U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Quantitative Methods
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques . Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Muijs, Daniel. Doing Quantitative Research in Education with SPSS . 2nd edition. London: SAGE Publications, 2010.

Need Help Locating Statistics?

Resources for locating data and statistics can be found here:

Statistics & Data Research Guide

Characteristics of Quantitative Research

Your goal in conducting quantitative research study is to determine the relationship between one thing [an independent variable] and another [a dependent or outcome variable] within a population. Quantitative research designs are either descriptive [subjects usually measured once] or experimental [subjects measured before and after a treatment]. A descriptive study establishes only associations between variables; an experimental study establishes causality.

Quantitative research deals in numbers, logic, and an objective stance. Quantitative research focuses on numeric and unchanging data and detailed, convergent reasoning rather than divergent reasoning [i.e., the generation of a variety of ideas about a research problem in a spontaneous, free-flowing manner].

Its main characteristics are :

  • The data is usually gathered using structured research instruments.
  • The results are based on larger sample sizes that are representative of the population.
  • The research study can usually be replicated or repeated, given its high reliability.
  • Researcher has a clearly defined research question to which objective answers are sought.
  • All aspects of the study are carefully designed before data is collected.
  • Data are in the form of numbers and statistics, often arranged in tables, charts, figures, or other non-textual forms.
  • Project can be used to generalize concepts more widely, predict future results, or investigate causal relationships.
  • Researcher uses tools, such as questionnaires or computer software, to collect numerical data.

The overarching aim of a quantitative research study is to classify features, count them, and construct statistical models in an attempt to explain what is observed.

  Things to keep in mind when reporting the results of a study using quantitative methods :

  • Explain the data collected and their statistical treatment as well as all relevant results in relation to the research problem you are investigating. Interpretation of results is not appropriate in this section.
  • Report unanticipated events that occurred during your data collection. Explain how the actual analysis differs from the planned analysis. Explain your handling of missing data and why any missing data does not undermine the validity of your analysis.
  • Explain the techniques you used to "clean" your data set.
  • Choose a minimally sufficient statistical procedure ; provide a rationale for its use and a reference for it. Specify any computer programs used.
  • Describe the assumptions for each procedure and the steps you took to ensure that they were not violated.
  • When using inferential statistics , provide the descriptive statistics, confidence intervals, and sample sizes for each variable as well as the value of the test statistic, its direction, the degrees of freedom, and the significance level [report the actual p value].
  • Avoid inferring causality , particularly in nonrandomized designs or without further experimentation.
  • Use tables to provide exact values ; use figures to convey global effects. Keep figures small in size; include graphic representations of confidence intervals whenever possible.
  • Always tell the reader what to look for in tables and figures .

NOTE:   When using pre-existing statistical data gathered and made available by anyone other than yourself [e.g., government agency], you still must report on the methods that were used to gather the data and describe any missing data that exists and, if there is any, provide a clear explanation why the missing data does not undermine the validity of your final analysis.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Quantitative Research Methods. Writing@CSU. Colorado State University; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Basic Research Design for Quantitative Studies

Before designing a quantitative research study, you must decide whether it will be descriptive or experimental because this will dictate how you gather, analyze, and interpret the results. A descriptive study is governed by the following rules: subjects are generally measured once; the intention is to only establish associations between variables; and, the study may include a sample population of hundreds or thousands of subjects to ensure that a valid estimate of a generalized relationship between variables has been obtained. An experimental design includes subjects measured before and after a particular treatment, the sample population may be very small and purposefully chosen, and it is intended to establish causality between variables. Introduction The introduction to a quantitative study is usually written in the present tense and from the third person point of view. It covers the following information:

  • Identifies the research problem -- as with any academic study, you must state clearly and concisely the research problem being investigated.
  • Reviews the literature -- review scholarship on the topic, synthesizing key themes and, if necessary, noting studies that have used similar methods of inquiry and analysis. Note where key gaps exist and how your study helps to fill these gaps or clarifies existing knowledge.
  • Describes the theoretical framework -- provide an outline of the theory or hypothesis underpinning your study. If necessary, define unfamiliar or complex terms, concepts, or ideas and provide the appropriate background information to place the research problem in proper context [e.g., historical, cultural, economic, etc.].

Methodology The methods section of a quantitative study should describe how each objective of your study will be achieved. Be sure to provide enough detail to enable the reader can make an informed assessment of the methods being used to obtain results associated with the research problem. The methods section should be presented in the past tense.

  • Study population and sampling -- where did the data come from; how robust is it; note where gaps exist or what was excluded. Note the procedures used for their selection;
  • Data collection – describe the tools and methods used to collect information and identify the variables being measured; describe the methods used to obtain the data; and, note if the data was pre-existing [i.e., government data] or you gathered it yourself. If you gathered it yourself, describe what type of instrument you used and why. Note that no data set is perfect--describe any limitations in methods of gathering data.
  • Data analysis -- describe the procedures for processing and analyzing the data. If appropriate, describe the specific instruments of analysis used to study each research objective, including mathematical techniques and the type of computer software used to manipulate the data.

Results The finding of your study should be written objectively and in a succinct and precise format. In quantitative studies, it is common to use graphs, tables, charts, and other non-textual elements to help the reader understand the data. Make sure that non-textual elements do not stand in isolation from the text but are being used to supplement the overall description of the results and to help clarify key points being made. Further information about how to effectively present data using charts and graphs can be found here .

  • Statistical analysis -- how did you analyze the data? What were the key findings from the data? The findings should be present in a logical, sequential order. Describe but do not interpret these trends or negative results; save that for the discussion section. The results should be presented in the past tense.

Discussion Discussions should be analytic, logical, and comprehensive. The discussion should meld together your findings in relation to those identified in the literature review, and placed within the context of the theoretical framework underpinning the study. The discussion should be presented in the present tense.

  • Interpretation of results -- reiterate the research problem being investigated and compare and contrast the findings with the research questions underlying the study. Did they affirm predicted outcomes or did the data refute it?
  • Description of trends, comparison of groups, or relationships among variables -- describe any trends that emerged from your analysis and explain all unanticipated and statistical insignificant findings.
  • Discussion of implications – what is the meaning of your results? Highlight key findings based on the overall results and note findings that you believe are important. How have the results helped fill gaps in understanding the research problem?
  • Limitations -- describe any limitations or unavoidable bias in your study and, if necessary, note why these limitations did not inhibit effective interpretation of the results.

Conclusion End your study by to summarizing the topic and provide a final comment and assessment of the study.

  • Summary of findings – synthesize the answers to your research questions. Do not report any statistical data here; just provide a narrative summary of the key findings and describe what was learned that you did not know before conducting the study.
  • Recommendations – if appropriate to the aim of the assignment, tie key findings with policy recommendations or actions to be taken in practice.
  • Future research – note the need for future research linked to your study’s limitations or to any remaining gaps in the literature that were not addressed in your study.

Black, Thomas R. Doing Quantitative Research in the Social Sciences: An Integrated Approach to Research Design, Measurement and Statistics . London: Sage, 1999; Gay,L. R. and Peter Airasain. Educational Research: Competencies for Analysis and Applications . 7th edition. Upper Saddle River, NJ: Merril Prentice Hall, 2003; Hector, Anestine. An Overview of Quantitative Research in Composition and TESOL . Department of English, Indiana University of Pennsylvania; Hopkins, Will G. “Quantitative Research Design.” Sportscience 4, 1 (2000); "A Strategy for Writing Up Research Results. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper." Department of Biology. Bates College; Nenty, H. Johnson. "Writing a Quantitative Research Thesis." International Journal of Educational Science 1 (2009): 19-32; Ouyang, Ronghua (John). Basic Inquiry of Quantitative Research . Kennesaw State University.

Strengths of Using Quantitative Methods

Quantitative researchers try to recognize and isolate specific variables contained within the study framework, seek correlation, relationships and causality, and attempt to control the environment in which the data is collected to avoid the risk of variables, other than the one being studied, accounting for the relationships identified.

Among the specific strengths of using quantitative methods to study social science research problems:

  • Allows for a broader study, involving a greater number of subjects, and enhancing the generalization of the results;
  • Allows for greater objectivity and accuracy of results. Generally, quantitative methods are designed to provide summaries of data that support generalizations about the phenomenon under study. In order to accomplish this, quantitative research usually involves few variables and many cases, and employs prescribed procedures to ensure validity and reliability;
  • Applying well established standards means that the research can be replicated, and then analyzed and compared with similar studies;
  • You can summarize vast sources of information and make comparisons across categories and over time; and,
  • Personal bias can be avoided by keeping a 'distance' from participating subjects and using accepted computational techniques .

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Limitations of Using Quantitative Methods

Quantitative methods presume to have an objective approach to studying research problems, where data is controlled and measured, to address the accumulation of facts, and to determine the causes of behavior. As a consequence, the results of quantitative research may be statistically significant but are often humanly insignificant.

Some specific limitations associated with using quantitative methods to study research problems in the social sciences include:

  • Quantitative data is more efficient and able to test hypotheses, but may miss contextual detail;
  • Uses a static and rigid approach and so employs an inflexible process of discovery;
  • The development of standard questions by researchers can lead to "structural bias" and false representation, where the data actually reflects the view of the researcher instead of the participating subject;
  • Results provide less detail on behavior, attitudes, and motivation;
  • Researcher may collect a much narrower and sometimes superficial dataset;
  • Results are limited as they provide numerical descriptions rather than detailed narrative and generally provide less elaborate accounts of human perception;
  • The research is often carried out in an unnatural, artificial environment so that a level of control can be applied to the exercise. This level of control might not normally be in place in the real world thus yielding "laboratory results" as opposed to "real world results"; and,
  • Preset answers will not necessarily reflect how people really feel about a subject and, in some cases, might just be the closest match to the preconceived hypothesis.

Research Tip

Finding Examples of How to Apply Different Types of Research Methods

SAGE publications is a major publisher of studies about how to design and conduct research in the social and behavioral sciences. Their SAGE Research Methods Online and Cases database includes contents from books, articles, encyclopedias, handbooks, and videos covering social science research design and methods including the complete Little Green Book Series of Quantitative Applications in the Social Sciences and the Little Blue Book Series of Qualitative Research techniques. The database also includes case studies outlining the research methods used in real research projects. This is an excellent source for finding definitions of key terms and descriptions of research design and practice, techniques of data gathering, analysis, and reporting, and information about theories of research [e.g., grounded theory]. The database covers both qualitative and quantitative research methods as well as mixed methods approaches to conducting research.

SAGE Research Methods Online and Cases

  • << Previous: Qualitative Methods
  • Next: Insiderness >>
  • Last Updated: May 25, 2024 4:09 PM
  • URL: https://libguides.usc.edu/writingguide

Grad Coach

How To Write The Results/Findings Chapter

For quantitative studies (dissertations & theses).

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | July 2021

So, you’ve completed your quantitative data analysis and it’s time to report on your findings. But where do you start? In this post, we’ll walk you through the results chapter (also called the findings or analysis chapter), step by step, so that you can craft this section of your dissertation or thesis with confidence. If you’re looking for information regarding the results chapter for qualitative studies, you can find that here .

Overview: Quantitative Results Chapter

  • What exactly the results chapter is
  • What you need to include in your chapter
  • How to structure the chapter
  • Tips and tricks for writing a top-notch chapter
  • Free results chapter template

What exactly is the results chapter?

The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you’ve found in terms of the quantitative data you’ve collected. It presents the data using a clear text narrative, supported by tables, graphs and charts. In doing so, it also highlights any potential issues (such as outliers or unusual findings) you’ve come across.

But how’s that different from the discussion chapter?

Well, in the results chapter, you only present your statistical findings. Only the numbers, so to speak – no more, no less. Contrasted to this, in the discussion chapter , you interpret your findings and link them to prior research (i.e. your literature review), as well as your research objectives and research questions . In other words, the results chapter presents and describes the data, while the discussion chapter interprets the data.

Let’s look at an example.

In your results chapter, you may have a plot that shows how respondents to a survey  responded: the numbers of respondents per category, for instance. You may also state whether this supports a hypothesis by using a p-value from a statistical test. But it is only in the discussion chapter where you will say why this is relevant or how it compares with the literature or the broader picture. So, in your results chapter, make sure that you don’t present anything other than the hard facts – this is not the place for subjectivity.

It’s worth mentioning that some universities prefer you to combine the results and discussion chapters. Even so, it is good practice to separate the results and discussion elements within the chapter, as this ensures your findings are fully described. Typically, though, the results and discussion chapters are split up in quantitative studies. If you’re unsure, chat with your research supervisor or chair to find out what their preference is.

Free template for results section of a dissertation or thesis

What should you include in the results chapter?

Following your analysis, it’s likely you’ll have far more data than are necessary to include in your chapter. In all likelihood, you’ll have a mountain of SPSS or R output data, and it’s your job to decide what’s most relevant. You’ll need to cut through the noise and focus on the data that matters.

This doesn’t mean that those analyses were a waste of time – on the contrary, those analyses ensure that you have a good understanding of your dataset and how to interpret it. However, that doesn’t mean your reader or examiner needs to see the 165 histograms you created! Relevance is key.

How do I decide what’s relevant?

At this point, it can be difficult to strike a balance between what is and isn’t important. But the most important thing is to ensure your results reflect and align with the purpose of your study .  So, you need to revisit your research aims, objectives and research questions and use these as a litmus test for relevance. Make sure that you refer back to these constantly when writing up your chapter so that you stay on track.

There must be alignment between your research aims objectives and questions

As a general guide, your results chapter will typically include the following:

  • Some demographic data about your sample
  • Reliability tests (if you used measurement scales)
  • Descriptive statistics
  • Inferential statistics (if your research objectives and questions require these)
  • Hypothesis tests (again, if your research objectives and questions require these)

We’ll discuss each of these points in more detail in the next section.

Importantly, your results chapter needs to lay the foundation for your discussion chapter . This means that, in your results chapter, you need to include all the data that you will use as the basis for your interpretation in the discussion chapter.

For example, if you plan to highlight the strong relationship between Variable X and Variable Y in your discussion chapter, you need to present the respective analysis in your results chapter – perhaps a correlation or regression analysis.

Need a helping hand?

sample thesis quantitative research

How do I write the results chapter?

There are multiple steps involved in writing up the results chapter for your quantitative research. The exact number of steps applicable to you will vary from study to study and will depend on the nature of the research aims, objectives and research questions . However, we’ll outline the generic steps below.

Step 1 – Revisit your research questions

The first step in writing your results chapter is to revisit your research objectives and research questions . These will be (or at least, should be!) the driving force behind your results and discussion chapters, so you need to review them and then ask yourself which statistical analyses and tests (from your mountain of data) would specifically help you address these . For each research objective and research question, list the specific piece (or pieces) of analysis that address it.

At this stage, it’s also useful to think about the key points that you want to raise in your discussion chapter and note these down so that you have a clear reminder of which data points and analyses you want to highlight in the results chapter. Again, list your points and then list the specific piece of analysis that addresses each point. 

Next, you should draw up a rough outline of how you plan to structure your chapter . Which analyses and statistical tests will you present and in what order? We’ll discuss the “standard structure” in more detail later, but it’s worth mentioning now that it’s always useful to draw up a rough outline before you start writing (this advice applies to any chapter).

Step 2 – Craft an overview introduction

As with all chapters in your dissertation or thesis, you should start your quantitative results chapter by providing a brief overview of what you’ll do in the chapter and why . For example, you’d explain that you will start by presenting demographic data to understand the representativeness of the sample, before moving onto X, Y and Z.

This section shouldn’t be lengthy – a paragraph or two maximum. Also, it’s a good idea to weave the research questions into this section so that there’s a golden thread that runs through the document.

Your chapter must have a golden thread

Step 3 – Present the sample demographic data

The first set of data that you’ll present is an overview of the sample demographics – in other words, the demographics of your respondents.

For example:

  • What age range are they?
  • How is gender distributed?
  • How is ethnicity distributed?
  • What areas do the participants live in?

The purpose of this is to assess how representative the sample is of the broader population. This is important for the sake of the generalisability of the results. If your sample is not representative of the population, you will not be able to generalise your findings. This is not necessarily the end of the world, but it is a limitation you’ll need to acknowledge.

Of course, to make this representativeness assessment, you’ll need to have a clear view of the demographics of the population. So, make sure that you design your survey to capture the correct demographic information that you will compare your sample to.

But what if I’m not interested in generalisability?

Well, even if your purpose is not necessarily to extrapolate your findings to the broader population, understanding your sample will allow you to interpret your findings appropriately, considering who responded. In other words, it will help you contextualise your findings . For example, if 80% of your sample was aged over 65, this may be a significant contextual factor to consider when interpreting the data. Therefore, it’s important to understand and present the demographic data.

 Step 4 – Review composite measures and the data “shape”.

Before you undertake any statistical analysis, you’ll need to do some checks to ensure that your data are suitable for the analysis methods and techniques you plan to use. If you try to analyse data that doesn’t meet the assumptions of a specific statistical technique, your results will be largely meaningless. Therefore, you may need to show that the methods and techniques you’ll use are “allowed”.

Most commonly, there are two areas you need to pay attention to:

#1: Composite measures

The first is when you have multiple scale-based measures that combine to capture one construct – this is called a composite measure .  For example, you may have four Likert scale-based measures that (should) all measure the same thing, but in different ways. In other words, in a survey, these four scales should all receive similar ratings. This is called “ internal consistency ”.

Internal consistency is not guaranteed though (especially if you developed the measures yourself), so you need to assess the reliability of each composite measure using a test. Typically, Cronbach’s Alpha is a common test used to assess internal consistency – i.e., to show that the items you’re combining are more or less saying the same thing. A high alpha score means that your measure is internally consistent. A low alpha score means you may need to consider scrapping one or more of the measures.

#2: Data shape

The second matter that you should address early on in your results chapter is data shape. In other words, you need to assess whether the data in your set are symmetrical (i.e. normally distributed) or not, as this will directly impact what type of analyses you can use. For many common inferential tests such as T-tests or ANOVAs (we’ll discuss these a bit later), your data needs to be normally distributed. If it’s not, you’ll need to adjust your strategy and use alternative tests.

To assess the shape of the data, you’ll usually assess a variety of descriptive statistics (such as the mean, median and skewness), which is what we’ll look at next.

Descriptive statistics

Step 5 – Present the descriptive statistics

Now that you’ve laid the foundation by discussing the representativeness of your sample, as well as the reliability of your measures and the shape of your data, you can get started with the actual statistical analysis. The first step is to present the descriptive statistics for your variables.

For scaled data, this usually includes statistics such as:

  • The mean – this is simply the mathematical average of a range of numbers.
  • The median – this is the midpoint in a range of numbers when the numbers are arranged in order.
  • The mode – this is the most commonly repeated number in the data set.
  • Standard deviation – this metric indicates how dispersed a range of numbers is. In other words, how close all the numbers are to the mean (the average).
  • Skewness – this indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph (this is called a normal or parametric distribution), or do they lean to the left or right (this is called a non-normal or non-parametric distribution).
  • Kurtosis – this metric indicates whether the data are heavily or lightly-tailed, relative to the normal distribution. In other words, how peaked or flat the distribution is.

A large table that indicates all the above for multiple variables can be a very effective way to present your data economically. You can also use colour coding to help make the data more easily digestible.

For categorical data, where you show the percentage of people who chose or fit into a category, for instance, you can either just plain describe the percentages or numbers of people who responded to something or use graphs and charts (such as bar graphs and pie charts) to present your data in this section of the chapter.

When using figures, make sure that you label them simply and clearly , so that your reader can easily understand them. There’s nothing more frustrating than a graph that’s missing axis labels! Keep in mind that although you’ll be presenting charts and graphs, your text content needs to present a clear narrative that can stand on its own. In other words, don’t rely purely on your figures and tables to convey your key points: highlight the crucial trends and values in the text. Figures and tables should complement the writing, not carry it .

Depending on your research aims, objectives and research questions, you may stop your analysis at this point (i.e. descriptive statistics). However, if your study requires inferential statistics, then it’s time to deep dive into those .

Dive into the inferential statistics

Step 6 – Present the inferential statistics

Inferential statistics are used to make generalisations about a population , whereas descriptive statistics focus purely on the sample . Inferential statistical techniques, broadly speaking, can be broken down into two groups .

First, there are those that compare measurements between groups , such as t-tests (which measure differences between two groups) and ANOVAs (which measure differences between multiple groups). Second, there are techniques that assess the relationships between variables , such as correlation analysis and regression analysis. Within each of these, some tests can be used for normally distributed (parametric) data and some tests are designed specifically for use on non-parametric data.

There are a seemingly endless number of tests that you can use to crunch your data, so it’s easy to run down a rabbit hole and end up with piles of test data. Ultimately, the most important thing is to make sure that you adopt the tests and techniques that allow you to achieve your research objectives and answer your research questions .

In this section of the results chapter, you should try to make use of figures and visual components as effectively as possible. For example, if you present a correlation table, use colour coding to highlight the significance of the correlation values, or scatterplots to visually demonstrate what the trend is. The easier you make it for your reader to digest your findings, the more effectively you’ll be able to make your arguments in the next chapter.

make it easy for your reader to understand your quantitative results

Step 7 – Test your hypotheses

If your study requires it, the next stage is hypothesis testing. A hypothesis is a statement , often indicating a difference between groups or relationship between variables, that can be supported or rejected by a statistical test. However, not all studies will involve hypotheses (again, it depends on the research objectives), so don’t feel like you “must” present and test hypotheses just because you’re undertaking quantitative research.

The basic process for hypothesis testing is as follows:

  • Specify your null hypothesis (for example, “The chemical psilocybin has no effect on time perception).
  • Specify your alternative hypothesis (e.g., “The chemical psilocybin has an effect on time perception)
  • Set your significance level (this is usually 0.05)
  • Calculate your statistics and find your p-value (e.g., p=0.01)
  • Draw your conclusions (e.g., “The chemical psilocybin does have an effect on time perception”)

Finally, if the aim of your study is to develop and test a conceptual framework , this is the time to present it, following the testing of your hypotheses. While you don’t need to develop or discuss these findings further in the results chapter, indicating whether the tests (and their p-values) support or reject the hypotheses is crucial.

Step 8 – Provide a chapter summary

To wrap up your results chapter and transition to the discussion chapter, you should provide a brief summary of the key findings . “Brief” is the keyword here – much like the chapter introduction, this shouldn’t be lengthy – a paragraph or two maximum. Highlight the findings most relevant to your research objectives and research questions, and wrap it up.

Some final thoughts, tips and tricks

Now that you’ve got the essentials down, here are a few tips and tricks to make your quantitative results chapter shine:

  • When writing your results chapter, report your findings in the past tense . You’re talking about what you’ve found in your data, not what you are currently looking for or trying to find.
  • Structure your results chapter systematically and sequentially . If you had two experiments where findings from the one generated inputs into the other, report on them in order.
  • Make your own tables and graphs rather than copying and pasting them from statistical analysis programmes like SPSS. Check out the DataIsBeautiful reddit for some inspiration.
  • Once you’re done writing, review your work to make sure that you have provided enough information to answer your research questions , but also that you didn’t include superfluous information.

If you’ve got any questions about writing up the quantitative results chapter, please leave a comment below. If you’d like 1-on-1 assistance with your quantitative analysis and discussion, check out our hands-on coaching service , or book a free consultation with a friendly coach.

sample thesis quantitative research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

How to write the results chapter in a qualitative thesis

Thank you. I will try my best to write my results.

Lord

Awesome content 👏🏾

Tshepiso

this was great explaination

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Library Home

A Quick Guide to Quantitative Research in the Social Sciences

(12 reviews)

sample thesis quantitative research

Christine Davies, Carmarthen, Wales

Copyright Year: 2020

Last Update: 2021

Publisher: University of Wales Trinity Saint David

Language: English

Formats Available

Conditions of use.

Attribution-NonCommercial

Learn more about reviews.

sample thesis quantitative research

Reviewed by Jennifer Taylor, Assistant Professor, Texas A&M University-Corpus Christi on 4/18/24

This resource is a quick guide to quantitative research in the social sciences and not a comprehensive resource. It provides a VERY general overview of quantitative research but offers a good starting place for students new to research. It... read more

Comprehensiveness rating: 4 see less

This resource is a quick guide to quantitative research in the social sciences and not a comprehensive resource. It provides a VERY general overview of quantitative research but offers a good starting place for students new to research. It offers links and references to additional resources that are more comprehensive in nature.

Content Accuracy rating: 4

The content is relatively accurate. The measurement scale section is very sparse. Not all types of research designs or statistical methods are included, but it is a guide, so details are meant to be limited.

Relevance/Longevity rating: 4

The examples were interesting and appropriate. The content is up to date and will be useful for several years.

Clarity rating: 5

The text was clearly written. Tables and figures are not referenced in the text, which would have been nice.

Consistency rating: 5

The framework is consistent across chapters with terminology clearly highlighted and defined.

Modularity rating: 5

The chapters are subdivided into section that can be divided and assigned as reading in a course. Most chapters are brief and concise, unless elaboration is necessary, such as with the data analysis chapter. Again, this is a guide and not a comprehensive text, so sections are shorter and don't always include every subtopic that may be considered.

Organization/Structure/Flow rating: 5

The guide is well organized. I appreciate that the topics are presented in a logical and clear manner. The topics are provided in an order consistent with traditional research methods.

Interface rating: 5

The interface was easy to use and navigate. The images were clear and easy to read.

Grammatical Errors rating: 5

I did not notice any grammatical errors.

Cultural Relevance rating: 5

The materials are not culturally insensitive or offensive in any way.

I teach a Marketing Research course to undergraduates. I would consider using some of the chapters or topics included, especially the overview of the research designs and the analysis of data section.

Reviewed by Tiffany Kindratt, Assistant Professor, University of Texas at Arlington on 3/9/24

The text provides a brief overview of quantitative research topics that is geared towards research in the fields of education, sociology, business, and nursing. The author acknowledges that the textbook is not a comprehensive resource but offers... read more

Comprehensiveness rating: 3 see less

The text provides a brief overview of quantitative research topics that is geared towards research in the fields of education, sociology, business, and nursing. The author acknowledges that the textbook is not a comprehensive resource but offers references to other resources that can be used to deepen the knowledge. The text does not include a glossary or index. The references in the figures for each chapter are not included in the reference section. It would be helpful to include those.

Overall, the text is accurate. For example, Figure 1 on page 6 provides a clear overview of the research process. It includes general definitions of primary and secondary research. It would be helpful to include more details to explain some of the examples before they are presented. For instance, the example on page 5 was unclear how it pertains to the literature review section.

In general, the text is relevant and up-to-date. The text includes many inferences of moving from qualitative to quantitative analysis. This was surprising to me as a quantitative researcher. The author mentions that moving from a qualitative to quantitative approach should only be done when needed. As a predominantly quantitative researcher, I would not advice those interested in transitioning to using a qualitative approach that qualitative research would enhance their research—not something that should only be done if you have to.

Clarity rating: 4

The text is written in a clear manner. It would be helpful to the reader if there was a description of the tables and figures in the text before they are presented.

Consistency rating: 4

The framework for each chapter and terminology used are consistent.

Modularity rating: 4

The text is clearly divided into sections within each chapter. Overall, the chapters are a similar brief length except for the chapter on data analysis, which is much more comprehensive than others.

Organization/Structure/Flow rating: 4

The topics in the text are presented in a clear and logical order. The order of the text follows the conventional research methodology in social sciences.

I did not encounter any interface issues when reviewing this text. All links worked and there were no distortions of the images or charts that may confuse the reader.

Grammatical Errors rating: 3

There are some grammatical/typographical errors throughout. Of note, for Section 5 in the table of contents. “The” should be capitalized to start the title. In the title for Table 3, the “t” in typical should be capitalized.

Cultural Relevance rating: 4

The examples are culturally relevant. The text is geared towards learners in the UK, but examples are relevant for use in other countries (i.e., United States). I did not see any examples that may be considered culturally insensitive or offensive in any way.

I teach a course on research methods in a Bachelor of Science in Public Health program. I would consider using some of the text, particularly in the analysis chapter to supplement the current textbook in the future.

Reviewed by Finn Bell, Assistant Professor, University of Michigan, Dearborn on 1/3/24

For it being a quick guide and only 26 pages, it is very comprehensive, but it does not include an index or glossary. read more

For it being a quick guide and only 26 pages, it is very comprehensive, but it does not include an index or glossary.

Content Accuracy rating: 5

As far as I can tell, the text is accurate, error-free and unbiased.

Relevance/Longevity rating: 5

This text is up-to-date, and given the content, unlikely to become obsolete any time soon.

The text is very clear and accessible.

The text is internally consistent.

Given how short the text is, it seems unnecessary to divide it into smaller readings, nonetheless, it is clearly labelled such that an instructor could do so.

The text is well-organized and brings readers through basic quantitative methods in a logical, clear fashion.

Easy to navigate. Only one table that is split between pages, but not in a way that is confusing.

There were no noticeable grammatical errors.

The examples in this book don't give enough information to rate this effectively.

This text is truly a very quick guide at only 26 double-spaced pages. Nonetheless, Davies packs a lot of information on the basics of quantitative research methods into this text, in an engaging way with many examples of the concepts presented. This guide is more of a brief how-to that takes readers as far as how to select statistical tests. While it would be impossible to fully learn quantitative research from such a short text, of course, this resource provides a great introduction, overview, and refresher for program evaluation courses.

Reviewed by Shari Fedorowicz, Adjunct Professor, Bridgewater State University on 12/16/22

The text is indeed a quick guide for utilizing quantitative research. Appropriate and effective examples and diagrams were used throughout the text. The author clearly differentiates between use of quantitative and qualitative research providing... read more

Comprehensiveness rating: 5 see less

The text is indeed a quick guide for utilizing quantitative research. Appropriate and effective examples and diagrams were used throughout the text. The author clearly differentiates between use of quantitative and qualitative research providing the reader with the ability to distinguish two terms that frequently get confused. In addition, links and outside resources are provided to deepen the understanding as an option for the reader. The use of these links, coupled with diagrams and examples make this text comprehensive.

The content is mostly accurate. Given that it is a quick guide, the author chose a good selection of which types of research designs to include. However, some are not provided. For example, correlational or cross-correlational research is omitted and is not discussed in Section 3, but is used as a statistical example in the last section.

Examples utilized were appropriate and associated with terms adding value to the learning. The tables that included differentiation between types of statistical tests along with a parametric/nonparametric table were useful and relevant.

The purpose to the text and how to use this guide book is stated clearly and is established up front. The author is also very clear regarding the skill level of the user. Adding to the clarity are the tables with terms, definitions, and examples to help the reader unpack the concepts. The content related to the terms was succinct, direct, and clear. Many times examples or figures were used to supplement the narrative.

The text is consistent throughout from contents to references. Within each section of the text, the introductory paragraph under each section provides a clear understanding regarding what will be discussed in each section. The layout is consistent for each section and easy to follow.

The contents are visible and address each section of the text. A total of seven sections, including a reference section, is in the contents. Each section is outlined by what will be discussed in the contents. In addition, within each section, a heading is provided to direct the reader to the subtopic under each section.

The text is well-organized and segues appropriately. I would have liked to have seen an introductory section giving a narrative overview of what is in each section. This would provide the reader with the ability to get a preliminary glimpse into each upcoming sections and topics that are covered.

The book was easy to navigate and well-organized. Examples are presented in one color, links in another and last, figures and tables. The visuals supplemented the reading and placed appropriately. This provides an opportunity for the reader to unpack the reading by use of visuals and examples.

No significant grammatical errors.

The text is not offensive or culturally insensitive. Examples were inclusive of various races, ethnicities, and backgrounds.

This quick guide is a beneficial text to assist in unpacking the learning related to quantitative statistics. I would use this book to complement my instruction and lessons, or use this book as a main text with supplemental statistical problems and formulas. References to statistical programs were appropriate and were useful. The text did exactly what was stated up front in that it is a direct guide to quantitative statistics. It is well-written and to the point with content areas easy to locate by topic.

Reviewed by Sarah Capello, Assistant Professor, Radford University on 1/18/22

The text claims to provide "quick and simple advice on quantitative aspects of research in social sciences," which it does. There is no index or glossary, although vocabulary words are bolded and defined throughout the text. read more

The text claims to provide "quick and simple advice on quantitative aspects of research in social sciences," which it does. There is no index or glossary, although vocabulary words are bolded and defined throughout the text.

The content is mostly accurate. I would have preferred a few nuances to be hashed out a bit further to avoid potential reader confusion or misunderstanding of the concepts presented.

The content is current; however, some of the references cited in the text are outdated. Newer editions of those texts exist.

The text is very accessible and readable for a variety of audiences. Key terms are well-defined.

There are no content discrepancies within the text. The author even uses similarly shaped graphics for recurring purposes throughout the text (e.g., arrow call outs for further reading, rectangle call outs for examples).

The content is chunked nicely by topics and sections. If it were used for a course, it would be easy to assign different sections of the text for homework, etc. without confusing the reader if the instructor chose to present the content in a different order.

The author follows the structure of the research process. The organization of the text is easy to follow and comprehend.

All of the supplementary images (e.g., tables and figures) were beneficial to the reader and enhanced the text.

There are no significant grammatical errors.

I did not find any culturally offensive or insensitive references in the text.

This text does the difficult job of introducing the complicated concepts and processes of quantitative research in a quick and easy reference guide fairly well. I would not depend solely on this text to teach students about quantitative research, but it could be a good jumping off point for those who have no prior knowledge on this subject or those who need a gentle introduction before diving in to more advanced and complex readings of quantitative research methods.

Reviewed by J. Marlie Henry, Adjunct Faculty, University of Saint Francis on 12/9/21

Considering the length of this guide, this does a good job of addressing major areas that typically need to be addressed. There is a contents section. The guide does seem to be organized accordingly with appropriate alignment and logical flow of... read more

Considering the length of this guide, this does a good job of addressing major areas that typically need to be addressed. There is a contents section. The guide does seem to be organized accordingly with appropriate alignment and logical flow of thought. There is no glossary but, for a guide of this length, a glossary does not seem like it would enhance the guide significantly.

The content is relatively accurate. Expanding the content a bit more or explaining that the methods and designs presented are not entirely inclusive would help. As there are different schools of thought regarding what should/should not be included in terms of these designs and methods, simply bringing attention to that and explaining a bit more would help.

Relevance/Longevity rating: 3

This content needs to be updated. Most of the sources cited are seven or more years old. Even more, it would be helpful to see more currently relevant examples. Some of the source authors such as Andy Field provide very interesting and dynamic instruction in general, but they have much more current information available.

The language used is clear and appropriate. Unnecessary jargon is not used. The intent is clear- to communicate simply in a straightforward manner.

The guide seems to be internally consistent in terms of terminology and framework. There do not seem to be issues in this area. Terminology is internally consistent.

For a guide of this length, the author structured this logically into sections. This guide could be adopted in whole or by section with limited modifications. Courses with fewer than seven modules could also logically group some of the sections.

This guide does present with logical organization. The topics presented are conceptually sequenced in a manner that helps learners build logically on prior conceptualization. This also provides a simple conceptual framework for instructors to guide learners through the process.

Interface rating: 4

The visuals themselves are simple, but they are clear and understandable without distracting the learner. The purpose is clear- that of learning rather than visuals for the sake of visuals. Likewise, navigation is clear and without issues beyond a broken link (the last source noted in the references).

This guide seems to be free of grammatical errors.

It would be interesting to see more cultural integration in a guide of this nature, but the guide is not culturally insensitive or offensive in any way. The language used seems to be consistent with APA's guidelines for unbiased language.

Reviewed by Heng Yu-Ku, Professor, University of Northern Colorado on 5/13/21

The text covers all areas and ideas appropriately and provides practical tables, charts, and examples throughout the text. I would suggest the author also provides a complete research proposal at the end of Section 3 (page 10) and a comprehensive... read more

The text covers all areas and ideas appropriately and provides practical tables, charts, and examples throughout the text. I would suggest the author also provides a complete research proposal at the end of Section 3 (page 10) and a comprehensive research study as an Appendix after section 7 (page 26) to help readers comprehend information better.

For the most part, the content is accurate and unbiased. However, the author only includes four types of research designs used on the social sciences that contain quantitative elements: 1. Mixed method, 2) Case study, 3) Quasi-experiment, and 3) Action research. I wonder why the correlational research is not included as another type of quantitative research design as it has been introduced and emphasized in section 6 by the author.

I believe the content is up-to-date and that necessary updates will be relatively easy and straightforward to implement.

The text is easy to read and provides adequate context for any technical terminology used. However, the author could provide more detailed information about estimating the minimum sample size but not just refer the readers to use the online sample calculators at a different website.

The text is internally consistent in terms of terminology and framework. The author provides the right amount of information with additional information or resources for the readers.

The text includes seven sections. Therefore, it is easier for the instructor to allocate or divide the content into different weeks of instruction within the course.

Yes, the topics in the text are presented in a logical and clear fashion. The author provides clear and precise terminologies, summarizes important content in Table or Figure forms, and offers examples in each section for readers to check their understanding.

The interface of the book is consistent and clear, and all the images and charts provided in the book are appropriate. However, I did encounter some navigation problems as a couple of links are not working or requires permission to access those (pages 10 and 27).

No grammatical errors were found.

No culturally incentive or offensive in its language and the examples provided were found.

As the book title stated, this book provides “A Quick Guide to Quantitative Research in Social Science. It offers easy-to-read information and introduces the readers to the research process, such as research questions, research paradigms, research process, research designs, research methods, data collection, data analysis, and data discussion. However, some links are not working or need permissions to access them (pages 10 and 27).

Reviewed by Hsiao-Chin Kuo, Assistant Professor, Northeastern Illinois University on 4/26/21, updated 4/28/21

As a quick guide, it covers basic concepts related to quantitative research. It starts with WHY quantitative research with regard to asking research questions and considering research paradigms, then provides an overview of research design and... read more

As a quick guide, it covers basic concepts related to quantitative research. It starts with WHY quantitative research with regard to asking research questions and considering research paradigms, then provides an overview of research design and process, discusses methods, data collection and analysis, and ends with writing a research report. It also identifies its target readers/users as those begins to explore quantitative research. It would be helpful to include more examples for readers/users who are new to quantitative research.

Its content is mostly accurate and no bias given its nature as a quick guide. Yet, it is also quite simplified, such as its explanations of mixed methods, case study, quasi-experimental research, and action research. It provides resources for extended reading, yet more recent works will be helpful.

The book is relevant given its nature as a quick guide. It would be helpful to provide more recent works in its resources for extended reading, such as the section for Survey Research (p. 12). It would also be helpful to include more information to introduce common tools and software for statistical analysis.

The book is written with clear and understandable language. Important terms and concepts are presented with plain explanations and examples. Figures and tables are also presented to support its clarity. For example, Table 4 (p. 20) gives an easy-to-follow overview of different statistical tests.

The framework is very consistent with key points, further explanations, examples, and resources for extended reading. The sample studies are presented following the layout of the content, such as research questions, design and methods, and analysis. These examples help reinforce readers' understanding of these common research elements.

The book is divided into seven chapters. Each chapter clearly discusses an aspect of quantitative research. It can be easily divided into modules for a class or for a theme in a research method class. Chapters are short and provides additional resources for extended reading.

The topics in the chapters are presented in a logical and clear structure. It is easy to follow to a degree. Though, it would be also helpful to include the chapter number and title in the header next to its page number.

The text is easy to navigate. Most of the figures and tables are displayed clearly. Yet, there are several sections with empty space that is a bit confusing in the beginning. Again, it can be helpful to include the chapter number/title next to its page number.

Grammatical Errors rating: 4

No major grammatical errors were found.

There are no cultural insensitivities noted.

Given the nature and purpose of this book, as a quick guide, it provides readers a quick reference for important concepts and terms related to quantitative research. Because this book is quite short (27 pages), it can be used as an overview/preview about quantitative research. Teacher's facilitation/input and extended readings will be needed for a deeper learning and discussion about aspects of quantitative research.

Reviewed by Yang Cheng, Assistant Professor, North Carolina State University on 1/6/21

It covers the most important topics such as research progress, resources, measurement, and analysis of the data. read more

It covers the most important topics such as research progress, resources, measurement, and analysis of the data.

The book accurately describes the types of research methods such as mixed-method, quasi-experiment, and case study. It talks about the research proposal and key differences between statistical analyses as well.

The book pinpointed the significance of running a quantitative research method and its relevance to the field of social science.

The book clearly tells us the differences between types of quantitative methods and the steps of running quantitative research for students.

The book is consistent in terms of terminologies such as research methods or types of statistical analysis.

It addresses the headlines and subheadlines very well and each subheading should be necessary for readers.

The book was organized very well to illustrate the topic of quantitative methods in the field of social science.

The pictures within the book could be further developed to describe the key concepts vividly.

The textbook contains no grammatical errors.

It is not culturally offensive in any way.

Overall, this is a simple and quick guide for this important topic. It should be valuable for undergraduate students who would like to learn more about research methods.

Reviewed by Pierre Lu, Associate Professor, University of Texas Rio Grande Valley on 11/20/20

As a quick guide to quantitative research in social sciences, the text covers most ideas and areas. read more

As a quick guide to quantitative research in social sciences, the text covers most ideas and areas.

Mostly accurate content.

As a quick guide, content is highly relevant.

Succinct and clear.

Internally, the text is consistent in terms of terminology used.

The text is easily and readily divisible into smaller sections that can be used as assignments.

I like that there are examples throughout the book.

Easy to read. No interface/ navigation problems.

No grammatical errors detected.

I am not aware of the culturally insensitive description. After all, this is a methodology book.

I think the book has potential to be adopted as a foundation for quantitative research courses, or as a review in the first weeks in advanced quantitative course.

Reviewed by Sarah Fischer, Assistant Professor, Marymount University on 7/31/20

It is meant to be an overview, but it incredibly condensed and spends almost no time on key elements of statistics (such as what makes research generalizable, or what leads to research NOT being generalizable). read more

It is meant to be an overview, but it incredibly condensed and spends almost no time on key elements of statistics (such as what makes research generalizable, or what leads to research NOT being generalizable).

Content Accuracy rating: 1

Contains VERY significant errors, such as saying that one can "accept" a hypothesis. (One of the key aspect of hypothesis testing is that one either rejects or fails to reject a hypothesis, but NEVER accepts a hypothesis.)

Very relevant to those experiencing the research process for the first time. However, it is written by someone working in the natural sciences but is a text for social sciences. This does not explain the errors, but does explain why sometimes the author assumes things about the readers ("hail from more subjectivist territory") that are likely not true.

Clarity rating: 3

Some statistical terminology not explained clearly (or accurately), although the author has made attempts to do both.

Very consistently laid out.

Chapters are very short yet also point readers to outside texts for additional information. Easy to follow.

Generally logically organized.

Easy to navigate, images clear. The additional sources included need to linked to.

Minor grammatical and usage errors throughout the text.

Makes efforts to be inclusive.

The idea of this book is strong--short guides like this are needed. However, this book would likely be strengthened by a revision to reduce inaccuracies and improve the definitions and technical explanations of statistical concepts. Since the book is specifically aimed at the social sciences, it would also improve the text to have more examples that are based in the social sciences (rather than the health sciences or the arts).

Reviewed by Michelle Page, Assistant Professor, Worcester State University on 5/30/20

This text is exactly intended to be what it says: A quick guide. A basic outline of quantitative research processes, akin to cliff notes. The content provides only the essentials of a research process and contains key terms. A student or new... read more

This text is exactly intended to be what it says: A quick guide. A basic outline of quantitative research processes, akin to cliff notes. The content provides only the essentials of a research process and contains key terms. A student or new researcher would not be able to use this as a stand alone guide for quantitative pursuits without having a supplemental text that explains the steps in the process more comprehensively. The introduction does provide this caveat.

Content Accuracy rating: 3

There are no biases or errors that could be distinguished; however, it’s simplicity in content, although accurate for an outline of process, may lack a conveyance of the deeper meanings behind the specific processes explained about qualitative research.

The content is outlined in traditional format to highlight quantitative considerations for formatting research foundational pieces. The resources/references used to point the reader to literature sources can be easily updated with future editions.

The jargon in the text is simple to follow and provides adequate context for its purpose. It is simplified for its intention as a guide which is appropriate.

Each section of the text follows a consistent flow. Explanation of the research content or concept is defined and then a connection to literature is provided to expand the readers understanding of the section’s content. Terminology is consistent with the qualitative process.

As an “outline” and guide, this text can be used to quickly identify the critical parts of the quantitative process. Although each section does not provide deeper content for meaningful use as a stand alone text, it’s utility would be excellent as a reference for a course and can be used as an content guide for specific research courses.

The text’s outline and content are aligned and are in a logical flow in terms of the research considerations for quantitative research.

The only issue that the format was not able to provide was linkable articles. These would have to be cut and pasted into a browser. Functional clickable links in a text are very successful at leading the reader to the supplemental material.

No grammatical errors were noted.

This is a very good outline “guide” to help a new or student researcher to demystify the quantitative process. A successful outline of any process helps to guide work in a logical and systematic way. I think this simple guide is a great adjunct to more substantial research context.

Table of Contents

  • Section 1: What will this resource do for you?
  • Section 2: Why are you thinking about numbers? A discussion of the research question and paradigms.
  • Section 3: An overview of the Research Process and Research Designs
  • Section 4: Quantitative Research Methods
  • Section 5: the data obtained from quantitative research
  • Section 6: Analysis of data
  • Section 7: Discussing your Results

Ancillary Material

About the book.

This resource is intended as an easy-to-use guide for anyone who needs some quick and simple advice on quantitative aspects of research in social sciences, covering subjects such as education, sociology, business, nursing. If you area qualitative researcher who needs to venture into the world of numbers, or a student instructed to undertake a quantitative research project despite a hatred for maths, then this booklet should be a real help.

The booklet was amended in 2022 to take into account previous review comments.  

About the Contributors

Christine Davies , Ph.D

Contribute to this Page

Logo for the Skills Centre

Dissertations and research projects

  • Book a session
  • Planning your research
  • Qualitative research

Hypothesis testing

Reliability and validity, approaches to quantitative research.

  • Writing up your research project
  • e-learning and books
  • SkillsCheck This link opens in a new window
  • ⬅ Back to Skills Centre This link opens in a new window
  • Review this resource

Through quantitative research we seek to understand the relationships between variables. A variable will be a characteristic, value, attribute or behaviour that is of interest to the researcher. Some variables can be simple to measure, for example, height and weight. By contrast, others such as self-esteem or socio-economic status are more complex and therefore harder to measure. This is why it is important to operationalise your variables.

This essentially means being very clear about the way in which variables will be defined and measured in your study; this lends credibility to your methodology and helps the replicability of your research. It is important that you are detailed in your operational definition of any given variable because another researcher may define that variable differently from you. To illustrate, if a study examined memory ability, the researcher would specify exactly how this measure was generated: was it the number of words recalled in 60 seconds after reading a passage of text? Was it details about a picture? Defining your variables is an important of the research process as this will affect the reliability and validity of your study.

is the variable changed or manipulated by the researcher. Research generally seeks to establish whether the independent variable has an affect or influences the dependent variable in some way; this may be through a causal or non-causal relationship.

i s the variable that the researcher is trying to predict or explain through understanding its relationship with the independent variable. For example, if a researcher wants to establish if drinking coffee aids sporting performance, your independent variable would be the amount of coffee consumed (no coffee/1 cup/3 cups) and the dependent variable would be some operational definition of sporting performance (amount of weight lifted/vertical jump height/time taken to sprint 100m).

is  a variable that affects the strength of the relationship between the independent and dependent variable. For example, if you looked at the relationship between personality similarity in friendships (independent variable) and perceived friendship satisfaction (dependent variable), it might be that age is a moderating variable – e.g. the older you are, the weaker the relationship between personality similarity in a friendship and associated satisfaction with that friendship. From this you could make the tentative suggestion that similarity in personality becomes less important in a satisfying relationship as we become older. 

i s a variable that helps to explain the relationship between the independent and dependent variables. Consider the example above, we might discover that the number of shared activities also contributes to perceived friendship satisfaction . We could then remove this from our analysis and find that the relationship between personality similarity in friendships and perceived satisfaction in a friendship disappears - this would suggest that the relationship was mediated by the variable shared interests.

is any variable that is not the independent variable but may affect the results of the experiment. Examples can include; aspects of the environment (temperature/noise/lighting); differences between participants (mood/intellect/concentration); and experimenter effects (clues in an experiment which may convey that purpose of the research). It is important to minimise the influence of extraneous variables through the careful use of controls – for example, there are ways of minimising the effect of differences between participants through your experimental design (more on this later!)

  • Relationships are Complicated toolkit This short guide offers more information and examples of the types of relationships between variables.

A hypothesis is a predictive statement that can be tested through the collection of data. The data can be analysed and can either provide support for, or help to reject, a hypothesis; this in turn should allow a researcher to draw some conclusions about what they are investigating.

Null and alternative hypotheses

Hypothesis are classified by the way they describe the expected association/difference between variables. When we test our hypothesis/hypotheses it is important to remember we are testing it against the assumption that there isn’t an association/difference between the independent and dependent variables: we call this the null hypothesis. By testing this assumption, statistical tests can estimate how likely it is that any observed association/difference between variables is due to chance.

In addition to the null hypothesis we also have the alternative hypothesis. This hypothesis states that there is an association/difference between groups; this cannot be tested directly but can be accepted by rejecting the null hypothesis. This is achieved through statistical tests that can help to demonstrate that any observed association/differences are not due to chance. Once this is established, we can accept our alternative hypothesis and start to draw conclusions from our data.

Hypotheses can either be one-tailed or two-tailed:

  • One-tailed hypothesis –specifies the direction of the predicted association between the independent and dependent variable. For example, the higher an individual’s educational level, the more books they will read in a one-year period.
  • Two-tailed hypothesis – does not specify the direction of the predicted association between variables; only that an association exists. For example, there will a be difference in the number of books read in a one-year period, dependent on the level of an individual’s education.

Key things to remember when writing your hypothesis/hypotheses:

  • Your hypothesis should always be written as a statement and before any data are collected .
  • It should be simple and specific ; include the variables, using concise operational definitions, and the predicted relationship between these variables. If you have several predictor (independent) variables it would be better to write several simple hypotheses – think one predictor and one outcome variable.
  • Always keep your language clear and focused .

It is important that you show rigour within your research. This means demonstrating that you have given careful consideration to how you can enhance the quality of your research project. Within quantitative research this is achieved through examining reliability and validity.

  • Reliability – is a measure of how consistent, dependable and repeatable something is.
  • Validity – is the extent to which research measures the concept that it was designed to measure.

For example, if you had some scales that were always weighed an object as 5kg lighter than it actually is, this would be an example of a measure that was very reliable but not valid : the scales will always give you a consistent measure of weight, but this measure is not accurate.

There are several different types of reliability and validity that you should consider when planning, conducting and writing up your research project. For more information on the different types of reliability and validity have a look at the recommendations below:

  • Designing and Doing Survey Research (Andres, 2012) – see Chapter 7 .
  • Quantitative Health Research Issues and Methods (Curtis & Drennan, 2013) – see Chapter 16 .
  • Research Methods in Psychology (Howitt & Cramer, 2017) – see Chapter 16 .
  • Non-experimental
  • 'True' experiments
  • Quasi-experimental
  • Between-subjects
  • Within-subjects

Non-experimental research designs do not seek to establish cause and effect relationships. This is because the researcher does not manipulate the independent variable(s) to measure any effects on the dependent variable(s). Instead, researchers may use this type of design to begin exploring a topic where there is little current understanding, or to investigate the relationship between two (or more) variables.

  • Descriptive : these research designs help to understand the current state of a phenomenon and are often used when not much is known about a topic. Variables are not controlled, and data tends to be collected through observation or surveys. An example of this might be an investigation into the preferred news sources of 13-18-year olds.
  • Correlational :  these designs measure a relationship between two variables that are not controlled. As such, correlational designs cannot establish cause and effect – always remember correlation does not imply causation! This approach can be useful when there is a suspected relationship between variables, but it would be impractical or unethical to manipulate one of those variables. For example, you might hypothesize

True experiments seek to establish cause and effect relationships between a group of variables. Researchers control for all variables except for the variable(s) being manipulated, to establish its effect on the dependent variable.

These are similar to true experiments: the aim is to establish cause and effect relationships. Crucially however, assignment to groups is not random. This type of design is often used when it is not possible for the researcher to randomly assign participants to groups because they are interested in understanding a particular phenomenon in relation to naturally occurring differences between groups – an example of this could be an experiment where a researcher is interested in examining whether the effect of coffee consumption on sleep differs depending on age. In this example, it is impossible for the researcher to manipulate the age of participants, so instead group assignment would be made based on predetermined criteria e.g. under 40, 40+. As this assignment cannot be random this would be a quasi-experiment.

Between-subjects designs involve the assignments of participants to one of two (or more) conditions, with each participant experiencing only that condition. In its simplest form, a between-subjects design requires a control condition and a treatment condition. If the results of an experiment differ greatly between conditions, then it can be assumed that this due to the effect of the intervention or manipulation that has been applied in the treatment condition. To help minimise the affect of extraneous variables that might impact differences between the groups (and increase the likelihood that observed differences are due to the effect of the independent variable), participants in the control and treatment conditions might be matched for relevant characteristics.

For example, in an experiment to assess the effectiveness of two training programmes in improving athletic performance, participants might be matched for some key measures of fitness such as 100m sprint time, maximum squat etc. This would enable researchers to be more confident that any changes to athletic performance in the participants between the two groups were likely due to the training programme they undertook, rather than natural, pre-exiting differences in athletic performance.

Sometimes referred to as repeated measures , this approach involves obtaining more than one measure from each participant in a study. This means that participants take part in both the control and treatment condition(s). The primary advantage of this is that participants act as their own control; you can be more confident that any observed differences result from the treatment condition rather than naturally occurring differences between the groups. One problem, however, is that of order effects (sometimes called practice effects). These effects may occur because conditions are applied one after the other and this can lead to changes in performance that are not the result of the treatment but instead reflect some effect of the previous condition that a participant has experienced. For example, improvements in performance could be due to learning/practise and a decline in performance could be due to fatigue over experiencing two (or more) experimental conditions back-to-back.

One way to account for this problem is to counterbalance the order of your conditions. To do this, a researcher would ensure that each condition in the experiment is experienced 1 st for an equal number of participants:

10 participants experience condition A 1 st and condition B 2 nd 10 participants experience condition B 1 st and condition A 2 nd

Doing this helps to reduce the impact of order effects by ensuring that any effects are distributed evenly across all conditions.

Another option could be to create a long time between testing conditions to reduce any possible effects of learning and/or fatigue. It should be noted however, that creating distance between conditions isn’t always practical and it can be hard to know how long is sufficient to eliminate a potential order effect: this is particularly true for practice effects as it can be hard to accurately determine how long it takes for potential improvements in performance due to learning, to disappear.

The final type of design is used when a research design has one (or more) factors that is between subjects and one (or more) factors that is within subject. This is often used when for research that is looking at the effect on an intervention in relation to another factor that has a fixed effect.

For example, if a researcher was looking at the effectiveness of a drug for treating pain in those under 40 and over 40, age would be a between-subjects factor because a participant can’t be both under and over 40 at the same time. The drug that participants take would be the within-subjects factor. This type of design is particularly useful if you want to examine if the effect on an intervention is different dependent upon another factor. In the example above, it would be possible to establish if the effect of the drug was beneficial for all participants, or whether it was particularly effective/ineffective depending on the age of the participant – whether they were under or over 40. 

  • << Previous: Qualitative research
  • Next: Writing up your research project >>
  • Last Updated: Apr 17, 2024 1:52 PM
  • URL: https://libguides.shu.ac.uk/researchprojects

Sheffield Hallam Library Signifier

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Qualitative vs Quantitative Research | Examples & Methods

Qualitative vs Quantitative Research | Examples & Methods

Published on 4 April 2022 by Raimo Streefkerk . Revised on 8 May 2023.

When collecting and analysing data, quantitative research deals with numbers and statistics, while qualitative research  deals with words and meanings. Both are important for gaining different kinds of knowledge.

Common quantitative methods include experiments, observations recorded as numbers, and surveys with closed-ended questions. Qualitative research Qualitative research is expressed in words . It is used to understand concepts, thoughts or experiences. This type of research enables you to gather in-depth insights on topics that are not well understood.

Table of contents

The differences between quantitative and qualitative research, data collection methods, when to use qualitative vs quantitative research, how to analyse qualitative and quantitative data, frequently asked questions about qualitative and quantitative research.

Quantitative and qualitative research use different research methods to collect and analyse data, and they allow you to answer different kinds of research questions.

Qualitative vs quantitative research

Prevent plagiarism, run a free check.

Quantitative and qualitative data can be collected using various methods. It is important to use a data collection method that will help answer your research question(s).

Many data collection methods can be either qualitative or quantitative. For example, in surveys, observations or case studies , your data can be represented as numbers (e.g. using rating scales or counting frequencies) or as words (e.g. with open-ended questions or descriptions of what you observe).

However, some methods are more commonly used in one type or the other.

Quantitative data collection methods

  • Surveys :  List of closed or multiple choice questions that is distributed to a sample (online, in person, or over the phone).
  • Experiments : Situation in which variables are controlled and manipulated to establish cause-and-effect relationships.
  • Observations: Observing subjects in a natural environment where variables can’t be controlled.

Qualitative data collection methods

  • Interviews : Asking open-ended questions verbally to respondents.
  • Focus groups: Discussion among a group of people about a topic to gather opinions that can be used for further research.
  • Ethnography : Participating in a community or organisation for an extended period of time to closely observe culture and behavior.
  • Literature review : Survey of published works by other authors.

A rule of thumb for deciding whether to use qualitative or quantitative data is:

  • Use quantitative research if you want to confirm or test something (a theory or hypothesis)
  • Use qualitative research if you want to understand something (concepts, thoughts, experiences)

For most research topics you can choose a qualitative, quantitative or mixed methods approach . Which type you choose depends on, among other things, whether you’re taking an inductive vs deductive research approach ; your research question(s) ; whether you’re doing experimental , correlational , or descriptive research ; and practical considerations such as time, money, availability of data, and access to respondents.

Quantitative research approach

You survey 300 students at your university and ask them questions such as: ‘on a scale from 1-5, how satisfied are your with your professors?’

You can perform statistical analysis on the data and draw conclusions such as: ‘on average students rated their professors 4.4’.

Qualitative research approach

You conduct in-depth interviews with 15 students and ask them open-ended questions such as: ‘How satisfied are you with your studies?’, ‘What is the most positive aspect of your study program?’ and ‘What can be done to improve the study program?’

Based on the answers you get you can ask follow-up questions to clarify things. You transcribe all interviews using transcription software and try to find commonalities and patterns.

Mixed methods approach

You conduct interviews to find out how satisfied students are with their studies. Through open-ended questions you learn things you never thought about before and gain new insights. Later, you use a survey to test these insights on a larger scale.

It’s also possible to start with a survey to find out the overall trends, followed by interviews to better understand the reasons behind the trends.

Qualitative or quantitative data by itself can’t prove or demonstrate anything, but has to be analysed to show its meaning in relation to the research questions. The method of analysis differs for each type of data.

Analysing quantitative data

Quantitative data is based on numbers. Simple maths or more advanced statistical analysis is used to discover commonalities or patterns in the data. The results are often reported in graphs and tables.

Applications such as Excel, SPSS, or R can be used to calculate things like:

  • Average scores
  • The number of times a particular answer was given
  • The correlation or causation between two or more variables
  • The reliability and validity of the results

Analysing qualitative data

Qualitative data is more difficult to analyse than quantitative data. It consists of text, images or videos instead of numbers.

Some common approaches to analysing qualitative data include:

  • Qualitative content analysis : Tracking the occurrence, position and meaning of words or phrases
  • Thematic analysis : Closely examining the data to identify the main themes and patterns
  • Discourse analysis : Studying how communication works in social contexts

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Streefkerk, R. (2023, May 08). Qualitative vs Quantitative Research | Examples & Methods. Scribbr. Retrieved 27 May 2024, from https://www.scribbr.co.uk/research-methods/quantitative-qualitative-research/

Is this article helpful?

Raimo Streefkerk

Raimo Streefkerk

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Writing a Quantitative Research Thesis

Profile image of H Johnson Nenty

Research is an exciting adventure which if properly carried out adds richly to the student’s experience, to the school academic prestige and to the society through the new knowledge it creates which could be applied in solving related problems and in other services. Young researchers always encounter problems designing and carrying out their first study which usually is their project, thesis or dissertation. Some who are not properly guided or supervised get frustrated and drop out of their programmes because of these problems. The ideas in this paper which metamorphosed over 25 years of teaching and supervising research, represents an attempt to contribute to the solution of such problems especially for graduate students. It presents elaborately, in very simple language and in five sections, the practical steps that should guide beginning researchers on how to carry out their study and report it.

Related Papers

Fred Ntedika Mvumbi

A thesis/Dissertation, as one piece of work, should be a text that addresses the issues of the community; all divisions and sub-divisions ought to be interconnected and interrelated to become a process leading to one goal. Thus, the text has threefold dimension. The first is that few people know the underlying principle of a research; that is the wisdom behind the idea, the efforts and the pains of carrying out a research in a particular field of knowledge. The second is a request to students to fall in love and to have passion for the kind of study they want to undertake; this increases the motivation and disposes them to go extra miles for comprehensive and immense discovery where understanding, application and generation of new knowledge take place. The third reason, which is equally important, maybe the most important in writing this text, concerns the organization of the report; in this case the presentation of a thesis/dissertation. Students should be more and more motivated to carry out research in various fields of knowledge, particularly when they have means; and postgraduate students should be increasingly encouraged to take part in research initiatives, for this helps to find new meanings of life.

sample thesis quantitative research

Kezang sherab

khadidja Hammoudi

International Journal of Research

Tahani Bsharat

andrea azures

• Identify the interest • Study the interest • Identify possible interesting dimension or problem in the area of interest • Formulate the initial research question in response to the identified dimension or problem in the area of interest • Make an initial research to gain further understanding of the initial research question • Incorporate new findings to the initial research question • Assess whether the research question remains relevant to the area of interest by studying the current state of literature All research inquiry starts from a simple identification of an area on which someone is interested in. A student researcher could be interested in the current state of information and communication technology, educational system, career tracks, use of social media, effects of personal issues on academic performance and impact of social background on education opportunities to name a few. Interests are either developed through life path, innate (such as inclination to music and other performing arts) or ideologically acquired. The identification of interest as the first stage of research inquiry is only reasonable since demands of the process requires undivided commitment and human nature has it that we struggle doing things when it is outside our area of interest.

WORLD EDUCATION CONNECT Multidisciplinary e-Publication

JAYSON S . DIGAMON

It provides any reader procedures in making research questions that are cursorily discussed in graduate school, especially during thesis writing. The author hopes that this module will facilitate students' fluid making of research questions which form part of the essentials in writing the entire research output.

Munyaradzi Moyo

Essential Tremor

So you’re a student at university looking to do research and write a dissertation (thesis)? This book is for you. It’s an essential guide to the research process covering all stages from planning to doing to writing up and proofing. The book also has a unique section on publishing your dissertation for those who wish to push their academic career along. Unlike other books, it does not assume that you have infinite time and resources to conduct your research. It recognises that at this level you probably have six months or less to finish the dissertation and gives practical advice on which studies are feasible and which are not. The book gets on top of the research terminology by giving concise, working definitions of the key terms, which will appeal to international students. With over 30 years of experience in leading and teaching research in a variety of fields, Dr Michael Cribb has pulled together all his wisdom and knowledge in one book to help guide students through their first big research project.

Khawaja Mudasir Mehmood

RELATED PAPERS

University of Pittsburgh Press

Elena Serrano

Marcela Crespo Buiturón

Chemistry (Weinheim an der Bergstrasse, Germany)

Chérif F . Matta

Microchemical Journal

Sarah Azinheiro

Asian Journal of Agricultural Extension, Economics &amp; Sociology

KR Karunakaran

Reviewing of Applied Management and Social Sciences

Jamal Uddin

Maria Grazia Bartolini

Environment International

El tiempo de las vacas gordas. Las cifras negras del agroextractivismo ganadero exportador en Bolivia

Marielle Cauthin

Revista Scientia Iuris

Fernando J O A Q U I M F E R R E I R A Maia

bioRxiv (Cold Spring Harbor Laboratory)

Pavee Vasnarungruengkul

Cerebral Cortex Communications

Paola D'ascanio

Aquatic Toxicology

Lucia Guilhermino

Elena Pontelli

Ahmet Sağlamgöncü

HE ON-GOING BATTLE FOR THE SOUL OF THE ARMY

Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. Proceedings of the Eleventh International Conference on Teaching Statistics

jaime García

Nucleic Acids Research

Linda Sealy

Sean Corcoran

Armindo Silva

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

sample thesis quantitative research

RSC Advances

Rapid quantitative analysis of petroleum coke properties by laser-induced breakdown spectroscopy combined with random forest based on a variable selection strategy †.

ORCID logo

* Corresponding authors

a Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an, China E-mail: [email protected] , [email protected]

b China Certification & Inspection Group Shan Dong Co; Ltd, Qing Dao, China

c College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, China

Driven by the “double carbon” strategy, petroleum coke short-term demand is growing rapidly as a negative electrode material for artificial graphite. The analysis of petroleum coke physicochemical properties has always been an important part of its research, encompassing significant indicators such as ash content, volatile matter and calorific value. A strategy based on laser-induced breakdown spectroscopy (LIBS) in combination with chemometrics is proposed to realize the rapid and accurate quantification of the above properties. LIBS spectra of 46 petroleum coke samples were collected, and an original random forest (RF) calibration model was constructed by optimizing the pretreatment parameters. The RF calibration model was further optimized based on variable importance measures (VIM) and variable importance in projection (VIP) methods. After variable selection, the elemental spectral lines related to ash content, volatile matter and calorific value modeling were screened out, thus initially exploring the correlation between these properties and elements. Under the optimized spectral pretreatment method, VI threshold and model parameters, the mean relative error (MRE P ) of the prediction set of ash content, volatile matter and calorific value were 0.0881, 0.0527 and 0.006, the root mean square error (RMSE P ) of the prediction set of ash content, volatile matter and calorific value were 0.0471%, 0.6178% and 0.2697 MJ kg −1 , respectively, and the determination coefficient ( R P 2 ) of the prediction set was 0.9187, 0.9820 and 0.9510, respectively. The combination of LIBS technology and chemometric methods can provide powerful technical means for the analysis and evaluation of the physicochemical properties of petroleum coke.

Graphical abstract: Rapid quantitative analysis of petroleum coke properties by laser-induced breakdown spectroscopy combined with random forest based on a variable selection strategy

Supplementary files

  • Supplementary information PDF (166K)

Article information

sample thesis quantitative research

Download Citation

Permissions.

sample thesis quantitative research

Rapid quantitative analysis of petroleum coke properties by laser-induced breakdown spectroscopy combined with random forest based on a variable selection strategy

S. Hu, J. Ding, Y. Dong, T. Zhang, H. Tang and H. Li, RSC Adv. , 2024,  14 , 16358 DOI: 10.1039/D4RA02873B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence . You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication , please go to the Copyright Clearance Center request page .

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page .

Read more about how to correctly acknowledge RSC content .

Social activity

Search articles by author, advertisements.

sample thesis quantitative research

CRO Platform

Test your insights. Run experiments. Win. Or learn. And then win.

sample thesis quantitative research

eCommerce Customer Analytics Platform

sample thesis quantitative research

Acquisition matters. But retention matters more. Understand, monitor & nurture the best customers.

  • Case Studies
  • Ebooks, Tools, Templates
  • Digital Marketing Glossary
  • eCommerce Growth Stories
  • eCommerce Growth Show
  • Help & Technical Documentation

CRO Guide   >  Chapter 3.1

Qualitative Research: Definition, Methodology, Limitation & Examples

Qualitative research is a method focused on understanding human behavior and experiences through non-numerical data. Examples of qualitative research include:

  • One-on-one interviews,
  • Focus groups, Ethnographic research,
  • Case studies,
  • Record keeping,
  • Qualitative observations

In this article, we’ll provide tips and tricks on how to use qualitative research to better understand your audience through real world examples and improve your ROI. We’ll also learn the difference between qualitative and quantitative data.

gathering data

Table of Contents

Marketers often seek to understand their customers deeply. Qualitative research methods such as face-to-face interviews, focus groups, and qualitative observations can provide valuable insights into your products, your market, and your customers’ opinions and motivations. Understanding these nuances can significantly enhance marketing strategies and overall customer satisfaction.

What is Qualitative Research

Qualitative research is a market research method that focuses on obtaining data through open-ended and conversational communication. This method focuses on the “why” rather than the “what” people think about you. Thus, qualitative research seeks to uncover the underlying motivations, attitudes, and beliefs that drive people’s actions. 

Let’s say you have an online shop catering to a general audience. You do a demographic analysis and you find out that most of your customers are male. Naturally, you will want to find out why women are not buying from you. And that’s what qualitative research will help you find out.

In the case of your online shop, qualitative research would involve reaching out to female non-customers through methods such as in-depth interviews or focus groups. These interactions provide a platform for women to express their thoughts, feelings, and concerns regarding your products or brand. Through qualitative analysis, you can uncover valuable insights into factors such as product preferences, user experience, brand perception, and barriers to purchase.

Types of Qualitative Research Methods

Qualitative research methods are designed in a manner that helps reveal the behavior and perception of a target audience regarding a particular topic.

The most frequently used qualitative analysis methods are one-on-one interviews, focus groups, ethnographic research, case study research, record keeping, and qualitative observation.

1. One-on-one interviews

Conducting one-on-one interviews is one of the most common qualitative research methods. One of the advantages of this method is that it provides a great opportunity to gather precise data about what people think and their motivations.

Spending time talking to customers not only helps marketers understand who their clients are, but also helps with customer care: clients love hearing from brands. This strengthens the relationship between a brand and its clients and paves the way for customer testimonials.

  • A company might conduct interviews to understand why a product failed to meet sales expectations.
  • A researcher might use interviews to gather personal stories about experiences with healthcare.

These interviews can be performed face-to-face or on the phone and usually last between half an hour to over two hours. 

When a one-on-one interview is conducted face-to-face, it also gives the marketer the opportunity to read the body language of the respondent and match the responses.

2. Focus groups

Focus groups gather a small number of people to discuss and provide feedback on a particular subject. The ideal size of a focus group is usually between five and eight participants. The size of focus groups should reflect the participants’ familiarity with the topic. For less important topics or when participants have little experience, a group of 10 can be effective. For more critical topics or when participants are more knowledgeable, a smaller group of five to six is preferable for deeper discussions.

The main goal of a focus group is to find answers to the “why”, “what”, and “how” questions. This method is highly effective in exploring people’s feelings and ideas in a social setting, where group dynamics can bring out insights that might not emerge in one-on-one situations.

  • A focus group could be used to test reactions to a new product concept.
  • Marketers might use focus groups to see how different demographic groups react to an advertising campaign.

One advantage that focus groups have is that the marketer doesn’t necessarily have to interact with the group in person. Nowadays focus groups can be sent as online qualitative surveys on various devices.

Focus groups are an expensive option compared to the other qualitative research methods, which is why they are typically used to explain complex processes.

3. Ethnographic research

Ethnographic research is the most in-depth observational method that studies individuals in their naturally occurring environment.

This method aims at understanding the cultures, challenges, motivations, and settings that occur.

  • A study of workplace culture within a tech startup.
  • Observational research in a remote village to understand local traditions.

Ethnographic research requires the marketer to adapt to the target audiences’ environments (a different organization, a different city, or even a remote location), which is why geographical constraints can be an issue while collecting data.

This type of research can last from a few days to a few years. It’s challenging and time-consuming and solely depends on the expertise of the marketer to be able to analyze, observe, and infer the data.

4. Case study research

The case study method has grown into a valuable qualitative research method. This type of research method is usually used in education or social sciences. It involves a comprehensive examination of a single instance or event, providing detailed insights into complex issues in real-life contexts.  

  • Analyzing a single school’s innovative teaching method.
  • A detailed study of a patient’s medical treatment over several years.

Case study research may seem difficult to operate, but it’s actually one of the simplest ways of conducting research as it involves a deep dive and thorough understanding of the data collection methods and inferring the data.

5. Record keeping

Record keeping is similar to going to the library: you go over books or any other reference material to collect relevant data. This method uses already existing reliable documents and similar sources of information as a data source.

  • Historical research using old newspapers and letters.
  • A study on policy changes over the years by examining government records.

This method is useful for constructing a historical context around a research topic or verifying other findings with documented evidence.

6. Qualitative observation

Qualitative observation is a method that uses subjective methodologies to gather systematic information or data. This method deals with the five major sensory organs and their functioning, sight, smell, touch, taste, and hearing.

  • Sight : Observing the way customers visually interact with product displays in a store to understand their browsing behaviors and preferences.
  • Smell : Noting reactions of consumers to different scents in a fragrance shop to study the impact of olfactory elements on product preference.
  • Touch : Watching how individuals interact with different materials in a clothing store to assess the importance of texture in fabric selection.
  • Taste : Evaluating reactions of participants in a taste test to identify flavor profiles that appeal to different demographic groups.
  • Hearing : Documenting responses to changes in background music within a retail environment to determine its effect on shopping behavior and mood.

Below we are also providing real-life examples of qualitative research that demonstrate practical applications across various contexts:

Qualitative Research Real World Examples

Let’s explore some examples of how qualitative research can be applied in different contexts.

1. Online grocery shop with a predominantly male audience

Method used: one-on-one interviews.

Let’s go back to one of the previous examples. You have an online grocery shop. By nature, it addresses a general audience, but after you do a demographic analysis you find out that most of your customers are male.

One good method to determine why women are not buying from you is to hold one-on-one interviews with potential customers in the category.

Interviewing a sample of potential female customers should reveal why they don’t find your store appealing. The reasons could range from not stocking enough products for women to perhaps the store’s emphasis on heavy-duty tools and automotive products, for example. These insights can guide adjustments in inventory and marketing strategies.

2. Software company launching a new product

Method used: focus groups.

Focus groups are great for establishing product-market fit.

Let’s assume you are a software company that wants to launch a new product and you hold a focus group with 12 people. Although getting their feedback regarding users’ experience with the product is a good thing, this sample is too small to define how the entire market will react to your product.

So what you can do instead is holding multiple focus groups in 20 different geographic regions. Each region should be hosting a group of 12 for each market segment; you can even segment your audience based on age. This would be a better way to establish credibility in the feedback you receive.

3. Alan Pushkin’s “God’s Choice: The Total World of a Fundamentalist Christian School”

Method used: ethnographic research.

Moving from a fictional example to a real-life one, let’s analyze Alan Peshkin’s 1986 book “God’s Choice: The Total World of a Fundamentalist Christian School”.

Peshkin studied the culture of Bethany Baptist Academy by interviewing the students, parents, teachers, and members of the community alike, and spending eighteen months observing them to provide a comprehensive and in-depth analysis of Christian schooling as an alternative to public education.

The study highlights the school’s unified purpose, rigorous academic environment, and strong community support while also pointing out its lack of cultural diversity and openness to differing viewpoints. These insights are crucial for understanding how such educational settings operate and what they offer to students.

Even after discovering all this, Peshkin still presented the school in a positive light and stated that public schools have much to learn from such schools.

Peshkin’s in-depth research represents a qualitative study that uses observations and unstructured interviews, without any assumptions or hypotheses. He utilizes descriptive or non-quantifiable data on Bethany Baptist Academy specifically, without attempting to generalize the findings to other Christian schools.

4. Understanding buyers’ trends

Method used: record keeping.

Another way marketers can use quality research is to understand buyers’ trends. To do this, marketers need to look at historical data for both their company and their industry and identify where buyers are purchasing items in higher volumes.

For example, electronics distributors know that the holiday season is a peak market for sales while life insurance agents find that spring and summer wedding months are good seasons for targeting new clients.

5. Determining products/services missing from the market

Conducting your own research isn’t always necessary. If there are significant breakthroughs in your industry, you can use industry data and adapt it to your marketing needs.

The influx of hacking and hijacking of cloud-based information has made Internet security a topic of many industry reports lately. A software company could use these reports to better understand the problems its clients are facing.

As a result, the company can provide solutions prospects already know they need.

Real-time Customer Lifetime Value (CLV) Benchmark Report

See where your business stands compared to 1,000+ e-stores in different industries.

35 reports by industry and business size.

Qualitative Research Approaches

Once the marketer has decided that their research questions will provide data that is qualitative in nature, the next step is to choose the appropriate qualitative approach.

The approach chosen will take into account the purpose of the research, the role of the researcher, the data collected, the method of data analysis , and how the results will be presented. The most common approaches include:

  • Narrative : This method focuses on individual life stories to understand personal experiences and journeys. It examines how people structure their stories and the themes within them to explore human existence. For example, a narrative study might look at cancer survivors to understand their resilience and coping strategies.
  • Phenomenology : attempts to understand or explain life experiences or phenomena; It aims to reveal the depth of human consciousness and perception, such as by studying the daily lives of those with chronic illnesses.
  • Grounded theory : investigates the process, action, or interaction with the goal of developing a theory “grounded” in observations and empirical data. 
  • Ethnography : describes and interprets an ethnic, cultural, or social group;
  • Case study : examines episodic events in a definable framework, develops in-depth analyses of single or multiple cases, and generally explains “how”. An example might be studying a community health program to evaluate its success and impact.

How to Analyze Qualitative Data

Analyzing qualitative data involves interpreting non-numerical data to uncover patterns, themes, and deeper insights. This process is typically more subjective and requires a systematic approach to ensure reliability and validity. 

1. Data Collection

Ensure that your data collection methods (e.g., interviews, focus groups, observations) are well-documented and comprehensive. This step is crucial because the quality and depth of the data collected will significantly influence the analysis.

2. Data Preparation

Once collected, the data needs to be organized. Transcribe audio and video recordings, and gather all notes and documents. Ensure that all data is anonymized to protect participant confidentiality where necessary.

3. Familiarization

Immerse yourself in the data by reading through the materials multiple times. This helps you get a general sense of the information and begin identifying patterns or recurring themes.

Develop a coding system to tag data with labels that summarize and account for each piece of information. Codes can be words, phrases, or acronyms that represent how these segments relate to your research questions.

  • Descriptive Coding : Summarize the primary topic of the data.
  • In Vivo Coding : Use language and terms used by the participants themselves.
  • Process Coding : Use gerunds (“-ing” words) to label the processes at play.
  • Emotion Coding : Identify and record the emotions conveyed or experienced.

5. Thematic Development

Group codes into themes that represent larger patterns in the data. These themes should relate directly to the research questions and form a coherent narrative about the findings.

6. Interpreting the Data

Interpret the data by constructing a logical narrative. This involves piecing together the themes to explain larger insights about the data. Link the results back to your research objectives and existing literature to bolster your interpretations.

7. Validation

Check the reliability and validity of your findings by reviewing if the interpretations are supported by the data. This may involve revisiting the data multiple times or discussing the findings with colleagues or participants for validation.

8. Reporting

Finally, present the findings in a clear and organized manner. Use direct quotes and detailed descriptions to illustrate the themes and insights. The report should communicate the narrative you’ve built from your data, clearly linking your findings to your research questions.

Limitations of qualitative research

The disadvantages of qualitative research are quite unique. The techniques of the data collector and their own unique observations can alter the information in subtle ways. That being said, these are the qualitative research’s limitations:

1. It’s a time-consuming process

The main drawback of qualitative study is that the process is time-consuming. Another problem is that the interpretations are limited. Personal experience and knowledge influence observations and conclusions.

Thus, qualitative research might take several weeks or months. Also, since this process delves into personal interaction for data collection, discussions often tend to deviate from the main issue to be studied.

2. You can’t verify the results of qualitative research

Because qualitative research is open-ended, participants have more control over the content of the data collected. So the marketer is not able to verify the results objectively against the scenarios stated by the respondents. For example, in a focus group discussing a new product, participants might express their feelings about the design and functionality. However, these opinions are influenced by individual tastes and experiences, making it difficult to ascertain a universally applicable conclusion from these discussions.

3. It’s a labor-intensive approach

Qualitative research requires a labor-intensive analysis process such as categorization, recording, etc. Similarly, qualitative research requires well-experienced marketers to obtain the needed data from a group of respondents.

4. It’s difficult to investigate causality

Qualitative research requires thoughtful planning to ensure the obtained results are accurate. There is no way to analyze qualitative data mathematically. This type of research is based more on opinion and judgment rather than results. Because all qualitative studies are unique they are difficult to replicate.

5. Qualitative research is not statistically representative

Because qualitative research is a perspective-based method of research, the responses given are not measured.

Comparisons can be made and this can lead toward duplication, but for the most part, quantitative data is required for circumstances that need statistical representation and that is not part of the qualitative research process.

While doing a qualitative study, it’s important to cross-reference the data obtained with the quantitative data. By continuously surveying prospects and customers marketers can build a stronger database of useful information.

Quantitative vs. Qualitative Research

Qualitative and quantitative research side by side in a table

Image source

Quantitative and qualitative research are two distinct methodologies used in the field of market research, each offering unique insights and approaches to understanding consumer behavior and preferences.

As we already defined, qualitative analysis seeks to explore the deeper meanings, perceptions, and motivations behind human behavior through non-numerical data. On the other hand, quantitative research focuses on collecting and analyzing numerical data to identify patterns, trends, and statistical relationships.  

Let’s explore their key differences: 

Nature of Data:

  • Quantitative research : Involves numerical data that can be measured and analyzed statistically.
  • Qualitative research : Focuses on non-numerical data, such as words, images, and observations, to capture subjective experiences and meanings.

Research Questions:

  • Quantitative research : Typically addresses questions related to “how many,” “how much,” or “to what extent,” aiming to quantify relationships and patterns.
  • Qualitative research: Explores questions related to “why” and “how,” aiming to understand the underlying motivations, beliefs, and perceptions of individuals.

Data Collection Methods:

  • Quantitative research : Relies on structured surveys, experiments, or observations with predefined variables and measures.
  • Qualitative research : Utilizes open-ended interviews, focus groups, participant observations, and textual analysis to gather rich, contextually nuanced data.

Analysis Techniques:

  • Quantitative research: Involves statistical analysis to identify correlations, associations, or differences between variables.
  • Qualitative research: Employs thematic analysis, coding, and interpretation to uncover patterns, themes, and insights within qualitative data.

sample thesis quantitative research

Do Conversion Rate Optimization the Right way.

Explore helps you make the most out of your CRO efforts through advanced A/B testing, surveys, advanced segmentation and optimised customer journeys.

An isometric image of an adobe adobe adobe adobe ad.

If you haven’t subscribed yet to our newsletter, now is your chance!

A man posing happily in front of a vivid purple background for an engaging blog post.

Like what you’re reading?

Join the informed ecommerce crowd.

We will never bug you with irrelevant info.

By clicking the Button, you confirm that you agree with our Terms and Conditions .

Continue your Conversion Rate Optimization Journey

  • Last modified: January 3, 2023
  • Conversion Rate Optimization , User Research

Valentin Radu

Valentin Radu

Omniconvert logo on a black background.

We’re a team of people that want to empower marketers around the world to create marketing campaigns that matter to consumers in a smart way. Meet us at the intersection of creativity, integrity, and development, and let us show you how to optimize your marketing.

Our Software

  • > Book a Demo
  • > Partner Program
  • > Affiliate Program
  • Blog Sitemap
  • Terms and Conditions
  • Privacy & Security
  • Cookies Policy
  • REVEAL Terms and Conditions

IMAGES

  1. 😂 Quantitative research title. Format for a quantitative research

    sample thesis quantitative research

  2. An Example of a Quantitative Research Design

    sample thesis quantitative research

  3. Why quantitative analysis is the master key to a successful thesis

    sample thesis quantitative research

  4. Quantitative Thesis Example Of Statement Of The Problem

    sample thesis quantitative research

  5. Final quantitative research paper

    sample thesis quantitative research

  6. CHAPTER 3

    sample thesis quantitative research

VIDEO

  1. Review of Related Literature (RRL) Sample / Research / Thesis / Quantitative

  2. Sample Qualitative and Quantitative Research Titles

  3. Is Your Thesis Statement Ready for the HSC?

  4. QUANTITATIVE Research Design: A Comprehensive Guide with Examples #phd #quantitativeresearch

  5. Guidelines in Writing the Title/How To Formulate Thesis Title?

  6. How to Write a Thesis Statement on Pre-Columbian (Native Ame

COMMENTS

  1. A Quantitative Study of the Impact of Social Media Reviews on Brand

    A Quantitative Study of the Impact of Social Media Reviews on Brand Perception A Thesis Presented to the Faculty of the Weissman School of Arts and Sciences Baruch College, The City University of New York In partial Fulfillment of the Requirements of the Degree of MASTER OF ARTS In CORPORATE COMMUNICATION By Neha Joshi 12/18/2015

  2. PDF A Sample Quantitative Thesis Proposal

    A Sample Quantitative Thesis Proposal Prepared by Mary Hayes NOTE: This proposal is included in the ancillary materials of Research Design with permission of the author. If you would like to learn more about this research project, you can examine the following thesis that resulted from this work: Hayes, M. M. (2007).

  3. PDF The Dignity for All Students Act: a Quantitative Study of One Upstate

    friends on social media. Earlier research conducted by Gross (2004) reflects similar results. In his survey of 261 students in grades 7-10, he found that students spend an average of 40 minutes texting per day. Likewise, research by Kowalski and Limber (2007) reflected comparable results of 3,767

  4. PDF A Quantitative Study of Course Grades and Retention Comparing Online

    education institutions believing that online learning outcomes were superior to those for. face-to-face outcomes was still relatively small, but had grown by 34% since 2003, from. 10.2 to 13.7 % (Allen & Seaman, 2007b). This belief added merit to the conclusions.

  5. (PDF) Writing a Quantitative Research Thesis

    Research methods, according to Kothari (2004), are specialized procedures or tactics used to find, select, process, and analyze data on a particular subject. We used quantitative approaches to ...

  6. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  7. Quantitative Methods

    The results are based on larger sample sizes that are representative of the population. The research study can usually be replicated or repeated, given its high reliability. ... Bates College; Nenty, H. Johnson. "Writing a Quantitative Research Thesis." International Journal of Educational Science 1 (2009): 19-32; Ouyang, Ronghua (John). Basic ...

  8. Dissertation Results/Findings Chapter (Quantitative)

    The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.

  9. Prize-Winning Thesis and Dissertation Examples

    Prize-Winning Thesis and Dissertation Examples. Published on September 9, 2022 by Tegan George.Revised on July 18, 2023. It can be difficult to know where to start when writing your thesis or dissertation.One way to come up with some ideas or maybe even combat writer's block is to check out previous work done by other students on a similar thesis or dissertation topic to yours.

  10. How to Use Quantitative Data Analysis in a Thesis

    A Quick Look at Quantitative Research Methods. Although your main thesis statement will likely include just a few sentences, you'll need to provide supporting details. When writing your dissertation proposal, you'll also need to offer some basic information about the quantitative research methods you plan to use for your work.

  11. A Guide to Quantitative and Qualitative Dissertation Research (Second

    A Guide to Quantitative and Qualitative Dissertation Research (Second Edition) March 24, 2017 James P. Sampson, Jr., Ph.D. 1114 West Call Street, Suite 1100 College of Education Florida State University Tallahassee, FL 32306-4450 [email protected] James P. Sampson, Jr., is the Mode L. Stone Distinguished Professor of Counseling and Career

  12. A Quantitative Study of the Effectiveness of Positive Behavior Support

    This study was conducted to evaluate the long-term effectiveness of a second tier intervention on. at risk students' behaviors and academic success. The study included 113 middle school and. junior high students identified as being at risk for emotional and behavioral disorders using the.

  13. A Quick Guide to Quantitative Research in the Social Sciences

    This resource is intended as an easy-to-use guide for anyone who needs some quick and simple advice on quantitative aspects of research in social sciences, covering subjects such as education, sociology, business, nursing. If you area qualitative researcher who needs to venture into the world of numbers, or a student instructed to undertake a quantitative research project despite a hatred for ...

  14. A Quantitative Study of Teacher Perceptions of Professional Learning

    this specific research is evident in the current limitation of quantitative data regarding the PLC model that is being increasingly advocated for at the government, state, and district level. Accordingly, this study sought to provide data to districts that were looking to implement the PLC model regarding its effectiveness as perceived by the

  15. Minnesota State University Moorhead RED: a Repository of Digital

    A Quantitative Study of an Online Learning Platform's Impact on High School Students' Engagement, Academic Achievement, and Student Satisfaction in a Mathematics Class Mariah Minkkinen [email protected] Follow this and additional works at: https://red.mnstate.edu/thesis Part of the Mathematics Commons

  16. PDF Writing Chapter 3 Chapter 3: Methodology

    Instruments. This section should include the instruments you plan on using to measure the variables in the research questions. (a) the source or developers of the instrument. (b) validity and reliability information. •. (c) information on how it was normed. •. (d) other salient information (e.g., number of. items in each scale, subscales ...

  17. Employee Engagement and Burnout: A Quantitative Study of their

    The results of this research will help those federal agencies directed to spend time, effort and taxpayer dollars to increase employee engagement. The study's significance ... through all of these years and sparked an interest in me for quantitative research that I

  18. What Is a Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Other interesting articles.

  19. Quantitative research

    Within quantitative research this is achieved through examining reliability and validity. Reliability - is a measure of how consistent, dependable and repeatable something is. Validity - is the extent to which research measures the concept that it was designed to measure.

  20. (PDF) Writing A Quantitative Research Proposal / Thesis

    1. Introduce the overall methodological approach. 2. Indicate how the approach fits the overall research design. 3. Describe the specific methods of data collection. 4. Explain how you intend to ...

  21. Qualitative vs Quantitative Research

    This type of research can be used to establish generalisable facts about a topic. Common quantitative methods include experiments, observations recorded as numbers, and surveys with closed-ended questions. Qualitative research. Qualitative research is expressed in words. It is used to understand concepts, thoughts or experiences.

  22. PDF Quantitative Research Dissertation Chapters 4 and 5 (Suggested Content

    For statistical modeling purposes, responses were recoded into one of three categories: negative reputation (score of 1, 2, or 3; about 18.5% of respondents), positive reputation (score of 4 or 5; about 24.8% of respondents), and no reputation (score of 6; about 56.7% of respondents).". Example 2. This example shows how one explains reverse ...

  23. Writing a Quantitative Research Thesis

    Philosophically and methodologically it is designed to enable inference from a sample to a larger population (The Validity and Reliability of Qualitative Research, n.d.). 3.2 Research Design Besides indicating and justifying the type of research - qualitative, quantitative or mixed model - and the underlying philosophy or paradigm, clearly ...

  24. Rapid quantitative analysis of petroleum coke properties by laser

    The analysis of petroleum coke physicochemical properties has always been an important part of its research, encompassing significant indicators such as ash content, ... Rapid quantitative analysis of petroleum coke properties by laser-induced breakdown spectroscopy combined ... LIBS spectra of 46 petroleum coke samples were collected, and an ...

  25. Qualitative Research: Definition, Methodology, Limitation, Examples

    Qualitative research: Focuses on non-numerical data, such as words, images, and observations, to capture subjective experiences and meanings. Research Questions: Quantitative research: Typically addresses questions related to "how many," "how much," or "to what extent," aiming to quantify relationships and patterns.