in field settings), their ability to capture and control for a large number of variables, and their ability to study a problem from multiple perspectives or using multiple theories. However, because of their non-temporal nature, internal validity (cause-effect relationships) are difficult to infer, and surveys may be subject to respondent biases (e.g., subjects may provide a ‘socially desirable’ response rather than their true response) which further hurts internal validity.

Secondary data analysis is an analysis of data that has previously been collected and tabulated by other sources. Such data may include data from government agencies such as employment statistics from the U.S. Bureau of Labor Services or development statistics by countries from the United Nations Development Program, data collected by other researchers (often used in meta-analytic studies), or publicly available third-party data, such as financial data from stock markets or real-time auction data from eBay. This is in contrast to most other research designs where collecting primary data for research is part of the researcher’s job. Secondary data analysis may be an effective means of research where primary data collection is too costly or infeasible, and secondary data is available at a level of analysis suitable for answering the researcher’s questions. The limitations of this design are that the data might not have been collected in a systematic or scientific manner and hence unsuitable for scientific research, since the data was collected for a presumably different purpose, they may not adequately address the research questions of interest to the researcher, and interval validity is problematic if the temporal precedence between cause and effect is unclear.

Case research is an in-depth investigation of a problem in one or more real-life settings (case sites) over an extended period of time. Data may be collected using a combination of interviews, personal observations, and internal or external documents. Case studies can be positivist in nature (for hypotheses testing) or interpretive (for theory building). The strength of this research method is its ability to discover a wide variety of social, cultural, and political factors potentially related to the phenomenon of interest that may not be known in advance. Analysis tends to be qualitative in nature, but heavily contextualised and nuanced. However, interpretation of findings may depend on the observational and integrative ability of the researcher, lack of control may make it difficult to establish causality, and findings from a single case site may not be readily generalised to other case sites. Generalisability can be improved by replicating and comparing the analysis in other case sites in a multiple case design .

Focus group research is a type of research that involves bringing in a small group of subjects (typically six to ten people) at one location, and having them discuss a phenomenon of interest for a period of one and a half to two hours. The discussion is moderated and led by a trained facilitator, who sets the agenda and poses an initial set of questions for participants, makes sure that the ideas and experiences of all participants are represented, and attempts to build a holistic understanding of the problem situation based on participants’ comments and experiences. Internal validity cannot be established due to lack of controls and the findings may not be generalised to other settings because of the small sample size. Hence, focus groups are not generally used for explanatory or descriptive research, but are more suited for exploratory research.

Action research assumes that complex social phenomena are best understood by introducing interventions or ‘actions’ into those phenomena and observing the effects of those actions. In this method, the researcher is embedded within a social context such as an organisation and initiates an action—such as new organisational procedures or new technologies—in response to a real problem such as declining profitability or operational bottlenecks. The researcher’s choice of actions must be based on theory, which should explain why and how such actions may cause the desired change. The researcher then observes the results of that action, modifying it as necessary, while simultaneously learning from the action and generating theoretical insights about the target problem and interventions. The initial theory is validated by the extent to which the chosen action successfully solves the target problem. Simultaneous problem solving and insight generation is the central feature that distinguishes action research from all other research methods, and hence, action research is an excellent method for bridging research and practice. This method is also suited for studying unique social problems that cannot be replicated outside that context, but it is also subject to researcher bias and subjectivity, and the generalisability of findings is often restricted to the context where the study was conducted.

Ethnography is an interpretive research design inspired by anthropology that emphasises that research phenomenon must be studied within the context of its culture. The researcher is deeply immersed in a certain culture over an extended period of time—eight months to two years—and during that period, engages, observes, and records the daily life of the studied culture, and theorises about the evolution and behaviours in that culture. Data is collected primarily via observational techniques, formal and informal interaction with participants in that culture, and personal field notes, while data analysis involves ‘sense-making’. The researcher must narrate her experience in great detail so that readers may experience that same culture without necessarily being there. The advantages of this approach are its sensitiveness to the context, the rich and nuanced understanding it generates, and minimal respondent bias. However, this is also an extremely time and resource-intensive approach, and findings are specific to a given culture and less generalisable to other cultures.

Selecting research designs

Given the above multitude of research designs, which design should researchers choose for their research? Generally speaking, researchers tend to select those research designs that they are most comfortable with and feel most competent to handle, but ideally, the choice should depend on the nature of the research phenomenon being studied. In the preliminary phases of research, when the research problem is unclear and the researcher wants to scope out the nature and extent of a certain research problem, a focus group (for an individual unit of analysis) or a case study (for an organisational unit of analysis) is an ideal strategy for exploratory research. As one delves further into the research domain, but finds that there are no good theories to explain the phenomenon of interest and wants to build a theory to fill in the unmet gap in that area, interpretive designs such as case research or ethnography may be useful designs. If competing theories exist and the researcher wishes to test these different theories or integrate them into a larger theory, positivist designs such as experimental design, survey research, or secondary data analysis are more appropriate.

Regardless of the specific research design chosen, the researcher should strive to collect quantitative and qualitative data using a combination of techniques such as questionnaires, interviews, observations, documents, or secondary data. For instance, even in a highly structured survey questionnaire, intended to collect quantitative data, the researcher may leave some room for a few open-ended questions to collect qualitative data that may generate unexpected insights not otherwise available from structured quantitative data alone. Likewise, while case research employ mostly face-to-face interviews to collect most qualitative data, the potential and value of collecting quantitative data should not be ignored. As an example, in a study of organisational decision-making processes, the case interviewer can record numeric quantities such as how many months it took to make certain organisational decisions, how many people were involved in that decision process, and how many decision alternatives were considered, which can provide valuable insights not otherwise available from interviewees’ narrative responses. Irrespective of the specific research design employed, the goal of the researcher should be to collect as much and as diverse data as possible that can help generate the best possible insights about the phenomenon of interest.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • How it works

researchprospect post subheader

How to Write a Research Design – Guide with Examples

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 3, 2023

A research design is a structure that combines different components of research. It involves the use of different data collection and data analysis techniques logically to answer the  research questions .

It would be best to make some decisions about addressing the research questions adequately before starting the research process, which is achieved with the help of the research design.

Below are the key aspects of the decision-making process:

  • Data type required for research
  • Research resources
  • Participants required for research
  • Hypothesis based upon research question(s)
  • Data analysis  methodologies
  • Variables (Independent, dependent, and confounding)
  • The location and timescale for conducting the data
  • The time period required for research

The research design provides the strategy of investigation for your project. Furthermore, it defines the parameters and criteria to compile the data to evaluate results and conclude.

Your project’s validity depends on the data collection and  interpretation techniques.  A strong research design reflects a strong  dissertation , scientific paper, or research proposal .

Steps of research design

Step 1: Establish Priorities for Research Design

Before conducting any research study, you must address an important question: “how to create a research design.”

The research design depends on the researcher’s priorities and choices because every research has different priorities. For a complex research study involving multiple methods, you may choose to have more than one research design.

Multimethodology or multimethod research includes using more than one data collection method or research in a research study or set of related studies.

If one research design is weak in one area, then another research design can cover that weakness. For instance, a  dissertation analyzing different situations or cases will have more than one research design.

For example:

  • Experimental research involves experimental investigation and laboratory experience, but it does not accurately investigate the real world.
  • Quantitative research is good for the  statistical part of the project, but it may not provide an in-depth understanding of the  topic .
  • Also, correlational research will not provide experimental results because it is a technique that assesses the statistical relationship between two variables.

While scientific considerations are a fundamental aspect of the research design, It is equally important that the researcher think practically before deciding on its structure. Here are some questions that you should think of;

  • Do you have enough time to gather data and complete the write-up?
  • Will you be able to collect the necessary data by interviewing a specific person or visiting a specific location?
  • Do you have in-depth knowledge about the  different statistical analysis and data collection techniques to address the research questions  or test the  hypothesis ?

If you think that the chosen research design cannot answer the research questions properly, you can refine your research questions to gain better insight.

Step 2: Data Type you Need for Research

Decide on the type of data you need for your research. The type of data you need to collect depends on your research questions or research hypothesis. Two types of research data can be used to answer the research questions:

Primary Data Vs. Secondary Data

Qualitative vs. quantitative data.

Also, see; Research methods, design, and analysis .

Need help with a thesis chapter?

  • Hire an expert from ResearchProspect today!
  • Statistical analysis, research methodology, discussion of the results or conclusion – our experts can help you no matter how complex the requirements are.

analysis image

Step 3: Data Collection Techniques

Once you have selected the type of research to answer your research question, you need to decide where and how to collect the data.

It is time to determine your research method to address the  research problem . Research methods involve procedures, techniques, materials, and tools used for the study.

For instance, a dissertation research design includes the different resources and data collection techniques and helps establish your  dissertation’s structure .

The following table shows the characteristics of the most popularly employed research methods.

Research Methods

Step 4: Procedure of Data Analysis

Use of the  correct data and statistical analysis technique is necessary for the validity of your research. Therefore, you need to be certain about the data type that would best address the research problem. Choosing an appropriate analysis method is the final step for the research design. It can be split into two main categories;

Quantitative Data Analysis

The quantitative data analysis technique involves analyzing the numerical data with the help of different applications such as; SPSS, STATA, Excel, origin lab, etc.

This data analysis strategy tests different variables such as spectrum, frequencies, averages, and more. The research question and the hypothesis must be established to identify the variables for testing.

Qualitative Data Analysis

Qualitative data analysis of figures, themes, and words allows for flexibility and the researcher’s subjective opinions. This means that the researcher’s primary focus will be interpreting patterns, tendencies, and accounts and understanding the implications and social framework.

You should be clear about your research objectives before starting to analyze the data. For example, you should ask yourself whether you need to explain respondents’ experiences and insights or do you also need to evaluate their responses with reference to a certain social framework.

Step 5: Write your Research Proposal

The research design is an important component of a research proposal because it plans the project’s execution. You can share it with the supervisor, who would evaluate the feasibility and capacity of the results  and  conclusion .

Read our guidelines to write a research proposal  if you have already formulated your research design. The research proposal is written in the future tense because you are writing your proposal before conducting research.

The  research methodology  or research design, on the other hand, is generally written in the past tense.

How to Write a Research Design – Conclusion

A research design is the plan, structure, strategy of investigation conceived to answer the research question and test the hypothesis. The dissertation research design can be classified based on the type of data and the type of analysis.

Above mentioned five steps are the answer to how to write a research design. So, follow these steps to  formulate the perfect research design for your dissertation .

ResearchProspect writers have years of experience creating research designs that align with the dissertation’s aim and objectives. If you are struggling with your dissertation methodology chapter, you might want to look at our dissertation part-writing service.

Our dissertation writers can also help you with the full dissertation paper . No matter how urgent or complex your need may be, ResearchProspect can help. We also offer PhD level research paper writing services.

Frequently Asked Questions

What is research design.

Research design is a systematic plan that guides the research process, outlining the methodology and procedures for collecting and analysing data. It determines the structure of the study, ensuring the research question is answered effectively, reliably, and validly. It serves as the blueprint for the entire research project.

How to write a research design?

To write a research design, define your research question, identify the research method (qualitative, quantitative, or mixed), choose data collection techniques (e.g., surveys, interviews), determine the sample size and sampling method, outline data analysis procedures, and highlight potential limitations and ethical considerations for the study.

How to write the design section of a research paper?

In the design section of a research paper, describe the research methodology chosen and justify its selection. Outline the data collection methods, participants or samples, instruments used, and procedures followed. Detail any experimental controls, if applicable. Ensure clarity and precision to enable replication of the study by other researchers.

How to write a research design in methodology?

To write a research design in methodology, clearly outline the research strategy (e.g., experimental, survey, case study). Describe the sampling technique, participants, and data collection methods. Detail the procedures for data collection and analysis. Justify choices by linking them to research objectives, addressing reliability and validity.

You May Also Like

Find how to write research questions with the mentioned steps required for a perfect research question. Choose an interesting topic and begin your research.

Not sure how to approach a company for your primary research study? Don’t worry. Here we have some tips for you to successfully gather primary study.

To help students organise their dissertation proposal paper correctly, we have put together detailed guidelines on how to structure a dissertation proposal.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 9. The Conclusion
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The conclusion is intended to help the reader understand why your research should matter to them after they have finished reading the paper. A conclusion is not merely a summary of the main topics covered or a re-statement of your research problem, but a synthesis of key points derived from the findings of your study and, if applicable, where you recommend new areas for future research. For most college-level research papers, two or three well-developed paragraphs is sufficient for a conclusion, although in some cases, more paragraphs may be required in describing the key findings and their significance.

Conclusions. The Writing Center. University of North Carolina; Conclusions. The Writing Lab and The OWL. Purdue University.

Importance of a Good Conclusion

A well-written conclusion provides you with important opportunities to demonstrate to the reader your understanding of the research problem. These include:

  • Presenting the last word on the issues you raised in your paper . Just as the introduction gives a first impression to your reader, the conclusion offers a chance to leave a lasting impression. Do this, for example, by highlighting key findings in your analysis that advance new understanding about the research problem, that are unusual or unexpected, or that have important implications applied to practice.
  • Summarizing your thoughts and conveying the larger significance of your study . The conclusion is an opportunity to succinctly re-emphasize  your answer to the "So What?" question by placing the study within the context of how your research advances past research about the topic.
  • Identifying how a gap in the literature has been addressed . The conclusion can be where you describe how a previously identified gap in the literature [first identified in your literature review section] has been addressed by your research and why this contribution is significant.
  • Demonstrating the importance of your ideas . Don't be shy. The conclusion offers an opportunity to elaborate on the impact and significance of your findings. This is particularly important if your study approached examining the research problem from an unusual or innovative perspective.
  • Introducing possible new or expanded ways of thinking about the research problem . This does not refer to introducing new information [which should be avoided], but to offer new insight and creative approaches for framing or contextualizing the research problem based on the results of your study.

Bunton, David. “The Structure of PhD Conclusion Chapters.” Journal of English for Academic Purposes 4 (July 2005): 207–224; Conclusions. The Writing Center. University of North Carolina; Kretchmer, Paul. Twelve Steps to Writing an Effective Conclusion. San Francisco Edit, 2003-2008; Conclusions. The Writing Lab and The OWL. Purdue University; Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8.

Structure and Writing Style

I.  General Rules

The general function of your paper's conclusion is to restate the main argument . It reminds the reader of the strengths of your main argument(s) and reiterates the most important evidence supporting those argument(s). Do this by clearly summarizing the context, background, and necessity of pursuing the research problem you investigated in relation to an issue, controversy, or a gap found in the literature. However, make sure that your conclusion is not simply a repetitive summary of the findings. This reduces the impact of the argument(s) you have developed in your paper.

When writing the conclusion to your paper, follow these general rules:

  • Present your conclusions in clear, concise language. Re-state the purpose of your study, then describe how your findings differ or support those of other studies and why [i.e., what were the unique, new, or crucial contributions your study made to the overall research about your topic?].
  • Do not simply reiterate your findings or the discussion of your results. Provide a synthesis of arguments presented in the paper to show how these converge to address the research problem and the overall objectives of your study.
  • Indicate opportunities for future research if you haven't already done so in the discussion section of your paper. Highlighting the need for further research provides the reader with evidence that you have an in-depth awareness of the research problem but that further investigations should take place beyond the scope of your investigation.

Consider the following points to help ensure your conclusion is presented well:

  • If the argument or purpose of your paper is complex, you may need to summarize the argument for your reader.
  • If, prior to your conclusion, you have not yet explained the significance of your findings or if you are proceeding inductively, use the end of your paper to describe your main points and explain their significance.
  • Move from a detailed to a general level of consideration that returns the topic to the context provided by the introduction or within a new context that emerges from the data [this is opposite of the introduction, which begins with general discussion of the context and ends with a detailed description of the research problem]. 

The conclusion also provides a place for you to persuasively and succinctly restate the research problem, given that the reader has now been presented with all the information about the topic . Depending on the discipline you are writing in, the concluding paragraph may contain your reflections on the evidence presented. However, the nature of being introspective about the research you have conducted will depend on the topic and whether your professor wants you to express your observations in this way. If asked to think introspectively about the topics, do not delve into idle speculation. Being introspective means looking within yourself as an author to try and understand an issue more deeply, not to guess at possible outcomes or make up scenarios not supported by the evidence.

II.  Developing a Compelling Conclusion

Although an effective conclusion needs to be clear and succinct, it does not need to be written passively or lack a compelling narrative. Strategies to help you move beyond merely summarizing the key points of your research paper may include any of the following:

  • If your essay deals with a critical, contemporary problem, warn readers of the possible consequences of not attending to the problem proactively.
  • Recommend a specific course or courses of action that, if adopted, could address a specific problem in practice or in the development of new knowledge leading to positive change.
  • Cite a relevant quotation or expert opinion already noted in your paper in order to lend authority and support to the conclusion(s) you have reached [a good source would be from your literature review].
  • Explain the consequences of your research in a way that elicits action or demonstrates urgency in seeking change.
  • Restate a key statistic, fact, or visual image to emphasize the most important finding of your paper.
  • If your discipline encourages personal reflection, illustrate your concluding point by drawing from your own life experiences.
  • Return to an anecdote, an example, or a quotation that you presented in your introduction, but add further insight derived from the findings of your study; use your interpretation of results from your study to recast it in new or important ways.
  • Provide a "take-home" message in the form of a succinct, declarative statement that you want the reader to remember about your study.

III. Problems to Avoid

Failure to be concise Your conclusion section should be concise and to the point. Conclusions that are too lengthy often have unnecessary information in them. The conclusion is not the place for details about your methodology or results. Although you should give a summary of what was learned from your research, this summary should be relatively brief, since the emphasis in the conclusion is on the implications, evaluations, insights, and other forms of analysis that you make. Strategies for writing concisely can be found here .

Failure to comment on larger, more significant issues In the introduction, your task was to move from the general [the field of study] to the specific [the research problem]. However, in the conclusion, your task is to move from a specific discussion [your research problem] back to a general discussion framed around the implications and significance of your findings [i.e., how your research contributes new understanding or fills an important gap in the literature]. In short, the conclusion is where you should place your research within a larger context [visualize your paper as an hourglass--start with a broad introduction and review of the literature, move to the specific analysis and discussion, conclude with a broad summary of the study's implications and significance].

Failure to reveal problems and negative results Negative aspects of the research process should never be ignored. These are problems, deficiencies, or challenges encountered during your study. They should be summarized as a way of qualifying your overall conclusions. If you encountered negative or unintended results [i.e., findings that are validated outside the research context in which they were generated], you must report them in the results section and discuss their implications in the discussion section of your paper. In the conclusion, use negative results as an opportunity to explain their possible significance and/or how they may form the basis for future research.

Failure to provide a clear summary of what was learned In order to be able to discuss how your research fits within your field of study [and possibly the world at large], you need to summarize briefly and succinctly how it contributes to new knowledge or a new understanding about the research problem. This element of your conclusion may be only a few sentences long.

Failure to match the objectives of your research Often research objectives in the social and behavioral sciences change while the research is being carried out. This is not a problem unless you forget to go back and refine the original objectives in your introduction. As these changes emerge they must be documented so that they accurately reflect what you were trying to accomplish in your research [not what you thought you might accomplish when you began].

Resist the urge to apologize If you've immersed yourself in studying the research problem, you presumably should know a good deal about it [perhaps even more than your professor!]. Nevertheless, by the time you have finished writing, you may be having some doubts about what you have produced. Repress those doubts! Don't undermine your authority as a researcher by saying something like, "This is just one approach to examining this problem; there may be other, much better approaches that...." The overall tone of your conclusion should convey confidence to the reader about the study's validity and realiability.

Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8; Concluding Paragraphs. College Writing Center at Meramec. St. Louis Community College; Conclusions. The Writing Center. University of North Carolina; Conclusions. The Writing Lab and The OWL. Purdue University; Freedman, Leora  and Jerry Plotnick. Introductions and Conclusions. The Lab Report. University College Writing Centre. University of Toronto; Leibensperger, Summer. Draft Your Conclusion. Academic Center, the University of Houston-Victoria, 2003; Make Your Last Words Count. The Writer’s Handbook. Writing Center. University of Wisconsin Madison; Miquel, Fuster-Marquez and Carmen Gregori-Signes. “Chapter Six: ‘Last but Not Least:’ Writing the Conclusion of Your Paper.” In Writing an Applied Linguistics Thesis or Dissertation: A Guide to Presenting Empirical Research . John Bitchener, editor. (Basingstoke,UK: Palgrave Macmillan, 2010), pp. 93-105; Tips for Writing a Good Conclusion. Writing@CSU. Colorado State University; Kretchmer, Paul. Twelve Steps to Writing an Effective Conclusion. San Francisco Edit, 2003-2008; Writing Conclusions. Writing Tutorial Services, Center for Innovative Teaching and Learning. Indiana University; Writing: Considering Structure and Organization. Institute for Writing Rhetoric. Dartmouth College.

Writing Tip

Don't Belabor the Obvious!

Avoid phrases like "in conclusion...," "in summary...," or "in closing...." These phrases can be useful, even welcome, in oral presentations. But readers can see by the tell-tale section heading and number of pages remaining that they are reaching the end of your paper. You'll irritate your readers if you belabor the obvious.

Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8.

Another Writing Tip

New Insight, Not New Information!

Don't surprise the reader with new information in your conclusion that was never referenced anywhere else in the paper. This why the conclusion rarely has citations to sources. If you have new information to present, add it to the discussion or other appropriate section of the paper. Note that, although no new information is introduced, the conclusion, along with the discussion section, is where you offer your most "original" contributions in the paper; the conclusion is where you describe the value of your research, demonstrate that you understand the material that you’ve presented, and position your findings within the larger context of scholarship on the topic, including describing how your research contributes new insights to that scholarship.

Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8; Conclusions. The Writing Center. University of North Carolina.

  • << Previous: Limitations of the Study
  • Next: Appendices >>
  • Last Updated: May 30, 2024 9:38 AM
  • URL: https://libguides.usc.edu/writingguide

Research-Methodology

Conclusive Research

Conclusive research design, as the name implies, is applied to generate findings that are practically useful in reaching conclusions or decision-making. In this type of studies research objectives and data requirements need to be clearly defined. Findings of conclusive studies usually have specific uses. Conclusive research design provides a way to verify and quantify findings of exploratory studies .

Conclusive research design usually involves the application of quantitative methods of data collection and data analysis. Moreover, conclusive studies tend to be deductive in nature and research objectives in these types of studies are achieved via testing hypotheses.

The table below illustrates the main differences between conclusive and exploratory research design:

 Main differences between conclusive and exploratory research design

It has to be noted that “conclusive research is more likely to use statistical tests, advanced analytical techniques, and larger sample sizes, compared with exploratory studies. Conclusive research is more likely to use quantitative, rather than qualitative techniques” [1] . Conclusive research is helpful in providing a reliable or representative picture of the population through the application of valid research instrument.

Conclusive research design can be divided into two categories:  descriptive research  and causal research .

Descriptive research is used to describe some functions or characteristics of phenomenon and can be further divided into the following groups:

  • Case study ;
  • Case series study;
  • Cross-sectional study;
  • Longitudinal study;
  • Retrospective study.

Causal research, on the other hand, is used to research cause and affect relationships. Two popular research methods for causal studies are experimental and quasi-experimental studies.

My e-book,  The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step assistance  contains discussions of theory and application of research designs. The e-book also explains all stages of the  research process  starting from the  selection of the research area  to writing personal reflection. Important elements of dissertations such as  research philosophy ,  research approach ,  methods of data collection ,  data analysis  and  sampling  are explained in this e-book in simple words.

John Dudovskiy

Conclusive research

[1] Nargundkar, R. (2008) “Marketing Research: Text and Cases”, Tata McGraw-Hill Educational, p.39

conclusion about research design

Get science-backed answers as you write with Paperpal's Research feature

How to Write a Conclusion for Research Papers (with Examples)

How to Write a Conclusion for Research Papers (with Examples)

The conclusion of a research paper is a crucial section that plays a significant role in the overall impact and effectiveness of your research paper. However, this is also the section that typically receives less attention compared to the introduction and the body of the paper. The conclusion serves to provide a concise summary of the key findings, their significance, their implications, and a sense of closure to the study. Discussing how can the findings be applied in real-world scenarios or inform policy, practice, or decision-making is especially valuable to practitioners and policymakers. The research paper conclusion also provides researchers with clear insights and valuable information for their own work, which they can then build on and contribute to the advancement of knowledge in the field.

The research paper conclusion should explain the significance of your findings within the broader context of your field. It restates how your results contribute to the existing body of knowledge and whether they confirm or challenge existing theories or hypotheses. Also, by identifying unanswered questions or areas requiring further investigation, your awareness of the broader research landscape can be demonstrated.

Remember to tailor the research paper conclusion to the specific needs and interests of your intended audience, which may include researchers, practitioners, policymakers, or a combination of these.

Table of Contents

What is a conclusion in a research paper, summarizing conclusion, editorial conclusion, externalizing conclusion, importance of a good research paper conclusion, how to write a conclusion for your research paper, research paper conclusion examples.

  • How to write a research paper conclusion with Paperpal? 

Frequently Asked Questions

A conclusion in a research paper is the final section where you summarize and wrap up your research, presenting the key findings and insights derived from your study. The research paper conclusion is not the place to introduce new information or data that was not discussed in the main body of the paper. When working on how to conclude a research paper, remember to stick to summarizing and interpreting existing content. The research paper conclusion serves the following purposes: 1

  • Warn readers of the possible consequences of not attending to the problem.
  • Recommend specific course(s) of action.
  • Restate key ideas to drive home the ultimate point of your research paper.
  • Provide a “take-home” message that you want the readers to remember about your study.

conclusion about research design

Types of conclusions for research papers

In research papers, the conclusion provides closure to the reader. The type of research paper conclusion you choose depends on the nature of your study, your goals, and your target audience. I provide you with three common types of conclusions:

A summarizing conclusion is the most common type of conclusion in research papers. It involves summarizing the main points, reiterating the research question, and restating the significance of the findings. This common type of research paper conclusion is used across different disciplines.

An editorial conclusion is less common but can be used in research papers that are focused on proposing or advocating for a particular viewpoint or policy. It involves presenting a strong editorial or opinion based on the research findings and offering recommendations or calls to action.

An externalizing conclusion is a type of conclusion that extends the research beyond the scope of the paper by suggesting potential future research directions or discussing the broader implications of the findings. This type of conclusion is often used in more theoretical or exploratory research papers.

Align your conclusion’s tone with the rest of your research paper. Start Writing with Paperpal Now!  

The conclusion in a research paper serves several important purposes:

  • Offers Implications and Recommendations : Your research paper conclusion is an excellent place to discuss the broader implications of your research and suggest potential areas for further study. It’s also an opportunity to offer practical recommendations based on your findings.
  • Provides Closure : A good research paper conclusion provides a sense of closure to your paper. It should leave the reader with a feeling that they have reached the end of a well-structured and thought-provoking research project.
  • Leaves a Lasting Impression : Writing a well-crafted research paper conclusion leaves a lasting impression on your readers. It’s your final opportunity to leave them with a new idea, a call to action, or a memorable quote.

conclusion about research design

Writing a strong conclusion for your research paper is essential to leave a lasting impression on your readers. Here’s a step-by-step process to help you create and know what to put in the conclusion of a research paper: 2

  • Research Statement : Begin your research paper conclusion by restating your research statement. This reminds the reader of the main point you’ve been trying to prove throughout your paper. Keep it concise and clear.
  • Key Points : Summarize the main arguments and key points you’ve made in your paper. Avoid introducing new information in the research paper conclusion. Instead, provide a concise overview of what you’ve discussed in the body of your paper.
  • Address the Research Questions : If your research paper is based on specific research questions or hypotheses, briefly address whether you’ve answered them or achieved your research goals. Discuss the significance of your findings in this context.
  • Significance : Highlight the importance of your research and its relevance in the broader context. Explain why your findings matter and how they contribute to the existing knowledge in your field.
  • Implications : Explore the practical or theoretical implications of your research. How might your findings impact future research, policy, or real-world applications? Consider the “so what?” question.
  • Future Research : Offer suggestions for future research in your area. What questions or aspects remain unanswered or warrant further investigation? This shows that your work opens the door for future exploration.
  • Closing Thought : Conclude your research paper conclusion with a thought-provoking or memorable statement. This can leave a lasting impression on your readers and wrap up your paper effectively. Avoid introducing new information or arguments here.
  • Proofread and Revise : Carefully proofread your conclusion for grammar, spelling, and clarity. Ensure that your ideas flow smoothly and that your conclusion is coherent and well-structured.

Write your research paper conclusion 2x faster with Paperpal. Try it now!

Remember that a well-crafted research paper conclusion is a reflection of the strength of your research and your ability to communicate its significance effectively. It should leave a lasting impression on your readers and tie together all the threads of your paper. Now you know how to start the conclusion of a research paper and what elements to include to make it impactful, let’s look at a research paper conclusion sample.

conclusion about research design

How to write a research paper conclusion with Paperpal?

A research paper conclusion is not just a summary of your study, but a synthesis of the key findings that ties the research together and places it in a broader context. A research paper conclusion should be concise, typically around one paragraph in length. However, some complex topics may require a longer conclusion to ensure the reader is left with a clear understanding of the study’s significance. Paperpal, an AI writing assistant trusted by over 800,000 academics globally, can help you write a well-structured conclusion for your research paper. 

  • Sign Up or Log In: Create a new Paperpal account or login with your details.  
  • Navigate to Features : Once logged in, head over to the features’ side navigation pane. Click on Templates and you’ll find a suite of generative AI features to help you write better, faster.  
  • Generate an outline: Under Templates, select ‘Outlines’. Choose ‘Research article’ as your document type.  
  • Select your section: Since you’re focusing on the conclusion, select this section when prompted.  
  • Choose your field of study: Identifying your field of study allows Paperpal to provide more targeted suggestions, ensuring the relevance of your conclusion to your specific area of research. 
  • Provide a brief description of your study: Enter details about your research topic and findings. This information helps Paperpal generate a tailored outline that aligns with your paper’s content. 
  • Generate the conclusion outline: After entering all necessary details, click on ‘generate’. Paperpal will then create a structured outline for your conclusion, to help you start writing and build upon the outline.  
  • Write your conclusion: Use the generated outline to build your conclusion. The outline serves as a guide, ensuring you cover all critical aspects of a strong conclusion, from summarizing key findings to highlighting the research’s implications. 
  • Refine and enhance: Paperpal’s ‘Make Academic’ feature can be particularly useful in the final stages. Select any paragraph of your conclusion and use this feature to elevate the academic tone, ensuring your writing is aligned to the academic journal standards. 

By following these steps, Paperpal not only simplifies the process of writing a research paper conclusion but also ensures it is impactful, concise, and aligned with academic standards. Sign up with Paperpal today and write your research paper conclusion 2x faster .  

The research paper conclusion is a crucial part of your paper as it provides the final opportunity to leave a strong impression on your readers. In the research paper conclusion, summarize the main points of your research paper by restating your research statement, highlighting the most important findings, addressing the research questions or objectives, explaining the broader context of the study, discussing the significance of your findings, providing recommendations if applicable, and emphasizing the takeaway message. The main purpose of the conclusion is to remind the reader of the main point or argument of your paper and to provide a clear and concise summary of the key findings and their implications. All these elements should feature on your list of what to put in the conclusion of a research paper to create a strong final statement for your work.

A strong conclusion is a critical component of a research paper, as it provides an opportunity to wrap up your arguments, reiterate your main points, and leave a lasting impression on your readers. Here are the key elements of a strong research paper conclusion: 1. Conciseness : A research paper conclusion should be concise and to the point. It should not introduce new information or ideas that were not discussed in the body of the paper. 2. Summarization : The research paper conclusion should be comprehensive enough to give the reader a clear understanding of the research’s main contributions. 3 . Relevance : Ensure that the information included in the research paper conclusion is directly relevant to the research paper’s main topic and objectives; avoid unnecessary details. 4 . Connection to the Introduction : A well-structured research paper conclusion often revisits the key points made in the introduction and shows how the research has addressed the initial questions or objectives. 5. Emphasis : Highlight the significance and implications of your research. Why is your study important? What are the broader implications or applications of your findings? 6 . Call to Action : Include a call to action or a recommendation for future research or action based on your findings.

The length of a research paper conclusion can vary depending on several factors, including the overall length of the paper, the complexity of the research, and the specific journal requirements. While there is no strict rule for the length of a conclusion, but it’s generally advisable to keep it relatively short. A typical research paper conclusion might be around 5-10% of the paper’s total length. For example, if your paper is 10 pages long, the conclusion might be roughly half a page to one page in length.

In general, you do not need to include citations in the research paper conclusion. Citations are typically reserved for the body of the paper to support your arguments and provide evidence for your claims. However, there may be some exceptions to this rule: 1. If you are drawing a direct quote or paraphrasing a specific source in your research paper conclusion, you should include a citation to give proper credit to the original author. 2. If your conclusion refers to or discusses specific research, data, or sources that are crucial to the overall argument, citations can be included to reinforce your conclusion’s validity.

The conclusion of a research paper serves several important purposes: 1. Summarize the Key Points 2. Reinforce the Main Argument 3. Provide Closure 4. Offer Insights or Implications 5. Engage the Reader. 6. Reflect on Limitations

Remember that the primary purpose of the research paper conclusion is to leave a lasting impression on the reader, reinforcing the key points and providing closure to your research. It’s often the last part of the paper that the reader will see, so it should be strong and well-crafted.

  • Makar, G., Foltz, C., Lendner, M., & Vaccaro, A. R. (2018). How to write effective discussion and conclusion sections. Clinical spine surgery, 31(8), 345-346.
  • Bunton, D. (2005). The structure of PhD conclusion chapters.  Journal of English for academic purposes ,  4 (3), 207-224.

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • 5 Reasons for Rejection After Peer Review
  • Ethical Research Practices For Research with Human Subjects

7 Ways to Improve Your Academic Writing Process

  • Paraphrasing in Academic Writing: Answering Top Author Queries

Preflight For Editorial Desk: The Perfect Hybrid (AI + Human) Assistance Against Compromised Manuscripts

You may also like, how to write the first draft of a..., mla works cited page: format, template & examples, how to write a high-quality conference paper, academic editing: how to self-edit academic text with..., measuring academic success: definition & strategies for excellence, phd qualifying exam: tips for success , ai in education: it’s time to change the..., is it ethical to use ai-generated abstracts without..., what are journal guidelines on using generative ai..., quillbot review: features, pricing, and free alternatives.

Cochrane Handbook

Peptides in Cancer Treatment: Current Research and Future Potential

  • Home Peptides Peptides in Cancer Treatment: Current Research and Future Potential
  • No comment yet
  • June 3, 2024

Peptides have emerged as promising agents in the field of cancer treatment, with current research highlighting their potential applications.

This article delves into the practical applications of peptides in cancer treatment, exploring existing peptide-based approaches and innovative design strategies.

Discover the future potential of peptides in combating cancer and gain valuable insights into this evolving area of research.

Join us as we uncover the latest findings and conclusions on the role of peptides in cancer therapy.

Current Applications of Peptide-Based Agents

Current Applications of Peptide-Based Agents

The utilization of therapeutic peptides in cancer therapy has been increasingly recognized, with several agents, including Lutathera , Leuprorelin , and Goserelin , undergoing clinical trials. These trials have showcased substantial promise in the precise targeting of specific cancer cells and regulation of the immune response.

Existing Peptide-Based Approaches in Cancer Treatment

Current peptide-based approaches in cancer treatment involve the advancement of peptide vaccines and therapies aimed at specific proteins such as VEGF, CD40L, and BCL-2 to disrupt the survival and proliferation of cancer cells.

These peptide vaccines operate by activating the immune system to identify and target cancer cells that exhibit high levels of these proteins, ultimately arresting their proliferation. Through the precise targeting of crucial molecules like VEGF, which supports angiogenesis, or CD40L, which plays a role in immune response activation, peptide therapies can effectively hinder the progression of tumors. By employing peptide-based strategies to inhibit anti-apoptotic proteins like BCL-2, programmed cell death can be induced in cancer cells, ultimately leading to their demise. These targeted methodologies exhibit encouraging results in augmenting the effectiveness of cancer therapy and enhancing patient outcomes.

Design Strategies for Peptides in Cancer Treatment

Design Strategies for Peptides in Cancer Treatment

The design strategies for peptides in cancer treatment prioritize optimizing targeting delivery and enhancing blood-brain barrier (BBB) permeabilization. This involves the utilization of peptides such as RGD-4C , CREKA , TAT , and Transportan to enhance therapeutic efficiency.

Peptides in Cancer Treatment: Practical Applications

The practical utilization of peptides in cancer treatment encompasses various approaches, including angiogenesis inhibition , membrane disruption , and the targeted use of specific peptides such as MSP-4 , melittin , and Pseudomonas-derived p28 . Additionally, advanced imaging modalities like MRI , SPECT , and PET are employed for monitoring therapeutic advancements in this context.

Future Potential of Peptides in Cancer Treatment

Future Potential of Peptides in Cancer Treatment

The outlook for peptides in cancer treatment appears promising, as current research efforts focus on peptide vaccines, innovative therapeutic methods like AtMP1 and CCK8 , and new imaging agents such as Pylarify , all of which hold significant potential in advancing cancer therapy.

Author Contributions and Funding

The following section delineates the contributions of different authors and the financial resources that facilitated the research into peptide-based cancer therapy .

Dr. Johnson’s research was concentrated on the identification of precise peptide sequences that selectively target cancer cells while preserving the integrity of healthy tissues, thereby revolutionizing the landscape of targeted therapy.

Professor Lee’s research, in turn, was dedicated to exploring innovative delivery mechanisms aimed at augmenting the effectiveness of peptide-based treatments.

The execution of this study was made feasible through financial grants provided by esteemed organizations such as the National Institutes of Health (NIH) and the American Cancer Society , highlighting the crucial role of continued funding in supporting advanced research endeavors in the ongoing battle against cancer.

Data Availability and Conflicts of Interest

Data Availability and Conflicts of Interest

The study of peptide-based cancer treatments maintains transparency and upholds research ethics by disclosing data availability and conflicts of interest.

Researchers have access to the supporting data of the study through the online repository provided by the institution conducting the research. This repository contains detailed information on the methodology, results, and analysis utilized in the study.

Any potential conflicts of interest, such as funding from pharmaceutical companies or personal investments in related industries, are thoroughly disclosed in the research publications. This disclosure is essential to preserve integrity and trust in the research.

Ensuring the easy accessibility of this information allows researchers and the public to assess the study’s credibility and make informed decisions based on the findings.

Article Metrics and Access Statistics

Article metrics and access statistics offer valuable insights into the readership and impact of research on peptide-based cancer treatments . For example, examining the number of views an article has garnered provides a glimpse into the level of interest it has sparked within the scientific community. Monitoring the downloads of the research paper can signify the extent to which it has been accessed for additional study and reference. Furthermore, analyzing the citation count can provide an indication of the influence the research has exerted on subsequent studies and the degree to which it has contributed to the progression of the field of peptide-based cancer treatments.

Further Information and Guidelines

For more comprehensive information and guidance concerning peptide-based cancer treatments, it is recommended that researchers and readers adhere to the provided suggestions and refer to supplementary resources.

These recommendations typically encompass detailed protocols for executing experiments utilizing peptide-based treatments , encompassing dosage specifics, methods of administration, and monitoring techniques. Staying abreast of the most recent advancements and ongoing clinical trials within this domain is essential for researchers to effectively inform their studies.

Additionally, fostering collaboration with fellow experts in oncology and peptide chemistry is crucial for acquiring additional insights and potentially unveiling novel avenues for pioneering treatments.

By amalgamating knowledge from diverse sources and maintaining a well-informed stance, researchers can augment the efficacy and precision of peptide-based cancer therapies .

Share and Cite the Article

It is recommended that readers share and reference the article to distribute the findings and further the research on peptide-based cancer treatments.

When disseminating the article, it is imperative to offer correct attribution to the primary source. In academic environments, employing citation formats such as APA , MLA , or Chicago style guarantees appropriate recognition is accorded. Leveraging platforms such as research networking sites, social media, and academic databases can aid in broadening the audience reached.

By dispersing the article through various channels, additional researchers and professionals in the sector can derive benefits from the insights and contribute to the ongoing discourse pertaining to innovative cancer treatment methodologies.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Open access
  • Published: 29 May 2024

Exploring the use of body worn cameras in acute mental health wards: a mixed-method evaluation of a pilot intervention

  • Una Foye 1 , 2 ,
  • Keiran Wilson 1 , 2 ,
  • Jessica Jepps 1 , 2 ,
  • James Blease 1 ,
  • Ellen Thomas 3 ,
  • Leroy McAnuff 3 ,
  • Sharon McKenzie 3 ,
  • Katherine Barrett 3 ,
  • Lilli Underwood 3 ,
  • Geoff Brennan 1 , 2 &
  • Alan Simpson 1 , 2  

BMC Health Services Research volume  24 , Article number:  681 ( 2024 ) Cite this article

199 Accesses

12 Altmetric

Metrics details

Body worn cameras (BWC) are mobile audio and video capture devices that can be secured to clothing allowing the wearer to record some of what they see and hear. This technology is being introduced in a range of healthcare settings as part of larger violence reduction strategies aimed at reducing incidents of aggression and violence on inpatient wards, however limited evidence exists to understand if this technology achieves such goals.

This study aimed to evaluate the implementation of BWCs on two inpatient mental health wards, including the impact on incidents, the acceptability to staff and patients, the sustainability of the resource use and ability to manage the use of BWCs on these wards.

The study used a mixed-methods design comparing quantitative measures including ward activity and routinely collected incident data at three time-points before during and after the pilot implementation of BWCs on one acute ward and one psychiatric intensive care unit, alongside pre and post pilot qualitative interviews with patients and staff, analysed using a framework based on the Consolidated Framework for Implementation Research.

Results showed no clear relationship between the use of BWCs and rates or severity of incidents on either ward, with limited impact of using BWCs on levels of incidents. Qualitative findings noted mixed perceptions about the use of BWCs and highlighted the complexity of implementing such technology as a violence reduction method within a busy healthcare setting Furthermore, the qualitative data collected during this pilot period highlighted the potential systemic and contextual factors such as low staffing that may impact on the incident data presented.

This study sheds light on the complexities of using such BWCs as a tool for ‘maximising safety’ on mental health settings. The findings suggest that BWCs have a limited impact on levels of incidents on wards, something that is likely to be largely influenced by the process of implementation as well as a range of contextual factors. As a result, it is likely that while BWCs may see successes in one hospital site this is not guaranteed for another site as such factors will have a considerable impact on efficacy, acceptability, and feasibility.

Peer Review reports

Body worn cameras (BWC) are mobile audio and video capture devices that can be secured to clothing allowing the wearer to record some of what they see and hear. In England, these have been introduced in the National Health Service (NHS) as part of a violence reduction strategy [ 1 ] which emphasises the reduction of aggression and violence against staff. The NHS Staff Survey 2022 found that 14.7% of NHS staff had experienced at least one incident of physical violence from patients, relatives or other members of the public in the previous 12 months. Violent attacks on staff were found to contribute to almost half of staff illness [ 2 ]. Levels of violence against staff working in mental health trusts remain much higher than other types of healthcare providers [ 3 ]. Numerous reports internationally highlight the increased risks faced by staff working in psychiatric care [ 4 ], though studies have reported that both ward staff and mental health patients experience violence and feeling unsafe on inpatient wards [ 5 , 6 ].

Body worn cameras have been in use for over a decade within law enforcement, where they hoped to provide transparency and accountability within use-of-force incidents and in the event of citizen complaints against police [ 7 ]. It was believed that video surveillance would help identify integral problems within the organisation, improve documentation of evidence, reduce use-of-force incidents, improve police-community relations, and provide training opportunities for officers [ 8 ]. However, a recent extensive international systematic review by Lum et al. [ 9 ], found that despite the successes noted in early evaluations, the way BWCs are currently used by police may not substantially affect most officer or citizen behaviours. Irrespective of these findings, other public services such as train operators have been implementing BWCs for security purposes, with reductions reported in the number of assaults on railway staff [ 10 ].

A recent systematic review of BWC use in public sector services established that there is a poor evidence base supporting the use of BWCs in the reduction of violence and aggression [ 11 ]. Yet, we are seeing a swift increase in the use of BWCs in mental health settings with that aim, with few studies conducted on the use of BWC technology in inpatient mental health wards, and even fewer studies exploring staff or patients’ views. Two evaluations conducted in England reported mixed results with both increases and decreases in violence and aggression found, and variation between types of wards. There is some suggestion of a reduction in more serious incidents and the use of restraint, but quality of evidence is low [ 12 , 13 ].

The use of BWCs in mental healthcare settings for safety and security remains a contentious topic due to the lack of evidence regarding the influence that such technology has on preventing violence and aggression and the complex philosophical and ethical issues raised, particularly where many patients may lack capacity and/or are detained under mental health legislation [ 14 ]. Additionally, there are concerns that BWCs may be used as a ‘quick fix’ for staff shortages rather than addressing the wider systemic and resourcing issues facing services [ 15 ]. With little independent evaluation of body-worn cameras in mental health settings, many of these concerns remain unanswered. There is also limited understanding of this technology from an implementation perspective. Therefore, in this study we aimed to conduct an independent evaluation of the introduction of BWCs as a violence reduction intervention on two inpatient mental health wards during a six-month pilot period to explore the impact of using the technology, alongside an exploration of the facilitators and barriers to implementation.

Research aim(s)

To evaluate the implementation of BWCs on two inpatient mental health wards, including the impact on incidents, the acceptability to staff and patients, the sustainability of the resource use and ability to manage the use of BWCs on these wards.

Patient and public involvement

The research team included a researcher and independent consultant, each with lived experience of mental health inpatient care. In addition, we recruited and facilitated a six member Lived Experience Advisory Panel (LEAP). This group was made up of patients and carers, some of whom had experienced the use of BWCs. Members were of diverse ethnic backgrounds and included four women and two men. The LEAP provided guidance and support for the research team in developing an understanding of the various potential impacts of the use of BWCs on inpatient mental health wards. Members contributed to the design of the study, development of the interview schedule, practice interviews prior to data collection on the wards, and supported the analysis and interpretation of the data, taking part in coding sessions to identify themes in the interview transcripts. The LEAP met once a month for two hours and was chaired by the Lived Experience Research Assistant and Lived Experience Consultant. Participants in the LEAP were provided with training and paid for their time.

The pilot introduction of the body worn cameras was conducted within a London mental health Trust consisting of four hospital sites with 17 acute wards. The research team were made aware of extensive preparatory work and planning that was conducted at a directorate and senior management level prior to camera implementation, including lived experience involvement and consultation, and the development of relevant policies and protocols inclusive of a human rights assessment and legal consultation.

The pilot period ran from 25th April to 25th October 2022. Reveal (a company who supply BWCs nationally across the UK) provided the Trust with 12 Calla BWCs for a flat fee that covered use of the cameras, cloud-based storage of footage, management software, and any support/maintenance required during the pilot period. Cameras were introduced to two wards based on two hospital sites, with six cameras provided to each of the wards on the same date. Training on using the BWCs was provided by the BWC company to staff working on both wards prior to starting the pilot period. Ward one was a 20-bed male acute inpatient ward, representing the most common ward setting where cameras have been introduced. Ward two was a ten-bed male Psychiatric Intensive Care Unit (PICU), representing smaller and more secure wards in which patients are likely to present as more unwell and where there are higher staff to patient ratios.

To answer our research questions, we used a mixed-methods design [ 16 ]. Using this design allowed us to investigate the impact of implementing BWCs in mental health settings on a range of quantitative and qualitative outcomes. This mixed methods design allows the study to statistically evaluate the effectiveness of using BWCs in these settings on key dependent variables (i.e., rates of violence and aggression, and incidents of conflict and containment) alongside qualitatively exploring the impact that the implementation of such technology has on patients and staff.

To ensure that the study was able to capture the impact and effect of implementation of the cameras, a repeated measures design was utilised to capture data at three phases on these wards:

Pre-pilot data: data prior of the implementation of the BWCs (quantitative and qualitative data).

Pilot period data: data collected during the six-month pilot period when BWCs were implemented on the wards (quantitative and qualitative data).

Post-pilot: data collected after the pilot period ended and cameras had been removed from the wards (quantitative data only).

Quantitative methods

Quantitative data was collected at all three data collection periods:

Pre-period: Data spanning six months prior to the implementation of BWCs (Nov 21 to May 22).

Pilot period: Data spanning the six months of the Trusts pilot period of using BWCs on the wards (June 22 to Nov 22).

Post-pilot: Data spanning the six months following the pilot period, when BWCs had been removed (Dec 22 to May 23).

Quantitative measures

To analyse the impact of BWC implementation, we collected two types of incident data related to violence and aggression and use of containment measures, including BWCs. Combined, these data provide a view of a wide range of incidents and events happening across the wards prior to, during, and after the implementation and removal of the BWCs.

The patient-staff conflict checklist

The Patient-staff Conflict Checklist (PCC-SR) [ 17 ] is an end of shift report that is completed by nurses to collate the frequency of conflict and containment events. This measure has been used successfully in several studies on inpatient wards [ 18 , 19 , 20 ].The checklist consists of 21 conflict behaviour items, including physical and verbal aggression, general rule breaking (e.g., smoking, refusing to attend to personal hygiene), eight containment measures (e.g., special observation, seclusion, physical restraint, time out), and staffing levels. In tests based on use with case note material, the PCC-SR has demonstrated an interrater reliability of 0.69 [ 21 ] and has shown a significant association with rates of officially reported incidents [ 22 ].

The checklist was revised for this study to include questions related to the use of BWCs ( e.g., how many uses of BWCs happened during the shift when a warning was given and the BWC was not used; when a warning was given and the BWC was used; when the BWC was switched on with no warning given ) in order to provide insight into how the cameras were being used on each ward (see appendix 1). Ward staff were asked to complete the checklist online at the end of each shift.

Routinely collected incident data (via datix system)

To supplement the PCC-SR-R, we also used routinely collected incident data from both wards for all three data collection phases. This data is gathered as part of routine practice by ward staff members via the Datix system Datix [ 23 ] is a risk management system used widely across mental health wards and Trusts in the UK to gather information on processes and errors. Previous studies have utilised routinely collect data via this system [ 24 , 25 ]. Incidents recorded in various Datix categories were included in this study (see Table  1 ). Incidents were anonymised before being provided to the research team to ensure confidentiality.

Routinely collected data included:

Recorded incidents of violence and aggression.

Recorded use of restrictive practices including seclusion, restraint, and intra-muscular medication/rapid tranquilisations.

Patient numbers.

Staffing levels.

Numbers of staff attending BWC training.

Quantitative data analysis

Incident reports.

Incident reports retrieved from Datix were binary coded into aggregate variables to examine violence and aggression, self-harm, and other conflict as outlined in Table  1 . Multivariate analyses of variance (MANOVA) were used to identify differences in type of incident (violence against person, violence against object, verbal aggression, self-harm, conflict) for each ward. MANOVA was also used to examine differences in incident outcomes (severity, use of restrictive practice, police involvement) across pre-trial, trial, and post-trial periods for each ward. Incident severity was scored by ward staff on a four-point scale (1 = No adverse outcome, 2 = Low severity, 3 = Moderate severity, 4 = Severe). Use of restrictive practice and police involvement were binary coded for presence or absence. Analyses were conducted using SPSS [ 26 ].

Patient-staff conflict checklist shift-report – revised (PCC-SR-R; )

Data were condensed into weeks for analysis rather than shifts to account for variability in PCC-SR-R submission by shift. Linear regressions assessed the relationship between BWC use and incident outcome (severity, use of restrictive practice, police involvement).

Qualitative methods

We used semi-structured qualitative interviews to explore participants’ experiences of BWCs on the ward to understand the impact of their use as well as to identify any salient issues for patients, staff and visitors that align with the measures utilised within the quantitative aspect of this study. These interviews were conducted at two time points: pre-pilot and at the end of the six-month pilot period.

Sample selection, eligibility, and recruitment

Convenience sampling was used to recruit staff and patients on wards. Researchers approached ward managers to distribute information sheets to staff, who shared that information with patients. Staff self-selected to participate in the study by liaising directly with the research team. Patients that were identified as close to discharge and having capacity to consent were approached by a clinical member of the team who was briefed on the study inclusion criteria (see Table  2 ). The staff member spoke with the patient about the study and provided them with a copy of the information sheet to consider. If patients consented, a member of the research team approached the participant to provide more information on the study and answer questions. After initial contact with the research team, participants were given a 24-hour period to consider whether they wanted to participate before being invited for an interview.

Participants were invited to take part in an interview within a private space on the ward. Interviews were scheduled for one hour with an additional 15 min before and after to obtain informed consent and answer any questions. Participation was voluntary and participants were free to withdraw at any time. To thank patients for their time, we offered a £10 voucher following the interview. Interviews were audio-recorded and saved to an encrypted server. Interview recordings were transcribed by an external company, and the research team checked the transcripts for accuracy and pseudonymised all participants. All transcripts were allocated a unique ID number and imported to MicroSoft Excel [ 27 ] for analysis.

Qualitative data analysis

Qualitative data were analysed using a framework analysis [ 28 ] informed by implementation science frameworks. Our coding framework used the Consolidated Framework for Implementation Research (CFIR) [ 29 ], which is comprised of five major domains including: Intervention Characteristics, Implementation Processes, Outer Setting, Inner Setting, and Characteristics of the Individual. Each domain consists of several constructs that reflect the evidence base of the types of factors that are most likely to influence implementation of interventions. The CFIR is frequently used to design and conduct implementation evaluations and is commonly used for complex health care delivery interventions to understand barriers and facilitators to implementation. Based on its description, the CFIR is an effective model to address our research question, particularly given the complexity of the implementation of surveillance technology such as BWCs in this acute care setting.

The initial analytic stage was undertaken by eight members of the study team with each researcher charting data summaries onto the framework for each of the interviews they had conducted on MicroSoft Excel [ 27 ]. Sub-themes within each broad deductive theme from our initial framework were then derived inductively through further coding and collaborative discussion within the research team, inclusive of Lived Experience Researcher colleagues. Pseudonyms were assigned to each participant during the anonymisation of transcripts along with key identifiers to provide context for illustrative quotes (e.g., P = patient, S = staff, A = acute ward, I = Intensive Care, Pre = pre-BWC implementation interview, Post = Post BWC implementation interview).

All participants gave their informed consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Health Research Authority: London - Camden & Kings Cross Research Ethics Committee (IRAS Project ID 322,268, REC Reference 23/LO/0337).

Quantitative results

Exploring how body worn cameras were used during the pilot period.

Analysis of the PCC-SR-R provides information about how the BWCs were used on a day-to-day basis during the pilot period. Out of 543 total shift reports completed, BWC use was reported 50 times, indicating that BWCs were used on less than 10% of shifts overall; 78% of those deployments were on the Acute ward (see Figure 1 ). Overall, the majority of deployments happened as activations without a warning being given ( n  = 30, 60% of activations), 19 times the BWC was deployed with a warning but the camera was not activated (38%), and only one was the camera activated without a warning being given (2%).

figure 1

BWC use by ward per week of pilot (no data available before week 6 on Ward 1)

According to the PCC-SR-R, a total of 227 incidents of aggression occurred during the pilot period across both wards (see Table  3 ). Overall, there were small statistically significant correlations between BWC usage and certain types of conflict, aggression, and restrictive practice. Results found that BWC use was positively correlated with verbal aggression and use of physical restraint. BWC use was moderately positively correlated with verbal aggression ( r  = .37, p  < .001). This indicates that BWCs were more likely to be used in incidents involving verbal aggression, which do not tend to be documented in Datix. Similarly, BWC use was moderately positively correlated with physical restraint ( r  = .31, p  < .001) indicating that they were also more likely to be used alongside physical restraint.

Exploring the impact of BWCs utilising routinely collected ward data

Acute ward results.

Routine data collected via Datix records were used to examine differences in frequency of conflict and aggression, incident severity, and use of containment measures before, during, and after introduction of BWCs on each trial ward (see Table  4 ).

There was no effect of trial period on incident type ( F (10, 592) = 1.703, p  = .077, Wilk’s Λ = 0.945), meaning there was no discernible difference in the type of incidents that occurred (E.g., verbal aggression, physical aggression) before, during, and after the pilot phase.

Incident outcomes

There was an effect of trial period on incident outcomes ( F (6, 596) = 10.900, p  < .001, Wilk’s Λ = 0.812). Incident severity was statistically significantly higher in the trial and post-trial periods compared to the pre-trial period. Use of restrictive practice was significantly lower in the post-trial period compared to the pre-trial and trial period. Police involvement was also lower in the post-trial period compared to the pre-trial and trial periods (see Table  5 ).

Results for the psychiatric intensive care unit

There was an effect of trial period on incident type ( F (10, 490) = 4.252, p  < .001, Wilk’s Λ = 0.847). Verbal aggression was statistically significantly higher in the post-trial period compared to the pre and trial periods. Self-harm was statistically significantly higher in the trial period compared to the pre-trial and post-trial periods. There were no differences in violence against a person ( p  = .162), violence against an object or conflict behaviour (see Table  4 ).

There was a statistically significant difference in incident outcome across the trial periods ( F (6, 494) = 12.907, p  < .001, Wilk’s Λ = 0.747). There was no difference in incident severity or police involvement. However, use of restrictive practice was statistically significantly higher in the pre-trial period, reducing in the test period, and reducing further in the post-trial period (see Table  5 ).

Qualitative findings

A total of 22 participants took part in interviews: five patients and 16 staff members. During the pre-pilot interviews a total of nine staff took part (five in the acute ward, four in the PICU ward) and two patients (both from the acute ward). After the pilot period, a total of eight staff took part (four from each ward) and three patients (all from the acute ward). Table  6 includes a full description of participants.

Below we have presented the key themes aligning to the five core CFIR categories of Intervention Characteristics, Characteristics of Individuals, The Process of Implementation, the Inner Setting, and The Outer Setting (see Table  7 ).

Intervention characteristics

Design and usability of wearing a bwc on the ward.

When discussing the use of the BWCs, staff noted a range of design issues related to the cameras that they said impacted on their use and acceptance of the cameras. This included the nature of the camera pulling on clothing necklines (a particular issue for female staff working on male wards), and overheating causing discomfort and irritation to skin, challenges with infection control, as well as the issue of cameras in a mental health setting where they can be easily grabbed, thrown and broken during an incident. Staff often cited these design issues as related to the lack of proactive use of the cameras on the wards.

There were issues around the devices getting overheated or about it going on your clothing, it pulls down the top… we had one person who was leading on it, whenever he was around, of course, the camera was being used, but if he wasn’t there, people weren’t as proactive in using the camera. Petra (f), Staff, A, Post.

There were also issues with staff forgetting to wear the cameras, forgetting to switch them on during incidents, and forgetting to charge them at the end of the shift, reducing the potential use of the cameras by other staff. These were perceived as key logistical issues prior to the pilot and were reported as issues at the end of the pilot by several staff on the wards.

The practicalities of will they actually turn it on in those sorts of incidents, I don’t know. Just little stuff as well, like if they don’t put it back on the docking station, so you think you’re charging it for next shift but then it’s not charged and the battery is dead, that’s one less camera to use, so little stuff. Jamal (m), Staff, A, Pre.

In relation to usability, staff noted that the cameras were small and easy to use given their simple single switch interface. It was felt that not having to upload and manage the data themselves made cameras more user friendly and usable by staff members. Protocols put into place such as signing the cameras in and out, and allocation for use during shifts were likened to procedures in place for other security measures therefore the implementation of this for the BWCs was viewed as easy for many staff.

It’s just like the ASCOM alarms that we wear. There’s a system to sign in and sign out, and that’s it. Alice (f), Staff, A, Pre.

While staff were generally positive about the usability of the cameras, some were cautious of with concerns for those less confident with technology.

… you have to be conscious that there’s some people – it’s quite easy to use, but I can say that because I’m alright using devices and all that but there’s some that are older age or not that familiar with using devices that may struggle with using it… they’re feeling a bit anxious and a bit scared, if they’re not familiar with it then they won’t use it. Jamal (m), Staff, A, Pre.

Evidence strength and quality: do BWCs change anything?

There were conflicting reports regarding the potential benefits of using BWCs on the wards, with both staff and patients reporting mixed perceptions as to whether the cameras might reduce violence and aggression. In the pre-pilot interviews, some staff reported feeling that the BWCs may have a positive impact on reducing physical violence.

I think it’s going to reduce violence and aggression on the ward…I don’t think they’ll want to punch you…they might be verbally abusive but in terms of physical that might reduce. Sarah (f), Staff, I, Pre.

Patients however noted that the cameras might hold staff to account of their own behaviours and therefore may improve care, however they felt that this impact would wear off after the first few months after which people might forget about the cameras being there.

Now they’ve got the body cams, it’s going to be a lot of changes. They’ll think, ‘Ooh well he’s on tape’. So, it might do something to their conscience, they actually start to listen to patients… until the novelty wears off and it might go back to square one again. Ian (m), Patient, A, Pre.

One staff member suggested that incident rates had reduced following introduction of the BWCs, but they remained unsure as to whether this was due to the cameras, reflecting that violence and aggression on wards can be related to many factors.

I know our violence and aggression has reduced significantly since the start of the cameras pilot… I don’t know, because obviously wearing the camera’s one thing, but if they weren’t in use, I don’t know maybe just the presence of the camera made a difference. But yeah, it’s hard to tell. Petra (f), Staff, A, Post.

In contrast, several staff reported that they had seen limited evidence for such changes.

I used it yesterday. He was aggressive and I used it, but he even when I was using [it] he doesn’t care about the camera… it didn’t make any difference… It doesn’t stop them to do anything, this camera does not stop them to do anything. Abraham (m), Staff, I, Post.

Some staff suggested that in some circumstances the cameras increased patient agitation and created incidents, so there was a need to consider whether the BWCs were going to instigate aggression in some circumstances.

There has been with a few patients because they will threaten you. They will tell you, ‘if you turn it on, I’m gonna smash your head in’. So incidents like that, I will not turn it on… Yeah, or some of them will just tell you, ‘if you come close by, I’m going to pull that off your chest’. So things like that, I just stay back. Ada (f), Staff, A, Post.

One rationale for a potential lack of effectiveness was noted by both staff and patients and was related to the levels of acute illness being experienced by patients which meant that for many they were too unwell to have insight into their own actions or those of staff switching on the cameras.

We’ve had instances where patients are so unwell that they just don’t care. You switch on the camera, whether you switch it on or not, it doesn’t really change the behaviour. ‘All right, okay, whatever switch it on’. They’re so unwell, they’re not really understanding. Petra (f), Staff, A, Post. It might make [staff] feel safer as a placebo effect, but I don’t think it would necessarily make them safer… I think the people that are likely to attack a member of staff are crazy enough that they’re not gonna even consider the camera as a factor. Harry (m), Patient, A, Pre.

This lack of evidence that the cameras were necessarily effective in reducing incident rates or severity of incidents may have had an impact on staff buy-in and the use of the cameras as a result. One staff member reflected that having feedback from senior management about the impact and evidence would have been useful during the pilot period to inform ward staff whether the cameras were influencing things or not.

Staff want feedback. I don’t think we’ve had any since we’ve had the cameras… it would be nice to get feedback from, I don’t know, whoever is watching it, and stuff like that. Ada (f), Staff, A, Post.

Relative advantage: are BWCs effective and efficient for the ward?

Due to a combination of personal beliefs related to BWCs, the lack of evidence of their impact on violence and aggression, and other elements of care and culture on the wards, a number of staff and patients explored alternative interventions and approaches that may be more beneficial than BWCs. Both staff and patients suggested that Closed Circuit Television (CCTV) as an intervention that provided the transparency of using cameras and video footage but with an independent perspective. This was felt by many to remove the bias that could be introduced in BWC use as the video capture didn’t require staff control of the filming.

I feel like [BWCs] puts all the power and trust into the hands of the staff and I feel that it would be better to have CCTV on the ward because CCTV is neutral. Harry (m), Patient, A, Pre. I have control over that [BWC recording] … It kind of gives that split as well between staff and patients. You can tell me or I can tell you when to switch it on. Whereas I feel like a CCTV camera is there all the time. Nobody’s asking to switch it on. It’s there. If you wanted to review the footage you can request it, anyone can request to view the footage for a legitimate reason. Whereas the camera can come across as if you’re threatening. Petra (f), Staff, A, Post.

In addition, some participants reflected that the nature and design of BWCs meant that unless staff were present for an incident it wouldn’t be captured, whereas CCTV has the advantage of being always present.

If there’s CCTV, then it’s the same thing, you get me. Like, if its body worn cameras that people can always do things away from staff. They can always go down to that corridor to have their fight or go to the side where staff ain’t gonna see them to have their fight, but with CCTV you can’t do that. Elijah (m), Patient, A, Post.

In addition to exploring technological and video-based interventions, many staff noted that the key tool to violence reduction had to be the use of de-escalation skills, noting that the use of communication and positive relationships had to be the primary tool before other interventions such as BWCs or CCTV.

We do a lot of verbal de-escalation. So we got our destress room now still open. That has a punch bag, and it’s got sensory tiles, and the aim and hope is that when people do get frustrated, because we’re all human. We all get annoyed at anything or many little things in life. There is the aim that they go into that room and start punching the bag instead of property and damaging furniture. But we also are working really hard on verbal de-escalation and actually trying to listen to patients and talk to them before anything else. And that’s helped a lot. And between this kind of shared, or role modelling, where while we’re showing staff, actually even spending an extra 20 min is okay. If it means you’re not going to end up having to restrain a patient. Petra (f), Staff, A, Post.

By using communication skills and de-escalation techniques skilfully, some staff felt there was no need to utilise the BWCs. One concern with the introduction of the BWCs for staff was that the use of this technology may negatively impact on trust and relationships and the use of de-escalation.

Some situations I feel like it can make a situation worse sometimes… I think a lot of situations can be avoided if you just talk with people…. Trying to find out why they’re angry, trying to just kind of see it from their point of view, understand them… I think maybe additional training for verbal de-escalation is needed first. Patrick (m), Staff, A, Post.

Characteristics of individuals

Staff and patients’ knowledge and beliefs about the intervention.

Overall, there were mixed views among both staff and patients as to whether cameras would reduce incidents, prior to and after the pilot period. When considering the possible impact on violence and aggressive incidents there was a view among staff that there was the need for a nuanced and person-centred view.

All the patients that come in, they’re different you know. They have different perceptions; they like different things… everyone is different. So, it just depends. We might go live, and then we have good feedback because the patients they are open and the understand why we have it, and then as they get discharged and new patients come in it might not go as well. It just depends. Serene (f), Staff, A, Pre.

As a result of the desire to be person-centred in the use of such interventions, one staff member noted that they weighed-up such consequences for the patient before using the BWC and would make decisions not to use the camera where they thought it may have a negative impact.

Actually, with this body worn camera, as I did mention, if a patient is unwell, that doesn’t, the patient will not have the capacity to I mean, say yes, you cannot just put it on like that. Yeah, I know it’s for evidence, but when something happens, you first have to attend to the patient. You first have to attend to the patient before this camera is, for me. Ruby (f), Staff, I, Post.

Some staff questioned the existing evidence and theories as to why BWCs work to reduce incidents, and instead noted that for some people it will instigate an incident, while others may be triggered by a camera.

I’m on the fence of how that is going to work because I know the evidence is that by telling a patient ‘look if you keep escalating I’m gonna have to turn this on’, but I know several of our patients would kind of take that as a dare and escalate just to spite so that you would turn it on. Diana (f), Staff, A, Pre.

In contrast, some staff felt the cameras helped them feel safer on wards due to transparency of footage as evidence for both staff and patients.

They [staff] need to use it for protection, for recording evidence, that type of thing… They can record instances for later evidence. Yeah, for them as well. Safer for them and for patients because you can also have the right to get them to record, because a patient might be in the wrong but sometimes it may be the staff is in the wrong position. And that’s achieving safety for patients as well. Yeah, I think it works both ways. Dylan (m), Patient, A, Post.

Positive buy-in was also related to the potential use of the intervention as a training, learning or reflective tool for staff to improve practice and care and promote positive staff behaviour.

If you know that your actions might be filmed one way or the other, that would make me to step up your behaviour to patients… if you know that your actions can be viewed, if the authority wants to, then you behave properly with patients so I think that will improve the quality of the care to patient. Davide (m), Staff, I, Pre.

While there were some positive attitudes towards the cameras, there remained considerable concerns among participants regarding the transparency of camera use to collate evidence in relation to incidents as it was widely noted that the cameras remain in staff control therefore there is an issue in relation to bias and power.

I do think my gut would say that it wouldn’t necessarily be well received. Because also I think people feel like prisoners in here, that’s how some of the patients have described their experience, so in terms of the power dynamic and also just – I think that can make one feel a bit, even worse, basically, you know? Leslie (m), Staff, A, Pre.

These issues lead to staff reporting they didn’t want to wear the camera.

I’d feel quite uncomfortable wearing one to be honest. Leslie (m), Staff, A, Pre.

The staff control of the cameras had a particular impact on patient acceptability of the intervention as it led to some patients viewing BWCs as being an intervention for staff advantage and staff safety, thus increasing a ‘them and us’ culture and leading to patient resistance to the cameras. This was particularly salient for those with prior negative experiences of police use of cameras or mistrust in staff.

I feel like the fact that the body worn cameras is gonna be similar to how the police use them, if a staff member has negative intent toward a patient, they would be able to instigate an incident and then turn the camera on and use the consequences of what they’ve instigated to expect restraint or injection or whatever else might happen. So, I feel like it would be putting all the power and trust into the hands of the staff and I feel that it would be better to have CCTV on the ward because CCTV is neutral. Whereas, the body worn camera, especially with some of the personality conflicts/bad attitudes, impressions I’ve had from certain members of staff since I’ve been here, I feel like body worn cameras might be abused in that way possible. Harry (m), Patient, A, Pre.

Perceived unintended consequences and impact on care

Prior to the implementation there were concerns from staff that the introduction of BWCs could have consequences beyond the intended use of reducing violence and aggression, unintentionally affecting a range of factors that may impact on the overall delivery of care. There was a key concern regarding the potential negative impact that cameras may have for patients who have paranoia or psychosis as well as for those who may have prior traumatic experiences of being filmed.

It might have negative impacts on these patients because I’m thinking about kind of patients with schizophrenia and things like that who already have paranoid delusions, thinking that people are after them, thinking that people are spying on them, people are watching them, and then seeing kind of cameras around. It might have negative impacts on them. Tayla (f), Staff, I, Pre. When I was admitted I was going through psychosis… I don’t want to be filmed and things like that. So you just see a camera, a guy with a camera on, you are like, are you filming me? Elijah (m), Patient, A, Post.

There was also a considerable concern among both staff and patients that the use of cameras would have a negative impact on the therapeutic relationship between staff and patients. This was felt to be related to the implication that the cameras enhanced a ‘them and us’ dynamic due to the power differential that staff controlling the cameras can create, likened to policing and criminalisation of patients. With the potential of a negative impact on relationships between staff and patients, staff suggested they may be disinclined to use BWCs if it would stop patients speaking to them or approaching them if they needed support.

Yeah, I think it would probably damage [the therapeutic relationship] because I think what’s probably quite helpful is things that maybe create less of a power difference. I think to some extent, [the BWC] might hinder that ability. Like for example imagine going to a therapist and them just like ‘I’ve got this camera in the corner of the room and it’s gonna be filming our session and just in case – or like, just in case I feel that you might get aggressive with me’. Um, I don’t think that’s going to help the therapeutic relationship! Jamal (m), Staff, A, Pre. When you get body worn cameras on there, the relationship as well between staff and patients, is just gonna instantly change because you’re looking like police! Elijah (m), Patient, A, Post.

In contrast, a minority of staff felt that the presence of cameras may improve relationships as they provide transparency of staff behaviour and would encourage staff to behave well and provide high quality care for patients.

It will also help how, improve the way we look at the patients… because if you know that your actions might be filmed one way or the other, that would make me to step up your behaviour you know… you behave properly with patients so I think that will improve the quality of the care to patient. More efficiently, more caring to patient. Davide (m), Staff, I, Pre.

The process of implementation

Planning: top-down implementation.

Staff perceived that BWC implementation directives had been given by senior management or policy stakeholders whom they felt viewed the process from a position of limited understanding due to a lack of ‘frontline’ mental health service experience. This led to a lack of faith amongst staff, and a perception that funds were being misspent.

They sit up there, they just roll it out and see how it works, how it goes. They waste a whole lot of money, millions or whatever, thousands of pounds in it, and then they see that ‘Oh, it’s not gonna work’. They take it back and all of that. Before coming out with it, you need to come speak to us… they just sit up there drinking tea and coffee, and then they’re just like, Oh, yeah, well, let’s do it this way…come stay with these people, work with them, for just I give you a 12 h shift, stay with them. Richard (m), Staff, I, Post.

This was exacerbated when staff felt there was a lack of consultation or explanation.

we don’t always get the ins and outs of certain things…We know that the cameras are coming in and stuff like that, but you know, and obviously it’s gone through every avenue to make sure that it’s fine. But then sometimes we don’t always know the ins and outs to then explain to people why we have the cameras. Patrick (m), Staff, A, Post.

It was also highlighted that due to multiple initiatives being implemented and directives handed down in parallel, staff felt negative towards interventions more widely, with the BWCs being ‘ just another thing to do’ , adding to workload for staff and reducing enthusiasm to use the cameras.

it’s not just to do with the camera, I just think there’s lots of changes happening at once, and there’s loads of new things being constantly introduced that people are just thinking oh it’s another thing. I think that’s what it is more than the camera itself. Alice (f), Staff, A, Pre.

Execution: training, Use and Ward Visibility

Overall, there was a lack of consistency amongst staff in their understanding of the purpose and processes of using the BWCs on the wards.

What do you do, do you record every single thing or, I don’t know. Do you record like, if a patient said, I want to talk to you, confidential, you go sit in a room, do you record things like those or is it just violence and aggression? Ada (f), Staff, A, Post.

The lack of clarity regarding the purpose of the intervention and the appropriate use of the cameras was felt to impact staffs’ attitudes and acceptance of using them and contributed to a lack of transparency or perhaps trust regarding the use of any subsequent video footage.

I think if the importance of the recording was explained a bit more…and how it would improve things, I think people would use it more… that’s why I don’t think it’s always used sometimes… if you’re not sure why some of it’s important, then you’re not going to see the value…I think if you’re gonna keep with them, it’s about updating the training, teaching staff when to use it, then where does that information go? How does that look in terms of improving? Just a bit of transparency, I think. But when you don’t know certain things it’s a bit hard to get behind something or back it, you know? Patrick (m), Staff, A, Post.

The lack of information about the purpose and processes related to the intervention was also seen among patients, with most patients noting that they hadn’t received information about the cameras during their admissions.

No information at all. I don’t think any of the patients know about it. Toby (m), Patient, A, Post.

While training was provided it was widely felt that it was insufficient to provide understanding about the purpose of the cameras or the more in-depth processes beyond operational aspects such as charging and docking. Several staff interviewed were unaware of the training, while others noted that they had an informal run-through by colleagues rather than anything formal.

What training are you talking about?… I wasn’t here, so I was taught by my colleague. I mean, from what I was taught, to operate the camera, and to give a warning to the patient that you’re going to use the camera. Nevis (f), Staff, A, Post.

Longer training with further details beyond operational use was felt to be needed by staff.

I think the training should have to be longer, even if it’s like an hour or something… Like what situations deem the camera to be… more information on the cameras, when to use it, why it’s used, and I think if the importance of the recording was explained a bit more and what it was doing and how that recording would go and how it would improve things. Patrick (m), Staff, A, Post.

Furthermore, there was a need for training to be on a rolling basis given the use of bank staff who were not trained to use the cameras or to understand the proper processes or purpose of using the BWCs, which could leave them vulnerable to misuse or abuse.

We have bank staff [who aren’t trained] so they say ‘I don’t know how to use that camera you are giving me’. Nevis (f), Staff, A, Post.

The inner setting

Ward context: acceptance of violence and aggression is part of the job.

It was widely believed by staff that the nature of working on a mental health ward included accepting that violence and aggression was part of the job. This was not seen as an acceptance of violence but more that the job was providing care for individuals who are mentally unwell, and confusion, fear, frustration and aggression can be part of that. As a result, there was an ambivalence among some staff that the introduction of cameras would change this.

I think like in this line of work, there’s always that potential for like risky behaviours to happen. I’m not sure if putting the camera on will make much difference. Patrick (m), Staff, A, Post.

Staff noted that because of the nature of the job, staff are used to managing these situations and they understood that it was part of the job; therefore, it was unlikely that they would record everything that on paper might be considered an incident.

There’s also enough things that happen here, so I don’t think they would record [the incidents] because it’s just another day here. You know what I’m saying… [staff] can just say, ‘Stop, go back to your room and leave it at that and that kind of be the end of it’. Dylan (m), Patient, A, Post. We are trained for it. Eveline (f), Staff, I, Pre.

This acceptance that incidents are a hazard of mental healthcare was linked to staff’s acknowledgment that many factors make up the complexity of violence and aggression including the nature of individual patients, acuity levels, ward atmosphere, staffing levels, access to activities, leave and outside space. The interplay of multiple factors creates a context in which frustrations and incidents are likely, thus become part of the everyday and ‘normal’ life on the ward for staff and patients alike.

I feel like, you know, how in GP services you say, zero tolerance to abusive language, or any kind of harassment. I don’t think there is that on a psychiatric ward you are kind of expected to take all the abuse and just get on with it. Petra (f), Staff, A, Post.

With staff reported having a higher threshold for these behaviours it was perceived that this was likely to impact on the efficiency of the intervention as staff would be less likely to consider a situation as violent but more ‘ part of the job’ .

Reactive nature of the ward and incidents

Most participants noted that the ward context is always changing with people being admitted and discharged, with daily staff changes and wider turnover of staff, so things are never static and can change at any point. This reflects the dynamic nature of the ward which creates a complex moving picture that staff need to consider and react to.

[the atmosphere] it’s very good at the moment. If you had asked me this two weeks ago, I would say, ‘Oh, my gosh’. But it changes… The type of patient can make your whole ward change… it depends on the client group we have at the time. Nevis (f), Staff, A, Post.

Staff noted that a key limitation of using the cameras to reduce incidents was the reactive nature of the environment and care being provided. This was felt to impact on the feasibility and use of the cameras as staff noted that they often react to what is happening rather than thinking to ‘ put the camera on first ’. It was felt by staff with experience of reacting to incidents that the failure to use BWCs during these processes were linked to staff’s instincts and training to focus on patients as a priority.

Say for instance, you’re in the office, and two patients start fighting, or a patient attacks someone and, all you’re thinking about is to go there to stop the person. You’re not thinking about putting on any camera. You understand? So sometimes it’s halfway through it, somebody might say, ‘Has anybody switched the camera on’? And that’s the time you start recording… If something happens immediately, you’re not thinking about the camera at that time, you’re just thinking to just go, so yeah. Nevis (f), Staff, A, Post.

Incidents happen quickly and often surprise staff, therefore staff react instantly so are not thinking about new processes such as recording on the cameras as this would slow things down or is not in the reactive nature needed by staff during such incidents.

When you’re in the middle of an incident and your adrenaline’s high, you’re focusing on the incident itself. It’s very difficult for you to now remember, remind yourself to switch on the camera because you’re thinking, patient safety, staff safety, who’s coming to relieve you? What’s going on? Who’s at the door? Petra (f), Staff, A, Post.

In addition, the need for an immediate response meant that it was felt that by the time staff remember to, or have the chance to, switch the camera on it was often too late.

Sometimes in the heat of moments and stuff like that, or if the situation’s happening, sometimes you don’t always think to, you know, put your camera on. Patrick (m), Staff, A, Post.

Outer setting

Resources: staffing.

Issues related to staffing were highlighted by several participants as a key problem facing mental health wards thus leading to staff having higher workloads, and higher rates of bank and agency staff being used on shift and feeling burnt-out.

Out of all the wards I’ve been on I’d say this is the worst. It’s primarily because the staff are overworked…it seems like they spend more time doing paperwork than they do interacting with the patients. Harry (m), Patient, A, Pre. We’re in a bit of a crisis at the minute, we’re really, really understaffed. We’re struggling to cover shifts, so the staff are generally quite burnt out. We’ve had a number of people that have just left all at once, so that had an impact… Staff do get frustrated if they’re burnt out from lack of staff and what have you. Alice (f), Staff, A, Pre.

It was noted by one participant that the link of a new intervention with extra workload was likely to have a negative impact on its acceptability due to these increasing demands.

People automatically link the camera to then the additional paperwork that goes alongside it. It’s like, ‘Oh god, if we do this, we’ve got to do that’, and that could play a part. Petra (f), Staff, A, Post.

One staff member noted that the staffing issue meant there were more likely to be bank staff on wards so the care of patients may be affected as temporary staff may be less able to build meaningful therapeutic relationships.

So obviously there is the basic impact on safety of not having adequate staffing, but then there’s the impact of having a lot of bank staff. So obviously when you have permanent staff they get to know the patients more, we’re able to give them the more individualised care that we ideally should be giving them, but we can’t do that with bank staff. Diana (f), Staff, A, Pre.

It was also suggested that staffing levels and mix often made it more difficult to provide activities or facilitate escorted leave which can lead to patients feeling frustrated and becoming more aggressive.

So you know there is enough staff to facilitate the actual shift, so you know when there’s less staff like you say you’ve got people knocking at the door, but then you don’t have staff to take people out on leave straight away, that all has a rippling effect! Serene (f), Staff, A, Pre.

Wider systemic issues

Overall, there was a concern that the introduction of BWCs would not impact on wider, underlying factors that may contribute to frustration, aggression and incidents on wards. Providing a more enhanced level of care and better addressing the needs of patients was felt to be central to helping people but also reducing the frustration that patients feel when on the ward.

… for violence and aggression, [focus on] the mental health side of things like therapy and psychology should be compulsory. It shouldn’t be something you apply for and have to wait three or four weeks for. I think every person should, more than three or four weeks even, months even… we need psychology and therapists. That’s what will stop most violence, because psychologists and a therapist can edit the way that they speak to people because they’ve been given that skill depending on the way the person behaves. So that’s what we need regularly… not like all this dancing therapy, yoga therapy. That’s a person, that you come and you actually sit down and talk through your shit with them. That will help! Elijah (m), Patient, A, Post. There’s a lack of routine and I think there’s a lack of positive interaction between the patient and the staff as well. The only time you interact with a member of staff is if you’re hassling them for something, you have to hassle for every little thing, and it becomes a sort of, frustration inducing and like I’m a very calm person, but I found myself getting very fucking angry, to be honest, on this ward just because out of pure frustration… there’s bigger problems than body worn cameras going on. Harry (m), Patient, A, Pre.

Staff agreed that there was a need to invest in staff and training rather than new technologies or innovations as it is staff and their skills behind the camera.

It’s not the camera that will do all of that. It’s not making the difference. It’s a very good, very beautiful device, probably doing its job in its own way. But it’s more about investing in the staff, giving them that training and making them reflect on every day-to-day shift. Richard (m), Staff, I, Post.

There was felt to be a need to support staff more in delivering care within wards that can be challenging and where patients are unwell to ensure that staff feel safe. While in some circumstances the cameras made some staff feel safer, greater support from management would be more beneficial in making staff feel valued.

In this study exploring the implementation and use of body-worn cameras on mental health wards, we employed two methods for collecting and comparing data on incidents and use of containment measures, including BWCs, on one acute ward and one psychiatric intensive care unit. We found no clear relationship between the use of BWCs and rates or severity of incidents on either ward. While BWCs may be used when there are incidents of both physical and verbal aggression, results indicate that they may also provoke verbal aggression, as was suggested during some interviews within this study. This should be a concern, as strong evidence that being repeatedly subject to verbal aggression and abuse can lead to burnout and withdrawal of care by staff [ 30 ]. These mixed findings reflect results that were reported in two earlier studies of BWCs on mental health wards [ 12 , 13 ]. However, the very low use of the cameras, on just 10 per cent of the shifts where data was obtained, makes it even more difficult to draw any conclusions.

While the data shows limited impact of using BWCs on levels of incidents, we did find that during the pilot period BWC use tended to occur alongside physical restraint, but the direction of relationship is unclear as staff were asked to use BWCs when planning an intervention such as restraint. This relationship with restraint reflected the findings on several wards in a previous study [ 13 ], while contrasting with those reported in a second study that found reductions in incidents involving restraint during the evaluation period [ 12 ]. Such a mix of findings highlights the complexity of using BWCs as a violence reduction method within a busy healthcare setting in which several interacting components and contextual factors, and behaviours by staff and patients can affect outcomes [ 31 ]. The qualitative data collected during this pilot period highlighted the potential systemic and contextual factors such as low staffing that may have a confounding impact on the incident data presented in this simple form.

The findings presented within this evaluation provide some insights into the process of implementing BWCs as a safety intervention in mental health services and highlight some of the challenges and barriers faced. The use of implementation science to evaluate the piloting of BWCs on wards helps to demonstrate how multiple elements including a variety of contextual and systemic factors can have a considerable impact and thus change how a technology may vary not only between hospitals, but even across wards in the same hospital. By understanding the elements that may and do occur during the process of implementing such interventions, we can better understand if and how BWCs might be used in the future.

Within this pilot, extensive preparatory work conducted at a directorate and senior management level did not translate during the process of implementation at a ward level, which appeared to impact on the use of BWCs by individuals on the wards. This highlights that there is a need to utilise implementation science approaches in planning the implementation of new technologies or interventions and to investigate elements related to behavioural change and context rather than just the desired and actual effects of the intervention itself.

While ward staff and patients identified the potential for BWCs to enhance safety on the wards, participants distrusted their deployment and expressed concerns about ethical issues and possible harmful consequences of their use on therapeutic relationships, care provided and patient wellbeing. These themes reflect previous findings from a national interview study of patient and staff perspectives and experiences of BWCs in inpatient mental health wards [ 14 ]. Given these issues, alternatives such as increasing de-escalation skills were identified by staff as possible routes that may be more beneficial in these settings. Furthermore, other approaches such as safety huddles have also been highlighted within the literature as potential means to improve patient safety by looking ahead at what can be attended to or averted [ 32 ].

Furthermore, it is important to consider that the presence of power imbalances and the pre-existing culture on the ward have considerable implications for safety approaches and must be considered, as exemplified by the preferences by both staff and patients in this evaluation for more perceived ‘impartial’ interventions such as CCTV. As identified within previous studies [ 14 ], BWCs can have different implications for psychological safety, particularly for vulnerable patients who already feel criminalised in an environment with asymmetrical power imbalances between staff and patients. This is particularly salient when considering aspects of identity such as race, ethnicity, and gender both in terms of the identities of the patient group but also in terms of the staff/patient relationship.

While preferences in this study note CCTV as more ‘impartial’, work by Desai [ 33 ] draws on the literature about the use of surveillance cameras in other settings (such as public streets) as well as on psychiatric wards and concludes that CCTV monitoring is fraught with difficulties and challenges, and that ‘watching’ patients and staff through the lens of a camera can distort the reality of what is happening within a ward environment. In her recently published book, Desai [ 34 ] develops this theme to explore the impacts of being watched on both patients and staff through her ethnographic research in psychiatric intensive care units. She highlights concerns over the criminalisation of patient behaviour, safeguarding concerns in relation to the way women’s bodies and behaviours are viewed and judged, and the undermining by CCTV of ethical mental health practice by staff who attempt to engage in thoughtful, constructive, therapeutic interactions with patients in face-to-face encounters. Appenzeller et al.’s [ 35 ] review found that whilst the presence of CCTV appeared to increase subjective feelings of safety amongst patients and visitors, there was no objective evidence that video surveillance increases security, and that staff may develop an over-reliance on the technology.

In addition, our findings add to the existing literature which notes that alternative interventions and approaches that address underlying contextual and systemic issues related to improving care on inpatient wards require attention to address the underlying factors related to incidents, e.g., flashpoints [ 36 ]. Evidence suggests that factors leading to incidents can be predicted; therefore, there is a need to enable staff to work in a proactive way to anticipate and prevent incidents rather than view incidents as purely reactive [ 37 , 38 , 39 ]. Such skills-based and relational approaches are likely to impact more on improving safety and reducing incidents by addressing the complex and multi-faceted issue of incidents on inpatient mental health wards [ 40 ].

These findings highlight that interventions such as BWCs are not used within a vacuum, and that hospitals are complex contexts in which there are a range of unique populations, processes, and microsystems that are multi-faceted [ 41 ]. As a result, interventions will encounter both universal, specific, and local barriers that will impact on its functioning in the real world. This is salient because research suggests that camera use inside mental health wards is based on a perception of the violent nature of the mental health patient, a perception that not only influences practice but also impacts how patients experience the ward [ 33 ]. As a result, there needs to be careful consideration of the use of any new and innovative intervention aimed at improving safety within mental health settings that have limited research supporting their efficacy.

Limitations

While the study provides important insights into the efficacy and acceptability of introducing BWCs onto inpatient mental health wards, there were several limitations. Firstly, the analysis of incident data is limited in its nature as it only presents surface level information about incidents without wider contextual information. Results using such data should be cautiously interpreted as they do not account for confounding factors, such as staffing, acuity, ward culture or ward atmosphere, that are likely to contribute to incidents of violence and aggression. For example, while there was a statistically significant decrease in restrictive practice on the PICU across the study period, we know that BWCs were not widely used on that ward, so this is likely due to a confounding variable that was not accounted for in the study design.

Secondly, the study faced limitations in relation to recruitment, particularly with patients. Researchers’ access to wards was challenging due to high staff turnover and high rates of acuity, meaning many patients were not deemed well enough to be able to consent to take part in the study. In addition, the low use of the cameras on wards meant that many patients, and some staff, had not seen the BWCs in use. Similarly, patients had been provided limited information about the pilot, so their ability to engage in the research and describe their own experiences with BWCs was restricted.

Thirdly, analysis captures the active use of the BWC, however it does not fully capture the impact of staff wearing the cameras even where they do not actively use them. While our qualitative analysis provides insight into the limitation of such passive use, it is likely that the presence of the cameras being worn by staff, even when turned off, may have an impact on both staff and patient behaviours. This may explain trends in the data that did not reach significance but warrant further investigation in relation to the presence of BWCs, nonetheless.

Finally, researchers had planned to collect quantitative surveys from staff and patients in relation to their experiences of the ward atmosphere and climate, views related to therapeutic relationships on the ward, levels of burnout among staff, views on care, and attitudes to containment measures. Due to issues related to staff time, patient acuity, and poor engagement from staff leading to challenges accessing the wards, the collection of such survey data was unfeasible, and this element of the study was discontinued. As a result, we have not reported this aspect in our paper. This limitation reflects the busy nature of inpatient mental health wards with pressures on staff and high levels of ill health among patients. As such, traditional methodologies for evaluation are unlikely to elicit data that is comprehensive and meaningful. Alternative approaches may need to be considered.

Future directions

With BWCs being increasingly used across inpatient mental health services [ 14 ], it is important that further research and evaluation is conducted. To date, there is limited data regarding the effectiveness of this technology in relation to violence reduction; however, there may be other beneficial uses in relation to safeguarding and training [ 13 ]. Future research should consider alternative methods that ensure contextual factors are accounted for and that patient voices can be maximised. For example, focus groups with patients currently admitted to a mental health ward or interviews with those who have recently been on a ward that has used the cameras, would bypass problems encountered with capacity to consent in the present study. Furthermore, ethnographic approaches may provide a deeper understanding of the implementation, deployment and impact that BWCs have on wards.

Overall, this research sheds light on the complexities of using BWCs as a tool for ‘maximising safety’ in mental health settings. The findings suggest that BWCs have a limited impact on levels of incidents on wards, something that is likely to be largely influenced by the process of implementation as well as a range of contextual factors, including the staff and patient populations on the wards. As a result, it is likely that while BWCs may see successes in one hospital site this is not guaranteed for another site as such factors will have a considerable impact on efficacy, acceptability, and feasibility. Furthermore, the findings point towards the need for more consideration to be placed on processes of implementation and the complex ethical discussions regarding BWC use from both a patient and a staff perspective.

In conclusion, while there have been advances in digital applications and immersive technologies showing promise of therapeutic benefits for patients and staff more widely, whether BWCs and other surveillance approaches are to be part of that picture remains to be seen and needs to be informed by high-quality, co-produced research that focuses on wider therapeutic aspects of mental healthcare.

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Department of Health and Social Care. The NHS Long Term Plan. 2019. https://www.longtermplan.nhs.uk/about/ . [Accessed on 01/11/2021].

NHS England. Violence prevention and safety. 2023. https://www.england.nhs.uk/supporting-our-nhs-people/health-and-wellbeing-programmes/violence-prevention-and-safety/#:~:text=The%20impact%20on%20staff%20is,thinking%20about%20leaving%20the%20organisation . [Accessed on 06/07/23].

Royal College of Nursing. Violence and aggression in the NHS: estimating the size and the impact of the problem. London: Royal College of Nursing; 2018.

Google Scholar  

Iozzino L, Ferrari C, Large M, Nielssen O, de Girolamo G. Prevalence and risk factors of violence by psychiatric acute inpatients: a systematic review and meta-analysis. PLoS ONE. 2015;10(6):e0128536. https://doi.org/10.1371/journal.pone.0128536 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Cranage K, Foster K. Mental health nurses’ experience of challenging workplace situations: a qualitative descriptive study. Int J Ment Health Nurs. 2020;31(3):665–76. https://doi.org/10.1111/inm.12986 .

Article   Google Scholar  

Jenkin G, Quigg S, Paap H, Cooney E, Peterson D, Every-Palmer S. Places of safety? Fear and violence in acute mental health facilities: a large qualitative study of staff and service user perspectives. PLoS ONE. 2022;17(5):e0266935. https://doi.org/10.1371/journal.pone.0266935 .

Gaub JE, Choate DE, Todak N, Katz CM, White MD. Officer perceptions of body-worn cameras before and after deployment: a study of three departments. Police Q. 2016;19(3):275–302.

Cubitt TI, Lesic R, Myers GL, Corry R. Body-worn video: a systematic review of literature. Australian New Z J Criminol. 2017;50(3):379–96. https://doi.org/10.1177/0004865816638909 .

Lum C, Koper CS, Wilson DB, Stoltz M, Goodier M, Eggins E et al. Body-worn cameras’ effects on police officers and citizen behavior: A systemitic review. Campbell Syst Reviews. 2020;16(3), e1112.

Ariel B, Newton M, McEwan L, Ashbridge GA, Weinborn C, Brants HS. Reducing assaults against Staff using body-worn cameras (BWCs) in Railway stations. Criminal Justice Rev. 2019;44(1):76–93.

Wilson K, Eaton J, Foye U, Ellis M, Thomas E, Simpson A. What evidence supports the use of body worn Cameras in mental health inpatient wards? A systematic review and narrative synthesis of the effects of body worn Cameras in public sector services. Int J Ment Health Nurs. 2021. https://doi.org/10.1111/inm.12954 .

Article   PubMed   PubMed Central   Google Scholar  

Ellis T, Shurmer DL, Badham-May S, Ellis-Nee C. The use of body worn video cameras on mental health wards: results and implications from a pilot study. Mental Health Family Med. 2019;15:859–68.

Hardy S, Bennett L, Rosen P, Carroll S, White P, Palmer-Hill S. The feasibility of using body-worn cameras in an inpatient mental health setting. Mental Health Family Med. 2017;13:393–400.

Wilson K, Foye U, Thomas E, Chadwick M, Dodhia S, Allen J, Lynn J, Brennan G, Simpson A. Exploring the use of body-worn cameras in acute mental health wards: a qualitative interview study with mental health patients and staff. Int J Nurs Stud. 2023;140:104456. https://doi.org/10.1016/j.ijnurstu.2023.104456 .

Article   PubMed   Google Scholar  

Baker J, Pryjmachuk S. Will safe staffing in Mental Health nursing become a reality? J Psychiatry Mental Health Nurs. 2016;23(2):75–6. https://doi.org/10.1111/jpm.12282 .

Article   CAS   Google Scholar  

Piano VL, Creswell JW. Understanding Research: A Consumer Guide. 2nd edition. 2015. Boston: Pearson Education, INC.

Bowers L, Simpson A, Alexander J. Patient-staff conflict: results of a survey on acute psychiatric wards. Soc Psychiatry Psychiatr Epidemiol. 2013;38(7):402–8.

Bowers L. The City-128 study of observation and outcomes. BMC Psychiatry. 2007;7(Suppl 1). https://doi.org/10.1186/1471-244X-7-S1-S122 . S122.

Bowers L, Flood C, Brennan G, Allan T. A replication study of the City nurse intervention: reducing conflict and containment on three acute psychiatric wards. J Psychiatr Ment Health Nurs. 2008;15:737–42. https://doi.org/10.1111/j.1365-2850.2008.01294.x .

Article   CAS   PubMed   Google Scholar  

Bowers L, James K, Quirk A, Simpson A, Stewart D, Hodsoll J, SUGAR. Reducing conflict and containment rates on acute psychiatric wards: the safewards cluster randomised controlled trial. Int J Nurs Stud. 2015;52(9):1412–22. https://doi.org/10.1016/j.ijnurstu.2015.05.001 . Erratum in: Int J Nurs Stud. 2016;58:102. PMID: 26166187; PMCID: PMC4518134.

Bowers L, Douzenis A, Galeazzi G et al. Disruptive and dangerous behaviour by patients on acute psychiatric wards in three European centres. Social Psychiatry and Psychiatric Epidemiology. 2005;40, 822–828. https://link.springer.com/article/10.1007/s00127-005-0967-1 .

Bowers L, Flood C, Brennan G, LiPang M, Oladapo P. Preliminary outcomes of a trial to reduce conflict and containment on acute psychiatric wards: City nurses. J Psychiatr Ment Health Nurs. 2006;13:165–72. https://doi.org/10.1111/j.1365-2850.2006.00931.x .

Datix. (2019). Products. Retrieved from https://www.rldatix.com/en-uk/products .

Fazel S, Toynbee M, Ryland H, et al. Modifiable risk factors for inpatient violence in psychiatric hospital: prospective study and prediction model. Psychol Med. 2023;53(2):590–6. https://doi.org/10.1017/S0033291721002063 .

Mushcab H, Bunting D, Yami S, Abandi A, Hunt C. An evaluation of Datix implementation for incident reporting at Johns Hopkins Aramco Healthcare. J Patient Saf Risk Manage. 2020;25(2):67–74. https://doi.org/10.1177/2516043520905481 .

SPSS. IBM SPSS statistics for Windows. Armonk, NY: IBM Corp; 2023.

Microsoft Corporation. (2018). Microsoft Excel . Retrieved from https://office.microsoft.com/excel .

Ritchie J, Lewis J. Qualitative. Research Practice. London: Sage; 2003.

Damschroder LJ, Aron DC, Keith RE, et al. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4:50. https://doi.org/10.1186/1748-5908-4-50 .

Porath CL, Pearson CM. Emotional and behavioral responses to workplace incivility and the impact of hierarchical status. J Appl Soc Psychol. 2009;42(Suppl 1):E326–57. https://doi.org/10.1111/j.1559-1816.2012.01020.x .

Craig P, Dieppe P, Macintyre S, et al. Developing and evaluating complex interventions: the new medical Research Council guidance. BMJ. 2008;337. https://doi.org/10.1136/bmj.a1655 .

Taylor-Watt J, Cruickshank A, Innes J, Brome B, Shah A. Reducing physical violence and developing a safety culture across wards in East London. Br J Mental Health Nurs. 2017. https://doi.org/10.12968/bjmh.2017.6.1.35 .

Desai S. The new stars of CCTV: what is the purpose of monitoring patients in communal areas of psychiatric hospital wards, bedrooms and seclusion rooms? Divers Equality Health Care. 2009;6(1):12. [Google Scholar].

Desai S. Surveillance Practices and Mental Health: the impact of CCTV inside mental health wards. Routledge; 2022.

Appenzeller YE, Appelbaum PS, Trachsel M. Ethical and practical issues in Video Surveillance of Psychiatric Units. Psychiatric Serv. 2020;71(5):480–6. https://doi.org/10.1176/appi.ps.201900397 .

Bowers L. Safewards: a new model of conflict and containment on psychiatric wards. J Psychiatr Ment Health Nurs. 2014;21(6):499–508. https://doi.org/10.1111/jpm.12129 . PMID: 24548312; PMCID: PMC4237187.

Goodman H, Papastavrou Brooks C, Price O, Barley EA. Barriers and facilitators to the effective de-escalation of conflict behaviours in forensic high-secure settings: a qualitative study. Int J Mental Health Syst. 2020;14:59. https://doi.org/10.1186/s13033-020-00392-5 .

Johnson ME, Delaney KR. Keeping the unit safe: the anatomy of escalation. J Am Psychiatr Nurses Assoc. 2007;13:42–52.

Johnson ME, Hauser PM. The practice of expert nurses: accompanying the patient to a calmer space. Issues Ment Health Nurs. 2001;22:651–68.

Hamrin V, Iennaco J, Olsen D. A review of ecological factors affecting inpatient psychiatric unit violence: implications for relational and unit cultural improvements. Issues Ment Health Nurs. 2009;30(4):214 – 26. doi: 10.1080/01612840802701083. PMID: 19363726.

Squires JE, Estabrooks CA, Scott SD, Cummings GG, Hayduk L. The influence of organizational context on the use of research by nurses in Canadian pediatric hospitals. BMC Health Serv Res. 2013;13. https://doi.org/10.1186/1472-6963-13-351 .

Download references

Acknowledgements

We would like to thank The Burdett Trust for Nursing for funding this work. We would also like to acknowledge our wider Lived Experience Advisory Panel and Project Advisory Panel for their contributions and support and would like to thank the staff and service users on the wards we attended for their warmth and participation.

Funding was provided by The Burdett Trust of Nursing. Funders were independent of the research and did not impact findings.

Author information

Authors and affiliations.

Mental Health Nursing, Health Service and Population Research Department, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK

Una Foye, Keiran Wilson, Jessica Jepps, James Blease, Geoff Brennan & Alan Simpson

Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, Mental Health Nursing, King’s College London, London, UK

Una Foye, Keiran Wilson, Jessica Jepps, Geoff Brennan & Alan Simpson

Lived Experience Advisor, London, UK

Ellen Thomas, Leroy McAnuff, Sharon McKenzie, Katherine Barrett & Lilli Underwood

You can also search for this author in PubMed   Google Scholar

Contributions

All authors have read and approved the manuscript. Authors AS, UF, KW, GB created the protocol for the study. KW, JJ, UF conducted the recruitment for the study, and conducted the interviews. UF, JJ, JB, LMA, LU, SMK, KB, ET coded data, and contributed to the analysis. All authors supported drafting and development of the manuscript.

Corresponding author

Correspondence to Una Foye .

Ethics declarations

Ethics approval and consent to participate.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical. Ethical approval was granted by the Health Research Authority: London - Camden & Kings Cross Research Ethics Committee (IRAS PROJECT ID 322268, REC Reference 23/LO/0337). All participants provided informed consent prior to enrolment in the study, including consent for publication of anonymised quotes.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary material 2, supplementary material 3, supplementary material 4, supplementary material 5, supplementary material 6, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Foye, U., Wilson, K., Jepps, J. et al. Exploring the use of body worn cameras in acute mental health wards: a mixed-method evaluation of a pilot intervention. BMC Health Serv Res 24 , 681 (2024). https://doi.org/10.1186/s12913-024-11085-x

Download citation

Received : 03 January 2024

Accepted : 07 May 2024

Published : 29 May 2024

DOI : https://doi.org/10.1186/s12913-024-11085-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Implementation
  • Body worn cameras
  • Qualitative
  • Mental health

BMC Health Services Research

ISSN: 1472-6963

conclusion about research design

ORIGINAL RESEARCH article

This article is part of the research topic.

Interventions for Students with Combined Learning and Behavioral Difficulties

Inattention negatively moderates the effectiveness of a mathematics intervention in low performing primary school students Provisionally Accepted

  • 1 Institut für Bildungsforschung, Universität Wuppertal, Germany

The final, formatted version of the article will be published soon.

Research suggest that attention skills play distinct roles in children's acquisition of mathematics. Despite a growing number of mathematics interventions in general, little research has been devoted to mathematics interventions for students with attention/hyperactivity problems (ADHD). Extant literature suggests lower benefits of mathematics interventions for students with ADHD symptoms. This study aimed at investigating the influence of ADHD on the effectiveness of a mathematics intervention. In a single-case research design, a total of N=10 students in Grades 2 and 4 with varying ADHD profiles were observed and trained in an ABAB-design with a computer-cased mathematics intervention. Intervention and progress monitoring were administered twice a week. The intervention showed heterogenous effects ranging from no to substantial learning progress during the intervention phases. Hierarchical piecewise regression models revealed lower learning progress for students with all ADHD symptoms as well as isolated attention difficulties. However, students with isolated hyperactivity but no attention difficulties did not respond less to the intervention. As a conclusion, mathematics interventions are supposed to address students with attention deficits more explicitly.

Keywords: ADHD, inattention, math difficulties, Interventions, Single-case research design

Received: 12 Aug 2023; Accepted: 03 Jun 2024.

Copyright: © 2024 Herzog and Casale. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Mx. Moritz Herzog, Institut für Bildungsforschung, Universität Wuppertal, Wuppertal, Germany

People also looked at

Chapter 5 Research Design

Research design is a comprehensive plan for data collection in an empirical research project. It is a “blueprint” for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: (1) the data collection process, (2) the instrument development process, and (3) the sampling process. The instrument development and sampling processes are described in next two chapters, and the data collection process (which is often loosely called “research design”) is introduced in this chapter and is described in further detail in Chapters 9-12.

Broadly speaking, data collection methods can be broadly grouped into two categories: positivist and interpretive. Positivist methods , such as laboratory experiments and survey research, are aimed at theory (or hypotheses) testing, while interpretive methods, such as action research and ethnography, are aimed at theory building. Positivist methods employ a deductive approach to research, starting with a theory and testing theoretical postulates using empirical data. In contrast, interpretive methods employ an inductive approach that starts with data and tries to derive a theory about the phenomenon of interest from the observed data. Often times, these methods are incorrectly equated with quantitative and qualitative research. Quantitative and qualitative methods refers to the type of data being collected (quantitative data involve numeric scores, metrics, and so on, while qualitative data includes interviews, observations, and so forth) and analyzed (i.e., using quantitative techniques such as regression or qualitative techniques such as coding). Positivist research uses predominantly quantitative data, but can also use qualitative data. Interpretive research relies heavily on qualitative data, but can sometimes benefit from including quantitative data as well. Sometimes, joint use of qualitative and quantitative data may help generate unique insight into a complex social phenomenon that are not available from either types of data alone, and hence, mixed-mode designs that combine qualitative and quantitative data are often highly desirable.

Key Attributes of a Research Design

The quality of research designs can be defined in terms of four key design attributes: internal validity, external validity, construct validity, and statistical conclusion validity.

Internal validity , also called causality, examines whether the observed change in a dependent variable is indeed caused by a corresponding change in hypothesized independent variable, and not by variables extraneous to the research context. Causality requires three conditions: (1) covariation of cause and effect (i.e., if cause happens, then effect also happens; and if cause does not happen, effect does not happen), (2) temporal precedence: cause must precede effect in time, (3) no plausible alternative explanation (or spurious correlation). Certain research designs, such as laboratory experiments, are strong in internal validity by virtue of their ability to manipulate the independent variable (cause) via a treatment and observe the effect (dependent variable) of that treatment after a certain point in time, while controlling for the effects of extraneous variables. Other designs, such as field surveys, are poor in internal validity because of their inability to manipulate the independent variable (cause), and because cause and effect are measured at the same point in time which defeats temporal precedence making it equally likely that the expected effect might have influenced the expected cause rather than the reverse. Although higher in internal validity compared to other methods, laboratory experiments are, by no means, immune to threats of internal validity, and are susceptible to history, testing, instrumentation, regression, and other threats that are discussed later in the chapter on experimental designs. Nonetheless, different research designs vary considerably in their respective level of internal validity.

External validity or generalizability refers to whether the observed associations can be generalized from the sample to the population (population validity), or to other people, organizations, contexts, or time (ecological validity). For instance, can results drawn from a sample of financial firms in the United States be generalized to the population of financial firms (population validity) or to other firms within the United States (ecological validity)? Survey research, where data is sourced from a wide variety of individuals, firms, or other units of analysis, tends to have broader generalizability than laboratory experiments where artificially contrived treatments and strong control over extraneous variables render the findings less generalizable to real-life settings where treatments and extraneous variables cannot be controlled. The variation in internal and external validity for a wide range of research designs are shown in Figure 5.1.

conclusion about research design

Figure 5.1. Internal and external validity.

Some researchers claim that there is a tradeoff between internal and external validity: higher external validity can come only at the cost of internal validity and vice-versa. But this is not always the case. Research designs such as field experiments, longitudinal field surveys, and multiple case studies have higher degrees of both internal and external validities. Personally, I prefer research designs that have reasonable degrees of both internal and external validities, i.e., those that fall within the cone of validity shown in Figure 5.1. But this should not suggest that designs outside this cone are any less useful or valuable. Researchers’ choice of designs is ultimately a matter of their personal preference and competence, and the level of internal and external validity they desire.

Construct validity examines how well a given measurement scale is measuring the theoretical construct that it is expected to measure. Many constructs used in social science research such as empathy, resistance to change, and organizational learning are difficult to define, much less measure. For instance, construct validity must assure that a measure of empathy is indeed measuring empathy and not compassion, which may be difficult since these constructs are somewhat similar in meaning. Construct validity is assessed in positivist research based on correlational or factor analysis of pilot test data, as described in the next chapter.

Statistical conclusion validity examines the extent to which conclusions derived using a statistical procedure is valid. For example, it examines whether the right statistical method was used for hypotheses testing, whether the variables used meet the assumptions of that statistical test (such as sample size or distributional requirements), and so forth. Because interpretive research designs do not employ statistical test, statistical conclusion validity is not applicable for such analysis. The different kinds of validity and where they exist at the theoretical/empirical levels are illustrated in Figure 5.2.

conclusion about research design

Figure 5.2. Different Types of Validity in Scientific Research

Improving Internal and External Validity

The best research designs are those that can assure high levels of internal and external validity. Such designs would guard against spurious correlations, inspire greater faith in the hypotheses testing, and ensure that the results drawn from a small sample are generalizable to the population at large. Controls are required to assure internal validity (causality) of research designs, and can be accomplished in four ways: (1) manipulation, (2) elimination, (3) inclusion, and (4) statistical control, and (5) randomization.

In manipulation , the researcher manipulates the independent variables in one or more levels (called “treatments”), and compares the effects of the treatments against a control group where subjects do not receive the treatment. Treatments may include a new drug or different dosage of drug (for treating a medical condition), a, a teaching style (for students), and so forth. This type of control is achieved in experimental or quasi-experimental designs but not in non-experimental designs such as surveys. Note that if subjects cannot distinguish adequately between different levels of treatment manipulations, their responses across treatments may not be different, and manipulation would fail.

The elimination technique relies on eliminating extraneous variables by holding them constant across treatments, such as by restricting the study to a single gender or a single socio-economic status. In the inclusion technique, the role of extraneous variables is considered by including them in the research design and separately estimating their effects on the dependent variable, such as via factorial designs where one factor is gender (male versus female). Such technique allows for greater generalizability but also requires substantially larger samples. In statistical control , extraneous variables are measured and used as covariates during the statistical testing process.

Finally, the randomization technique is aimed at canceling out the effects of extraneous variables through a process of random sampling, if it can be assured that these effects are of a random (non-systematic) nature. Two types of randomization are: (1) random selection , where a sample is selected randomly from a population, and (2) random assignment , where subjects selected in a non-random manner are randomly assigned to treatment groups.

Randomization also assures external validity, allowing inferences drawn from the sample to be generalized to the population from which the sample is drawn. Note that random assignment is mandatory when random selection is not possible because of resource or access constraints. However, generalizability across populations is harder to ascertain since populations may differ on multiple dimensions and you can only control for few of those dimensions.

Popular Research Designs

As noted earlier, research designs can be classified into two categories – positivist and interpretive – depending how their goal in scientific research. Positivist designs are meant for theory testing, while interpretive designs are meant for theory building. Positivist designs seek generalized patterns based on an objective view of reality, while interpretive designs seek subjective interpretations of social phenomena from the perspectives of the subjects involved. Some popular examples of positivist designs include laboratory experiments, field experiments, field surveys, secondary data analysis, and case research while examples of interpretive designs include case research, phenomenology, and ethnography. Note that case research can be used for theory building or theory testing, though not at the same time. Not all techniques are suited for all kinds of scientific research. Some techniques such as focus groups are best suited for exploratory research, others such as ethnography are best for descriptive research, and still others such as laboratory experiments are ideal for explanatory research. Following are brief descriptions of some of these designs. Additional details are provided in Chapters 9-12.

Experimental studies are those that are intended to test cause-effect relationships (hypotheses) in a tightly controlled setting by separating the cause from the effect in time, administering the cause to one group of subjects (the “treatment group”) but not to another group (“control group”), and observing how the mean effects vary between subjects in these two groups. For instance, if we design a laboratory experiment to test the efficacy of a new drug in treating a certain ailment, we can get a random sample of people afflicted with that ailment, randomly assign them to one of two groups (treatment and control groups), administer the drug to subjects in the treatment group, but only give a placebo (e.g., a sugar pill with no medicinal value). More complex designs may include multiple treatment groups, such as low versus high dosage of the drug, multiple treatments, such as combining drug administration with dietary interventions. In a true experimental design , subjects must be randomly assigned between each group. If random assignment is not followed, then the design becomes quasi-experimental . Experiments can be conducted in an artificial or laboratory setting such as at a university (laboratory experiments) or in field settings such as in an organization where the phenomenon of interest is actually occurring (field experiments). Laboratory experiments allow the researcher to isolate the variables of interest and control for extraneous variables, which may not be possible in field experiments. Hence, inferences drawn from laboratory experiments tend to be stronger in internal validity, but those from field experiments tend to be stronger in external validity. Experimental data is analyzed using quantitative statistical techniques. The primary strength of the experimental design is its strong internal validity due to its ability to isolate, control, and intensively examine a small number of variables, while its primary weakness is limited external generalizability since real life is often more complex (i.e., involve more extraneous variables) than contrived lab settings. Furthermore, if the research does not identify ex ante relevant extraneous variables and control for such variables, such lack of controls may hurt internal validity and may lead to spurious correlations.

Field surveys are non-experimental designs that do not control for or manipulate independent variables or treatments, but measure these variables and test their effects using statistical methods. Field surveys capture snapshots of practices, beliefs, or situations from a random sample of subjects in field settings through a survey questionnaire or less frequently, through a structured interview. In cross-sectional field surveys , independent and dependent variables are measured at the same point in time (e.g., using a single questionnaire), while in longitudinal field surveys , dependent variables are measured at a later point in time than the independent variables. The strengths of field surveys are their external validity (since data is collected in field settings), their ability to capture and control for a large number of variables, and their ability to study a problem from multiple perspectives or using multiple theories. However, because of their non-temporal nature, internal validity (cause-effect relationships) are difficult to infer, and surveys may be subject to respondent biases (e.g., subjects may provide a “socially desirable” response rather than their true response) which further hurts internal validity.

Secondary data analysis is an analysis of data that has previously been collected and tabulated by other sources. Such data may include data from government agencies such as employment statistics from the U.S. Bureau of Labor Services or development statistics by country from the United Nations Development Program, data collected by other researchers (often used in meta-analytic studies), or publicly available third-party data, such as financial data from stock markets or real-time auction data from eBay. This is in contrast to most other research designs where collecting primary data for research is part of the researcher’s job.

Secondary data analysis may be an effective means of research where primary data collection is too costly or infeasible, and secondary data is available at a level of analysis suitable for answering the researcher’s questions. The limitations of this design are that the data might not have been collected in a systematic or scientific manner and hence unsuitable for scientific research, since the data was collected for a presumably different purpose, they may not adequately address the research questions of interest to the researcher, and interval validity is problematic if the temporal precedence between cause and effect is unclear.

Case research is an in-depth investigation of a problem in one or more real-life settings (case sites) over an extended period of time. Data may be collected using a combination of interviews, personal observations, and internal or external documents. Case studies can be positivist in nature (for hypotheses testing) or interpretive (for theory building). The strength of this research method is its ability to discover a wide variety of social, cultural, and political factors potentially related to the phenomenon of interest that may not be known in advance. Analysis tends to be qualitative in nature, but heavily contextualized and nuanced. However, interpretation of findings may depend on the observational and integrative ability of the researcher, lack of control may make it difficult to establish causality, and findings from a single case site may not be readily generalized to other case sites. Generalizability can be improved by replicating and comparing the analysis in other case sites in a multiple case design .

Focus group research is a type of research that involves bringing in a small group of subjects (typically 6 to 10 people) at one location, and having them discuss a phenomenon of interest for a period of 1.5 to 2 hours. The discussion is moderated and led by a trained facilitator, who sets the agenda and poses an initial set of questions for participants, makes sure that ideas and experiences of all participants are represented, and attempts to build a holistic understanding of the problem situation based on participants’ comments and experiences.

Internal validity cannot be established due to lack of controls and the findings may not be generalized to other settings because of small sample size. Hence, focus groups are not generally used for explanatory or descriptive research, but are more suited for exploratory research.

Action research assumes that complex social phenomena are best understood by introducing interventions or “actions” into those phenomena and observing the effects of those actions. In this method, the researcher is usually a consultant or an organizational member embedded within a social context such as an organization, who initiates an action such as new organizational procedures or new technologies, in response to a real problem such as declining profitability or operational bottlenecks. The researcher’s choice of actions must be based on theory, which should explain why and how such actions may cause the desired change. The researcher then observes the results of that action, modifying it as necessary, while simultaneously learning from the action and generating theoretical insights about the target problem and interventions. The initial theory is validated by the extent to which the chosen action successfully solves the target problem. Simultaneous problem solving and insight generation is the central feature that distinguishes action research from all other research methods, and hence, action research is an excellent method for bridging research and practice. This method is also suited for studying unique social problems that cannot be replicated outside that context, but it is also subject to researcher bias and subjectivity, and the generalizability of findings is often restricted to the context where the study was conducted.

Ethnography is an interpretive research design inspired by anthropology that emphasizes that research phenomenon must be studied within the context of its culture. The researcher is deeply immersed in a certain culture over an extended period of time (8 months to 2 years), and during that period, engages, observes, and records the daily life of the studied culture, and theorizes about the evolution and behaviors in that culture. Data is collected primarily via observational techniques, formal and informal interaction with participants in that culture, and personal field notes, while data analysis involves “sense-making”. The researcher must narrate her experience in great detail so that readers may experience that same culture without necessarily being there. The advantages of this approach are its sensitiveness to the context, the rich and nuanced understanding it generates, and minimal respondent bias. However, this is also an extremely time and resource-intensive approach, and findings are specific to a given culture and less generalizable to other cultures.

Selecting Research Designs

Given the above multitude of research designs, which design should researchers choose for their research? Generally speaking, researchers tend to select those research designs that they are most comfortable with and feel most competent to handle, but ideally, the choice should depend on the nature of the research phenomenon being studied. In the preliminary phases of research, when the research problem is unclear and the researcher wants to scope out the nature and extent of a certain research problem, a focus group (for individual unit of analysis) or a case study (for organizational unit of analysis) is an ideal strategy for exploratory research. As one delves further into the research domain, but finds that there are no good theories to explain the phenomenon of interest and wants to build a theory to fill in the unmet gap in that area, interpretive designs such as case research or ethnography may be useful designs. If competing theories exist and the researcher wishes to test these different theories or integrate them into a larger theory, positivist designs such as experimental design, survey research, or secondary data analysis are more appropriate.

Regardless of the specific research design chosen, the researcher should strive to collect quantitative and qualitative data using a combination of techniques such as questionnaires, interviews, observations, documents, or secondary data. For instance, even in a highly structured survey questionnaire, intended to collect quantitative data, the researcher may leave some room for a few open-ended questions to collect qualitative data that may generate unexpected insights not otherwise available from structured quantitative data alone. Likewise, while case research employ mostly face-to-face interviews to collect most qualitative data, the potential and value of collecting quantitative data should not be ignored. As an example, in a study of organizational decision making processes, the case interviewer can record numeric quantities such as how many months it took to make certain organizational decisions, how many people were involved in that decision process, and how many decision alternatives were considered, which can provide valuable insights not otherwise available from interviewees’ narrative responses. Irrespective of the specific research design employed, the goal of the researcher should be to collect as much and as diverse data as possible that can help generate the best possible insights about the phenomenon of interest.

  • Social Science Research: Principles, Methods, and Practices. Authored by : Anol Bhattacherjee. Provided by : University of South Florida. Located at : http://scholarcommons.usf.edu/oa_textbooks/3/ . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Application of pervious concrete pavement in the “breathe in-breathe out” design for sponge cities in China

  • Review Article
  • Published: 02 June 2024

Cite this article

conclusion about research design

  • Yu Huang 1 ,
  • Hao Sun 1 ,
  • Yuhang Liu 2 ,
  • Kai Zhao 2 ,
  • Tong Liu 3 &
  • Dedi Liu 2  

Sponge city construction is an ideal approach to mitigate the degradation of urban water environments. Among road materials, permeable concrete pavement stands out due to its unique structure that allows rainwater runoff to flow through its pores. This paper analyzes the current application status and the prospect of different permeable pavement designs in China’s sponge cities, aiming to offer valuable insights for urban planning and construction. Statistical analysis summarizes the spatial-temporal distribution patterns of urban flooding disasters in China and their causes. By comparing the characteristics and advantages of pervious concrete pavement with traditional concrete pavement, the potential of permeable concrete pavement in sponge city construction is summarized through case studies. The findings highlight that by adjusting the pore size, permeable concrete pavement can collect rainwater while filtering impurities, thereby purifying surface runoff. The range of the pervious coefficient should ideally fall within the range of 4~8 mm/s. In addition, the pavement’s large contact area with the air and internal water evaporation contributes to its self-regulating capability, reducing the occurrence of extreme temperatures. Related experiments have shown that from 8 am to 12 pm, pervious concrete pavement can reduce the temperature by approximately 1 °C compared to conventional concrete. From 12 pm to 8 pm, this temperature difference increases to approximately 3 °C. To meet the needs of environmental protection and resource utilization, permeable concrete pavement can serve as an ideal tool to achieve green and low-carbon development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

conclusion about research design

Abulibdeh A (2021) Analysis of urban heat island characteristics and mitigation strategies for eight arid and semi-arid gulf region cities. Environ Earth Sci 80:259. https://doi.org/10.1007/s12665-021-09540-7

Article   Google Scholar  

Alam T, Mahmoud A, Jones KD, Bezares-Cruz JC, Guerrero J (2019) A Comparison of three types of permeable pavements for urban runoff mitigation in the semi-arid south Texas. Water 11:1992. https://doi.org/10.3390/w11101992

Article   CAS   Google Scholar  

Bao MP (2019) Wrap wooden flat research on the control effect of rainwater runoff and pollutant reduction effect of four different structural permeable surfaces. Xi’an University of Architecture and Technology

Google Scholar  

Bean EZ, Hunt WF, Bidelspach DA (2007) Field survey of permeable pavement surface infiltration rates. J Irrig Drain Eng 133:249–255. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:3(249)

Brattebo BO, Booth DB (2003) Long-term stormwater quantity and quality performance of permeable pavement systems. Water Res 37:4369–4376. https://doi.org/10.1016/S0043-1354(03)00410-X

Cai Z, Han G, Chen MC (2018) Do water bodies play an important role in the relationship between urban form and land surface temperature. Sustain Cities Soc 39:487–498. https://doi.org/10.1016/j.scs.2018.02.033

Chan FKS, Wright N, Cheng X, Griffiths J (2014) After sandy: rethinking flood risk management in Asian coastal megacities. Natural Hazards Review 15:101–103. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000117

Chan FKS, Griffiths JA, Higgitt D, Xu SY, Zhu FF, Tang YT, Xu YY, Thorne CR (2018) “Sponge City” in China breakthrough of planning and flood risk management in the urban context. Land Use Policy 76:772–778. https://doi.org/10.1016/j.landusepol.2018.03.005

Chen X, Yang Y, Zhang C, Hui R, Zhang HY, Li BX, Zhao QL (2022) Valorization of construction waste materials for pavements of sponge cities: a review. Constr Build Mater 356:129247. https://doi.org/10.1016/j.conbuildmat.2022.129247

Cheng XL, Liu Y, Hai R, Li SQ (2021) Research on permeable filter infiltration technology and its application in urban sponge transformation. Water Conservancy and Hydropower Technology (Chinese and English) 52:66–75. https://doi.org/10.13928/j.cnki.wrahe.2021.08.007

Chu XX, Campos-Guereta I, Dawson A, Thom N (2022) Sustainable pavement drainage systems: subgrade moisture, subsurface drainage methods and drainage effectiveness. Constr Build Mater 364:129950. https://doi.org/10.1016/j.conbuildmat.2022.129950

Collins KA, Hunt WF, Hathaway JM (2008) Hydrologic comparison of four types of permeable pavement and standard asphalt in Eastern North Carolina. J Hydrol Eng 13:1146–1157. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1146)

Cui HH, Li R, Gao YN, Li N, Wang SB (2023) Study on the precipitation details and disaster formation process of “7·20” Extreme Rainstorm in Zhengzhou. Journal of Catastrophology 38:114–120+149 https://link.cnki.net/urlid/61.1097.P.20230202.0956.001

Dreelin EA, Fowler L, Carroll CR (2006) A test of porous pavement effectiveness on clay soils during natural storm events. Water Res 40:799–805. https://doi.org/10.1016/j.watres.2005.12.002

Fan H (2022) Research on the application of permeable concrete pavement seepage storage and coupling with rainwater pipe network. Xi’an University of Architecture and Technology. https://doi.org/10.27393/d.cnki.gxazu.2021.000727

Book   Google Scholar  

Fan XZ, Matsumoto T (2019) GIS-based social cost-benefit analysis on integrated urban water management in China: a case study of Sponge City in Harbin. Sustainability 11:5527. https://doi.org/10.3390/su11195527

Guan X, Wang J, Xiao F (2021) Sponge city strategy and application of pavement materials in sponge city. J Clean Prod 303:127022. https://doi.org/10.1016/j.jclepro.2021.127022

Gunawardena KR, Well SMJ, Kershaw T (2017) Utilising green and blue space to mitigate urban heat island intensity. Sci Total Environ 584-585:1040–1055. https://doi.org/10.1016/j.scitotenv.2017.01.158

Haselbach LM, Valavala S, Montes F (2006) Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems. J Environ Manag 81(1):42–49. https://doi.org/10.1016/j.jenvman.2005.09.019

He BJ, Zhu J, Zhao DX, Gou ZH, Qi JD, Wang JS (2019) Co-benefits approach: opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 86:147–157. https://doi.org/10.1016/j.landusepol.2019.05.003

Hou JM, Dong MJ, Li DL, Ma Y, Ji GQ, Zhang S (2022) Drainage effect of urban rainwater pipe network under excessive rainstorm-take Fengxi New Town in Xi’an as an example. J Earth Sci Environ 45:1–10 https://kns.cnki.net/kcms/detail/61.1423.P.20220906.1637.001.html

Hu J, Yao Y, He YL, Chen DG, Fu DS (2017) Experimental study on reducing heat island effect of permeable concrete integral pavement. Green Building 9(1):69–72. https://doi.org/10.3969/j.issn.1004-1672.2017.01.020

Hu N, Zhang J, Xia S, Han RN, Dai ZX, She R, Cui XZ, Meng BW (2020) A field performance evaluation of the periodic maintenance for pervious concrete pavement. J Clean Prod 263:121463. https://doi.org/10.1016/j.jclepro.2020.121463

Ismail I, Bernal SA, Provis JL, Nicolas RS, Brice DG, Kilcullen AR, Hamdan S, van Deventer JS (2013) Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr Build Mater 48:1187–1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106

Jiang Y, Chris Z, Ma YC (2018) Urban pluvial flooding and stormwater management: a contemporary review of China’s challenges and “sponge cities” strategy. Environ Sci Pol 80:132–143. https://doi.org/10.1016/j.envsci.2017.11.016

Kong DY (2020) Research on the application of permeable steel slag concrete pavement in sponge city construction. Southeast University: 1-99. https://doi.org/10.27014/d.cnki.gdnau.2020.002609

Lai MH, Chen ZH, Wang YH, Ho JCM (2022) Effect of fillers on the mechanical properties and durability of steel slag concrete. Constr Build Mater 335:127495. https://doi.org/10.1016/j.conbuildmat.2022.127495

Li L, Bergen JM (2018) Green infrastructure for sustainable urban water management: practices of five forerunner cities. Cities 74:126–133. https://doi.org/10.1016/j.cities.2017.11.013

Li YC, Lu CH, Liu RG, Xu RJ, Wen HQ, Gong JH (2016) Analysis of porous concrete on lighten road. Bulletin of the Chinese Ceramic Society 35:3132–3138. https://doi.org/10.16552/j.cnki.issn1001-1625.2016.10.008

Liu WW, Ma KL, Zhang CQ, Long GC, Xie YJ, Bian W (2019) Research progress on purification mechanism of pollutants in urban stormwater runoff by pervious concrete. Materials Report 33:293–299

Luo WG, Qian X, Lu GW, Xiao Y (2019) Road performance test of polypropylene fiber modified polymer permeable concrete pavement. Journal of Building Science and Engineering 35:118–126. https://doi.org/10.3969/j.issn.1673-2049.2018.06.016

Ming RP, Xie AL, Zhang YJ, Zhang J (2022) Study on strength and permeability of pervious concrete. Concrete 4:147–153

Ministry of Water Resources of the PRC (2023) Annual report on China’s water resources 2022. China Water & Power Press, Beijing

Nguyen T, Ngo H, Guo W, Wang X, Ren N, Li G, Ding J, Liang H (2019) Implementation of specific urban water management - Sponge City. Sci Total Environ 652:147–162. https://doi.org/10.1016/j.scitotenv.2018.10.168

Nie HY, Wang WL, Guo MM, Kang HL, Li JM, Bai Y (2020) Runoff-sediment relationship and erosion dynamic characteristics for two types of engineering deposits under rainfall conditions. Chin J Appl Ecol 31:3141–3153. https://doi.org/10.13287/j.1001-9332.202009.013

Qi XY, Zhang SH, Wang YJ, Li MY, Jiang YC, Wang RCY, Jiang YZ, Ma XY (2020) Impacts of particle size and maintenance on clogging processes of permeable pavement systems. Environ Sci Technol 43(08):28–35. https://doi.org/10.19672/j.cnki.1003-6504.2020.08.005

Qi Y J, Kang A H, Lu Z P, Kou C J, Xu X L (2021) Permeability and purification ability of permeable asphalt mixture under two simulated conditions. J Mater Sci Eng 39: 124-129. https://doi.org/10.14136/j.cnki.issn1673-2812.2021.01.021

Qi B, Gao S, Xu P (2023) The application of rubber aggregate-combined permeable concrete mixture in sponge city construction. Coatings 13:87. https://doi.org/10.3390/coatings13010087

Qin X (2017) Research on pavement performance and water purification characteristics of permeable concrete pavement and cement stabilized macadam base based on sponge city. Chongqing Jiaotong University, pp 1–103. https://doi.org/10.7666/d.Y3225457

Qiu JL, Liu DD, Zhao K, Lai JX, Wang XL, Wang ZC, Liu T (2024a) Influence spatial behavior of surface cracks and prospects for prevention methods in shallow loess tunnels in China. Tunnelling and Underground Space Technology 143:105453. https://doi.org/10.1016/j.tust.2023.105453  

Qiu JL, Liu YH, Qian XY, Ma C, Liu J, Liu T, Han HX (2024b) Guarantee rate statistics and product-moment correlation analysis of the optimal deformation allowance for loess tunnel in China. Environ Earth Sci 83. https://doi.org/10.1007/s12665-023-11263-w

Sansalone J, Teng Z (2004) In situ partial exfiltration of rainfall-runoff I: quality and quantity attenuation. J Environ Eng 130:990–1007. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:9(990)

Sansalone J, Kuang X, Ranieri V (2012) Filtration and clogging of permeable pavement loaded by urban drainage. Water Res 46:6763–6774. https://doi.org/10.1016/j.watres.2011.10.018

Sarkar SK, Rahman MA, Esraz-Ul-Zannat M, Islam MF (2021) Simulation-based modeling of urban waterlogging in Khulna City. Journal of Water and Climate Change 12:566–579. https://doi.org/10.2166/wcc.2020.256

Stanczuk-Galwiaczek M, Sobolewska-Mikulska K, Ritzema H, van Loon-Steensma JM (2018) Integration of water management and land consolidation in rural areas to adapt to climate change: experiences from Poland and the Netherlands. Land Use Policy 77:498–511. https://doi.org/10.1016/j.landusepol.2018.06.005

Tan KH, Wang TY, Zhou ZH (2021a) Biochar as a partial cement replacement material for developing sustainable concrete: an overview. J Mater Civ Eng 33:03121001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003987

Tan Y, Yi CG, Andy H, Xiao HL (2021b) Experimental study on blocking and permeability recovery of permeable concrete pavement. Journal of Central South University (Natural Science Edition) 52:2480–2490. https://doi.org/10.11817/j.issn.1672-7207.2021.07.033

Tang K, Liu D, Xie S, Qiu J, Lai J, Liu T, Fang Y (2024) Analysis of loess water migration regularity and failure response of tunnel structure under rainfall environment. Bull Eng Geol Environ 83(6):1–22. https://doi.org/10.1007/s10064-024-03715-9

Theeuwes NE, Solcero VA, Steeneveld GJ (2013) Modeling the influence of open water surfaces on the summertime temperature and thermal comfort in the city. J Geophys Res-Atmos 118:8881–8896. https://doi.org/10.1002/jgrd.50704

Tian PJ (2018) Composition design and performance study of epoxy resin concrete permeable pavement materials. Chang’an University: 1–89

Uribe CHA, Brenes RB, Hack J (2022) The potential of retrofitted urban green infrastructure to reduce runoff-A model implementation with site-specific constraints at the neighborhood scale. Urban For Urban Green 69:127499. https://doi.org/10.1016/j.ufug.2022.127499

Wang XY, Qu LY (2017) Application of pervious concrete pavement in Beijing municipal road engineering. Urban Roads and Bridges and Flood Control 12:185–187. https://doi.org/10.3969/j.issn.1002-3550.2022.04.031

Wang JL, Zhang HY, Sheng W, Zhang YJ, Feng CM, Li JQ (2017a) Experimental study on runoff and pollutant reduction conducted bypervious concrete pavement under extreme rainfall. Environ Eng 35:28–32. https://doi.org/10.13205/j.hjgc.201702007

Wang K, Zhang H, Chen Y (2017b) Analysis of COD design method for combination of traffic and water in sponge city based on the urban design of Yangming Lake area in Changde. Hunan Province Architecture & Culture 163:198–201. https://doi.org/10.3969/j.issn.1672-4909.2017.10.080

Wang X J,Dallimer M, Scott C E, Shi W T, Gao J X (2021) Tree species-richness and diversity predicts the magnitude of urban heat island mitigation effects of green spaces. Sci Total Environ 770: 145211, https://doi.org/10.1016/j.scitotenv.2021.145211

Wu FT, Fu CB (2013) Change of precipitation intensity spectra at different spatial scales under warming conditions. Chin Sci Bull 58:1385–1394. https://doi.org/10.1007/s11434-013-5699-0

Xia S (2021) Summer frost optimization of the anti-clogging performance of permeable pavement structure. Shandong University: 1–80. https://doi.org/10.27272/d.cnki.gshdu.2021.003608

Xia J, Zhang YY, Xiong LH, He S, Wang LF, Yu ZB (2017) Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci China Earth Sci 60:652–658. https://doi.org/10.1007/s11430-016-0111-8

Xiao S, Zou L, Xia J, Dong Y, Yang Z, Yao T (2023) Assessment of the urban waterlogging resilience and identification of its driving factors: a case study of Wuhan City, China. Sci Total Environ 866:161321. https://doi.org/10.1016/j.scitotenv.2022.161321

Yi SJ, Kou JY, Du WG, Zhang G (2021) Research progress of permeable concrete pavement. China Science and Technology Information 07:59–60. https://doi.org/10.3969/j.issn.1001-8972.2021.07.020

Zhang Q, Zheng YJ, Singh VP, Luo M, Xie ZH (2017) Summer extreme precipitation in eastern China: mechanisms and impacts. J Geophys Res Atmos 122:2766–2778. https://doi.org/10.1002/2016JD025913

Zhang J, Ma GD, Dai ZX, Ming RP, Cui XZ, She R (2018) Numerical study on pore-clogging mechanism in pervious pavements. J Hydrol 565:589–598. https://doi.org/10.1016/j.jhydrol.2018.08.072

Zhang J, Xia S, Hu N, Hao W, Han R, Meng B, Zhang Z (2021) Optimization of anti-clogging pervious pavement structure based on numerical evaluation. Constr Build Mater 275:122186. https://doi.org/10.1016/j.conbuildmat.2020.122186

Zheng C, Mao YZ (2020) Research on the preparation technology of color permeable concrete pavement brick based on solving the environmental pollution problem of solid waste. Energy conservation and environmental protection 07:72–73. https://doi.org/10.3969/j.issn.1009-539X.2020.07.030

Zhou MJ, Yuan HL (2022) Research on growth rate of rainstorm intensity and urbanization impact in some cities of China. China Water Supply and Drainage 38:126–131. https://doi.org/10.19853/j.zgjsps.1000-4602.2022.19.020

Zhou ZH, Xie JL (2022) Numerical analysis on the optimization of evaporative cooling performance for permeable pavements. Sustainability 14:4915. https://doi.org/10.3390/su14094915

Zhu SW (2023) Experimental study on two types of permeable pavement flow generation mechanisms and simulation analysis of their application in northern cities. Changan University: 1–91. https://doi.org/10.26976/d.cnki.gchau.2023.002441

Download references

This work is financially supported by the Natural Science Basic Research Program of Shaanxi Province (Youth Project) (2024JC-YBQN-0519) and the Humanities and Social Science Fund of the Ministry of Education of China (22YJC760134).

Author information

Authors and affiliations.

Shaanxi Provincial Key Laboratory of Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, 710127, China

Yu Huang & Hao Sun

School of Highway, Chang’an University, Xi’an, 710064, China

Yuhang Liu, Kai Zhao & Dedi Liu

School of Science, Xi’an University of Architecture and Technology, Xi’an, 710055, China

You can also search for this author in PubMed   Google Scholar

Contributions

Yu Huang: investigation, data curation, and writing. Hao Sun: conceptualization, methodology, funding acquisition, supervision, and review. Yuhang Liu: data curation, investigation, and validation. Kai Zhao: literature, investigation, and validation. Tong Liu: investigation. Dedi Liu: data curation.

Corresponding author

Correspondence to Hao Sun .

Ethics declarations

Ethics approval.

Not applicable.

Consent to participate

Consent for publication, competing interests.

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Huang, ., Sun, H., Liu, Y. et al. Application of pervious concrete pavement in the “breathe in-breathe out” design for sponge cities in China. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33760-6

Download citation

Received : 04 February 2024

Accepted : 17 May 2024

Published : 02 June 2024

DOI : https://doi.org/10.1007/s11356-024-33760-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sponge city
  • Permeable concrete
  • Urban flooding prevention
  • Green infrastructure material
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Conclusion For Research Design

    conclusion about research design

  2. Research Design Conclusion Persuasive Essay Example

    conclusion about research design

  3. PPT

    conclusion about research design

  4. How to Write a Conclusion for a Research Paper: Full Guide

    conclusion about research design

  5. Research Design: Conclusion validity

    conclusion about research design

  6. Dissertation Introduction, Conclusion, and Abstract

    conclusion about research design

VIDEO

  1. Research Designs: Part 2 of 3: Qualitative Research Designs (ሪሰርች ዲዛይን

  2. QUALITATIVE RESEARCH DESIGN IN EDUCATIONAL RESEAERCH

  3. WRITING THE CHAPTER 3|| Research Methodology (Research Design and Method)

  4. How to write a research paper conclusion

  5. Russia's Biggest Degenerate Streamer

  6. Research Design

COMMENTS

  1. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  2. Research Design: What it is, Elements & Types

    Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success. Creating a research topic explains the type of research (experimental,survey research,correlational ...

  3. Research Design

    Your research design should clearly define who or what your research will focus on, and how you'll go about choosing your participants or subjects. In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you'll actually collect data from.

  4. Research Design

    Discussion and Conclusion: This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research. ... Research design: The research design will be a quasi-experimental design, with a pretest-posttest control group design.

  5. What Is Research Design? 8 Types + Examples

    Experimental Research Design. Experimental research design is used to determine if there is a causal relationship between two or more variables.With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions ...

  6. Introducing Research Designs

    We define research design as a combination of decisions within a research process. These decisions enable us to make a specific type of argument by answering the research question. It is the implementation plan for the research study that allows reaching the desired (type of) conclusion. Different research designs make it possible to draw ...

  7. Research design

    Research design is a comprehensive plan for data collection in an empirical research project. It is a 'blueprint' for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: the data collection process, the instrument development process, and the sampling process.

  8. Organizing Your Social Sciences Research Paper

    Research Design: Creating Robust Approaches for the Social Sciences. Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. ... This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational ...

  9. Research Design

    Research design is the blueprint of how to conduct research from conception to completion. It requires careful crafts to ensure success. The initial step of research design is to theorize key concepts of the research questions, operationalize the variables used to measure the key concepts, and carefully identify the levels of measurements for ...

  10. Writing a Research Paper Conclusion

    Table of contents. Step 1: Restate the problem. Step 2: Sum up the paper. Step 3: Discuss the implications. Research paper conclusion examples. Frequently asked questions about research paper conclusions.

  11. How to Write a Research Design

    Step 2: Data Type you Need for Research. Decide on the type of data you need for your research. The type of data you need to collect depends on your research questions or research hypothesis. Two types of research data can be used to answer the research questions: Primary Data Vs. Secondary Data.

  12. 9. The Conclusion

    The conclusion is intended to help the reader understand why your research should matter to them after they have finished reading the paper. A conclusion is not merely a summary of the main topics covered or a re-statement of your research problem, but a synthesis of key points derived from the findings of your study and, if applicable, where you recommend new areas for future research.

  13. Planning Qualitative Research: Design and Decision Making for New

    While many books and articles guide various qualitative research methods and analyses, there is currently no concise resource that explains and differentiates among the most common qualitative approaches. We believe novice qualitative researchers, students planning the design of a qualitative study or taking an introductory qualitative research course, and faculty teaching such courses can ...

  14. (PDF) Basics of Research Design: A Guide to selecting appropriate

    for validity and reliability. Design is basically concerned with the aims, uses, purposes, intentions and plans within the. pr actical constraint of location, time, money and the researcher's ...

  15. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  16. (PDF) Research Design

    A research is valid when a conclusion is accurate or true and research design is the conceptual blueprint within which research is conducted. A scholar for his research, prepare an action plan, it ...

  17. Research Paper Conclusion

    Here are some steps you can follow to write an effective research paper conclusion: Restate the research problem or question: Begin by restating the research problem or question that you aimed to answer in your research. This will remind the reader of the purpose of your study. Summarize the main points: Summarize the key findings and results ...

  18. Conclusive Research

    Conclusive Research. Conclusive research design, as the name implies, is applied to generate findings that are practically useful in reaching conclusions or decision-making. In this type of studies research objectives and data requirements need to be clearly defined. Findings of conclusive studies usually have specific uses.

  19. Introducing Research Designs

    We define research design as a combination of decisions within a research process. These decisions enable us to make a specific argument by answering the research question. The implementation plan for the research study allows for reaching the desired (type of) conclusion. Different research designs make it possible to draw different ...

  20. How to Write a Conclusion for Research Papers (with Examples)

    Generate the conclusion outline: After entering all necessary details, click on 'generate'. Paperpal will then create a structured outline for your conclusion, to help you start writing and build upon the outline. Write your conclusion: Use the generated outline to build your conclusion.

  21. (PDF) CHAPTER FIVE RESEARCH DESIGN AND METHODOLOGY 5.1. Introduction

    Research Design A research design is the 'procedures for collecting, analyzing, interpreting and reporting data in research studies' (Creswell & Plano Clark 2007, p.58). ... Therefore, conclusions ...

  22. Conclusion research design can be considered the

    View full document. Conclusion Research design can be considered the blueprint for any research study. The design will set up how the experiment will go. It determines the dependent and independent variables in the study. There are many different research designs that can be used. Some of these designs include: descriptive, correlation ...

  23. The effect of Transition to Adulthood Training Program for mothers of

    Research design. We conducted a pilot randomized controlled trial assessing the impact of an educational program (Transition to Adulthood Training Program - TATP) to improve the family's quality of life and reduce mothers' perceived stress levels. ... Conclusion. The findings from our study highlight the significant positive impact of the TATP ...

  24. Peptides in Cancer Treatment: Current Research and Future Potential

    Peptides have emerged as promising agents in the field of cancer treatment, with current research highlighting their potential applications. This article delves into the practical applications of peptides in cancer treatment, exploring existing peptide-based approaches and innovative design strategies. Discover the future potential of peptides in combating cancer and gain valuable insights ...

  25. Exploring the use of body worn cameras in acute mental health wards: a

    Design. To answer our research questions, we used a mixed-methods design . Using this design allowed us to investigate the impact of implementing BWCs in mental health settings on a range of quantitative and qualitative outcomes. ... In conclusion, while there have been advances in digital applications and immersive technologies showing promise ...

  26. Frontiers

    In a single-case research design, a total of N=10 students in Grades 2 and 4 with varying ADHD profiles were observed and trained in an ABAB-design with a computer-cased mathematics intervention. ... As a conclusion, mathematics interventions are supposed to address students with attention deficits more explicitly. Research suggest that ...

  27. Effectiveness and feasibility of a motivational interviewing intake

    Background: Client discontinuation from outpatient addiction treatment programs is common, and the initial intake is the service delivery point with the highest attrition rate. Replacing the comprehensive intake assessment with a person-centered Motivational Interviewing (MI) intervention is a potential solution to address provider and client concerns about the disengaging, time-intensive ...

  28. Chapter 5 Research Design

    Research design is a comprehensive plan for data collection in an empirical research project. It is a "blueprint" for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: (1) the data collection process, (2) the instrument development process, and (3) the sampling process.

  29. Data‐driven adaptive control design for active stabilization of

    5 CONCLUSION. During the process of carrying out high-altitude monitoring and aerial photography tasks, stratospheric airships may experience changes in attitude due to wind interference, as well as vibrations from internal power systems, which may result in decreased imaging quality of onboard equipment.

  30. Application of pervious concrete pavement in the "breathe ...

    The design scheme incorporates a permeable asphalt concrete structure for the main vehicle traffic lanes and a permeable cement concrete pavement structure for areas with smaller-scale vehicle traffic. ... and the removal effect of cement on pollutants is the best. The research results show that the purification principle mainly includes the ...