Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

What the Case Study Method Really Teaches

  • Nitin Nohria

case study importance for students

Seven meta-skills that stick even if the cases fade from memory.

It’s been 100 years since Harvard Business School began using the case study method. Beyond teaching specific subject matter, the case study method excels in instilling meta-skills in students. This article explains the importance of seven such skills: preparation, discernment, bias recognition, judgement, collaboration, curiosity, and self-confidence.

During my decade as dean of Harvard Business School, I spent hundreds of hours talking with our alumni. To enliven these conversations, I relied on a favorite question: “What was the most important thing you learned from your time in our MBA program?”

  • Nitin Nohria is the George F. Baker Professor of Business Administration, Distinguished University Service Professor, and former dean of Harvard Business School.

Partner Center

Using Case Studies to Teach

case study importance for students

Why Use Cases?

Many students are more inductive than deductive reasoners, which means that they learn better from examples than from logical development starting with basic principles. The use of case studies can therefore be a very effective classroom technique.

Case studies are have long been used in business schools, law schools, medical schools and the social sciences, but they can be used in any discipline when instructors want students to explore how what they have learned applies to real world situations. Cases come in many formats, from a simple “What would you do in this situation?” question to a detailed description of a situation with accompanying data to analyze. Whether to use a simple scenario-type case or a complex detailed one depends on your course objectives.

Most case assignments require students to answer an open-ended question or develop a solution to an open-ended problem with multiple potential solutions. Requirements can range from a one-paragraph answer to a fully developed group action plan, proposal or decision.

Common Case Elements

Most “full-blown” cases have these common elements:

  • A decision-maker who is grappling with some question or problem that needs to be solved.
  • A description of the problem’s context (a law, an industry, a family).
  • Supporting data, which can range from data tables to links to URLs, quoted statements or testimony, supporting documents, images, video, or audio.

Case assignments can be done individually or in teams so that the students can brainstorm solutions and share the work load.

The following discussion of this topic incorporates material presented by Robb Dixon of the School of Management and Rob Schadt of the School of Public Health at CEIT workshops. Professor Dixon also provided some written comments that the discussion incorporates.

Advantages to the use of case studies in class

A major advantage of teaching with case studies is that the students are actively engaged in figuring out the principles by abstracting from the examples. This develops their skills in:

  • Problem solving
  • Analytical tools, quantitative and/or qualitative, depending on the case
  • Decision making in complex situations
  • Coping with ambiguities

Guidelines for using case studies in class

In the most straightforward application, the presentation of the case study establishes a framework for analysis. It is helpful if the statement of the case provides enough information for the students to figure out solutions and then to identify how to apply those solutions in other similar situations. Instructors may choose to use several cases so that students can identify both the similarities and differences among the cases.

Depending on the course objectives, the instructor may encourage students to follow a systematic approach to their analysis.  For example:

  • What is the issue?
  • What is the goal of the analysis?
  • What is the context of the problem?
  • What key facts should be considered?
  • What alternatives are available to the decision-maker?
  • What would you recommend — and why?

An innovative approach to case analysis might be to have students  role-play the part of the people involved in the case. This not only actively engages students, but forces them to really understand the perspectives of the case characters. Videos or even field trips showing the venue in which the case is situated can help students to visualize the situation that they need to analyze.

Accompanying Readings

Case studies can be especially effective if they are paired with a reading assignment that introduces or explains a concept or analytical method that applies to the case. The amount of emphasis placed on the use of the reading during the case discussion depends on the complexity of the concept or method. If it is straightforward, the focus of the discussion can be placed on the use of the analytical results. If the method is more complex, the instructor may need to walk students through its application and the interpretation of the results.

Leading the Case Discussion and Evaluating Performance

Decision cases are more interesting than descriptive ones. In order to start the discussion in class, the instructor can start with an easy, noncontroversial question that all the students should be able to answer readily. However, some of the best case discussions start by forcing the students to take a stand. Some instructors will ask a student to do a formal “open” of the case, outlining his or her entire analysis.  Others may choose to guide discussion with questions that move students from problem identification to solutions.  A skilled instructor steers questions and discussion to keep the class on track and moving at a reasonable pace.

In order to motivate the students to complete the assignment before class as well as to stimulate attentiveness during the class, the instructor should grade the participation—quantity and especially quality—during the discussion of the case. This might be a simple check, check-plus, check-minus or zero. The instructor should involve as many students as possible. In order to engage all the students, the instructor can divide them into groups, give each group several minutes to discuss how to answer a question related to the case, and then ask a randomly selected person in each group to present the group’s answer and reasoning. Random selection can be accomplished through rolling of dice, shuffled index cards, each with one student’s name, a spinning wheel, etc.

Tips on the Penn State U. website: http://tlt.its.psu.edu/suggestions/cases/

If you are interested in using this technique in a science course, there is a good website on use of case studies in the sciences at the University of Buffalo.

Dunne, D. and Brooks, K. (2004) Teaching with Cases (Halifax, NS: Society for Teaching and Learning in Higher Education), ISBN 0-7703-8924-4 (Can be ordered at http://www.bookstore.uwo.ca/ at a cost of $15.00)

  • Center for Innovative Teaching and Learning
  • Instructional Guide

Case Studies

Case studies can be used to help students understand simple and complex issues. They typically are presented to the students as a situation or scenario which is guided by questions such as “What would you do in this situation?” or “How would you solve this problem?” Successful case studies focus on problem situations relevant to course content and which are relevant “both to the interests and experience level of learners” (Illinois Online Network, 2007).

Case studies can be simple problems where students “work out” a solution to more complex scenarios which require role playing and elaborate planning. Case studies typically involve teams although cases can be undertaken individually. Because case studies often are proposed to not have “one right answer” (Kowalski, Weaver, Henson, 1998, p. 4), some students may be challenged to think alternatively than their peers. However, when properly planned, case studies can effectively engage students in problem solving and deriving creative solutions.

The Penn State University’s Teaching and Learning with Technology unit suggests the following elements when planning case studies for use in the classroom.

Case studies actively involve students as they work on issues found in “real-life” situations and, with careful planning, can be used in all academic disciplines.
  • Real-World Scenario. Cases are generally based on real world situations, although some facts may be changed to simplify the scenario or “protect the innocent.”
  • Supporting Data and Documents. Effective case assignments typically provide real world situations for student to analyze. These can be simple data tables, links to URLs, quoted statements or testimony, supporting documents, images, video, audio, or any appropriate material.
  • Open-Ended Problem. Most case assignments require students to answer an open-ended question or develop a solution to an open-ended problem with multiple potential solutions. Requirements can range from a one-paragraph answer to a fully developed team action plan, proposal or decision. (Penn State University, 2006, para. 2).
Most case assignments require students to answer an open-ended question or develop a solution to an open-ended problem with multiple potential solutions.

Instructor Tasks

To help you get started using case studies in the classroom, a number of tasks should be considered. Following this list are tasks to help you prepare students as they participate in the case study.

  • Identify a topic that is based on real-world situations
  • Develop the case that will challenge students’ current knowledge of the topic
  • Link the case to one (or more) of the course goals or objectives
  • Provide students with case study basic information before asking them to work on the case
  • Prepare necessary data, information, that will help students come up with a solution
  • Discuss how this case would relate to real life and career situations
  • Place students in teams in which participants have differing views and opinions to better challenge them in discussing possible solutions to the case
  • Review team dynamics with the students (prepare an outline of team rules and roles)
  • Inform students that they are to find a solution to the case based on their personal experiences, the knowledge gained in class, and challenge one another to solve the problem

Student Tasks

  • Determine team member roles and identify a strategic plan to solve the case
  • Brainstorm and prepare questions to further explore the case
  • Read and critically analyze any data provided by the instructor, discuss the facts related to the case, identify and discuss the relationship of further problems within the case
  • Listen to and be open to viewpoints expressed by each member of the team
  • Assess, refine, and condense solutions that are presented
  • Prepare findings as required by the instructor

Case studies provide students with scenarios in which they can begin to think about their understanding and solutions to problems found in real-world situations. When carefully planned, case studies will challenge students’ critical thinking and problem solving skills in a safe and open learning environment. Case studies can help students analyze and find solutions to complex problems with foresight and confidence.

Illinois Online Network (2007). ION research: Case studies. https://www.ion.uillinois.edu/resources/casestudies/

Kowalski, T. J., Weaver, R. A., & Henson, K. T. (1998). Case studies of beginning teachers. New York, NY: Longman.

Penn State University (2006). Office of Teaching and Learning with Technology. Using cases in teaching. http://tlt.its.psu.edu/suggestions/cases/casewhat.html

Selected Resources

Study Guides and Strategies (2007). Case studies. https://www.studygs.net/casestudy.htm

Creative Commons License

Suggested citation

Northern Illinois University Center for Innovative Teaching and Learning. (2012). Case studies. In Instructional guide for university faculty and teaching assistants. Retrieved from https://www.niu.edu/citl/resources/guides/instructional-guide

Phone: 815-753-0595 Email: [email protected]

Connect with us on

Facebook page Twitter page YouTube page Instagram page LinkedIn page

Center for Teaching

Case studies.

Print Version

Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible. Various disciplines have employed case studies, including humanities, social sciences, sciences, engineering, law, business, and medicine. Good cases generally have the following features: they tell a good story, are recent, include dialogue, create empathy with the main characters, are relevant to the reader, serve a teaching function, require a dilemma to be solved, and have generality.

Instructors can create their own cases or can find cases that already exist. The following are some things to keep in mind when creating a case:

  • What do you want students to learn from the discussion of the case?
  • What do they already know that applies to the case?
  • What are the issues that may be raised in discussion?
  • How will the case and discussion be introduced?
  • What preparation is expected of students? (Do they need to read the case ahead of time? Do research? Write anything?)
  • What directions do you need to provide students regarding what they are supposed to do and accomplish?
  • Do you need to divide students into groups or will they discuss as the whole class?
  • Are you going to use role-playing or facilitators or record keepers? If so, how?
  • What are the opening questions?
  • How much time is needed for students to discuss the case?
  • What concepts are to be applied/extracted during the discussion?
  • How will you evaluate students?

To find other cases that already exist, try the following websites:

  • The National Center for Case Study Teaching in Science , University of Buffalo. SUNY-Buffalo maintains this set of links to other case studies on the web in disciplines ranging from engineering and ethics to sociology and business
  • A Journal of Teaching Cases in Public Administration and Public Policy , University of Washington

For more information:

  • World Association for Case Method Research and Application

Book Review :  Teaching and the Case Method , 3rd ed., vols. 1 and 2, by Louis Barnes, C. Roland (Chris) Christensen, and Abby Hansen. Harvard Business School Press, 1994; 333 pp. (vol 1), 412 pp. (vol 2).

Creative Commons License

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules
  • Utility Menu

University Logo

GA4 Tracking Code

cube

bok_logo_2-02_-_harvard_left.png

Bok Center Logo

Case Study At-A-Glance

A case study is a way to let students interact with material in an open-ended manner. the goal is not to find solutions, but to explore possibilities and options of a real-life scenario..

Want examples of a Case-Study?  Check out the ABLConnect Activity Database Want to read research supporting the Case-Study method? Click here

Why should you facilitate a Case Study?

Want to facilitate a case-study in your class .

How-To Run a Case-Study

  • Before class pick the case study topic/scenario. You can either generate a fictional situation or can use a real-world example.
  • Clearly let students know how they should prepare. Will the information be given to them in class or do they need to do readings/research before coming to class?
  • Have a list of questions prepared to help guide discussion (see below)
  • Sessions work best when the group size is between 5-20 people so that everyone has an opportunity to participate. You may choose to have one large whole-class discussion or break into sub-groups and have smaller discussions. If you break into groups, make sure to leave extra time at the end to bring the whole class back together to discuss the key points from each group and to highlight any differences.
  • What is the problem?
  • What is the cause of the problem?
  • Who are the key players in the situation? What is their position?
  • What are the relevant data?
  • What are possible solutions – both short-term and long-term?
  • What are alternate solutions? – Play (or have the students play) Devil’s Advocate and consider alternate view points
  • What are potential outcomes of each solution?
  • What other information do you want to see?
  • What can we learn from the scenario?
  • Be flexible. While you may have a set of questions prepared, don’t be afraid to go where the discussion naturally takes you. However, be conscious of time and re-focus the group if key points are being missed
  • Role-playing can be an effective strategy to showcase alternate viewpoints and resolve any conflicts
  • Involve as many students as possible. Teamwork and communication are key aspects of this exercise. If needed, call on students who haven’t spoken yet or instigate another rule to encourage participation.
  • Write out key facts on the board for reference. It is also helpful to write out possible solutions and list the pros/cons discussed.
  • Having the information written out makes it easier for students to reference during the discussion and helps maintain everyone on the same page.
  • Keep an eye on the clock and make sure students are moving through the scenario at a reasonable pace. If needed, prompt students with guided questions to help them move faster.  
  • Either give or have the students give a concluding statement that highlights the goals and key points from the discussion. Make sure to compare and contrast alternate viewpoints that came up during the discussion and emphasize the take-home messages that can be applied to future situations.
  • Inform students (either individually or the group) how they did during the case study. What worked? What didn’t work? Did everyone participate equally?
  • Taking time to reflect on the process is just as important to emphasize and help students learn the importance of teamwork and communication.

CLICK HERE FOR A PRINTER FRIENDLY VERSION

Other Sources:

Harvard Business School: Teaching By the Case-Study Method

Written by Catherine Weiner

Search form

  • About Faculty Development and Support
  • Programs and Funding Opportunities

Consultations, Observations, and Services

  • Strategic Resources & Digital Publications
  • Canvas @ Yale Support
  • Learning Environments @ Yale
  • Teaching Workshops
  • Teaching Consultations and Classroom Observations
  • Teaching Programs
  • Spring Teaching Forum
  • Written and Oral Communication Workshops and Panels
  • Writing Resources & Tutorials
  • About the Graduate Writing Laboratory
  • Writing and Public Speaking Consultations
  • Writing Workshops and Panels
  • Writing Peer-Review Groups
  • Writing Retreats and All Writes
  • Online Writing Resources for Graduate Students
  • About Teaching Development for Graduate and Professional School Students
  • Teaching Programs and Grants
  • Teaching Forums
  • Resources for Graduate Student Teachers
  • About Undergraduate Writing and Tutoring
  • Academic Strategies Program
  • The Writing Center
  • STEM Tutoring & Programs
  • Humanities & Social Sciences
  • Center for Language Study
  • Online Course Catalog
  • Antiracist Pedagogy
  • NECQL 2019: NorthEast Consortium for Quantitative Literacy XXII Meeting
  • STEMinar Series
  • Teaching in Context: Troubling Times
  • Helmsley Postdoctoral Teaching Scholars
  • Pedagogical Partners
  • Instructional Materials
  • Evaluation & Research
  • STEM Education Job Opportunities
  • Yale Connect
  • Online Education Legal Statements

You are here

Case-based learning.

Case-based learning (CBL) is an established approach used across disciplines where students apply their knowledge to real-world scenarios, promoting higher levels of cognition (see Bloom’s Taxonomy ). In CBL classrooms, students typically work in groups on case studies, stories involving one or more characters and/or scenarios.  The cases present a disciplinary problem or problems for which students devise solutions under the guidance of the instructor. CBL has a strong history of successful implementation in medical, law, and business schools, and is increasingly used within undergraduate education, particularly within pre-professional majors and the sciences (Herreid, 1994). This method involves guided inquiry and is grounded in constructivism whereby students form new meanings by interacting with their knowledge and the environment (Lee, 2012).

There are a number of benefits to using CBL in the classroom. In a review of the literature, Williams (2005) describes how CBL: utilizes collaborative learning, facilitates the integration of learning, develops students’ intrinsic and extrinsic motivation to learn, encourages learner self-reflection and critical reflection, allows for scientific inquiry, integrates knowledge and practice, and supports the development of a variety of learning skills.

CBL has several defining characteristics, including versatility, storytelling power, and efficient self-guided learning.  In a systematic analysis of 104 articles in health professions education, CBL was found to be utilized in courses with less than 50 to over 1000 students (Thistlethwaite et al., 2012). In these classrooms, group sizes ranged from 1 to 30, with most consisting of 2 to 15 students.  Instructors varied in the proportion of time they implemented CBL in the classroom, ranging from one case spanning two hours of classroom time, to year-long case-based courses. These findings demonstrate that instructors use CBL in a variety of ways in their classrooms.

The stories that comprise the framework of case studies are also a key component to CBL’s effectiveness. Jonassen and Hernandez-Serrano (2002, p.66) describe how storytelling:

Is a method of negotiating and renegotiating meanings that allows us to enter into other’s realms of meaning through messages they utter in their stories,

Helps us find our place in a culture,

Allows us to explicate and to interpret, and

Facilitates the attainment of vicarious experience by helping us to distinguish the positive models to emulate from the negative model.

Neurochemically, listening to stories can activate oxytocin, a hormone that increases one’s sensitivity to social cues, resulting in more empathy, generosity, compassion and trustworthiness (Zak, 2013; Kosfeld et al., 2005). The stories within case studies serve as a means by which learners form new understandings through characters and/or scenarios.

CBL is often described in conjunction or in comparison with problem-based learning (PBL). While the lines are often confusingly blurred within the literature, in the most conservative of definitions, the features distinguishing the two approaches include that PBL involves open rather than guided inquiry, is less structured, and the instructor plays a more passive role. In PBL multiple solutions to the problem may exit, but the problem is often initially not well-defined. PBL also has a stronger emphasis on developing self-directed learning. The choice between implementing CBL versus PBL is highly dependent on the goals and context of the instruction.  For example, in a comparison of PBL and CBL approaches during a curricular shift at two medical schools, students and faculty preferred CBL to PBL (Srinivasan et al., 2007). Students perceived CBL to be a more efficient process and more clinically applicable. However, in another context, PBL might be the favored approach.

In a review of the effectiveness of CBL in health profession education, Thistlethwaite et al. (2012), found several benefits:

Students enjoyed the method and thought it enhanced their learning,

Instructors liked how CBL engaged students in learning,

CBL seemed to facilitate small group learning, but the authors could not distinguish between whether it was the case itself or the small group learning that occurred as facilitated by the case.

Other studies have also reported on the effectiveness of CBL in achieving learning outcomes (Bonney, 2015; Breslin, 2008; Herreid, 2013; Krain, 2016). These findings suggest that CBL is a vehicle of engagement for instruction, and facilitates an environment whereby students can construct knowledge.

Science – Students are given a scenario to which they apply their basic science knowledge and problem-solving skills to help them solve the case. One example within the biological sciences is two brothers who have a family history of a genetic illness. They each have mutations within a particular sequence in their DNA. Students work through the case and draw conclusions about the biological impacts of these mutations using basic science. Sample cases: You are Not the Mother of Your Children ; Organic Chemisty and Your Cellphone: Organic Light-Emitting Diodes ;   A Light on Physics: F-Number and Exposure Time

Medicine – Medical or pre-health students read about a patient presenting with specific symptoms. Students decide which questions are important to ask the patient in their medical history, how long they have experienced such symptoms, etc. The case unfolds and students use clinical reasoning, propose relevant tests, develop a differential diagnoses and a plan of treatment. Sample cases: The Case of the Crying Baby: Surgical vs. Medical Management ; The Plan: Ethics and Physician Assisted Suicide ; The Haemophilus Vaccine: A Victory for Immunologic Engineering

Public Health – A case study describes a pandemic of a deadly infectious disease. Students work through the case to identify Patient Zero, the person who was the first to spread the disease, and how that individual became infected.  Sample cases: The Protective Parent ; The Elusive Tuberculosis Case: The CDC and Andrew Speaker ; Credible Voice: WHO-Beijing and the SARS Crisis

Law – A case study presents a legal dilemma for which students use problem solving to decide the best way to advise and defend a client. Students are presented information that changes during the case.  Sample cases: Mortgage Crisis Call (abstract) ; The Case of the Unpaid Interns (abstract) ; Police-Community Dialogue (abstract)

Business – Students work on a case study that presents the history of a business success or failure. They apply business principles learned in the classroom and assess why the venture was successful or not. Sample cases: SELCO-Determining a path forward ; Project Masiluleke: Texting and Testing to Fight HIV/AIDS in South Africa ; Mayo Clinic: Design Thinking in Healthcare

Humanities - Students consider a case that presents a theater facing financial and management difficulties. They apply business and theater principles learned in the classroom to the case, working together to create solutions for the theater. Sample cases: David Geffen School of Drama

Recommendations

Finding and Writing Cases

Consider utilizing or adapting open access cases - The availability of open resources and databases containing cases that instructors can download makes this approach even more accessible in the classroom. Two examples of open databases are the Case Center on Public Leadership and Harvard Kennedy School (HKS) Case Program , which focus on government, leadership and public policy case studies.

  • Consider writing original cases - In the event that an instructor is unable to find open access cases relevant to their course learning objectives, they may choose to write their own. See the following resources on case writing: Cooking with Betty Crocker: A Recipe for Case Writing ; The Way of Flesch: The Art of Writing Readable Cases ;   Twixt Fact and Fiction: A Case Writer’s Dilemma ; And All That Jazz: An Essay Extolling the Virtues of Writing Case Teaching Notes .

Implementing Cases

Take baby steps if new to CBL - While entire courses and curricula may involve case-based learning, instructors who desire to implement on a smaller-scale can integrate a single case into their class, and increase the number of cases utilized over time as desired.

Use cases in classes that are small, medium or large - Cases can be scaled to any course size. In large classes with stadium seating, students can work with peers nearby, while in small classes with more flexible seating arrangements, teams can move their chairs closer together. CBL can introduce more noise (and energy) in the classroom to which an instructor often quickly becomes accustomed. Further, students can be asked to work on cases outside of class, and wrap up discussion during the next class meeting.

Encourage collaborative work - Cases present an opportunity for students to work together to solve cases which the historical literature supports as beneficial to student learning (Bruffee, 1993). Allow students to work in groups to answer case questions.

Form diverse teams as feasible - When students work within diverse teams they can be exposed to a variety of perspectives that can help them solve the case. Depending on the context of the course, priorities, and the background information gathered about the students enrolled in the class, instructors may choose to organize student groups to allow for diversity in factors such as current course grades, gender, race/ethnicity, personality, among other items.  

Use stable teams as appropriate - If CBL is a large component of the course, a research-supported practice is to keep teams together long enough to go through the stages of group development: forming, storming, norming, performing and adjourning (Tuckman, 1965).

Walk around to guide groups - In CBL instructors serve as facilitators of student learning. Walking around allows the instructor to monitor student progress as well as identify and support any groups that may be struggling. Teaching assistants can also play a valuable role in supporting groups.

Interrupt strategically - Only every so often, for conversation in large group discussion of the case, especially when students appear confused on key concepts. An effective practice to help students meet case learning goals is to guide them as a whole group when the class is ready. This may include selecting a few student groups to present answers to discussion questions to the entire class, asking the class a question relevant to the case using polling software, and/or performing a mini-lesson on an area that appears to be confusing among students.  

Assess student learning in multiple ways - Students can be assessed informally by asking groups to report back answers to various case questions. This practice also helps students stay on task, and keeps them accountable. Cases can also be included on exams using related scenarios where students are asked to apply their knowledge.

Barrows HS. (1996). Problem-based learning in medicine and beyond: a brief overview. New Directions for Teaching and Learning, 68, 3-12.  

Bonney KM. (2015). Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains. Journal of Microbiology and Biology Education, 16(1): 21-28.

Breslin M, Buchanan, R. (2008) On the Case Study Method of Research and Teaching in Design.  Design Issues, 24(1), 36-40.

Bruffee KS. (1993). Collaborative learning: Higher education, interdependence, and authority of knowledge. Johns Hopkins University Press, Baltimore, MD.

Herreid CF. (2013). Start with a Story: The Case Study Method of Teaching College Science, edited by Clyde Freeman Herreid. Originally published in 2006 by the National Science Teachers Association (NSTA); reprinted by the National Center for Case Study Teaching in Science (NCCSTS) in 2013.

Herreid CH. (1994). Case studies in science: A novel method of science education. Journal of Research in Science Teaching, 23(4), 221–229.

Jonassen DH and Hernandez-Serrano J. (2002). Case-based reasoning and instructional design: Using stories to support problem solving. Educational Technology, Research and Development, 50(2), 65-77.  

Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. (2005). Oxytocin increases trust in humans. Nature, 435, 673-676.

Krain M. (2016) Putting the learning in case learning? The effects of case-based approaches on student knowledge, attitudes, and engagement. Journal on Excellence in College Teaching, 27(2), 131-153.

Lee V. (2012). What is Inquiry-Guided Learning?  New Directions for Learning, 129:5-14.

Nkhoma M, Sriratanaviriyakul N. (2017). Using case method to enrich students’ learning outcomes. Active Learning in Higher Education, 18(1):37-50.

Srinivasan et al. (2007). Comparing problem-based learning with case-based learning: Effects of a major curricular shift at two institutions. Academic Medicine, 82(1): 74-82.

Thistlethwaite JE et al. (2012). The effectiveness of case-based learning in health professional education. A BEME systematic review: BEME Guide No. 23.  Medical Teacher, 34, e421-e444.

Tuckman B. (1965). Development sequence in small groups. Psychological Bulletin, 63(6), 384-99.

Williams B. (2005). Case-based learning - a review of the literature: is there scope for this educational paradigm in prehospital education? Emerg Med, 22, 577-581.

Zak, PJ (2013). How Stories Change the Brain. Retrieved from: https://greatergood.berkeley.edu/article/item/how_stories_change_brain

YOU MAY BE INTERESTED IN

case study importance for students

The Poorvu Center for Teaching and Learning routinely supports members of the Yale community with individual instructional consultations and classroom observations.

Nancy Niemi in conversation with a new faculty member at the Greenberg Center

Instructional Enhancement Fund

The Instructional Enhancement Fund (IEF) awards grants of up to $500 to support the timely integration of new learning activities into an existing undergraduate or graduate course. All Yale instructors of record, including tenured and tenure-track faculty, clinical instructional faculty, lecturers, lectors, and part-time acting instructors (PTAIs), are eligible to apply. Award decisions are typically provided within two weeks to help instructors implement ideas for the current semester.

case study importance for students

Reserve a Room

The Poorvu Center for Teaching and Learning partners with departments and groups on-campus throughout the year to share its space. Please review the reservation form and submit a request.

  • International
  • Business & Industry
  • MyUNB Intranet
  • Activate your IT Services
  • Give to UNB
  • Centre for Enhanced Teaching & Learning
  • Teaching & Learning Services
  • Teaching Tips
  • Instructional Methods
  • Creating Effective Scenarios, Case Studies and Role Plays

Creating effective scenarios, case studies and role plays

Printable Version (PDF)

Scenarios, case studies and role plays are examples of active and collaborative teaching techniques that research confirms are effective for the deep learning needed for students to be able to remember and apply concepts once they have finished your course. See  Research Findings on University Teaching Methods .

Typically you would use case studies, scenarios and role plays for higher-level learning outcomes that require application, synthesis, and evaluation (see  Writing Outcomes or Learning Objectives ; scroll down to the table).

The point is to increase student interest and involvement, and have them practice application by making choices and receive feedback on them, and refine their understanding of concepts and practice in your discipline.

These types of activities provide the following research-based benefits: (Shaw, 3-5)

  • They provide concrete examples of abstract concepts, facilitate the development through practice of analytical skills, procedural experience, and decision making skills through application of course concepts in real life situations. This can result in deep learning and the appreciation of differing perspectives.
  • They can result in changed perspectives, increased empathy for others, greater insights into challenges faced by others, and increased civic engagement.
  • They tend to increase student motivation and interest, as evidenced by increased rates of attendance, completion of assigned readings, and time spent on course work outside of class time.
  • Studies show greater/longer retention of learned materials.
  • The result is often better teacher/student relations and a more relaxed environment in which the natural exchange of ideas can take place. Students come to see the instructor in a more positive light.
  • They often result in better understanding of complexity of situations. They provide a good forum for a large volume of orderly written analysis and discussion.

There are benefits for instructors as well, such as keeping things fresh and interesting in courses they teach repeatedly; providing good feedback on what students are getting and not getting; and helping in standing and promotion in institutions that value teaching and learning.

Outcomes and learning activity alignment

The learning activity should have a clear, specific skills and/or knowledge development purpose that is evident to both instructor and students. Students benefit from knowing the purpose of the exercise, learning outcomes it strives to achieve, and evaluation methods. The example shown in the table below is for a case study, but the focus on demonstration of what students will know and can do, and the alignment with appropriate learning activities to achieve those abilities applies to other learning activities.

An image of alignment

(Smith, 18)

What’s the difference?

Scenarios are typically short and used to illustrate or apply one main concept. The point is to reinforce concepts and skills as they are taught by providing opportunity to apply them. Scenarios can also be more elaborate, with decision points and further scenario elaboration (multiple storylines), depending on responses. CETL has experience developing scenarios with multiple decision points and branching storylines with UNB faculty using PowerPoint and online educational software.

Case studies

Case studies are typically used to apply several problem-solving concepts and skills to a detailed situation with lots of supporting documentation and data. A case study is usually more complex and detailed than a scenario. It often involves a real-life, well documented situation and the students’ solutions are compared to what was done in the actual case. It generally includes dialogue, creates identification or empathy with the main characters, depending on the discipline. They are best if the situations are recent, relevant to students, have a problem or dilemma to solve, and involve principles that apply broadly.

Role plays can be short like scenarios or longer and more complex, like case studies, but without a lot of the documentation. The idea is to enable students to experience what it may be like to see a problem or issue from many different perspectives as they assume a role they may not typically take, and see others do the same.

Foundational considerations

Typically, scenarios, case studies and role plays should focus on real problems, appropriate to the discipline and course level.

They can be “well-structured” or “ill-structured”:

  • Well-structured  case studies, problems and scenarios can be simple or complex or anything in-between, but they have an optimal solution and only relevant information is given, and it is usually labelled or otherwise easily identified.
  • Ill-structured  case studies, problems and scenarios can also be simple or complex, although they tend to be complex. They have relevant and irrelevant information in them, and part of the student’s job is to decide what is relevant, how it is relevant, and to devise an evidence-based solution to the problem that is appropriate to the context and that can be defended by argumentation that draws upon the student’s knowledge of concepts in the discipline.

Well-structured problems would be used to demonstrate understanding and application. Higher learning levels of analysis, synthesis and evaluation are better demonstrated by ill-structured problems.

Scenarios, case studies and role plays can be  authentic  or  realistic :

  • Authentic  scenarios are actual events that occurred, usually with personal details altered to maintain anonymity. Since the events actually happened, we know that solutions are grounded in reality, not a fictionalized or idealized or simplified situation. This makes them “low transference” in that, since we are dealing with the real world (although in a low-stakes, training situation, often with much more time to resolve the situation than in real life, and just the one thing to work on at a time), not much after-training adjustment to the real world is necessary.
  • By contrast,  realistic  scenarios are often hypothetical situations that may combine aspects of several real-world events, but are artificial in that they are fictionalized and often contain ideal or simplified elements that exist differently in the real world, and some complications are missing. This often means they are easier to solve than real-life issues, and thus are “high transference” in that some after-training adjustment is necessary to deal with the vagaries and complexities of the real world.

Scenarios, case studies and role plays can be  high  or  low fidelity :

High vs. low fidelity:  Fidelity has to do with how much a scenario, case study or role play is like its corresponding real world situation. Simplified, well-structured scenarios or problems are most appropriate for beginners. These are low-fidelity, lacking a lot of the detail that must be struggled with in actual practice. As students gain experience and deeper knowledge, the level of complexity and correspondence to real-world situations can be increased until they can solve high fidelity, ill-structured problems and scenarios.

Further details for each

Scenarios can be used in a very wide range of learning and assessment activities. Use in class exercises, seminars, as a content presentation method, exam (e.g., tell students the exam will have four case studies and they have to choose two—this encourages deep studying). Scenarios help instructors reflect on what they are trying to achieve, and modify teaching practice.

For detailed working examples of all types, see pages 7 – 25 of the  Psychology Applied Learning Scenarios (PALS) pdf .

The contents of case studies should: (Norton, 6)

  • Connect with students’ prior knowledge and help build on it.
  • Be presented in a real world context that could plausibly be something they would do in the discipline as a practitioner (e.g., be “authentic”).
  • Provide some structure and direction but not too much, since self-directed learning is the goal. They should contain sufficient detail to make the issues clear, but with enough things left not detailed that students have to make assumptions before proceeding (or explore assumptions to determine which are the best to make). “Be ambiguous enough to force them to provide additional factors that influence their approach” (Norton, 6).
  • Should have sufficient cues to encourage students to search for explanations but not so many that a lot of time is spent separating relevant and irrelevant cues. Also, too many storyline changes create unnecessary complexity that makes it unnecessarily difficult to deal with.
  • Be interesting and engaging and relevant but focus on the mundane, not the bizarre or exceptional (we want to develop skills that will typically be of use in the discipline, not for exceptional circumstances only). Students will relate to case studies more if the depicted situation connects to personal experiences they’ve had.
  • Help students fill in knowledge gaps.

Role plays generally have three types of participants: players, observers, and facilitator(s). They also have three phases, as indicated below:

Briefing phase:  This stage provides the warm-up, explanations, and asks participants for input on role play scenario. The role play should be somewhat flexible and customizable to the audience. Good role descriptions are sufficiently detailed to let the average person assume the role but not so detailed that there are so many things to remember that it becomes cumbersome. After role assignments, let participants chat a bit about the scenarios and their roles and ask questions. In assigning roles, consider avoiding having visible minorities playing “bad guy” roles. Ensure everyone is comfortable in their role; encourage students to play it up and even overact their role in order to make the point.

Play phase:  The facilitator makes seating arrangements (for players and observers), sets up props, arranges any tech support necessary, and does a short introduction. Players play roles, and the facilitator keeps things running smoothly by interjecting directions, descriptions, comments, and encouraging the participation of all roles until players keep things moving without intervention, then withdraws. The facilitator provides a conclusion if one does not arise naturally from the interaction.

Debriefing phase:  Role players talk about their experience to the class, facilitated by the instructor or appointee who draws out the main points. All players should describe how they felt and receive feedback from students and the instructor. If the role play involved heated interaction, the debriefing must reconcile any harsh feelings that may otherwise persist due to the exercise.

Five Cs of role playing  (AOM, 3)

Control:  Role plays often take on a life of their own that moves them in directions other than those intended. Rehearse in your mind a few possible ways this could happen and prepare possible intervention strategies. Perhaps for the first role play you can play a minor role to give you and “in” to exert some control if needed. Once the class has done a few role plays, getting off track becomes less likely. Be sensitive to the possibility that students from different cultures may respond in unforeseen ways to role plays. Perhaps ask students from diverse backgrounds privately in advance for advice on such matters. Perhaps some of these students can assist you as co-moderators or observers.

Controversy:  Explain to students that they need to prepare for situations that may provoke them or upset them, and they need to keep their cool and think. Reiterate the learning goals and explain that using this method is worth using because it draws in students more deeply and helps them to feel, not just think, which makes the learning more memorable and more likely to be accessible later. Set up a “safety code word” that students may use at any time to stop the role play and take a break.

Command of details:  Students who are more deeply involved may have many more detailed and persistent questions which will require that you have a lot of additional detail about the situation and characters. They may also question the value of role plays as a teaching method, so be prepared with pithy explanations.

Can you help?  Students may be concerned about how their acting will affect their grade, and want assistance in determining how to play their assigned character and need time to get into their role. Tell them they will not be marked on their acting. Say there is no single correct way to play a character. Prepare for slow starts, gaps in the action, and awkward moments. If someone really doesn’t want to take a role, let them participate by other means—as a recorder, moderator, technical support, observer, props…

Considered reflection:  Reflection and discussion are the main ways of learning from role plays. Players should reflect on what they felt, perceived, and learned from the session. Review the key events of the role play and consider what people would do differently and why. Include reflections of observers. Facilitate the discussion, but don’t impose your opinions, and play a neutral, background role. Be prepared to start with some of your own feedback if discussion is slow to start.

An engineering role play adaptation

Boundary objects (e.g., storyboards) have been used in engineering and computer science design projects to facilitate collaboration between specialists from different disciplines (Diaz, 6-80). In one instance, role play was used in a collaborative design workshop as a way of making computer scientist or engineering students play project roles they are not accustomed to thinking about, such as project manager, designer, user design specialist, etc. (Diaz 6-81).

References:

Academy of Management. (Undated).  Developing a Role playing Case Study as a Teaching Tool. 

Diaz, L., Reunanen, M., & Salimi, A. (2009, August).  Role Playing and Collaborative Scenario Design Development. Paper presented at the International Conference of Engineering Design, Stanford University, California.

Norton, L. (2004).  Psychology Applied Learning Scenarios (PALS): A practical introduction to problem-based learning using vignettes for psychology lecturers .  Liverpool Hope University College. 

Shaw, C. M. (2010). Designing and Using Simulations and Role-Play Exercises in  The International Studies Encyclopedia,  eISBN: 9781444336597

Smith, A. R. & Evanstone, A. (Undated).  Writing Effective Case Studies in the Sciences: Backward Design and Global Learning Outcomes.  Institute for Biological Education, University of Wisconsin-Madison. 

University of New Brunswick

  • Campus Maps
  • Campus Security
  • Careers at UNB
  • Services at UNB
  • Conference Services
  • Online & Continuing Ed

Contact UNB

  • © University of New Brunswick
  • Accessibility
  • Web feedback

loading

How it works

For Business

Join Mind Tools

Article • 10 min read

Case Study-Based Learning

Enhancing learning through immediate application.

By the Mind Tools Content Team

case study importance for students

If you've ever tried to learn a new concept, you probably appreciate that "knowing" is different from "doing." When you have an opportunity to apply your knowledge, the lesson typically becomes much more real.

Adults often learn differently from children, and we have different motivations for learning. Typically, we learn new skills because we want to. We recognize the need to learn and grow, and we usually need – or want – to apply our newfound knowledge soon after we've learned it.

A popular theory of adult learning is andragogy (the art and science of leading man, or adults), as opposed to the better-known pedagogy (the art and science of leading children). Malcolm Knowles , a professor of adult education, was considered the father of andragogy, which is based on four key observations of adult learners:

  • Adults learn best if they know why they're learning something.
  • Adults often learn best through experience.
  • Adults tend to view learning as an opportunity to solve problems.
  • Adults learn best when the topic is relevant to them and immediately applicable.

This means that you'll get the best results with adults when they're fully involved in the learning experience. Give an adult an opportunity to practice and work with a new skill, and you have a solid foundation for high-quality learning that the person will likely retain over time.

So, how can you best use these adult learning principles in your training and development efforts? Case studies provide an excellent way of practicing and applying new concepts. As such, they're very useful tools in adult learning, and it's important to understand how to get the maximum value from them.

What Is a Case Study?

Case studies are a form of problem-based learning, where you present a situation that needs a resolution. A typical business case study is a detailed account, or story, of what happened in a particular company, industry, or project over a set period of time.

The learner is given details about the situation, often in a historical context. The key players are introduced. Objectives and challenges are outlined. This is followed by specific examples and data, which the learner then uses to analyze the situation, determine what happened, and make recommendations.

The depth of a case depends on the lesson being taught. A case study can be two pages, 20 pages, or more. A good case study makes the reader think critically about the information presented, and then develop a thorough assessment of the situation, leading to a well-thought-out solution or recommendation.

Why Use a Case Study?

Case studies are a great way to improve a learning experience, because they get the learner involved, and encourage immediate use of newly acquired skills.

They differ from lectures or assigned readings because they require participation and deliberate application of a broad range of skills. For example, if you study financial analysis through straightforward learning methods, you may have to calculate and understand a long list of financial ratios (don't worry if you don't know what these are). Likewise, you may be given a set of financial statements to complete a ratio analysis. But until you put the exercise into context, you may not really know why you're doing the analysis.

With a case study, however, you might explore whether a bank should provide financing to a borrower, or whether a company is about to make a good acquisition. Suddenly, the act of calculating ratios becomes secondary – it's more important to understand what the ratios tell you. This is how case studies can make the difference between knowing what to do, and knowing how, when, and why to do it.

Then, what really separates case studies from other practical forms of learning – like scenarios and simulations – is the ability to compare the learner's recommendations with what actually happened. When you know what really happened, it's much easier to evaluate the "correctness" of the answers given.

When to Use a Case Study

As you can see, case studies are powerful and effective training tools. They also work best with practical, applied training, so make sure you use them appropriately.

Remember these tips:

  • Case studies tend to focus on why and how to apply a skill or concept, not on remembering facts and details. Use case studies when understanding the concept is more important than memorizing correct responses.
  • Case studies are great team-building opportunities. When a team gets together to solve a case, they'll have to work through different opinions, methods, and perspectives.
  • Use case studies to build problem-solving skills, particularly those that are valuable when applied, but are likely to be used infrequently. This helps people get practice with these skills that they might not otherwise get.
  • Case studies can be used to evaluate past problem solving. People can be asked what they'd do in that situation, and think about what could have been done differently.

Ensuring Maximum Value From Case Studies

The first thing to remember is that you already need to have enough theoretical knowledge to handle the questions and challenges in the case study. Otherwise, it can be like trying to solve a puzzle with some of the pieces missing.

Here are some additional tips for how to approach a case study. Depending on the exact nature of the case, some tips will be more relevant than others.

  • Read the case at least three times before you start any analysis. Case studies usually have lots of details, and it's easy to miss something in your first, or even second, reading.
  • Once you're thoroughly familiar with the case, note the facts. Identify which are relevant to the tasks you've been assigned. In a good case study, there are often many more facts than you need for your analysis.
  • If the case contains large amounts of data, analyze this data for relevant trends. For example, have sales dropped steadily, or was there an unexpected high or low point?
  • If the case involves a description of a company's history, find the key events, and consider how they may have impacted the current situation.
  • Consider using techniques like SWOT analysis and Porter's Five Forces Analysis to understand the organization's strategic position.
  • Stay with the facts when you draw conclusions. These include facts given in the case as well as established facts about the environmental context. Don't rely on personal opinions when you put together your answers.

Writing a Case Study

You may have to write a case study yourself. These are complex documents that take a while to research and compile. The quality of the case study influences the quality of the analysis. Here are some tips if you want to write your own:

  • Write your case study as a structured story. The goal is to capture an interesting situation or challenge and then bring it to life with words and information. You want the reader to feel a part of what's happening.
  • Present information so that a "right" answer isn't obvious. The goal is to develop the learner's ability to analyze and assess, not necessarily to make the same decision as the people in the actual case.
  • Do background research to fully understand what happened and why. You may need to talk to key stakeholders to get their perspectives as well.
  • Determine the key challenge. What needs to be resolved? The case study should focus on one main question or issue.
  • Define the context. Talk about significant events leading up to the situation. What organizational factors are important for understanding the problem and assessing what should be done? Include cultural factors where possible.
  • Identify key decision makers and stakeholders. Describe their roles and perspectives, as well as their motivations and interests.
  • Make sure that you provide the right data to allow people to reach appropriate conclusions.
  • Make sure that you have permission to use any information you include.

A typical case study structure includes these elements:

  • Executive summary. Define the objective, and state the key challenge.
  • Opening paragraph. Capture the reader's interest.
  • Scope. Describe the background, context, approach, and issues involved.
  • Presentation of facts. Develop an objective picture of what's happening.
  • Description of key issues. Present viewpoints, decisions, and interests of key parties.

Because case studies have proved to be such effective teaching tools, many are already written. Some excellent sources of free cases are The Times 100 , CasePlace.org , and Schroeder & Schroeder Inc . You can often search for cases by topic or industry. These cases are expertly prepared, based mostly on real situations, and used extensively in business schools to teach management concepts.

Case studies are a great way to improve learning and training. They provide learners with an opportunity to solve a problem by applying what they know.

There are no unpleasant consequences for getting it "wrong," and cases give learners a much better understanding of what they really know and what they need to practice.

Case studies can be used in many ways, as team-building tools, and for skill development. You can write your own case study, but a large number are already prepared. Given the enormous benefits of practical learning applications like this, case studies are definitely something to consider adding to your next training session.

Knowles, M. (1973). 'The Adult Learner: A Neglected Species [online].' Available here .

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

The 7 cs of communication.

A Checklist for Clear Communication

Creative Problem-Solving Technique

Using Divergent and Convergent Thinking

Add comment

Comments (0)

Be the first to comment!

case study importance for students

Gain essential management and leadership skills

Busy schedule? No problem. Learn anytime, anywhere. 

Subscribe to unlimited access to meticulously researched, evidence-based resources.

Join today and take advantage of our 30% offer, available until May 31st .

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article a0pows5

Winning Body Language

Article andjil2

Business Stripped Bare

Mind Tools Store

About Mind Tools Content

Discover something new today

Nine ways to get the best from x (twitter).

Growing Your Business Quickly and Safely on Social Media

Managing Your Emotions at Work

Controlling Your Feelings... Before They Control You

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Paired comparison analysis.

Working Out Relative Importances

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • SAGE Open Nurs
  • v.7; Jan-Dec 2021

Case Study Analysis as an Effective Teaching Strategy: Perceptions of Undergraduate Nursing Students From a Middle Eastern Country

Vidya seshan.

1 Maternal and Child Health Department, College of Nursing, Sultan Qaboos University, P.O. Box 66 Al-Khoudh, Postal Code 123, Muscat, Oman

Gerald Amandu Matua

2 Fundamentals and Administration Department, College of Nursing, Sultan Qaboos University, P.O. Box 66 Al-Khoudh, Postal Code 123, Muscat, Oman

Divya Raghavan

Judie arulappan, iman al hashmi, erna judith roach, sheeba elizebath sunderraj, emi john prince.

3 Griffith University, Nathan Campus, Queensland 4111

Background: Case study analysis is an active, problem-based, student-centered, teacher-facilitated teaching strategy preferred in undergraduate programs as they help the students in developing critical thinking skills. Objective: It determined the effectiveness of case study analysis as an effective teacher-facilitated strategy in an undergraduate nursing program. Methodology: A descriptive qualitative research design using focus group discussion method guided the study. The sample included undergraduate nursing students enrolled in the Maternal Health Nursing Course during the Academic Years 2017 and 2018. The researcher used a purposive sampling technique and a total of 22 students participated in the study, through five (5) focus groups, with each focus group comprising between four to six nursing students. Results: In total, nine subthemes emerged from the three themes. The themes were “Knowledge development”, “Critical thinking and Problem solving”, and “Communication and Collaboration”. Regarding “Knowledge development”, the students perceived case study analysis method as contributing toward deeper understanding of the course content thereby helping to reduce the gap between theory and practice especially during clinical placement. The “Enhanced critical thinking ability” on the other hand implies that case study analysis increased student's ability to think critically and aroused problem-solving interest in the learners. The “Communication and Collaboration” theme implies that case study analysis allowed students to share their views, opinions, and experiences with others and this enabled them to communicate better with others and to respect other's ideas which further enhanced their team building capacities. Conclusion: This method is effective for imparting professional knowledge and skills in undergraduate nursing education and it results in deeper level of learning and helps in the application of theoretical knowledge into clinical practice. It also broadened students’ perspectives, improved their cooperation capacity and their communication with each other. Finally, it enhanced student's judgment and critical thinking skills which is key for their success.

Introduction/Background

Recently, educators started to advocate for teaching modalities that not only transfer knowledge ( Shirani Bidabadi et al., 2016 ), but also foster critical and higher-order thinking and student-centered learning ( Wang & Farmer, 2008 ; Onweh & Akpan, 2014). Therefore, educators need to utilize proven teaching strategies to produce positive outcomes for learners (Onweh & Akpan, 2014). Informed by this view point, a teaching strategy is considered effective if it results in purposeful learning ( Centra, 1993 ; Sajjad, 2010 ) and allows the teacher to create situations that promote appropriate learning (Braskamp & Ory, 1994) to achieve the desired outcome ( Hodges et al., 2020 ). Since teaching methods impact student learning significantly, educators need to continuously test the effectives of their teaching strategies to ensure desired learning outcomes for their students given today's dynamic learning environments ( Farashahi & Tajeddin, 2018 ).

In this study, the researchers sought to study the effectiveness of case study analysis as an active, problem-based, student-centered, teacher-facilitated strategy in a baccalaureate-nursing program. This choice of teaching method is supported by the fact that nowadays, active teaching-learning is preferred in undergraduate programs because, they not only make students more powerful actors in professional life ( Bean, 2011 ; Yang et al., 2013 ), but they actually help learners to develop critical thinking skills ( Clarke, 2010 ). In fact, students who undergo such teaching approaches usually become more resourceful in integrating theory with practice, especially as they solve their case scenarios ( Chen et al., 2019 ; Farashahi & Tajeddin, 2018 ; Savery, 2019 ).

Review of Literature

As a pedagogical strategy, case studies allow the learner to integrate theory with real-life situations as they devise solutions to the carefully designed scenarios ( Farashahi & Tajeddin, 2018 ; Hermens & Clarke, 2009). Another important known observation is that case-study-based teaching exposes students to different cases, decision contexts and the environment to experience teamwork and interpersonal relations as “they learn by doing” thus benefiting from possibilities that traditional lectures hardly create ( Farashahi & Tajeddin, 2018 ; Garrison & Kanuka, 2004 ).

Another merit associated with case study method of teaching is the fact that students can apply and test their perspectives and knowledge in line with the tenets of Kolb et al.'s (2014) “experiential learning model”. This model advocates for the use of practical experience as the source of one's learning and development. Proponents of case study-based teaching note that unlike passive lectures where student input is limited, case studies allow them to draw from their own experience leading to the development of higher-order thinking and retention of knowledge.

Case scenario-based teaching also encourages learners to engage in reflective practice as they cooperate with others to solve the cases and share views during case scenario analysis and presentation ( MsDade, 1995 ).

This method results in “idea marriage” as learners articulate their views about the case scenario. This “idea marriage” phenomenon occurs through knowledge transfer from one situation to another as learners analyze scenarios, compare notes with each other, and develop multiple perspectives of the case scenario. In fact, recent evidence shows that authentic case-scenarios help learners to acquire problem solving and collaborative capabilities, including the ability to express their own views firmly and respectfully, which is vital for future success in both professional and personal lives ( Eronen et al., 2019 ; Yajima & Takahashi, 2017 ). In recognition of this higher education trend toward student-focused learning, educators are now increasingly expected to incorporate different strategies in their teaching.

This study demonstrated that when well implemented, educators can use active learning strategies like case study analysis to aid critical thinking, problem-solving, and collaborative capabilities in undergraduate students. This study is significant because the findings will help educators in the country and in the region to incorporate active learning strategies such as case study analysis to aid critical thinking, problem-solving, and collaborative capabilities in undergraduate students. Besides, most studies on the case study method in nursing literature mostly employ quantitative methods. The shortage of published research on the case study method in the Arabian Gulf region and the scanty use of qualitative methods further justify why we adopted the focus group method for inquiry.

A descriptive qualitative research design using focus group discussion method guided the study. The authors chose this method because it is not only inexpensive, flexible, stimulating but it is also known to help with information recall and results in rich data ( Matua et al., 2014 ; Streubert & Carpenter, 2011 ). Furthermore, as evidenced in the literature, the focus group discussion method is often used when there is a need to gain an in-depth understanding of poorly understood phenomena as the case in our study. The choice of this method is further supported by the scarcity of published research related to the use of case study analysis as a teaching strategy in the Middle Eastern region, thereby further justifying the need for an exploratory research approach for our study.

As a recommended strategy, the researchers generated data from information-rich purposively selected group of baccalaureate nursing students who had experienced both traditional lectures and cased-based teaching approaches. The focus group interviews allowed the study participants to express their experiences and perspectives in their own words. In addition, the investigators integrated participants’ self-reported experiences with their own observations and this enhanced the study findings ( Morgan & Bottorff, 2010 ; Nyumba et al., 2018 ; Parker & Tritter, 2006 ).

Eligibility Criteria

In order to be eligible to participate in the study, the participants had to:

  • be a baccalaureate nursing student in College of Nursing, Sultan Qaboos University
  • register for Maternity Nursing Course in 2017 and 2018.
  • attend all the Case Study Analysis sessions in the courses before the study.
  • show a willingness to participate in the study voluntarily and share their views freely.

The population included the undergraduate nursing students enrolled in the Maternal Health Nursing Course during the Academic Years 2017 and 2018.

The researcher used a purposive sampling technique to choose participants who were capable of actively participating and discussing their views in the focus group interviews. This technique enabled the researchers to select participants who could provide rich information and insights about case study analysis method as an effective teaching strategy. The final study sample included baccalaureate nursing students who agreed to participate in the study by signing a written informed consent. In total, twenty-two (22) students participated in the study, through five focus groups, with each focus group comprising between four and six students. The number of participants was determined by the stage at which data saturation was reached. The point of data saturation is when no new information emerges from additional participants interviewed ( Saunders et al., 2018 ).Focus group interviews were stopped once data saturation was achieved. Qualitative research design with focus group discussion allowed the researchers to generate data from information-rich purposively selected group of baccalaureate nursing students who had experienced both traditional lectures and case-based teaching approaches. The focus group interviews allowed the study participants to express their perspectives in their own words. In addition, the investigators enhanced the study findings by integrating participants’ self-reported experiences with the researchers’ own observations and notes during the study.

The study took place at College of Nursing; Sultan Qaboos University, Oman's premier public university, in Muscat. This is the only setting chosen for the study. The participants are the students who were enrolled in Maternal Health Nursing course during 2017 and 2018. The interviews occurred in the teaching rooms after official class hours. Students who did not participate in the study learnt the course content using the traditional lecture based method.

Ethical Considerations

Permission to conduct the study was granted by the College Research and Ethics Committee (XXXX). Prior to the interviews, each participant was informed about the purpose, benefits as well as the risks associated with participating in the study and clarifications were made by the principal researcher. After completing this ethical requirement, each student who accepted to participate in the study proceeded to sign an informed consent form signifying that their participation in the focus group interview was entirely voluntary and based on free will.

The anonymity of study participants and confidentiality of their data was upheld throughout the focus group interviews and during data analysis. To enhance confidentiality and anonymity of the data, each participant was assigned a unique code number which was used throughout data analysis and reporting phases. To further assure the confidentiality of the research data and anonymity of the participants, all research-related data were kept safe, under lock and key and through digital password protection, with unhindered access only available to the research team.

Research Intervention

In Fall 2017 and Spring 2018 semesters, as a method of teaching Maternal Health Nursing course, all students participated in two group-based case study analysis exercises which were implemented in the 7 th and 13 th weeks. This was done after the students were introduced to the case study method using a sample case study prior to the study. The instructor explained to the students how to solve the sample problem, including how to accomplish the role-specific competencies in the courses through case study analysis. In both weeks, each group consisting of six to seven students was assigned to different case scenarios to analyze and work on, after which they presented their collective solution to the case scenarios to the larger class of 40 students. The case scenarios used in both weeks were peer-reviewed by the researchers prior to the study.

Pilot Study

A group of three students participated as a pilot group for the study. However, the students who participated in the pilot study were not included in the final study as is general the principle with qualitative inquiry because of possible prior exposure “contamination”. The purpose of piloting was to gather data to provide guidance for a substantive study focusing on testing the data collection procedure, the interview process including the sequence and number of questions and probes and recording equipment efficacy. After the pilot phase, the lessons learned from the pilot were incorporated to ensure smooth operations during the actual focus group interview ( Malmqvist et al., 2019 .

Data Collection

The focus group interviews took place after the target population was exposed to case study analysis method in Maternal Health Nursing course during the Fall 2017 and Spring 2018 semesters. Before data collection began, the research team pilot tested the focus group interview guide to ensure that all the guide questions were clear and well understood by study participants.

In total, five (5) focus groups participated in the study, with each group comprising between four and six students. The focus group interviews lasted between 60 and 90 min. In addition to the interview guide questions, participants’ responses to unanswered questions were elicited using prompts to facilitate information flow whenever required. As a best practice, all the interviews were audio-recorded in addition to extensive field notes taken by one of the researchers. The focus group interviews continued until data saturation occurred in all the five (5) focus groups.

Credibility

In this study, participant's descriptions were digitally audio recorded to ensure that no information was lost. In order to ensure that the results are accurate, verbatim transcriptions of the audio recordings were done supported by interview notes. Furthermore, interpretations of the researcher were verified and supported with existing literature with oversight from the research team.

Transferability

The researcher provided a detailed description about the study settings, participants, sampling technique, and the process of data collection and analyses. The researcher used verbatim quotes from various participants to aid the transferability of the results.

Dependability

The researcher ensured that the research process is clearly documented, traceable, and logical to achieve dependability of the research findings. Furthermore, the researcher transparently described the research steps, procedures and process from the start of the research project to the reporting of the findings.

Confirmability

In this study, confirmability of the study findings was achieved through the researcher's efforts to make the findings credible, dependable, and transferable.

Data Analysis

Data were analyzed manually after the lead researcher integrated the verbatim transcriptions with the extensive field notes to form the final data set. Data were analyzed thematically under three thematic areas of a) knowledge development; b) critical thinking and problem solving; and (c) communication and collaboration, which are linked to the study objectives. The researchers used the Six (6) steps approach to conduct a trustworthy thematic analysis: (1) familiarization with the research data, (2) generating initial codes, (3) searching for themes, (4) reviewing the themes, (5) defining and naming themes, (6) writing the report ( Nowell et al., 2017 ).

The analysis process started with each team member individually reading and re-reading the transcripts several times and then identifying meaning units linked to the three thematic areas. The co-authors then discussed in-depth the various meaning units linked to the thematic statements until consensus was reached and final themes emerged based on the study objectives.

A total of 22 undergraduate third-year baccalaureate nursing students who were enrolled in the Maternal Health Nursing Course during the Academic Years 2017 and 2018 participated in the study, through five focus groups, with each group comprising four to six students. Of these, 59% were females and 41% were males. In total, nine subthemes emerged from the three themes. Under knowledge development, emerged the subthemes, “ deepened understanding of content ; “ reduced gap between theory and practice” and “ improved test-taking ability ”. While under Critical thinking and problem solving, emerged the subthemes, “ enhanced critical thinking ability ” and “ heightened curiosity”. The third thematic area of communication and collaboration yielded, “ improved communication ability ”; “ enhanced team-building capacity ”; “ effective collaboration” and “ improved presentation skills ”, details of which are summarized in Table 1 .

Table 1.

Objective Linked Themes and Student Perceptions of Outcome Case Study Analysis.

Theme 1: Knowledge Development

In terms of knowledge development, students expressed delight at the inclusion of case study analysis as a method during their regular theory class. The first subtheme related to knowledge development that supports the adoption of the case study approach is its perceived benefit of ‘ deepened understanding of content ’ by the students as vividly described by this participant:

“ I was able to perform well in the in-course exams as this teaching method enhanced my understanding of the content rather than memorizing ” (FGD#3).

The second subtheme related to knowledge development was informed by participants’ observation that teaching them using case study analysis method ‘ reduced the gap between theory and practice’. This participant's claim stem from the realization that, a case study scenario his group analyzed in the previous week helped him and his colleagues to competently deal with a similar situation during clinical placement the following week, as articulated below:

“ You see when I was caring for mothers in antenatal unit, I could understand the condition better and could plan her care well because me and my group already analyzed a similar situation in class last week which the teacher gave us, this made our work easier in the ward”. (FGD#7).

Another student added that:

“ It was useful as what is taught in the theory class could be applied to the clinical cases.”

This ‘theory-practice’ connection was particularly useful in helping students to better understand how to manage patients with different health conditions. Interestingly, the students reported that they were more likely to link a correct nursing care plan to patients whose conditions were close to the case study scenarios they had already studied in class as herein affirmed:

“ …when in the hospital I felt I could perceive the treatment modality and plan for [a particular] nursing care well when I [had] discussed with my team members and referred the textbook resource while performing case study discussion”. (FGD#17).

In a similar way, another student added:

“…I could relate with the condition I have seen in the clinical area. So this has given me a chance to recall the condition and relate the theory to practice”. (FGD#2) .

The other subtheme closely related to case study scenarios as helping to deepen participant's understanding of the course content, is the notion that this teaching strategy also resulted in ‘ improved test taking-ability’ as this participant's verbatim statement confirms:

“ I could answer the questions related to the cases discussed [much] better during in-course exams. Also [the case scenarios] helped me a great deal to critically think and answer my exam papers” (FGD#11).

Theme 2: Critical Thinking and Problem Solving

In this subtheme, students found the case study analysis as an excellent method to learn disease conditions in the two courses. This perceived success with the case study approach is associated with the method's ability to ‘ enhance students’ critical thinking ability’ as this student declares:

“ This method of teaching increased my ability to think critically as the cases are the situations, where we need to think to solve the situation”. (FGD#5)

This enhanced critical thinking ability attributed to case study scenario analysis was also manifested during patient care where students felt it allowed them to experience a “ flow of patient care” leading to better patient management planning as would typically occur during case scenario analysis. In support of this finding, a participant mentioned that:

“ …I could easily connect the flow of patient care provided and hence was able to plan for [his] management as often required during case study discussion” (FGD#12)

Another subtheme linked with this theme is the “ heightened curiosity” associated with the case scenario discussions. It was clear from the findings that the cases aroused curiosity in the mind of the students. This heightened interest meant that during class discussion, baccalaureate nursing students became active learners, eager to discover the next set of action as herein affirmed:

“… from the beginning of discussion with the group, I was eager to find the answer to questions presented and wanted to learn the best way for patient management” (FGD#14)

Theme 3: Communication and Collaboration

In terms of its impact on student communication, the subtheme revealed that case study analysis resulted in “ improved communication ability” among the nursing students . This enhanced ability of students to exchange ideas with each other may be attributed to the close interaction required to discuss and solve their assigned case scenarios as described by the participant below:

“ as [case study analysis] was done in the way of group discussion, I felt me and my friends communicated more within the group as we discussed our condition. We also learnt from each other, and we became better with time.” (FGD#21).

The next subtheme further augments the notion that case study analysis activities helped to “ enhance team-building capacity” of students as this participant affirmatively narrates:

“ students have the opportunity to meet face to face to share their views, opinion, and their experience, as this build on the way they can communicate with each other and respect each other's opinions and enhance team-building”. (FGD#19).

Another subtheme revealed from the findings show that the small groups in which the case analysis occurs allowed the learners to have deeper and more focused conversations with one another, resulting in “ an effective collaboration between students” as herein declared:

“ We could collaborate effectively as we further went into a deep conversation on the case to solve”. (FGD#16).

Similarly, another student noted that:

“ …discussion of case scenarios helped us to prepare better for clinical postings and simulation lab experience” (FGD#5) .

A fourth subtheme related to communication found that students also identified that case study analysis resulted in “ improved presentation skills”. This is attributed in part to the preparation students have to go through as part of their routine case study discussion activities, which include organizing their presentations and justifying and integrating their ideas. Besides readying themselves for case presentations, the advice, motivation, and encouragement such students receive from their faculty members and colleagues makes them better presenters as confirmed below:

“ …teachers gave us enough time to prepare, hence I was able to present in front of the class regarding the finding from our group.” (FGD#16).

In this study, the researches explored learner's perspectives on how one of the active teaching strategies, case study analysis method impacted their knowledge development, critical thinking, and problem solving as well as communication and collaboration ability.

Knowledge Development

In terms of knowledge development, the nursing students perceived case study analysis as contributing toward: (a) deeper understanding of content, (b) reducing gap between theory and practice, and (c) improving test-taking ability. Deeper learning” implies better grasping and retention of course content. It may also imply a deeper understanding of course content combined with learner's ability to apply that understanding to new problems including grasping core competencies expected in future practice situations (Rickles et al., 2019; Rittle-Johnson et al., 2020 ). Deeper learning therefore occurs due to the disequilibrium created by the case scenario, which is usually different from what the learner already knows ( Hattie, 2017 ). Hence, by “forcing” students to compare and discuss various options in the quest to solve the “imbalance” embedded in case scenarios, students dig deeper in their current understanding of a given content including its application to the broader context ( Manalo, 2019 ). This movement to a deeper level of understanding arises from carefully crafted case scenarios that instructors use to stimulate learning in the desired area (Nottingham, 2017; Rittle-Johnson et al., 2020 ). The present study demonstrated that indeed such carefully crafted case study scenarios did encourage students to engage more deeply with course content. This finding supports the call by educators to adopt case study as an effective strategy.

Another finding that case study analysis method helps in “ reducing the gap between theory and practice ” implies that the method helps students to maintain a proper balance between theory and practice, where they can see how theoretical knowledge has direct practical application in the clinical area. Ajani and Moez (2011) argue that to enable students to link theory and practice effectively, nurse educators should introduce them to different aspects of knowledge and practice as with case study analysis. This dual exposure ensures that students are proficient in theory and clinical skills. This finding further amplifies the call for educators to adequately prepare students to match the demands and realities of modern clinical environments ( Hickey, 2010 ). This expectation can be met by ensuring that student's knowledge and skills that are congruent with hospital requirements ( Factor et al., 2017 ) through adoption of case study analysis method which allows integration of clinical knowledge in classroom discussion on regular basis.

The third finding, related to “improved test taking ability”, implies that case study analysis helped them to perform better in their examination, noting that their experience of going through case scenario analysis helped them to answer similar cases discussed in class much better during examinations. Martinez-Rodrigo et al. (2017) report similar findings in a study conducted among Spanish electrical engineering students who were introduced to problem-based cooperative learning strategies, which is similar to case study analysis method. Analysis of student's results showed that their grades and pass rates increased considerably compared to previous years where traditional lecture-based method was used. Similar results were reported by Bonney (2015) in an even earlier study conducted among biology students in Kings Borough community college students, in New York, United States. When student's performance in examination questions covered by case studies was compared with class-room discussions, and text-book reading, case study analysis approach was significantly more effective compared to traditional methods in aiding students’ performance in their examinations. This finding therefore further demonstrates that case study analysis method indeed improves student's test taking ability.

Critical Thinking and Problem Solving

In terms of critical thinking and problem-solving ability, the use of case study analysis resulted in two subthemes: (a) enhanced critical thinking ability and (b) heightened learner curiosity. The “ enhanced critical thinking ability” implies that case analysis increased student's ability to think critically as they navigated through the case scenarios. This observation agrees with the findings of an earlier questionnaire-based study conducted among 145 undergraduate business administration students at Chittagong University, Bangladesh, that showed 81% of respondents agree that case study analysis develops critical thinking ability and enables students to do better problem analysis ( Muhiuddin & Jahan, 2006 ). This observation agrees with the findings of an earlier study conducted among 145 undergraduate business administration students at Chittagong University, Bangladesh. The study showed that 81% of respondents agreed that case study analysis facilitated the development of critical thinking ability in the learners and enabled the students to perform better with problem analysis ( Muhiuddin & Jahan, 2006 ).

More recently, Suwono et al. (2017) found similar results in a quasi-experimental research conducted at a Malaysian university. The research findings showed that there was a significant difference in biological literacy and critical thinking skills between the students taught using socio-biological case-based learning and those taught using traditional lecture-based learning. The researchers concluded that case-based learning enhanced the biological literacy and critical thinking skills of the students. The current study adds to the existing pedagogical knowledge base that case study methodology can indeed help to deepen learner's critical thinking and problem solving ability.

The second subtheme related to “ heightened learner curiosity” seems to suggest that the case studies aroused problem-solving interest in learners. This observation agrees with two earlier studies by Tiwari et al. (2006) and Flanagan and McCausland (2007) who both reported that most students enjoyed case-based teaching. The authors add that the case study method also improved student's clinical reasoning, diagnostic interpretation of patient information as well as their ability to think logically when presented a challenge in the classroom and in the clinical area. Jackson and Ward (2012) similarly reported that first year engineering undergraduates experienced enhanced student motivation. The findings also revealed that the students venturing self-efficacy increased much like their awareness of the importance of key aspects of the course for their future careers. The authors conclude that the case-based method appears to motivate students to autonomously gather, analyze and present data to solve a given case. The researchers observed enhanced personal and collaborative efforts among the learners, including improved communication ability. Further still, learners were more willing to challenge conventional wisdom, and showed higher “softer” skills after exposure to case analysis based teaching method. These findings like that of the current study indicate that teaching using case based analysis approach indeed motivates students to engage more in their learning, there by resulting in deeper learning.

Communication and Collaboration

Case study analysis is also perceived to result in: (a) improved communication ability; (b) enhanced team -building capacity, (c) effective collaboration ability, and (d) enhanced presentation skills. The “ improved communication ability ” manifested in learners being better able to exchange ideas with peers, communicating their views more clearly and collaborating more effectively with their colleagues to address any challenges that arise. Fini et al. (2018) report comparable results in a study involving engineering students who were subjected to case scenario brainstorming activities about sustainability concepts and their implications in transportation engineering in selected courses. The results show that this intervention significantly improved student's communication skills besides their higher-order cognitive, self-efficacy and teamwork skills. The researchers concluded that involving students in brainstorming activities related to problem identification including their practical implications, is an effective teaching strategy. Similarly, a Korean study by Park and Choi (2018) that sought to analyze the effects of case-based communication training involving 112 sophomore nursing students concluded that case-based training program improved the students’ critical thinking ability and communication competence. This finding seems to support further the use of case based teaching as an effective teaching-learning strategy.

The “ enhanced team-building capacity” arose from the opportunity students had in sharing their views, opinions, and experiences where they learned to communicate with each other and respect each other's ideas which further enhance team building. Fini et al. (2018) similarly noted that increased teamwork levels were seen among their study respondents when the researchers subjected engineering students to case scenario based-brainstorming activities as occurs with case study analysis teaching. Likewise, Lairamore et al. (2013) report similar results in their study that showed that case study analysis method increased team work ability and readiness among students from five health disciplines in a US-based study.

The finding that case study analysis teaching method resulted in “ effective collaboration ability” among students manifested as students entered into deep conversation as they solved the case scenarios. Rezaee and Mosalanejad (2015) assert that such innovative learning strategies result in noticeable educational outcomes, such as greater satisfaction with and enjoyment of the learning process ( Wellmon et al., 2012 ). Further, positive attitudes toward learning and collaboration have been noted leading to deeper learning as students prepare for case discussions ( Rezaee & Mosalanejad, 2015 ). This results show that case study analysis can be utilized by educators to foster professional collaboration among their learners, which is one of the key expectations of new graduates today.

The finding associated with “improved presentation skills” is consistent with the results of a descriptive study in Saudi Arabia that compared case study and traditional lectures in the teaching of physiology course to undergraduate nursing students. The researchers found that case-based teaching improved student’ overall knowledge and performance in the course including facilitating the acquisition of skills compared to traditional lectures ( Majeed, 2014 ). Noblitt et al. (2010) report similar findings in their study that compares traditional presentation approach with the case study method for developing and improving student's oral communication skills. This finding extends our understanding that case study method improves learners’ presentation skills.

The study was limited to level third year nursing students belonging to only one college and the sample size, which might limit the transferability of the study findings to other settings.

Implications for Practice

These study findings add to the existing body of knowledge that places case study based teaching as a tested method that promotes perception learning where students’ senses are engaged as a result of the real-life and authentic clinical scenarios ( Malesela, 2009 ), resulting in deeper learning and achievement of long-lasting knowledge ( Fiscus, 2018 ). The students reported that case scenario discussions broadened their perspectives, improved their cooperation capacity and communication with each other. This teaching method, in turn, offers students an opportunity to enhance their judgment and critical thinking skills by applying theory into practice.

These skills are critically important because nurses need to have the necessary knowledge and skills to plan high quality care for their patients to achieve a speedy recovery. In order to attain this educational goal, nurse educators have to prepare students through different student- centered strategies. The findings of our study appear to show that when appropriately used, case-based teaching results in acquisition of disciplinary knowledge manifested by deepened understanding of course content, as well as reducing the gap between theory and practice and enhancing learner's test-taking-ability. The study also showed that cased based teaching enhanced learner's critical thinking ability and curiosity to seek and acquire a deeper knowledge. Finally, the study results indicate that case study analysis results in improved communication and enhanced team-building capacity, collaborative ability and improved oral communication and presentation skills. The study findings and related evidence from literature show that case study analysis is well- suited approach for imparting knowledge and skills in baccalaureate nursing education.

This study evaluated the usefulness of Case Study Analysis as a teaching strategy. We found that this method of teaching helps encourages deeper learning among students. For instructors, it provides the opportunity to tailor learning experiences for students to undertake in depth study in order to stimulate deeper understanding of the desired content. The researchers conclude that if the cases are carefully selected according to the level of the students, and are written realistically and creatively and the group discussions keep students well engaged, case study analysis method is more effective than other traditional lecture methods in facilitating deeper and transferable learning/skills acquisition in undergraduate courses.

Conflict of Interest: The authors declare no conflict of interest.

ORCID iD: Judie Arulappan https://orcid.org/0000-0003-2788-2755

  • Ajani K., Moez S. (2011). Gap between knowledge and practice in nursing . Procedia-Social and Behavioral Sciences , 15 , 3927–3931. 10.1016/j.sbspro.2011.04.396 [ CrossRef ] [ Google Scholar ]
  • Bean J. C. (2011). Engaging ideas: The professor’s guide to integrating writing critical thinking and active-learning in the classroom (2nd ed.). Jossey-Bass. [ Google Scholar ]
  • Bonney K. M. (2015). Case study teaching method improves student performance and perceptions of learning gains . Journal of Microbiology & Biology Education , 16 ( 1 ), 21–28. 10.1128/jmbe.v16i1.846 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Braskamp L. A., Ory J. C. (1994). Assessing faculty work: Enhancing individual and institutional performance . Jossey-Bass Higher and Adult Education Series. Jossey-Bass Inc. [ Google Scholar ]
  • Centra J. A. (1993). Reflective faculty evaluation: Enhancing teaching and determining faculty effectiveness . Jossey-Bass. [ Google Scholar ]
  • Chen W., Shah U. V., Brechtelsbauer C. (2019). A framework for hands-on learning in chemical engineering education—training students with the end goal in mind . Education for Chemical Engineers , 28 , 25–29. 10.1016/j.ece.2019.03.002 [ CrossRef ] [ Google Scholar ]
  • Clarke J. (2010). Student centered teaching methods in a Chinese setting . Nurse Education Today , 30 ( 1 ), 15–19. 10.1016/j.nedt.2009.05.009 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Eronen L., Kokko S., Sormunen K. (2019). Escaping the subject-based class: A Finnish case study of developing transversal competencies in a transdisciplinary course . The Curriculum Journal , 30 ( 3 ), 264–278. 10.1080/09585176.2019.1568271 [ CrossRef ] [ Google Scholar ]
  • Factor E. M. R., Matienzo E. T., de Guzman A. B. (2017). A square peg in a round hole: Theory-practice gap from the lens of Filipino student nurses . Nurse Education Today , 57 , 82–87. 10.1016/j.nedt.2017.07.004 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Farashahi M., Tajeddin M. (2018). Effectiveness of teaching methods in business education: A comparison study on the learning outcomes of lectures, case studies and simulations . The International Journal of Management Education , 16 ( 1 ), 131–142. 10.1016/j.ijme.2018.01.003 [ CrossRef ] [ Google Scholar ]
  • Fini E. H., Awadallah F., Parast M. M., Abu-Lebdeh T. (2018). The impact of project-based learning on improving student learning outcomes of sustainability concepts in transportation engineering courses . European Journal of Engineering Education , 43 ( 3 ), 473–488. 10.1080/03043797.2017.1393045 [ CrossRef ] [ Google Scholar ]
  • Fiscus J. (2018). Reflection in Motion: A Case Study of Reflective Practice in the Composition Classroom [ Doctoral dissertation ]. Source: http://hdl.handle.net/1773/42299 [ Google Scholar ]
  • Flanagan N. A., McCausland L. (2007). Teaching around the cycle: Strategies for teaching theory to undergraduate nursing students . Nursing Education Perspectives , 28 ( 6 ), 310–314. [ PubMed ] [ Google Scholar ]
  • Garrison D. R., Kanuka H. (2004). Blended learning: Uncovering its transformative potential in higher education . The internet and higher education , 7 ( 2 ), 95–105. 10.1016/j.iheduc.2004.02.001 [ CrossRef ] [ Google Scholar ]
  • Hattie J. (2017). Foreword . In Nottingham J. (Ed.), The learning challenge: How to guide your students through the learning pit to achieve deeper understanding . Corwin Press, p. xvii. [ Google Scholar ]
  • Hermens A., Clarke E. (2009). Integrating blended teaching and learning to enhance graduate attributes . Education+ Training , 51 ( 5/6 ), 476–490. [ Google Scholar ]
  • Hickey M. T. (2010). Baccalaureate nursing graduates’ perceptions of their clinical instructional experiences and preparation for practice . Journal of Professional Nursing , 26 ( 1 ), 35–41. 10.1016/j.profnurs.2009.03.001 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hodges C., Moore S., Lockee B., Trust T., Bond A. (2020). The difference between emergency remote teaching and online learning . Educause review , 27 , 1–12. [ Google Scholar ]
  • Jackson N. R., Ward A. E. (2012). Curiosity based learning: Impact study in 1st year electronics undergraduates. 2012 International Conference on Information Technology Based Higher Education and Training (ITHET), Istanbul, pp. 1–6. 10.1109/ITHET.2012.6246005. [ CrossRef ] [ Google Scholar ]
  • Kolb A. Y., Kolb D. A., Passarelli A., Sharma G. (2014). On becoming an experiential educator: The educator role profile . Simulation & Gaming , 45 ( 2 ), 204–234. 10.1177/1046878114534383 [ CrossRef ] [ Google Scholar ]
  • Lairamore C., George-Paschal L., McCullough K., Grantham M., Head D. (2013). A case-based interprofessional education forum improves students’ perspectives on the need for collaboration, teamwork, and communication . MedEdPORTAL, The Journal of Teaching and learning resources , 9 , 10.15766/mep_2374-8265.9484 [ CrossRef ] [ Google Scholar ]
  • Majeed F. (2014). Effectiveness of case based teaching of physiology for nursing students . Journal of Taibah University Medical Sciences , 9 ( 4 ), 289–292. 10.1016/j.jtumed.2013.12.005 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Malesela J. M. (2009). Case study as a learning opportunity among nursing students in a university . Health SA Gesondheid (Online) , 14 ( 1 ), 33–38. 10.4102/hsag.v14i1.434 [ CrossRef ] [ Google Scholar ]
  • Malmqvist J., Hellberg K., Möllås G., Rose R., Shevlin M. (2019). Conducting the pilot study: A neglected part of the research process? Methodological findings supporting the importance of piloting in qualitative research studies . International Journal of Qualitative Methods , 18 . 10.1177/1609406919878341 [ CrossRef ] [ Google Scholar ]
  • Manalo E. (ed.). (2019). Deeper learning, dialogic learning, and critical thinking: Research-based strategies for the classroom . Routledge. [ Google Scholar ]
  • Martinez-Rodrigo F., Herrero-De Lucas L. C., De Pablo S., Rey-Boue A. B. (2017). Using PBL to improve educational outcomes and student satisfaction in the teaching of DC/DC and DC/AC converters . IEEE Transactions on Education , 60 ( 3 ), 229–237. 10.1109/TE.2016.2643623 [ CrossRef ] [ Google Scholar ]
  • Matua G. A., Seshan V., Akintola A. A., Thanka A. N. (2014). Strategies for providing effective feedback during preceptorship: Perspectives from an Omani Hospital . Journal of Nursing Education and Practice , 4 ( 10 ), 24. 10.5430/jnep.v4n10p24 [ CrossRef ] [ Google Scholar ]
  • Morgan D. L., Bottorff J. L. (2010). Advancing our craft: Focus group methods and practice . Qualitative Health Research , 20 ( 5 ), 579–581. 10.1177/1049732310364625 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • MsDade S. A. (1995). Case study pedagogy to advance critical thinking . Teaching psychology , 22 ( 1 ), 9–10. 10.1207/s15328023top2201_3 [ CrossRef ] [ Google Scholar ]
  • Muhiuddin G., Jahan N. (2006). Students’ perception towards case study as a method of learning in the field of business administration’ . The Chittagong University Journal of Business Administration , 21 , 25–41. [ Google Scholar ]
  • Noblitt L., Vance D. E., Smith M. L. D. (2010). A comparison of case study and traditional teaching methods for improvement of oral communication and critical-thinking skills . Journal of College Science Teaching , 39 ( 5 ), 26–32. [ Google Scholar ]
  • Nottingham J. (2017). The learning challenge: How to guide your students through the learning pit to achieve deeper understanding . Corwin Press. [ Google Scholar ]
  • Nowell L. S., Norris J. M., White D. E., Moules N. J. (2017). Thematic analysis: Striving to meet the trustworthiness criteria . International Journal of Qualitative Methods , 16 ( 1 ). 10.1177/1609406917733847 [ CrossRef ] [ Google Scholar ]
  • Nyumba T., Wilson K., Derrick C. J., Mukherjee N. (2018). The use of focus group discussion methodology: Insights from two decades of application in conservation . Methods in Ecology and evolution , 9 ( 1 ), 20–32. 10.1111/2041-210X.12860 [ CrossRef ] [ Google Scholar ]
  • Onweh V. E., Akpan U. T. (2014). Instructional strategies and students academic performance in electrical installation in technical colleges in Akwa Ibom State: Instructional skills for structuring appropriate learning experiences for students . International Journal of Educational Administration and Policy Studies , 6 ( 5 ), 80–86. [ Google Scholar ]
  • Park S. J., Choi H. S. (2018). The effect of case-based SBAR communication training program on critical thinking disposition, communication self-efficacy and communication competence of nursing students . Journal of the Korea Academia-Industrial Cooperation Society , 19 ( 11 ), 426–434. 10.5762/KAIS.2018.19.11.426 [ CrossRef ] [ Google Scholar ]
  • Parker A., Tritter J. (2006). Focus group method and methodology: Current practice and recent debate . International Journal of Research & Method in Education , 29 ( 1 ), 23–37. 10.1080/01406720500537304 [ CrossRef ] [ Google Scholar ]
  • Rezaee R., Mosalanejad L. (2015). The effects of case-based team learning on students’ learning, self-regulation and self-direction . Global Journal of Health Science , 7 ( 4 ), 295. 10.5539/gjhs.v7n4p295 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rickles J., Zeiser K. L., Yang R., O’Day J., Garet M. S. (2019). Promoting deeper learning in high school: Evidence of opportunities and outcomes . Educational Evaluation and Policy Analysis , 41 ( 2 ), 214–234. [ Google Scholar ]
  • Rittle-Johnson B., Star J. R., Durkin K., Loehr A. (2020). Compare and discuss to promote deeper learning. Deeper learning, dialogic learning, and critical thinking: Research-based strategies for the classroom . Routlegde, p. 48. 10.4324/9780429323058-4 [ CrossRef ] [ Google Scholar ]
  • Sajjad S. (2010). Effective teaching methods at higher education level . Pakistan Journal of Special Education , 11 , 29–43. [ Google Scholar ]
  • Saunders B., Sim J., Kingstone T., Baker S., Waterfield J., Bartlam B., Burroughs H., Jinks C. (2018). Saturation in qualitative research: Exploring its conceptualization and operationalization . Quality & Quantity , 52 ( 4 ), 1893–1907. 10.1007/s11135-017-0574-8 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Savery J. R. (2019). Comparative pedagogical models of problem based learning . The Wiley Handbook of Problem Based Learning , 81–104. 10.1002/9781119173243.ch4 [ CrossRef ] [ Google Scholar ]
  • Shirani Bidabadi N., Nasr Isfahani A., Rouhollahi A., Khalili R. (2016). Effective teaching methods in higher education: Requirements and barriers . Journal of Advances in Medical Education & Professionalism , 4 ( 4 ), 170–178. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Streubert H. J., Carpenter D. R. (2011). Qualitative research in nursing: Advancing the humanistic imperative . Wolters Kluwer. [ Google Scholar ]
  • Suwono H., Pratiwi H. E., Susanto H., Susilo H. (2017). Enhancement of students’ biological literacy and critical thinking of biology through socio-biological case-based learning . JurnalPendidikan IPA Indonesia , 6 ( 2 ), 213–220. 10.15294/jpii.v6i2.9622 [ CrossRef ] [ Google Scholar ]
  • Tiwari A., Lai P., So M., Yuen K. (2006). A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking . Medical Education , 40 ( 6 ), 547–554. 10.1111/j.1365-2929.2006.02481.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wang V., Farmer L. (2008). Adult teaching methods in China and bloom's taxonomy . International Journal for the Scholarship of Teaching and Learning , 2 ( 2 ), n2. 10.20429/ijsotl.2008 [ CrossRef ] [ Google Scholar ]
  • Wellmon R., Gilin B., Knauss L., Linn M. I. (2012). Changes in student attitudes toward interprofessional learning and collaboration arising from a case-based educational experience . Journal of Allied Health , 41 ( 1 ), 26–34. [ PubMed ] [ Google Scholar ]
  • Yajima K., Takahashi S. (2017). Development of evaluation system of AL students . Procedia Computer Science , 112 , 1388–1395. 10.1016/j.procs.2017.08.056 [ CrossRef ] [ Google Scholar ]
  • Yang W. P., Chao C. S. C., Lai W. S., Chen C. H., Shih Y. L., Chiu G. L. (2013). Building a bridge for nursing education and clinical care in Taiwan—using action research and confucian tradition to close the gap . Nurse Education Today , 33 ( 3 ), 199–204. 10.1016/j.nedt.2012.02.016 [ PubMed ] [ CrossRef ] [ Google Scholar ]

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

George Whitesides.

‘The scientist is not in the business of following instructions.’

Mikhail Lukin (left) and Can Knaut stand near a quantum network node.

Glimpse of next-generation internet

Portrait of Venki Ramakrishnan.

Science is making anti-aging progress. But do we want to live forever?

Lessons in learning.

Sean Finamore ’22 (left) and Xaviera Zime ’22 study during a lecture in the Science Center.

Photos by Kris Snibbe/Harvard Staff Photographer

Peter Reuell

Harvard Staff Writer

Study shows students in ‘active learning’ classrooms learn more than they think

For decades, there has been evidence that classroom techniques designed to get students to participate in the learning process produces better educational outcomes at virtually all levels.

And a new Harvard study suggests it may be important to let students know it.

The study , published Sept. 4 in the Proceedings of the National Academy of Sciences, shows that, though students felt as if they learned more through traditional lectures, they actually learned more when taking part in classrooms that employed so-called active-learning strategies.

Lead author Louis Deslauriers , the director of science teaching and learning and senior physics preceptor, knew that students would learn more from active learning. He published a key study in Science in 2011 that showed just that. But many students and faculty remained hesitant to switch to it.

“Often, students seemed genuinely to prefer smooth-as-silk traditional lectures,” Deslauriers said. “We wanted to take them at their word. Perhaps they actually felt like they learned more from lectures than they did from active learning.”

In addition to Deslauriers, the study is authored by director of sciences education and physics lecturer Logan McCarty , senior preceptor in applied physics Kelly Miller, preceptor in physics Greg Kestin , and Kristina Callaghan, now a physics lecturer at the University of California, Merced.

The question of whether students’ perceptions of their learning matches with how well they’re actually learning is particularly important, Deslauriers said, because while students eventually see the value of active learning, initially it can feel frustrating.

“Deep learning is hard work. The effort involved in active learning can be misinterpreted as a sign of poor learning,” he said. “On the other hand, a superstar lecturer can explain things in such a way as to make students feel like they are learning more than they actually are.”

To understand that dichotomy, Deslauriers and his co-authors designed an experiment that would expose students in an introductory physics class to both traditional lectures and active learning.

For the first 11 weeks of the 15-week class, students were taught using standard methods by an experienced instructor. In the 12th week, half the class was randomly assigned to a classroom that used active learning, while the other half attended highly polished lectures. In a subsequent class, the two groups were reversed. Notably, both groups used identical class content and only active engagement with the material was toggled on and off.

Following each class, students were surveyed on how much they agreed or disagreed with statements such as “I feel like I learned a lot from this lecture” and “I wish all my physics courses were taught this way.” Students were also tested on how much they learned in the class with 12 multiple-choice questions.

When the results were tallied, the authors found that students felt as if they learned more from the lectures, but in fact scored higher on tests following the active learning sessions. “Actual learning and feeling of learning were strongly anticorrelated,” Deslauriers said, “as shown through the robust statistical analysis by co-author Kelly Miller, who is an expert in educational statistics and active learning.”

Those results, the study authors are quick to point out, shouldn’t be interpreted as suggesting students dislike active learning. In fact, many studies have shown students quickly warm to the idea, once they begin to see the results. “In all the courses at Harvard that we’ve transformed to active learning,” Deslauriers said, “the overall course evaluations went up.”

bar chart

Co-author Kestin, who in addition to being a physicist is a video producer with PBS’ NOVA, said, “It can be tempting to engage the class simply by folding lectures into a compelling ‘story,’ especially when that’s what students seem to like. I show my students the data from this study on the first day of class to help them appreciate the importance of their own involvement in active learning.”

McCarty, who oversees curricular efforts across the sciences, hopes this study will encourage more of his colleagues to embrace active learning.

“We want to make sure that other instructors are thinking hard about the way they’re teaching,” he said. “In our classes, we start each topic by asking students to gather in small groups to solve some problems. While they work, we walk around the room to observe them and answer questions. Then we come together and give a short lecture targeted specifically at the misconceptions and struggles we saw during the problem-solving activity. So far we’ve transformed over a dozen classes to use this kind of active-learning approach. It’s extremely efficient — we can cover just as much material as we would using lectures.”

A pioneer in work on active learning, Balkanski Professor of Physics and Applied Physics Eric Mazur hailed the study as debunking long-held beliefs about how students learn.

“This work unambiguously debunks the illusion of learning from lectures,” he said. “It also explains why instructors and students cling to the belief that listening to lectures constitutes learning. I recommend every lecturer reads this article.”

Dean of Science Christopher Stubbs , Samuel C. Moncher Professor of Physics and of Astronomy, was an early convert. “When I first switched to teaching using active learning, some students resisted that change. This research confirms that faculty should persist and encourage active learning. Active engagement in every classroom, led by our incredible science faculty, should be the hallmark of residential undergraduate education at Harvard.”

Ultimately, Deslauriers said, the study shows that it’s important to ensure that neither instructors nor students are fooled into thinking that lectures are the best learning option. “Students might give fabulous evaluations to an amazing lecturer based on this feeling of learning, even though their actual learning isn’t optimal,” he said. “This could help to explain why study after study shows that student evaluations seem to be completely uncorrelated with actual learning.”

This research was supported with funding from the Harvard FAS Division of Science.

Share this article

You might like.

George Whitesides became a giant of chemistry by keeping it simple

Mikhail Lukin (left) and Can Knaut stand near a quantum network node.

Physicists demo first metro-area quantum computer network in Boston

Portrait of Venki Ramakrishnan.

Nobel laureate details new book, which surveys research, touches on larger philosophical questions

Epic science inside a cubic millimeter of brain

Researchers publish largest-ever dataset of neural connections

Finding right mix on campus speech policies

Legal, political scholars discuss balancing personal safety, constitutional rights, academic freedom amid roiling protests, cultural shifts

Good genes are nice, but joy is better

Harvard study, almost 80 years old, has proved that embracing community helps us live longer, and be happier

Essay Assignment Writing Tips for Students of MBA, Masters, PhD Level

Text for Mobile

What is the Impact and Importance of Case Study in Education?

Before we explain the significance of case study in education these days for high education, let us explain the first, ‘What is a case study? However, it consists of three major parts that you need to consider for writing. Starting with a problem, outline different available solutions, and offer proven results exhibits that the product or service is an optimum solution for the problem.

Importance of Case Study in Education

What is a Case Study in Education?

Well, a case study is a method of research regarding any specific questions, which allows a person to investigate why and how it happens. Based on education, a case study is that who can use the research for many purposes. It lets the student describe various factors and interaction with each other in authentic contexts. It offers multiple learning opportunities and experiences for scholars by influencing the diverse practice of theories.

Importance of Case Study in Education

It is also considered the source of valuable data regarding diversity and complexity of educational commitments and settings. It plays a vital role in putting theories into regular practice. It is always necessary for the student to realize the clarity in nature and focus of the case study. Considering the significance, Casestudyhelp.com brings the best Case Study Help Any Academic Level for students exerting for acquiring top grades.

case study help

What are the Advantages of Case Studies in Class ?

Case studies are assigned to higher classes students, which proved very beneficial to the students, especially in the classroom. Students can actively engage in the discovery of the principles by conceptualizing from the examples. Furthermore, they develop skills like

  • Problem-solving
  • Coping with ambiguities
  • Analytical/ quantitative/qualitative tools according to the case and
  • Decision making in complex situations

Method of a Writing Case Study at Casestudyhelp.com!

When teachers give students a Case Study Topic by a teacher, they have to attack each case with the following checklist or go for best and reasonable Case Study Help for Any Topic at casestudyhelp.com!

  • Thoroughly read the case and formulate own opinions before sharing ideas with others in the class. You must identify the problems on your own, and offer solutions and best alternatives alongside. Before the study converses, you need to form your own outline and course of action.
  • Focus on the three major parts of a case study considering the starting with a problem, outline different accessible solutions, offer predictable results that exhibit the product/service is an optimal solution for the problem.
  • Prepare to engage in data collection, collecting data in the field, carry out data evaluation and analysis to write the report.

If you want to save your crucial time for in-depth academic studies, hire our  Case study research writers competent with all categories of analysis to write excellent category case studies.

Case Study Help is one of the best academic assistance providers with a team of Experts. We deliver a range of analysis help at a pocket -friendly price. For any category of writing and at any academic level, contact us now!

4 Case Studies: Schools Use Connections to Give Every Student a Reason to Attend

case study importance for students

  • Share article

Students who feel connected to school are more likely to attend and perform well, and less likely to misbehave and feel sad and hopeless. There are even health benefits well into adulthood linked to a strong connection to school as an adolescent.

But schools are confronting a range of problems that stem at least in part from a lack of connection—perhaps most visibly: stubborn, nationwide increases in chronic absenteeism .

As they try to boost attendance and keep students engaged, some schools are turning to strategies built around the idea of connectedness. They’ve taken steps to more deliberately cultivate trusting relationships among students and adults in the building. They’ve tried to boost students’ participation in extracurricular activities to ensure they have a place at school where they feel as if they belong. And they’ve collected student feedback on what they’re learning and responded accordingly.

Principal David Arencibia embraces a student as they make their way to their next class at Colleyville Middle School in Colleyville, Texas on Tuesday, April 18, 2023.

The work lines up with school connectedness strategies the U.S. Centers for Disease Control and Prevention has said are effective at reducing unhealthy behaviors and strengthening students’ engagement.

Here’s how two high schools and two school districts are putting student connectedness at the center of their improvement efforts.

Dive into each case study:

  • Making 9th graders feel seen and heard
  • Probing why some students feel they don’t belong
  • Making relationships part of an early-warning system
  • Using connections to battle chronic absenteeism

A Chicago school wants 9th graders to feel seen and heard

Thomas Kelly College Preparatory, Chicago

Educators at Thomas Kelly College Preparatory have homed in on freshman year as a key time to make sure students have a strong connection to the Chicago high school.

“If you’re a 9th grader, nothing is more important to you than belonging,” said Grace Gunderson, a counselor at the 1,700-student school who leads its newly formed freshman success team. “If we can get those kids involved in band or, ‘Hey, I play on the soccer team,’ or, ‘Hey, I always eat lunch in Ms. Gunderson’s office,’ now they have a connection. They have a reason to keep coming to school.”

Kelly’s efforts began with hearing from students. In the first iteration of a survey called Elevate that the school now administers to all students quarterly, students said they didn’t think teachers cared about them, they thought classes were boring, and they didn’t think what they were learning was relevant to what they wanted to do in life, Principal Raul Magdaleno said.

With that insight, school staff—led by the five-member freshman success team—deployed a range of initiatives, both large and small, to foster belonging. They worked on making sure students had a relationship with a trusted adult, that more were participating in extracurricular activities, that the school building was inviting, and that students knew their opinions mattered.

One effort was a “Freshman Cafe,” a spring event last year where nearly all the school’s 500 freshmen sat down one-on-one with an adult for five to 10 minutes and discussed how the school year had gone, asked questions about sophomore year, reviewed attendance and grades and set goals for the remainder of the year, and talked about clubs they could join. Staff members ranging from the dean to security guards participated.

Before the current freshman class arrived at Kelly last summer, the school started sending regular communications to incoming 9th graders introducing them to the school and staff members, held community-building activities for incoming freshmen run by college mentors through a “Freshman Connection” program, and hosted an outdoor “Freshman Fiesta” with snacks and swag, where students had the chance to meet teachers.

It’s definitely still a work in progress. But I think the students understand now that we want their feedback, we genuinely want to know what they think, and they feel as if their opinions are valued.

And once the school year began, the freshman success team made sure an adult would regularly check in with students flagged as high risk in the Chicago schools’ “Risk and Opportunity” framework, which uses 8th grade attendance and grades to predict students’ likelihood of success in high school.

The school relied on teachers and other staff members in the building who volunteered to do these check-ins as well as college-age mentors working through a community group, the Brighton Park Neighborhood Council, “just so they have somebody else aside from their teachers that’s talking to them, that shows them that they care, that they’re interested in their experience,” said Griselda Esparza, an assistant principal at Kelly.

In classrooms, after students said they thought classes were boring and disconnected, Kelly made this year the year of “meaningful work,” with teachers starting to rethink their instruction to make it more “culturally relevant and rigorous,” Magdaleno said.

Teachers have started working in their professional learning communities to examine whether what they’re teaching is personally relevant to students and connected to life outside the classroom. They’re also focused on whether students have opportunities to make choices about what they’re learning.

“It’s definitely still a work in progress,” Gunderson said. “But I think the students understand now that we want their feedback, we genuinely want to know what they think, and they feel as if their opinions are valued.”

A New York district probes why some students feel they don’t belong

Arlington Central School District, New York

When the Arlington Central school district in New York surveyed students after their return to campus from pandemic closures, staff discovered that older students, students of color, and students in special education felt a weaker sense of belonging at school.

So, staff from the 7,800-student district started speaking with students from those populations to get to the bottom of the problem.

In focus groups, students told staff that books they read in class weren’t relevant and that they weren’t hearing enough viewpoints in history classes. Students who weren’t athletes or musicians said they had no way to connect to their school community.

“We learned a lot, and that helped us prioritize,” said Daisy Rodriguez, the district’s assistant superintendent for curriculum, instruction, and assessment.

A first response was holding high school activity fairs, bringing information to students about clubs they could join rather than having them seek it out on their own. More informally, administrators sat with kids in the cafeteria to talk to them about their interests and potential clubs to add to the school’s roster.

Working with department coordinators, the district conducted curriculum audits, looking at the texts students were assigned and exploring whether they could swap in more relevant and current selections. And the high school added career and technical education offerings.

High school students also sit on curriculum teams, Rodriguez said. “They give us immediate feedback on programs and resources that we’re thinking about and if it makes sense to them,” she said.

At the district’s middle schools, Arlington last year established regular advisory periods, with groups of students assigned to the same adviser all three years so they can form stronger connections and don’t have to hit reset every fall. The time is set aside for regular check-ins and social-emotional learning.

We know that when kids feel like they belong in school, they have better attendance, they have better academic achievement, and just greater social-emotional support.

“Students have reported that they do feel that it’s helpful for them because they actually have a space that they can go to and talk about things that they can’t talk about necessarily in other settings,” Rodriguez said.

The district wants older students to lead more of these sessions in coming years, and it would ultimately like to bring advisory periods to the high school.

At the elementary level, students now have daily morning meetings, a time set aside for social-emotional learning and work on communication skills.

So far, the district has seen some positive results—a reduction in chronic absenteeism that Rodriguez attributes at least in part to the district’s work on connectedness.

“We know that when kids feel like they belong in school, they have better attendance, they have better academic achievement, and just greater social-emotional support,” she said.

A New Mexico high school makes relationships part of its early-warning system

Manzano High School, Albuquerque, N.M.

Manzano High School in Albuquerque, N.M., relies on a dedicated advisory time so students build strong connections with staff who can then spot warning signs that a student might be falling behind.

The 30-minute advisory period that happens every Monday isn’t new to the 1,300-student high school. What’s new about it is that, over the past couple of years, advisers have been expected to check in with their advisees and, using the school’s student-information system, review their grades, attendance, and behavior over the prior week.

If a student is struggling, the adviser fills out a referral form and sends it to one of the school’s five student-success teams, each of which includes an academic counselor. That team starts working with the student to identify a root cause of their challenges and potential solutions.

The advisory period’s conversion to a key component of Manzano’s early warning, or student success, system has involved training for staff members on becoming deliberate listeners and lunch-and-learn sessions on building relationships with students, said Jeanie Stark, the school’s student-success systems coordinator.

“When you’re listening to the students, it’s listening to what they’re saying and maybe even listening to a little bit beyond that to get to that root cause,” she said. “And you may or may not respond right away.”

Image of a data dashboard.

It’s still a work in progress. The school has work to do to ensure all advisers are using the student-success system as the framework for conversations with students, Principal Rachel Vigil said.

Attendance has improved this year, and the number of students requiring student-success-team referrals has been dropping, Stark said. But a more immediate sign that the check-ins and related work have been successful is feedback from students.

Last spring, Manzano staff interviewed students whom advisers had referred to a student-success team. Of all the help they’d received, the regular check-ins were the most meaningful and helpful, the students said.

“Students were saying, ‘We do better when we have people doing those one-on-one check-ins,’” Vigil said. “Just, ‘Hey, how are you doing?’ It doesn’t even have to be academic.”

Grades and attendance data are readily available through the student-information system, Stark said, but students “want a lot of communication. They want that teacher to talk to them, and they want them to tell them how they’re doing.”

Now, the Albuquerque district wants to spread Manzano’s work. It’s working with other high schools in the city to craft their own student-success systems, and some of Albuquerque’s middle schools are figuring out what a student-success system looks like for younger students, said Sheri Jett, Albuquerque’s associate superintendent for school climate and supports, a new position.

Working with the student-survey company Panorama, Albuquerque has also begun conducting regular student surveys on students’ skills, habits, and mindset. Manzano staff hope these surveys will provide them with even more student feedback they can use to tailor their student-success system.

In Washington state, a district uses connections to battle chronic absenteeism

Tacoma Public Schools, Washington state

The Tacoma, Wash., school district’s work over the past two years to cut chronic absenteeism has revolved around strategies to strengthen students’ bonds to peers and trusted adults while using student and family feedback as a guide.

“We believe the relationship is the intervention,” said Laura Allen, the director of the 28,000-student district’s whole-child department , the hub for much of the school system’s student-wellness work.

With a grant from Washington’s state education agency, Tacoma two years ago hired a district attendance and engagement counselor to lead work on boosting attendance. As part of that work, the district surveyed students and families to find out why kids attend school and why they miss it.

“The No. 1 reason why kids said they come to school was to see their friends,” Allen said. “It doesn’t mean that they don’t want to do well academically, but that friendship connection was first and foremost.”

With that knowledge in hand, schools worked on creating new clubs that could provide more students opportunities to spend time with friends and foster a sense of belonging.

District data showed that Indigenous and LGBTQ+ students were more likely to attend school irregularly, so staff helped create new affinity groups aimed at giving students from those populations a place to “feel seen and heard,” said Jimmy Gere, the attendance and engagement counselor.

Some schools formed attendance clubs to build connections with students at risk of being chronically absent and work through problems that could keep them from coming to school.

Newly formed building attendance teams—sometimes existing teams that expanded their focus to include attendance—took inventories of their schools’ existing interventions for at-risk students, held listening sessions with students and staff, and took school-specific steps to address attendance challenges.

Baker Middle School sixth graders participate in a group activity during an Embodied Leadership session on April 9, 2024, in Tacoma, Wash.

Tacoma also began working with two community organizations that provide mentors who regularly meet with students during school hours, checking in with them and working with them on social-emotional skills.

These experiences show students that “good things happen at school, whether it’s with your teachers or staff that are there every day or community partners that are set up to deliver their services within the school,” Gere said.

And one new initiative provides younger students with a safe way to get to school while giving older students a paid internship and course credit.

The Walking School Bus is an organized group of students who walk to school together each day, led by a high school student route leader or Tacoma educator, stopping at established points to pick up more students. It was a response to feedback from parents who said their kids didn’t have a safe way to get to school, presenting a barrier to attendance.

Younger students build relationships with high school students, and high school students gain a service-learning opportunity—one of the CDC’s identified strategies for building school connectedness.

“There’s an element of mentorship because elementary kids love high school kids,” Gere said.

Tacoma has seen attendance inch up since it started these initiatives. Average daily attendance has been 88.3 percent so far this year, up from 85.6 percent in 2021-22, before these initiatives began, district data show. But it’s still early, and future funding for some of the work is uncertain as the state attendance grant comes to a close alongside other federal COVID-relief money.

Still, Tacoma will be able to carry on much of the work based on building connections, Allen said. For students, she said, “it is all about making sure that they know that they’re seen and that they’re loved.”

VIDEO: How Schools Can Harness the Power of Relationships

case study importance for students

Coverage of whole-child approaches to learning is supported in part by a grant from the Chan Zuckerberg Initiative, at www.chanzuckerberg.com . Education Week retains sole editorial control over the content of this coverage. A version of this article appeared in the April 24, 2024 edition of Education Week as 4 Case Studies: Schools Use Connections to Give Every Student a Reason to Attend

Students raise their hands during an assembly at Yates Magnet Elementary School in Schenectady, N.Y., on March 28, 2024.

Sign Up for The Savvy Principal

Edweek top school jobs.

People protest outside the House chamber after legislation passed that would allow some teachers to be armed in schools during a legislative session on April 23, 2024, in Nashville, Tenn.

Sign Up & Sign In

module image 9

  • Our Mission

Helping Middle and High School Students Cultivate Habits That Support Learning

Through explicit instruction, teachers can help students develop the skills necessary to do well in school.

Middle school math class

To learn and be successful in school overall, middle and high school students need the building blocks of academic achievement, active engagement and motivation, and consistent attendance. Young people often need a little help from their teachers to get there. Taking some time to enhance foundational skills doesn’t mean we lower expectations or rigor for students . Instead, think of it as putting first things first—like placing the horse before the cart, so that it can pull it effectively and eventually effortlessly.

In coaching teachers, I’ve observed a need for more consensus and collaboration between them and students about cultivating the essentials for success. Unfortunately, youth aren’t always aware of how they can positively impact their learning outcomes. Rather than becoming informed stakeholders in their own learning, they unintentionally become impediments.

Using the following two steps, teachers and students can come to an understanding about the essentials for positive school outcomes through what’s called level-setting in the business world . These strategies also provide young people with some good goal-attainment skills.

2 Steps to Guide Students to School Success

Step 1: Explain the fundamentals and set clear expectations. It can be extremely difficult for youth to set goals to develop habits they don’t fully comprehend or see value in. Help define for them the areas in which they need to improve, while modeling and setting clear expectations of what success entails. Remember to use kid-friendly language and remain patient. What we consider common sense isn’t always common practice. Here are some examples of how to define the fundamentals for students.

Academic achievement is the ability to demonstrate growth in each school subject through grades and performance. To excel academically, students should create a personal system of strategies for effective problem-solving, studying, time management, and collaborating with peers for each class. Achieving small academic victories will nurture their self-efficacy levels and overall confidence.

Active engagement in class means students listen attentively when teachers talk, ask thoughtful questions when they’re unsure, complete tasks and assignments with their best effort, and participate in learning activities and class discussions. It also means students take responsibility for their own learning by remaining focused and present even when their classmates are not.

Motivation for their education refers to students inspiring themselves to complete their academic duties even when they don’t feel like it. We all face challenges, setbacks, and moments when we feel like doing anything other than studying or participating in an academic activity. Finding purpose and meaning in their education can be a powerful motivator for students, along with these proven self-motivation techniques . Teachers can encourage students to empower themselves by focusing on the benefits of positive learning outcomes (e.g., learning to apply a formula, scoring high scores on benchmarks, or developing elevated levels of self-agency ).

Consistent attendance means students attend class to remain engaged with their teachers, the material, and peers. You can’t learn if you’re not there is an excellent slogan to summarize why students must attend classes regularly. Good attendance enables teens to network and build the rapport and relationships required for academic and life success. Additionally, it keeps them on track with coursework and assignments and makes them less likely to fall behind socially and academically. Some students actually miss class due to concerns about their academic performance, but there are ways that teachers can lure them back .

Step 2: Encourage goal setting and goal attainment. There is more than one way to set goals and achieve them. For instance, SMART goals offer a good framework for helping individuals qualify goals, and Scholar Within, an online education company, provides this free downloadable and adaptable goal-planning template that teachers can use to help students. When the road to achieving a goal appears too complex, many students may give up without realizing that learning what to do along the way is part of the process. Teachers can help by making the distinction between goal setting and goal attainment for them. Goal setting is determining something you want. Goal attainment is the system or process one takes to get there.

After identifying an essential skill they want to improve in, assist students with developing a goal-setting sentence and then with practical and incremental attainment steps they would need to take to get there. Also, be prepared to assist with providing access to the tools, apps, resources, and manipulatives recommended in the goal-attainment steps.

Note: This example is for a middle school student looking to improve their academic achievement in math class. Feel free to use the goal-setting template provided, ensuring assistance with helping them craft a goal statement and mapping practical goal-attainment steps like those modeled here.

Student goal statement: “I will strive for academic excellence in my seventh-grade math class by learning and applying strategies that will help me to boost my confidence over time and to do well on assignments, quizzes, and end-of-year testing.”

Goal attainment steps and considerations for boosting math skills

  • Practice arithmetic operations daily using real-life examples and apps that provide interactive practice exercises.
  • Practice pre-algebra concepts using step-by-step problem-solving to decompose algebraic problems into smaller steps and follow a systematic problem-solving method. Understand algebraic concepts by using visual representations such as graphs and diagrams.
  • Learn geometry fundamentals by building models of geometric shapes and using apps to manipulate geometric shapes and visualize properties, transformations, and calculations.
  • Create a daily study schedule at home free of distractions and divide the time into practice and review.
  • Stay motivated and consistent when the chips are down by cultivating a positive mindset and seeking positive words from my teacher, family, and friends. Keep everyone informed about my progress, and remember that setting goals takes time, failing forward, and persistence.

Transformation is complex because it requires stretching oneself to improve in areas one possibly hasn’t considered or previously attempted to work on—especially for young people. Engaging students in an activity to help them see a practical pathway is the scaffold that some need to get themselves on track.

Scholars Crossing

  • Liberty University
  • Jerry Falwell Library
  • Special Collections
  • < Previous

Home > ETD > Doctoral > 5530

Doctoral Dissertations and Projects

Empowerment and advocacy culture within higher education for adults with intellectual disabilities: a qualitative case study.

Rachel R. Kovach , Liberty University Follow

School of Education

Doctor of Philosophy in Education (PhD)

Christian L Raby

empowerment, advocacy, intellectual disabilities, higher education

Disciplines

Educational Leadership | Higher Education

Recommended Citation

Kovach, Rachel R., "Empowerment and Advocacy Culture within Higher Education for Adults with Intellectual Disabilities: A Qualitative Case Study" (2024). Doctoral Dissertations and Projects . 5530. https://digitalcommons.liberty.edu/doctoral/5530

The purpose of this case study was to understand the impact that advocacy and empowerment practices have on the intellectual disabilities community in academic and social constructs for students within community colleges and disability programs on the West Coast of California. The theories that served as the foundation of this study are intergroup contact theory and empowerment theory. Intergroup contact theory assures that the acceptance of societal norms and expectations must be agreed upon and embraced by all within a subpopulation for cultures to adapt and advance. Empowerment theory states that a fundamental goal during moments of progress and struggle is to achieve self-actualization and fulfillment by gaining peer, professional, and personal efficacy by developing and sharing one’s voice and perspective. With 20 participants, nine partook in individual interviews, and two separate focus groups of five-to-seven per group were formed, with the remaining 11. This allowed participants to communicate their insights and perspectives on their relationships with higher education and their connections to empowerment and advocacy practices within their daily lives. 10 of the 20 participants submitted work samples demonstrating their connections to empowerment and advocacy skills. Based on the data collected, the participants found it more important for their skills to assist in improving the lives and realities of their peers and passionate causes before themselves. Experiences gained within the classroom environment, as well as overcoming social and medical adversity, provided participants the resources necessary to convey the importance and effectiveness of empowerment and advocacy practices for future students as well as their peers and have ultimately offered them opportunities to be more fully developed students, employees, and global citizens.

Included in

Educational Leadership Commons , Higher Education Commons

  • Collections
  • Faculty Expert Gallery
  • Theses and Dissertations
  • Conferences and Events
  • Open Educational Resources (OER)
  • Explore Disciplines

Advanced Search

  • Notify me via email or RSS .

Faculty Authors

  • Submit Research
  • Expert Gallery Login

Student Authors

  • Undergraduate Submissions
  • Graduate Submissions
  • Honors Submissions

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

  • Open access
  • Published: 24 February 2024

Physical activity improves stress load, recovery, and academic performance-related parameters among university students: a longitudinal study on daily level

  • Monika Teuber 1 ,
  • Daniel Leyhr 1 , 2 &
  • Gorden Sudeck 1 , 3  

BMC Public Health volume  24 , Article number:  598 ( 2024 ) Cite this article

4039 Accesses

30 Altmetric

Metrics details

Physical activity has been proven to be beneficial for physical and psychological health as well as for academic achievement. However, especially university students are insufficiently physically active because of difficulties in time management regarding study, work, and social demands. As they are at a crucial life stage, it is of interest how physical activity affects university students' stress load and recovery as well as their academic performance.

Student´s behavior during home studying in times of COVID-19 was examined longitudinally on a daily basis during a ten-day study period ( N  = 57, aged M  = 23.5 years, SD  = 2.8, studying between the 1st to 13th semester ( M  = 5.8, SD  = 4.1)). Two-level regression models were conducted to predict daily variations in stress load, recovery and perceived academic performance depending on leisure-time physical activity and short physical activity breaks during studying periods. Parameters of the individual home studying behavior were also taken into account as covariates.

While physical activity breaks only positively affect stress load (functional stress b = 0.032, p  < 0.01) and perceived academic performance (b = 0.121, p  < 0.001), leisure-time physical activity affects parameters of stress load (functional stress: b = 0.003, p  < 0.001, dysfunctional stress: b = -0.002, p  < 0.01), recovery experience (b = -0.003, p  < 0.001) and perceived academic performance (b = 0.012, p  < 0.001). Home study behavior regarding the number of breaks and longest stretch of time also shows associations with recovery experience and perceived academic performance.

Conclusions

Study results confirm the importance of different physical activities for university students` stress load, recovery experience and perceived academic performance in home studying periods. Universities should promote physical activity to keep their students healthy and capable of performing well in academic study: On the one hand, they can offer opportunities to be physically active in leisure time. On the other hand, they can support physical activity breaks during the learning process and in the immediate location of study.

Peer Review reports

Introduction

Physical activity (PA) takes a particularly key position in health promotion and prevention. It reduces risks for several diseases, overweight, and all-cause mortality [ 1 ] and is beneficial for physical, psychological and social health [ 2 , 3 , 4 , 5 ] as well as for academic achievement [ 6 , 7 ]. However, PA levels decrease from childhood through adolescence and into adulthood [ 8 , 9 , 10 ]. Especially university students are insufficiently physically active according to health-oriented PA guidelines [ 11 ] because of academic workloads as well as difficulties in time management regarding study, work, and social demands [ 12 ]. Due to their independence and increasing self-responsibility, university students are at a crucial life stage. In this essential and still educational stage of the students´ development, it is important to study their PA behavior. Furthermore, PA as health behavior represents one influencing factor which is considered in the analytical framework of the impact of health and health behaviors on educational outcomes which was developed by the authors Suhrcke and de Paz Nieves [ 13 , 14 ]. In light of this, the present study examines how PA affects university students' academic situations.

Along with the promotion of PA, the reduction of sedentary behavior has also become a crucial part of modern health promotion and prevention strategies. Spending too much time sitting increases many health risks, including the risk of obesity [ 15 ], diabetes [ 16 ] and other chronic diseases [ 15 ], damage to muscular balances, bone metabolism and musculoskeletal system [ 17 ] and even early death [ 15 ]. University students are a population that has shown the greatest increase in sedentary behavior over the last two decades [ 18 ]. In Germany, they show the highest percentage of sitting time among all working professional groups [ 19 ]. Long times sitting in classes, self-study learning, and through smartphone use, all of which are connected to the university setting and its associated behaviors, might be the cause of this [ 20 , 21 ]. This goes along with technological advances which allow students to study in the comfort of their own homes without changing locations [ 22 ].

To counter a sedentary lifestyle, PA is crucial. In addition to its physical health advantages, PA is essential for coping with the intellectual and stress-related demands of academic life. PA shows positive associations with stress load and academic performance. It is positively associated with learning and educational success [ 6 ] and even shows stress-regulatory potential [ 23 ]. In contrast, sedentary behavior is associated with lower cognitive performance [ 24 ]. Moreover, theoretical derivations show that too much sitting could have a negative impact on brain health and diminish the positive effects of PA [ 16 ]. Given the theoretical background of the stressor detachment model [ 25 ] and the cybernetic approach to stress management in the workplace [ 26 ], PA can promote recovery experience, it can enhance academic performance, and it is a way to reduce the impact of study-related stressors on strain. Load-related stress response can be bilateral: On the one hand, it can be functional if it is beneficial to help cope with the study demands. On the other hand, it can be dysfunctional if it puts a strain on personal resources and can lead to load-related states of strain [ 27 ]. Thus, both, the promotion of PA and reduction of sedentary behavior are important for stress load, recovery, and performance in student life, which can be of particular importance for students in an academic context.

A simple but (presumably) effective way to integrate PA and reduce sedentary behavior in student life are short PA breaks. Due to the exercises' simplicity and short duration, students can perform them wherever they are — together in a lecture or alone at home. Short PA breaks could prevent an accumulation of negative stressors during the day and can help with prolonged sitting as well as inactivity. Especially in the university setting, evidence of the positive effects of PA breaks exists for self-perceived physical and psychological well-being of the university students [ 28 ]. PA breaks buffer university students’ perceived stress [ 29 ] and show positive impacts on recovery need [ 30 ] and better mood ratings [ 31 , 32 ]. In addition, there is evidence for reduction in tension [ 30 ], overall muscular discomfort [ 33 ], daytime sleepiness or fatigue [ 33 , 34 ] and increase in vigor [ 34 ] and experienced energy [ 30 ]. This is in line with cognitive, affective, behavioral, and biological effects of PA, all categorized as palliative-regenerative coping strategies, which addresses the consequences of stress-generating appraisal processes aiming to alleviate these consequences (palliative) or restore the baseline of the relevant reaction parameter (regenerative) [ 35 , 36 ]. This is achieved by, for example, reducing stress-induced cortisol release or tension through physical activity (reaction reduction) [ 35 ]. Such mechanisms are also in accordance with the previously mentioned stressor detachment model [ 25 ]. Lastly, there is a health-strengthening effect that impacts the entire stress-coping-health process, relying on the compensatory effects of PA which is in accordance to the stress-buffering effect of exercise [ 37 ]. Health, in turn, effects educational outcomes [ 13 , 14 ]. Therefore, stress regulating effects are also accompanied with the before mentioned analytical framework of the impact of health and health behaviors on educational outcomes [ 13 , 14 ].

Focusing on the effects of PA, this study is guided by an inquiry into how PA affects university students' stress load and recovery as well as their perceived academic performance. For that reason, the student´s behavior during home studying in times of COVID-19 is examined, a time in which reinforced prolonged sitting, inactivity, and a negative stress load response was at a high [ 38 , 39 , 40 , 41 , 42 ]. Looking separately on the relation of PA with different parameters based on the mentioned evidence, we assume that PA has a positive impact on stress load, recovery, and perceived academic performance-related parameters. Furthermore, a side effect of the home study behavior on the mentioned parameters is assumed regarding the accumulation of negative stressors during home studying. These associations are presented in Fig.  1 and summarized in the following hypotheses:

figure 1

Overview of the assumed effects and investigated hypotheses of physical activity (PA) behavior on variables of stress load and recovery and perceived academic performance-related parameters

Hypothesis 1 (path 1): Given that stress load always occurs as a duality—beneficial if it is functional for coping, or exhausting if it puts a strain on personal resources [ 27 ] – we consider two variables for stress load: functional stress and dysfunctional stress. In order to reduce the length of the daily surveys, we focused the measure of recovery only on the most obvious and accessible component of recovery experience, namely psychological detachment. PA (whether performed in leisure-time or during PA breaks) encourages functional stress and reduce dysfunctional stress (1.A) and has a positive effect on recovery experience through psychological detachment (1.B).

Hypothesis 2 (path 2): The academic performance-related parameters attention difficulties and study ability are positively influenced by PA (whether done in leisure-time or during PA breaks). We have chosen to assess attention difficulties for a cognitive parameter because poor control over the stream of occurring stimuli have been associated with impairment in executive functions or academic failure [ 43 , 44 , 45 , 46 ]. Furthermore, we have assessed the study ability to refer to the self-perceived feeling of functionality regarding the demands of students. PA reduces self-reported attention difficulties (2.A) and improves perceived study ability, indicating that a student feels capable of performing well in academic study (2.B).

Hypothesis 3: We assume that a longer time spent on studying at home (so called home studying) could result in higher accumulation of stressors throughout the day which could elicit immediate stress responses, while breaks in general could reduce the influence of work-related stressors on strain and well-being [ 47 , 48 ]. Therefore, the following covariates are considered for secondary effects:

the daily longest stretch of time without a break spent on home studying

the daily number of breaks during home studying

Study setting

The study was carried out during the COVID-19 pandemic containment phase. It took place in the middle of the lecture period between 25th of November and 4th of December 2020. Student life was characterized by home studying and digital learning. A so called “digital semester” was in effect at the University of Tübingen when the study took place. Hence, courses were mainly taught online (e.g., live or via a recorded lecture). Other events and actions at the university were not permitted. As such, the university sports department closed in-person sports activities. For leisure time in general, there were contact restrictions (social distancing), the performance of sports activities in groups was not permitted, and sports facilities were closed.

Thus, the university sports department of the University of Tübingen launched various online sports courses and the student health management introduced an opportunity for a new digital form of PA breaks. This opportunity provided PA breaks via videos with guided physical exercises and health-promoting explanations for a PA break for everyday home studying: the so called “Bewegungssnack digital” [in English “exercise snack digital” (ESD)] [ 49 ]. The ESD videos took 5–7 min and were categorized into three thematic foci: activation, relaxation, and coordination. Exercises were demonstrated by one or two student exercise leaders, accompanied by textual descriptions of the relevant execution features of each exercise.

Participants

Participants were recruited within the framework of an intervention study, which was conducted to investigate whether a digital nudging intervention has a beneficial effect on taking PA breaks during home study periods [ 49 ]. Students at the University of Tübingen which counts 27,532 enrolled students were approached for participation through a variety of digital means: via an email sent to those who registered for ESD course on the homepage of the university sports department and to all students via the university email distribution list; via advertisement on social media of the university sports department (Facebook, Instagram, YouTube, homepage). Five tablets, two smart watches, and one iPad were raffled off to participants who engaged actively during the full study period in an effort to motivate them to stick with it to the end. In any case, participants knew that the study was voluntary and that they would not suffer any personal disadvantages should they opt out. There was a written informed consent prompt together with a prompt for the approval of the data protection regulations immediately within the first questionnaire (T0) presented in a mandatory selection field. Positive ethical approval for the study was given by the first author´s institution´s ethics committee of the faculty of the University of Tübingen.

Participants ( N  = 57) who completed the daily surveys on at least half of the days of the study period, were included in the sample (male = 6, female = 47, diverse = 1, not stated = 3). As not all subjects provided data on all ten study days, the total number of observations was between 468 and 540, depending on the variable under study (see Table  1 ). The average number of observations per subject was around eight. Their age was between 18 and 32 years ( M  = 23.52, SD  = 2.81) and they were studying between the 1st to 13th semester ( M  = 5.76, SD  = 4.11) within the following major courses of study: mathematical-scientific majors (34.0%), social science majors (22.6%), philosophical majors (18.9%), medicine (13.2%), theology (5.7%), economics (3.8%), or law (1.9%). 20.4% of the students had on-site classroom teaching on university campus for at least one day a week despite the mandated digital semester, as there were exceptions for special forms of teaching.

Design and procedures

To examine these hypothesized associations, a longitudinal study design with daily surveys was chosen following the suggestion of the day-level study of Feuerhahn et al. (2014) and also of Sonnentag (2001) measuring recovery potential of (exercise) activities during leisure time [ 50 , 51 ]. Considering that there are also differences between people at the beginning of the study period, initial base-line value variables respective to the outcomes measured before the study period were considered as independent covariates. Therefore, the well-being at baseline serves as a control for stress load (2.A), the psychological detachment at baseline serves as a control for daily psychological detachment (2.B), the perception of study demands serves as a control for self-reported attention difficulties (1.A), and the perceived study ability at baseline serves as a control for daily study ability (2.B).

Subjects were asked to continue with their normal home study routine and additionally perform ESD at any time in their daily routine. Data were collected one to two days before (T0) as well as daily during the ten-day study period (Wednesday to Friday). The daily surveys (t 1 -t 10 ) were sent by email at 7 p.m. every evening. Each day, subjects were asked to answer questions about their home studying behavior, study related requirements, recovery experience from study tasks, attention, and PA, including ESD participation. The surveys were conducted online using the UNIPARK software and were recorded and analyzed anonymously.

Measures and covariates

In total, five outcome variables, two independent variables, and seven covariates were included in different analyses: three variables were used for stress load and recovery parameters, two variables for academic performance-related parameters, two variables for PA behavior, two variables for study behavior, four variables for outcome specific baseline values and one variable for age.

Outcome variables

Stress load & recovery parameters (hypothesis 1).

Stress load was included in the analysis with two variables: functional stress and dysfunctional stress. Followingly, a questionnaire containing a word list of adjectives for the recording of emotions and stress during work (called “Erfassung von Emotionen und Beanspruchung “ in German, also known as EEB [ 52 ]) was used. It is an instrument which were developed and validated in the context of occupational health promotion. The items are based on mental-workload research and the assessment of the stress potential of work organization [ 52 ]. Within the questionnaire, four mental and motivational stress items were combined to form a functional stress scale (energetic, willing to perform, attentive, focused) (α = 0.89) and four negative emotional and physical stress items were combined to form dysfunctional stress scale (nervous, physically tensioned, excited, physically unwell) (α = 0.71). Participants rated the items according to how they felt about home studying in general on the following scale (adjustment from “work” to “home studying”): hardly, somewhat, to some extent, fairly, strongly, very strongly, exceptionally.

Recovery experience was measured via psychological detachment. Therefore, the dimension “detachment” of the Recovery Experience Questionnaire (RECQ [ 53 ]) was adjusted to home studying. The introductory question was "How did you experience your free time (including short breaks between learning) during home studying today?". Students responded to four statements based on the extent to which they agreed or disagreed (not at all true, somewhat true, moderately true, mostly true, completely true). The statements covered subjects such as forgetting about studying, not thinking about studying, detachment from studying, and keeping a distance from student tasks. The four items were combined into a score for psychological detachment (α = 0.94).

Academic performance-related parameters (hypothesis 2)

Attention was assessed via the subscale “difficulty maintaining focused attention performance” of the “Attention and Performance Self-Assessment” (ASPA, AP-F2 [ 54 ]). It contains nine items with statements about disturbing situations regarding concentration (e.g. “Even a small noise from the environment could disturb me while reading.”). Participants had to answer how often such situations happened to them on a given day on the following scale: never, rarely, sometimes, often, always. The nine items were combined into the AP-F2 score (α = 0.87).

The perceived study ability was assessed using the study ability index (SAI [ 55 ]). The study ability index captures the current state of perceived functioning in studying. It is based on the Work Ability Index by Hasselhorn and Freude ([ 56 ]) and consists of an adjusted short scale of three adapted items in the context of studying. Firstly, (a) the perceived academic performance was asked after in comparison to the best study-related academic performance ever achieved (from 0 = completely unable to function to 10 = currently best functioning). Secondly, the other two items were aimed at assessing current study-related performance in relation to (b) study tasks that have to be mastered cognitively and (c) the psychological demands of studying. Both items were answered on a five-point Likert scale (1 = very poor, 2 = rather poor, 3 = moderate, 4 = rather good, 5 = very good). A sum index, the SAI, was formed which can indicate values between 2 and 20, with higher values corresponding to higher assessed functioning in studies (α = 0.86). In a previous study it already showed satisfying reliability (α = 0.72) [ 55 ].

Independent variables

Pa behavior.

Two indicators for PA behavior were included via self-reports: the time spent on ESD and the time spent on leisure-time PA (LTPA). Participants were asked the following overarching question daily: “How much time did you spend on physical activity today and in what context”. For the independent variable time spent on PA breaks, participants could answer the option “I participated in the Bewegungssnack digital” with the amount of time they spent on it (in minutes). To assess the time spent on LTPA besides PA breaks, participants could report their time for four different contexts of PA which comprised two forms: Firstly, structured supervised exercise was reported via time spent on (a) university sports courses and (b) other organized sports activities. Secondly, self-organized PA was indicated via (c) independent PA at home, such as a workout or other physically demanding activity such as cleaning or tidying up, as well as via (d) independent PA outside, like walking, cycling, jogging, a workout or something similar. Referring to the different domains of health enhancing PA [ 57 ], the reported minutes of these four types of PA were summed up to a total LTPA value. The total LTPA value was included in the analysis as a metric variable in minutes.

Covariates (hypothesis 3)

Regarding hypothesis 3 and home study behavior, the longest daily stretch of time without a break spent on home studying (in hours) and the daily number of breaks during home studying was assessed. Therein, participants had to answer the overarching question “How much time did you spend on your home studying today?” and give responses to the items: (1) longest stretch of time for home studying (without a break), and (2) number of short and long breaks you took during home studying.

In principle, efforts were made to control for potential confounders at the individual level (level 2) either by including the baseline measure (T0) of the respective variable or by including variables assessing related trait-like characteristics for respective outcomes. The reason why related trait-like characteristics were used for the outcomes was because brief assessments were used for daily surveys that were not concurrently employed in the baseline assessment. To enable the continued use of controlling for person-specific baseline characteristics in the analysis of daily associations, trait-like characteristics available from the baseline assessment were utilized as the best possible approximation.To sum up, four outcome specific baseline value variables were measured before the study period (at T0). The psychological detachment with the RECQ (α = 0.87) [ 53 ] was assessed at the beginning to monitor daily psychological detachment. Further, the SAI [ 55 ] was assessed at the beginning of the study period to monitor daily study ability. To monitor daily stress load, which in part measures mental stress aspects and negative emotional stress aspects, the well-being was assessed at the beginning using the WHO-Five Well-being Index (WHO-5 [ 58 ]). It is a one-dimensional self-report measure with five items. The index value is the sum of all items, with higher values indicating better well-being. As the well-being and stress load tolerance may linked with each other, this variable was assumed to be a good fit with the daily stress load indicating mental and emotional stress aspects. With respect to student life, daily academic performance-related attention was monitored with an instrument for the perception of study demands and resources (termed “Berliner Anforderungen Ressourcen-Inventar – Studierende” in German, the so-called BARI-S [ 59 ]). It contains eight items which capture overwork in studies, time pressure during studies, and the incompatibility of studies and private life. All together they form the BARI-S demand scale (α = 0.85) which was included in the analysis. As overwork and time pressure may result in attention difficulties (e.g. Elfering et al., 2013), this variable was assumed to have a good fit with academic performance-related attention [ 60 ]. Additionally, age in years at T0 was considered as a sociodemographic factor.

Statistical analysis

Since the study design provided ten measurement points for various people, the hierarchical structure of the nested data called for two-level analyses. Pre-analyses of Random-Intercept-Only models for each of the outcome variables (hypothesis 1 to 3) revealed an Intra-Class-Correlation ( ICC ) of at least 0.10 (range 0.26 – 0.64) and confirmed the necessity to perform multilevel analyses [ 61 ]. Specifically, the day-level variables belong to Level 1 (ESD time, LTPA time, longest stretch of time without a break spent on home studying, daily number of breaks during home studying). To analyze day-specific effects within the person, these variables were centered on the person mean (cw = centered within) [ 50 , 62 , 63 , 64 ]. This means that the analyses’ findings are based on a person’s deviations from their average values. The variables assessed at T0 belong to Level 2, which describe the person level (psychological detachment baseline, SAI baseline, well-being, study demands scale, age). These covariates on person level were centered around the grand mean [ 50 ] indicating that the analyses’ findings are based how far an individual deviates from the sample's mean values. As a result, the models’ intercept reflects the outcome value of an average student in the sample at his/her daily average behavior in PA and home study when all parameters are zero. For descriptive statistics SPSS 28.0.1.1 (IBM) and for inferential statistics R (version 4.1.2) were used. The hierarchical models were calculated using the package lme4 with the lmer-function in R in the following steps [ 65 ]. The Null Model was analyzed for all models first, with the corresponding intercept as the only predictor. Afterwards, all variables were entered. The regression coefficient estimates (”b”) were considered for statistical significance for the models and the respective BIC was provided.

In total, five regression models with ‘PA break time’ and ‘LTPA time’ as independent variables were computed due to the five measured outcomes of the present study. Three models belonged to hypothesis 1 and two models to hypothesis 2.

Hypothesis 1: To test hypothesis 1.A two outcome variables were chosen for two separate models: ‘functional stress’ and ‘dysfunctional stress’. Besides the PA behavior variables, the ‘number of breaks’, the ‘longest stretch of time without a break spent on home studying’, ‘age’, and the ‘well-being’ at the beginning of the study as corresponding baseline variable to the output variable were also included as independent variables in both models. The outcome variable ‘psychological detachment’ was utilized in conjunction with the aforementioned independent variables to test hypotheses 1.B, with one exception: psychological detachment at the start of the study was chosen as the corresponding baseline variable.

Hypothesis 2: To investigate hypothesis 2.A the outcome variable ‘attention difficulties’ was selected. Hypothesis 2.B was tested with the outcome variables ‘study ability’. Both models included both PA behavior variables as well as the ‘number of breaks’, the ‘longest stretch of time without a break spent on home studying’, ‘age’ and one corresponding baseline variable each: the ‘study demand scale’ at the start of the study for ‘attention difficulties’ and the ‘SAI’ at the beginning of the study for the daily ‘study ability’.

Hypothesis 3: In addition to both PA behavior variables, age and one baseline variable that matched the outcome variable, the covariates ‘daily longest stretch of time spent on home studying’ and ‘daily number of breaks during home studying’ were included in the models for all five outcome variables.

Handling missing data

The dataset had up to 18% missing values (most exhibit the variables ‘daily longest stretch of time without a break spent on home studying’ with 17.89% followed by ‘daily number of breaks during homes studying’ with 16.67%, and ‘functional / dysfunctional stress’ with 12.45%). Therefore, a sensitivity analysis was performed using the multiple imputation mice-package in the statistical program R [ 66 ], the package howManyImputation based on Von Hippel (2020, [ 67 ]), and the additional broom package [ 68 ]. The results of the models remained the same, with one exception for the Attention Difficulties Model: The daily longest stretch of time without a break spent on home studying showed a significant association (Table  1 in supplement). Due to this almost perfect consistency of results between analyses based on the dataset with missing data and those with imputed data alongside the lack of information provided by the packages for imputed datasets, we decided to stick with the main analysis including the missing data. Thus, in the following the results of the main analysis without imputations are presented.

Table 1 shows the descriptive statistics of the variables used in the analysis. An overview of the analysed models is presented in Table  2 .

Effects on stress load and recovery (hypothesis 1)

Hypothesis 1.A: The Model Functional Stress explained 13% of the variance by fixed factors (marginal R 2  = 0.13), and 52% by both fixed and random factors (conditional R 2  = 0.52). The time spent on ESD as well as the time spent on PA in leisure showed a positive significant influence on functional stress (b = 0.032, p  < 0.01). The same applied to LTPA (b = 0.003, p  < 0.001). The Model Dysfunctional Stress (marginal R 2  = 0.027, conditional R 2  = 0.647) showed only one significant result. The dysfunctional stress was only significantly negatively influenced by the time spent on LTPA (b = 0.002, p  < 0.01).

Hypothesis 1.B: With the Model Detachment, fixed factors contributed 18% of the explained variance and fixed and random factors 46% of the explained variance for psychological detachment. Only the amount of time spent on LTPA revealed a positive impact on psychological detachment (b = 0.003, p  < 0.001).

Effects on academic performance-related parameters (hypothesis 2)

Hypothesis 2.A: The Model Attention Difficulties showed 13% of the variance explained by fixed factors, and 51% explained by both fixed and random factors. It showed a significant negative association only for the time spent on LTPA (b = 0.003, p  < 0.001).

Hypothesis 2.B: The Model SAI showed 18% of the variance explained by fixed factors, and 39% explained by both fixed and random factors. There were significant positive associations for time spent on ESD (b = 0.121, p  < 0.001) and time spent on LTPA (b = 0.012, p  < 0.001). The same applied to LTPA (b = 0.012, p  < 0.001).

Effects of home study behavior (hypothesis 3)

Regarding the independent covariates for the outcome variables functional and dysfunctional stress, there were no significant results for the number of breaks during homes studying or the longest stretch of time without a break spent on home studying. Considering the outcome variable ‘psychological detachment’, there were significant results with negative impact for both study behavior variables: breaks during home studying (b = 0.058, p  < 0.01) and daily longest stretch of time without a break (b = 0.120, p  < 0.01). Evaluating the outcome variables ‘attention difficulties’, there were no significant results for the number of breaks during home studying or the longest stretch of time without a break spent on home studying. Testing the independent study behavior variables for the SAI, it increased with increasing number in daily breaks during homes studying relative to the person´s mean (b = 0.183, p  < 0.05). No significant effect was found for the longest stretch of time without a break spent on home studying ( p  = 0.07).

The baseline covariates of the models showed expected associations and thus confirmed their inclusion. The baseline variables well-being showed a significant impact on functional stress (b = 0.089, p  < 0.001), psychological detachment showed a positive effect on the daily output variables psychological detachment (b = 0.471, p  < 0.001), study demand scale showed a positive association on difficulties in attention (b = 0.240, p  < 0.01), and baseline SAI had a positive effect on the daily SAI (b = 0.335, p  < 0.001).

The present study theorized that PA breaks and LTPA positively influence the academic situation of university students. Therefore, impact on stress load (‘functional stress’ and ‘dysfunctional stress’) and ‘psychological detachment’ as well as academic performance-related parameters ‘self-reported attention difficulties’ and ‘perceived study ability’ was taken into account. The first and second hypotheses assumed that both PA breaks and LTPA are positively associated with the aforementioned parameters and were confirmed for LTPA for all parameters and for PA breaks for functional stress and perceived study ability. The third hypothesis assumed that home study behavior regarding the daily number of breaks during home studying and longest stretch of time without a break spent on home studying has side effects. Detected negative effects for both covariates on psychological detachment and positive effects for the daily number of breaks on perceived study ability were partly unexpected in their direction. These results emphasize the key position of PA in the context of modern health promotion especially for students in an academic context.

Regarding hypothesis 1 and the detected positive associations for stress load and recovery parameters with PA, the results are in accordance with the stress-regulatory potential of PA from the state of research [ 23 ]. For hypothesis 1.A, there is a positive influence of PA breaks and LTPA on functional stress and a negative influence of LTPA on dysfunctional stress. Given the bilateral role of stress load, the results indicate that PA breaks and LTPA are beneficial for coping with study demands, and may help to promote feelings of joy, pride, and learning progress [ 27 ]. This is in line with previous evidence that PA breaks in lectures can buffer university students’ perceived stress [ 29 ], lead to better mood ratings [ 29 , 31 ], and increase in motivation [ 28 , 69 ], vigor [ 34 ], energy [ 30 ], and self-perceived physical and psychological well-being [ 28 ]. Looking at dysfunctional stress, the result point that LTPA counteract load-related states of strain such as inner tension, irritability and nervous restlessness or feelings of boredom [ 27 ]. In contrast, short PA breaks during the day could not have enough impact in countering dysfunctional stress at the end of the day regarding the accumulation of negative stressors during home studying which might have occurred after the participant took PA breaks. Other studies have been able to show a reduction in tension [ 30 ] and general muscular discomfort [ 33 ] after PA breaks. However, this was measured as an immediate effect of PA breaks and not with general evening surveys. Blasche and colleagues [ 34 ] measured effects immediately and 20 min after different kind of breaks and found that PA breaks led to an additional short‐ and medium‐term increase in vigor while the relaxation break lead to an additional medium‐term decrease in fatigue compared to an unstructured open break. This is consistent with the results of the present study that an effect of PA breaks is only observed for functional stress and not for dysfunctional stress. Furthermore, there is evidence that long sitting during lectures leads to increased fatigue and lower concentration [ 31 , 70 ], which could be counteracted by PA breaks. For both types of stress loads, functional and dysfunctional stress, there is an influence of students´ well-being in this study. This shows that the stress load is affected by the way students have mentally felt over the last two weeks. The relevance of monitoring this seems important especially in the time of COVID-19 as, for example, 65.3% of the students of a cross-sectional online survey at an Australian university reported low to very low well-being during that time [ 71 ]. However, since PA and well-being can support functional stress load, they should be of the highest priority—not only as regards the pandemic, but also in general.

Looking at hypothesis 1.B; while there is a positive influence of LTPA on experienced psychological detachment, no significant influence for PA breaks was detected. The fact that only LTPA has a positive effect can be explained by the voluntary character of the activity [ 50 ]. The voluntary character ensures that stressors no longer affect the student and, thus, recovery as detachment can take place. Home studying is not present in leisure times, and thus detachment from study is easier. The PA break videos, on the other hand, were shot in a university setting, which would have made it more difficult to detach from study. In order to further understand how PA breaks affect recovery and whether there is a distinction between PA breaks and LTPA, future research should also consider other types of recovery (e.g. relaxation, mastery, and control). Additionally, different types of PA breaks, such as group PA breaks taken on-site versus video-based PA breaks, should be taken into account.

Considering the confirmed positive associations for academic performance-related parameters of hypothesis 2, the results are in accordance with the evidence of positive associations between PA and learning and educational success [ 6 ], as well as between PA breaks and better cognitive functioning [ 28 ]. Looking at the self-reported attention difficulties of hypothesis 2.A, only LTPA can counteract it. PA breaks showed no effects, contrary to the results of a study of Löffler and collegues (2011, [ 31 ]), in which acute effects of PA breaks could be found for higher attention and cognitive performance. Furthermore, the perception of study demands before the study periods has a positive impact on difficulties in attention. That means that overload in studies, time pressure during studies, and incompatibility of studies and private life leads to higher difficulties with attention in home studying. In these conditions, PA breaks might have been seen as interfering, resulting in the expected beneficial effects of exercise on attention and task-related participation behavior [ 72 , 73 ] therefore remaining undetected. With respect to the COVID-19 pandemic, accompanying education changes, and an increase in student´s worries [ 74 , 75 ], the perception of study demands could be affected. This suggests that especially in times of constraint and changes, it is important to promote PA in order to counteract attention difficulties. This also applies to post-pandemic phase.

Regarding the perceived academic performance of hypothesis 2.B, both PA breaks and LTPA have a positive effect on perceived study ability. This result confirms the positive short-term effects on cognition tasks [ 76 ]. It is also in line with the positive function of PA breaks in interrupting sedentary behavior and therefore counteracting the negative association between sitting behavior and lower cognitive performance [ 24 ]. Additionally, this result also fits with the previously mentioned positive relationship between LTPA and functional stress and between PA breaks and functional stress.

According to hypothesis 3, in relation to the mentioned stress load and recovery parameters, there are negative effects of the daily number of breaks during home studying and the longest stretch of time without a break spent on home studying on psychological detachment. As stressors result in negative activation, which impede psychological detachment from study during non-studying time [ 25 ], it was expected and confirmed that the longest stretch of time without a break spent on home studying has a negative effect on detachment. Initially unexpected, the number of breaks has a negative influence on psychological detachment, as breaks could prevent the accumulation of strain reactions. However, if the breaks had no recovery effect through successful detachment, the number might not have any influence on recovery via detachment. This is indicated by the PA breaks, which had no impact on psychological detachment. Since there are other ways to recover from stress besides psychological detachment, such as relaxation, mastery, and control [ 53 ], PA breaks must have had an additional impact in relation to the positive results for functional stress.

In relation to the mentioned academic performance-related parameters, only the number of breaks has a positive influence on the perceived study ability. This indicates that not only PA breaks but also breaks in general lead to better perceived functionality in studying. Paulus and colleagues (2021) found out that an increase in cognitive skills is not only attributed to PA breaks and standing breaks, but also to open breaks with no special instructions [ 28 ]. Either way, they found better improvement in self-perceived physical and psychological well-being of the university students with PA breaks than with open breaks. This is also reflected in the present study with the aforementioned positive effects of PA breaks on functional stress, which does not apply to the number of breaks.

Overall, it must be considered that the there is a more complex network of associations between the examined parameters. The hypothesized separate relation of PA with different parameters do not consider associations between parameters of stress load / recovery and academic performance although there might be a interdependency. Furthermore, moderation aspects were not examined. For example, PA could be a moderator which buffer negative effects of stress on the study ability [ 55 ]. Moreover, perceived study ability might moderate stress levels and academic performance. Further studies should try to approach and understand the different relationships between the parameters in its complexity.

Limitations

Certain limitations must be taken into account. Regarding the imbalanced design toward more female students in the sample (47 female versus 6 male), possible sampling bias cannot be excluded. Gender research on students' emotional states during COVID-19, when this study took place, or students´ acceptance of PA breaks is diverse and only partially supplied with inconsistent findings. For example, during the COVID-19 pandemic, some studies reported that female students were associated with lower well-being [ 71 ] or worse mental health trajectories [ 75 , 77 ]. Another study with a large sample of students from 62 countries reported that male students were more strongly affected by the pandemic because they were significantly less satisfied with their academic life [ 74 ]. However, Keating and colleges (2020) discovered that, despite the COVID-19 pandemic, females rated some aspects of PA breaks during lectures more positively than male students did. However, this was also based on a female slanted sample [ 78 ]. Further studies are needed to get more insights into gender bias.

Furthermore, the small sample size combined with up to 16% missing values comprises a significant short-coming. There were a lot of possibilities which could cause such missing data, like refused, forgotten or missed participation, technical problems, or deviation of the personal code for the questionnaire between survey times. Although the effects could be excluded by sensitive analysis due to missing data, the sample is still small. To generalize the findings, future replication studies are needed.

Additionally, PA breaks were only captured through participation in the ESD, the specially instructed PA break via video. Effects of other short PA breaks were not include in the study. However, participants were called to participate in ESD whenever possible, so the likelihood that they did take part in PA breaks in addition to the ESD could be ignored.

With respect to the baseline variables, it must be considered that two variables (stress load, attention difficulties) were adjusted not with their identical variable in T0, but with other conceptually associated variables (well-being index, BARI-S). Indeed, contrary to the assumption the well-being index does only show an association with functional stress, indicating that it does not control dysfunctional stress. Although the other three assumed associations were confirmed there might be a discrepancy between the daily measured variables and the variables measured in T0. Further studies should either proof the association between these used variables or measure the same variables in T0 for control the daily value of these variables.

Moreover, the measuring instruments comprised the self-assessed perception of the students and thus do not provide an objective information. This must be considered, especially for measuring cognitive and academic-performance-related measures. Here, existing objective tests, such as multiple choice exams after a video-taped lecture [ 72 ] might have also been used. Nevertheless, such methods were mostly used in a lab setting and do not reflect reality. Due to economic reasons and the natural learning environment, such procedures were not applied in this study. However, the circumstances of COVID-19 pandemic allowed a kind of lab setting in real life, as there were a lot of restrictions in daily life which limited the influence of other covariates. The study design provides a real natural home studying environment, producing results that are applicable to the healthy way that students learn in the real world. As this study took place under the conditions of COVID-19, new transformations in studying were also taken into account, as home studying and digital learning are increasingly part of everyday study.

However, the restrictions during the COVID-19 pandemic could result in a greater extent of leisure time per se. As the available leisure time in general was not measured on daily level, it is not possible to distinguish if the examined effects on the outcomes are purely attributable to PA. It is possible that being more physical active is the result of having a greater extent of leisure time and not that PA but the leisure time itself effected the examined outcomes. To address this issue in future studies, it is necessary to measure the proportion of PA in relation to the leisure time available.

Furthermore, due to the retrospective nature of the daily assessments of the variables, there may be overstated associations which must be taken into account. Anyway, the daily level of the study design provides advantages regarding the ability to observe changes in an individual's characteristics over the period of the study. This design made it possible to find out the necessity to analyze the hierarchical structure of the intraindividual data nested within the interindividual data. The performed multilevel analyses made it possible to reflect the outcome of an average student in the sample at his/her daily average behavior in PA and home study.

Conclusion and practical implications

The current findings confirm the importance of PA for university students` stress load, recovery experience, and academic performance-related parameters in home studying. Briefly summarized, it can be concluded that PA breaks positively affect stress load and perceived study ability. LTPA has a positive impact on stress load, recovery experience, and academic performance-related parameters regarding attention difficulties and perceived study ability. Following these results, universities should promote PA in both fashions in order to keep their students healthy and functioning: On the one hand, they should offer opportunities to be physically active in leisure time. This includes time, environment, and structural aspects. The university sport department, which offers sport courses and provides sport facilities on university campuses for students´ leisure time, is one good example. On the other hand, they should support PA breaks during the learning process and in the immediate location of study. This includes, for example, providing instructor videos for PA breaks to use while home studying, and furthermore having instructors to lead in-person PA breaks in on-site learning settings like universities´ libraries or even lectures and seminars. This not only promotes PA, but also reduces sedentary behavior and thereby reduces many other health risks. Further research should focus not only on the effect of PA behavior but also of sedentary behavior as well as the amount of leisure time per se. They should also try to implement objective measures for example on academic performance parameters and investigate different effect directions and possible moderation effects to get a deeper understanding of the complex network of associations in which PA plays a crucial role.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Attention and Performance Self-Assessment

"Berliner Anforderungen Ressourcen-Inventar – Studierende" (instrument for the perception of study demands and resources)

Centered within

Grand centered

“Erfassung von Emotionen und Beanspruchung “ (questionnaire containing a word list of adjectives for the recording of emotions and stress during work)

Exercise snack digital (special physical activity break offer)

Intra-Class-Correlation

Leisure time physical activity

  • Physical activity

Recovery Experience Questionnaire

Study ability index

World Health Organization-Five Well-being index

Knight JA. Physical inactivity: associated diseases and disorders. Ann Clin Lab Sci. 2012;42(3):320–37.

PubMed   Google Scholar  

Kemel PN, Porter JE, Coombs N. Improving youth physical, mental and social health through physical activity: a systematic literature review. Health Promot J Austr. 2002;33(3):590–601.

Article   Google Scholar  

Gothe NP, Ehlers DK, Salerno EA, Fanning J, Kramer AF, McAuley E. Physical activity, sleep and quality of life in older adults: influence of physical, mental and social well-being. Behav Sleep Med. 2020;18(6):797–808.

Article   PubMed   Google Scholar  

Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act. 2013;10(1):1–21.

Google Scholar  

Iannotti RJ, Janssen I, Haug E, Kololo H, Annaheim B, Borraccino A. Interrelationships of adolescent physical activity, screen-based sedentary behaviour, and social and psychological health. Int J Public Health. 2009;54:191–8.

Dadaczynski K, Schiemann S. Welchen Einfluss haben körperliche Aktivität und Fitness im Kindes-und Jugendalter auf Bildungsoutcomes? German J Exerc Sport Res. 2015;4(45):190–9.

Kari JT, Pehkonen J, Hutri-Kähönen N, Raitakari OT, Tammelin TH. Longitudinal associations between physical activity and educational outcomes. Med Sci Sports  Exerc. 2017;49(11).

Grim M, Hortz B, Petosa R. Impact evaluation of a pilot web-based intervention to increase physical activity. Am J Health Promot. 2011;25(4):227–30.

Irwin JD. Prevalence of university students’ sufficient physical activity: A systematic review. Percept Mot Skills. 2004;98:927–43.

Kwan MY, Cairney J, Faulkner GE, Pullenayegum EE. Physical activity and other health-risk behaviors during the transition into early adulthood: a longitudinal cohort study. Am J Prev Med. 2012;42(1):14–20.

John JM, Gropper H, Thiel A. The role of critical life events in the talent development pathways of athletes and musicians: A systematic review. Psychol Sport Exerc. 2019;45.

Bopp M, Bopp C, Schuchert M. Active transportation to and on campus is associated with objectively measured fitness outcomes among college students. J Phys Act Health. 2015;12(3):418–23.

Dadaczynski K. Stand der Forschung zum Zusammenhang von Gesundheit und Bildung. Überblick und Implikationen für die schulische Gesundheitsförderung. Zeitschrift für Gesundheitspsychologie. 2012;20(3):141–53

Suhrcke M, de Paz NC. The impact of health and health behaviours on educational outcomes in high-income countries: a review of the evidence. Copenhagen: WHO Regional Offi ce for Europe; 2011.

Lynch BM, Owen N. Too much sitting and chronic disease risk: steps to move the science forward. Ann Intern Med. 2015;16(2):146–7.

Voss MW, Carr LJ, Clark R, Weng T. Revenge of the “sit” II: Does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity? Ment Health Phys Act. 2014;7(1):9–24.

Huber G. Ist Sitzen eine tödliche Aktivität? B&G Bewegungstherapie und Gesundheitssport. 2014;30(01):13–6.

Peterson NE, Sirard JR, Kulbok PA, DeBoer MD, Erickson JM. Sedentary behavior and physical activity of young adult university students. Res Nurs Health. 2018;4(1):30–8.

Rupp R, Dold C, Bucksch J. Sitzzeitreduktion und Bewegungsaktivierung in der Hochschullehre – Entwicklung und Implementierung der Mehrebenen-Intervention Kopf-Stehen. Die Hochschullehre. 2019;5:525–42.

Ickes MJ, McMullen J, Pflug C, Westgate PM. Impact of a University-based Program on Obese College Students’ Physical Activity Behaviors, Attitudes, and Self-efficacy. Am J Health Educ. 2016;47(1):47–55.

Lepp A, Barkley JE, Karpinski AC. The relationship between cell phone use and academic performance in a sample of US college students. Sage Open. 2015;5(1).

Stapp AC, Prior LF. The Impact of Physically Active Brain Breaks on College Students’ Activity Levels and Perceptions. J Physic Activ Res. 2018;3(1):60–7.

Fuchs R, Klaperski S. Sportliche Aktivität und Stressregulation. In: Fuchs R, Schlicht W, editors. Sportaktivität und seelische Gesundheit Göttingen: Hogrefe; 2012. p. 100–21.

Falck RS, Davis JC, Liu-Ambrose T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br J Sports Med. 2017;51(10):800–11.

Sonnentag S, Fritz C. Recovery from job stress: The stressor-detachment model as an integrative framework. J Organ Behav. 2015;36:72–103.

Edwards JR. A cybernetic theory of stress, coping, and well-being in organizations. Acad Manag Rev. 1992;17(2):238–74.

Wieland R. Status-Bericht: Psychische Gesundheit in der betrieblichen Gesundheitsförderung – eine arbeitspsychologische Perspektive. In: Nold H, Wenninger G, editors. Rückengesundheit und psychische Gesundheit. Rückengesundheit und psychische Gesundheit.: Asanger Verlag; 2013.

Paulus M, Kunkel J, Schmidt SCE, Bachert P, Wäsche H, Neumann R, et al. Standing breaks in lectures improve university students’ self-perceived physical, mental, and cognitive condition. Int J Environ Res Public Health. 2021;18.

Marschin V, Herbert C. A Short, Multimodal Activity Break Incorporated Into the Learning Context During the Covid-19 Pandemic: Effects of Physical Activity and Positive Expressive Writing on University Students’ Mental Health — Results and Recommendations From a Pilot Study. Front Psychol. 2021;12.

Gollner E, Savil M, Schnabel F, Braun C, Blasche G. Unterschiede in der Wirksamkeit von Kurzpausenaktivitäten im Vergleich von Bewegungspausen zu psychoregulativen Pausen bei kognitiver Belastung. Bewegungstherapie Gesundheitssport. 2019;35:134–43.

Löffler SN, Dominok E, von Haaren B, Schellhorn R, Gidion G. Aktivierung, Konzentration, Entspannung: Interventionsmöglichkeiten zur Förderung fitnessrelevanter Kompetenzen im Studium: KIT Scientific Publishing; 2011.

Marschin V, Herbert C. A short, multimodal activity break incorporated into the learning context during the Covid-19 pandemic: effects of physical activity and positive expressive writing on university students' mental health—results and recommendations from a pilot study. Front Psychol. 2021.

Kowalsky RJ, Farney TM, Hearon CM. Resistance Exercise Breaks Improve Ratings of Discomfort and Sleepiness in College Students. Res Q Exerc Sport. 2022;94(1):210–5.

Blasche G, Szabo B, Wagner-Menghin M, Ekmekcioglu C, Gollner E. Comparison of rest-break interventions during a mentally demanding task. Stress Health. 2018;34(5):629–38.

Article   PubMed   PubMed Central   Google Scholar  

Fuchs R, Klaperski S. Stressregulation durch Sport und Bewegung. In: Fuchs R, Gerber M, editors. Handbuch Stressregulation und Sport. Berlin: Springer; 2018. p. 205–26.

Chapter   Google Scholar  

Kaluza G, Renneberg B. Stressbewältigung. In: Bengel J, Jerusalem M, editors. HandbuchGesundheitspsychologie und medizinische Psychologie. Göttingen: Hogrefe; 2009. p. 265–72.

Klaperski S. Exercise, Stress and Health: The Stress-Buffering Effect of Exercise. In: Fuchs R, Gerber M, editors. Handbuch Stressregulation und Sport. Berlin: Springer; 2018. p. 227–50.

Lesser IA, Nienhuis CP. The impact of COVID-19 on physical activity behavior and well-being of Canadians. Int J Environ Res Public Health. 2020;17(11):3899.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Moore SA, Faulkner G, Rhodes RE, Brussoni M, Chulak-Bozzer T, Ferguson LJ, et al. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: a national survey. Int J Behav Nutr Phys Act. 2020;17(1):1–11.

Rodríguez-Larrad A, Mañas A, Labayen I, González-Gross M, Espin A, Aznar S, et al. Impact of COVID-19 confinement on physical activity and sedentary behaviour in Spanish university students: Role of gender. Int J Environ Res Public Health. 2021;18(2):369.

Stanton R, To QG, Khalesi S, Williams SL, Alley SJ, Thwaite TL, et al. Depression, anxiety and stress during COVID-19: associations with changes in physical activity, sleep, tobacco and alcohol use in Australian adults. Int J Environ Res Public Health. 2020;17(11):4065.

Zheng C, Huang WY, Sheridan S, Sit CHP, Chen XK, Wong SHS. COVID-19 pandemic brings a sedentary lifestyle in young adults: a cross-sectional and longitudinal study. Int J Environ Res Public Health. 2020;17(17):6035.

Commodari E. Attention Skills and Risk of Developing Learning Difficulties. Curr Psychol. 2012;31:17–34.

Commodari E, Guarnera M. Attention and reading skills. Percept Mot Skills. 2005;100:3753–86.

Raaijmakers MAJ, Smidts DP, Sergeant JA, Maassen GH, Posthumus JA, van Engeland H, et al. Executive functions in preschool children with aggressive behavior: impairments in inhibitory control. J Abnorm Child Psychol. 2008;36:1097–107.

Vellutino FR, Scanlon DM, Sipay ER, Small SG, Pratt A, Chen RS, et al. Cognitive profiles of difficulty to remediate and readily remediate poor readers: early intervention as a vehicle for distinguishing between cognitive and experiential deficits as basic of specific reading disability. J Educ Psychol. 1996;88:601–38.

Ilies R, Dimotakis N, De Pater IE. Psychological and physiological reactions to high workloads: Implications for well-being. Pers Psychol. 2010;63(2):407–36.

Rodell JB, Judge TA. Can “good” stressors spark “bad” behaviors? The mediating role of emotions in links of challenge and hindrance stressors with citizenship and counterproductive behaviors. J Appl Psychol. 2009;94(6).

Teuber M, Leyhr D, Moll J, Sudeck G. Nudging digital physical activity breaks for home studying of university students—A randomized controlled trial during the COVID-19 pandemic with daily activity measures. Front Sports Active Living. 2022;4.

Feuerhahn N, Sonnentag S, Woll A. Exercise after work, psychological mediators, and affect: A day-level study. Eur J Work Organ Psy. 2014;23(1):62–79.

Sonnentag S. Work, Recovery Activities, ans Individual Well-Being: A Diary Study. J Occup Health Psychol. 2001;6(3):196–210.

Article   CAS   PubMed   Google Scholar  

Wieland R. Gestaltung gesundheitsförderlicher Arbeitsbedingungen. In: Kleinbeck U, Schmidt K-H, editors. Arbeitspsychologie (Enzyklopädie der Psychologie, Serie Wirtschafts-, Organisations- und Arbeitspsychologie). 1. Göttingen: Hogrefe; 2010. p. 869–919.

Sonnentag S, Fritz C. The Recovery Experience Questionnaire: development and validation of a measure for assessing recuperation and unwinding from work. J Occup Health Psychol. 2007;12(3):204–21.

Bankstahl US, Görtelmeyer R. Measuring subjective complaints of attention and performance failures development and psychometric validation in tinnitus of the self-assessment scale APSA. Health and Quality of Life Outcomes. 2013;11(86).

Teuber M, Arzberger I, Sudeck G. Körperliche Aktivität, Gesundheit und Funktionsfähigkeit im Studium: Sportliche Freizeitaktivitäten und aktive Fortbewegung als Ressource im Studium? In: Göring A, Mayer J, Jetzke M, editors. Sport und Studienerfolg - Analysen zur Bedeutung sportlicher Aktivität im Setting Hochschule. Hochschulsport: Bildung und Wissenschaft, 4. Göttingen: Universitätsverlag Göttingen; 2020. p. 27–49.

Hasselhorn H-M, Freude G. Der Work-Ability-Index: ein Leitfaden In: Arbeitsmedizin BfAu, editor. Dortmund/Berlin/Dresden: Wirtschaftsverl. NW, Verlag für Neue Wissenschaft GmbH; 2007.

Rütten A, Pfeifer K. Nationale Empfehlungen für Bewegung und Bewegungsförderung. Köln: Bundeszentrale für Gesundheitliche Aufklärung (BZgA); 2017.

Brähler E, Mühlan H, Albani C, Schmidt S. Teststatistische Prüfung und Normierung der deutschen Versionen des EUROHIS-QOL Lebensqualität-Index und des WHO-5 Wohlbefindens-Index. Diagnostica. 2007;53(2):83–96.

Gusy B, Wörfel F, Lohmann K. Erschöpfung und Engagement im Studium. Zeitschrift für Gesundheitspsychologie. 2016;24(1):41–53.

Elfering A, Grebner S, de Tribolet-Hardy F. The long arm of time pressure at work: Cognitive failure and commuting near-accidents. Eur J Work Organ Psy. 2013;22(6):737–49.

Kreft IG, de Leeuw J. Introducing multilevel modeling. London: Sage; 1998.

Book   Google Scholar  

Bates D, Mächler M, Bolker BM, Walker SC. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67(1):1–48.

Hofmann DA, Gavin MB. Centering decisions in hierarchical linear models: Implications for research in organizations. J Manag. 1998;24(5):623–41.

Nezlek J. Diary Studies in Social and Personality Psychology: An Introduction With Some Recommendations and Suggestions. Social Psychological Bulletin. 2020;15(2).

Knapp G. Gemischte Modelle in R. Begleitskriptum zur Weiterbildung. In: Dortmund TU, editor. Braunschweig2019.

Van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1–67.

von Hippel PT. How Many Imputations Do You Need? A Twostage Calculation Using a Quadratic Rule. Sociological Methods & Research. 2020;49(3):699–718.

Article   MathSciNet   Google Scholar  

Robinson D. broom: An R package for converting statistical analysis objects into tidy data frames. arXiv preprint arXiv:14123565. 2014.

Young-Jones A, McCain J, Hart B. Let’s Take a Break: The Impact of Physical Activity on Academic Motivation. Int J Teach Learn High Educ. 2022;33(3):110–8.

Barr-Anderson DJ, AuYoung M, Whitt-Glover MC, Glenn BA, Yancey AK. Integration of short bouts of physical activity into organizational routine: A systematic review of the literature. Am J Prev Med. 2011;40(1):76–93.

Dodd RH, Dadaczynski K, Okan O, McCaffery KJ, Pickles K. Psychological Wellbeing and Academic Experience of University Students in Australia during COVID-19. Int J Environ Res Public Health 2021;18.

Fenesi B, Lucibello K, Kim JA, Heisz JJ. Sweat so you don’t forget: exercise breaks during a university lecture increase on-task attention and learning. J Appl Res Mem Cogn. 2018;7(2):261–9.

Ruhland S, Lange KW. Effect of classroom-based physical activity interventions on attention and on-task behavior in schoolchildren: A systematic review. Sports Med Health Sci. 2021;3:125–33.

Aristovnik A, Keržič D, Ravšelj D, Tomaževič N, Umek L. Impacts of the COVID-19 Pandemic on Life of Higher Education Students: A Global Perspective. Sustainability. 2020;12(20).

Browning MHEM, Larson LR, Sharaievska I, Rigolon A, McAnirlin O, Mullenbach L, et al. Psychological impacts from COVID-19 among university students: Risk factors across seven states in the United States. PLoS ONE 2021;16(1).

Chang Y-K, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012;1453:87–101.

Elmer T, Mepham K, Stadtfeld C. Students under lockdown: Comparisons of students’ social networks and mental health before and during the COVID-19 crisis in Switzerland. PLoS ONE. 2020;15(7):e0236337.

Keating R, Ahern S, Bisgood L, Mernagh K, Nicolson GH, Barrett EM. Stand up, stand out. Feasibility of an active break targeting prolonged sitting in university students. J Am Coll Health. 2020;70(7).

Download references

Acknowledgements

We would like to thank Juliane Moll, research associate of the Student Health Management of University of Tübingen, for the support in the coordination and realization study. We would like to express our thanks also to Ingrid Arzberger, Head of University Sports at the University of Tübingen, for providing the resources and co-applying for the funding. We acknowledge support by Open Access Publishing Fund of University of Tübingen.

Open Access funding enabled and organized by Projekt DEAL. This research regarding the conduction of the study was funded by the Techniker Krankenkasse, health insurance fund.

Author information

Authors and affiliations.

Institute of Sports Science, Faculty of Economics and Social Sciences, University of Tübingen, Tübingen, Germany

Monika Teuber, Daniel Leyhr & Gorden Sudeck

Methods Center, Faculty of Economics and Social Sciences, University of Tübingen, Tübingen, Germany

Daniel Leyhr

Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, Tübingen, Germany

Gorden Sudeck

You can also search for this author in PubMed   Google Scholar

Contributions

M.T. and G.S. designed the study. M.T. coordinated and carried out participant recruitment and data collection. M.T. analyzed the data and M.T. and D.L. interpreted the data. M.T. drafted the initial version of the manuscript and prepared the figure and all tables. All authors contributed to reviewing and editing the manuscript and have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Monika Teuber .

Ethics declarations

Ethics approval and consent to participate.

The study involves human participants and was reviewed and approved by the Ethics Committee of the Faculty of Social Sciences and Economics, University of Tübingen (ref. A2.54-127_kr). The participants provided their written informed consent to participate in this study. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary file 1., supplementary file 2., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Teuber, M., Leyhr, D. & Sudeck, G. Physical activity improves stress load, recovery, and academic performance-related parameters among university students: a longitudinal study on daily level. BMC Public Health 24 , 598 (2024). https://doi.org/10.1186/s12889-024-18082-z

Download citation

Received : 30 June 2023

Accepted : 12 February 2024

Published : 24 February 2024

DOI : https://doi.org/10.1186/s12889-024-18082-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Physical activity breaks
  • Stress load
  • Psychological detachment
  • Academic performance
  • Study ability
  • University students

BMC Public Health

ISSN: 1471-2458

case study importance for students

IMAGES

  1. What is the Impact & Importance of Case Study in Education?

    case study importance for students

  2. what is the importance of case study in research

    case study importance for students

  3. 10+ Student Case Study Examples [ High School, Assignment, Classroom

    case study importance for students

  4. Case Study Need And Importance For A School Teacher

    case study importance for students

  5. FREE 11+ Student Case Study Templates in PDF

    case study importance for students

  6. Importance Of Case Study In Education

    case study importance for students

VIDEO

  1. Study importance #studymotivation#motivational#trendingshorts#msdhoni# truewords

  2. MEDICAL STUDENTS DAILY ROUTINE IN CHINA| A DAY IN HARBIN MEDICAL UNIVERSITY

  3. Case Study: Importance of Simulation and Modeling in Autoinjector Development

  4. study importance in life

  5. Sunday ki importance students ke liye😂😂😂😂😂😂😂

  6. Why is ICAS important to teachers?

COMMENTS

  1. Making Learning Relevant With Case Studies

    Journaling: At the end of each work period, have students write an entry summarizing what they worked on, what worked well, what didn't, and why. Sentence starters and clear rubrics or guidelines will help students be successful. At the end of a case study project, as Costa and Kallick write, it's helpful to have students "select significant learnings, envision how they could apply these ...

  2. What the Case Study Method Really Teaches

    It's been 100 years since Harvard Business School began using the case study method. ... the case study method excels in instilling meta-skills in students. This article explains the importance ...

  3. Using Case Studies to Teach

    Advantages to the use of case studies in class. A major advantage of teaching with case studies is that the students are actively engaged in figuring out the principles by abstracting from the examples. This develops their skills in: Problem solving. Analytical tools, quantitative and/or qualitative, depending on the case.

  4. Case Studies

    Summary. Case studies provide students with scenarios in which they can begin to think about their understanding and solutions to problems found in real-world situations. When carefully planned, case studies will challenge students' critical thinking and problem solving skills in a safe and open learning environment.

  5. Full article: Supporting students to engage with case studies: a model

    Introduction "Cases are stories with a pedagogical objective" (Herreid et al., Citation 2021, p. 620); for many educators they offer a way to bring a subject to life, and purposeful use of case studies in the classroom creates potential for active learning. Pedagogic literature throughout the twenty-first century shows the use of case studies across diverse subject areas (Belt, Citation ...

  6. Case Studies

    Case Studies. Print Version. Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible.

  7. Case Study Teaching Method Improves Student Performance and Perceptions

    In a high school chemistry course, it was demonstrated that the case study teaching method produces significant increases in self-reported control of learning, task value, and self-efficacy for learning and performance ( 24 ). This effect on student motivation is important because enhanced motivation for learning activities has been shown to ...

  8. Case Study At-A-Glance

    A Case Study is a way to let students interact with material in an open-ended manner. The goal is not to find solutions, but to explore possibilities and options of a real-life scenario. ... Taking time to reflect on the process is just as important to emphasize and help students learn the importance of teamwork and communication. CLICK HERE ...

  9. Do Your Students Know How to Analyze a Case—Really?

    Give students an opportunity to practice the case analysis methodology via an ungraded sample case study. Designate groups of five to seven students to discuss the case and the six steps in breakout sessions (in class or via Zoom). Ensure case analyses are weighted heavily as a grading component. We suggest 30-50 percent of the overall course ...

  10. Case-Based Learning

    Case-Based Learning. Case-based learning (CBL) is an established approach used across disciplines where students apply their knowledge to real-world scenarios, promoting higher levels of cognition (see Bloom's Taxonomy ). In CBL classrooms, students typically work in groups on case studies, stories involving one or more characters and/or ...

  11. Creating effective scenarios, case studies and role plays

    Printable Version (PDF) Scenarios, case studies and role plays are examples of active and collaborative teaching techniques that research confirms are effective for the deep learning needed for students to be able to remember and apply concepts once they have finished your course. See Research Findings on University Teaching Methods.

  12. Effective Use of Student-Created Case Studies as Assessment in an

    Case studies are important components of active learning (Handelsman et al., 2004; Herreid et al., 2012; Wiertelak et al., 2016), and some qualitative student evaluations suggest that the case study assignment promoted scientific identity, where students described thinking "more like a scientist and a physician," and that writing a case ...

  13. The Impact of Writing Case Studies: Benefits for Students' Success and

    Second, as a result of this, the analysis of the cases itself became an important task of supporting the end-of-course assessment. Throughout the reports delivered, it was possible to assess the level of achievement of the learning course´s objectives attained by students, related to the understanding and analysis of human behaviour (Saldaà ...

  14. Case Study-Based Learning

    Case studies are a form of problem-based learning, where you present a situation that needs a resolution. A typical business case study is a detailed account, or story, of what happened in a particular company, industry, or project over a set period of time. The learner is given details about the situation, often in a historical context.

  15. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  16. Case Study Analysis as an Effective Teaching Strategy: Perceptions of

    Review of Literature. As a pedagogical strategy, case studies allow the learner to integrate theory with real-life situations as they devise solutions to the carefully designed scenarios (Farashahi & Tajeddin, 2018; Hermens & Clarke, 2009).Another important known observation is that case-study-based teaching exposes students to different cases, decision contexts and the environment to ...

  17. Case studies and practical examples: Supporting teaching and improving

    Case studies and practical examples: Supporting teaching and improving student outcomes Sometime about 400,000 years ago , humans learned to fully control fire. This extended the day and allowed people to unleash their imaginations and tell stories, rather than merely focus on mundane topics.

  18. Study shows that students learn more when taking part in classrooms

    And a new Harvard study suggests it may be important to let students know it. The study, published Sept. 4 in the Proceedings of the National Academy of Sciences, shows that, though students felt as if they learned more through traditional lectures, they actually learned more when taking part in classrooms that employed so-called active ...

  19. 5 Benefits of the Case Study Method

    Through the case method, you can "try on" roles you may not have considered and feel more prepared to change or advance your career. 5. Build Your Self-Confidence. Finally, learning through the case study method can build your confidence. Each time you assume a business leader's perspective, aim to solve a new challenge, and express and ...

  20. What is the Impact & Importance of Case Study in Education?

    Importance of Case Study in Education. It is also considered the source of valuable data regarding diversity and complexity of educational commitments and settings. It plays a vital role in putting theories into regular practice. It is always necessary for the student to realize the clarity in nature and focus of the case study.

  21. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  22. 4 Case Studies: Schools Use Connections to Give Every Student a Reason

    Kaylee Domzalski/Education Week. Students who feel connected to school are more likely to attend and perform well, and less likely to misbehave and feel sad and hopeless. There are even health ...

  23. Case Study Analysis as an Effective Teaching Strategy: Perceptions of

    Background: Case study analysis is an active, problem-based, student-centered, teacher-facilitated teaching strategy preferred in undergraduate programs as they help the students in developing critical thinking skills.Objective: It determined the effectiveness of case study analysis as an effective teacher-facilitated strategy in an undergraduate nursing program.

  24. Guiding Students to School Success

    Additionally, it keeps them on track with coursework and assignments and makes them less likely to fall behind socially and academically. Some students actually miss class due to concerns about their academic performance, but there are ways that teachers can lure them back. Step 2: Encourage goal setting and goal attainment.

  25. "Empowerment and Advocacy Culture within Higher Education for Adults wi

    The purpose of this case study was to understand the impact that advocacy and empowerment practices have on the intellectual disabilities community in academic and social constructs for students within community colleges and disability programs on the West Coast of California. The theories that served as the foundation of this study are intergroup contact theory and empowerment theory.

  26. Developing a survey to measure nursing students' knowledge, attitudes

    Consistent with literature about the importance of leadership in the context of MAiD [12, 53, 54], a study of faculty knowledge, beliefs, and attitudes toward MAiD would provide context for understanding student perspectives within and across programs. Additional research is also needed to understand the timing and content coverage of MAiD ...

  27. Exchange Programs

    Bureau of Educational and Cultural Affairs Exchange Programs. Please select what type of information you are looking for: Opportunities for Non-U.S. Citizens. Opportunities for U.S. Citizens. Find U.S. Department of State programs for U.S. and non-U.S. citizens wishing to participate in cultural, educational, or professional exchanges.

  28. PowerSchool Schoology Learning

    PowerBuddy for Learning. PowerBuddy for Learning is the personal assistant for teaching and learning. PowerBuddy makes educators' lives easier by helping them easily create high-quality assignments and instructional content. Students benefit from an always-available personalized assistant to support them in the way they choose to learn.

  29. Physical activity improves stress load, recovery, and academic

    Study results confirm the importance of different physical activities for university students` stress load, recovery experience and perceived academic performance in home studying periods. Universities should promote physical activity to keep their students healthy and capable of performing well in academic study: On the one hand, they can ...