Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 27 May 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Library Homepage

Research Methods and Design

  • Action Research
  • Case Study Design
  • Literature Review
  • Quantitative Research Methods
  • Qualitative Research Methods
  • Mixed Methods Study
  • Indigenous Research and Ethics This link opens in a new window
  • Identifying Empirical Research Articles This link opens in a new window
  • Research Ethics and Quality
  • Data Literacy
  • Get Help with Writing Assignments

Quantitative research methods

a method of research that relies on measuring variables using a numerical system, analyzing these measurements using any of a variety of statistical models, and reporting relationships and associations among the studied variables. For example, these variables may be test scores or measurements of reaction time. The goal of gathering this quantitative data is to understand, describe, and predict the nature of a phenomenon, particularly through the development of models and theories. Quantitative research techniques include experiments and surveys. 

SAGE Research Methods Videos

What are the strengths of quantitative research.

Professor Norma T. Mertz briefly discusses qualitative research and how it has changed since she entered the field. She emphasizes the importance of defining a research question before choosing a theoretical approach to research.

This is just one segment in a series about quantitative methods. You can find additional videos in our SAGE database, Research Methods: 

Videos

Videos covering research methods and statistics

Further Reading

Cover Art

  • << Previous: Literature Review
  • Next: Qualitative Research Methods >>
  • Last Updated: May 7, 2024 9:51 AM

CityU Home - CityU Catalog

Creative Commons License

  • Technical Support
  • Find My Rep

You are here

Research Design

Research Design Qualitative, Quantitative, and Mixed Methods Approaches

  • John W. Creswell - Department of Family Medicine, University of Michigan
  • J. David Creswell - Carnegie Mellon University, USA
  • Description

See what’s new to this edition by selecting the Features tab on this page. Should you need additional information or have questions regarding the HEOA information provided for this title, including what is new to this edition, please email [email protected] . Please include your name, contact information, and the name of the title for which you would like more information. For information on the HEOA, please go to http://ed.gov/policy/highered/leg/hea08/index.html .

For assistance with your order: Please email us at [email protected] or connect with your SAGE representative.

SAGE 2455 Teller Road Thousand Oaks, CA 91320 www.sagepub.com

Supplements

“A long time ago, I participated in one of Dr. Creswell’s workshops on mixed methods research.... I am still learning from Dr. Creswell. I appreciate how he takes complex topics and makes them accessible to everyone. But I must caution my students that Dr. Creswell’s easygoing cadence and elegant descriptions sometimes mask the depth of the material. This reminds me of why he is such a highly respected researcher and teacher.”

“I always have enjoyed using Creswell's books (as a student and as an instructor) because the writing is straightforward.”

“This book is based around dissertation chapters, and that's why I love it using in my class. Practical, concise, and to the point!”

“This book is easy to use. The information and additional charts are also helpful.”

Clear material, student support website, and faculty resources.

The book provides a comprehensive overview and does well at demystifying the research philosophy. I have recommended it to my level 7 students for their dissertation project.

This book will be added to next academic year's reading list.

It's a very explicit book that makes everything very easy to understand, no matter if it's a degree, a master or a PhD. Very simple usage and very well organized!

I am fed up with trying to get access to this "inspection copy". You don't respond to emails (and the email addresses you provide do not work). I get regular emails from you saying my ebook order is ready, but it does not appear in VitalSource and I cannot access it through any link on this web page. I am not willing to waste any more time on this. There are good alternatives.

Excellent introduction for research methods.

  • Fully updated for the 7th edition of the Publication Manual of the American Psychological Association.
  • More inclusive and supportive language throughout helps readers better see themselves in the research process.
  • Learning Objectives provide additional structure and clarity to the reading process.
  • The latest information on participatory research, evaluating literature for quality, using software to design literature maps, and additional statistical software types is newly included in this edition.
  • Chapter 4: Writing Strategies and Ethical Considerations now includes information on indigenous populations and data collection after IRB review.
  • An updated Chapter 8: Quantitative Methods now includes more foundational details, such as Type 1 and Type 2 errors and discussions of advantages and disadvantages of quantitative designs.
  • A restructured and revised Chapter 10: Mixed Methods Procedures brings state-of-the-art thinking to this increasingly popular approach.
  • Chapters 8, 9, and 10 now have parallel structures so readers can better compare and contrast each approach.
  • Reworked end-of-chapter exercises offer a more straightforward path to application for students.
  • New research examples throughout the text offer students contemporary studies for evaluation.
  • Current references and additional readings are included in this new edition.
  • Compares qualitative, quantitative, and mixed methods research in one book for unparalleled coverage.
  • Highly interdisciplinary examples make this book widely appealing to a broad range of courses and disciplines.
  • Ethical coverage throughout consistently reminds students to use good judgment and to be fair and unbiased in their research.
  • Writing exercises conclude each chapter so that readers can practice the principles learned in the chapter; if the reader completes all of the exercises, they will have a written plan for their scholarly study.
  • Numbered points provide checklists of each step in a process.
  • Annotated passages help reinforce the reader's comprehension of key research ideas.

Sample Materials & Chapters

Chapter 1: The Selection of a Research Approach

Chapter 2: Review of the Literature

For instructors

Select a purchasing option, related products.

A Concise Introduction to Mixed Methods Research

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Quantitative Methods
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques . Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Muijs, Daniel. Doing Quantitative Research in Education with SPSS . 2nd edition. London: SAGE Publications, 2010.

Need Help Locating Statistics?

Resources for locating data and statistics can be found here:

Statistics & Data Research Guide

Characteristics of Quantitative Research

Your goal in conducting quantitative research study is to determine the relationship between one thing [an independent variable] and another [a dependent or outcome variable] within a population. Quantitative research designs are either descriptive [subjects usually measured once] or experimental [subjects measured before and after a treatment]. A descriptive study establishes only associations between variables; an experimental study establishes causality.

Quantitative research deals in numbers, logic, and an objective stance. Quantitative research focuses on numeric and unchanging data and detailed, convergent reasoning rather than divergent reasoning [i.e., the generation of a variety of ideas about a research problem in a spontaneous, free-flowing manner].

Its main characteristics are :

  • The data is usually gathered using structured research instruments.
  • The results are based on larger sample sizes that are representative of the population.
  • The research study can usually be replicated or repeated, given its high reliability.
  • Researcher has a clearly defined research question to which objective answers are sought.
  • All aspects of the study are carefully designed before data is collected.
  • Data are in the form of numbers and statistics, often arranged in tables, charts, figures, or other non-textual forms.
  • Project can be used to generalize concepts more widely, predict future results, or investigate causal relationships.
  • Researcher uses tools, such as questionnaires or computer software, to collect numerical data.

The overarching aim of a quantitative research study is to classify features, count them, and construct statistical models in an attempt to explain what is observed.

  Things to keep in mind when reporting the results of a study using quantitative methods :

  • Explain the data collected and their statistical treatment as well as all relevant results in relation to the research problem you are investigating. Interpretation of results is not appropriate in this section.
  • Report unanticipated events that occurred during your data collection. Explain how the actual analysis differs from the planned analysis. Explain your handling of missing data and why any missing data does not undermine the validity of your analysis.
  • Explain the techniques you used to "clean" your data set.
  • Choose a minimally sufficient statistical procedure ; provide a rationale for its use and a reference for it. Specify any computer programs used.
  • Describe the assumptions for each procedure and the steps you took to ensure that they were not violated.
  • When using inferential statistics , provide the descriptive statistics, confidence intervals, and sample sizes for each variable as well as the value of the test statistic, its direction, the degrees of freedom, and the significance level [report the actual p value].
  • Avoid inferring causality , particularly in nonrandomized designs or without further experimentation.
  • Use tables to provide exact values ; use figures to convey global effects. Keep figures small in size; include graphic representations of confidence intervals whenever possible.
  • Always tell the reader what to look for in tables and figures .

NOTE:   When using pre-existing statistical data gathered and made available by anyone other than yourself [e.g., government agency], you still must report on the methods that were used to gather the data and describe any missing data that exists and, if there is any, provide a clear explanation why the missing data does not undermine the validity of your final analysis.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Quantitative Research Methods. Writing@CSU. Colorado State University; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Basic Research Design for Quantitative Studies

Before designing a quantitative research study, you must decide whether it will be descriptive or experimental because this will dictate how you gather, analyze, and interpret the results. A descriptive study is governed by the following rules: subjects are generally measured once; the intention is to only establish associations between variables; and, the study may include a sample population of hundreds or thousands of subjects to ensure that a valid estimate of a generalized relationship between variables has been obtained. An experimental design includes subjects measured before and after a particular treatment, the sample population may be very small and purposefully chosen, and it is intended to establish causality between variables. Introduction The introduction to a quantitative study is usually written in the present tense and from the third person point of view. It covers the following information:

  • Identifies the research problem -- as with any academic study, you must state clearly and concisely the research problem being investigated.
  • Reviews the literature -- review scholarship on the topic, synthesizing key themes and, if necessary, noting studies that have used similar methods of inquiry and analysis. Note where key gaps exist and how your study helps to fill these gaps or clarifies existing knowledge.
  • Describes the theoretical framework -- provide an outline of the theory or hypothesis underpinning your study. If necessary, define unfamiliar or complex terms, concepts, or ideas and provide the appropriate background information to place the research problem in proper context [e.g., historical, cultural, economic, etc.].

Methodology The methods section of a quantitative study should describe how each objective of your study will be achieved. Be sure to provide enough detail to enable the reader can make an informed assessment of the methods being used to obtain results associated with the research problem. The methods section should be presented in the past tense.

  • Study population and sampling -- where did the data come from; how robust is it; note where gaps exist or what was excluded. Note the procedures used for their selection;
  • Data collection – describe the tools and methods used to collect information and identify the variables being measured; describe the methods used to obtain the data; and, note if the data was pre-existing [i.e., government data] or you gathered it yourself. If you gathered it yourself, describe what type of instrument you used and why. Note that no data set is perfect--describe any limitations in methods of gathering data.
  • Data analysis -- describe the procedures for processing and analyzing the data. If appropriate, describe the specific instruments of analysis used to study each research objective, including mathematical techniques and the type of computer software used to manipulate the data.

Results The finding of your study should be written objectively and in a succinct and precise format. In quantitative studies, it is common to use graphs, tables, charts, and other non-textual elements to help the reader understand the data. Make sure that non-textual elements do not stand in isolation from the text but are being used to supplement the overall description of the results and to help clarify key points being made. Further information about how to effectively present data using charts and graphs can be found here .

  • Statistical analysis -- how did you analyze the data? What were the key findings from the data? The findings should be present in a logical, sequential order. Describe but do not interpret these trends or negative results; save that for the discussion section. The results should be presented in the past tense.

Discussion Discussions should be analytic, logical, and comprehensive. The discussion should meld together your findings in relation to those identified in the literature review, and placed within the context of the theoretical framework underpinning the study. The discussion should be presented in the present tense.

  • Interpretation of results -- reiterate the research problem being investigated and compare and contrast the findings with the research questions underlying the study. Did they affirm predicted outcomes or did the data refute it?
  • Description of trends, comparison of groups, or relationships among variables -- describe any trends that emerged from your analysis and explain all unanticipated and statistical insignificant findings.
  • Discussion of implications – what is the meaning of your results? Highlight key findings based on the overall results and note findings that you believe are important. How have the results helped fill gaps in understanding the research problem?
  • Limitations -- describe any limitations or unavoidable bias in your study and, if necessary, note why these limitations did not inhibit effective interpretation of the results.

Conclusion End your study by to summarizing the topic and provide a final comment and assessment of the study.

  • Summary of findings – synthesize the answers to your research questions. Do not report any statistical data here; just provide a narrative summary of the key findings and describe what was learned that you did not know before conducting the study.
  • Recommendations – if appropriate to the aim of the assignment, tie key findings with policy recommendations or actions to be taken in practice.
  • Future research – note the need for future research linked to your study’s limitations or to any remaining gaps in the literature that were not addressed in your study.

Black, Thomas R. Doing Quantitative Research in the Social Sciences: An Integrated Approach to Research Design, Measurement and Statistics . London: Sage, 1999; Gay,L. R. and Peter Airasain. Educational Research: Competencies for Analysis and Applications . 7th edition. Upper Saddle River, NJ: Merril Prentice Hall, 2003; Hector, Anestine. An Overview of Quantitative Research in Composition and TESOL . Department of English, Indiana University of Pennsylvania; Hopkins, Will G. “Quantitative Research Design.” Sportscience 4, 1 (2000); "A Strategy for Writing Up Research Results. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper." Department of Biology. Bates College; Nenty, H. Johnson. "Writing a Quantitative Research Thesis." International Journal of Educational Science 1 (2009): 19-32; Ouyang, Ronghua (John). Basic Inquiry of Quantitative Research . Kennesaw State University.

Strengths of Using Quantitative Methods

Quantitative researchers try to recognize and isolate specific variables contained within the study framework, seek correlation, relationships and causality, and attempt to control the environment in which the data is collected to avoid the risk of variables, other than the one being studied, accounting for the relationships identified.

Among the specific strengths of using quantitative methods to study social science research problems:

  • Allows for a broader study, involving a greater number of subjects, and enhancing the generalization of the results;
  • Allows for greater objectivity and accuracy of results. Generally, quantitative methods are designed to provide summaries of data that support generalizations about the phenomenon under study. In order to accomplish this, quantitative research usually involves few variables and many cases, and employs prescribed procedures to ensure validity and reliability;
  • Applying well established standards means that the research can be replicated, and then analyzed and compared with similar studies;
  • You can summarize vast sources of information and make comparisons across categories and over time; and,
  • Personal bias can be avoided by keeping a 'distance' from participating subjects and using accepted computational techniques .

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Limitations of Using Quantitative Methods

Quantitative methods presume to have an objective approach to studying research problems, where data is controlled and measured, to address the accumulation of facts, and to determine the causes of behavior. As a consequence, the results of quantitative research may be statistically significant but are often humanly insignificant.

Some specific limitations associated with using quantitative methods to study research problems in the social sciences include:

  • Quantitative data is more efficient and able to test hypotheses, but may miss contextual detail;
  • Uses a static and rigid approach and so employs an inflexible process of discovery;
  • The development of standard questions by researchers can lead to "structural bias" and false representation, where the data actually reflects the view of the researcher instead of the participating subject;
  • Results provide less detail on behavior, attitudes, and motivation;
  • Researcher may collect a much narrower and sometimes superficial dataset;
  • Results are limited as they provide numerical descriptions rather than detailed narrative and generally provide less elaborate accounts of human perception;
  • The research is often carried out in an unnatural, artificial environment so that a level of control can be applied to the exercise. This level of control might not normally be in place in the real world thus yielding "laboratory results" as opposed to "real world results"; and,
  • Preset answers will not necessarily reflect how people really feel about a subject and, in some cases, might just be the closest match to the preconceived hypothesis.

Research Tip

Finding Examples of How to Apply Different Types of Research Methods

SAGE publications is a major publisher of studies about how to design and conduct research in the social and behavioral sciences. Their SAGE Research Methods Online and Cases database includes contents from books, articles, encyclopedias, handbooks, and videos covering social science research design and methods including the complete Little Green Book Series of Quantitative Applications in the Social Sciences and the Little Blue Book Series of Qualitative Research techniques. The database also includes case studies outlining the research methods used in real research projects. This is an excellent source for finding definitions of key terms and descriptions of research design and practice, techniques of data gathering, analysis, and reporting, and information about theories of research [e.g., grounded theory]. The database covers both qualitative and quantitative research methods as well as mixed methods approaches to conducting research.

SAGE Research Methods Online and Cases

  • << Previous: Qualitative Methods
  • Next: Insiderness >>
  • Last Updated: May 25, 2024 4:09 PM
  • URL: https://libguides.usc.edu/writingguide

Research design: qualitative, quantitative, and mixed methods approaches / sixth edition

  • Published: 15 November 2023
  • Volume 58 , pages 1011–1013, ( 2024 )

Cite this article

research design method quantitative

  • James P. Takona   ORCID: orcid.org/0009-0001-4591-8136 1  

4902 Accesses

Explore all metrics

This review examines John W. Creswell and David Creswell’s sixth edition, which covers the most popular research methods, offering readers a comprehensive understanding and practical guidance in qualitative, quantitative, and mixed methods. The review includes observations on existing drawbacks, gaps, and ideas on potential areas for improvement in the book. The book is an excellent entry point for understanding the three broad research designs. It stands out for incorporating various methods and empowering researchers to effectively align them with specific research questions, objectives, and philosophical underpinnings. However, it could be further refined by incorporating newer research approaches and expanding practical aspects such as data collection, sampling strategies, and data analysis techniques. With these improvements, the sixth edition could further solidify its position as a comprehensive and accessible guide adeptly catering to researchers, educators, and students. Despite the book’s many strengths, there are opportunities for refinement in future editions, incorporating newer approaches to research designs and expanding practical aspects such as data collection, sampling strategies, and data analysis techniques. This review highlights that, with these suggested improvements, future editions could not only maintain but also enhance the text’s comprehensive and accessible nature, further solidifying its status as a vital resource for researchers, educators, and student.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

research design method quantitative

Research Design and Methodology

research design method quantitative

Research Methods and Approach to Analysis Within Chapters

research design method quantitative

Types of Research Designs

Author information, authors and affiliations.

Coppin State University, Maryland, USA

James P. Takona

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to James P. Takona .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Takona, J.P. Research design: qualitative, quantitative, and mixed methods approaches / sixth edition. Qual Quant 58 , 1011–1013 (2024). https://doi.org/10.1007/s11135-023-01798-2

Download citation

Published : 15 November 2023

Issue Date : February 2024

DOI : https://doi.org/10.1007/s11135-023-01798-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Qualitative research
  • Quantitative research
  • Mixed methods
  • Practical guidance
  • Research process
  • Research designs
  • Find a journal
  • Publish with us
  • Track your research
  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Research Design & Method

Research Methods Guide: Research Design & Method

  • Introduction
  • Survey Research
  • Interview Research
  • Data Analysis
  • Resources & Consultation

Tutorial Videos: Research Design & Method

Research Methods (sociology-focused)

Qualitative vs. Quantitative Methods (intro)

Qualitative vs. Quantitative Methods (advanced)

research design method quantitative

FAQ: Research Design & Method

What is the difference between Research Design and Research Method?

Research design is a plan to answer your research question.  A research method is a strategy used to implement that plan.  Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

Which research method should I choose ?

It depends on your research goal.  It depends on what subjects (and who) you want to study.  Let's say you are interested in studying what makes people happy, or why some students are more conscious about recycling on campus.  To answer these questions, you need to make a decision about how to collect your data.  Most frequently used methods include:

  • Observation / Participant Observation
  • Focus Groups
  • Experiments
  • Secondary Data Analysis / Archival Study
  • Mixed Methods (combination of some of the above)

One particular method could be better suited to your research goal than others, because the data you collect from different methods will be different in quality and quantity.   For instance, surveys are usually designed to produce relatively short answers, rather than the extensive responses expected in qualitative interviews.

What other factors should I consider when choosing one method over another?

Time for data collection and analysis is something you want to consider.  An observation or interview method, so-called qualitative approach, helps you collect richer information, but it takes time.  Using a survey helps you collect more data quickly, yet it may lack details.  So, you will need to consider the time you have for research and the balance between strengths and weaknesses associated with each method (e.g., qualitative vs. quantitative).

  • << Previous: Introduction
  • Next: Survey Research >>
  • Last Updated: Aug 21, 2023 10:42 AM

Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .

What is Quantitative Research?

  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: I NEED TO . . .
  • Next: What is Qualitative Research? >>
  • Last Updated: May 13, 2024 12:01 PM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.
  • Process: Research Design

Ask a Librarian

Research design.

Decorative chess piece

Design are the methods of collecting evidence to address the research questions and theories. For example: observation, surveys, archival research, experiments, among others. A few common methods are described below. For an in-depth examination of research designs, we recommend the following sources.

Recommended sources

  • SAGE Research Methods Online Information about writing a research question, conducting a literature review, choosing a research method, collecting data, and writing up the findings. Coverage spans the full range of research methods used in the social and behavioral sciences, plus a wide range of methods used commonly in sciences, health sciences, and humanities.
  • Sage Research Methods: Methods Map

Cover Art

Research Methods

Action research.

A term that is used to describe a global family of related approaches that integrate theory and action with the goal of addressing important organizational, community and social issues together with those who experience them. It focuses on the creation of areas for collaborative learning and the design, enactment and evaluation of liberating actions through combining action and reflection, in an ongoing cycle of co-generative knowledge." Action research is cyclical as the researcher explores intervention on a problem and moving through observations and evaluations. Related approaches: collaborative research, mixed methods, participatory action research, ethnography, participant observation.  Coghlan, D., & Brydon-Miller, M. (2014). The SAGE encyclopedia of action research (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

Applied Research

Applied research is inquiry using the application of scientific methodology with the purpose of generating empirical observations to solve critical problems in society. It is widely used in varying contexts, ranging from applied behavior analysis to city planning and public policy and to program evaluation. Applied research can be executed through a diverse range of research strategies that can be solely quantitative, solely qualitative, or a mixed method research design that combines quantitative and qualitative data slices in the same project. What all the multiple facets in applied research projects share is one basic commonality—the practice of conducting research in “nonpure” research conditions because data are needed to help solve a real-life problem.  Salkind, N. J. (2010). Encyclopedia of research design (Vols. 1-0). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781412961288
A method that seeks to illuminate a research problem by collecting and detailing observations of a particular entity. Definitions of case study differs across disciplines. Generally, case studies "focus on the interrelationships that constitute the context of a specific entity (such as an organization, event, phenomenon, or person)" and analyze "the relationship between the contextual factors and the entity being studied." The method is adopted with "the explicit purpose of using those insights (of the interactions between contextual relationships and the entity in question) to generate theory and/or contribute to extant theory.  Mills, A. J., Durepos, G., & Wiebe, E. (2010). Encyclopedia of case study research (Vols. 1-0). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781412957397

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.  From https://libguides.usc.edu/writingguide/researchdesigns

Cohort Design

A design in which groups of individuals pass through an institution such as a school but experience different events such as whether or not they have been exposed to a particular course. The groups have not been randomly assigned to whether or not they experience the particular event so it is not possible to determine whether any difference between the groups experiencing the event and those not experiencing the event is due to the event itself.  Cramer, D., & Howitt, D. (2004). The SAGE dictionary of statistics (Vols. 1-0). London, : SAGE Publications, Ltd doi: 10.4135/9780857020123

Experimental Design

Experiments are ways of assessing causal relationships by, in its simplest form, randomly allocating 'subjects' to two groups and then comparing one (the 'control group') in which no changes are made, with the other (the 'test group') who are subjected to some manipulation or stimulus." "The primary purpose of experimental designs is to establish “cause and effect” or more technically, to make causal inferences.  Frey, B. (2018). The SAGE encyclopedia of educational research, measurement, and evaluation (Vols. 1-4). Thousand Oaks,, CA: SAGE Publications, Inc. doi: 10.4135/9781506326139

Meta-analysis

A statistical method that integrates the results of several independent studies considered to be “combinable.” It has become one of the major tools to integrate research findings in social and medical sciences in general and in education and psychology in particular." Essential characteristics of meta-analysis include: "it is undeniably quantitative, that is, it uses numbers and statistical methods for organizing and extracting information; it does not prejudge research findings in terms of research quality (i.e., no a priori arbitrary and nonempirical criteria of research quality are imposed to exclude a large number of studies); it seeks general conclusions from many separate investigations that address related or identical hypotheses.  Salkind, N. J. (2010). Encyclopedia of research design (Vols. 1-0). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781412961288

Fieldwork or Field Research

Conducted in a natural setting rather than in a laboratory or at a distance. "Researchers examine how the manipulation of at least one independent variable leads to a change in a dependent variable in the context of the natural environment. When researchers conduct experiments, they study how the manipulation of independent variables, or variables that remain constant, cause a change in a dependent variable, or a factor that changes.  Allen, M. (2017). The sage encyclopedia of communication research methods (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

Longitudinal Research

Although the term is used somewhat differently in different disciplines, it generally refers to research involving data collected at more than one point in time and focused on the measurement and analysis of change over time in the units of study.  Sage Research Methods

Ethnography

Ethnography involves the production of highly detailed accounts of how people in a social setting lead their lives, based on systematic and long-term observation of, and discussion with, those within the setting.  Sage Research Methods

Mixed Methods Research

A process of research in which researchers integrate quantitative and qualitative methods of data collection and analysis to best understand a research purpose. The way this process unfolds in a given study is shaped by mixed methods research content considerations and researchers’ personal, interpersonal, and social contexts  Plano Clark, V. & Ivankova, N. (2016). Why a guide to the field of mixed methods research?: introducing a conceptual framework of the field. In Plano Clark, V., & Ivankova, N. Mixed methods research: A guide to the field (pp. 3-30). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781483398341

Clinical Research

Medical research involving people. The aim of clinical research is to advance medical knowledge by collecting evidence to establish treatments, either through observational studies or through experimental research such as clinical trials." Includes: protocols, clinical trials, pre-post studies.  Sage Research Methods

Qualitative Research

Also known as qualitative inquiry, is an umbrella term used to cover a wide variety of research methods and methodologies that provide holistic, in-depth accounts and attempt to reflect the complicated, contextual, interactive, and interpretive nature of our social world. For example, grounded theory, ethnography, phenomenology, ethnomethodology, narratology, photovoice, and participatory action research (PAR) may all be included under the qualitative label, although each of these individual methods is based on its own set of assumptions and procedures.  Salkind, N. J. (2010). Encyclopedia of research design (Vols. 1-0). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781412961288

Quantitative Research

Quantitative research studies produce results that can be used to describe or note numerical changes in measurable characteristics of a population of interest; generalize to other, similar situations; provide explanations of predictions; and explain causal relationships. The fundamental philosophy underlying quantitative research is known as positivism, which is based on the scientific method of research.  Salkind, N. J. (2010). Encyclopedia of research design (Vols. 1-0). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781412961288
  • University of Colorado Boulder Libraries
  • Research Guides
  • Research Strategies
  • Last Updated: May 29, 2024 9:32 AM
  • URL: https://libguides.colorado.edu/strategies/design
  • © Regents of the University of Colorado

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

Language selection

  • Français fr

Choosing the Right User Research Method (DDN2-J11)

Description.

This job aid recommends different design research methods, such as diary studies, A/B testing, usability testing, and surveys, based on the research goals of each stage in the product or service design process.

Published: April 23, 2024 Type: Job aid

Download as PDF (368 KB)

research design method quantitative

Choosing the right user research method

This job aid contains a list of different types of methods for performing design research, the characteristics and purpose of each type, as well as a chart describing what research method to adopt during the design process.

To identify the types of research methods and choose the appropriate research methods during the entire research process.

Desired outcome

Selection of specific research methods for the design research, which leads to the effective and high-quality research.

When to use

Use this job aid at the planning stage of your design research.

Pairs well with

  • Research Planning Checklist (DDN2-J10)

Using the following comparative tables and image, identify the types of research methods appropriate for your research goal and questions:

Research source

Research method.

Note: Best practice: use a mix of both.

Best practice

Note: Best practice: use a mix of both (for example, task analysis ).

research design method quantitative

Distribution of research methods across types of research.

Qualitative attitudinal research methods:

  • Ethnographic research
  • Focus groups
  • Concept testing
  • Diary studies
  • Card sorting
  • Tree sorting

Quantitative attitudinal research methods:

Qualitative behavioural research methods:

  • Field studies
  • Observations
  • Eye tracking
  • Usability testing

Quantitave behavioural research methods:

  • Click tracking
  • Usability benchmarking
  • Unmoderated testing
  • User behaviour testing
  • A/B testing

Choosing research methods at different stages of the design process

Using the following chart, identify the appropriate research methods for your research based on the research stage you are at:

Different stages of the design process

Source: Visit A Guide to Using User-Experience Research Methods for more information.

Choosing the Right User Research Method

Event: Brave Conversations and Bold Actions When Building Accessible and Inclusive Workplaces

research design method quantitative

Event: The Trust Series: Trust and Misinformation in Digital Information Ecosystems (Rebroadcast)

research design method quantitative

Event: GC Data Conference 2024: Taking Stock of the Evolution of Data Protection in Canada (Rebroadcast)

  • GCLearning newsletter
  • Python For Data Analysis
  • Data Science
  • Data Analysis with R
  • Data Analysis with Python
  • Data Visualization with Python
  • Data Analysis Examples
  • Math for Data Analysis
  • Data Analysis Interview questions
  • Artificial Intelligence
  • Data Analysis Projects
  • Machine Learning
  • Deep Learning
  • Computer Vision
  • Types of Research - Methods Explained with Examples
  • GRE Data Analysis | Methods for Presenting Data
  • Financial Analysis: Objectives, Methods, and Process
  • Financial Analysis: Need, Types, and Limitations
  • Methods of Marketing Research
  • Top 10 SQL Projects For Data Analysis
  • What is Statistical Analysis in Data Science?
  • 10 Data Analytics Project Ideas
  • Predictive Analysis in Data Mining
  • How to Become a Research Analyst?
  • Data Analytics and its type
  • Types of Social Networks Analysis
  • What is Data Analysis?
  • Six Steps of Data Analysis Process
  • Multidimensional data analysis in Python
  • Attributes and its Types in Data Analytics
  • Exploratory Data Analysis (EDA) - Types and Tools
  • Data Analyst Jobs in Pune

Data Analysis in Research: Types & Methods

Data analysis is a crucial step in the research process, transforming raw data into meaningful insights that drive informed decisions and advance knowledge. This article explores the various types and methods of data analysis in research, providing a comprehensive guide for researchers across disciplines.

Data-Analysis-in-Research

Data Analysis in Research

Overview of Data analysis in research

Data analysis in research is the systematic use of statistical and analytical tools to describe, summarize, and draw conclusions from datasets. This process involves organizing, analyzing, modeling, and transforming data to identify trends, establish connections, and inform decision-making. The main goals include describing data through visualization and statistics, making inferences about a broader population, predicting future events using historical data, and providing data-driven recommendations. The stages of data analysis involve collecting relevant data, preprocessing to clean and format it, conducting exploratory data analysis to identify patterns, building and testing models, interpreting results, and effectively reporting findings.

  • Main Goals : Describe data, make inferences, predict future events, and provide data-driven recommendations.
  • Stages of Data Analysis : Data collection, preprocessing, exploratory data analysis, model building and testing, interpretation, and reporting.

Types of Data Analysis

1. descriptive analysis.

Descriptive analysis focuses on summarizing and describing the features of a dataset. It provides a snapshot of the data, highlighting central tendencies, dispersion, and overall patterns.

  • Central Tendency Measures : Mean, median, and mode are used to identify the central point of the dataset.
  • Dispersion Measures : Range, variance, and standard deviation help in understanding the spread of the data.
  • Frequency Distribution : This shows how often each value in a dataset occurs.

2. Inferential Analysis

Inferential analysis allows researchers to make predictions or inferences about a population based on a sample of data. It is used to test hypotheses and determine the relationships between variables.

  • Hypothesis Testing : Techniques like t-tests, chi-square tests, and ANOVA are used to test assumptions about a population.
  • Regression Analysis : This method examines the relationship between dependent and independent variables.
  • Confidence Intervals : These provide a range of values within which the true population parameter is expected to lie.

3. Exploratory Data Analysis (EDA)

EDA is an approach to analyzing data sets to summarize their main characteristics, often with visual methods. It helps in discovering patterns, spotting anomalies, and checking assumptions with the help of graphical representations.

  • Visual Techniques : Histograms, box plots, scatter plots, and bar charts are commonly used in EDA.
  • Summary Statistics : Basic statistical measures are used to describe the dataset.

4. Predictive Analysis

Predictive analysis uses statistical techniques and machine learning algorithms to predict future outcomes based on historical data.

  • Machine Learning Models : Algorithms like linear regression, decision trees, and neural networks are employed to make predictions.
  • Time Series Analysis : This method analyzes data points collected or recorded at specific time intervals to forecast future trends.

5. Causal Analysis

Causal analysis aims to identify cause-and-effect relationships between variables. It helps in understanding the impact of one variable on another.

  • Experiments : Controlled experiments are designed to test the causality.
  • Quasi-Experimental Designs : These are used when controlled experiments are not feasible.

6. Mechanistic Analysis

Mechanistic analysis seeks to understand the underlying mechanisms or processes that drive observed phenomena. It is common in fields like biology and engineering.

Methods of Data Analysis

1. quantitative methods.

Quantitative methods involve numerical data and statistical analysis to uncover patterns, relationships, and trends.

  • Statistical Analysis : Includes various statistical tests and measures.
  • Mathematical Modeling : Uses mathematical equations to represent relationships among variables.
  • Simulation : Computer-based models simulate real-world processes to predict outcomes.

2. Qualitative Methods

Qualitative methods focus on non-numerical data, such as text, images, and audio, to understand concepts, opinions, or experiences.

  • Content Analysis : Systematic coding and categorizing of textual information.
  • Thematic Analysis : Identifying themes and patterns within qualitative data.
  • Narrative Analysis : Examining the stories or accounts shared by participants.

3. Mixed Methods

Mixed methods combine both quantitative and qualitative approaches to provide a more comprehensive analysis.

  • Sequential Explanatory Design : Quantitative data is collected and analyzed first, followed by qualitative data to explain the quantitative results.
  • Concurrent Triangulation Design : Both qualitative and quantitative data are collected simultaneously but analyzed separately to compare results.

4. Data Mining

Data mining involves exploring large datasets to discover patterns and relationships.

  • Clustering : Grouping data points with similar characteristics.
  • Association Rule Learning : Identifying interesting relations between variables in large databases.
  • Classification : Assigning items to predefined categories based on their attributes.

5. Big Data Analytics

Big data analytics involves analyzing vast amounts of data to uncover hidden patterns, correlations, and other insights.

  • Hadoop and Spark : Frameworks for processing and analyzing large datasets.
  • NoSQL Databases : Designed to handle unstructured data.
  • Machine Learning Algorithms : Used to analyze and predict complex patterns in big data.

Applications and Case Studies

Numerous fields and industries use data analysis methods, which provide insightful information and facilitate data-driven decision-making. The following case studies demonstrate the effectiveness of data analysis in research:

Medical Care:

  • Predicting Patient Readmissions: By using data analysis to create predictive models, healthcare facilities may better identify patients who are at high risk of readmission and implement focused interventions to enhance patient care.
  • Disease Outbreak Analysis: Researchers can monitor and forecast disease outbreaks by examining both historical and current data. This information aids public health authorities in putting preventative and control measures in place.
  • Fraud Detection: To safeguard clients and lessen financial losses, financial institutions use data analysis tools to identify fraudulent transactions and activities.
  • investing Strategies: By using data analysis, quantitative investing models that detect trends in stock prices may be created, assisting investors in optimizing their portfolios and making well-informed choices.
  • Customer Segmentation: Businesses may divide up their client base into discrete groups using data analysis, which makes it possible to launch focused marketing efforts and provide individualized services.
  • Social Media Analytics: By tracking brand sentiment, identifying influencers, and understanding consumer preferences, marketers may develop more successful marketing strategies by analyzing social media data.
  • Predicting Student Performance: By using data analysis tools, educators may identify at-risk children and forecast their performance. This allows them to give individualized learning plans and timely interventions.
  • Education Policy Analysis: Data may be used by researchers to assess the efficacy of policies, initiatives, and programs in education, offering insights for evidence-based decision-making.

Social Science Fields:

  • Opinion mining in politics: By examining public opinion data from news stories and social media platforms, academics and policymakers may get insight into prevailing political opinions and better understand how the public feels about certain topics or candidates.
  • Crime Analysis: Researchers may spot trends, anticipate high-risk locations, and help law enforcement use resources wisely in order to deter and lessen crime by studying crime data.

Data analysis is a crucial step in the research process because it enables companies and researchers to glean insightful information from data. By using diverse analytical methodologies and approaches, scholars may reveal latent patterns, arrive at well-informed conclusions, and tackle intricate research inquiries. Numerous statistical, machine learning, and visualization approaches are among the many data analysis tools available, offering a comprehensive toolbox for addressing a broad variety of research problems.

Data Analysis in Research FAQs:

What are the main phases in the process of analyzing data.

In general, the steps involved in data analysis include gathering data, preparing it, doing exploratory data analysis, constructing and testing models, interpreting the results, and reporting the results. Every stage is essential to guaranteeing the analysis’s efficacy and correctness.

What are the differences between the examination of qualitative and quantitative data?

In order to comprehend and analyze non-numerical data, such text, pictures, or observations, qualitative data analysis often employs content analysis, grounded theory, or ethnography. Comparatively, quantitative data analysis works with numerical data and makes use of statistical methods to identify, deduce, and forecast trends in the data.

What are a few popular statistical methods for analyzing data?

In data analysis, predictive modeling, inferential statistics, and descriptive statistics are often used. While inferential statistics establish assumptions and draw inferences about a wider population, descriptive statistics highlight the fundamental characteristics of the data. To predict unknown values or future events, predictive modeling is used.

In what ways might data analysis methods be used in the healthcare industry?

In the healthcare industry, data analysis may be used to optimize treatment regimens, monitor disease outbreaks, forecast patient readmissions, and enhance patient care. It is also essential for medication development, clinical research, and the creation of healthcare policies.

What difficulties may one encounter while analyzing data?

Answer: Typical problems with data quality include missing values, outliers, and biased samples, all of which may affect how accurate the analysis is. Furthermore, it might be computationally demanding to analyze big and complicated datasets, necessitating certain tools and knowledge. It’s also critical to handle ethical issues, such as data security and privacy.

Please Login to comment...

Similar reads.

  • Data Science Blogathon 2024
  • Data Analysis

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Open access
  • Published: 29 May 2024

Exploring the use of body worn cameras in acute mental health wards: a mixed-method evaluation of a pilot intervention

  • Una Foye 1 , 2 ,
  • Keiran Wilson 1 , 2 ,
  • Jessica Jepps 1 , 2 ,
  • James Blease 1 ,
  • Ellen Thomas 3 ,
  • Leroy McAnuff 3 ,
  • Sharon McKenzie 3 ,
  • Katherine Barrett 3 ,
  • Lilli Underwood 3 ,
  • Geoff Brennan 1 , 2 &
  • Alan Simpson 1 , 2  

BMC Health Services Research volume  24 , Article number:  681 ( 2024 ) Cite this article

Metrics details

Body worn cameras (BWC) are mobile audio and video capture devices that can be secured to clothing allowing the wearer to record some of what they see and hear. This technology is being introduced in a range of healthcare settings as part of larger violence reduction strategies aimed at reducing incidents of aggression and violence on inpatient wards, however limited evidence exists to understand if this technology achieves such goals.

This study aimed to evaluate the implementation of BWCs on two inpatient mental health wards, including the impact on incidents, the acceptability to staff and patients, the sustainability of the resource use and ability to manage the use of BWCs on these wards.

The study used a mixed-methods design comparing quantitative measures including ward activity and routinely collected incident data at three time-points before during and after the pilot implementation of BWCs on one acute ward and one psychiatric intensive care unit, alongside pre and post pilot qualitative interviews with patients and staff, analysed using a framework based on the Consolidated Framework for Implementation Research.

Results showed no clear relationship between the use of BWCs and rates or severity of incidents on either ward, with limited impact of using BWCs on levels of incidents. Qualitative findings noted mixed perceptions about the use of BWCs and highlighted the complexity of implementing such technology as a violence reduction method within a busy healthcare setting Furthermore, the qualitative data collected during this pilot period highlighted the potential systemic and contextual factors such as low staffing that may impact on the incident data presented.

This study sheds light on the complexities of using such BWCs as a tool for ‘maximising safety’ on mental health settings. The findings suggest that BWCs have a limited impact on levels of incidents on wards, something that is likely to be largely influenced by the process of implementation as well as a range of contextual factors. As a result, it is likely that while BWCs may see successes in one hospital site this is not guaranteed for another site as such factors will have a considerable impact on efficacy, acceptability, and feasibility.

Peer Review reports

Body worn cameras (BWC) are mobile audio and video capture devices that can be secured to clothing allowing the wearer to record some of what they see and hear. In England, these have been introduced in the National Health Service (NHS) as part of a violence reduction strategy [ 1 ] which emphasises the reduction of aggression and violence against staff. The NHS Staff Survey 2022 found that 14.7% of NHS staff had experienced at least one incident of physical violence from patients, relatives or other members of the public in the previous 12 months. Violent attacks on staff were found to contribute to almost half of staff illness [ 2 ]. Levels of violence against staff working in mental health trusts remain much higher than other types of healthcare providers [ 3 ]. Numerous reports internationally highlight the increased risks faced by staff working in psychiatric care [ 4 ], though studies have reported that both ward staff and mental health patients experience violence and feeling unsafe on inpatient wards [ 5 , 6 ].

Body worn cameras have been in use for over a decade within law enforcement, where they hoped to provide transparency and accountability within use-of-force incidents and in the event of citizen complaints against police [ 7 ]. It was believed that video surveillance would help identify integral problems within the organisation, improve documentation of evidence, reduce use-of-force incidents, improve police-community relations, and provide training opportunities for officers [ 8 ]. However, a recent extensive international systematic review by Lum et al. [ 9 ], found that despite the successes noted in early evaluations, the way BWCs are currently used by police may not substantially affect most officer or citizen behaviours. Irrespective of these findings, other public services such as train operators have been implementing BWCs for security purposes, with reductions reported in the number of assaults on railway staff [ 10 ].

A recent systematic review of BWC use in public sector services established that there is a poor evidence base supporting the use of BWCs in the reduction of violence and aggression [ 11 ]. Yet, we are seeing a swift increase in the use of BWCs in mental health settings with that aim, with few studies conducted on the use of BWC technology in inpatient mental health wards, and even fewer studies exploring staff or patients’ views. Two evaluations conducted in England reported mixed results with both increases and decreases in violence and aggression found, and variation between types of wards. There is some suggestion of a reduction in more serious incidents and the use of restraint, but quality of evidence is low [ 12 , 13 ].

The use of BWCs in mental healthcare settings for safety and security remains a contentious topic due to the lack of evidence regarding the influence that such technology has on preventing violence and aggression and the complex philosophical and ethical issues raised, particularly where many patients may lack capacity and/or are detained under mental health legislation [ 14 ]. Additionally, there are concerns that BWCs may be used as a ‘quick fix’ for staff shortages rather than addressing the wider systemic and resourcing issues facing services [ 15 ]. With little independent evaluation of body-worn cameras in mental health settings, many of these concerns remain unanswered. There is also limited understanding of this technology from an implementation perspective. Therefore, in this study we aimed to conduct an independent evaluation of the introduction of BWCs as a violence reduction intervention on two inpatient mental health wards during a six-month pilot period to explore the impact of using the technology, alongside an exploration of the facilitators and barriers to implementation.

Research aim(s)

To evaluate the implementation of BWCs on two inpatient mental health wards, including the impact on incidents, the acceptability to staff and patients, the sustainability of the resource use and ability to manage the use of BWCs on these wards.

Patient and public involvement

The research team included a researcher and independent consultant, each with lived experience of mental health inpatient care. In addition, we recruited and facilitated a six member Lived Experience Advisory Panel (LEAP). This group was made up of patients and carers, some of whom had experienced the use of BWCs. Members were of diverse ethnic backgrounds and included four women and two men. The LEAP provided guidance and support for the research team in developing an understanding of the various potential impacts of the use of BWCs on inpatient mental health wards. Members contributed to the design of the study, development of the interview schedule, practice interviews prior to data collection on the wards, and supported the analysis and interpretation of the data, taking part in coding sessions to identify themes in the interview transcripts. The LEAP met once a month for two hours and was chaired by the Lived Experience Research Assistant and Lived Experience Consultant. Participants in the LEAP were provided with training and paid for their time.

The pilot introduction of the body worn cameras was conducted within a London mental health Trust consisting of four hospital sites with 17 acute wards. The research team were made aware of extensive preparatory work and planning that was conducted at a directorate and senior management level prior to camera implementation, including lived experience involvement and consultation, and the development of relevant policies and protocols inclusive of a human rights assessment and legal consultation.

The pilot period ran from 25th April to 25th October 2022. Reveal (a company who supply BWCs nationally across the UK) provided the Trust with 12 Calla BWCs for a flat fee that covered use of the cameras, cloud-based storage of footage, management software, and any support/maintenance required during the pilot period. Cameras were introduced to two wards based on two hospital sites, with six cameras provided to each of the wards on the same date. Training on using the BWCs was provided by the BWC company to staff working on both wards prior to starting the pilot period. Ward one was a 20-bed male acute inpatient ward, representing the most common ward setting where cameras have been introduced. Ward two was a ten-bed male Psychiatric Intensive Care Unit (PICU), representing smaller and more secure wards in which patients are likely to present as more unwell and where there are higher staff to patient ratios.

To answer our research questions, we used a mixed-methods design [ 16 ]. Using this design allowed us to investigate the impact of implementing BWCs in mental health settings on a range of quantitative and qualitative outcomes. This mixed methods design allows the study to statistically evaluate the effectiveness of using BWCs in these settings on key dependent variables (i.e., rates of violence and aggression, and incidents of conflict and containment) alongside qualitatively exploring the impact that the implementation of such technology has on patients and staff.

To ensure that the study was able to capture the impact and effect of implementation of the cameras, a repeated measures design was utilised to capture data at three phases on these wards:

Pre-pilot data: data prior of the implementation of the BWCs (quantitative and qualitative data).

Pilot period data: data collected during the six-month pilot period when BWCs were implemented on the wards (quantitative and qualitative data).

Post-pilot: data collected after the pilot period ended and cameras had been removed from the wards (quantitative data only).

Quantitative methods

Quantitative data was collected at all three data collection periods:

Pre-period: Data spanning six months prior to the implementation of BWCs (Nov 21 to May 22).

Pilot period: Data spanning the six months of the Trusts pilot period of using BWCs on the wards (June 22 to Nov 22).

Post-pilot: Data spanning the six months following the pilot period, when BWCs had been removed (Dec 22 to May 23).

Quantitative measures

To analyse the impact of BWC implementation, we collected two types of incident data related to violence and aggression and use of containment measures, including BWCs. Combined, these data provide a view of a wide range of incidents and events happening across the wards prior to, during, and after the implementation and removal of the BWCs.

The patient-staff conflict checklist

The Patient-staff Conflict Checklist (PCC-SR) [ 17 ] is an end of shift report that is completed by nurses to collate the frequency of conflict and containment events. This measure has been used successfully in several studies on inpatient wards [ 18 , 19 , 20 ].The checklist consists of 21 conflict behaviour items, including physical and verbal aggression, general rule breaking (e.g., smoking, refusing to attend to personal hygiene), eight containment measures (e.g., special observation, seclusion, physical restraint, time out), and staffing levels. In tests based on use with case note material, the PCC-SR has demonstrated an interrater reliability of 0.69 [ 21 ] and has shown a significant association with rates of officially reported incidents [ 22 ].

The checklist was revised for this study to include questions related to the use of BWCs ( e.g., how many uses of BWCs happened during the shift when a warning was given and the BWC was not used; when a warning was given and the BWC was used; when the BWC was switched on with no warning given ) in order to provide insight into how the cameras were being used on each ward (see appendix 1). Ward staff were asked to complete the checklist online at the end of each shift.

Routinely collected incident data (via datix system)

To supplement the PCC-SR-R, we also used routinely collected incident data from both wards for all three data collection phases. This data is gathered as part of routine practice by ward staff members via the Datix system Datix [ 23 ] is a risk management system used widely across mental health wards and Trusts in the UK to gather information on processes and errors. Previous studies have utilised routinely collect data via this system [ 24 , 25 ]. Incidents recorded in various Datix categories were included in this study (see Table  1 ). Incidents were anonymised before being provided to the research team to ensure confidentiality.

Routinely collected data included:

Recorded incidents of violence and aggression.

Recorded use of restrictive practices including seclusion, restraint, and intra-muscular medication/rapid tranquilisations.

Patient numbers.

Staffing levels.

Numbers of staff attending BWC training.

Quantitative data analysis

Incident reports.

Incident reports retrieved from Datix were binary coded into aggregate variables to examine violence and aggression, self-harm, and other conflict as outlined in Table  1 . Multivariate analyses of variance (MANOVA) were used to identify differences in type of incident (violence against person, violence against object, verbal aggression, self-harm, conflict) for each ward. MANOVA was also used to examine differences in incident outcomes (severity, use of restrictive practice, police involvement) across pre-trial, trial, and post-trial periods for each ward. Incident severity was scored by ward staff on a four-point scale (1 = No adverse outcome, 2 = Low severity, 3 = Moderate severity, 4 = Severe). Use of restrictive practice and police involvement were binary coded for presence or absence. Analyses were conducted using SPSS [ 26 ].

Patient-staff conflict checklist shift-report – revised (PCC-SR-R; )

Data were condensed into weeks for analysis rather than shifts to account for variability in PCC-SR-R submission by shift. Linear regressions assessed the relationship between BWC use and incident outcome (severity, use of restrictive practice, police involvement).

Qualitative methods

We used semi-structured qualitative interviews to explore participants’ experiences of BWCs on the ward to understand the impact of their use as well as to identify any salient issues for patients, staff and visitors that align with the measures utilised within the quantitative aspect of this study. These interviews were conducted at two time points: pre-pilot and at the end of the six-month pilot period.

Sample selection, eligibility, and recruitment

Convenience sampling was used to recruit staff and patients on wards. Researchers approached ward managers to distribute information sheets to staff, who shared that information with patients. Staff self-selected to participate in the study by liaising directly with the research team. Patients that were identified as close to discharge and having capacity to consent were approached by a clinical member of the team who was briefed on the study inclusion criteria (see Table  2 ). The staff member spoke with the patient about the study and provided them with a copy of the information sheet to consider. If patients consented, a member of the research team approached the participant to provide more information on the study and answer questions. After initial contact with the research team, participants were given a 24-hour period to consider whether they wanted to participate before being invited for an interview.

Participants were invited to take part in an interview within a private space on the ward. Interviews were scheduled for one hour with an additional 15 min before and after to obtain informed consent and answer any questions. Participation was voluntary and participants were free to withdraw at any time. To thank patients for their time, we offered a £10 voucher following the interview. Interviews were audio-recorded and saved to an encrypted server. Interview recordings were transcribed by an external company, and the research team checked the transcripts for accuracy and pseudonymised all participants. All transcripts were allocated a unique ID number and imported to MicroSoft Excel [ 27 ] for analysis.

Qualitative data analysis

Qualitative data were analysed using a framework analysis [ 28 ] informed by implementation science frameworks. Our coding framework used the Consolidated Framework for Implementation Research (CFIR) [ 29 ], which is comprised of five major domains including: Intervention Characteristics, Implementation Processes, Outer Setting, Inner Setting, and Characteristics of the Individual. Each domain consists of several constructs that reflect the evidence base of the types of factors that are most likely to influence implementation of interventions. The CFIR is frequently used to design and conduct implementation evaluations and is commonly used for complex health care delivery interventions to understand barriers and facilitators to implementation. Based on its description, the CFIR is an effective model to address our research question, particularly given the complexity of the implementation of surveillance technology such as BWCs in this acute care setting.

The initial analytic stage was undertaken by eight members of the study team with each researcher charting data summaries onto the framework for each of the interviews they had conducted on MicroSoft Excel [ 27 ]. Sub-themes within each broad deductive theme from our initial framework were then derived inductively through further coding and collaborative discussion within the research team, inclusive of Lived Experience Researcher colleagues. Pseudonyms were assigned to each participant during the anonymisation of transcripts along with key identifiers to provide context for illustrative quotes (e.g., P = patient, S = staff, A = acute ward, I = Intensive Care, Pre = pre-BWC implementation interview, Post = Post BWC implementation interview).

All participants gave their informed consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Health Research Authority: London - Camden & Kings Cross Research Ethics Committee (IRAS Project ID 322,268, REC Reference 23/LO/0337).

Quantitative results

Exploring how body worn cameras were used during the pilot period.

Analysis of the PCC-SR-R provides information about how the BWCs were used on a day-to-day basis during the pilot period. Out of 543 total shift reports completed, BWC use was reported 50 times, indicating that BWCs were used on less than 10% of shifts overall; 78% of those deployments were on the Acute ward (see Figure 1 ). Overall, the majority of deployments happened as activations without a warning being given ( n  = 30, 60% of activations), 19 times the BWC was deployed with a warning but the camera was not activated (38%), and only one was the camera activated without a warning being given (2%).

figure 1

BWC use by ward per week of pilot (no data available before week 6 on Ward 1)

According to the PCC-SR-R, a total of 227 incidents of aggression occurred during the pilot period across both wards (see Table  3 ). Overall, there were small statistically significant correlations between BWC usage and certain types of conflict, aggression, and restrictive practice. Results found that BWC use was positively correlated with verbal aggression and use of physical restraint. BWC use was moderately positively correlated with verbal aggression ( r  = .37, p  < .001). This indicates that BWCs were more likely to be used in incidents involving verbal aggression, which do not tend to be documented in Datix. Similarly, BWC use was moderately positively correlated with physical restraint ( r  = .31, p  < .001) indicating that they were also more likely to be used alongside physical restraint.

Exploring the impact of BWCs utilising routinely collected ward data

Acute ward results.

Routine data collected via Datix records were used to examine differences in frequency of conflict and aggression, incident severity, and use of containment measures before, during, and after introduction of BWCs on each trial ward (see Table  4 ).

There was no effect of trial period on incident type ( F (10, 592) = 1.703, p  = .077, Wilk’s Λ = 0.945), meaning there was no discernible difference in the type of incidents that occurred (E.g., verbal aggression, physical aggression) before, during, and after the pilot phase.

Incident outcomes

There was an effect of trial period on incident outcomes ( F (6, 596) = 10.900, p  < .001, Wilk’s Λ = 0.812). Incident severity was statistically significantly higher in the trial and post-trial periods compared to the pre-trial period. Use of restrictive practice was significantly lower in the post-trial period compared to the pre-trial and trial period. Police involvement was also lower in the post-trial period compared to the pre-trial and trial periods (see Table  5 ).

Results for the psychiatric intensive care unit

There was an effect of trial period on incident type ( F (10, 490) = 4.252, p  < .001, Wilk’s Λ = 0.847). Verbal aggression was statistically significantly higher in the post-trial period compared to the pre and trial periods. Self-harm was statistically significantly higher in the trial period compared to the pre-trial and post-trial periods. There were no differences in violence against a person ( p  = .162), violence against an object or conflict behaviour (see Table  4 ).

There was a statistically significant difference in incident outcome across the trial periods ( F (6, 494) = 12.907, p  < .001, Wilk’s Λ = 0.747). There was no difference in incident severity or police involvement. However, use of restrictive practice was statistically significantly higher in the pre-trial period, reducing in the test period, and reducing further in the post-trial period (see Table  5 ).

Qualitative findings

A total of 22 participants took part in interviews: five patients and 16 staff members. During the pre-pilot interviews a total of nine staff took part (five in the acute ward, four in the PICU ward) and two patients (both from the acute ward). After the pilot period, a total of eight staff took part (four from each ward) and three patients (all from the acute ward). Table  6 includes a full description of participants.

Below we have presented the key themes aligning to the five core CFIR categories of Intervention Characteristics, Characteristics of Individuals, The Process of Implementation, the Inner Setting, and The Outer Setting (see Table  7 ).

Intervention characteristics

Design and usability of wearing a bwc on the ward.

When discussing the use of the BWCs, staff noted a range of design issues related to the cameras that they said impacted on their use and acceptance of the cameras. This included the nature of the camera pulling on clothing necklines (a particular issue for female staff working on male wards), and overheating causing discomfort and irritation to skin, challenges with infection control, as well as the issue of cameras in a mental health setting where they can be easily grabbed, thrown and broken during an incident. Staff often cited these design issues as related to the lack of proactive use of the cameras on the wards.

There were issues around the devices getting overheated or about it going on your clothing, it pulls down the top… we had one person who was leading on it, whenever he was around, of course, the camera was being used, but if he wasn’t there, people weren’t as proactive in using the camera. Petra (f), Staff, A, Post.

There were also issues with staff forgetting to wear the cameras, forgetting to switch them on during incidents, and forgetting to charge them at the end of the shift, reducing the potential use of the cameras by other staff. These were perceived as key logistical issues prior to the pilot and were reported as issues at the end of the pilot by several staff on the wards.

The practicalities of will they actually turn it on in those sorts of incidents, I don’t know. Just little stuff as well, like if they don’t put it back on the docking station, so you think you’re charging it for next shift but then it’s not charged and the battery is dead, that’s one less camera to use, so little stuff. Jamal (m), Staff, A, Pre.

In relation to usability, staff noted that the cameras were small and easy to use given their simple single switch interface. It was felt that not having to upload and manage the data themselves made cameras more user friendly and usable by staff members. Protocols put into place such as signing the cameras in and out, and allocation for use during shifts were likened to procedures in place for other security measures therefore the implementation of this for the BWCs was viewed as easy for many staff.

It’s just like the ASCOM alarms that we wear. There’s a system to sign in and sign out, and that’s it. Alice (f), Staff, A, Pre.

While staff were generally positive about the usability of the cameras, some were cautious of with concerns for those less confident with technology.

… you have to be conscious that there’s some people – it’s quite easy to use, but I can say that because I’m alright using devices and all that but there’s some that are older age or not that familiar with using devices that may struggle with using it… they’re feeling a bit anxious and a bit scared, if they’re not familiar with it then they won’t use it. Jamal (m), Staff, A, Pre.

Evidence strength and quality: do BWCs change anything?

There were conflicting reports regarding the potential benefits of using BWCs on the wards, with both staff and patients reporting mixed perceptions as to whether the cameras might reduce violence and aggression. In the pre-pilot interviews, some staff reported feeling that the BWCs may have a positive impact on reducing physical violence.

I think it’s going to reduce violence and aggression on the ward…I don’t think they’ll want to punch you…they might be verbally abusive but in terms of physical that might reduce. Sarah (f), Staff, I, Pre.

Patients however noted that the cameras might hold staff to account of their own behaviours and therefore may improve care, however they felt that this impact would wear off after the first few months after which people might forget about the cameras being there.

Now they’ve got the body cams, it’s going to be a lot of changes. They’ll think, ‘Ooh well he’s on tape’. So, it might do something to their conscience, they actually start to listen to patients… until the novelty wears off and it might go back to square one again. Ian (m), Patient, A, Pre.

One staff member suggested that incident rates had reduced following introduction of the BWCs, but they remained unsure as to whether this was due to the cameras, reflecting that violence and aggression on wards can be related to many factors.

I know our violence and aggression has reduced significantly since the start of the cameras pilot… I don’t know, because obviously wearing the camera’s one thing, but if they weren’t in use, I don’t know maybe just the presence of the camera made a difference. But yeah, it’s hard to tell. Petra (f), Staff, A, Post.

In contrast, several staff reported that they had seen limited evidence for such changes.

I used it yesterday. He was aggressive and I used it, but he even when I was using [it] he doesn’t care about the camera… it didn’t make any difference… It doesn’t stop them to do anything, this camera does not stop them to do anything. Abraham (m), Staff, I, Post.

Some staff suggested that in some circumstances the cameras increased patient agitation and created incidents, so there was a need to consider whether the BWCs were going to instigate aggression in some circumstances.

There has been with a few patients because they will threaten you. They will tell you, ‘if you turn it on, I’m gonna smash your head in’. So incidents like that, I will not turn it on… Yeah, or some of them will just tell you, ‘if you come close by, I’m going to pull that off your chest’. So things like that, I just stay back. Ada (f), Staff, A, Post.

One rationale for a potential lack of effectiveness was noted by both staff and patients and was related to the levels of acute illness being experienced by patients which meant that for many they were too unwell to have insight into their own actions or those of staff switching on the cameras.

We’ve had instances where patients are so unwell that they just don’t care. You switch on the camera, whether you switch it on or not, it doesn’t really change the behaviour. ‘All right, okay, whatever switch it on’. They’re so unwell, they’re not really understanding. Petra (f), Staff, A, Post. It might make [staff] feel safer as a placebo effect, but I don’t think it would necessarily make them safer… I think the people that are likely to attack a member of staff are crazy enough that they’re not gonna even consider the camera as a factor. Harry (m), Patient, A, Pre.

This lack of evidence that the cameras were necessarily effective in reducing incident rates or severity of incidents may have had an impact on staff buy-in and the use of the cameras as a result. One staff member reflected that having feedback from senior management about the impact and evidence would have been useful during the pilot period to inform ward staff whether the cameras were influencing things or not.

Staff want feedback. I don’t think we’ve had any since we’ve had the cameras… it would be nice to get feedback from, I don’t know, whoever is watching it, and stuff like that. Ada (f), Staff, A, Post.

Relative advantage: are BWCs effective and efficient for the ward?

Due to a combination of personal beliefs related to BWCs, the lack of evidence of their impact on violence and aggression, and other elements of care and culture on the wards, a number of staff and patients explored alternative interventions and approaches that may be more beneficial than BWCs. Both staff and patients suggested that Closed Circuit Television (CCTV) as an intervention that provided the transparency of using cameras and video footage but with an independent perspective. This was felt by many to remove the bias that could be introduced in BWC use as the video capture didn’t require staff control of the filming.

I feel like [BWCs] puts all the power and trust into the hands of the staff and I feel that it would be better to have CCTV on the ward because CCTV is neutral. Harry (m), Patient, A, Pre. I have control over that [BWC recording] … It kind of gives that split as well between staff and patients. You can tell me or I can tell you when to switch it on. Whereas I feel like a CCTV camera is there all the time. Nobody’s asking to switch it on. It’s there. If you wanted to review the footage you can request it, anyone can request to view the footage for a legitimate reason. Whereas the camera can come across as if you’re threatening. Petra (f), Staff, A, Post.

In addition, some participants reflected that the nature and design of BWCs meant that unless staff were present for an incident it wouldn’t be captured, whereas CCTV has the advantage of being always present.

If there’s CCTV, then it’s the same thing, you get me. Like, if its body worn cameras that people can always do things away from staff. They can always go down to that corridor to have their fight or go to the side where staff ain’t gonna see them to have their fight, but with CCTV you can’t do that. Elijah (m), Patient, A, Post.

In addition to exploring technological and video-based interventions, many staff noted that the key tool to violence reduction had to be the use of de-escalation skills, noting that the use of communication and positive relationships had to be the primary tool before other interventions such as BWCs or CCTV.

We do a lot of verbal de-escalation. So we got our destress room now still open. That has a punch bag, and it’s got sensory tiles, and the aim and hope is that when people do get frustrated, because we’re all human. We all get annoyed at anything or many little things in life. There is the aim that they go into that room and start punching the bag instead of property and damaging furniture. But we also are working really hard on verbal de-escalation and actually trying to listen to patients and talk to them before anything else. And that’s helped a lot. And between this kind of shared, or role modelling, where while we’re showing staff, actually even spending an extra 20 min is okay. If it means you’re not going to end up having to restrain a patient. Petra (f), Staff, A, Post.

By using communication skills and de-escalation techniques skilfully, some staff felt there was no need to utilise the BWCs. One concern with the introduction of the BWCs for staff was that the use of this technology may negatively impact on trust and relationships and the use of de-escalation.

Some situations I feel like it can make a situation worse sometimes… I think a lot of situations can be avoided if you just talk with people…. Trying to find out why they’re angry, trying to just kind of see it from their point of view, understand them… I think maybe additional training for verbal de-escalation is needed first. Patrick (m), Staff, A, Post.

Characteristics of individuals

Staff and patients’ knowledge and beliefs about the intervention.

Overall, there were mixed views among both staff and patients as to whether cameras would reduce incidents, prior to and after the pilot period. When considering the possible impact on violence and aggressive incidents there was a view among staff that there was the need for a nuanced and person-centred view.

All the patients that come in, they’re different you know. They have different perceptions; they like different things… everyone is different. So, it just depends. We might go live, and then we have good feedback because the patients they are open and the understand why we have it, and then as they get discharged and new patients come in it might not go as well. It just depends. Serene (f), Staff, A, Pre.

As a result of the desire to be person-centred in the use of such interventions, one staff member noted that they weighed-up such consequences for the patient before using the BWC and would make decisions not to use the camera where they thought it may have a negative impact.

Actually, with this body worn camera, as I did mention, if a patient is unwell, that doesn’t, the patient will not have the capacity to I mean, say yes, you cannot just put it on like that. Yeah, I know it’s for evidence, but when something happens, you first have to attend to the patient. You first have to attend to the patient before this camera is, for me. Ruby (f), Staff, I, Post.

Some staff questioned the existing evidence and theories as to why BWCs work to reduce incidents, and instead noted that for some people it will instigate an incident, while others may be triggered by a camera.

I’m on the fence of how that is going to work because I know the evidence is that by telling a patient ‘look if you keep escalating I’m gonna have to turn this on’, but I know several of our patients would kind of take that as a dare and escalate just to spite so that you would turn it on. Diana (f), Staff, A, Pre.

In contrast, some staff felt the cameras helped them feel safer on wards due to transparency of footage as evidence for both staff and patients.

They [staff] need to use it for protection, for recording evidence, that type of thing… They can record instances for later evidence. Yeah, for them as well. Safer for them and for patients because you can also have the right to get them to record, because a patient might be in the wrong but sometimes it may be the staff is in the wrong position. And that’s achieving safety for patients as well. Yeah, I think it works both ways. Dylan (m), Patient, A, Post.

Positive buy-in was also related to the potential use of the intervention as a training, learning or reflective tool for staff to improve practice and care and promote positive staff behaviour.

If you know that your actions might be filmed one way or the other, that would make me to step up your behaviour to patients… if you know that your actions can be viewed, if the authority wants to, then you behave properly with patients so I think that will improve the quality of the care to patient. Davide (m), Staff, I, Pre.

While there were some positive attitudes towards the cameras, there remained considerable concerns among participants regarding the transparency of camera use to collate evidence in relation to incidents as it was widely noted that the cameras remain in staff control therefore there is an issue in relation to bias and power.

I do think my gut would say that it wouldn’t necessarily be well received. Because also I think people feel like prisoners in here, that’s how some of the patients have described their experience, so in terms of the power dynamic and also just – I think that can make one feel a bit, even worse, basically, you know? Leslie (m), Staff, A, Pre.

These issues lead to staff reporting they didn’t want to wear the camera.

I’d feel quite uncomfortable wearing one to be honest. Leslie (m), Staff, A, Pre.

The staff control of the cameras had a particular impact on patient acceptability of the intervention as it led to some patients viewing BWCs as being an intervention for staff advantage and staff safety, thus increasing a ‘them and us’ culture and leading to patient resistance to the cameras. This was particularly salient for those with prior negative experiences of police use of cameras or mistrust in staff.

I feel like the fact that the body worn cameras is gonna be similar to how the police use them, if a staff member has negative intent toward a patient, they would be able to instigate an incident and then turn the camera on and use the consequences of what they’ve instigated to expect restraint or injection or whatever else might happen. So, I feel like it would be putting all the power and trust into the hands of the staff and I feel that it would be better to have CCTV on the ward because CCTV is neutral. Whereas, the body worn camera, especially with some of the personality conflicts/bad attitudes, impressions I’ve had from certain members of staff since I’ve been here, I feel like body worn cameras might be abused in that way possible. Harry (m), Patient, A, Pre.

Perceived unintended consequences and impact on care

Prior to the implementation there were concerns from staff that the introduction of BWCs could have consequences beyond the intended use of reducing violence and aggression, unintentionally affecting a range of factors that may impact on the overall delivery of care. There was a key concern regarding the potential negative impact that cameras may have for patients who have paranoia or psychosis as well as for those who may have prior traumatic experiences of being filmed.

It might have negative impacts on these patients because I’m thinking about kind of patients with schizophrenia and things like that who already have paranoid delusions, thinking that people are after them, thinking that people are spying on them, people are watching them, and then seeing kind of cameras around. It might have negative impacts on them. Tayla (f), Staff, I, Pre. When I was admitted I was going through psychosis… I don’t want to be filmed and things like that. So you just see a camera, a guy with a camera on, you are like, are you filming me? Elijah (m), Patient, A, Post.

There was also a considerable concern among both staff and patients that the use of cameras would have a negative impact on the therapeutic relationship between staff and patients. This was felt to be related to the implication that the cameras enhanced a ‘them and us’ dynamic due to the power differential that staff controlling the cameras can create, likened to policing and criminalisation of patients. With the potential of a negative impact on relationships between staff and patients, staff suggested they may be disinclined to use BWCs if it would stop patients speaking to them or approaching them if they needed support.

Yeah, I think it would probably damage [the therapeutic relationship] because I think what’s probably quite helpful is things that maybe create less of a power difference. I think to some extent, [the BWC] might hinder that ability. Like for example imagine going to a therapist and them just like ‘I’ve got this camera in the corner of the room and it’s gonna be filming our session and just in case – or like, just in case I feel that you might get aggressive with me’. Um, I don’t think that’s going to help the therapeutic relationship! Jamal (m), Staff, A, Pre. When you get body worn cameras on there, the relationship as well between staff and patients, is just gonna instantly change because you’re looking like police! Elijah (m), Patient, A, Post.

In contrast, a minority of staff felt that the presence of cameras may improve relationships as they provide transparency of staff behaviour and would encourage staff to behave well and provide high quality care for patients.

It will also help how, improve the way we look at the patients… because if you know that your actions might be filmed one way or the other, that would make me to step up your behaviour you know… you behave properly with patients so I think that will improve the quality of the care to patient. More efficiently, more caring to patient. Davide (m), Staff, I, Pre.

The process of implementation

Planning: top-down implementation.

Staff perceived that BWC implementation directives had been given by senior management or policy stakeholders whom they felt viewed the process from a position of limited understanding due to a lack of ‘frontline’ mental health service experience. This led to a lack of faith amongst staff, and a perception that funds were being misspent.

They sit up there, they just roll it out and see how it works, how it goes. They waste a whole lot of money, millions or whatever, thousands of pounds in it, and then they see that ‘Oh, it’s not gonna work’. They take it back and all of that. Before coming out with it, you need to come speak to us… they just sit up there drinking tea and coffee, and then they’re just like, Oh, yeah, well, let’s do it this way…come stay with these people, work with them, for just I give you a 12 h shift, stay with them. Richard (m), Staff, I, Post.

This was exacerbated when staff felt there was a lack of consultation or explanation.

we don’t always get the ins and outs of certain things…We know that the cameras are coming in and stuff like that, but you know, and obviously it’s gone through every avenue to make sure that it’s fine. But then sometimes we don’t always know the ins and outs to then explain to people why we have the cameras. Patrick (m), Staff, A, Post.

It was also highlighted that due to multiple initiatives being implemented and directives handed down in parallel, staff felt negative towards interventions more widely, with the BWCs being ‘ just another thing to do’ , adding to workload for staff and reducing enthusiasm to use the cameras.

it’s not just to do with the camera, I just think there’s lots of changes happening at once, and there’s loads of new things being constantly introduced that people are just thinking oh it’s another thing. I think that’s what it is more than the camera itself. Alice (f), Staff, A, Pre.

Execution: training, Use and Ward Visibility

Overall, there was a lack of consistency amongst staff in their understanding of the purpose and processes of using the BWCs on the wards.

What do you do, do you record every single thing or, I don’t know. Do you record like, if a patient said, I want to talk to you, confidential, you go sit in a room, do you record things like those or is it just violence and aggression? Ada (f), Staff, A, Post.

The lack of clarity regarding the purpose of the intervention and the appropriate use of the cameras was felt to impact staffs’ attitudes and acceptance of using them and contributed to a lack of transparency or perhaps trust regarding the use of any subsequent video footage.

I think if the importance of the recording was explained a bit more…and how it would improve things, I think people would use it more… that’s why I don’t think it’s always used sometimes… if you’re not sure why some of it’s important, then you’re not going to see the value…I think if you’re gonna keep with them, it’s about updating the training, teaching staff when to use it, then where does that information go? How does that look in terms of improving? Just a bit of transparency, I think. But when you don’t know certain things it’s a bit hard to get behind something or back it, you know? Patrick (m), Staff, A, Post.

The lack of information about the purpose and processes related to the intervention was also seen among patients, with most patients noting that they hadn’t received information about the cameras during their admissions.

No information at all. I don’t think any of the patients know about it. Toby (m), Patient, A, Post.

While training was provided it was widely felt that it was insufficient to provide understanding about the purpose of the cameras or the more in-depth processes beyond operational aspects such as charging and docking. Several staff interviewed were unaware of the training, while others noted that they had an informal run-through by colleagues rather than anything formal.

What training are you talking about?… I wasn’t here, so I was taught by my colleague. I mean, from what I was taught, to operate the camera, and to give a warning to the patient that you’re going to use the camera. Nevis (f), Staff, A, Post.

Longer training with further details beyond operational use was felt to be needed by staff.

I think the training should have to be longer, even if it’s like an hour or something… Like what situations deem the camera to be… more information on the cameras, when to use it, why it’s used, and I think if the importance of the recording was explained a bit more and what it was doing and how that recording would go and how it would improve things. Patrick (m), Staff, A, Post.

Furthermore, there was a need for training to be on a rolling basis given the use of bank staff who were not trained to use the cameras or to understand the proper processes or purpose of using the BWCs, which could leave them vulnerable to misuse or abuse.

We have bank staff [who aren’t trained] so they say ‘I don’t know how to use that camera you are giving me’. Nevis (f), Staff, A, Post.

The inner setting

Ward context: acceptance of violence and aggression is part of the job.

It was widely believed by staff that the nature of working on a mental health ward included accepting that violence and aggression was part of the job. This was not seen as an acceptance of violence but more that the job was providing care for individuals who are mentally unwell, and confusion, fear, frustration and aggression can be part of that. As a result, there was an ambivalence among some staff that the introduction of cameras would change this.

I think like in this line of work, there’s always that potential for like risky behaviours to happen. I’m not sure if putting the camera on will make much difference. Patrick (m), Staff, A, Post.

Staff noted that because of the nature of the job, staff are used to managing these situations and they understood that it was part of the job; therefore, it was unlikely that they would record everything that on paper might be considered an incident.

There’s also enough things that happen here, so I don’t think they would record [the incidents] because it’s just another day here. You know what I’m saying… [staff] can just say, ‘Stop, go back to your room and leave it at that and that kind of be the end of it’. Dylan (m), Patient, A, Post. We are trained for it. Eveline (f), Staff, I, Pre.

This acceptance that incidents are a hazard of mental healthcare was linked to staff’s acknowledgment that many factors make up the complexity of violence and aggression including the nature of individual patients, acuity levels, ward atmosphere, staffing levels, access to activities, leave and outside space. The interplay of multiple factors creates a context in which frustrations and incidents are likely, thus become part of the everyday and ‘normal’ life on the ward for staff and patients alike.

I feel like, you know, how in GP services you say, zero tolerance to abusive language, or any kind of harassment. I don’t think there is that on a psychiatric ward you are kind of expected to take all the abuse and just get on with it. Petra (f), Staff, A, Post.

With staff reported having a higher threshold for these behaviours it was perceived that this was likely to impact on the efficiency of the intervention as staff would be less likely to consider a situation as violent but more ‘ part of the job’ .

Reactive nature of the ward and incidents

Most participants noted that the ward context is always changing with people being admitted and discharged, with daily staff changes and wider turnover of staff, so things are never static and can change at any point. This reflects the dynamic nature of the ward which creates a complex moving picture that staff need to consider and react to.

[the atmosphere] it’s very good at the moment. If you had asked me this two weeks ago, I would say, ‘Oh, my gosh’. But it changes… The type of patient can make your whole ward change… it depends on the client group we have at the time. Nevis (f), Staff, A, Post.

Staff noted that a key limitation of using the cameras to reduce incidents was the reactive nature of the environment and care being provided. This was felt to impact on the feasibility and use of the cameras as staff noted that they often react to what is happening rather than thinking to ‘ put the camera on first ’. It was felt by staff with experience of reacting to incidents that the failure to use BWCs during these processes were linked to staff’s instincts and training to focus on patients as a priority.

Say for instance, you’re in the office, and two patients start fighting, or a patient attacks someone and, all you’re thinking about is to go there to stop the person. You’re not thinking about putting on any camera. You understand? So sometimes it’s halfway through it, somebody might say, ‘Has anybody switched the camera on’? And that’s the time you start recording… If something happens immediately, you’re not thinking about the camera at that time, you’re just thinking to just go, so yeah. Nevis (f), Staff, A, Post.

Incidents happen quickly and often surprise staff, therefore staff react instantly so are not thinking about new processes such as recording on the cameras as this would slow things down or is not in the reactive nature needed by staff during such incidents.

When you’re in the middle of an incident and your adrenaline’s high, you’re focusing on the incident itself. It’s very difficult for you to now remember, remind yourself to switch on the camera because you’re thinking, patient safety, staff safety, who’s coming to relieve you? What’s going on? Who’s at the door? Petra (f), Staff, A, Post.

In addition, the need for an immediate response meant that it was felt that by the time staff remember to, or have the chance to, switch the camera on it was often too late.

Sometimes in the heat of moments and stuff like that, or if the situation’s happening, sometimes you don’t always think to, you know, put your camera on. Patrick (m), Staff, A, Post.

Outer setting

Resources: staffing.

Issues related to staffing were highlighted by several participants as a key problem facing mental health wards thus leading to staff having higher workloads, and higher rates of bank and agency staff being used on shift and feeling burnt-out.

Out of all the wards I’ve been on I’d say this is the worst. It’s primarily because the staff are overworked…it seems like they spend more time doing paperwork than they do interacting with the patients. Harry (m), Patient, A, Pre. We’re in a bit of a crisis at the minute, we’re really, really understaffed. We’re struggling to cover shifts, so the staff are generally quite burnt out. We’ve had a number of people that have just left all at once, so that had an impact… Staff do get frustrated if they’re burnt out from lack of staff and what have you. Alice (f), Staff, A, Pre.

It was noted by one participant that the link of a new intervention with extra workload was likely to have a negative impact on its acceptability due to these increasing demands.

People automatically link the camera to then the additional paperwork that goes alongside it. It’s like, ‘Oh god, if we do this, we’ve got to do that’, and that could play a part. Petra (f), Staff, A, Post.

One staff member noted that the staffing issue meant there were more likely to be bank staff on wards so the care of patients may be affected as temporary staff may be less able to build meaningful therapeutic relationships.

So obviously there is the basic impact on safety of not having adequate staffing, but then there’s the impact of having a lot of bank staff. So obviously when you have permanent staff they get to know the patients more, we’re able to give them the more individualised care that we ideally should be giving them, but we can’t do that with bank staff. Diana (f), Staff, A, Pre.

It was also suggested that staffing levels and mix often made it more difficult to provide activities or facilitate escorted leave which can lead to patients feeling frustrated and becoming more aggressive.

So you know there is enough staff to facilitate the actual shift, so you know when there’s less staff like you say you’ve got people knocking at the door, but then you don’t have staff to take people out on leave straight away, that all has a rippling effect! Serene (f), Staff, A, Pre.

Wider systemic issues

Overall, there was a concern that the introduction of BWCs would not impact on wider, underlying factors that may contribute to frustration, aggression and incidents on wards. Providing a more enhanced level of care and better addressing the needs of patients was felt to be central to helping people but also reducing the frustration that patients feel when on the ward.

… for violence and aggression, [focus on] the mental health side of things like therapy and psychology should be compulsory. It shouldn’t be something you apply for and have to wait three or four weeks for. I think every person should, more than three or four weeks even, months even… we need psychology and therapists. That’s what will stop most violence, because psychologists and a therapist can edit the way that they speak to people because they’ve been given that skill depending on the way the person behaves. So that’s what we need regularly… not like all this dancing therapy, yoga therapy. That’s a person, that you come and you actually sit down and talk through your shit with them. That will help! Elijah (m), Patient, A, Post. There’s a lack of routine and I think there’s a lack of positive interaction between the patient and the staff as well. The only time you interact with a member of staff is if you’re hassling them for something, you have to hassle for every little thing, and it becomes a sort of, frustration inducing and like I’m a very calm person, but I found myself getting very fucking angry, to be honest, on this ward just because out of pure frustration… there’s bigger problems than body worn cameras going on. Harry (m), Patient, A, Pre.

Staff agreed that there was a need to invest in staff and training rather than new technologies or innovations as it is staff and their skills behind the camera.

It’s not the camera that will do all of that. It’s not making the difference. It’s a very good, very beautiful device, probably doing its job in its own way. But it’s more about investing in the staff, giving them that training and making them reflect on every day-to-day shift. Richard (m), Staff, I, Post.

There was felt to be a need to support staff more in delivering care within wards that can be challenging and where patients are unwell to ensure that staff feel safe. While in some circumstances the cameras made some staff feel safer, greater support from management would be more beneficial in making staff feel valued.

In this study exploring the implementation and use of body-worn cameras on mental health wards, we employed two methods for collecting and comparing data on incidents and use of containment measures, including BWCs, on one acute ward and one psychiatric intensive care unit. We found no clear relationship between the use of BWCs and rates or severity of incidents on either ward. While BWCs may be used when there are incidents of both physical and verbal aggression, results indicate that they may also provoke verbal aggression, as was suggested during some interviews within this study. This should be a concern, as strong evidence that being repeatedly subject to verbal aggression and abuse can lead to burnout and withdrawal of care by staff [ 30 ]. These mixed findings reflect results that were reported in two earlier studies of BWCs on mental health wards [ 12 , 13 ]. However, the very low use of the cameras, on just 10 per cent of the shifts where data was obtained, makes it even more difficult to draw any conclusions.

While the data shows limited impact of using BWCs on levels of incidents, we did find that during the pilot period BWC use tended to occur alongside physical restraint, but the direction of relationship is unclear as staff were asked to use BWCs when planning an intervention such as restraint. This relationship with restraint reflected the findings on several wards in a previous study [ 13 ], while contrasting with those reported in a second study that found reductions in incidents involving restraint during the evaluation period [ 12 ]. Such a mix of findings highlights the complexity of using BWCs as a violence reduction method within a busy healthcare setting in which several interacting components and contextual factors, and behaviours by staff and patients can affect outcomes [ 31 ]. The qualitative data collected during this pilot period highlighted the potential systemic and contextual factors such as low staffing that may have a confounding impact on the incident data presented in this simple form.

The findings presented within this evaluation provide some insights into the process of implementing BWCs as a safety intervention in mental health services and highlight some of the challenges and barriers faced. The use of implementation science to evaluate the piloting of BWCs on wards helps to demonstrate how multiple elements including a variety of contextual and systemic factors can have a considerable impact and thus change how a technology may vary not only between hospitals, but even across wards in the same hospital. By understanding the elements that may and do occur during the process of implementing such interventions, we can better understand if and how BWCs might be used in the future.

Within this pilot, extensive preparatory work conducted at a directorate and senior management level did not translate during the process of implementation at a ward level, which appeared to impact on the use of BWCs by individuals on the wards. This highlights that there is a need to utilise implementation science approaches in planning the implementation of new technologies or interventions and to investigate elements related to behavioural change and context rather than just the desired and actual effects of the intervention itself.

While ward staff and patients identified the potential for BWCs to enhance safety on the wards, participants distrusted their deployment and expressed concerns about ethical issues and possible harmful consequences of their use on therapeutic relationships, care provided and patient wellbeing. These themes reflect previous findings from a national interview study of patient and staff perspectives and experiences of BWCs in inpatient mental health wards [ 14 ]. Given these issues, alternatives such as increasing de-escalation skills were identified by staff as possible routes that may be more beneficial in these settings. Furthermore, other approaches such as safety huddles have also been highlighted within the literature as potential means to improve patient safety by looking ahead at what can be attended to or averted [ 32 ].

Furthermore, it is important to consider that the presence of power imbalances and the pre-existing culture on the ward have considerable implications for safety approaches and must be considered, as exemplified by the preferences by both staff and patients in this evaluation for more perceived ‘impartial’ interventions such as CCTV. As identified within previous studies [ 14 ], BWCs can have different implications for psychological safety, particularly for vulnerable patients who already feel criminalised in an environment with asymmetrical power imbalances between staff and patients. This is particularly salient when considering aspects of identity such as race, ethnicity, and gender both in terms of the identities of the patient group but also in terms of the staff/patient relationship.

While preferences in this study note CCTV as more ‘impartial’, work by Desai [ 33 ] draws on the literature about the use of surveillance cameras in other settings (such as public streets) as well as on psychiatric wards and concludes that CCTV monitoring is fraught with difficulties and challenges, and that ‘watching’ patients and staff through the lens of a camera can distort the reality of what is happening within a ward environment. In her recently published book, Desai [ 34 ] develops this theme to explore the impacts of being watched on both patients and staff through her ethnographic research in psychiatric intensive care units. She highlights concerns over the criminalisation of patient behaviour, safeguarding concerns in relation to the way women’s bodies and behaviours are viewed and judged, and the undermining by CCTV of ethical mental health practice by staff who attempt to engage in thoughtful, constructive, therapeutic interactions with patients in face-to-face encounters. Appenzeller et al.’s [ 35 ] review found that whilst the presence of CCTV appeared to increase subjective feelings of safety amongst patients and visitors, there was no objective evidence that video surveillance increases security, and that staff may develop an over-reliance on the technology.

In addition, our findings add to the existing literature which notes that alternative interventions and approaches that address underlying contextual and systemic issues related to improving care on inpatient wards require attention to address the underlying factors related to incidents, e.g., flashpoints [ 36 ]. Evidence suggests that factors leading to incidents can be predicted; therefore, there is a need to enable staff to work in a proactive way to anticipate and prevent incidents rather than view incidents as purely reactive [ 37 , 38 , 39 ]. Such skills-based and relational approaches are likely to impact more on improving safety and reducing incidents by addressing the complex and multi-faceted issue of incidents on inpatient mental health wards [ 40 ].

These findings highlight that interventions such as BWCs are not used within a vacuum, and that hospitals are complex contexts in which there are a range of unique populations, processes, and microsystems that are multi-faceted [ 41 ]. As a result, interventions will encounter both universal, specific, and local barriers that will impact on its functioning in the real world. This is salient because research suggests that camera use inside mental health wards is based on a perception of the violent nature of the mental health patient, a perception that not only influences practice but also impacts how patients experience the ward [ 33 ]. As a result, there needs to be careful consideration of the use of any new and innovative intervention aimed at improving safety within mental health settings that have limited research supporting their efficacy.

Limitations

While the study provides important insights into the efficacy and acceptability of introducing BWCs onto inpatient mental health wards, there were several limitations. Firstly, the analysis of incident data is limited in its nature as it only presents surface level information about incidents without wider contextual information. Results using such data should be cautiously interpreted as they do not account for confounding factors, such as staffing, acuity, ward culture or ward atmosphere, that are likely to contribute to incidents of violence and aggression. For example, while there was a statistically significant decrease in restrictive practice on the PICU across the study period, we know that BWCs were not widely used on that ward, so this is likely due to a confounding variable that was not accounted for in the study design.

Secondly, the study faced limitations in relation to recruitment, particularly with patients. Researchers’ access to wards was challenging due to high staff turnover and high rates of acuity, meaning many patients were not deemed well enough to be able to consent to take part in the study. In addition, the low use of the cameras on wards meant that many patients, and some staff, had not seen the BWCs in use. Similarly, patients had been provided limited information about the pilot, so their ability to engage in the research and describe their own experiences with BWCs was restricted.

Thirdly, analysis captures the active use of the BWC, however it does not fully capture the impact of staff wearing the cameras even where they do not actively use them. While our qualitative analysis provides insight into the limitation of such passive use, it is likely that the presence of the cameras being worn by staff, even when turned off, may have an impact on both staff and patient behaviours. This may explain trends in the data that did not reach significance but warrant further investigation in relation to the presence of BWCs, nonetheless.

Finally, researchers had planned to collect quantitative surveys from staff and patients in relation to their experiences of the ward atmosphere and climate, views related to therapeutic relationships on the ward, levels of burnout among staff, views on care, and attitudes to containment measures. Due to issues related to staff time, patient acuity, and poor engagement from staff leading to challenges accessing the wards, the collection of such survey data was unfeasible, and this element of the study was discontinued. As a result, we have not reported this aspect in our paper. This limitation reflects the busy nature of inpatient mental health wards with pressures on staff and high levels of ill health among patients. As such, traditional methodologies for evaluation are unlikely to elicit data that is comprehensive and meaningful. Alternative approaches may need to be considered.

Future directions

With BWCs being increasingly used across inpatient mental health services [ 14 ], it is important that further research and evaluation is conducted. To date, there is limited data regarding the effectiveness of this technology in relation to violence reduction; however, there may be other beneficial uses in relation to safeguarding and training [ 13 ]. Future research should consider alternative methods that ensure contextual factors are accounted for and that patient voices can be maximised. For example, focus groups with patients currently admitted to a mental health ward or interviews with those who have recently been on a ward that has used the cameras, would bypass problems encountered with capacity to consent in the present study. Furthermore, ethnographic approaches may provide a deeper understanding of the implementation, deployment and impact that BWCs have on wards.

Overall, this research sheds light on the complexities of using BWCs as a tool for ‘maximising safety’ in mental health settings. The findings suggest that BWCs have a limited impact on levels of incidents on wards, something that is likely to be largely influenced by the process of implementation as well as a range of contextual factors, including the staff and patient populations on the wards. As a result, it is likely that while BWCs may see successes in one hospital site this is not guaranteed for another site as such factors will have a considerable impact on efficacy, acceptability, and feasibility. Furthermore, the findings point towards the need for more consideration to be placed on processes of implementation and the complex ethical discussions regarding BWC use from both a patient and a staff perspective.

In conclusion, while there have been advances in digital applications and immersive technologies showing promise of therapeutic benefits for patients and staff more widely, whether BWCs and other surveillance approaches are to be part of that picture remains to be seen and needs to be informed by high-quality, co-produced research that focuses on wider therapeutic aspects of mental healthcare.

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Department of Health and Social Care. The NHS Long Term Plan. 2019. https://www.longtermplan.nhs.uk/about/ . [Accessed on 01/11/2021].

NHS England. Violence prevention and safety. 2023. https://www.england.nhs.uk/supporting-our-nhs-people/health-and-wellbeing-programmes/violence-prevention-and-safety/#:~:text=The%20impact%20on%20staff%20is,thinking%20about%20leaving%20the%20organisation . [Accessed on 06/07/23].

Royal College of Nursing. Violence and aggression in the NHS: estimating the size and the impact of the problem. London: Royal College of Nursing; 2018.

Google Scholar  

Iozzino L, Ferrari C, Large M, Nielssen O, de Girolamo G. Prevalence and risk factors of violence by psychiatric acute inpatients: a systematic review and meta-analysis. PLoS ONE. 2015;10(6):e0128536. https://doi.org/10.1371/journal.pone.0128536 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Cranage K, Foster K. Mental health nurses’ experience of challenging workplace situations: a qualitative descriptive study. Int J Ment Health Nurs. 2020;31(3):665–76. https://doi.org/10.1111/inm.12986 .

Article   Google Scholar  

Jenkin G, Quigg S, Paap H, Cooney E, Peterson D, Every-Palmer S. Places of safety? Fear and violence in acute mental health facilities: a large qualitative study of staff and service user perspectives. PLoS ONE. 2022;17(5):e0266935. https://doi.org/10.1371/journal.pone.0266935 .

Gaub JE, Choate DE, Todak N, Katz CM, White MD. Officer perceptions of body-worn cameras before and after deployment: a study of three departments. Police Q. 2016;19(3):275–302.

Cubitt TI, Lesic R, Myers GL, Corry R. Body-worn video: a systematic review of literature. Australian New Z J Criminol. 2017;50(3):379–96. https://doi.org/10.1177/0004865816638909 .

Lum C, Koper CS, Wilson DB, Stoltz M, Goodier M, Eggins E et al. Body-worn cameras’ effects on police officers and citizen behavior: A systemitic review. Campbell Syst Reviews. 2020;16(3), e1112.

Ariel B, Newton M, McEwan L, Ashbridge GA, Weinborn C, Brants HS. Reducing assaults against Staff using body-worn cameras (BWCs) in Railway stations. Criminal Justice Rev. 2019;44(1):76–93.

Wilson K, Eaton J, Foye U, Ellis M, Thomas E, Simpson A. What evidence supports the use of body worn Cameras in mental health inpatient wards? A systematic review and narrative synthesis of the effects of body worn Cameras in public sector services. Int J Ment Health Nurs. 2021. https://doi.org/10.1111/inm.12954 .

Article   PubMed   PubMed Central   Google Scholar  

Ellis T, Shurmer DL, Badham-May S, Ellis-Nee C. The use of body worn video cameras on mental health wards: results and implications from a pilot study. Mental Health Family Med. 2019;15:859–68.

Hardy S, Bennett L, Rosen P, Carroll S, White P, Palmer-Hill S. The feasibility of using body-worn cameras in an inpatient mental health setting. Mental Health Family Med. 2017;13:393–400.

Wilson K, Foye U, Thomas E, Chadwick M, Dodhia S, Allen J, Lynn J, Brennan G, Simpson A. Exploring the use of body-worn cameras in acute mental health wards: a qualitative interview study with mental health patients and staff. Int J Nurs Stud. 2023;140:104456. https://doi.org/10.1016/j.ijnurstu.2023.104456 .

Article   PubMed   Google Scholar  

Baker J, Pryjmachuk S. Will safe staffing in Mental Health nursing become a reality? J Psychiatry Mental Health Nurs. 2016;23(2):75–6. https://doi.org/10.1111/jpm.12282 .

Article   CAS   Google Scholar  

Piano VL, Creswell JW. Understanding Research: A Consumer Guide. 2nd edition. 2015. Boston: Pearson Education, INC.

Bowers L, Simpson A, Alexander J. Patient-staff conflict: results of a survey on acute psychiatric wards. Soc Psychiatry Psychiatr Epidemiol. 2013;38(7):402–8.

Bowers L. The City-128 study of observation and outcomes. BMC Psychiatry. 2007;7(Suppl 1). https://doi.org/10.1186/1471-244X-7-S1-S122 . S122.

Bowers L, Flood C, Brennan G, Allan T. A replication study of the City nurse intervention: reducing conflict and containment on three acute psychiatric wards. J Psychiatr Ment Health Nurs. 2008;15:737–42. https://doi.org/10.1111/j.1365-2850.2008.01294.x .

Article   CAS   PubMed   Google Scholar  

Bowers L, James K, Quirk A, Simpson A, Stewart D, Hodsoll J, SUGAR. Reducing conflict and containment rates on acute psychiatric wards: the safewards cluster randomised controlled trial. Int J Nurs Stud. 2015;52(9):1412–22. https://doi.org/10.1016/j.ijnurstu.2015.05.001 . Erratum in: Int J Nurs Stud. 2016;58:102. PMID: 26166187; PMCID: PMC4518134.

Bowers L, Douzenis A, Galeazzi G et al. Disruptive and dangerous behaviour by patients on acute psychiatric wards in three European centres. Social Psychiatry and Psychiatric Epidemiology. 2005;40, 822–828. https://link.springer.com/article/10.1007/s00127-005-0967-1 .

Bowers L, Flood C, Brennan G, LiPang M, Oladapo P. Preliminary outcomes of a trial to reduce conflict and containment on acute psychiatric wards: City nurses. J Psychiatr Ment Health Nurs. 2006;13:165–72. https://doi.org/10.1111/j.1365-2850.2006.00931.x .

Datix. (2019). Products. Retrieved from https://www.rldatix.com/en-uk/products .

Fazel S, Toynbee M, Ryland H, et al. Modifiable risk factors for inpatient violence in psychiatric hospital: prospective study and prediction model. Psychol Med. 2023;53(2):590–6. https://doi.org/10.1017/S0033291721002063 .

Mushcab H, Bunting D, Yami S, Abandi A, Hunt C. An evaluation of Datix implementation for incident reporting at Johns Hopkins Aramco Healthcare. J Patient Saf Risk Manage. 2020;25(2):67–74. https://doi.org/10.1177/2516043520905481 .

SPSS. IBM SPSS statistics for Windows. Armonk, NY: IBM Corp; 2023.

Microsoft Corporation. (2018). Microsoft Excel . Retrieved from https://office.microsoft.com/excel .

Ritchie J, Lewis J. Qualitative. Research Practice. London: Sage; 2003.

Damschroder LJ, Aron DC, Keith RE, et al. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4:50. https://doi.org/10.1186/1748-5908-4-50 .

Porath CL, Pearson CM. Emotional and behavioral responses to workplace incivility and the impact of hierarchical status. J Appl Soc Psychol. 2009;42(Suppl 1):E326–57. https://doi.org/10.1111/j.1559-1816.2012.01020.x .

Craig P, Dieppe P, Macintyre S, et al. Developing and evaluating complex interventions: the new medical Research Council guidance. BMJ. 2008;337. https://doi.org/10.1136/bmj.a1655 .

Taylor-Watt J, Cruickshank A, Innes J, Brome B, Shah A. Reducing physical violence and developing a safety culture across wards in East London. Br J Mental Health Nurs. 2017. https://doi.org/10.12968/bjmh.2017.6.1.35 .

Desai S. The new stars of CCTV: what is the purpose of monitoring patients in communal areas of psychiatric hospital wards, bedrooms and seclusion rooms? Divers Equality Health Care. 2009;6(1):12. [Google Scholar].

Desai S. Surveillance Practices and Mental Health: the impact of CCTV inside mental health wards. Routledge; 2022.

Appenzeller YE, Appelbaum PS, Trachsel M. Ethical and practical issues in Video Surveillance of Psychiatric Units. Psychiatric Serv. 2020;71(5):480–6. https://doi.org/10.1176/appi.ps.201900397 .

Bowers L. Safewards: a new model of conflict and containment on psychiatric wards. J Psychiatr Ment Health Nurs. 2014;21(6):499–508. https://doi.org/10.1111/jpm.12129 . PMID: 24548312; PMCID: PMC4237187.

Goodman H, Papastavrou Brooks C, Price O, Barley EA. Barriers and facilitators to the effective de-escalation of conflict behaviours in forensic high-secure settings: a qualitative study. Int J Mental Health Syst. 2020;14:59. https://doi.org/10.1186/s13033-020-00392-5 .

Johnson ME, Delaney KR. Keeping the unit safe: the anatomy of escalation. J Am Psychiatr Nurses Assoc. 2007;13:42–52.

Johnson ME, Hauser PM. The practice of expert nurses: accompanying the patient to a calmer space. Issues Ment Health Nurs. 2001;22:651–68.

Hamrin V, Iennaco J, Olsen D. A review of ecological factors affecting inpatient psychiatric unit violence: implications for relational and unit cultural improvements. Issues Ment Health Nurs. 2009;30(4):214 – 26. doi: 10.1080/01612840802701083. PMID: 19363726.

Squires JE, Estabrooks CA, Scott SD, Cummings GG, Hayduk L. The influence of organizational context on the use of research by nurses in Canadian pediatric hospitals. BMC Health Serv Res. 2013;13. https://doi.org/10.1186/1472-6963-13-351 .

Download references

Acknowledgements

We would like to thank The Burdett Trust for Nursing for funding this work. We would also like to acknowledge our wider Lived Experience Advisory Panel and Project Advisory Panel for their contributions and support and would like to thank the staff and service users on the wards we attended for their warmth and participation.

Funding was provided by The Burdett Trust of Nursing. Funders were independent of the research and did not impact findings.

Author information

Authors and affiliations.

Mental Health Nursing, Health Service and Population Research Department, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK

Una Foye, Keiran Wilson, Jessica Jepps, James Blease, Geoff Brennan & Alan Simpson

Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, Mental Health Nursing, King’s College London, London, UK

Una Foye, Keiran Wilson, Jessica Jepps, Geoff Brennan & Alan Simpson

Lived Experience Advisor, London, UK

Ellen Thomas, Leroy McAnuff, Sharon McKenzie, Katherine Barrett & Lilli Underwood

You can also search for this author in PubMed   Google Scholar

Contributions

All authors have read and approved the manuscript. Authors AS, UF, KW, GB created the protocol for the study. KW, JJ, UF conducted the recruitment for the study, and conducted the interviews. UF, JJ, JB, LMA, LU, SMK, KB, ET coded data, and contributed to the analysis. All authors supported drafting and development of the manuscript.

Corresponding author

Correspondence to Una Foye .

Ethics declarations

Ethics approval and consent to participate.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical. Ethical approval was granted by the Health Research Authority: London - Camden & Kings Cross Research Ethics Committee (IRAS PROJECT ID 322268, REC Reference 23/LO/0337). All participants provided informed consent prior to enrolment in the study, including consent for publication of anonymised quotes.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary material 2, supplementary material 3, supplementary material 4, supplementary material 5, supplementary material 6, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Foye, U., Wilson, K., Jepps, J. et al. Exploring the use of body worn cameras in acute mental health wards: a mixed-method evaluation of a pilot intervention. BMC Health Serv Res 24 , 681 (2024). https://doi.org/10.1186/s12913-024-11085-x

Download citation

Received : 03 January 2024

Accepted : 07 May 2024

Published : 29 May 2024

DOI : https://doi.org/10.1186/s12913-024-11085-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Implementation
  • Body worn cameras
  • Qualitative
  • Mental health

BMC Health Services Research

ISSN: 1472-6963

research design method quantitative

research design method quantitative

CRO Platform

Test your insights. Run experiments. Win. Or learn. And then win.

research design method quantitative

eCommerce Customer Analytics Platform

research design method quantitative

Acquisition matters. But retention matters more. Understand, monitor & nurture the best customers.

  • Case Studies
  • Ebooks, Tools, Templates
  • Digital Marketing Glossary
  • eCommerce Growth Stories
  • eCommerce Growth Show
  • Help & Technical Documentation

CRO Guide   >  Chapter 3.1

Qualitative Research: Definition, Methodology, Limitation & Examples

Qualitative research is a method focused on understanding human behavior and experiences through non-numerical data. Examples of qualitative research include:

  • One-on-one interviews,
  • Focus groups, Ethnographic research,
  • Case studies,
  • Record keeping,
  • Qualitative observations

In this article, we’ll provide tips and tricks on how to use qualitative research to better understand your audience through real world examples and improve your ROI. We’ll also learn the difference between qualitative and quantitative data.

gathering data

Table of Contents

Marketers often seek to understand their customers deeply. Qualitative research methods such as face-to-face interviews, focus groups, and qualitative observations can provide valuable insights into your products, your market, and your customers’ opinions and motivations. Understanding these nuances can significantly enhance marketing strategies and overall customer satisfaction.

What is Qualitative Research

Qualitative research is a market research method that focuses on obtaining data through open-ended and conversational communication. This method focuses on the “why” rather than the “what” people think about you. Thus, qualitative research seeks to uncover the underlying motivations, attitudes, and beliefs that drive people’s actions. 

Let’s say you have an online shop catering to a general audience. You do a demographic analysis and you find out that most of your customers are male. Naturally, you will want to find out why women are not buying from you. And that’s what qualitative research will help you find out.

In the case of your online shop, qualitative research would involve reaching out to female non-customers through methods such as in-depth interviews or focus groups. These interactions provide a platform for women to express their thoughts, feelings, and concerns regarding your products or brand. Through qualitative analysis, you can uncover valuable insights into factors such as product preferences, user experience, brand perception, and barriers to purchase.

Types of Qualitative Research Methods

Qualitative research methods are designed in a manner that helps reveal the behavior and perception of a target audience regarding a particular topic.

The most frequently used qualitative analysis methods are one-on-one interviews, focus groups, ethnographic research, case study research, record keeping, and qualitative observation.

1. One-on-one interviews

Conducting one-on-one interviews is one of the most common qualitative research methods. One of the advantages of this method is that it provides a great opportunity to gather precise data about what people think and their motivations.

Spending time talking to customers not only helps marketers understand who their clients are, but also helps with customer care: clients love hearing from brands. This strengthens the relationship between a brand and its clients and paves the way for customer testimonials.

  • A company might conduct interviews to understand why a product failed to meet sales expectations.
  • A researcher might use interviews to gather personal stories about experiences with healthcare.

These interviews can be performed face-to-face or on the phone and usually last between half an hour to over two hours. 

When a one-on-one interview is conducted face-to-face, it also gives the marketer the opportunity to read the body language of the respondent and match the responses.

2. Focus groups

Focus groups gather a small number of people to discuss and provide feedback on a particular subject. The ideal size of a focus group is usually between five and eight participants. The size of focus groups should reflect the participants’ familiarity with the topic. For less important topics or when participants have little experience, a group of 10 can be effective. For more critical topics or when participants are more knowledgeable, a smaller group of five to six is preferable for deeper discussions.

The main goal of a focus group is to find answers to the “why”, “what”, and “how” questions. This method is highly effective in exploring people’s feelings and ideas in a social setting, where group dynamics can bring out insights that might not emerge in one-on-one situations.

  • A focus group could be used to test reactions to a new product concept.
  • Marketers might use focus groups to see how different demographic groups react to an advertising campaign.

One advantage that focus groups have is that the marketer doesn’t necessarily have to interact with the group in person. Nowadays focus groups can be sent as online qualitative surveys on various devices.

Focus groups are an expensive option compared to the other qualitative research methods, which is why they are typically used to explain complex processes.

3. Ethnographic research

Ethnographic research is the most in-depth observational method that studies individuals in their naturally occurring environment.

This method aims at understanding the cultures, challenges, motivations, and settings that occur.

  • A study of workplace culture within a tech startup.
  • Observational research in a remote village to understand local traditions.

Ethnographic research requires the marketer to adapt to the target audiences’ environments (a different organization, a different city, or even a remote location), which is why geographical constraints can be an issue while collecting data.

This type of research can last from a few days to a few years. It’s challenging and time-consuming and solely depends on the expertise of the marketer to be able to analyze, observe, and infer the data.

4. Case study research

The case study method has grown into a valuable qualitative research method. This type of research method is usually used in education or social sciences. It involves a comprehensive examination of a single instance or event, providing detailed insights into complex issues in real-life contexts.  

  • Analyzing a single school’s innovative teaching method.
  • A detailed study of a patient’s medical treatment over several years.

Case study research may seem difficult to operate, but it’s actually one of the simplest ways of conducting research as it involves a deep dive and thorough understanding of the data collection methods and inferring the data.

5. Record keeping

Record keeping is similar to going to the library: you go over books or any other reference material to collect relevant data. This method uses already existing reliable documents and similar sources of information as a data source.

  • Historical research using old newspapers and letters.
  • A study on policy changes over the years by examining government records.

This method is useful for constructing a historical context around a research topic or verifying other findings with documented evidence.

6. Qualitative observation

Qualitative observation is a method that uses subjective methodologies to gather systematic information or data. This method deals with the five major sensory organs and their functioning, sight, smell, touch, taste, and hearing.

  • Sight : Observing the way customers visually interact with product displays in a store to understand their browsing behaviors and preferences.
  • Smell : Noting reactions of consumers to different scents in a fragrance shop to study the impact of olfactory elements on product preference.
  • Touch : Watching how individuals interact with different materials in a clothing store to assess the importance of texture in fabric selection.
  • Taste : Evaluating reactions of participants in a taste test to identify flavor profiles that appeal to different demographic groups.
  • Hearing : Documenting responses to changes in background music within a retail environment to determine its effect on shopping behavior and mood.

Below we are also providing real-life examples of qualitative research that demonstrate practical applications across various contexts:

Qualitative Research Real World Examples

Let’s explore some examples of how qualitative research can be applied in different contexts.

1. Online grocery shop with a predominantly male audience

Method used: one-on-one interviews.

Let’s go back to one of the previous examples. You have an online grocery shop. By nature, it addresses a general audience, but after you do a demographic analysis you find out that most of your customers are male.

One good method to determine why women are not buying from you is to hold one-on-one interviews with potential customers in the category.

Interviewing a sample of potential female customers should reveal why they don’t find your store appealing. The reasons could range from not stocking enough products for women to perhaps the store’s emphasis on heavy-duty tools and automotive products, for example. These insights can guide adjustments in inventory and marketing strategies.

2. Software company launching a new product

Method used: focus groups.

Focus groups are great for establishing product-market fit.

Let’s assume you are a software company that wants to launch a new product and you hold a focus group with 12 people. Although getting their feedback regarding users’ experience with the product is a good thing, this sample is too small to define how the entire market will react to your product.

So what you can do instead is holding multiple focus groups in 20 different geographic regions. Each region should be hosting a group of 12 for each market segment; you can even segment your audience based on age. This would be a better way to establish credibility in the feedback you receive.

3. Alan Pushkin’s “God’s Choice: The Total World of a Fundamentalist Christian School”

Method used: ethnographic research.

Moving from a fictional example to a real-life one, let’s analyze Alan Peshkin’s 1986 book “God’s Choice: The Total World of a Fundamentalist Christian School”.

Peshkin studied the culture of Bethany Baptist Academy by interviewing the students, parents, teachers, and members of the community alike, and spending eighteen months observing them to provide a comprehensive and in-depth analysis of Christian schooling as an alternative to public education.

The study highlights the school’s unified purpose, rigorous academic environment, and strong community support while also pointing out its lack of cultural diversity and openness to differing viewpoints. These insights are crucial for understanding how such educational settings operate and what they offer to students.

Even after discovering all this, Peshkin still presented the school in a positive light and stated that public schools have much to learn from such schools.

Peshkin’s in-depth research represents a qualitative study that uses observations and unstructured interviews, without any assumptions or hypotheses. He utilizes descriptive or non-quantifiable data on Bethany Baptist Academy specifically, without attempting to generalize the findings to other Christian schools.

4. Understanding buyers’ trends

Method used: record keeping.

Another way marketers can use quality research is to understand buyers’ trends. To do this, marketers need to look at historical data for both their company and their industry and identify where buyers are purchasing items in higher volumes.

For example, electronics distributors know that the holiday season is a peak market for sales while life insurance agents find that spring and summer wedding months are good seasons for targeting new clients.

5. Determining products/services missing from the market

Conducting your own research isn’t always necessary. If there are significant breakthroughs in your industry, you can use industry data and adapt it to your marketing needs.

The influx of hacking and hijacking of cloud-based information has made Internet security a topic of many industry reports lately. A software company could use these reports to better understand the problems its clients are facing.

As a result, the company can provide solutions prospects already know they need.

Real-time Customer Lifetime Value (CLV) Benchmark Report

See where your business stands compared to 1,000+ e-stores in different industries.

35 reports by industry and business size.

Qualitative Research Approaches

Once the marketer has decided that their research questions will provide data that is qualitative in nature, the next step is to choose the appropriate qualitative approach.

The approach chosen will take into account the purpose of the research, the role of the researcher, the data collected, the method of data analysis , and how the results will be presented. The most common approaches include:

  • Narrative : This method focuses on individual life stories to understand personal experiences and journeys. It examines how people structure their stories and the themes within them to explore human existence. For example, a narrative study might look at cancer survivors to understand their resilience and coping strategies.
  • Phenomenology : attempts to understand or explain life experiences or phenomena; It aims to reveal the depth of human consciousness and perception, such as by studying the daily lives of those with chronic illnesses.
  • Grounded theory : investigates the process, action, or interaction with the goal of developing a theory “grounded” in observations and empirical data. 
  • Ethnography : describes and interprets an ethnic, cultural, or social group;
  • Case study : examines episodic events in a definable framework, develops in-depth analyses of single or multiple cases, and generally explains “how”. An example might be studying a community health program to evaluate its success and impact.

How to Analyze Qualitative Data

Analyzing qualitative data involves interpreting non-numerical data to uncover patterns, themes, and deeper insights. This process is typically more subjective and requires a systematic approach to ensure reliability and validity. 

1. Data Collection

Ensure that your data collection methods (e.g., interviews, focus groups, observations) are well-documented and comprehensive. This step is crucial because the quality and depth of the data collected will significantly influence the analysis.

2. Data Preparation

Once collected, the data needs to be organized. Transcribe audio and video recordings, and gather all notes and documents. Ensure that all data is anonymized to protect participant confidentiality where necessary.

3. Familiarization

Immerse yourself in the data by reading through the materials multiple times. This helps you get a general sense of the information and begin identifying patterns or recurring themes.

Develop a coding system to tag data with labels that summarize and account for each piece of information. Codes can be words, phrases, or acronyms that represent how these segments relate to your research questions.

  • Descriptive Coding : Summarize the primary topic of the data.
  • In Vivo Coding : Use language and terms used by the participants themselves.
  • Process Coding : Use gerunds (“-ing” words) to label the processes at play.
  • Emotion Coding : Identify and record the emotions conveyed or experienced.

5. Thematic Development

Group codes into themes that represent larger patterns in the data. These themes should relate directly to the research questions and form a coherent narrative about the findings.

6. Interpreting the Data

Interpret the data by constructing a logical narrative. This involves piecing together the themes to explain larger insights about the data. Link the results back to your research objectives and existing literature to bolster your interpretations.

7. Validation

Check the reliability and validity of your findings by reviewing if the interpretations are supported by the data. This may involve revisiting the data multiple times or discussing the findings with colleagues or participants for validation.

8. Reporting

Finally, present the findings in a clear and organized manner. Use direct quotes and detailed descriptions to illustrate the themes and insights. The report should communicate the narrative you’ve built from your data, clearly linking your findings to your research questions.

Limitations of qualitative research

The disadvantages of qualitative research are quite unique. The techniques of the data collector and their own unique observations can alter the information in subtle ways. That being said, these are the qualitative research’s limitations:

1. It’s a time-consuming process

The main drawback of qualitative study is that the process is time-consuming. Another problem is that the interpretations are limited. Personal experience and knowledge influence observations and conclusions.

Thus, qualitative research might take several weeks or months. Also, since this process delves into personal interaction for data collection, discussions often tend to deviate from the main issue to be studied.

2. You can’t verify the results of qualitative research

Because qualitative research is open-ended, participants have more control over the content of the data collected. So the marketer is not able to verify the results objectively against the scenarios stated by the respondents. For example, in a focus group discussing a new product, participants might express their feelings about the design and functionality. However, these opinions are influenced by individual tastes and experiences, making it difficult to ascertain a universally applicable conclusion from these discussions.

3. It’s a labor-intensive approach

Qualitative research requires a labor-intensive analysis process such as categorization, recording, etc. Similarly, qualitative research requires well-experienced marketers to obtain the needed data from a group of respondents.

4. It’s difficult to investigate causality

Qualitative research requires thoughtful planning to ensure the obtained results are accurate. There is no way to analyze qualitative data mathematically. This type of research is based more on opinion and judgment rather than results. Because all qualitative studies are unique they are difficult to replicate.

5. Qualitative research is not statistically representative

Because qualitative research is a perspective-based method of research, the responses given are not measured.

Comparisons can be made and this can lead toward duplication, but for the most part, quantitative data is required for circumstances that need statistical representation and that is not part of the qualitative research process.

While doing a qualitative study, it’s important to cross-reference the data obtained with the quantitative data. By continuously surveying prospects and customers marketers can build a stronger database of useful information.

Quantitative vs. Qualitative Research

Qualitative and quantitative research side by side in a table

Image source

Quantitative and qualitative research are two distinct methodologies used in the field of market research, each offering unique insights and approaches to understanding consumer behavior and preferences.

As we already defined, qualitative analysis seeks to explore the deeper meanings, perceptions, and motivations behind human behavior through non-numerical data. On the other hand, quantitative research focuses on collecting and analyzing numerical data to identify patterns, trends, and statistical relationships.  

Let’s explore their key differences: 

Nature of Data:

  • Quantitative research : Involves numerical data that can be measured and analyzed statistically.
  • Qualitative research : Focuses on non-numerical data, such as words, images, and observations, to capture subjective experiences and meanings.

Research Questions:

  • Quantitative research : Typically addresses questions related to “how many,” “how much,” or “to what extent,” aiming to quantify relationships and patterns.
  • Qualitative research: Explores questions related to “why” and “how,” aiming to understand the underlying motivations, beliefs, and perceptions of individuals.

Data Collection Methods:

  • Quantitative research : Relies on structured surveys, experiments, or observations with predefined variables and measures.
  • Qualitative research : Utilizes open-ended interviews, focus groups, participant observations, and textual analysis to gather rich, contextually nuanced data.

Analysis Techniques:

  • Quantitative research: Involves statistical analysis to identify correlations, associations, or differences between variables.
  • Qualitative research: Employs thematic analysis, coding, and interpretation to uncover patterns, themes, and insights within qualitative data.

research design method quantitative

Do Conversion Rate Optimization the Right way.

Explore helps you make the most out of your CRO efforts through advanced A/B testing, surveys, advanced segmentation and optimised customer journeys.

An isometric image of an adobe adobe adobe adobe ad.

If you haven’t subscribed yet to our newsletter, now is your chance!

A man posing happily in front of a vivid purple background for an engaging blog post.

Like what you’re reading?

Join the informed ecommerce crowd.

We will never bug you with irrelevant info.

By clicking the Button, you confirm that you agree with our Terms and Conditions .

Continue your Conversion Rate Optimization Journey

  • Last modified: January 3, 2023
  • Conversion Rate Optimization , User Research

Valentin Radu

Valentin Radu

Omniconvert logo on a black background.

We’re a team of people that want to empower marketers around the world to create marketing campaigns that matter to consumers in a smart way. Meet us at the intersection of creativity, integrity, and development, and let us show you how to optimize your marketing.

Our Software

  • > Book a Demo
  • > Partner Program
  • > Affiliate Program
  • Blog Sitemap
  • Terms and Conditions
  • Privacy & Security
  • Cookies Policy
  • REVEAL Terms and Conditions

2024 Theses Doctoral

Artificial Intelligence vs. Human Coaches: A Mixed Methods Randomized Controlled Experiment on Client Experiences and Outcomes

Barger, Amber

The rise of artificial intelligence (AI) challenges us to explore whether human-to-human relationships can extend to AI, potentially reshaping the future of coaching. The purpose of this study was to examine client perceptions of being coached by a simulated AI coach, who was embodied as a vocally conversational live-motion avatar, compared to client perceptions of a human coach. It explored if and how client ratings of coaching process measures and outcome measures aligned between the two coach treatments. In this mixed methods randomized controlled trial (RCT), 81 graduate students enrolled in the study and identified a personally relevant goal to pursue. The study deployed an alternative-treatments between-subjects design, with one-third of participants receiving coaching from simulated AI coaches, another third engaging with seasoned human coaches, and the rest forming the control group. Both treatment groups had one 60-minute session guided by the CLEAR (contract, listen, explore, action, review) coaching model to support each person to gain clarity about their goal and identify specific behaviors that could help each make progress towards their goal. Quantitative data were captured through three surveys and qualitative input was captured through open-ended survey questions and 27 debrief interviews. The study utilized a Wizard of Oz technique from human-computer interaction research, ingeniously designed to sidestep the rapid obsolescence of technology by simulating an advanced AI coaching experience where participants unknowingly interacted with professional human coaches, enabling the assessment of responses to AI coaching in the absence of fully developed autonomous AI systems. The aim was to glean insights into client reactions to a future, fully autonomous AI with the expert capabilities of a human coach. Contrary to expectations from previous literature, participants did not rate professional human coaches higher than simulated AI coaches in terms of working alliance, session value, or outcomes, which included self-rated competence and goal achievement. In fact, both coached groups made significant progress compared to the control group, with participants convincingly engaging with their respective coaches, as confirmed by a novel believability index. The findings challenge prevailing assumptions about human uniqueness in relation to technology. The rapid advancement of AI suggests a revolutionary shift in coaching, where AI could take on a central and surprisingly effective role, redefining what we thought only human coaches could do and reshaping their role in the age of AI.

  • Adult education
  • Artificial intelligence--Educational applications
  • Graduate students
  • Educational technology--Evaluation
  • Education, Higher--Technological innovations
  • Education, Higher--Effect of technological innovations on

This item is currently under embargo. It will be available starting 2029-05-14.

More About This Work

  • DOI Copy DOI to clipboard

VIDEO

  1. RESEARCH DESIGN IN QUANTITATIVE RESEARCH

  2. WRITING THE CHAPTER 3|| Research Methodology (Research Design and Method)

  3. Quantitative Research Designs 📊🔍: Know Your Options #shorts #research

  4. Quantitative Approach

  5. QUANTITATIVE Research Design: A Comprehensive Guide with Examples #phd #quantitativeresearch

  6. Qualitative vs Quantitative Research Design

COMMENTS

  1. What Is Quantitative Research?

    Quantitative research methods. You can use quantitative research methods for descriptive, correlational or experimental research. In descriptive research, you simply seek an overall summary of your study variables.; In correlational research, you investigate relationships between your study variables.; In experimental research, you systematically examine whether there is a cause-and-effect ...

  2. What is Quantitative Research Design? Definition, Types, Methods and

    Quantitative research design is defined as a research method used in various disciplines, including social sciences, psychology, economics, and market research. It aims to collect and analyze numerical data to answer research questions and test hypotheses. Quantitative research design offers several advantages, including the ability to ...

  3. What Is a Research Design

    Quantitative research example If you want to test the effectiveness of an online teaching method, a quantitative approach is most suitable. You can use this type of research to measure learning outcomes like grades and test scores. It's also possible to use a mixed-methods design that integrates aspects of both approaches.

  4. Quantitative Research

    This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods. Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies.

  5. Research Design

    Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Frequently asked questions. Introduction. Step 1. Step 2.

  6. Quantitative Research

    Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. . High-quality quantitative research is ...

  7. Quantitative Research Methods

    Quantitative research methods. a method of research that relies on measuring variables using a numerical system, analyzing these measurements using any of a variety of statistical models, and reporting relationships and associations among the studied variables. For example, these variables may be test scores or measurements of reaction time.

  8. PDF Quantitative Research Methods

    Chapter 7 • Quantitative Research Methods. 109. 1. While the . literature review. serves as a justification for the research problem regardless of the research type, its role is much more central to the design of a quan-

  9. Quantitative Methods

    Quantitative analysis; Quantitative research methods; Study design. Definition. Quantitative method is the collection and analysis of numerical data to answer scientific research questions. Quantitative method is used to summarize, average, find patterns, make predictions, and test causal associations as well as generalizing results to wider ...

  10. Research Design

    The Sixth Edition of the bestselling Research Design: Qualitative, Quantitative, and Mixed Methods Approaches provides clear and concise instruction for designing research projects or developing research proposals. This user-friendly text walks readers through research methods, from reviewing the literature to writing a research question and stating a hypothesis to designing the study.

  11. Quantitative Methods

    Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques.Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

  12. What is Quantitative Research? Definition, Methods, Types, and Examples

    A mixed methods research design is useful in case of research questions that cannot be answered by either quantitative research or qualitative research alone. However, this method could be more effort- and cost-intensive because of the requirement of more resources.

  13. Quantitative Research Excellence: Study Design and Reliable and Valid

    Quantitative Research Excellence: Study Design and Reliable and Valid Measurement of Variables. Laura J. Duckett, BSN, MS, PhD, ... Quantitative Research for the Qualitative Researcher. 2014. SAGE Research Methods. Entry . ... Sage Research Methods Supercharging research opens in new tab;

  14. Research design: qualitative, quantitative, and mixed methods

    Students, researchers, and practitioners in many fields have relied on Creswells' Research Design: Qualitative, Quantitative, and Mixed Methods Approaches for a long time as their go-to textbook on research design. The sixth edition, published in 2022, builds on the strengths of its predecessors while also addressing some of the challenges and limitations of conducting research in a complex ...

  15. Types of Quantitative Research Methods and Designs

    This is thanks in large part to your strategic research design. As you prepare for your quantitative dissertation research, you'll need to think about structuring your research design. There are several types of quantitative research designs, such as the experimental, comparative or predictive correlational designs.

  16. (PDF) Quantitative Research Designs

    The designs. in this chapter are survey design, descriptive design, correlational design, ex-. perimental design, and causal-comparative design. As we address each research. design, we will learn ...

  17. PDF Introduction to quantitative research

    Mixed-methods research is a flexible approach, where the research design is determined by what we want to find out rather than by any predetermined epistemological position. In mixed-methods research, qualitative or quantitative components can predominate, or both can have equal status. 1.4. Units and variables.

  18. Research Methods Guide: Research Design & Method

    Research design is a plan to answer your research question. A research method is a strategy used to implement that plan. Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively. Which research method should I choose?

  19. Quantitative research

    Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philosophies.. Associated with the natural, applied, formal, and social sciences this research strategy promotes the objective empirical investigation of ...

  20. Quantitative and Qualitative Research

    What is Quantitative Research? Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns.Quantitative research gathers a range of numeric data.

  21. PDF Key Elements of a Research Proposal

    The basic procedure of a quantitative design is: 1. Make your observations about something that is unknown, unexplained, or new. Investigate current theory surrounding your problem or issue. 2. Hypothesize an explanation for those observations. 3. Make a prediction of outcomes based on your hypotheses.

  22. Home

    The fundamental philosophy underlying quantitative research is known as positivism, which is based on the scientific method of research. Salkind, N. J. (2010). Encyclopedia of research design (Vols. 1-0). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781412961288

  23. A Practical Guide to Writing Quantitative and Qualitative Research

    Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes.2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed ...

  24. Research Design: Qualitative, Quantitative, and Mixed Methods

    This bestselling text pioneered the comparison of qualitative, quantitative, and mixed methods research design. For all three approaches, John W. Creswell and new co-author J. David Creswell include a preliminary consideration of philosophical assumptions; key elements of the research process; a review of the literature; an assessment of the use of theory in research applications, and ...

  25. Choosing the Right User Research Method (DDN2-J11)

    Goal. To understand your users and the underlying problem. Methods. Mixture of both qualitative and quantitative methods, such as field studies, diary studies, surveys, and data mining. You have established a direction for your design. Goal. To evaluate your designs and make sure that they adequately address your users' needs.

  26. Data Analysis in Research: Types & Methods

    Overview of Data analysis in research. Data analysis in research is the systematic use of statistical and analytical tools to describe, summarize, and draw conclusions from datasets. This process involves organizing, analyzing, modeling, and transforming data to identify trends, establish connections, and inform decision-making.

  27. Exploring the use of body worn cameras in acute mental health wards: a

    Methods. The study used a mixed-methods design comparing quantitative measures including ward activity and routinely collected incident data at three time-points before during and after the pilot implementation of BWCs on one acute ward and one psychiatric intensive care unit, alongside pre and post pilot qualitative interviews with patients ...

  28. Journal of Methodology of Social Sciences and Humanities (MSSH); 113.no

    Study of the relationship between philosophy, philosophy of social sciences and humanities, methodology and research method; The role of philosophy and methodology of social sciences and humanities in the quantitative and qualitative improvement of the social sciences and humanities; Comparative study of philosophy and methodology of social sciences and humanities and natural sciences; Study ...

  29. Qualitative Research: Definition, Methodology, Limitation, Examples

    Qualitative research is a method focused on understanding human behavior and experiences through non-numerical data. Examples of qualitative research include: One-on-one interviews, Focus groups, Ethnographic research, Case studies, Record keeping, Qualitative observations. In this article, we'll provide tips and tricks on how to use ...

  30. Artificial Intelligence vs. Human Coaches: A Mixed Methods Randomized

    In this mixed methods randomized controlled trial (RCT), 81 graduate students enrolled in the study and identified a personally relevant goal to pursue. ... Quantitative data were captured through three surveys and qualitative input was captured through open-ended survey questions and 27 debrief interviews. The study utilized a Wizard of Oz ...