Logo for Boise State Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Writing the Research Paper

Writing in a formal, academic, and technical manner can prove a difficult transition for clinicians turned researchers; however, there are several ways to improve your professional writing skills.  This chapter should be considered a collection of tools to consider as you work to articulate and disseminate your research.

Chapter 7: Learning Objectives

This is it! You’re ready to tell the world of the work you’ve done. As you prepare to write your research paper, you’ll be able to

  • Discuss the most general components of a research paper
  • Articulate the importance of framing your work for the reader using a template based on the research approach
  • Identify the major components of a manuscript describing original research
  • Identify the major components of a manuscript describing quality improvement projects
  • Contrast the specifications of guidelines and protocols
  • Identify the major components of a narrative review

Guiding Principles

Although it is wise to identify a potential journal or like avenue as you begin to write up you research, this is not always feasible. For this reason, it is a good idea to have an adequate understanding of the general expectations of what is required of written research articles and manuscripts. Here are some things to keep in mind:

Consider the articles you read

As you begin to research potential research interests, pay close attention to the style of writing found in peer-reviewed and academic journals.  You will notice that the ‘tone’ of ‘voice’ is often formal and rarely uses the first-person narrative.  You will be expected to develop writing of this caliber in order to be published in a reputable peer-reviewed forum.  One of the most difficult concepts for novice researchers to understand is that professional or technical writing is very different from casual or conversational writing.  There is little room for anecdotes, opinions, or overly descriptive narratives.  Keep your writing succinct and focused.

Keep it simple, silly! (KISS)

Recall when you were first introduced to writing a paper in an early English Composition course.  It is likely that you were told that the key components of a paper are the introduction, body, and conclusion.  This is truly the foundational structure of any good paper.  Consider the following outline for your writing assignments:

Introduction

  • Brief overview of the topic which identifies the gap of understanding about a particular topic that you hope to address (why is it important?)
  • Statement of problem (what issue are you going to address?)
  • Purpose statement/thesis statement (what is the objective of this paper?)

Typically the body of the paper will be broken down into themes or elements outlined in the introduction.  Occasionally rather than themes or topics to be addressed, the ‘body’ of the paper will have specific components such as a literature review, methodology, data analysis, discussion, and/or recommendation section.  Each of these sections may have specific requirements within that section. Later in this chapter, you will be introduced to specific requirements of different types of research papers.

The body of any paper is the ‘meat and potatoes’ of the work.  That is, this is the section wherein you both present and explain your ideas in support of the purpose of the paper (described in the introduction).  The body of your paper, regardless of specific structure, is where the majority of your evidentiary base should be included.  That is, many of the statements you make in these sections will require substantiation from outside resources.  It is vital to include appropriate citations of all references used. To save yourself time, cite and reference correctly as you write. Doing so will help ensure that you stay organized as your work evolves.

Sections such as methods or data analyses, will not require as much substantiation and should be considered very ‘cut and dry’. That is, there will be little to no discussion or interpretation of the evidence here. Results sections, similarly, should be focused on the presentation of results specific to your investigation, including statistical analyses. When reporting results of your work consider the format and whether it makes sense to summarize results in a table, figure, or appendix. The appropriate method will depend on both the type and amount of information that you are trying to convey.

The discussion section is the point at which you should frame your results in the context of your interpretation of the existing literature and how your work addresses the gap in knowledge. You’ll work to substantiate your interpretation by utilizing references to present evidence to support your rational. Pay close attention to your approach as you discuss your results and the impact of your work. Be careful not to make declarative statements if your data does not support a cause-and-effect relationship. Additionally, be careful not to draw inference as a result of bias. That is, use caution in skewing the evidence to support your hypothesis.

The conclusion is exactly that.  This is your opportunity to wrap your thoughts up succinctly.  A good conclusion will remind the reader of the point or focus of the paper, reiterate the arguments outlined in the body as well as summarize any discussion or recommendations posed in those respective sections, and articulate what the content of the paper added to the knowledge base of the subject.  This is not a time to introduce new arguments, concepts, or evidence.  The reader should be able to finish the paper understanding the purpose of the paper, the main arguments, and the impact of the work on the subject.

References should be cited correctly in text as well as appropriately formatted at the end of each body of work. The format of your references will depend on the guidelines required of the intended journal or forum you’re submitting to. For example, papers written utilizing the American Psychological Association (APA) formatting standards will include reference pages which are organized on a separate page, titled ‘References’, and organized alphabetically by author surname. If you’re not quite sure of where you’ll be submitting your paper for publication, it may be best to write using APA format; because the references are listed in ascending alphabetical order, adding or removing references during the revision process will be minimally impactful on the designation of subsequent references. Altering your references can then be done once you identify a method of dissemination and review specific guidelines.

Understanding how to present your work can be difficult. It’s one thing to plan and do the research; it’s quite another to put it down on paper in a logical and articulate way. As we discussed in chapters 1 and 2, planning is essential to the success of your research. Similarly, planning the layout of your manuscript will help ensure that you stay both organized and focused. Although most articles can be generalized as having an introduction, body, and conclusion; the specific components within each of those sections varies depending on the approach to research.

Original Research

Although many journals may outline specific requirements for how your manuscript or research paper is to be formatted, there are some generally acceptable formats. One of the most generalizable formats is referred to as IMRaD. IMRaD is an acronym and includes the following elements:

  • Introduction- 25%
  • Methods- 25%
  • Results- 35%
  • Discussion/conclusion- 15%
  • Clearly state the focus for the work. Provide a brief overview of the issue and the gap in knowledge identified; including both a problem and purpose statement in the context of what is currently understood about the topic. This is where you ‘reel’ the reader in and also highlight the important themes which are consistently addressed in the existing literature.
  • General and specific approaches
  • Participant selection/randomization
  • Instrumentation/measurements utilized
  • Here is where you report specific findings and outcomes of your work. There should be very little discussion in this section. Rather, you should present your results and comment, briefly, on how this may relate to the existing literature and state the bottom line. That is, what do these findings suggest. These succinct comments should frame the lens of the discussion section.
  • In the discussion section you can further elaborate on your interpretation, based in the evidence, of how your findings relate to what other researchers have found. You can discuss flaws in your work as well as suggestions for direction of future research. You should address each of the main points you presented in your introduction section(s).

QI Projects

When presenting your QI project; a systematic reporting tool, such as the SQUIRE method , is helpful to ensure that you appropriately present the information in a way that both adds to the understanding of the problem as well as a descriptive approach to solving the issue.

SQUIRE Method

Titling your QI project

  • Your title should indicate that the project addresses a specific initiative to improve healthcare.

Example of QI Project title

Quality Improvement Initiative to Standardize High Flow Nasal Cannula for Bronchiolitis: Decreases Hospital and Intensive Care Stay

  • Addresses specific initiative to improve healthcare
  • Directly identifies the bounds and focus of the project
  • Provide enough information to help with searching and indexing of your work
  • Summarize all key findings in the format required by the publication. Typical sections include background (including statement of the problem), methods, intervention, results, and conclusion
  • Include a description on the nature and significance of the problem
  • Summary of what is currently understood about the problem
  • Overview of framework, model, concepts and/or theory used to explain the problem. Include an assumptions, delimitations, or definitions used to both describe the problem as well as develop the intervention and why the intervention was intended to work.
  • Describe the purpose of the project
  • Describe the contextual elements relevant to both the problem and intervention (e.g. environmental factors contributing to the problem)
  • Include team-based approach, if applicable
  • Describe the approach used to assess the impact of the intervention as well as what approach was used to evaluate/assess the intervention
  • What tools did you use to study both the process and intervention and why?
  • What tools are in place for ongoing assessment of efficacy of the project?
  • How is completeness and accuracy of the data measured?
  • Describe the quantitative/qualitative methods used to draw inference from the data collected
  • Describe how ethical considerations were addressed and whether the project was overseen by an Institutional Review Board (IRB)
  • Initial steps of intervention and evolution over time; including modifications to the intervention or project
  • Details of the process measures and outcome
  • Key findings including relevance to the rational and specific aims
  • Strengths of the projects
  • Nature of the association between intervention and outcome
  • Comparison of the findings with those of other publications
  • Impact of the project
  • Reasons for differences between observed and anticipated outcomes; include contextual rationale
  • Costs and strategic implications
  • Limits to the generalizability of the work
  • Factors that may have limited internal validity (e.g. confounding variables, bias, design)
  • Efforts made to minimize or adjust for limitations
  • Usefulness of the work
  • Sustainability
  • Potential for application to other contexts
  • Implications for practice and further study
  • Suggested next steps
  • This section would be included if you received funding for the projects.

Narrative Reviews

As mentioned in chapter 2, development of either guidelines or protocols is an intensive process which often requires a systematic team approach to ensure that the scope and purpose of the work is as generalizable as possible. The best approach for the development of guidelines can be found by reviewing the World Health Organization handbook for guideline development .

Presenting a narrative review of a topic is an excellent way to contribute to the knowledge base on a particular subject as well as to provide framework for development of a protocol or guideline. The elements included in presentation of a narrative review are not all that different from those of traditional research studies; however, there are some notable differences. Here is a brief outline of what should be included in a quality narrative review, adapted from Green, Johnson, and Adams (2006) and Ferarri (2015):

  • Objective: State the purpose of the paper
  • Background: Describe why the paper is being written; include problem statement and/or research question
  • Methods: Include methods used to conduct the review; including those used to evaluate articles for inclusion into your work
  • Discussion: Frame the findings of the review in the context of the problem
  • Conclusion: State what new information your work contributes as a result of your review and synthesis
  • Key words: List MeSH terms and words that may help organize and/or locate your work
  • Clearly state the focus for the work. Provide a brief overview of the issue and the gap in knowledge identified; including both a problem and purpose statement
  • Provide an overview of how information related to the review was located. This includes what terms were searched and where as well as why studies were included in your review. Delimiting your search is important to describe the scope of the review
  • Themes or constructs should be identified throughout the review of the literature and arranged in a way such that the discussion of the theme and the link to the evidence should directly address the purpose of your inquiry
  • What sets a review apart from an annotated bibliography is synthesis of the evidence around major points identified consistently throughout the research (i.e. themes). Both consensus and diverging approaches should be included in the discussion of the evidence. This should not be considered simply a comparison of the existing evidence, but should be framed through the lens of the author’s interpretation of that evidence.
  • Tie back to the purpose as well as the major conclusions identified in the review. No new information should be discussed here, apart from suggestions for future research opportunities

An extremely important part of disseminating your work is ensuring that you have correctly attributed thoughts and content that you did not create. Depending on the nature of your research, discipline, or intended publication, the format by which you list your references or outline resources utilized may differ. Regardless of referencing formatting guidelines, it is imperative to keep your references organized as you draft different iterations of your work. For example, it may be easier to draft your work utilizing American Psychological Association (APA) formatting guidelines, which arrange references by author’s last name, in ascending alphabetical order, than in other formats which require that references be numbered in order of appearance in the text. As you add, delete, or rearrange references within the text of your manuscript, it may be both difficult and time consuming to constantly re-number each of your references. Note : Depending on the reference guidelines for your intended journal, you may be required to list the abbreviated names of journals. Finding this information can be difficult. Consider this resource for locating and identifying how best to list journal titles within a reference.

Key Takeaways

  • Identifying an appropriate outline for the research approach you selected is essential to developing a publishable manuscript
  • Academic writing is formal in both voice and tone
  • Academic writing is technical
  • Refrain from the use of the first person narratives, including anecdotes, or interjecting your unsubstantiated opinion
  • All research papers have an introduction, body, and conclusion
  • Specific components of the introduction and body will vary depending on the approach
  • Proper citation, referencing, or attributing must be included in all work

Green, B.N., Johnson, C.D., & Adams, A. (2006). Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. Journal of Chiropractic Medicine, 3 (5), 101-117.

Ferrari, R. (2015). Writing narrative style literature reviews. The European Medical Writers Association, 2 4(4), 230-235. doi: 10.1179/2047480615Z.000000000329

SQUIRE. (2017). Explanation and elaboration of SQUIRE 2.0 guidelines . SQUIRE. http://www.squire-statement.org/index.cfm?fuseaction=Page.ViewPage&pageId=504

World Health Organization. (2020). WHO handbook for guideline development, 2nd Ed . World Health Organization. https://apps.who.int/iris/handle/10665/145714

Practical Research: A Basic Guide to Planning, Doing, and Writing Copyright © by megankoster. All Rights Reserved.

Share This Book

Grad Coach

How To Write A Research Paper

Step-By-Step Tutorial With Examples + FREE Template

By: Derek Jansen (MBA) | Expert Reviewer: Dr Eunice Rautenbach | March 2024

For many students, crafting a strong research paper from scratch can feel like a daunting task – and rightly so! In this post, we’ll unpack what a research paper is, what it needs to do , and how to write one – in three easy steps. 🙂 

Overview: Writing A Research Paper

What (exactly) is a research paper.

  • How to write a research paper
  • Stage 1 : Topic & literature search
  • Stage 2 : Structure & outline
  • Stage 3 : Iterative writing
  • Key takeaways

Let’s start by asking the most important question, “ What is a research paper? ”.

Simply put, a research paper is a scholarly written work where the writer (that’s you!) answers a specific question (this is called a research question ) through evidence-based arguments . Evidence-based is the keyword here. In other words, a research paper is different from an essay or other writing assignments that draw from the writer’s personal opinions or experiences. With a research paper, it’s all about building your arguments based on evidence (we’ll talk more about that evidence a little later).

Now, it’s worth noting that there are many different types of research papers , including analytical papers (the type I just described), argumentative papers, and interpretative papers. Here, we’ll focus on analytical papers , as these are some of the most common – but if you’re keen to learn about other types of research papers, be sure to check out the rest of the blog .

With that basic foundation laid, let’s get down to business and look at how to write a research paper .

Research Paper Template

Overview: The 3-Stage Process

While there are, of course, many potential approaches you can take to write a research paper, there are typically three stages to the writing process. So, in this tutorial, we’ll present a straightforward three-step process that we use when working with students at Grad Coach.

These three steps are:

  • Finding a research topic and reviewing the existing literature
  • Developing a provisional structure and outline for your paper, and
  • Writing up your initial draft and then refining it iteratively

Let’s dig into each of these.

Need a helping hand?

example of practical research paper

Step 1: Find a topic and review the literature

As we mentioned earlier, in a research paper, you, as the researcher, will try to answer a question . More specifically, that’s called a research question , and it sets the direction of your entire paper. What’s important to understand though is that you’ll need to answer that research question with the help of high-quality sources – for example, journal articles, government reports, case studies, and so on. We’ll circle back to this in a minute.

The first stage of the research process is deciding on what your research question will be and then reviewing the existing literature (in other words, past studies and papers) to see what they say about that specific research question. In some cases, your professor may provide you with a predetermined research question (or set of questions). However, in many cases, you’ll need to find your own research question within a certain topic area.

Finding a strong research question hinges on identifying a meaningful research gap – in other words, an area that’s lacking in existing research. There’s a lot to unpack here, so if you wanna learn more, check out the plain-language explainer video below.

Once you’ve figured out which question (or questions) you’ll attempt to answer in your research paper, you’ll need to do a deep dive into the existing literature – this is called a “ literature search ”. Again, there are many ways to go about this, but your most likely starting point will be Google Scholar .

If you’re new to Google Scholar, think of it as Google for the academic world. You can start by simply entering a few different keywords that are relevant to your research question and it will then present a host of articles for you to review. What you want to pay close attention to here is the number of citations for each paper – the more citations a paper has, the more credible it is (generally speaking – there are some exceptions, of course).

how to use google scholar

Ideally, what you’re looking for are well-cited papers that are highly relevant to your topic. That said, keep in mind that citations are a cumulative metric , so older papers will often have more citations than newer papers – just because they’ve been around for longer. So, don’t fixate on this metric in isolation – relevance and recency are also very important.

Beyond Google Scholar, you’ll also definitely want to check out academic databases and aggregators such as Science Direct, PubMed, JStor and so on. These will often overlap with the results that you find in Google Scholar, but they can also reveal some hidden gems – so, be sure to check them out.

Once you’ve worked your way through all the literature, you’ll want to catalogue all this information in some sort of spreadsheet so that you can easily recall who said what, when and within what context. If you’d like, we’ve got a free literature spreadsheet that helps you do exactly that.

Don’t fixate on an article’s citation count in isolation - relevance (to your research question) and recency are also very important.

Step 2: Develop a structure and outline

With your research question pinned down and your literature digested and catalogued, it’s time to move on to planning your actual research paper .

It might sound obvious, but it’s really important to have some sort of rough outline in place before you start writing your paper. So often, we see students eagerly rushing into the writing phase, only to land up with a disjointed research paper that rambles on in multiple

Now, the secret here is to not get caught up in the fine details . Realistically, all you need at this stage is a bullet-point list that describes (in broad strokes) what you’ll discuss and in what order. It’s also useful to remember that you’re not glued to this outline – in all likelihood, you’ll chop and change some sections once you start writing, and that’s perfectly okay. What’s important is that you have some sort of roadmap in place from the start.

You need to have a rough outline in place before you start writing your paper - or you’ll end up with a disjointed research paper that rambles on.

At this stage you might be wondering, “ But how should I structure my research paper? ”. Well, there’s no one-size-fits-all solution here, but in general, a research paper will consist of a few relatively standardised components:

  • Introduction
  • Literature review
  • Methodology

Let’s take a look at each of these.

First up is the introduction section . As the name suggests, the purpose of the introduction is to set the scene for your research paper. There are usually (at least) four ingredients that go into this section – these are the background to the topic, the research problem and resultant research question , and the justification or rationale. If you’re interested, the video below unpacks the introduction section in more detail. 

The next section of your research paper will typically be your literature review . Remember all that literature you worked through earlier? Well, this is where you’ll present your interpretation of all that content . You’ll do this by writing about recent trends, developments, and arguments within the literature – but more specifically, those that are relevant to your research question . The literature review can oftentimes seem a little daunting, even to seasoned researchers, so be sure to check out our extensive collection of literature review content here .

With the introduction and lit review out of the way, the next section of your paper is the research methodology . In a nutshell, the methodology section should describe to your reader what you did (beyond just reviewing the existing literature) to answer your research question. For example, what data did you collect, how did you collect that data, how did you analyse that data and so on? For each choice, you’ll also need to justify why you chose to do it that way, and what the strengths and weaknesses of your approach were.

Now, it’s worth mentioning that for some research papers, this aspect of the project may be a lot simpler . For example, you may only need to draw on secondary sources (in other words, existing data sets). In some cases, you may just be asked to draw your conclusions from the literature search itself (in other words, there may be no data analysis at all). But, if you are required to collect and analyse data, you’ll need to pay a lot of attention to the methodology section. The video below provides an example of what the methodology section might look like.

By this stage of your paper, you will have explained what your research question is, what the existing literature has to say about that question, and how you analysed additional data to try to answer your question. So, the natural next step is to present your analysis of that data . This section is usually called the “results” or “analysis” section and this is where you’ll showcase your findings.

Depending on your school’s requirements, you may need to present and interpret the data in one section – or you might split the presentation and the interpretation into two sections. In the latter case, your “results” section will just describe the data, and the “discussion” is where you’ll interpret that data and explicitly link your analysis back to your research question. If you’re not sure which approach to take, check in with your professor or take a look at past papers to see what the norms are for your programme.

Alright – once you’ve presented and discussed your results, it’s time to wrap it up . This usually takes the form of the “ conclusion ” section. In the conclusion, you’ll need to highlight the key takeaways from your study and close the loop by explicitly answering your research question. Again, the exact requirements here will vary depending on your programme (and you may not even need a conclusion section at all) – so be sure to check with your professor if you’re unsure.

Step 3: Write and refine

Finally, it’s time to get writing. All too often though, students hit a brick wall right about here… So, how do you avoid this happening to you?

Well, there’s a lot to be said when it comes to writing a research paper (or any sort of academic piece), but we’ll share three practical tips to help you get started.

First and foremost , it’s essential to approach your writing as an iterative process. In other words, you need to start with a really messy first draft and then polish it over multiple rounds of editing. Don’t waste your time trying to write a perfect research paper in one go. Instead, take the pressure off yourself by adopting an iterative approach.

Secondly , it’s important to always lean towards critical writing , rather than descriptive writing. What does this mean? Well, at the simplest level, descriptive writing focuses on the “ what ”, while critical writing digs into the “ so what ” – in other words, the implications . If you’re not familiar with these two types of writing, don’t worry! You can find a plain-language explanation here.

Last but not least, you’ll need to get your referencing right. Specifically, you’ll need to provide credible, correctly formatted citations for the statements you make. We see students making referencing mistakes all the time and it costs them dearly. The good news is that you can easily avoid this by using a simple reference manager . If you don’t have one, check out our video about Mendeley, an easy (and free) reference management tool that you can start using today.

Recap: Key Takeaways

We’ve covered a lot of ground here. To recap, the three steps to writing a high-quality research paper are:

  • To choose a research question and review the literature
  • To plan your paper structure and draft an outline
  • To take an iterative approach to writing, focusing on critical writing and strong referencing

Remember, this is just a b ig-picture overview of the research paper development process and there’s a lot more nuance to unpack. So, be sure to grab a copy of our free research paper template to learn more about how to write a research paper.

You Might Also Like:

Referencing in Word

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Yale J Biol Med
  • v.84(3); 2011 Sep

Logo of yjbm

Focus: Education — Career Advice

How to write your first research paper.

Writing a research manuscript is an intimidating process for many novice writers in the sciences. One of the stumbling blocks is the beginning of the process and creating the first draft. This paper presents guidelines on how to initiate the writing process and draft each section of a research manuscript. The paper discusses seven rules that allow the writer to prepare a well-structured and comprehensive manuscript for a publication submission. In addition, the author lists different strategies for successful revision. Each of those strategies represents a step in the revision process and should help the writer improve the quality of the manuscript. The paper could be considered a brief manual for publication.

It is late at night. You have been struggling with your project for a year. You generated an enormous amount of interesting data. Your pipette feels like an extension of your hand, and running western blots has become part of your daily routine, similar to brushing your teeth. Your colleagues think you are ready to write a paper, and your lab mates tease you about your “slow” writing progress. Yet days pass, and you cannot force yourself to sit down to write. You have not written anything for a while (lab reports do not count), and you feel you have lost your stamina. How does the writing process work? How can you fit your writing into a daily schedule packed with experiments? What section should you start with? What distinguishes a good research paper from a bad one? How should you revise your paper? These and many other questions buzz in your head and keep you stressed. As a result, you procrastinate. In this paper, I will discuss the issues related to the writing process of a scientific paper. Specifically, I will focus on the best approaches to start a scientific paper, tips for writing each section, and the best revision strategies.

1. Schedule your writing time in Outlook

Whether you have written 100 papers or you are struggling with your first, starting the process is the most difficult part unless you have a rigid writing schedule. Writing is hard. It is a very difficult process of intense concentration and brain work. As stated in Hayes’ framework for the study of writing: “It is a generative activity requiring motivation, and it is an intellectual activity requiring cognitive processes and memory” [ 1 ]. In his book How to Write a Lot: A Practical Guide to Productive Academic Writing , Paul Silvia says that for some, “it’s easier to embalm the dead than to write an article about it” [ 2 ]. Just as with any type of hard work, you will not succeed unless you practice regularly. If you have not done physical exercises for a year, only regular workouts can get you into good shape again. The same kind of regular exercises, or I call them “writing sessions,” are required to be a productive author. Choose from 1- to 2-hour blocks in your daily work schedule and consider them as non-cancellable appointments. When figuring out which blocks of time will be set for writing, you should select the time that works best for this type of work. For many people, mornings are more productive. One Yale University graduate student spent a semester writing from 8 a.m. to 9 a.m. when her lab was empty. At the end of the semester, she was amazed at how much she accomplished without even interrupting her regular lab hours. In addition, doing the hardest task first thing in the morning contributes to the sense of accomplishment during the rest of the day. This positive feeling spills over into our work and life and has a very positive effect on our overall attitude.

Rule 1: Create regular time blocks for writing as appointments in your calendar and keep these appointments.

2. start with an outline.

Now that you have scheduled time, you need to decide how to start writing. The best strategy is to start with an outline. This will not be an outline that you are used to, with Roman numerals for each section and neat parallel listing of topic sentences and supporting points. This outline will be similar to a template for your paper. Initially, the outline will form a structure for your paper; it will help generate ideas and formulate hypotheses. Following the advice of George M. Whitesides, “. . . start with a blank piece of paper, and write down, in any order, all important ideas that occur to you concerning the paper” [ 3 ]. Use Table 1 as a starting point for your outline. Include your visuals (figures, tables, formulas, equations, and algorithms), and list your findings. These will constitute the first level of your outline, which will eventually expand as you elaborate.

The next stage is to add context and structure. Here you will group all your ideas into sections: Introduction, Methods, Results, and Discussion/Conclusion ( Table 2 ). This step will help add coherence to your work and sift your ideas.

Now that you have expanded your outline, you are ready for the next step: discussing the ideas for your paper with your colleagues and mentor. Many universities have a writing center where graduate students can schedule individual consultations and receive assistance with their paper drafts. Getting feedback during early stages of your draft can save a lot of time. Talking through ideas allows people to conceptualize and organize thoughts to find their direction without wasting time on unnecessary writing. Outlining is the most effective way of communicating your ideas and exchanging thoughts. Moreover, it is also the best stage to decide to which publication you will submit the paper. Many people come up with three choices and discuss them with their mentors and colleagues. Having a list of journal priorities can help you quickly resubmit your paper if your paper is rejected.

Rule 2: Create a detailed outline and discuss it with your mentor and peers.

3. continue with drafts.

After you get enough feedback and decide on the journal you will submit to, the process of real writing begins. Copy your outline into a separate file and expand on each of the points, adding data and elaborating on the details. When you create the first draft, do not succumb to the temptation of editing. Do not slow down to choose a better word or better phrase; do not halt to improve your sentence structure. Pour your ideas into the paper and leave revision and editing for later. As Paul Silvia explains, “Revising while you generate text is like drinking decaffeinated coffee in the early morning: noble idea, wrong time” [ 2 ].

Many students complain that they are not productive writers because they experience writer’s block. Staring at an empty screen is frustrating, but your screen is not really empty: You have a template of your article, and all you need to do is fill in the blanks. Indeed, writer’s block is a logical fallacy for a scientist ― it is just an excuse to procrastinate. When scientists start writing a research paper, they already have their files with data, lab notes with materials and experimental designs, some visuals, and tables with results. All they need to do is scrutinize these pieces and put them together into a comprehensive paper.

3.1. Starting with Materials and Methods

If you still struggle with starting a paper, then write the Materials and Methods section first. Since you have all your notes, it should not be problematic for you to describe the experimental design and procedures. Your most important goal in this section is to be as explicit as possible by providing enough detail and references. In the end, the purpose of this section is to allow other researchers to evaluate and repeat your work. So do not run into the same problems as the writers of the sentences in (1):

1a. Bacteria were pelleted by centrifugation. 1b. To isolate T cells, lymph nodes were collected.

As you can see, crucial pieces of information are missing: the speed of centrifuging your bacteria, the time, and the temperature in (1a); the source of lymph nodes for collection in (b). The sentences can be improved when information is added, as in (2a) and (2b), respectfully:

2a. Bacteria were pelleted by centrifugation at 3000g for 15 min at 25°C. 2b. To isolate T cells, mediastinal and mesenteric lymph nodes from Balb/c mice were collected at day 7 after immunization with ovabumin.

If your method has previously been published and is well-known, then you should provide only the literature reference, as in (3a). If your method is unpublished, then you need to make sure you provide all essential details, as in (3b).

3a. Stem cells were isolated, according to Johnson [23]. 3b. Stem cells were isolated using biotinylated carbon nanotubes coated with anti-CD34 antibodies.

Furthermore, cohesion and fluency are crucial in this section. One of the malpractices resulting in disrupted fluency is switching from passive voice to active and vice versa within the same paragraph, as shown in (4). This switching misleads and distracts the reader.

4. Behavioral computer-based experiments of Study 1 were programmed by using E-Prime. We took ratings of enjoyment, mood, and arousal as the patients listened to preferred pleasant music and unpreferred music by using Visual Analogue Scales (SI Methods). The preferred and unpreferred status of the music was operationalized along a continuum of pleasantness [ 4 ].

The problem with (4) is that the reader has to switch from the point of view of the experiment (passive voice) to the point of view of the experimenter (active voice). This switch causes confusion about the performer of the actions in the first and the third sentences. To improve the coherence and fluency of the paragraph above, you should be consistent in choosing the point of view: first person “we” or passive voice [ 5 ]. Let’s consider two revised examples in (5).

5a. We programmed behavioral computer-based experiments of Study 1 by using E-Prime. We took ratings of enjoyment, mood, and arousal by using Visual Analogue Scales (SI Methods) as the patients listened to preferred pleasant music and unpreferred music. We operationalized the preferred and unpreferred status of the music along a continuum of pleasantness. 5b. Behavioral computer-based experiments of Study 1 were programmed by using E-Prime. Ratings of enjoyment, mood, and arousal were taken as the patients listened to preferred pleasant music and unpreferred music by using Visual Analogue Scales (SI Methods). The preferred and unpreferred status of the music was operationalized along a continuum of pleasantness.

If you choose the point of view of the experimenter, then you may end up with repetitive “we did this” sentences. For many readers, paragraphs with sentences all beginning with “we” may also sound disruptive. So if you choose active sentences, you need to keep the number of “we” subjects to a minimum and vary the beginnings of the sentences [ 6 ].

Interestingly, recent studies have reported that the Materials and Methods section is the only section in research papers in which passive voice predominantly overrides the use of the active voice [ 5 , 7 , 8 , 9 ]. For example, Martínez shows a significant drop in active voice use in the Methods sections based on the corpus of 1 million words of experimental full text research articles in the biological sciences [ 7 ]. According to the author, the active voice patterned with “we” is used only as a tool to reveal personal responsibility for the procedural decisions in designing and performing experimental work. This means that while all other sections of the research paper use active voice, passive voice is still the most predominant in Materials and Methods sections.

Writing Materials and Methods sections is a meticulous and time consuming task requiring extreme accuracy and clarity. This is why when you complete your draft, you should ask for as much feedback from your colleagues as possible. Numerous readers of this section will help you identify the missing links and improve the technical style of this section.

Rule 3: Be meticulous and accurate in describing the Materials and Methods. Do not change the point of view within one paragraph.

3.2. writing results section.

For many authors, writing the Results section is more intimidating than writing the Materials and Methods section . If people are interested in your paper, they are interested in your results. That is why it is vital to use all your writing skills to objectively present your key findings in an orderly and logical sequence using illustrative materials and text.

Your Results should be organized into different segments or subsections where each one presents the purpose of the experiment, your experimental approach, data including text and visuals (tables, figures, schematics, algorithms, and formulas), and data commentary. For most journals, your data commentary will include a meaningful summary of the data presented in the visuals and an explanation of the most significant findings. This data presentation should not repeat the data in the visuals, but rather highlight the most important points. In the “standard” research paper approach, your Results section should exclude data interpretation, leaving it for the Discussion section. However, interpretations gradually and secretly creep into research papers: “Reducing the data, generalizing from the data, and highlighting scientific cases are all highly interpretive processes. It should be clear by now that we do not let the data speak for themselves in research reports; in summarizing our results, we interpret them for the reader” [ 10 ]. As a result, many journals including the Journal of Experimental Medicine and the Journal of Clinical Investigation use joint Results/Discussion sections, where results are immediately followed by interpretations.

Another important aspect of this section is to create a comprehensive and supported argument or a well-researched case. This means that you should be selective in presenting data and choose only those experimental details that are essential for your reader to understand your findings. You might have conducted an experiment 20 times and collected numerous records, but this does not mean that you should present all those records in your paper. You need to distinguish your results from your data and be able to discard excessive experimental details that could distract and confuse the reader. However, creating a picture or an argument should not be confused with data manipulation or falsification, which is a willful distortion of data and results. If some of your findings contradict your ideas, you have to mention this and find a plausible explanation for the contradiction.

In addition, your text should not include irrelevant and peripheral information, including overview sentences, as in (6).

6. To show our results, we first introduce all components of experimental system and then describe the outcome of infections.

Indeed, wordiness convolutes your sentences and conceals your ideas from readers. One common source of wordiness is unnecessary intensifiers. Adverbial intensifiers such as “clearly,” “essential,” “quite,” “basically,” “rather,” “fairly,” “really,” and “virtually” not only add verbosity to your sentences, but also lower your results’ credibility. They appeal to the reader’s emotions but lower objectivity, as in the common examples in (7):

7a. Table 3 clearly shows that … 7b. It is obvious from figure 4 that …

Another source of wordiness is nominalizations, i.e., nouns derived from verbs and adjectives paired with weak verbs including “be,” “have,” “do,” “make,” “cause,” “provide,” and “get” and constructions such as “there is/are.”

8a. We tested the hypothesis that there is a disruption of membrane asymmetry. 8b. In this paper we provide an argument that stem cells repopulate injured organs.

In the sentences above, the abstract nominalizations “disruption” and “argument” do not contribute to the clarity of the sentences, but rather clutter them with useless vocabulary that distracts from the meaning. To improve your sentences, avoid unnecessary nominalizations and change passive verbs and constructions into active and direct sentences.

9a. We tested the hypothesis that the membrane asymmetry is disrupted. 9b. In this paper we argue that stem cells repopulate injured organs.

Your Results section is the heart of your paper, representing a year or more of your daily research. So lead your reader through your story by writing direct, concise, and clear sentences.

Rule 4: Be clear, concise, and objective in describing your Results.

3.3. now it is time for your introduction.

Now that you are almost half through drafting your research paper, it is time to update your outline. While describing your Methods and Results, many of you diverged from the original outline and re-focused your ideas. So before you move on to create your Introduction, re-read your Methods and Results sections and change your outline to match your research focus. The updated outline will help you review the general picture of your paper, the topic, the main idea, and the purpose, which are all important for writing your introduction.

The best way to structure your introduction is to follow the three-move approach shown in Table 3 .

Adapted from Swales and Feak [ 11 ].

The moves and information from your outline can help to create your Introduction efficiently and without missing steps. These moves are traffic signs that lead the reader through the road of your ideas. Each move plays an important role in your paper and should be presented with deep thought and care. When you establish the territory, you place your research in context and highlight the importance of your research topic. By finding the niche, you outline the scope of your research problem and enter the scientific dialogue. The final move, “occupying the niche,” is where you explain your research in a nutshell and highlight your paper’s significance. The three moves allow your readers to evaluate their interest in your paper and play a significant role in the paper review process, determining your paper reviewers.

Some academic writers assume that the reader “should follow the paper” to find the answers about your methodology and your findings. As a result, many novice writers do not present their experimental approach and the major findings, wrongly believing that the reader will locate the necessary information later while reading the subsequent sections [ 5 ]. However, this “suspense” approach is not appropriate for scientific writing. To interest the reader, scientific authors should be direct and straightforward and present informative one-sentence summaries of the results and the approach.

Another problem is that writers understate the significance of the Introduction. Many new researchers mistakenly think that all their readers understand the importance of the research question and omit this part. However, this assumption is faulty because the purpose of the section is not to evaluate the importance of the research question in general. The goal is to present the importance of your research contribution and your findings. Therefore, you should be explicit and clear in describing the benefit of the paper.

The Introduction should not be long. Indeed, for most journals, this is a very brief section of about 250 to 600 words, but it might be the most difficult section due to its importance.

Rule 5: Interest your reader in the Introduction section by signalling all its elements and stating the novelty of the work.

3.4. discussion of the results.

For many scientists, writing a Discussion section is as scary as starting a paper. Most of the fear comes from the variation in the section. Since every paper has its unique results and findings, the Discussion section differs in its length, shape, and structure. However, some general principles of writing this section still exist. Knowing these rules, or “moves,” can change your attitude about this section and help you create a comprehensive interpretation of your results.

The purpose of the Discussion section is to place your findings in the research context and “to explain the meaning of the findings and why they are important, without appearing arrogant, condescending, or patronizing” [ 11 ]. The structure of the first two moves is almost a mirror reflection of the one in the Introduction. In the Introduction, you zoom in from general to specific and from the background to your research question; in the Discussion section, you zoom out from the summary of your findings to the research context, as shown in Table 4 .

Adapted from Swales and Feak and Hess [ 11 , 12 ].

The biggest challenge for many writers is the opening paragraph of the Discussion section. Following the moves in Table 1 , the best choice is to start with the study’s major findings that provide the answer to the research question in your Introduction. The most common starting phrases are “Our findings demonstrate . . .,” or “In this study, we have shown that . . .,” or “Our results suggest . . .” In some cases, however, reminding the reader about the research question or even providing a brief context and then stating the answer would make more sense. This is important in those cases where the researcher presents a number of findings or where more than one research question was presented. Your summary of the study’s major findings should be followed by your presentation of the importance of these findings. One of the most frequent mistakes of the novice writer is to assume the importance of his findings. Even if the importance is clear to you, it may not be obvious to your reader. Digesting the findings and their importance to your reader is as crucial as stating your research question.

Another useful strategy is to be proactive in the first move by predicting and commenting on the alternative explanations of the results. Addressing potential doubts will save you from painful comments about the wrong interpretation of your results and will present you as a thoughtful and considerate researcher. Moreover, the evaluation of the alternative explanations might help you create a logical step to the next move of the discussion section: the research context.

The goal of the research context move is to show how your findings fit into the general picture of the current research and how you contribute to the existing knowledge on the topic. This is also the place to discuss any discrepancies and unexpected findings that may otherwise distort the general picture of your paper. Moreover, outlining the scope of your research by showing the limitations, weaknesses, and assumptions is essential and adds modesty to your image as a scientist. However, make sure that you do not end your paper with the problems that override your findings. Try to suggest feasible explanations and solutions.

If your submission does not require a separate Conclusion section, then adding another paragraph about the “take-home message” is a must. This should be a general statement reiterating your answer to the research question and adding its scientific implications, practical application, or advice.

Just as in all other sections of your paper, the clear and precise language and concise comprehensive sentences are vital. However, in addition to that, your writing should convey confidence and authority. The easiest way to illustrate your tone is to use the active voice and the first person pronouns. Accompanied by clarity and succinctness, these tools are the best to convince your readers of your point and your ideas.

Rule 6: Present the principles, relationships, and generalizations in a concise and convincing tone.

4. choosing the best working revision strategies.

Now that you have created the first draft, your attitude toward your writing should have improved. Moreover, you should feel more confident that you are able to accomplish your project and submit your paper within a reasonable timeframe. You also have worked out your writing schedule and followed it precisely. Do not stop ― you are only at the midpoint from your destination. Just as the best and most precious diamond is no more than an unattractive stone recognized only by trained professionals, your ideas and your results may go unnoticed if they are not polished and brushed. Despite your attempts to present your ideas in a logical and comprehensive way, first drafts are frequently a mess. Use the advice of Paul Silvia: “Your first drafts should sound like they were hastily translated from Icelandic by a non-native speaker” [ 2 ]. The degree of your success will depend on how you are able to revise and edit your paper.

The revision can be done at the macrostructure and the microstructure levels [ 13 ]. The macrostructure revision includes the revision of the organization, content, and flow. The microstructure level includes individual words, sentence structure, grammar, punctuation, and spelling.

The best way to approach the macrostructure revision is through the outline of the ideas in your paper. The last time you updated your outline was before writing the Introduction and the Discussion. Now that you have the beginning and the conclusion, you can take a bird’s-eye view of the whole paper. The outline will allow you to see if the ideas of your paper are coherently structured, if your results are logically built, and if the discussion is linked to the research question in the Introduction. You will be able to see if something is missing in any of the sections or if you need to rearrange your information to make your point.

The next step is to revise each of the sections starting from the beginning. Ideally, you should limit yourself to working on small sections of about five pages at a time [ 14 ]. After these short sections, your eyes get used to your writing and your efficiency in spotting problems decreases. When reading for content and organization, you should control your urge to edit your paper for sentence structure and grammar and focus only on the flow of your ideas and logic of your presentation. Experienced researchers tend to make almost three times the number of changes to meaning than novice writers [ 15 , 16 ]. Revising is a difficult but useful skill, which academic writers obtain with years of practice.

In contrast to the macrostructure revision, which is a linear process and is done usually through a detailed outline and by sections, microstructure revision is a non-linear process. While the goal of the macrostructure revision is to analyze your ideas and their logic, the goal of the microstructure editing is to scrutinize the form of your ideas: your paragraphs, sentences, and words. You do not need and are not recommended to follow the order of the paper to perform this type of revision. You can start from the end or from different sections. You can even revise by reading sentences backward, sentence by sentence and word by word.

One of the microstructure revision strategies frequently used during writing center consultations is to read the paper aloud [ 17 ]. You may read aloud to yourself, to a tape recorder, or to a colleague or friend. When reading and listening to your paper, you are more likely to notice the places where the fluency is disrupted and where you stumble because of a very long and unclear sentence or a wrong connector.

Another revision strategy is to learn your common errors and to do a targeted search for them [ 13 ]. All writers have a set of problems that are specific to them, i.e., their writing idiosyncrasies. Remembering these problems is as important for an academic writer as remembering your friends’ birthdays. Create a list of these idiosyncrasies and run a search for these problems using your word processor. If your problem is demonstrative pronouns without summary words, then search for “this/these/those” in your text and check if you used the word appropriately. If you have a problem with intensifiers, then search for “really” or “very” and delete them from the text. The same targeted search can be done to eliminate wordiness. Searching for “there is/are” or “and” can help you avoid the bulky sentences.

The final strategy is working with a hard copy and a pencil. Print a double space copy with font size 14 and re-read your paper in several steps. Try reading your paper line by line with the rest of the text covered with a piece of paper. When you are forced to see only a small portion of your writing, you are less likely to get distracted and are more likely to notice problems. You will end up spotting more unnecessary words, wrongly worded phrases, or unparallel constructions.

After you apply all these strategies, you are ready to share your writing with your friends, colleagues, and a writing advisor in the writing center. Get as much feedback as you can, especially from non-specialists in your field. Patiently listen to what others say to you ― you are not expected to defend your writing or explain what you wanted to say. You may decide what you want to change and how after you receive the feedback and sort it in your head. Even though some researchers make the revision an endless process and can hardly stop after a 14th draft; having from five to seven drafts of your paper is a norm in the sciences. If you can’t stop revising, then set a deadline for yourself and stick to it. Deadlines always help.

Rule 7: Revise your paper at the macrostructure and the microstructure level using different strategies and techniques. Receive feedback and revise again.

5. it is time to submit.

It is late at night again. You are still in your lab finishing revisions and getting ready to submit your paper. You feel happy ― you have finally finished a year’s worth of work. You will submit your paper tomorrow, and regardless of the outcome, you know that you can do it. If one journal does not take your paper, you will take advantage of the feedback and resubmit again. You will have a publication, and this is the most important achievement.

What is even more important is that you have your scheduled writing time that you are going to keep for your future publications, for reading and taking notes, for writing grants, and for reviewing papers. You are not going to lose stamina this time, and you will become a productive scientist. But for now, let’s celebrate the end of the paper.

  • Hayes JR. In: The Science of Writing: Theories, Methods, Individual Differences, and Applications. Levy CM, Ransdell SE, editors. Mahwah, NJ: Lawrence Erlbaum; 1996. A new framework for understanding cognition and affect in writing; pp. 1–28. [ Google Scholar ]
  • Silvia PJ. How to Write a Lot. Washington, DC: American Psychological Association; 2007. [ Google Scholar ]
  • Whitesides GM. Whitesides’ Group: Writing a Paper. Adv Mater. 2004; 16 (15):1375–1377. [ Google Scholar ]
  • Soto D, Funes MJ, Guzmán-García A, Warbrick T, Rotshtein T, Humphreys GW. Pleasant music overcomes the loss of awareness in patients with visual neglect. Proc Natl Acad Sci USA. 2009; 106 (14):6011–6016. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hofmann AH. Scientific Writing and Communication. Papers, Proposals, and Presentations. New York: Oxford University Press; 2010. [ Google Scholar ]
  • Zeiger M. Essentials of Writing Biomedical Research Papers. 2nd edition. San Francisco, CA: McGraw-Hill Companies, Inc.; 2000. [ Google Scholar ]
  • Martínez I. Native and non-native writers’ use of first person pronouns in the different sections of biology research articles in English. Journal of Second Language Writing. 2005; 14 (3):174–190. [ Google Scholar ]
  • Rodman L. The Active Voice In Scientific Articles: Frequency And Discourse Functions. Journal Of Technical Writing And Communication. 1994; 24 (3):309–331. [ Google Scholar ]
  • Tarone LE, Dwyer S, Gillette S, Icke V. On the use of the passive in two astrophysics journal papers with extensions to other languages and other fields. English for Specific Purposes. 1998; 17 :113–132. [ Google Scholar ]
  • Penrose AM, Katz SB. Writing in the sciences: Exploring conventions of scientific discourse. New York: St. Martin’s Press; 1998. [ Google Scholar ]
  • Swales JM, Feak CB. Academic Writing for Graduate Students. 2nd edition. Ann Arbor: University of Michigan Press; 2004. [ Google Scholar ]
  • Hess DR. How to Write an Effective Discussion. Respiratory Care. 2004; 29 (10):1238–1241. [ PubMed ] [ Google Scholar ]
  • Belcher WL. Writing Your Journal Article in 12 Weeks: a guide to academic publishing success. Thousand Oaks, CA: SAGE Publications; 2009. [ Google Scholar ]
  • Single PB. Demystifying Dissertation Writing: A Streamlined Process of Choice of Topic to Final Text. Virginia: Stylus Publishing LLC; 2010. [ Google Scholar ]
  • Faigley L, Witte SP. Analyzing revision. Composition and Communication. 1981; 32 :400–414. [ Google Scholar ]
  • Flower LS, Hayes JR, Carey L, Schriver KS, Stratman J. Detection, diagnosis, and the strategies of revision. College Composition and Communication. 1986; 37 (1):16–55. [ Google Scholar ]
  • Young BR. In: A Tutor’s Guide: Helping Writers One to One. Rafoth B, editor. Portsmouth, NH: Boynton/Cook Publishers; 2005. Can You Proofread This? pp. 140–158. [ Google Scholar ]

Research Paper Examples

Academic Writing Service

Research paper examples are of great value for students who want to complete their assignments timely and efficiently. If you are a student in the university, your first stop in the quest for research paper examples will be the campus library where you can get to view the research sample papers of lecturers and other professionals in diverse fields plus those of fellow students who preceded you in the campus. Many college departments maintain libraries of previous student work, including large research papers, which current students can examine.

Embark on a journey of academic excellence with iResearchNet, your premier destination for research paper examples that illuminate the path to scholarly success. In the realm of academia, where the pursuit of knowledge is both a challenge and a privilege, the significance of having access to high-quality research paper examples cannot be overstated. These exemplars are not merely papers; they are beacons of insight, guiding students and scholars through the complex maze of academic writing and research methodologies.

At iResearchNet, we understand that the foundation of academic achievement lies in the quality of resources at one’s disposal. This is why we are dedicated to offering a comprehensive collection of research paper examples across a multitude of disciplines. Each example stands as a testament to rigorous research, clear writing, and the deep understanding necessary to advance in one’s academic and professional journey.

Access to superior research paper examples equips learners with the tools to develop their own ideas, arguments, and hypotheses, fostering a cycle of learning and discovery that transcends traditional boundaries. It is with this vision that iResearchNet commits to empowering students and researchers, providing them with the resources to not only meet but exceed the highest standards of academic excellence. Join us on this journey, and let iResearchNet be your guide to unlocking the full potential of your academic endeavors.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code, what is a research paper.

  • Anthropology
  • Communication
  • Criminal Justice
  • Criminal Law
  • Criminology
  • Mental Health
  • Political Science

Importance of Research Paper Examples

  • Research Paper Writing Services

A Sample Research Paper on Child Abuse

A research paper represents the pinnacle of academic investigation, a scholarly manuscript that encapsulates a detailed study, analysis, or argument based on extensive independent research. It is an embodiment of the researcher’s ability to synthesize a wealth of information, draw insightful conclusions, and contribute novel perspectives to the existing body of knowledge within a specific field. At its core, a research paper strives to push the boundaries of what is known, challenging existing theories and proposing new insights that could potentially reshape the understanding of a particular subject area.

The objective of writing a research paper is manifold, serving both educational and intellectual pursuits. Primarily, it aims to educate the author, providing a rigorous framework through which they engage deeply with a topic, hone their research and analytical skills, and learn the art of academic writing. Beyond personal growth, the research paper serves the broader academic community by contributing to the collective pool of knowledge, offering fresh perspectives, and stimulating further research. It is a medium through which scholars communicate ideas, findings, and theories, thereby fostering an ongoing dialogue that propels the advancement of science, humanities, and other fields of study.

Research papers can be categorized into various types, each with distinct objectives and methodologies. The most common types include:

  • Analytical Research Paper: This type focuses on analyzing different viewpoints represented in the scholarly literature or data. The author critically evaluates and interprets the information, aiming to provide a comprehensive understanding of the topic.
  • Argumentative or Persuasive Research Paper: Here, the author adopts a stance on a contentious issue and argues in favor of their position. The objective is to persuade the reader through evidence and logic that the author’s viewpoint is valid or preferable.
  • Experimental Research Paper: Often used in the sciences, this type documents the process, results, and implications of an experiment conducted by the author. It provides a detailed account of the methodology, data collected, analysis performed, and conclusions drawn.
  • Survey Research Paper: This involves collecting data from a set of respondents about their opinions, behaviors, or characteristics. The paper analyzes this data to draw conclusions about the population from which the sample was drawn.
  • Comparative Research Paper: This type involves comparing and contrasting different theories, policies, or phenomena. The aim is to highlight similarities and differences, thereby gaining a deeper understanding of the subjects under review.
  • Cause and Effect Research Paper: It explores the reasons behind specific actions, events, or conditions and the consequences that follow. The goal is to establish a causal relationship between variables.
  • Review Research Paper: This paper synthesizes existing research on a particular topic, offering a comprehensive analysis of the literature to identify trends, gaps, and consensus in the field.

Understanding the nuances and objectives of these various types of research papers is crucial for scholars and students alike, as it guides their approach to conducting and writing up their research. Each type demands a unique set of skills and perspectives, pushing the author to think critically and creatively about their subject matter. As the academic landscape continues to evolve, the research paper remains a fundamental tool for disseminating knowledge, encouraging innovation, and fostering a culture of inquiry and exploration.

Browse Sample Research Papers

iResearchNet prides itself on offering a wide array of research paper examples across various disciplines, meticulously curated to support students, educators, and researchers in their academic endeavors. Each example embodies the hallmarks of scholarly excellence—rigorous research, analytical depth, and clear, precise writing. Below, we explore the diverse range of research paper examples available through iResearchNet, designed to inspire and guide users in their quest for academic achievement.

Anthropology Research Paper Examples

Our anthropology research paper examples delve into the study of humanity, exploring cultural, social, biological, and linguistic variations among human populations. These papers offer insights into human behavior, traditions, and evolution, providing a comprehensive overview of anthropological research methods and theories.

  • Archaeology Research Paper
  • Forensic Anthropology Research Paper
  • Linguistics Research Paper
  • Medical Anthropology Research Paper
  • Social Problems Research Paper

Art Research Paper Examples

The art research paper examples feature analyses of artistic expressions across different cultures and historical periods. These papers cover a variety of topics, including art history, criticism, and theory, as well as the examination of specific artworks or movements.

  • Performing Arts Research Paper
  • Music Research Paper
  • Architecture Research Paper
  • Theater Research Paper
  • Visual Arts Research Paper

Cancer Research Paper Examples

Our cancer research paper examples focus on the latest findings in the field of oncology, discussing the biological mechanisms of cancer, advancements in diagnostic techniques, and innovative treatment strategies. These papers aim to contribute to the ongoing battle against cancer by sharing cutting-edge research.

  • Breast Cancer Research Paper
  • Leukemia Research Paper
  • Lung Cancer Research Paper
  • Ovarian Cancer Research Paper
  • Prostate Cancer Research Paper

Communication Research Paper Examples

These examples explore the complexities of human communication, covering topics such as media studies, interpersonal communication, and public relations. The papers examine how communication processes affect individuals, societies, and cultures.

  • Advertising Research Paper
  • Journalism Research Paper
  • Media Research Paper
  • Public Relations Research Paper
  • Public Speaking Research Paper

Crime Research Paper Examples

The crime research paper examples provided by iResearchNet investigate various aspects of criminal behavior and the factors contributing to crime. These papers cover a range of topics, from theoretical analyses of criminality to empirical studies on crime prevention strategies.

  • Computer Crime Research Paper
  • Domestic Violence Research Paper
  • Hate Crimes Research Paper
  • Organized Crime Research Paper
  • White-Collar Crime Research Paper

Criminal Justice Research Paper Examples

Our criminal justice research paper examples delve into the functioning of the criminal justice system, exploring issues related to law enforcement, the judiciary, and corrections. These papers critically examine policies, practices, and reforms within the criminal justice system.

  • Capital Punishment Research Paper
  • Community Policing Research Paper
  • Corporal Punishment Research Paper
  • Criminal Investigation Research Paper
  • Criminal Justice System Research Paper
  • Plea Bargaining Research Paper
  • Restorative Justice Research Paper

Criminal Law Research Paper Examples

These examples focus on the legal aspects of criminal behavior, discussing laws, regulations, and case law that govern criminal proceedings. The papers provide an in-depth analysis of criminal law principles, legal defenses, and the implications of legal decisions.

  • Actus Reus Research Paper
  • Gun Control Research Paper
  • Insanity Defense Research Paper
  • International Criminal Law Research Paper
  • Self-Defense Research Paper

Criminology Research Paper Examples

iResearchNet’s criminology research paper examples study the causes, prevention, and societal impacts of crime. These papers employ various theoretical frameworks to analyze crime trends and propose effective crime reduction strategies.

  • Cultural Criminology Research Paper
  • Education and Crime Research Paper
  • Marxist Criminology Research Paper
  • School Crime Research Paper
  • Urban Crime Research Paper

Culture Research Paper Examples

The culture research paper examples examine the beliefs, practices, and artifacts that define different societies. These papers explore how culture shapes identities, influences behaviors, and impacts social interactions.

  • Advertising and Culture Research Paper
  • Material Culture Research Paper
  • Popular Culture Research Paper
  • Cross-Cultural Studies Research Paper
  • Culture Change Research Paper

Economics Research Paper Examples

Our economics research paper examples offer insights into the functioning of economies at both the micro and macro levels. Topics include economic theory, policy analysis, and the examination of economic indicators and trends.

  • Budget Research Paper
  • Cost-Benefit Analysis Research Paper
  • Fiscal Policy Research Paper
  • Labor Market Research Paper

Education Research Paper Examples

These examples address a wide range of issues in education, from teaching methods and curriculum design to educational policy and reform. The papers aim to enhance understanding and improve outcomes in educational settings.

  • Early Childhood Education Research Paper
  • Information Processing Research Paper
  • Multicultural Education Research Paper
  • Special Education Research Paper
  • Standardized Tests Research Paper

Health Research Paper Examples

The health research paper examples focus on public health issues, healthcare systems, and medical interventions. These papers contribute to the discourse on health promotion, disease prevention, and healthcare management.

  • AIDS Research Paper
  • Alcoholism Research Paper
  • Disease Research Paper
  • Health Economics Research Paper
  • Health Insurance Research Paper
  • Nursing Research Paper

History Research Paper Examples

Our history research paper examples cover significant events, figures, and periods, offering critical analyses of historical narratives and their impact on present-day society.

  • Adolf Hitler Research Paper
  • American Revolution Research Paper
  • Ancient Greece Research Paper
  • Apartheid Research Paper
  • Christopher Columbus Research Paper
  • Climate Change Research Paper
  • Cold War Research Paper
  • Columbian Exchange Research Paper
  • Deforestation Research Paper
  • Diseases Research Paper
  • Earthquakes Research Paper
  • Egypt Research Paper

Leadership Research Paper Examples

These examples explore the theories and practices of effective leadership, examining the qualities, behaviors, and strategies that distinguish successful leaders in various contexts.

  • Implicit Leadership Theories Research Paper
  • Judicial Leadership Research Paper
  • Leadership Styles Research Paper
  • Police Leadership Research Paper
  • Political Leadership Research Paper
  • Remote Leadership Research Paper

Mental Health Research Paper Examples

The mental health research paper examples provided by iResearchNet discuss psychological disorders, therapeutic interventions, and mental health advocacy. These papers aim to raise awareness and improve mental health care practices.

  • ADHD Research Paper
  • Anxiety Research Paper
  • Autism Research Paper
  • Depression Research Paper
  • Eating Disorders Research Paper
  • PTSD Research Paper
  • Schizophrenia Research Paper
  • Stress Research Paper

Political Science Research Paper Examples

Our political science research paper examples analyze political systems, behaviors, and ideologies. Topics include governance, policy analysis, and the study of political movements and institutions.

  • American Government Research Paper
  • Civil War Research Paper
  • Communism Research Paper
  • Democracy Research Paper
  • Game Theory Research Paper
  • Human Rights Research Paper
  • International Relations Research Paper
  • Terrorism Research Paper

Psychology Research Paper Examples

These examples delve into the study of the mind and behavior, covering a broad range of topics in clinical, cognitive, developmental, and social psychology.

  • Artificial Intelligence Research Paper
  • Assessment Psychology Research Paper
  • Biological Psychology Research Paper
  • Clinical Psychology Research Paper
  • Cognitive Psychology Research Paper
  • Developmental Psychology Research Paper
  • Discrimination Research Paper
  • Educational Psychology Research Paper
  • Environmental Psychology Research Paper
  • Experimental Psychology Research Paper
  • Intelligence Research Paper
  • Learning Disabilities Research Paper
  • Personality Psychology Research Paper
  • Psychiatry Research Paper
  • Psychotherapy Research Paper
  • Social Cognition Research Paper
  • Social Psychology Research Paper

Sociology Research Paper Examples

The sociology research paper examples examine societal structures, relationships, and processes. These papers provide insights into social phenomena, inequality, and change.

  • Family Research Paper
  • Demography Research Paper
  • Group Dynamics Research Paper
  • Quality of Life Research Paper
  • Social Change Research Paper
  • Social Movements Research Paper
  • Social Networks Research Paper

Technology Research Paper Examples

Our technology research paper examples address the impact of technological advancements on society, exploring issues related to digital communication, cybersecurity, and innovation.

  • Computer Forensics Research Paper
  • Genetic Engineering Research Paper
  • History of Technology Research Paper
  • Internet Research Paper
  • Nanotechnology Research Paper

example of practical research paper

Other Research Paper Examples

  • Abortion Research Paper
  • Adoption Research Paper
  • Animal Testing Research Paper
  • Bullying Research Paper
  • Diversity Research Paper
  • Divorce Research Paper
  • Drugs Research Paper
  • Environmental Issues Research Paper
  • Ethics Research Paper
  • Evolution Research Paper
  • Feminism Research Paper
  • Food Research Paper
  • Gender Research Paper
  • Globalization Research Paper
  • Juvenile Justice Research Paper
  • Law Research Paper
  • Management Research Paper
  • Philosophy Research Paper
  • Public Health Research Paper
  • Religion Research Paper
  • Science Research Paper
  • Social Sciences Research Paper
  • Statistics Research Paper
  • Other Sample Research Papers

Each category of research paper examples provided by iResearchNet serves as a valuable resource for students and researchers seeking to deepen their understanding of a specific field. By offering a comprehensive collection of well-researched and thoughtfully written papers, iResearchNet aims to support academic growth and encourage scholarly inquiry across diverse disciplines.

Sample Research Papers: To Read or Not to Read?

When you get an assignment to write a research paper, the first question you ask yourself is ‘Should I look for research paper examples?’ Maybe, I can deal with this task on my own without any help. Is it that difficult?

Thousands of students turn to our service every day for help. It does not mean that they cannot do their assignments on their own. They can, but the reason is different. Writing a research paper demands so much time and energy that asking for assistance seems to be a perfect solution. As the matter of fact, it is a perfect solution, especially, when you need to work to pay for your studying as well.

Firstly, if you search for research paper examples before you start writing, you can save your time significantly. You look at the example and you understand the gist of your assignment within several minutes. Secondly, when you examine some sample paper, you get to know all the requirements. You analyze the structure, the language, and the formatting details. Finally, reading examples helps students to overcome writer’s block, as other people’s ideas can motivate you to discover your own ideas.

The significance of research paper examples in the academic journey of students cannot be overstated. These examples serve not only as a blueprint for structuring and formatting academic papers but also as a beacon guiding students through the complex landscape of academic writing standards. iResearchNet recognizes the pivotal role that high-quality research paper examples play in fostering academic success and intellectual growth among students.

Blueprint for Academic Success

Research paper examples provided by iResearchNet are meticulously crafted to demonstrate the essential elements of effective academic writing. These examples offer clear insights into how to organize a paper, from the introductory paragraph, through the development of arguments and analysis, to the concluding remarks. They showcase the appropriate use of headings, subheadings, and the integration of tables, figures, and appendices, which collectively contribute to a well-organized and coherent piece of scholarly work. By studying these examples, students can gain a comprehensive understanding of the structure and formatting required in academic papers, which is crucial for meeting the rigorous standards of academic institutions.

Sparking Ideas and Providing Evidence

Beyond serving as a structural guide, research paper examples act as a source of inspiration for students embarking on their research projects. These examples illuminate a wide array of topics, methodologies, and analytical frameworks, thereby sparking ideas for students’ own research inquiries. They demonstrate how to effectively engage with existing literature, frame research questions, and develop a compelling thesis statement. Moreover, by presenting evidence and arguments in a logical and persuasive manner, these examples illustrate the art of substantiating claims with solid research, encouraging students to adopt a similar level of rigor and depth in their work.

Enhancing Research Skills

Engagement with high-quality research paper examples is instrumental in improving research skills among students. These examples expose students to various research methodologies, from qualitative case studies to quantitative analyses, enabling them to appreciate the breadth of research approaches applicable to their fields of study. By analyzing these examples, students learn how to critically evaluate sources, differentiate between primary and secondary data, and apply ethical considerations in research. Furthermore, these papers serve as a model for effectively citing sources, thereby teaching students the importance of academic integrity and the avoidance of plagiarism.

Research Paper Examples

In essence, research paper examples are a fundamental resource that can significantly enhance the academic writing and research capabilities of students. iResearchNet’s commitment to providing access to a diverse collection of exemplary papers reflects its dedication to supporting academic excellence. Through these examples, students are equipped with the tools necessary to navigate the challenges of academic writing, foster innovative thinking, and contribute meaningfully to the scholarly community. By leveraging these resources, students can elevate their academic pursuits, ensuring their research is not only rigorous but also impactful.

Custom Research Paper Writing Services

In the academic journey, the ability to craft a compelling and meticulously researched paper is invaluable. Recognizing the challenges and pressures that students face, iResearchNet has developed a suite of research paper writing services designed to alleviate the burden of academic writing and research. Our services are tailored to meet the diverse needs of students across all academic disciplines, ensuring that every research paper not only meets but exceeds the rigorous standards of scholarly excellence. Below, we detail the multifaceted aspects of our research paper writing services, illustrating how iResearchNet stands as a beacon of support in the academic landscape.

At iResearchNet, we understand the pivotal role that research papers play in the academic and professional development of students. With this understanding at our core, we offer comprehensive writing services that cater to the intricate process of research paper creation. Our services are designed to guide students through every stage of the writing process, from initial research to final submission, ensuring clarity, coherence, and scholarly rigor.

The Need for Research Paper Writing Services

Navigating the complexities of academic writing and research can be a daunting task for many students. The challenges of identifying credible sources, synthesizing information, adhering to academic standards, and articulating arguments cohesively are significant. Furthermore, the pressures of tight deadlines and the high stakes of academic success can exacerbate the difficulties faced by students. iResearchNet’s research paper writing services are crafted to address these challenges head-on, providing expert assistance that empowers students to achieve their academic goals with confidence.

Why Choose iResearchNet

Selecting the right partner for research paper writing is a pivotal decision for students and researchers aiming for academic excellence. iResearchNet stands out as the premier choice for several compelling reasons, each designed to meet the diverse needs of our clientele and ensure their success.

  • Expert Writers : At iResearchNet, we pride ourselves on our team of expert writers who are not only masters in their respective fields but also possess a profound understanding of academic writing standards. With advanced degrees and extensive experience, our writers bring depth, insight, and precision to each paper, ensuring that your work is informed by the latest research and methodologies.
  • Top Quality : Quality is the cornerstone of our services. We adhere to rigorous quality control processes to ensure that every paper we deliver meets the highest standards of academic excellence. Our commitment to quality means thorough research, impeccable writing, and meticulous proofreading, resulting in work that not only meets but exceeds expectations.
  • Customized Solutions : Understanding that each research project has its unique challenges and requirements, iResearchNet offers customized solutions tailored to your specific needs. Whether you’re grappling with a complex research topic, a tight deadline, or specific formatting guidelines, our team is equipped to provide personalized support that aligns with your objectives.
  • Affordable Prices : We believe that access to high-quality research paper writing services should not be prohibitive. iResearchNet offers competitive pricing structures designed to provide value without compromising on quality. Our transparent pricing model ensures that you know exactly what you are paying for, with no hidden costs or surprises.
  • Timely Delivery : Meeting deadlines is critical in academic writing, and at iResearchNet, we take this seriously. Our efficient processes and dedicated team ensure that your paper is delivered on time, every time, allowing you to meet your academic deadlines with confidence.
  • 24/7 Support : Our commitment to your success is reflected in our round-the-clock support. Whether you have a question about your order, need to communicate with your writer, or require assistance with any aspect of our service, our friendly and knowledgeable support team is available 24/7 to assist you.
  • Money-Back Guarantee : Your satisfaction is our top priority. iResearchNet offers a money-back guarantee, ensuring that if for any reason you are not satisfied with the work delivered, you are entitled to a refund. This policy underscores our confidence in the quality of our services and our dedication to your success.

Choosing iResearchNet for your research paper writing needs means partnering with a trusted provider committed to excellence, innovation, and customer satisfaction. Our unparalleled blend of expert writers, top-quality work, customized solutions, affordability, timely delivery, 24/7 support, and a money-back guarantee makes us the ideal choice for students and researchers seeking to elevate their academic performance.

How It Works: iResearchNet’s Streamlined Process

Navigating the process of obtaining a top-notch research paper has never been more straightforward, thanks to iResearchNet’s streamlined approach. Our user-friendly system ensures that from the moment you decide to place your order to the final receipt of your custom-written paper, every step is seamless, transparent, and tailored to your needs. Here’s how our comprehensive process works:

  • Place Your Order : Begin your journey to academic success by visiting our website and filling out the order form. Here, you’ll provide details about your research paper, including the topic, academic level, number of pages, formatting style, and any specific instructions or requirements. This initial step is crucial for us to understand your needs fully and match you with the most suitable writer.
  • Make Payment : Once your order details are confirmed, you’ll proceed to the payment section. Our platform offers a variety of secure payment options, ensuring that your transaction is safe and hassle-free. Our transparent pricing policy means you’ll know exactly what you’re paying for upfront, with no hidden fees.
  • Choose Your Writer : After payment, you’ll have the opportunity to choose a writer from our team of experts. Our writers are categorized based on their fields of expertise, academic qualifications, and customer feedback ratings. This step empowers you to select the writer who best matches your research paper’s requirements, ensuring a personalized and targeted approach to your project.
  • Receive Your Work : Our writer will commence work on your research paper, adhering to the specified guidelines and timelines. Throughout this process, you’ll have the ability to communicate directly with your writer, allowing for updates, revisions, and clarifications to ensure the final product meets your expectations. Once completed, your research paper will undergo a thorough quality check before being delivered to you via your chosen method.
  • Free Revisions : Your satisfaction is our priority. Upon receiving your research paper, you’ll have the opportunity to review the work and request any necessary revisions. iResearchNet offers free revisions within a specified period, ensuring that your final paper perfectly aligns with your academic requirements and expectations.

Our process is designed to provide you with a stress-free experience and a research paper that reflects your academic goals. From placing your order to enjoying the success of a well-written paper, iResearchNet is here to support you every step of the way.

Our Extras: Enhancing Your iResearchNet Experience

At iResearchNet, we are committed to offering more than just standard research paper writing services. We understand the importance of providing a comprehensive and personalized experience for each of our clients. That’s why we offer a range of additional services designed to enhance your experience and ensure your academic success. Here are the exclusive extras you can benefit from:

  • VIP Service : Elevate your iResearchNet experience with our VIP service, offering you priority treatment from the moment you place your order. This service ensures your projects are given first priority, with immediate attention from our team, and direct access to our top-tier writers and editors. VIP clients also benefit from our highest level of customer support, available to address any inquiries or needs with utmost urgency and personalized care.
  • Plagiarism Report : Integrity and originality are paramount in academic writing. To provide you with peace of mind, we offer a detailed plagiarism report with every research paper. This report is generated using advanced plagiarism detection software, ensuring that your work is unique and adheres to the highest standards of academic honesty.
  • Text Messages : Stay informed about your order’s progress with real-time updates sent directly to your phone. This service ensures you’re always in the loop, providing immediate notifications about key milestones, writer assignments, and any changes to your order status. With this added layer of communication, you can relax knowing that you’ll never miss an important update about your research paper.
  • Table of Contents : A well-organized research paper is key to guiding readers through your work. Our service includes the creation of a detailed table of contents, meticulously structured to reflect the main sections and subsections of your paper. This not only enhances the navigability of your document but also presents your research in a professional and academically appropriate format.
  • Abstract Page : The abstract page is your research paper’s first impression, summarizing the essential points of your study and its conclusions. Crafting a compelling abstract is an art, and our experts are skilled in highlighting the significance, methodology, results, and implications of your research succinctly and effectively. This service ensures that your paper makes a strong impact from the very beginning.
  • Editor’s Check : Before your research paper reaches you, it undergoes a final review by our team of experienced editors. This editor’s check is a comprehensive process that includes proofreading for grammar, punctuation, and spelling errors, as well as ensuring that the paper meets all your specifications and academic standards. This meticulous attention to detail guarantees that your paper is polished, professional, and ready for submission.

To ensure your research paper is of the highest quality and ready for submission, it undergoes a rigorous editor’s check. This final review process includes a thorough examination for any grammatical, punctuation, or spelling errors, as well as a verification that the paper meets all your specified requirements and academic standards. Our editors’ meticulous approach guarantees that your paper is polished, accurate, and exemplary.

By choosing iResearchNet and leveraging our extras, you can elevate the quality of your research paper and enjoy a customized, worry-free academic support experience.

A research paper is an academic piece of writing, so you need to follow all the requirements and standards. Otherwise, it will be impossible to get the high results. To make it easier for you, we have analyzed the structure and peculiarities of a sample research paper on the topic ‘Child Abuse’.

The paper includes 7300+ words, a detailed outline, citations are in APA formatting style, and bibliography with 28 sources.

To write any paper you need to write a great outline. This is the key to a perfect paper. When you organize your paper, it is easier for you to present the ideas logically, without jumping from one thought to another.

In the outline, you need to name all the parts of your paper. That is to say, an introduction, main body, conclusion, bibliography, some papers require abstract and proposal as well.

A good outline will serve as a guide through your paper making it easier for the reader to follow your ideas.

I. Introduction

Ii. estimates of child abuse: methodological limitations, iii. child abuse and neglect: the legalities, iv. corporal punishment versus child abuse, v. child abuse victims: the patterns, vi. child abuse perpetrators: the patterns, vii. explanations for child abuse, viii. consequences of child abuse and neglect, ix. determining abuse: how to tell whether a child is abused or neglected, x. determining abuse: interviewing children, xi. how can society help abused children and abusive families, introduction.

An introduction should include a thesis statement and the main points that you will discuss in the paper.

A thesis statement is one sentence in which you need to show your point of view. You will then develop this point of view through the whole piece of work:

‘The impact of child abuse affects more than one’s childhood, as the psychological and physical injuries often extend well into adulthood.’

Child abuse is a very real and prominent social problem today. The impact of child abuse affects more than one’s childhood, as the psychological and physical injuries often extend well into adulthood. Most children are defenseless against abuse, are dependent on their caretakers, and are unable to protect themselves from these acts.

Childhood serves as the basis for growth, development, and socialization. Throughout adolescence, children are taught how to become productive and positive, functioning members of society. Much of the socializing of children, particularly in their very earliest years, comes at the hands of family members. Unfortunately, the messages conveyed to and the actions against children by their families are not always the positive building blocks for which one would hope.

In 2008, the Children’s Defense Fund reported that each day in America, 2,421 children are confirmed as abused or neglected, 4 children are killed by abuse or neglect, and 78 babies die before their first birthday. These daily estimates translate into tremendous national figures. In 2006, caseworkers substantiated an estimated 905,000 reports of child abuse or neglect. Of these, 64% suffered neglect, 16% were physically abused, 9% were sexually abused, 7% were emotionally or psychologically maltreated, and 2% were medically neglected. In addition, 15% of the victims experienced “other” types of maltreatment such as abandonment, threats of harm to the child, and congenital drug addiction (National Child Abuse and Neglect Data System, 2006). Obviously, this problem is a substantial one.

In the main body, you dwell upon the topic of your paper. You provide your ideas and support them with evidence. The evidence include all the data and material you have found, analyzed and systematized. You can support your point of view with different statistical data, with surveys, and the results of different experiments. Your task is to show that your idea is right, and make the reader interested in the topic.

In this example, a writer analyzes the issue of child abuse: different statistical data, controversies regarding the topic, examples of the problem and the consequences.

Several issues arise when considering the amount of child abuse that occurs annually in the United States. Child abuse is very hard to estimate because much (or most) of it is not reported. Children who are abused are unlikely to report their victimization because they may not know any better, they still love their abusers and do not want to see them taken away (or do not themselves want to be taken away from their abusers), they have been threatened into not reporting, or they do not know to whom they should report their victimizations. Still further, children may report their abuse only to find the person to whom they report does not believe them or take any action on their behalf. Continuing to muddy the waters, child abuse can be disguised as legitimate injury, particularly because young children are often somewhat uncoordinated and are still learning to accomplish physical tasks, may not know their physical limitations, and are often legitimately injured during regular play. In the end, children rarely report child abuse; most often it is an adult who makes a report based on suspicion (e.g., teacher, counselor, doctor, etc.).

Even when child abuse is reported, social service agents and investigators may not follow up or substantiate reports for a variety of reasons. Parents can pretend, lie, or cover up injuries or stories of how injuries occurred when social service agents come to investigate. Further, there is not always agreement about what should be counted as abuse by service providers and researchers. In addition, social service agencies/agents have huge caseloads and may only be able to deal with the most serious forms of child abuse, leaving the more “minor” forms of abuse unsupervised and unmanaged (and uncounted in the statistical totals).

While most laws about child abuse and neglect fall at the state levels, federal legislation provides a foundation for states by identifying a minimum set of acts and behaviors that define child abuse and neglect. The Federal Child Abuse Prevention and Treatment Act (CAPTA), which stems from the Keeping Children and Families Safe Act of 2003, defines child abuse and neglect as, at minimum, “(1) any recent act or failure to act on the part of a parent or caretaker which results in death, serious physical or emotional harm, sexual abuse, or exploitation; or (2) an act or failure to act which presents an imminent risk or serious harm.”

Using these minimum standards, each state is responsible for providing its own definition of maltreatment within civil and criminal statutes. When defining types of child abuse, many states incorporate similar elements and definitions into their legal statutes. For example, neglect is often defined as failure to provide for a child’s basic needs. Neglect can encompass physical elements (e.g., failure to provide necessary food or shelter, or lack of appropriate supervision), medical elements (e.g., failure to provide necessary medical or mental health treatment), educational elements (e.g., failure to educate a child or attend to special educational needs), and emotional elements (e.g., inattention to a child’s emotional needs, failure to provide psychological care, or permitting the child to use alcohol or other drugs). Failure to meet needs does not always mean a child is neglected, as situations such as poverty, cultural values, and community standards can influence the application of legal statutes. In addition, several states distinguish between failure to provide based on financial inability and failure to provide for no apparent financial reason.

Statutes on physical abuse typically include elements of physical injury (ranging from minor bruises to severe fractures or death) as a result of punching, beating, kicking, biting, shaking, throwing, stabbing, choking, hitting (with a hand, stick, strap, or other object), burning, or otherwise harming a child. Such injury is considered abuse regardless of the intention of the caretaker. In addition, many state statutes include allowing or encouraging another person to physically harm a child (such as noted above) as another form of physical abuse in and of itself. Sexual abuse usually includes activities by a parent or caretaker such as fondling a child’s genitals, penetration, incest, rape, sodomy, indecent exposure, and exploitation through prostitution or the production of pornographic materials.

Finally, emotional or psychological abuse typically is defined as a pattern of behavior that impairs a child’s emotional development or sense of self-worth. This may include constant criticism, threats, or rejection, as well as withholding love, support, or guidance. Emotional abuse is often the most difficult to prove and, therefore, child protective services may not be able to intervene without evidence of harm to the child. Some states suggest that harm may be evidenced by an observable or substantial change in behavior, emotional response, or cognition, or by anxiety, depression, withdrawal, or aggressive behavior. At a practical level, emotional abuse is almost always present when other types of abuse are identified.

Some states include an element of substance abuse in their statutes on child abuse. Circumstances that can be considered substance abuse include (a) the manufacture of a controlled substance in the presence of a child or on the premises occupied by a child (Colorado, Indiana, Iowa, Montana, South Dakota, Tennessee, and Virginia); (b) allowing a child to be present where the chemicals or equipment for the manufacture of controlled substances are used (Arizona, New Mexico); (c) selling, distributing, or giving drugs or alcohol to a child (Florida, Hawaii, Illinois, Minnesota, and Texas); (d) use of a controlled substance by a caregiver that impairs the caregiver’s ability to adequately care for the child (Kentucky, New York, Rhode Island, and Texas); and (e) exposure of the child to drug paraphernalia (North Dakota), the criminal sale or distribution of drugs (Montana, Virginia), or drug-related activity (District of Columbia).

One of the most difficult issues with which the U.S. legal system must contend is that of allowing parents the right to use corporal punishment when disciplining a child, while not letting them cross over the line into the realm of child abuse. Some parents may abuse their children under the guise of discipline, and many instances of child abuse arise from angry parents who go too far when disciplining their children with physical punishment. Generally, state statutes use terms such as “reasonable discipline of a minor,” “causes only temporary, short-term pain,” and may cause “the potential for bruising” but not “permanent damage, disability, disfigurement or injury” to the child as ways of indicating the types of discipline behaviors that are legal. However, corporal punishment that is “excessive,” “malicious,” “endangers the bodily safety of,” or is “an intentional infliction of injury” is not allowed under most state statutes (e.g., state of Florida child abuse statute).

Most research finds that the use of physical punishment (most often spanking) is not an effective method of discipline. The literature on this issue tends to find that spanking stops misbehavior, but no more effectively than other firm measures. Further, it seems to hinder rather than improve general compliance/obedience (particularly when the child is not in the presence of the punisher). Researchers have also explained why physical punishment is not any more effective at gaining child compliance than nonviolent forms of discipline. Some of the problems that arise when parents use spanking or other forms of physical punishment include the fact that spanking does not teach what children should do, nor does it provide them with alternative behavior options should the circumstance arise again. Spanking also undermines reasoning, explanation, or other forms of parental instruction because children cannot learn, reason, or problem solve well while experiencing threat, pain, fear, or anger. Further, the use of physical punishment is inconsistent with nonviolent principles, or parental modeling. In addition, the use of spanking chips away at the bonds of affection between parents and children, and tends to induce resentment and fear. Finally, it hinders the development of empathy and compassion in children, and they do not learn to take responsibility for their own behavior (Pitzer, 1997).

One of the biggest problems with the use of corporal punishment is that it can escalate into much more severe forms of violence. Usually, parents spank because they are angry (and somewhat out of control) and they can’t think of other ways to discipline. When parents are acting as a result of emotional triggers, the notion of discipline is lost while punishment and pain become the foci.

In 2006, of the children who were found to be victims of child abuse, nearly 75% of them were first-time victims (or had not come to the attention of authorities prior). A slight majority of child abuse victims were girls—51.5%, compared to 48% of abuse victims being boys. The younger the child, the more at risk he or she is for child abuse and neglect victimization. Specifically, the rate for infants (birth to 1 year old) was approximately 24 per 1,000 children of the same age group. The victimization rate for children 1–3 years old was 14 per 1,000 children of the same age group. The abuse rate for children aged 4– 7 years old declined further to 13 per 1,000 children of the same age group. African American, American Indian, and Alaska Native children, as well as children of multiple races, had the highest rates of victimization. White and Latino children had lower rates, and Asian children had the lowest rates of child abuse and neglect victimization. Regarding living arrangements, nearly 27% of victims were living with a single mother, 20% were living with married parents, while 22% were living with both parents but the marital status was unknown. (This reporting element had nearly 40% missing data, however.) Regarding disability, nearly 8% of child abuse victims had some degree of mental retardation, emotional disturbance, visual or hearing impairment, learning disability, physical disability, behavioral problems, or other medical problems. Unfortunately, data indicate that for many victims, the efforts of the child protection services system were not successful in preventing subsequent victimization. Children who had been prior victims of maltreatment were 96% more likely to experience another occurrence than those who were not prior victims. Further, child victims who were reported to have a disability were 52% more likely to experience recurrence than children without a disability. Finally, the oldest victims (16–21 years of age) were the least likely to experience a recurrence, and were 51% less likely to be victimized again than were infants (younger than age 1) (National Child Abuse and Neglect Data System, 2006).

Child fatalities are the most tragic consequence of maltreatment. Yet, each year, children die from abuse and neglect. In 2006, an estimated 1,530 children in the United States died due to abuse or neglect. The overall rate of child fatalities was 2 deaths per 100,000 children. More than 40% of child fatalities were attributed to neglect, but physical abuse also was a major contributor. Approximately 78% of the children who died due to child abuse and neglect were younger than 4 years old, and infant boys (younger than 1) had the highest rate of fatalities at 18.5 deaths per 100,000 boys of the same age in the national population. Infant girls had a rate of 14.7 deaths per 100,000 girls of the same age (National Child Abuse and Neglect Data System, 2006).

One question to be addressed regarding child fatalities is why infants have such a high rate of death when compared to toddlers and adolescents. Children under 1 year old pose an immense amount of responsibility for their caretakers: they are completely dependent and need constant attention. Children this age are needy, impulsive, and not amenable to verbal control or effective communication. This can easily overwhelm vulnerable parents. Another difficulty associated with infants is that they are physically weak and small. Injuries to infants can be fatal, while similar injuries to older children might not be. The most common cause of death in children less than 1 year is cerebral trauma (often the result of shaken-baby syndrome). Exasperated parents can deliver shakes or blows without realizing how little it takes to cause irreparable or fatal damage to an infant. Research informs us that two of the most common triggers for fatal child abuse are crying that will not cease and toileting accidents. Both of these circumstances are common in infants and toddlers whose only means of communication often is crying, and who are limited in mobility and cannot use the toilet. Finally, very young children cannot assist in injury diagnoses. Children who have been injured due to abuse or neglect often cannot communicate to medical professionals about where it hurts, how it hurts, and so forth. Also, nonfatal injuries can turn fatal in the absence of care by neglectful parents or parents who do not want medical professionals to possibly identify an injury as being the result of abuse.

Estimates reveal that nearly 80% of perpetrators of child abuse were parents of the victim. Other relatives accounted for nearly 7%, and unmarried partners of parents made up 4% of perpetrators. Of those perpetrators that were parents, over 90% were biological parents, 4% were stepparents, and 0.7% were adoptive parents. Of this group, approximately 58% of perpetrators were women and 42% were men. Women perpetrators are typically younger than men. The average age for women abusers was 31 years old, while for men the average was 34 years old. Forty percent of women who abused were younger than 30 years of age, compared with 33% of men being under 30. The racial distribution of perpetrators is similar to that of victims. Fifty-four percent were white, 21% were African American, and 20% were Hispanic/Latino (National Child Abuse and Neglect Data System, 2006).

There are many factors that are associated with child abuse. Some of the more common/well-accepted explanations are individual pathology, parent–child interaction, past abuse in the family (or social learning), situational factors, and cultural support for physical punishment along with a lack of cultural support for helping parents here in the United States.

The first explanation centers on the individual pathology of a parent or caretaker who is abusive. This theory focuses on the idea that people who abuse their children have something wrong with their individual personality or biological makeup. Such psychological pathologies may include having anger control problems; being depressed or having post-partum depression; having a low tolerance for frustration (e.g., children can be extremely frustrating: they don’t always listen; they constantly push the line of how far they can go; and once the line has been established, they are constantly treading on it to make sure it hasn’t moved. They are dependent and self-centered, so caretakers have very little privacy or time to themselves); being rigid (e.g., having no tolerance for differences—for example, what if your son wanted to play with dolls? A rigid father would not let him, laugh at him for wanting to, punish him when he does, etc.); having deficits in empathy (parents who cannot put themselves in the shoes of their children cannot fully understand what their children need emotionally); or being disorganized, inefficient, and ineffectual. (Parents who are unable to manage their own lives are unlikely to be successful at managing the lives of their children, and since many children want and need limits, these parents are unable to set them or adhere to them.)

Biological pathologies that may increase the likelihood of someone becoming a child abuser include having substance abuse or dependence problems, or having persistent or reoccurring physical health problems (especially health problems that can be extremely painful and can cause a person to become more self-absorbed, both qualities that can give rise to a lack of patience, lower frustration tolerance, and increased stress).

The second explanation for child abuse centers on the interaction between the parent and the child, noting that certain types of parents are more likely to abuse, and certain types of children are more likely to be abused, and when these less-skilled parents are coupled with these more difficult children, child abuse is the most likely to occur. Discussion here focuses on what makes a parent less skilled, and what makes a child more difficult. Characteristics of unskilled parents are likely to include such traits as only pointing out what children do wrong and never giving any encouragement for good behavior, and failing to be sensitive to the emotional needs of children. Less skilled parents tend to have unrealistic expectations of children. They may engage in role reversal— where the parents make the child take care of them—and view the parent’s happiness and well-being as the responsibility of the child. Some parents view the parental role as extremely stressful and experience little enjoyment from being a parent. Finally, less-skilled parents tend to have more negative perceptions regarding their child(ren). For example, perhaps the child has a different shade of skin than they expected and this may disappoint or anger them, they may feel the child is being manipulative (long before children have this capability), or they may view the child as the scapegoat for all the parents’ or family’s problems. Theoretically, parents with these characteristics would be more likely to abuse their children, but if they are coupled with having a difficult child, they would be especially likely to be abusive. So, what makes a child more difficult? Certainly, through no fault of their own, children may have characteristics that are associated with child care that is more demanding and difficult than in the “normal” or “average” situation. Such characteristics can include having physical and mental disabilities (autism, attention deficit hyperactivity disorder [ADHD], hyperactivity, etc.); the child may be colicky, frequently sick, be particularly needy, or cry more often. In addition, some babies are simply unhappier than other babies for reasons that cannot be known. Further, infants are difficult even in the best of circumstances. They are unable to communicate effectively, and they are completely dependent on their caretakers for everything, including eating, diaper changing, moving around, entertainment, and emotional bonding. Again, these types of children, being more difficult, are more likely to be victims of child abuse.

Nonetheless, each of these types of parents and children alone cannot explain the abuse of children, but it is the interaction between them that becomes the key. Unskilled parents may produce children that are happy and not as needy, and even though they are unskilled, they do not abuse because the child takes less effort. At the same time, children who are more difficult may have parents who are skilled and are able to handle and manage the extra effort these children take with aplomb. However, risks for child abuse increase when unskilled parents must contend with difficult children.

Social learning or past abuse in the family is a third common explanation for child abuse. Here, the theory concentrates not only on what children learn when they see or experience violence in their homes, but additionally on what they do not learn as a result of these experiences. Social learning theory in the context of family violence stresses that if children are abused or see abuse (toward siblings or a parent), those interactions and violent family members become the representations and role models for their future familial interactions. In this way, what children learn is just as important as what they do not learn. Children who witness or experience violence may learn that this is the way parents deal with children, or that violence is an acceptable method of child rearing and discipline. They may think when they become parents that “violence worked on me when I was a child, and I turned out fine.” They may learn unhealthy relationship interaction patterns; children may witness the negative interactions of parents and they may learn the maladaptive or violent methods of expressing anger, reacting to stress, or coping with conflict.

What is equally as important, though, is that they are unlikely to learn more acceptable and nonviolent ways of rearing children, interacting with family members, and working out conflict. Here it may happen that an adult who was abused as a child would like to be nonviolent toward his or her own children, but when the chips are down and the child is misbehaving, this abused-child-turned-adult does not have a repertoire of nonviolent strategies to try. This parent is more likely to fall back on what he or she knows as methods of discipline.

Something important to note here is that not all abused children grow up to become abusive adults. Children who break the cycle were often able to establish and maintain one healthy emotional relationship with someone during their childhoods (or period of young adulthood). For instance, they may have received emotional support from a nonabusing parent, or they received social support and had a positive relationship with another adult during their childhood (e.g., teacher, coach, minister, neighbor, etc.). Abused children who participate in therapy during some period of their lives can often break the cycle of violence. In addition, adults who were abused but are able to form an emotionally supportive and satisfying relationship with a mate can make the transition to being nonviolent in their family interactions.

Moving on to a fourth familiar explanation for child abuse, there are some common situational factors that influence families and parents and increase the risks for child abuse. Typically, these are factors that increase family stress or social isolation. Specifically, such factors may include receiving public assistance or having low socioeconomic status (a combination of low income and low education). Other factors include having family members who are unemployed, underemployed (working in a job that requires lower qualifications than an individual possesses), or employed only part time. These financial difficulties cause great stress for families in meeting the needs of the individual members. Other stress-inducing familial characteristics are single-parent households and larger family size. Finally, social isolation can be devastating for families and family members. Having friends to talk to, who can be relied upon, and with whom kids can be dropped off occasionally is tremendously important for personal growth and satisfaction in life. In addition, social isolation and stress can cause individuals to be quick to lose their tempers, as well as cause people to be less rational in their decision making and to make mountains out of mole hills. These situations can lead families to be at greater risk for child abuse.

Finally, cultural views and supports (or lack thereof) can lead to greater amounts of child abuse in a society such as the United States. One such cultural view is that of societal support for physical punishment. This is problematic because there are similarities between the way criminals are dealt with and the way errant children are handled. The use of capital punishment is advocated for seriously violent criminals, and people are quick to use such idioms as “spare the rod and spoil the child” when it comes to the discipline or punishment of children. In fact, it was not until quite recently that parenting books began to encourage parents to use other strategies than spanking or other forms of corporal punishment in the discipline of their children. Only recently, the American Academy of Pediatrics has come out and recommended that parents do not spank or use other forms of violence on their children because of the deleterious effects such methods have on youngsters and their bonds with their parents. Nevertheless, regardless of recommendations, the culture of corporal punishment persists.

Another cultural view in the United States that can give rise to greater incidents of child abuse is the belief that after getting married, couples of course should want and have children. Culturally, Americans consider that children are a blessing, raising kids is the most wonderful thing a person can do, and everyone should have children. Along with this notion is the idea that motherhood is always wonderful; it is the most fulfilling thing a woman can do; and the bond between a mother and her child is strong, glorious, and automatic—all women love being mothers. Thus, culturally (and theoretically), society nearly insists that married couples have children and that they will love having children. But, after children are born, there is not much support for couples who have trouble adjusting to parenthood, or who do not absolutely love their new roles as parents. People look askance at parents who need help, and cannot believe parents who say anything negative about parenthood. As such, theoretically, society has set up a situation where couples are strongly encouraged to have kids, are told they will love kids, but then society turns a blind or disdainful eye when these same parents need emotional, financial, or other forms of help or support. It is these types of cultural viewpoints that increase the risks for child abuse in society.

The consequences of child abuse are tremendous and long lasting. Research has shown that the traumatic experience of childhood abuse is life changing. These costs may surface during adolescence, or they may not become evident until abused children have grown up and become abusing parents or abused spouses. Early identification and treatment is important to minimize these potential long-term effects. Whenever children say they have been abused, it is imperative that they be taken seriously and their abuse be reported. Suspicions of child abuse must be reported as well. If there is a possibility that a child is or has been abused, an investigation must be conducted.

Children who have been abused may exhibit traits such as the inability to love or have faith in others. This often translates into adults who are unable to establish lasting and stable personal relationships. These individuals have trouble with physical closeness and touching as well as emotional intimacy and trust. Further, these qualities tend to cause a fear of entering into new relationships, as well as the sabotaging of any current ones.

Psychologically, children who have been abused tend to have poor self-images or are passive, withdrawn, or clingy. They may be angry individuals who are filled with rage, anxiety, and a variety of fears. They are often aggressive, disruptive, and depressed. Many abused children have flashbacks and nightmares about the abuse they have experienced, and this may cause sleep problems as well as drug and alcohol problems. Posttraumatic stress disorder (PTSD) and antisocial personality disorder are both typical among maltreated children. Research has also shown that most abused children fail to reach “successful psychosocial functioning,” and are thus not resilient and do not resume a “normal life” after the abuse has ended.

Socially (and likely because of these psychological injuries), abused children have trouble in school, will have difficulty getting and remaining employed, and may commit a variety of illegal or socially inappropriate behaviors. Many studies have shown that victims of child abuse are likely to participate in high-risk behaviors such as alcohol or drug abuse, the use of tobacco, and high-risk sexual behaviors (e.g., unprotected sex, large numbers of sexual partners). Later in life, abused children are more likely to have been arrested and homeless. They are also less able to defend themselves in conflict situations and guard themselves against repeated victimizations.

Medically, abused children likely will experience health problems due to the high frequency of physical injuries they receive. In addition, abused children experience a great deal of emotional turmoil and stress, which can also have a significant impact on their physical condition. These health problems are likely to continue occurring into adulthood. Some of these longer-lasting health problems include headaches; eating problems; problems with toileting; and chronic pain in the back, stomach, chest, and genital areas. Some researchers have noted that abused children may experience neurological impairment and problems with intellectual functioning, while others have found a correlation between abuse and heart, lung, and liver disease, as well as cancer (Thomas, 2004).

Victims of sexual abuse show an alarming number of disturbances as adults. Some dislike and avoid sex, or experience sexual problems or disorders, while other victims appear to enjoy sexual activities that are self-defeating or maladaptive—normally called “dysfunctional sexual behavior”—and have many sexual partners.

Abused children also experience a wide variety of developmental delays. Many do not reach physical, cognitive, or emotional developmental milestones at the typical time, and some never accomplish what they are supposed to during childhood socialization. In the next section, these developmental delays are discussed as a means of identifying children who may be abused.

There are two primary ways of identifying children who are abused: spotting and evaluating physical injuries, and detecting and appraising developmental delays. Distinguishing physical injuries due to abuse can be difficult, particularly among younger children who are likely to get hurt or receive injuries while they are playing and learning to become ambulatory. Nonetheless, there are several types of wounds that children are unlikely to give themselves during their normal course of play and exploration. These less likely injuries may signal instances of child abuse.

While it is true that children are likely to get bruises, particularly when they are learning to walk or crawl, bruises on infants are not normal. Also, the back of the legs, upper arms, or on the chest, neck, head, or genitals are also locations where bruises are unlikely to occur during normal childhood activity. Further, bruises with clean patterns, like hand prints, buckle prints, or hangers (to name a few), are good examples of the types of bruises children do not give themselves.

Another area of physical injury where the source of the injury can be difficult to detect is fractures. Again, children fall out of trees, or crash their bikes, and can break limbs. These can be normal parts of growing up. However, fractures in infants less than 12 months old are particularly suspect, as infants are unlikely to be able to accomplish the types of movement necessary to actually break a leg or an arm. Further, multiple fractures, particularly more than one on a bone, should be examined more closely. Spiral or torsion fractures (when the bone is broken by twisting) are suspect because when children break their bones due to play injuries, the fractures are usually some other type (e.g., linear, oblique, compacted). In addition, when parents don’t know about the fracture(s) or how it occurred, abuse should be considered, because when children get these types of injuries, they need comfort and attention.

Head and internal injuries are also those that may signal abuse. Serious blows to the head cause internal head injuries, and this is very different from the injuries that result from bumping into things. Abused children are also likely to experience internal injuries like those to the abdomen, liver, kidney, and bladder. They may suffer a ruptured spleen, or intestinal perforation. These types of damages rarely happen by accident.

Burns are another type of physical injury that can happen by accident or by abuse. Nevertheless, there are ways to tell these types of burn injuries apart. The types of burns that should be examined and investigated are those where the burns are in particular locations. Burns to the bottom of the feet, genitals, abdomen, or other inaccessible spots should be closely considered. Burns of the whole hand or those to the buttocks are also unlikely to happen as a result of an accident.

Turning to the detection and appraisal of developmental delays, one can more readily assess possible abuse by considering what children of various ages should be able to accomplish, than by noting when children are delayed and how many milestones on which they are behind schedule. Importantly, a few delays in reaching milestones can be expected, since children develop individually and not always according to the norm. Nonetheless, when children are abused, their development is likely to be delayed in numerous areas and across many milestones.

As children develop and grow, they should be able to crawl, walk, run, talk, control going to the bathroom, write, set priorities, plan ahead, trust others, make friends, develop a good self-image, differentiate between feeling and behavior, and get their needs met in appropriate ways. As such, when children do not accomplish these feats, their circumstances should be examined.

Infants who are abused or neglected typically develop what is termed failure to thrive syndrome. This syndrome is characterized by slow, inadequate growth, or not “filling out” physically. They have a pale, colorless complexion and dull eyes. They are not likely to spend much time looking around, and nothing catches their eyes. They may show other signs of lack of nutrition such as cuts, bruises that do not heal in a timely way, and discolored fingernails. They are also not trusting and may not cry much, as they are not expecting to have their needs met. Older infants may not have developed any language skills, or these developments are quite slow. This includes both verbal and nonverbal means of communication.

Toddlers who are abused often become hypervigilant about their environments and others’ moods. They are more outwardly focused than a typical toddler (who is quite self-centered) and may be unable to separate themselves as individuals, or consider themselves as distinct beings. In this way, abused toddlers cannot focus on tasks at hand because they are too concerned about others’ reactions. They don’t play with toys, have no interest in exploration, and seem unable to enjoy life. They are likely to accept losses with little reaction, and may have age-inappropriate knowledge of sex and sexual relations. Finally, toddlers, whether they are abused or not, begin to mirror their parents’ behaviors. Thus, toddlers who are abused may mimic the abuse when they are playing with dolls or “playing house.”

Developmental delays can also be detected among abused young adolescents. Some signs include the failure to learn cause and effect, since their parents are so inconsistent. They have no energy for learning and have not developed beyond one- or two-word commands. They probably cannot follow complicated directions (such as two to three tasks per instruction), and they are unlikely to be able to think for themselves. Typically, they have learned that failure is totally unacceptable, but they are more concerned with the teacher’s mood than with learning and listening to instruction. Finally, they are apt to have been inadequately toilet trained and thus may be unable to control their bladders.

Older adolescents, because they are likely to have been abused for a longer period of time, continue to get further and further behind in their developmental achievements. Abused children this age become family nurturers. They take care of their parents and cater to their parents’ needs, rather than the other way around. In addition, they probably take care of any younger siblings and do the household chores. Because of these default responsibilities, they usually do not participate in school activities; they frequently miss days at school; and they have few, if any, friends. Because they have become so hypervigilant and have increasingly delayed development, they lose interest in and become disillusioned with education. They develop low self-esteem and little confidence, but seem old for their years. Children this age who are abused are still likely to be unable to control their bladders and may have frequent toileting accidents.

Other developmental delays can occur and be observed in abused and neglected children of any age. For example, malnutrition and withdrawal can be noticed in infants through teenagers. Maltreated children frequently have persistent or untreated illnesses, and these can become permanent disabilities if medical conditions go untreated for a long enough time. Another example can be the consequences of neurological damage. Beyond being a medical issue, this type of damage can cause problems with social behavior and impulse control, which, again, can be discerned in various ages of children.

Once child abuse is suspected, law enforcement officers, child protection workers, or various other practitioners may need to interview the child about the abuse or neglect he or she may have suffered. Interviewing children can be extremely difficult because children at various stages of development can remember only certain parts or aspects of the events in their lives. Also, interviewers must be careful that they do not put ideas or answers into the heads of the children they are interviewing. There are several general recommendations when interviewing children about the abuse they may have experienced. First, interviewers must acknowledge that even when children are abused, they likely still love their parents. They do not want to be taken away from their parents, nor do they want to see their parents get into trouble. Interviewers must not blame the parents or be judgmental about them or the child’s family. Beyond that, interviews should take place in a safe, neutral location. Interviewers can use dolls and role-play to help children express the types of abuse of which they may be victims.

Finally, interviewers must ask age-appropriate questions. For example, 3-year-olds can probably only answer questions about what happened and who was involved. Four- to five-year-olds can also discuss where the incidents occurred. Along with what, who, and where, 6- to 8-year-olds can talk about the element of time, or when the abuse occurred. Nine- to 10-year-olds are able to add commentary about the number of times the abuse occurred. Finally, 11-year-olds and older children can additionally inform interviewers about the circumstances of abusive instances.

A conclusion is not a summary of what a writer has already mentioned. On the contrary, it is the last point made. Taking every detail of the investigation, the researcher makes the concluding point. In this part of a paper, you need to put a full stop in your research. You need to persuade the reader in your opinion.

Never add any new information in the conclusion. You can present solutions to the problem and you dwell upon the results, but only if this information has been already mentioned in the main body.

Child advocates recommend a variety of strategies to aid families and children experiencing abuse. These recommendations tend to focus on societal efforts as well as more individual efforts. One common strategy advocated is the use of public service announcements that encourage individuals to report any suspected child abuse. Currently, many mandatory reporters (those required by law to report abuse such as teachers, doctors, and social service agency employees) and members of communities feel that child abuse should not be reported unless there is substantial evidence that abuse is indeed occurring. Child advocates stress that this notion should be changed, and that people should report child abuse even if it is only suspected. Public service announcements should stress that if people report suspected child abuse, the worst that can happen is that they might be wrong, but in the grander scheme of things that is really not so bad.

Child advocates also stress that greater interagency cooperation is needed. This cooperation should be evident between women’s shelters, child protection agencies, programs for at-risk children, medical agencies, and law enforcement officers. These agencies typically do not share information, and if they did, more instances of child abuse would come to the attention of various authorities and could be investigated and managed. Along these lines, child protection agencies and programs should receive more funding. When budgets are cut, social services are often the first things to go or to get less financial support. Child advocates insist that with more resources, child protection agencies could hire more workers, handle more cases, conduct more investigations, and follow up with more children and families.

Continuing, more educational efforts must be initiated about issues such as punishment and discipline styles and strategies; having greater respect for children; as well as informing the community about what child abuse is, and how to recognize it. In addition, Americans must alter the cultural orientation about child bearing and child rearing. Couples who wish to remain child-free must be allowed to do so without disdain. And, it must be acknowledged that raising children is very difficult, is not always gloriously wonderful, and that parents who seek help should be lauded and not criticized. These kinds of efforts can help more children to be raised in nonviolent, emotionally satisfying families, and thus become better adults.

Bibliography

When you write a paper, make sure you are aware of all the formatting requirements. Incorrect formatting can lower your mark, so do not underestimate the importance of this part.

Organizing your bibliography is quite a tedious and time-consuming task. Still, you need to do it flawlessly. For this reason, analyze all the standards you need to meet or ask professionals to help you with it. All the comas, colons, brackets etc. matter. They truly do.

Bibliography:

  • American Academy of Pediatrics: https://www.aap.org/
  • Bancroft, L., & Silverman, J. G. (2002). The batterer as parent. Thousand Oaks, CA: Sage.
  • Child Abuse Prevention and Treatment Act, 42 U.S.C.A. § 5106g (1998).
  • Childhelp: Child Abuse Statistics: https://www.childhelp.org/child-abuse-statistics/
  • Children’s Defense Fund: https://www.childrensdefense.org/
  • Child Stats.gov: https://www.childstats.gov/
  • Child Welfare League of America: https://www.cwla.org/
  • Crosson-Tower, C. (2008). Understanding child abuse and neglect (7th ed.). Boston: Allyn & Bacon.
  • DeBecker, G. (1999). Protecting the gift: Keeping children and teenagers safe (and parents sane). New York: Bantam Dell.
  • Family Research Laboratory at the University of New Hampshire: https://cola.unh.edu/family-research-laboratory
  • Guterman, N. B. (2001). Stopping child maltreatment before it starts: Emerging horizons in early home visitation services. Thousand Oaks, CA: Sage.
  • Herman, J. L. (2000). Father-daughter incest. Cambridge, MA: Harvard University Press.
  • Medline Plus, Child Abuse: https://medlineplus.gov/childabuse.html
  • Myers, J. E. B. (Ed.). (1994). The backlash: Child protection under fire. Newbury Park, CA: Sage.
  • National Center for Missing and Exploited Children: https://www.missingkids.org/home
  • National Child Abuse and Neglect Data System. (2006). Child maltreatment 2006: Reports from the states to the National Child Abuse and Neglect Data System. Washington, DC: U.S. Department of Health and Human Services, Administration for Children and Families.
  • New York University Silver School of Social Work: https://socialwork.nyu.edu/
  • Pitzer, R. L. (1997). Corporal punishment in the discipline of children in the home: Research update for practitioners. Paper presented at the National Council on Family Relations Annual Conference, Washington, DC.
  • RAND, Child Abuse and Neglect: https://www.rand.org/topics/child-abuse-and-neglect.html
  • Richards, C. E. (2001). The loss of innocents: Child killers and their victims. Wilmington, DE: Scholarly Resources.
  • Straus, M. A. (2001). Beating the devil out of them: Corporal punishment in American families and its effects on children. Edison, NJ: Transaction.
  • Thomas, P. M. (2004). Protection, dissociation, and internal roles: Modeling and treating the effects of child abuse. Review of General Psychology, 7(15).
  • U.S. Department of Health and Human Services, Administration for Children and Families: https://www.acf.hhs.gov/

Your Pathway to Academic Excellence with iResearchNet

Embarking on your academic journey with iResearchNet not only sets the foundation for your success but also ensures you navigate the complexities of research paper writing with ease and confidence. Our comprehensive suite of services, from expertly crafted research papers to an array of exclusive extras, is designed with your academic needs and aspirations in mind. By choosing iResearchNet, you’re not just securing a service; you’re investing in your future, in a partnership that values excellence, integrity, and your personal academic goals.

We invite you to take the first step towards transforming your academic challenges into opportunities for growth and learning. Starting is simple, and the benefits are immense. With iResearchNet, you gain access to a world of expertise, personalized support, and resources tailored to elevate your research and writing to the highest standard. Our commitment to quality, alongside our promise of customization, affordability, and timely delivery, ensures that every paper we deliver meets and exceeds your expectations.

Whether you’re seeking to inspire your academic journey with our diverse research paper examples, require the specialized assistance of our expert writers, or wish to enhance your experience with our additional services, iResearchNet is here to support you every step of the way. Our process is streamlined for your convenience, ensuring that from the moment you place your order to the final receipt of your paper, your journey is smooth, transparent, and fully aligned with your academic objectives.

Embrace the opportunity to excel, to stand out, and to make your academic work truly remarkable. Choose iResearchNet today, and let us be your partner in achieving academic excellence. Begin your journey by placing your order, and experience firsthand the impact of professional support and exceptional writing on your academic endeavors. Your success is our priority, and with iResearchNet, it’s within reach.

ORDER HIGH QUALITY CUSTOM PAPER

example of practical research paper

Research Paper Guide

Research Paper Example

Nova A.

Research Paper Examples - Free Sample Papers for Different Formats!

Research Paper Example

People also read

Research Paper Writing - A Step by Step Guide

Guide to Creating Effective Research Paper Outline

Interesting Research Paper Topics for 2024

Research Proposal Writing - A Step-by-Step Guide

How to Start a Research Paper - 7 Easy Steps

How to Write an Abstract for a Research Paper - A Step by Step Guide

Writing a Literature Review For a Research Paper - A Comprehensive Guide

Qualitative Research - Methods, Types, and Examples

8 Types of Qualitative Research - Overview & Examples

Qualitative vs Quantitative Research - Learning the Basics

200+ Engaging Psychology Research Paper Topics for Students in 2024

Learn How to Write a Hypothesis in a Research Paper: Examples and Tips!

20+ Types of Research With Examples - A Detailed Guide

Understanding Quantitative Research - Types & Data Collection Techniques

230+ Sociology Research Topics & Ideas for Students

How to Cite a Research Paper - A Complete Guide

Excellent History Research Paper Topics- 300+ Ideas

A Guide on Writing the Method Section of a Research Paper - Examples & Tips

How To Write an Introduction Paragraph For a Research Paper: Learn with Examples

Crafting a Winning Research Paper Title: A Complete Guide

Writing a Research Paper Conclusion - Step-by-Step Guide

Writing a Thesis For a Research Paper - A Comprehensive Guide

How To Write A Discussion For A Research Paper | Examples & Tips

How To Write The Results Section of A Research Paper | Steps & Examples

Writing a Problem Statement for a Research Paper - A Comprehensive Guide

Finding Sources For a Research Paper: A Complete Guide

A Guide on How to Edit a Research Paper

200+ Ethical Research Paper Topics to Begin With (2024)

300+ Controversial Research Paper Topics & Ideas - 2024 Edition

150+ Argumentative Research Paper Topics For You - 2024

How to Write a Research Methodology for a Research Paper

Crafting a comprehensive research paper can be daunting. Understanding diverse citation styles and various subject areas presents a challenge for many.

Without clear examples, students often feel lost and overwhelmed, unsure of how to start or which style fits their subject.

Explore our collection of expertly written research paper examples. We’ve covered various citation styles and a diverse range of subjects.

So, read on!

Arrow Down

  • 1. Research Paper Example for Different Formats
  • 2. Examples for Different Research Paper Parts
  • 3. Research Paper Examples for Different Fields
  • 4. Research Paper Example Outline

Research Paper Example for Different Formats

Following a specific formatting style is essential while writing a research paper . Knowing the conventions and guidelines for each format can help you in creating a perfect paper. Here we have gathered examples of research paper for most commonly applied citation styles :

Social Media and Social Media Marketing: A Literature Review

APA Research Paper Example

APA (American Psychological Association) style is commonly used in social sciences, psychology, and education. This format is recognized for its clear and concise writing, emphasis on proper citations, and orderly presentation of ideas.

Here are some research paper examples in APA style:

Research Paper Example APA 7th Edition

Research Paper Example MLA

MLA (Modern Language Association) style is frequently employed in humanities disciplines, including literature, languages, and cultural studies. An MLA research paper might explore literature analysis, linguistic studies, or historical research within the humanities. 

Here is an example:

Found Voices: Carl Sagan

Research Paper Example Chicago

Chicago style is utilized in various fields like history, arts, and social sciences. Research papers in Chicago style could delve into historical events, artistic analyses, or social science inquiries. 

Here is a research paper formatted in Chicago style:

Chicago Research Paper Sample

Research Paper Example Harvard

Harvard style is widely used in business, management, and some social sciences. Research papers in Harvard style might address business strategies, case studies, or social policies.

View this sample Harvard style paper here:

Harvard Research Paper Sample

Examples for Different Research Paper Parts

A research paper has different parts. Each part is important for the overall success of the paper. Chapters in a research paper must be written correctly, using a certain format and structure.

The following are examples of how different sections of the research paper can be written.

Research Proposal

The research proposal acts as a detailed plan or roadmap for your study, outlining the focus of your research and its significance. It's essential as it not only guides your research but also persuades others about the value of your study.

Example of Research Proposal

An abstract serves as a concise overview of your entire research paper. It provides a quick insight into the main elements of your study. It summarizes your research's purpose, methods, findings, and conclusions in a brief format.

Research Paper Example Abstract

Literature Review 

A literature review summarizes the existing research on your study's topic, showcasing what has already been explored. This section adds credibility to your own research by analyzing and summarizing prior studies related to your topic.

Literature Review Research Paper Example

Methodology

The methodology section functions as a detailed explanation of how you conducted your research. This part covers the tools, techniques, and steps used to collect and analyze data for your study.

Methods Section of Research Paper Example

How to Write the Methods Section of a Research Paper

The conclusion summarizes your findings, their significance and the impact of your research. This section outlines the key takeaways and the broader implications of your study's results.

Research Paper Conclusion Example

Research Paper Examples for Different Fields

Research papers can be about any subject that needs a detailed study. The following examples show research papers for different subjects.

History Research Paper Sample

Preparing a history research paper involves investigating and presenting information about past events. This may include exploring perspectives, analyzing sources, and constructing a narrative that explains the significance of historical events.

View this history research paper sample:

Many Faces of Generalissimo Fransisco Franco

Sociology Research Paper Sample

In sociology research, statistics and data are harnessed to explore societal issues within a particular region or group. These findings are thoroughly analyzed to gain an understanding of the structure and dynamics present within these communities. 

Here is a sample:

A Descriptive Statistical Analysis within the State of Virginia

Science Fair Research Paper Sample

A science research paper involves explaining a scientific experiment or project. It includes outlining the purpose, procedures, observations, and results of the experiment in a clear, logical manner.

Here are some examples:

Science Fair Paper Format

What Do I Need To Do For The Science Fair?

Psychology Research Paper Sample

Writing a psychology research paper involves studying human behavior and mental processes. This process includes conducting experiments, gathering data, and analyzing results to understand the human mind, emotions, and behavior.

Here is an example psychology paper:

The Effects of Food Deprivation on Concentration and Perseverance

Art History Research Paper Sample

Studying art history includes examining artworks, understanding their historical context, and learning about the artists. This helps analyze and interpret how art has evolved over various periods and regions.

Check out this sample paper analyzing European art and impacts:

European Art History: A Primer

Research Paper Example Outline

Before you plan on writing a well-researched paper, make a rough draft. An outline can be a great help when it comes to organizing vast amounts of research material for your paper.

Here is an outline of a research paper example:

Here is a downloadable sample of a standard research paper outline:

Research Paper Outline

Want to create the perfect outline for your paper? Check out this in-depth guide on creating a research paper outline for a structured paper!

Good Research Paper Examples for Students

Here are some more samples of research paper for students to learn from:

Fiscal Research Center - Action Plan

Qualitative Research Paper Example

Research Paper Example Introduction

How to Write a Research Paper Example

Research Paper Example for High School

Now that you have explored the research paper examples, you can start working on your research project. Hopefully, these examples will help you understand the writing process for a research paper.

If you're facing challenges with your writing requirements, you can hire our essay writing help online.

Our team is experienced in delivering perfectly formatted, 100% original research papers. So, whether you need help with a part of research or an entire paper, our experts are here to deliver.

So, why miss out? Place your ‘ write my research paper ’ request today and get a top-quality research paper!

AI Essay Bot

Write Essay Within 60 Seconds!

Nova A.

Nova Allison is a Digital Content Strategist with over eight years of experience. Nova has also worked as a technical and scientific writer. She is majorly involved in developing and reviewing online content plans that engage and resonate with audiences. Nova has a passion for writing that engages and informs her readers.

Get Help

Paper Due? Why Suffer? That’s our Job!

Keep reading

research paper

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

13.1 Formatting a Research Paper

Learning objectives.

  • Identify the major components of a research paper written using American Psychological Association (APA) style.
  • Apply general APA style and formatting conventions in a research paper.

In this chapter, you will learn how to use APA style , the documentation and formatting style followed by the American Psychological Association, as well as MLA style , from the Modern Language Association. There are a few major formatting styles used in academic texts, including AMA, Chicago, and Turabian:

  • AMA (American Medical Association) for medicine, health, and biological sciences
  • APA (American Psychological Association) for education, psychology, and the social sciences
  • Chicago—a common style used in everyday publications like magazines, newspapers, and books
  • MLA (Modern Language Association) for English, literature, arts, and humanities
  • Turabian—another common style designed for its universal application across all subjects and disciplines

While all the formatting and citation styles have their own use and applications, in this chapter we focus our attention on the two styles you are most likely to use in your academic studies: APA and MLA.

If you find that the rules of proper source documentation are difficult to keep straight, you are not alone. Writing a good research paper is, in and of itself, a major intellectual challenge. Having to follow detailed citation and formatting guidelines as well may seem like just one more task to add to an already-too-long list of requirements.

Following these guidelines, however, serves several important purposes. First, it signals to your readers that your paper should be taken seriously as a student’s contribution to a given academic or professional field; it is the literary equivalent of wearing a tailored suit to a job interview. Second, it shows that you respect other people’s work enough to give them proper credit for it. Finally, it helps your reader find additional materials if he or she wishes to learn more about your topic.

Furthermore, producing a letter-perfect APA-style paper need not be burdensome. Yes, it requires careful attention to detail. However, you can simplify the process if you keep these broad guidelines in mind:

  • Work ahead whenever you can. Chapter 11 “Writing from Research: What Will I Learn?” includes tips for keeping track of your sources early in the research process, which will save time later on.
  • Get it right the first time. Apply APA guidelines as you write, so you will not have much to correct during the editing stage. Again, putting in a little extra time early on can save time later.
  • Use the resources available to you. In addition to the guidelines provided in this chapter, you may wish to consult the APA website at http://www.apa.org or the Purdue University Online Writing lab at http://owl.english.purdue.edu , which regularly updates its online style guidelines.

General Formatting Guidelines

This chapter provides detailed guidelines for using the citation and formatting conventions developed by the American Psychological Association, or APA. Writers in disciplines as diverse as astrophysics, biology, psychology, and education follow APA style. The major components of a paper written in APA style are listed in the following box.

These are the major components of an APA-style paper:

Body, which includes the following:

  • Headings and, if necessary, subheadings to organize the content
  • In-text citations of research sources
  • References page

All these components must be saved in one document, not as separate documents.

The title page of your paper includes the following information:

  • Title of the paper
  • Author’s name
  • Name of the institution with which the author is affiliated
  • Header at the top of the page with the paper title (in capital letters) and the page number (If the title is lengthy, you may use a shortened form of it in the header.)

List the first three elements in the order given in the previous list, centered about one third of the way down from the top of the page. Use the headers and footers tool of your word-processing program to add the header, with the title text at the left and the page number in the upper-right corner. Your title page should look like the following example.

Beyond the Hype: Evaluating Low-Carb Diets cover page

The next page of your paper provides an abstract , or brief summary of your findings. An abstract does not need to be provided in every paper, but an abstract should be used in papers that include a hypothesis. A good abstract is concise—about one hundred fifty to two hundred fifty words—and is written in an objective, impersonal style. Your writing voice will not be as apparent here as in the body of your paper. When writing the abstract, take a just-the-facts approach, and summarize your research question and your findings in a few sentences.

In Chapter 12 “Writing a Research Paper” , you read a paper written by a student named Jorge, who researched the effectiveness of low-carbohydrate diets. Read Jorge’s abstract. Note how it sums up the major ideas in his paper without going into excessive detail.

Beyond the Hype: Abstract

Write an abstract summarizing your paper. Briefly introduce the topic, state your findings, and sum up what conclusions you can draw from your research. Use the word count feature of your word-processing program to make sure your abstract does not exceed one hundred fifty words.

Depending on your field of study, you may sometimes write research papers that present extensive primary research, such as your own experiment or survey. In your abstract, summarize your research question and your findings, and briefly indicate how your study relates to prior research in the field.

Margins, Pagination, and Headings

APA style requirements also address specific formatting concerns, such as margins, pagination, and heading styles, within the body of the paper. Review the following APA guidelines.

Use these general guidelines to format the paper:

  • Set the top, bottom, and side margins of your paper at 1 inch.
  • Use double-spaced text throughout your paper.
  • Use a standard font, such as Times New Roman or Arial, in a legible size (10- to 12-point).
  • Use continuous pagination throughout the paper, including the title page and the references section. Page numbers appear flush right within your header.
  • Section headings and subsection headings within the body of your paper use different types of formatting depending on the level of information you are presenting. Additional details from Jorge’s paper are provided.

Cover Page

Begin formatting the final draft of your paper according to APA guidelines. You may work with an existing document or set up a new document if you choose. Include the following:

  • Your title page
  • The abstract you created in Note 13.8 “Exercise 1”
  • Correct headers and page numbers for your title page and abstract

APA style uses section headings to organize information, making it easy for the reader to follow the writer’s train of thought and to know immediately what major topics are covered. Depending on the length and complexity of the paper, its major sections may also be divided into subsections, sub-subsections, and so on. These smaller sections, in turn, use different heading styles to indicate different levels of information. In essence, you are using headings to create a hierarchy of information.

The following heading styles used in APA formatting are listed in order of greatest to least importance:

  • Section headings use centered, boldface type. Headings use title case, with important words in the heading capitalized.
  • Subsection headings use left-aligned, boldface type. Headings use title case.
  • The third level uses left-aligned, indented, boldface type. Headings use a capital letter only for the first word, and they end in a period.
  • The fourth level follows the same style used for the previous level, but the headings are boldfaced and italicized.
  • The fifth level follows the same style used for the previous level, but the headings are italicized and not boldfaced.

Visually, the hierarchy of information is organized as indicated in Table 13.1 “Section Headings” .

Table 13.1 Section Headings

A college research paper may not use all the heading levels shown in Table 13.1 “Section Headings” , but you are likely to encounter them in academic journal articles that use APA style. For a brief paper, you may find that level 1 headings suffice. Longer or more complex papers may need level 2 headings or other lower-level headings to organize information clearly. Use your outline to craft your major section headings and determine whether any subtopics are substantial enough to require additional levels of headings.

Working with the document you developed in Note 13.11 “Exercise 2” , begin setting up the heading structure of the final draft of your research paper according to APA guidelines. Include your title and at least two to three major section headings, and follow the formatting guidelines provided above. If your major sections should be broken into subsections, add those headings as well. Use your outline to help you.

Because Jorge used only level 1 headings, his Exercise 3 would look like the following:

Citation Guidelines

In-text citations.

Throughout the body of your paper, include a citation whenever you quote or paraphrase material from your research sources. As you learned in Chapter 11 “Writing from Research: What Will I Learn?” , the purpose of citations is twofold: to give credit to others for their ideas and to allow your reader to follow up and learn more about the topic if desired. Your in-text citations provide basic information about your source; each source you cite will have a longer entry in the references section that provides more detailed information.

In-text citations must provide the name of the author or authors and the year the source was published. (When a given source does not list an individual author, you may provide the source title or the name of the organization that published the material instead.) When directly quoting a source, it is also required that you include the page number where the quote appears in your citation.

This information may be included within the sentence or in a parenthetical reference at the end of the sentence, as in these examples.

Epstein (2010) points out that “junk food cannot be considered addictive in the same way that we think of psychoactive drugs as addictive” (p. 137).

Here, the writer names the source author when introducing the quote and provides the publication date in parentheses after the author’s name. The page number appears in parentheses after the closing quotation marks and before the period that ends the sentence.

Addiction researchers caution that “junk food cannot be considered addictive in the same way that we think of psychoactive drugs as addictive” (Epstein, 2010, p. 137).

Here, the writer provides a parenthetical citation at the end of the sentence that includes the author’s name, the year of publication, and the page number separated by commas. Again, the parenthetical citation is placed after the closing quotation marks and before the period at the end of the sentence.

As noted in the book Junk Food, Junk Science (Epstein, 2010, p. 137), “junk food cannot be considered addictive in the same way that we think of psychoactive drugs as addictive.”

Here, the writer chose to mention the source title in the sentence (an optional piece of information to include) and followed the title with a parenthetical citation. Note that the parenthetical citation is placed before the comma that signals the end of the introductory phrase.

David Epstein’s book Junk Food, Junk Science (2010) pointed out that “junk food cannot be considered addictive in the same way that we think of psychoactive drugs as addictive” (p. 137).

Another variation is to introduce the author and the source title in your sentence and include the publication date and page number in parentheses within the sentence or at the end of the sentence. As long as you have included the essential information, you can choose the option that works best for that particular sentence and source.

Citing a book with a single author is usually a straightforward task. Of course, your research may require that you cite many other types of sources, such as books or articles with more than one author or sources with no individual author listed. You may also need to cite sources available in both print and online and nonprint sources, such as websites and personal interviews. Chapter 13 “APA and MLA Documentation and Formatting” , Section 13.2 “Citing and Referencing Techniques” and Section 13.3 “Creating a References Section” provide extensive guidelines for citing a variety of source types.

Writing at Work

APA is just one of several different styles with its own guidelines for documentation, formatting, and language usage. Depending on your field of interest, you may be exposed to additional styles, such as the following:

  • MLA style. Determined by the Modern Languages Association and used for papers in literature, languages, and other disciplines in the humanities.
  • Chicago style. Outlined in the Chicago Manual of Style and sometimes used for papers in the humanities and the sciences; many professional organizations use this style for publications as well.
  • Associated Press (AP) style. Used by professional journalists.

References List

The brief citations included in the body of your paper correspond to the more detailed citations provided at the end of the paper in the references section. In-text citations provide basic information—the author’s name, the publication date, and the page number if necessary—while the references section provides more extensive bibliographical information. Again, this information allows your reader to follow up on the sources you cited and do additional reading about the topic if desired.

The specific format of entries in the list of references varies slightly for different source types, but the entries generally include the following information:

  • The name(s) of the author(s) or institution that wrote the source
  • The year of publication and, where applicable, the exact date of publication
  • The full title of the source
  • For books, the city of publication
  • For articles or essays, the name of the periodical or book in which the article or essay appears
  • For magazine and journal articles, the volume number, issue number, and pages where the article appears
  • For sources on the web, the URL where the source is located

The references page is double spaced and lists entries in alphabetical order by the author’s last name. If an entry continues for more than one line, the second line and each subsequent line are indented five spaces. Review the following example. ( Chapter 13 “APA and MLA Documentation and Formatting” , Section 13.3 “Creating a References Section” provides extensive guidelines for formatting reference entries for different types of sources.)

References Section

In APA style, book and article titles are formatted in sentence case, not title case. Sentence case means that only the first word is capitalized, along with any proper nouns.

Key Takeaways

  • Following proper citation and formatting guidelines helps writers ensure that their work will be taken seriously, give proper credit to other authors for their work, and provide valuable information to readers.
  • Working ahead and taking care to cite sources correctly the first time are ways writers can save time during the editing stage of writing a research paper.
  • APA papers usually include an abstract that concisely summarizes the paper.
  • APA papers use a specific headings structure to provide a clear hierarchy of information.
  • In APA papers, in-text citations usually include the name(s) of the author(s) and the year of publication.
  • In-text citations correspond to entries in the references section, which provide detailed bibliographical information about a source.

Writing for Success Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

  • Link to facebook
  • Link to linkedin
  • Link to twitter
  • Link to youtube
  • Writing Tips

How to Write an “Implications of Research” Section

How to Write an “Implications of Research” Section

4-minute read

  • 24th October 2022

When writing research papers , theses, journal articles, or dissertations, one cannot ignore the importance of research. You’re not only the writer of your paper but also the researcher ! Moreover, it’s not just about researching your topic, filling your paper with abundant citations, and topping it off with a reference list. You need to dig deep into your research and provide related literature on your topic. You must also discuss the implications of your research.

Interested in learning more about implications of research? Read on! This post will define these implications, why they’re essential, and most importantly, how to write them. If you’re a visual learner, you might enjoy this video .

What Are Implications of Research?

Implications are potential questions from your research that justify further exploration. They state how your research findings could affect policies, theories, and/or practices.

Implications can either be practical or theoretical. The former is the direct impact of your findings on related practices, whereas the latter is the impact on the theories you have chosen in your study.

Example of a practical implication: If you’re researching a teaching method, the implication would be how teachers can use that method based on your findings.

Example of a theoretical implication: You added a new variable to Theory A so that it could cover a broader perspective.

Finally, implications aren’t the same as recommendations, and it’s important to know the difference between them .

Questions you should consider when developing the implications section:

●  What is the significance of your findings?

●  How do the findings of your study fit with or contradict existing research on this topic?

●  Do your results support or challenge existing theories? If they support them, what new information do they contribute? If they challenge them, why do you think that is?

Why Are Implications Important?

You need implications for the following reasons:

● To reflect on what you set out to accomplish in the first place

● To see if there’s a change to the initial perspective, now that you’ve collected the data

● To inform your audience, who might be curious about the impact of your research

How to Write an Implications Section

Usually, you write your research implications in the discussion section of your paper. This is the section before the conclusion when you discuss all the hard work you did. Additionally, you’ll write the implications section before making recommendations for future research.

Implications should begin with what you discovered in your study, which differs from what previous studies found, and then you can discuss the implications of your findings.

Your implications need to be specific, meaning you should show the exact contributions of your research and why they’re essential. They should also begin with a specific sentence structure.

Examples of starting implication sentences:

●  These results build on existing evidence of…

●  These findings suggest that…

●  These results should be considered when…

●  While previous research has focused on x , these results show that y …

Find this useful?

Subscribe to our newsletter and get writing tips from our editors straight to your inbox.

You should write your implications after you’ve stated the results of your research. In other words, summarize your findings and put them into context.

The result : One study found that young learners enjoy short activities when learning a foreign language.

The implications : This result suggests that foreign language teachers use short activities when teaching young learners, as they positively affect learning.

 Example 2

The result : One study found that people who listen to calming music just before going to bed sleep better than those who watch TV.

The implications : These findings suggest that listening to calming music aids sleep quality, whereas watching TV does not.

To summarize, remember these key pointers:

●  Implications are the impact of your findings on the field of study.

●  They serve as a reflection of the research you’ve conducted.              

●  They show the specific contributions of your findings and why the audience should care.

●  They can be practical or theoretical.

●  They aren’t the same as recommendations.

●  You write them in the discussion section of the paper.

●  State the results first, and then state their implications.

Are you currently working on a thesis or dissertation? Once you’ve finished your paper (implications included), our proofreading team can help ensure that your spelling, punctuation, and grammar are perfect. Consider submitting a 500-word document for free.

Share this article:

Post A New Comment

Got content that needs a quick turnaround? Let us polish your work. Explore our editorial business services.

9-minute read

How to Use Infographics to Boost Your Presentation

Is your content getting noticed? Capturing and maintaining an audience’s attention is a challenge when...

8-minute read

Why Interactive PDFs Are Better for Engagement

Are you looking to enhance engagement and captivate your audience through your professional documents? Interactive...

7-minute read

Seven Key Strategies for Voice Search Optimization

Voice search optimization is rapidly shaping the digital landscape, requiring content professionals to adapt their...

Five Creative Ways to Showcase Your Digital Portfolio

Are you a creative freelancer looking to make a lasting impression on potential clients or...

How to Ace Slack Messaging for Contractors and Freelancers

Effective professional communication is an important skill for contractors and freelancers navigating remote work environments....

3-minute read

How to Insert a Text Box in a Google Doc

Google Docs is a powerful collaborative tool, and mastering its features can significantly enhance your...

Logo Harvard University

Make sure your writing is the best it can be with our expert English proofreading and editing.

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, 113 great research paper topics.

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Follow us on Facebook (icon)

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”
  • Open access
  • Published: 15 May 2024

Alzheimer blood biomarkers: practical guidelines for study design, sample collection, processing, biobanking, measurement and result reporting

  • Xuemei Zeng 1 ,
  • Yijun Chen 2 ,
  • Anuradha Sehrawat 1 ,
  • Jihui Lee 1 ,
  • Tara K. Lafferty 1 ,
  • Julia Kofler 3 ,
  • Sarah B. Berman 4 ,
  • Robert A. Sweet 1 , 4 ,
  • Dana L. Tudorascu 1 ,
  • William E. Klunk 1 ,
  • Milos D. Ikonomovic 1 , 4 , 5 ,
  • Anna Pfister 6 , 7 ,
  • Henrik Zetterberg 6 , 7 , 8 , 9 , 10 , 11 ,
  • Beth E. Snitz 4 ,
  • Anne D. Cohen 1 ,
  • Victor L. Villemagne 1 ,
  • Tharick A. Pascoal 1 , 4 ,
  • M. llyas Kamboh 12 ,
  • Oscar I. Lopez 4 ,
  • Kaj Blennow 6 , 7 &
  • Thomas K. Karikari   ORCID: orcid.org/0000-0003-1422-4358 1 , 6  

Molecular Neurodegeneration volume  19 , Article number:  40 ( 2024 ) Cite this article

32 Altmetric

Metrics details

Alzheimer’s disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aβ]40, Aβ42, Aβ42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.

Alzheimer’s disease (AD), the most common form of dementia, poses significant economic and social burden on affected individuals, as well as their families, caregivers, communities, and healthcare systems worldwide [ 1 ]. An estimated excess of 50 million people are living with AD globally, including 6.7 million in the United States. By 2050, these numbers are expected to rise to 152 million and 13.8 million, respectively [ 2 , 3 ]. Neuropathologically, AD is characterized by two hallmark lesions in the brain; amyloid-β (Aβ) plaques and tau neurofibrillary tangles [ 4 , 5 ]. Most individuals with brain pathophysiological evidence of AD clinically show progressive cognitive impairment [ 6 ]. Unfortunately, despite decades of research and numerous clinical trials, AD remains difficult to treat, with only a few FDA-approved drugs available for treatment [ 1 ]. Among them, lecanemab, donanemab and aducanumab, humanized antibodies designed to reduce the amyloid plaque burden, are the only ones expected to provide disease-modifying therapy [ 7 , 8 , 9 ]. The other drugs are palliative treatments that reduce the symptoms temporarily but are not directed toward preventing or slowing disease progression.

The slow pace of AD drug development is partly due to a lack of accessible and cost-effective biomarkers for participant enrollment and stratification in clinical trials. The National Institute on Aging and the Alzheimer’s Association (NIA-AA) research framework recommends the use of biomarker criteria for amyloid pathology, tau pathology, and neurodegeneration [AT(N)] for a biological definition of AD [ 10 ]. However, these assessments are currently performed using expensive, time-consuming, and sometimes invasive procedures with limited global accessibility such as magnetic resonance imaging (MRI), positron emission tomography (PET) scans, and/or cerebrospinal fluid (CSF) biomarkers [ 11 , 12 , 13 ], which are unsuitable for large-scale clinical applications and population screenings. It has been estimated that screening a single participant for AD clinical trials with PET and MRI could cost at least US $8,000 [ 14 ]. Given the typically high screen-failure rate (percentage of screened participants not meeting the enrollment criteria), it is not surprising that participant screening may cost 50–70% of total per-participant costs [ 14 ]. These costs could be prohibitive for large-scale clinical trials. In terms of clinical applications, imaging all patients with suspected cognitive impairment due to AD using PET and MRI would be difficult to achieve due to the low throughput and the limited availability of the specialized facilities and expertise needed to administer and interpret these tests [ 13 ].

To address this issue, there is a growing need to develop less invasive, more cost-effective, and scalable biomarkers that can reliably identify AD pathology. Blood-based AD biomarkers are a desirable choice due to availability of blood specimens through routine clinical practice and research programs. In clinical trials, blood biomarkers have already shown utility as pre-screening measures to streamline the identification and inclusion of individuals who fit pre-defined criteria for biological evidence of disease [ 15 , 16 ]. Importantly, clinical prescriptions of the recent FDA-approved anti-amyloid drugs require prior confirmation of brain amyloidosis. However, since amyloid PET and CSF Aβ42/Aβ 40 assessments are not feasible in many hospital settings, blood biomarkers would be very useful proxies.

The development of such biomarkers has been hindered by the extreme complexity of the blood proteome, low biomarker abundance, and signal dilution from peripheral tissues. However, significant advances have been achieved in the past decade, benefiting partly from the development of ultra-sensitive immunoassays and high-performance mass spectrometry technology platforms [ 17 , 18 , 19 , 20 ]. Blood-based biomarkers with high potential of providing accurate assessment of the AT(N) criteria include the Aβ42/40 ratio for amyloid pathology, phosphorylated tau (p-tau) for tau pathology, and neurofilament light-chain (NfL) and brain-derived tau for neurodegeneration/axonal injury [ 11 , 21 ]. In addition, plasma glial fibrillary acidic protein (GFAP), an indicator of reactive astrogliosis often associated with brain Aβ plaques, has also been proposed as an early marker for amyloid pathology [ 22 , 23 , 24 , 25 ]. 

The anticipated next stage in the development of highly sensitive and specific blood biomarkers for AD is to employ them in real-world settings for clinical diagnosis, population studies, and eligibility screening for therapeutic trials. However, a major challenge facing the field is the need for increased standardization of collection, processing, and storage procedures. Another important challenge is the need for agreed-upon procedures to monitor and maintain long-term stability in the biomarker measurements, especially since none of the blood-based AD biomarkers in use currently has certified reference measurement procedures. These obstacles must be overcome before blood-based biomarkers can be effectively adopted in clinical and research-based settings, and these measurements can be appropriately harmonized. A survey of studies across fifteen centers revealed variations in sample processing, such as the time of day for collection, fasting status, time from collection to centrifugation, the temperature at various steps, and centrifugation parameters [ 26 ]. The lack of standardization can introduce measurement variations, reducing clinical reliability and making it challenging to compare results across laboratories and establish clinical thresholds. These variations can be introduced at three phases: preanalytical, analytical, and post-analytical. The advancement of analytical technologies, such as automation in sample preparation, has dramatically reduced errors in the analytical phase. It is now thought that the preanalytical stage is the most error-prone phase (over 60%), followed by the post-analytical phase (over 20%) [ 27 ].

Decades of research have led to the development of a consensus protocol for standardized collection and biobanking of CSF-based AD biomarkers [ 28 ], which has been key to the much improved inter-laboratory reproducibility of the core CSF biomarkers in recent years [ 29 ]. Blood-based AD biomarkers often have smaller effect sizes than the corresponding CSF biomarkers (with the exception of GFAP) [ 25 ], possibly due to signal attenuation caused by counterpart proteins secreted or biomarkers sequestered by peripheral tissues and the increased biological complexity of blood [ 13 , 30 ] (further discussed below). Therefore, minimizing preanalytical variations is even more critical for blood-based AD biomarkers. O’Bryant et al., in 2015, proposed a set of guidelines to standardize blood sample collection [ 31 ]. Yet, the evidence evaluating defined preanalytical factors was limited at that time. Since then, many research studies have been published, and an updated evidence-based plasma handling standardized operating procedure (SOP) was proposed in 2022 by Verberk et al. [ 26 ]. However, this SOP was limited to preanalytical factors and was directed at experienced blood biomarker laboratories and scientists. As blood biomarkers become more widely available and simplified commercial technologies get increasingly accessible, fundamental guidelines that: (1) take into account the preanalytical, analytical, and post-analytical pipeline; (2) accommodate the needs of investigators new to the blood biomarker space; and (3) are applicable to both traditional (blood collection and assessments in a clinical setting) and non-traditional (home collections, population-based evaluations, resource-limited settings) environments, are needed.

Standardization of blood AD biomarker research across sites, studies and investigators must consider several steps, including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting (Fig.  1 ). This review aims to expand on earlier guidelines by employing the evidence base from recent research findings and our own experiences to provide a detailed description of the general considerations associated with each of these steps. Furthermore, we present an easy-to-follow SOP to aid in the design and implementation of high-quality blood-based AD biomarker research projects, covering the preanalytical, analytical, and post-analytical phases. It is worth noting that although we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., Aβ40, Aβ42, Aβ42/40 ratio, total-tau (t-tau), p-tau, NfL, brain-derived tau [BD-tau] and GFAP), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers as well as discovery proteomic investigations.

figure 1

Proposed general workflow for conducting high-quality blood AD biomarker research and the important considerations associated with each step. The major steps are divided into six, namely study design, blood collection, blood processing, biobanking, biomarker measurement and results reporting. The important considerations under each step are listed in the Figure. Detailed discussions are provided in the text

Considerations during study design

Item 1: collection of sociodemographic, lifestyle, and health information.

Numerous sociodemographic, lifestyle, health, and environmental factors have been associated with an increased risk of AD [ 32 , 33 , 34 ]. For example, age, education, sex, race, creatinine levels, concomitant medication (including anti-amyloid therapies), medical history, and comorbidities such as diabetes, hypertension, impaired kidney function, liver diseases, and cardiovascular diseases have been found to be significantly associated with blood AD biomarkers levels in some research cohorts compared with unaffected controls [ 7 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 ]. Additionally, conditions such as pregnancy, menopausal symptoms and hormone therapy use are critical as biomarker changes have been reported [ 44 , 45 ] but require further investigation. While it may not be feasible to include all demographic and clinical information, we recommend recording as much information as possible during subject recruitment and through the medical record extraction to prevent over-/under-interpretation of results and to enable adjustment of reference ranges according to population characteristics if needed. Importantly, the collection, processing, storage, and application of personal data must conform with the prevailing ethical guidelines and legal frameworks in the countries concerned. For example, there is the General Data Protection Regulation (GDPR) in Europe and Health Insurance Portability and Accountability Act of 1996 (HIPAA) in the United States.

Item 2: sample size consideration

Sample size planning is critical in studies evaluating the diagnostic and prognostic capabilities of blood AD biomarkers and the impact of covariates. Insufficient sample size reduces the power to detect true significance. In contrast, excess sample size may magnify the importance of clinically non-meaningful differences, increase costs, prolong the study, and potentially expose more participants to needless evaluations [ 46 ]. Blood AD biomarkers often have smaller effect sizes than CSF biomarkers due to the expected dilution effect from peripheral tissues. Aβ42/40 ratio, for example, has reduced difference between Aβ+ vs. Aβ- individuals from ~ 40% in CSF to ~ 10% in blood [ 13 , 25 , 30 ]. Similarly, p-tau fold change is comparatively decreased from 166% in CSF to 85.6% in the blood [ 13 ], despite plasma p-tau having larger effect sizes than plasma Aβ42/40 ratio when compared directly [ 25 , 47 ]. Therefore, blood AD biomarker studies will require larger sample sizes than CSF biomarker studies. To determine the optimal sample size, one must consider factors such as expected effect size, population variance, desirable type I and type II error rates, participant dropout rate for longitudinal studies, and adjustment of covariates [ 46 ]. It is important to note that sample size calculation can become challenging for complex studies and will require statisticians’ advice during study design.

Item 3: selection of analytical platforms

Blood AD biomarkers tend to be near or below the detection limit of traditional enzyme-linked immunosorbent assays (ELISAs). However, in the past decade, many technologies have emerged that have significantly accelerated research in this area [ 18 , 19 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 ]. Among them, Single molecule array (Simoa), mass spectrometry, as well as immunoassay technologies available on platforms such as the Elecsys and Cobas systems from Roche Diagnostics, Meso Scale Discovery (MSD), and immunomagnetic reduction (MagQu) are the most used. Recently, the Lumipulse G system, widely used for running electrochemiluminescence (ECL) immunoassays in CSF samples for research and in vitro diagnostic purposes, has also moved into the blood biomarker space, with assays now available for plasma Aβ peptides, NfL, p-tau181 and p-tau217 [ 63 ]. In addition, Ella, a novel platform for running multi-analyte automated microfluidic immunoassays (Simple Plex™) has now entered the AD biomarker field, with assays available for plasma NfL [ 64 , 65 ]. Emerging platforms include Nano Mosaic and NULISA. We have summarized in Table  1 the commonly used platforms for the key AD blood biomarkers, but the list is not meant to be exhaustive. For more detailed descriptions, readers should refer to recent review articles [ 20 , 66 , 67 , 68 ] and references therein.

Extensive studies have been conducted to examine associations of blood biomarkers with AD pathology and compare the performance of different platforms. While a comprehensive review of the literature is beyond the scope of this work, a brief summary of the key findings is provided below:

Amyloid plaques, one of the primary pathological features of AD, consist mainly of amyloid beta peptides [ 77 , 78 ]. While CSF Aβ42/40 has been used in clinical settings to assess brain Aβ plaques, the association of blood Aβ42/40 with AD pathologies has been controversial [ 79 , 80 ]. Several immunoassays and MS assays are available to measure blood Aβ peptides [ 20 ], but overall, there is low inter-platform reproducibility [ 75 , 81 ]. MS assays generally exhibit superior predictive power for brain Aβ compared to immunoassays, possibly due to higher specificity obtained through MS assays [ 81 ].

CSF t-tau is a biomarker for neurodegeneration or neuronal injury [ 82 ]. However, plasma t-tau shows low correlation with CSF t-tau due to potential contamination with tau from peripheral sources [ 83 , 84 ]. Improved plasma t-tau assays have been reported recently [ 85 , 86 ]. In addition, recently developed Simoa assay targeting brain-derived tau showed a better correlation with CSF t-tau and improved biomarker performance [ 21 ].

CSF p-tau is a biomarker for neurofibrillary tangles [ 15 , 87 , 88 ]. Despite their low abundance in the blood, several assays are available to measure p-tau species in the blood [ 13 , 89 , 90 , 91 , 92 ]. Unlike plasma Aβ assays, p-tau assays exhibited overall strong inter-platform concordance [ 20 , 93 , 94 , 95 , 96 ]. P-tau181, p-tau217, and p-tau231 are the most widely studied p-tau species. P-tau212 is a new marker recently reported [ 97 ]. Different p-tau species might increase at different stages of the AD continuum [ 91 , 98 ]. Unlike their CSF counterparts, blood p-tau exhibits better association with Aβ plaques rather than neurofibrillary tangles.

GFAP is a biomarker for reactive astrogliosis [ 99 ], a cellular response often associated with brain Aβ plaque pathology in AD [ 100 ]. Plasma GFAP positively correlated with Aβ burden and tau pathology in AD [ 101 , 102 ]. Plasma GFAP level may be impacted by non-AD brain injuries and is an FDA-approved biomarker for detecting intracranial lesions after brain injury [ 103 ].

Neuronal damage/injury leads to elevated secretion of NfL into the extracellular space [ 104 ]. Although non-AD specific, NfL is an excellent biomarker for neurodegeneration to monitor the disease progression of AD patients [ 105 , 106 ]. Head-to-head comparison of Simoa and Ella assays in a multiple sclerosis cohort demonstrated a strong correlation between the platforms [ 64 , 65 ]. Plasma/serum brain-derived tau showed stronger specificity to AD pathophysiology versus related non-AD disorders. 

Item 4: selection of blood specimen

Both plasma and serum have been utilized for measuring AD biomarkers. Studies comparing AD biomarker levels in serum and plasma have shown that some analytes, including Aβ peptides, t-tau, BD-tau and multiple p-tau species, are present at lower levels in serum, possibly due to a loss from clot trapping [ 26 , 107 , 108 , 109 , 110 , 111 ]. This makes it more challenging to measure such biomarkers in serum, especially for individuals whose biomarker levels are close to the lower detection limit. Nonetheless, biomarkers such as p-tau231, p-tau181 and BD-tau have been shown to have equivalent diagnostic accuracies in plasma and serum [ 21 , 89 , 107 , 109 , 111 ]. P-tau217 [ 112 ] and p-tau212 [ 97 ] are currently measurable in plasma but not serum. It is important to note that the choice of the blood specimen depends on the overall research objectives and sample availability. For example, serum may be a better choice for studies that evaluate the integrity of the blood-brain barrier since the CSF/serum albumin ratio is a well-established indicator of blood-CSF barrier function [ 113 ]. Additionally, serum is more widely used in hospital systems, with more clinical tests using serum instead of plasma as the specimen, according to the Mayo Clinic 2023 Test Catalog [ 114 ].

On the other hand, many research cohorts collect plasma instead of serum. Ethylenediaminetetraacetic acid (EDTA), heparin, and citrate are the most commonly used anticoagulants in clinics for plasma collection [ 115 ]. EDTA is the most universal in AD biomarker research [ 26 ]. Several studies have suggested that citrate plasma has lower levels of several biomarkers, including Aβ peptides, NfL, GFAP, and t-tau, compared with EDTA and heparin plasma [ 116 , 117 ]. However, studies comparing heparin vs. EDTA have generated mixed results. For example, one study found most biomarkers to be more abundant in heparin plasma than EDTA plasma [ 107 ], while another found higher levels of t-tau and p-tau181 but similar levels of Aβ40 and Aβ42 in heparin compared with EDTA plasma samples [ 118 ]. Rózga et al., on the other hand, reported that the levels of t-tau were significantly lower in heparin plasma [ 116 ].

Regardless of the type of blood specimen chosen, it is important to use the same type of specimen throughout the study. Although biomarkers may show a similar trend in different specimens, they are not necessarily linearly correlated in samples from all individuals. For example, despite strong correlations and similar diagnostic accuracy between paired serum and plasma p-tau levels, Kac et al. observed larger disagreements in samples with lower p-tau concentrations [ 109 ].

Item 5: blood collection from remote areas, under-resourced settings, or home care

Advanced laboratory equipment, such as ultra-low temperature freezers and centrifuges, are typically required for the processing of traditional venipuncture-based blood specimen. This can create significant obstacles for community-based studies utilizing home sampling, as well as for studies in remote areas, where access to such equipment may be limited. In addition, venipuncture may be difficult and painful for individuals with small or fragile veins [ 119 ]. To overcome these challenges, some research initiatives have explored alternative blood collection methods. For instance, Walter et al. compared Aβ40 and Aβ42 levels in conventional venous blood vs. capillary blood collected by finger insertion using microvettes. They found a good correlation between the two specimen types, despite slightly lower levels in capillary blood [ 120 ]. Similarly, Lombardi et al. and Simrén et al. investigated the use of dried blood spots (DBS) and dried plasma spots (DPS) for NfL measurement and found that NfL levels in both DBS and DPS samples correlated strongly with those in EDTA plasma samples with a stronger correlation observed for DPS samples [ 121 , 122 ].

Considerations during blood collection

Item 1: preparation of participants for the blood draw.

Studies examining the impact of pre-blood draw activities of participants, such as fasting, physical exercise, medication use, and the time of day for blood collection, are limited. However, preliminary evidence shows that some of these factors can impact blood biomarker levels. For example, Rózga et al. found that the levels of Aβ40 and Aβ42 were 5–9% higher in blood samples collected in the afternoon compared with those collected in the morning, with the opposite trend noted for t-tau [ 116 ]. Meyer et al. found significantly higher Aβ40 and Aβ42 levels in non-fasting blood when measured with Simoa assays [ 123 ]. Signal variation from plasma samples obtained on consecutive days from the same individual or within a cohort, which allows for the evaluation of short term fluctuation, have also been reported [ 124 ].

To minimize potential bias arising from these effects, we recommend pre-defining the participant preparation protocol upfront and following it throughout the study. Ideally, blood should be drawn at the same time of the day for all participants with the same fasting status throughout the study. If practical in the population under study, fasting blood samples may be more reliable in general. It is also important to record information such as blood draw time, fasting status, date and time of last meal, hours of sleep the previous night, pre-blood draw exercise activity, and medication use, to facilitate downstream interpretation of results.

Item 2: blood draw devices

Blood can be collected from participants in various ways, including venipuncture using an evacuated system (Vacutainer®), a syringe, butterfly needles, intravenous (IV) catheters, fingersticks, or heelsticks. The choice of blood draw methods depends on factors such as patient characteristics, the type of tests to be performed, and the preference and experience of clinical staff. Venipuncture using a needle and vacutainer tubes are the most used for routine blood draw. It is important to note that the devices used for the blood draw may influence the blood sample quality. For example, IV catheters and smaller-bore needles are sometimes used for patients with hard-to-access veins or when multiple blood draws over an extended period are needed. However, both have been found to have a higher hemolysis rate [ 125 , 126 ]. Additionally, lubricant coating and needle material, if released into the blood, can potentially contaminate the specimens, which have been shown to affect antigen-antibody binding in some immunoassays [ 127 ]. There is a lack of published research on the impact of blood draw devices on blood AD biomarker levels, aside from the type of blood collection tubes used (described below). To harmonize the blood collection procedures across different labs, O’Bryant et al. recommended using 21-gauge needles for blood draw in adults [ 31 ]. When possible, new straight needle venipuncture is preferred over the IV start. Any variation from standard procedures should be carefully documented.

Item 3: blood collection tubes

Most biomarker studies use evacuated tube systems for blood collection. There are many different brands of evacuated tube systems available, including BD’s Vacutainer®, Sarstedt’s Monovette®, and Greiner Bio-One’s VACUETTE®. Different blood collection tubes vary in materials, shape, size, additives used, and safety features. The color of the tube closure typically indicates the additives. We have listed some commonly used blood collection tubes and their intended clinical applications in Fig.  2 . Various components of the evacuated tubes, such as their surface coating, stopper materials, stopper lubricants, gel separators, and additives, can interfere with clinical laboratory assays and are potential sources for preanalytical variation [ 115 , 127 , 128 ]. For instance, gel separators – inert gels used as barriers for better separation of serum or plasma from cells/clots after centrifugation – have been shown to absorb blood constituents and interfere with various clinical tests for therapeutic drug monitoring [ 129 ]. It is worth noting that several studies indicated that AD biomarkers, especially Aβ peptides in the CSF matrix, may exhibit varying absorption rates to tube walls based on the materials they are made of. Specifically, there is a higher overall loss when polystyrene tubes are utilized [ 130 , 131 , 132 ]. Pre-treating the tubes with detergent Tween-20 might mitigate the absorption [ 133 , 134 ]. However, currently, there is no evidence to suggest that the primary materials used in blood tubes have any effect on AD biomarker levels [ 116 , 135 ]. To reduce the risk of variability caused by using different types of tubes, we suggest using the same brand of tubes consistently throughout the studies and limiting the number of lots to as few as possible.

figure 2

Commonly used human blood collection tubes, their draw order, additives, and important application notes. The numbers of inversions are based on BD’s recommendations for Vacutainer® tubes

Item 4: blood draw order

Different blood collection tubes contain distinctive additives. To minimize the impact of additive cross-contamination when collecting samples from a single blood draw into different types of tubes, the Clinical and Laboratory Standards Institute [ 136 ] CLSI; https://clsi.org/ ) recommended a specific blood draw order (as shown in Fig.  2 ): (1) blood culture tube or bottle; (2) sodium citrate tube; (3) serum tube; (4) heparin tube; (5) EDTA tube; (6) sodium fluoride/potassium oxalate glycolytic inhibitor tube. Following the recommended blood draw order is crucial to avoid carry-over additives that may result in inaccurate results. For example, if an EDTA tube is drawn before a serum tube, some of the EDTA may carry over into the serum tube and interfere with the coagulation.

Item 5: blood collection tube filling height

Some collection tubes, such as those for plasma collection, contain spray-coated or liquid additives. Therefore, different tube filling heights may cause variations in the blood-to-additive ratio, potentially influencing the protein composition. In support of this, Rózga et al. found a lower level of plasma t-tau when K 2 -EDTA tubes were filled only to 50% compared to 100% [ 116 ]. Therefore, to minimize variation, we recommend adhering to manufacturers’ recommendations for blood volume filling to maintain a consistent additive-to-blood ratio among all samples.

Item 6: proper mixing of blood samples

For blood collection tubes containing additives, it is crucial to gently invert the tubes immediately after the blood draw to ensure proper mixing of the additive with the blood. Failure to do so may result in non-homogenous samples and the formation of microclots or residual fibrins that can obstruct the sample probe of analytical instruments. The number of required inversions varies by tube type. We suggest following the manufacturer’s guidelines for the mixing. The recommended number of inversions for BD’s Vacutainer® tubes is listed in Fig.  2 .

Considerations during blood processing

Both serum and plasma are liquid components derived from blood after separating the blood cells, typically through centrifugation. The main difference is that serum is collected from clotted blood, while plasma is collected without clotting through anti-coagulants, thus retaining the clotting factors. Apart from the variations mentioned above for blood collection, several factors during blood processing, including pre-centrifugation delay time, centrifugation conditions, post-centrifugation storage delay, and temperature at various processing steps, may also contribute to the pre-analytical variation of the resulting blood specimens. In the following sections, we summarize current research findings on the impact of these variables and provide general guidelines for blood processing. Additionally, we have included a detailed step-by-step SOP for collecting plasma from EDTA tubes in Additional file 1 .

Item 1: serum clotting time

Harmonizing SOPs for serum collection can be challenging, partly because of the difficulty in setting the optimal clotting time. Insufficient clotting may lead to the formation of residual fibrin, which may clog the biomarker-measuring instruments [ 137 ]. In contrast, prolonged clotting may lead to cell lysis, resulting in serum contamination with cellular components [ 138 ]. The ideal clotting time varies not only by tube type but also by patient characteristics. Plain red top tubes (glass with no additive or plastic coated with silica as clot activator) and serum separator tubes (SST; gold top or tiger top) with clot activators and gel separators are commonly used in the clinics for serum collection. BD Diagnostic recommends a 30-min clotting time for SST and a 60-min clotting time for the red top tubes. Patients with certain diseases, such as liver diseases and multiple myeloma, or those on anticoagulant therapy, may require a longer clotting time. It has therefore been recommended that blood samples should be left to sit upright at room temperature for at least 30 min but no more than 60 min to allow clots to form and minimize the interference of blood cell lysis [ 31 ].

Item 2: pre-centrifugation delay time

Several studies have investigated the impact of pre-centrifugation delay on AD blood biomarker measurements. A long delay has been associated with a more significant decrease in biomarker levels. This impact can be mitigated by storing blood at 4 °C rather than room temperature prior to centrifugation [ 26 , 116 , 120 ]. Among the AD blood biomarkers, Aβ peptides are particularly susceptible to loss from pre-centrifugation delay. Their levels drop in a time-dependent manner when stored at room temperature [ 139 ]. To minimize interference of blood cell lysis and protein degradation, it is recommended completing the whole process within 2 h [ 31 ] and, if not feasible, keeping the blood refrigerated for no more than 24 h [ 26 ]. However, the shorter the pre-centrifugation delay, the better for all the blood biomarkers.

Item 3: centrifugation settings, including speed, time, and temperature

Optimal centrifugation settings are crucial for obtaining high-quality serum/plasma samples. Prolonged or excessive-speed centrifugation may cause blood cell lysis, while centrifugation that is too short and/or at an insufficient speed may result in incomplete separation of serum/plasma from blood cells [ 140 ]. Centrifugation settings may vary by blood collection tube type. For example, coagulated tubes require longer centrifugation than plasma tubes to ensure complete serum separation from the clot (CLSI H21). According to a recent survey [ 26 ] the common practice in the blood AD biomarker field is to centrifuge for 5–15 min at 1500–3000 xg. However, there are still very limited studies evaluating the impact of centrifugation parameters on AD blood biomarker measurements. A preliminary investigation found no significant difference between room temperature and 4 °C centrifugation for most AD biomarkers except t-tau, whose abundance was lower with 4 °C centrifugation [ 26 ].

Item 4: post-centrifugation storage delay

Post-centrifugation delay may also contribute to a decrease in biomarker abundance, although the rate of decline appears slower than during pre-centrifugation delay [ 26 , 120 ]. Similarly, keeping samples on wet ice while waiting for storage has been found to greatly mitigate the impact of storage delay.

Item 5: good laboratory practice (GLP)

Adhering to GLP during blood processing is crucial for ensuring the safety, quality, and integrity of research studies. Below are some key practices that should be followed:

All blood samples and associated collection devices should be considered potentially infectious, and proper personal protective equipment (PPE) should always be used to minimize exposure risk.

To protect the confidentiality of research participants, personal information should not be included on specimen labels. To avoid sample mix-up, all tubes should be clearly labeled, preferably using printed labels or barcodes rather than handwritten ones. This labeling should be done in advance of the participants’ visits for blood collection.

Good pipetting skills are essential for ensuring high sample quality. When pipetting plasma/serum from the blood collection tubes, gently draw the liquid from the top and gradually move the pipette down with the liquid. It is important to avoid disturbing the buffy coat and the cell layers in the plasma tubes and clots in the serum tubes. If allowed, leave the bottom ~ 10% of plasma/serum behind to prevent cross-layer contamination.

If plasma/serum samples are to be aliquoted into more than one tube, it is important to transfer them from the blood collection tubes to a second, intermediary tube (such as low protein binding conical tubes) after centrifugation. Before aliquoting, the samples should be mixed by inverting the conical intermediary tube or pipetting up and down multiple times to ensure homogeneity. Direct aliquoting from the blood collection tubes right after centrifugation may lead to heterogeneity among aliquots due to the impact of centrifugation forces.

Hemolysis significantly deteriorates sample quality and is the primary cause of unusable specimens for clinical assays [ 140 ]. Therefore, samples should be inspected for signs of hemolysis which may impact the assay results. We recommend using a quick reference chart (such as the CDC Hemolysis Reference Palette) to record the hemolysis scale during specimen collection and checking the influence of hemolysis during data analysis.

Item 6: general procedures for serum collection

Figure  3 A illustrates the general procedures for collecting serum. We recommend collecting at least 5 ml of blood, yielding approximately 2.5 ml of serum to ensure sufficient specimens for multianalyte measurement. To minimize the impact of freeze/thaw, samples should be aliquoted. Both plain red-top tubes and serum separator tubes are commonly used for serum collection. Other than glass plain red top tubes, all other tube types require five inversions immediately after the blood draw to mix the blood with clot activators. Below are the general procedures for serum collection.

CRITICAL: If not using the glass red top tubes, phlebotomists should gently invert the blood tubes 5 times immediately after blood draw.

CRITICAL: Place the filled blood collection tubes upright at room temperature for 30 to 60 min to allow the clot to form.

CRITICAL: If the blood is not centrifuged immediately after the clotting time (30 to 60 min at room temperature), the tubes should be refrigerated (4 °C) for no longer than 2 h.

Centrifuge clotted tubes balanced by weight for 10 min at 1500 to 2000 × g at 4 °C.

Use the disposable transfer pipette to transfer the serum (top layer) to a 15 mL conical tube (or 50 mL conical tube if collecting 30 to 100 mL of blood). Be careful not to disturb the clot containing red blood cells, white blood cells, platelets, etc.

If more than one tube is collected, combine the serum samples from all tubes into the same conical tube.

Gently invert the conical tube 8–10 times to mix. Aliquot 250 μl to 1 ml into labeled microtubes or cryovials with O-ring-sealed screw leads. Residual aliquots can be saved and pooled as QC samples for repeated analysis.

Store all aliquots upright in a specimen box in an -80 °C or colder freezer.

figure 3

General procedures for serum ( A ), plasma ( B ), and buffy coat ( C ) collection from whole blood

Item 7: general procedures for plasma collection

Figure  3 B depicts the general procedures for collecting plasma. We recommend using EDTA or heparin tubes for blood collection, filling the tubes until the vacuum is exhausted, and following the procedures below.

CRITICAL: Immediately after blood collection, gently invert/mix (180-degree turns) the EDTA tubes 8–10 times. Place the tubes upright on a rack until centrifugation.

CRITICAL: It is advisable to store collected blood at 4 °C instead of at room temperature before centrifugation. Blood samples should be centrifuged within 2 h of blood collection to minimize degradation of AD biomarkers.

CRITICAL: In case of unavoidable prolonged centrifugation delay, place blood samples in the refrigerator for no more than 24 h. Avoid direct contact of blood tubes with ice to minimize cell lysis.

Centrifuge balanced blood collection tubes for 10 min at 1500 to 2000 × g at 4 °C.

Use the disposable transfer pipette to transfer the plasma (top layer) to a 15 mL conical tube (or 50 mL conical tube if collecting 30 to 100 mL of blood). Be careful not to disturb the buffy coat layer (the whitish layer in the middle) and the red blood cell layer (the red layer at the bottom).

If more than one tube is collected, combine the plasma samples from all blood collection tubes into the same conical tube.

Item 8: general procedures for buffy coat collection

Buffy coat contains most of the white blood cells and platelets of the anti-coagulated blood and is useful for a variety of clinical applications including genomic/genetic analysis. The remaining blood fractions after plasma collection can be used to collect buffy coat. To ensure high quality DNA, we recommend further enriching the buffy coats using a hypotonic solution to lyse the residual red blood cells. Figure  3 C illustrates the general procedures for buffy coat collection.

Note: Prepare the following reagents ahead of time and store them at 4 °C.

Ammonium chloride solution: 7.72 g/L

Ammonium bicarbonate solution: 0.79 g/L

Freezing mixture: TriPotassium Citrate: 17.8 g, Sodium Phosphate, monobasic: 2.4 g, Sodium Phosphate, dibasic: 2.8 g, Glycerin (Glycerol): 400 ml; bring volume to 1 L with distilled water.

Freshly prepare RBC lysis buffer by combining 45 ml ammonium chloride solution and 5 ml ammonium bicarbonate solution.

After removing the plasma (top layer) from the EDTA or heparin tubes, use another transfer pipette to draw the buffy coat (the whitish layer on top of the RBC layer) and place into the RBC lysis buffer tube (50 ml).

Mix by pipetting up and down to separate any leftover cells from within transfer pipette.

Cap the 50 ml tubes with lysis buffer + buffy coat and gently invert several times to mix.

Incubate at room temp for at least 20 min.

Add 10% bleach or Cavicide to the used blood tubes (lower layer with RBC) with leftover blood in them; discard in an appropriate biohazard bag.

After 20 min incubation, centrifuge 50 ml tubes at 4 °C for 20 min at 2500 rpm

After centrifuging, a white pellet will be visible at the bottom of the tube.

If no pellet is visible, centrifuge for an additional 20 min.

If pellet is visible, pour the red supernatant into a beaker filled with 10% bleach or Cavicide.

Let pellet dry (approximately 10–20 min).

Add 1 ml of freezing mixture to pellet. [ Freezing Mixture: TriPotassium Citrate: 17.8 g, Sodium Phosphate, monobasic: 2.4 g, Sodium Phosphate, dibasic: 2.8 g, Glycerin (Glycerol): 400 ml; bring volume to 1 L with distilled water].

Gently mix to break the pellet into single cell suspension.

Transfer whole (cells + freezing mix) into cryotubes.

Store at -80 °C for subsequent DNA isolation for genetic studies.

Item 9: detailed step-by-step SOP for blood collection and processing

We have combined the points discussed above and our own experiences to develop an SOP for the handling of blood for biomarker measurements (see Additional file 1 ). This SOP, which was primarily developed to streamline handling procedures for neurodegenerative disease cohort studies at the University of Pittsburgh Alzheimer’s Disease Research Center and ancillary centers and studies, can also be used by other investigators including those who are new to blood biomarker studies. Importantly, the SOP is adapted to allow for the concurrent processing of whole blood into plasma/serum for protein biomarker evaluation, and buffy coat for genetic/genomic studies. Moreover, the design of the SOP enables multiple tube aliquots to be collected and stored, and residual volumes pooled for quality control (QC) purposes.

Considerations for biobanking

Item 1: storage tubes and temperature.

To minimize analyte loss caused by adherence to the tube surfaces, it is recommended to use low protein binding microcentrifuge tubes or cryovials to store serum or plasma samples. For long-term storage, tubes with O-ring-sealed screws should be used to prevent evaporation. To prevent degradation, samples should be stored at ultra-low temperature freezers (-80 °C) or liquid N 2 tanks instead of -20 °C freezers. If feasible, aliquots of the same sample should be stored in separate freezers to prevent complete loss in the case of a freezer failure.

Item 2: freeze/thaw cycles

Several studies have investigated the impact of freeze/thaw cycles on blood biomarkers [ 107 , 116 , 141 , 142 , 143 ]. The overall results suggest that plasma AD biomarkers are stable for at least three freeze/thaw cycles. However, serum AD biomarkers may be more sensitive to freeze/thaw cycles. For example, serum Aβ40 level significantly decreased after any freeze/thaw cycle, while serum Aβ42 level showed a significant decrease at the third freeze-thaw cycle [ 107 ]. Therefore, to minimize the impact of freeze/thaw cycles, we recommend aliquoting samples in adequate volume, limiting the total number of freeze/thaw cycles to as few as possible, but never more than three.

Item 3: transportation

To transport samples to different facilities, it is recommended to use abundant dry ice sufficient to last at least 24 h post the expected delivery time to avoid sample thawing due to delivery delays. If possible, use a courier that replenishes dry ice mid-way, and avoid weekend delivery. It is worth noting that dry ice inside storage tubes may change the pH of the specimen during thawing and potentially influence the assays [ 144 ]. Therefore, samples may be stored free of dry ice in -80 °C freezers for at least 24 h before thawing for measurement. To provide guidance to readers, we have compiled a list of recommended practices during blood transportation, created based on issues regularly encountered at a major biomarker laboratory.

Include an accurate sample list (including accurate volumes). Ideally, provide a Microsoft Excel sheet (or similar) with columns for sample IDs, their corresponding volumes, and their location in the box. Adding a pictorial illustration of sample arrangements in the boxes is also helpful.

Inform the receiving laboratory ahead of time so that they will keep a lookout and be able to receive and store them in good time. The receiving lab may need to find freezer space before your samples arrive. Therefore, it is important that they are informed ahead of time.

Ensure that the package contains an adequate amount of dry ice. For long-distance transportation that spans multiple days, choose a reliable company that can refill the dry ice midway.

Print labels using a computer, rather than handwriting them, to ensure better legibility.

Use tubes with caps that do not become loose accidentally.

Sort the samples in the order you want them analyzed. If you are unsure of the order, there are two main rules:

If your samples are in groups: randomize them, so that all groups are represented in all analytical runs.

If you have longitudinal samples, keep all samples from the same participant together and in the order in which they were collected. Ensure your sample coding reflects this ordering.

Do the final sorting of the samples BEFORE you send them. It might take longer and be too time-consuming for the receiving lab to do it.

Considerations during biomarker measurements

The quality of laboratory and clinical assays has greatly improved due to advances in instrument technology, particularly the use of automated equipment, which has led to higher reproducibility through standardized procedures. However, analytical errors/variations from various sources may still occur and render results unusable or confound study findings. Common sources of analytical errors/variations include instrument malfunction, operators’ failure to follow procedures, inherent batch-to-batch variation of the assay, and matrix interference. To minimize errors/variations, it is important to use good process controls and follow good laboratory practices. Below, we outline several considerations that are critical for ensuring high-quality results and monitoring/maintaining the long-term stability of the AD blood biomarker measurements.

Item 1: preparation of samples for measurement

All blood specimens should be considered potential biohazards and handled with appropriate PPE. To ensure accurate measurement, it is crucial to homogenize samples before measurement. Samples should be completely thawed and mixed thoroughly. To minimize the impact of particulates that could clot cartridges or sample probes in the instrumentation, samples should be centrifuged before dispensing into a measurement container. It is also important to minimize the bubbles during pipetting. Any remaining samples should be promptly returned to the -80 °C freezer to minimize protein degradation. Place a dot on the tube lid with a permanent marker after each freeze-thaw cycle and keep track of the total number of cycles in updated inventory of samples. It is also recommended to keep samples with the same number of freeze-thaw cycles together and separate from the original, un-thawed samples.

Item 2: inclusion of calibrators

Despite significant technological advances, batch-to-batch variation remains an inherent issue in clinical chemistry. Contributing factors may include variations in instrument performance, changes in reagents and consumables, operator variability, etc. To address this issue, calibrators should be included in every batch to help correct for batch effects. Some platforms, such as Lumipulse, have been built to circumvent this issue such that there is an internal, manufacturer-provided calibration curve against which all sample results are plotted. However, this approach only works if the manufacturer can adjust all reagent batches to perform equivalently to the initial batch used to generate the built-in curve. The acceptance criteria for the calibration curve must be predefined to ensure accuracy and consistency. Although these criteria may vary depending on the platform used, certain parameters such as the regression coefficient, the variance between predicted and actual concentrations, and the repeatability for each calibrator should be considered.

Item 3: inclusion of QC samples

QC samples play a critical role in process control and should be included in every analytical run to evaluate assay performance and address potential errors. At a minimum, QC samples should be run in duplicates at the beginning and end of each analytical run. These samples should be selected in a way that they cover a range of concentrations across the standard curve or the typical range of concentrations for the measured sample values. It is typically advisable to use use three QC samples – low, average, and high concentrations relative to the assay standard curve. For optimal results, the same lot of QC samples should be used over time to help detect system or operator performance changes. Whenever possible, QC samples should be the same specimen types as the test samples. When switching between batches of QC samples, bridging is recommended – the relative comparison of QC samples to adjust the biomarker distribution on one plate to the other. These factors can then be applied to all samples measured on each plate/run to normalize the entire dataset. In Fig.  4 , we present a hypothetical example of a cohort consisting of 280 samples that were analyzed across four plates for Biomarker X. As shown in Fig.  4 A, the mean and overall data distribution of the uncorrected results from plates 1 and 2 appear similar, while plates 3 and 4 show a noticeable shift (simulation datasets in Additional file 2 ). However, after normalization using the plate-specific scaling factors based on QC readings, as shown in Fig.  4 B, the results from all four plates become more comparable.

figure 4

Visualization of data generated from measuring a hypothetical biomarker on 280 samples spread across four plates. The figure shows the results before ( A ) and after ( B ) adjustment based on the signals generated for identical aliquots of the same quality control samples measured on each plate, assuming all other key variables remain the same

Similar to calibrators, a predefined set of criteria should be applied to determine whether a run passes or fails. Key parameters to consider include the deviation from target values established through prior repeated analyses and the reproducibility of the QC measurements. An article by Schindler et al. [ 145 ] which tracked CSF assay performances over approximately a decade sheds light on this issue and potential corrective factors.

Item 4: sample measurement order

Batch-to-batch variation and within-batch run order effects can bias results, leading to erroneous conclusions. One way to address these issues is to randomize the order of sample analysis. There are various methods of randomization, including simple randomization, block randomization, stratified randomization, and covariate adaptive randomization [ 146 ]. Simple randomization involves using a single random sequence and is easy to implement, for example, by using the random number generator in Excel. However, simple randomization may result in an unequal distribution of groups and may not be suitable for studies with a small sample size ( n  < 200). Block randomization addresses this issue by randomly assigning an equal number of samples from each group to each block and is more appropriate for small-size studies. For studies with multiple covariates, stratified randomization or covariate adaptive randomization may be necessary to control the potential uneven distribution of covariates. Additionally, for longitudinal measures, we recommend measuring all time points for the same participant simultaneously to minimize the impact of batch variation.

Item 5: sample blinding

Knowledge of grouping information may bias the analysis results and taint the data. Whenever possible, scientists performing the measurements and the analysts/statisticians who work with the ensuing data should be blinded from grouping allocation until measurement results have been finalized. A third party should perform the randomization to generate sample analysis orders.

Item 6: assay order

If multiple biomarkers are to be measured from the same aliquots, it is best practice to start with the biomarker most sensitive to degradation/denaturation from repeated freeze/thaw cycles. For example, among the core AD blood biomarkers, Aβ40 and Aβ42 tend to be most prone to degradation and should therefore be measured first, if possible, followed by t-tau, p-tau, BD-tau and finally GFAP and NfL. In addition, using multiplexed assays, if available, can help minimize the number of freeze/thaw cycles required.

Item 7: the use of bridging samples

For discovery research, it is recommended to process all samples at the same time with the same batch of reagents. However, in cases where it is unavoidable to change the reagent lots or run the analysis at different times or in various laboratories, harmonization can be achieved by repeating the measurement for bridging samples. Ideally, bridging samples should be from the same sample cohort and cover the full range of values of the study samples. The bridging samples are analyzed using the same reagents and consumables for each batch, allowing the determination of batch-specific normalization factors. The same approach described in Fig.  4 for normalizing run data from different plates is applicable here to between-batch normalization.

Item 8: longitudinal samples

Longitudinal studies, which involve continuous tracking of the same individuals over time, are commonly employed to assess the influence of various interventions or risk factors on disease outcomes. In contrast to cross-sectional studies, which capture snapshots of participants at a single point in time, longitudinal studies typically require an extended duration to collect specimens for the entire study. In some cases, researchers may be able to wait until all samples are collected to run them simultaneously. However, there are instances where running batches of samples along the way becomes necessary to gain preliminary insights into the data. To minimize the impact of temporal variation, proper control measures must be implemented to monitor and maintain the long-term stability of measurements. Several practical guidelines, proposed by Palmqvist et al. for AD CSF biomarkers, can be adopted for blood AD biomarkers [ 78 ]. These include controlling preanalytical variables, following good laboratory practices, utilizing calibrators and QC samples, and assessing the batch effect through batch-bridging. Ideally, one would like to use the same QCs throughout a longitudinal study. However, if this is not possible, it is important to perform batch-bridging and re-run samples from the previous analysis round to normalize runs. Therefore, it is crucial to properly plan for the longitudinal studies, including stocking up reagents (including QC and bridging samples) and consumables for the entire study if shelf life is allowed. While most blood AD biomarker research has been conducted in research settings, there is an increasing number of studies being initiated to evaluate the use of these biomarkers in real clinical practice, where specimens are continuously analyzed. Maintaining measurement stability becomes even more important in these real-world settings.

Considerations for result reporting

Item 1: demographic and clinical information.

To minimize potential bias caused by demographic and clinical factors, it is important to include the distribution of available demographic and clinical characteristics among groups in the report, along with their associated statistical findings. These information help identify potential moderating variables and adjust for their effect in the analysis. Additionally, including this information in the report allows better comparison with results from different studies.

Item 2: full description of methods

To facilitate the coherent pooling of data in future meta-analyses, it is important to include detailed descriptions of blood collection/handling protocols and laboratory assay protocols in the Method section of peer-reviewed publications. In addition, as preanalytical variables, such as blood draw devices and parameters during blood processing, may interfere with AD biomarker measurements, it is important to describe these variables and to indicated if they were changed during the study.

Item 3: disclosure of assay performance

It is important to include assay performance in the publication to enable other researchers to evaluate the quality of the reported results. Multiple attributes can be useful for assessing assay performance, such as calibration curves’ R -value, linearity range, the limit of detection, and limit of quantification, as well as QC performance measures such as repeatability and intermediate precision. Moreover, the reports should also disclose if plate adjustments, such as with the use of bridging samples or QC samples, have been performed to account for batch variation.

Unresolved issues

Certified reference materials.

A major source of confusion in the field is that blood biomarker assays for the same analyte (e.g., plasma p-tau181 or p-tau217) from various sources return very different numerical values in terms of concentrations. We have sought to explain the analytical reasons behind this phenomenon – that it is often due to the use of different calibrators as well as variability of signals from the technical platforms [ 13 ]. However, the issue limits the comparability of assay results across platforms, which might become even more acute once cutpoints are generated. The use of certified reference materials could provide a solution, by providing a focal point for comparing and calibrating the standards used in the different assays. An example of the use of certified reference materials in mitigating between-assay bias was demonstrated by the application by Boulo S et al. in CSF samples [ 147 ].

Real world applications

Despite excellent performances of blood biomarkers demonstrated in many publications, we should be mindful that the results have mostly come from highly selected research cohorts that additionally have prior confirmation of pathology using CSF or neuroimaging biomarkers or even sometimes both. As we venture into applying blood biomarkers as potential first line screeners in clinical practice and therapeutic trials, it is important to note that this might be the real “test drive” for the biomarkers. As such, their performances may not be as stellar as observed for multiple reasons. This includes the much lower prevalence of AD pathophysiology in the community compared with the research cohorts, and the high heterogeneity of diseases presented in the clinics contrary to those included in defined cohorts. Moreover, such heterogenous cases would not benefit from prior categorization using CSF and neuroimaging biomarkers as often done for the existing cohorts that have recorded high accuracies.

Clinical use of blood biomarkers is much anticipated. However, it is often forgotten that one of the fundamental factors that need addressing prior to this happening is the generation and validation of assay thresholds. Such threshold points would not only be based on the detection of amyloid and/or tau pathology but would additionally investigate potential clinical scenarios such as if and how the set cutpoints respond to given demographic and clinical variables.

The blood AD biomarker research field has experienced rapid growth in recent years, with numerous studies highlighting the potential of blood-based AD biomarkers in supporting clinical decision-making and accelerating therapeutic development. We have outlined in this review general guidelines for the various steps involved in blood AD biomarker measurement, to promote good laboratory practices to minimize analytical errors and facilitate the development of standardized protocols that can improve reproducibility and enable cross-validation across different research centers. Table 2 provides a summary of the important preanalytical, analytical and post-analytical factors to consider in AD blood biomarker research. However, further research is needed to fully understand the impact of preanalytical and analytical variables, and these guidelines should be updated as new research findings become available. Finally, we provide an adaptable SOP that can be applied to blood collection, processing, and downstream handling in biomarker evaluations.

Availability of data and materials

All the data are included in the manuscript and the supporting information.

Abbreviations

Amyloid-beta

  • Alzheimer’s disease

Brain-derived tau

Cerebrospinal fluid

Dried blood spot

Dried plasma spot

Electrochemiluminescence

Ethylenediaminetetraacetic acid

Enzyme-linked immunosorbent assay

General Data Protection Regulation

Glial fibrillary acidic protein

Good laboratory practice

Health Insurance Portability and Accountability Act of 1996

Interdigitated microelectrode sensor

Immunomagnetic reduction

Immunoprecipitation coupled with mass spectrometry

Intravenous

Magnetic resonance imaging

Mass spectrometry

Meso Scale Discovery

Neurofilament light-chain

Phosphorylated tau

Positron emission tomography

Personal protective equipment

Quality control

Single-molecule array

Standardized operating procedure

Serum separator tubes

Alzheimer’s Association. 2023. Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19:1598–695.

Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013;80:1778–83.

Article   PubMed   PubMed Central   Google Scholar  

Patterson C. World Alzheimer Report 2018: The state of the art of dementia research; New frontiers. London: Alzheimer’s Disease International; 2018.

Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde.” Clin Anat. 1995;8:429–31.

Article   CAS   PubMed   Google Scholar  

DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32.

Tarawneh R, Holtzman DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med. 2012;2:a006148.

van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2022;388:9–21.

Article   PubMed   Google Scholar  

Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, Dent G, Hansson O, Harrison K, von Hehn C, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimers Dis. 2022;9:197–210.

CAS   PubMed   Google Scholar  

Reardon S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature. 2023;613:227–8.

Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

Alawode DOT, Heslegrave AJ, Ashton NJ, Karikari TK, Simrén J, Montoliu-Gaya L, Pannee J, O’Connor A, Weston PSJ, Lantero-Rodriguez J, et al. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer’s disease. J Intern Med. 2021;290:583–601.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Balogun WG, Zetterberg H, Blennow K, Karikari TK. Plasma biomarkers for neurodegenerative disorders: ready for prime time? Curr Opin Psychiatry. 2023;36(2):112.

Karikari TK, Ashton NJ, Brinkmalm G, Brum WS, Benedet AL, Montoliu-Gaya L, Lantero-Rodriguez J, Pascoal TA, Suárez-Calvet M, Rosa-Neto P, et al. Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nat Rev Neurol. 2022;18:400–18.

Malzbender K, Lavin-Mena L, Hughes L, Bose N, Goldman D, Patel D. Key Barriers to Clinical Trials for Alzheimer’s Disease. Leonard D., editor. Los Angeles, CA, USA: Schaeffer Center for Health Policy and Economics; 2020.

Moscoso A, Karikari TK, Grothe MJ, Ashton NJ, Lantero-Rodriguez J, Snellman A, Zetterberg H, Blennow K, Schöll M. CSF biomarkers and plasma p-tau181 as predictors of longitudinal tau accumulation: Implications for clinical trial design. Alzheimers Dement. 2022;18:2614–26.

Cullen NC, Leuzy A, Janelidze S, Palmqvist S, Svenningsson AL, Stomrud E, Dage JL, Mattsson-Carlgren N, Hansson O. Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat Commun. 2021;12:3555.

Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 2010;28:595–9.

Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, Fowler C, Li Q-X, Martins R, Rowe C, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554:249–54.

Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, Sullivan M, Paumier K, Holtzman DM, Morris JC, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017;13:841–9.

Chong JR, Ashton NJ, Karikari TK, Tanaka T, Schöll M, Zetterberg H, Blennow K, Chen CP, Lai MKP. Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer’s disease: a focused review on recent advances. J Neurol Neurosurg Psychiatry. 2021;92:1231–41.

Gonzalez-Ortiz F, Turton M, Kac PR, Smirnov D, Premi E, Ghidoni R, Benussi L, Cantoni V, Saraceno C, Rivolta J, et al. Brain-derived tau: a novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration. Brain. 2023;146:1152–65.

Pereira JB, Janelidze S, Smith R, Mattsson-Carlgren N, Palmqvist S, Zetterberg H, Stomrud E, Ashton NJ, Blennow K, Hansson O. Plasma glial fibrillary acidic protein is an early marker of Aβ pathology in Alzheimer’s disease. medRxiv. 2021:2021.2004.2011.21255152.

Osborn LM, Kamphuis W, Wadman WJ, Hol EM. Astrogliosis: an integral player in the pathogenesis of Alzheimer’s disease. Prog Neurobiol. 2016;144:121–41.

Bellaver B, Povala G, Ferreira PCL, Ferrari-Souza JP, Leffa DT, Lussier FZ, Benedet AL, Ashton NJ, Triana-Baltzer G, Kolb HC, et al. Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer’s disease. Nat Med. 2023;29(7):1775–81.

Benedet AL, Brum WS, Hansson O, Karikari TK, Zimmer ER, Zetterberg H, Blennow K, Ashton NJ. The accuracy and robustness of plasma biomarker models for amyloid PET positivity. Alzheimers Res Ther. 2022;14:26.

Verberk IMW, Misdorp EO, Koelewijn J, Ball AJ, Blennow K, Dage JL, Fandos N, Hansson O, Hirtz C, Janelidze S, et al. Characterization of pre-analytical sample handling effects on a panel of Alzheimer’s disease–related blood-based biomarkers: Results from the Standardization of Alzheimer’s Blood Biomarkers (SABB) working group. Alzheimers Dement. 2022;18:1484–97.

Plebani M. Exploring the iceberg of errors in laboratory medicine. Clin Chim Acta. 2009;404:16–23.

Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, Franciotta D, Frederiksen JL, Fleming JO, Furlan R, et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology. 2009;73:1914–22.

Gobom J, Parnetti L, Rosa-Neto P, Vyhnalek M, Gauthier S, Cataldi S, Lerch O, Laczo J, Cechova K, Clarin M, et al. Validation of the LUMIPULSE automated immunoassay for the measurement of core AD biomarkers in cerebrospinal fluid. Clin Chem Lab Med. 2022;60:207–19.

Schindler SE, Bollinger JG, Ovod V, Mawuenyega KG, Li Y, Gordon BA, Holtzman DM, Morris JC, Benzinger TLS, Xiong C, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93:e1647–59.

O’Bryant SE, Gupta V, Henriksen K, Edwards M, Jeromin A, Lista S, Bazenet C, Soares H, Lovestone S, Hampel H, et al. Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimers Dement. 2015;11:549–60.

Armstrong RA. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019;57:87–105.

Article   Google Scholar  

Henderson AS. The risk factors for Alzheimer’s disease: a review and a hypothesis. Acta Psychiatr Scand. 1988;78:257–75.

Killin LOJ, Starr JM, Shiue IJ, Russ TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr. 2016;16:175.

Mielke MM, Dage JL, Frank RD, Algeciras-Schimnich A, Knopman DS, Lowe VJ, Bu G, Vemuri P, Graff-Radford J, Jack CR Jr, Petersen RC. Performance of plasma phosphorylated tau 181 and 217 in the community. Nat Med. 2022;28:1398–405.

Toledo JB, Vanderstichele H, Figurski M, Aisen PS, Petersen RC, Weiner MW, Jack CR, Jagust W, Decarli C, Toga AW, et al. Factors affecting Aβ plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol. 2011;122:401.

Schindler SE, Karikari TK, Ashton NJ, Henson RL, Yarasheski KE, West T, Meyer MR, Kirmess KM, Li Y, Saef B, et al. Effect of race on prediction of brain amyloidosis by plasma Aβ42/Aβ40, phosphorylated tau, and neurofilament light. Neurology. 2022;99:e245–57.

Syrjanen JA, Campbell MR, Algeciras-Schimnich A, Vemuri P, Graff-Radford J, Machulda MM, Bu G, Knopman DS, Jack CR Jr, Petersen RC, Mielke MM. Associations of amyloid and neurodegeneration plasma biomarkers with comorbidities. Alzheimers Dement. 2022;18:1128–40.

Arvanitakis Z, Lucas JA, Younkin LH, Younkin SG, Graff-Radford NR. Serum creatinine levels correlate with plasma amyloid β protein. Alzheimer Dis Assoc Disord. 2002;16:187–90.

Blasko I, Kemmler G, Krampla W, Jungwirth S, Wichart I, Jellinger K, Tragl KH, Fischer P. Plasma amyloid beta protein 42 in non-demented persons aged 75 years: effects of concomitant medication and medial temporal lobe atrophy. Neurobiol Aging. 2005;26:1135–43.

Chatterjee P, Pedrini S, Ashton NJ, Tegg M, Goozee K, Singh AK, Karikari TK, Simrén J, Vanmechelen E, Armstrong NJ, et al. Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer’s disease. Alzheimers Dement. 2022;18:1141–54.

Lopez OL, Chang Y, Ives DG, Snitz BE, Fitzpatrick AL, Carlson MC, Rapp SR, Williamson JD, Tracy RP, DeKosky ST, Kuller LH. Blood amyloid levels and risk of dementia in the Ginkgo Evaluation of Memory Study (GEMS): a longitudinal analysis. Alzheimers Dement. 2019;15:1029–38.

Pontecorvo MJ, Lu M, Burnham SC, Schade AE, Dage JL, Shcherbinin S, Collins EC, Sims JR, Mintun MA. Association of donanemab treatment with exploratory plasma biomarkers in early symptomatic Alzheimer disease: a secondary analysis of the TRAILBLAZER-ALZ randomized clinical trial. JAMA Neurol. 2022;79:1250–9.

Depypere H, Vergallo A, Lemercier P, Lista S, Benedet A, Ashton N, Cavedo E, Zetterberg H, Blennow K, Vanmechelen E, et al. Menopause hormone therapy significantly alters pathophysiological biomarkers of Alzheimer’s disease. Alzheimers Dement. 2023;19:1320–30.

Thurston RC, Maki P, Chang Y, Wu M, Aizenstein HJ, Derby CA, Karikari TK. Menopausal vasomotor symptoms and plasma Alzheimer disease biomarkers. Am J Obstet Gynecol. 2023. https://doi.org/10.1016/j.ajog.2023.11.002 .

Sakpal TV. Sample size estimation in clinical trial. Perspect Clin Res. 2010;1:67–9.

PubMed   PubMed Central   Google Scholar  

Milà-Alomà M, Ashton NJ, Shekari M, Salvadó G, Ortiz-Romero P, Montoliu-Gaya L, Benedet AL, Karikari TK, Lantero-Rodriguez J, Vanmechelen E, et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease. Nat Med. 2022;28:1797–801.

Fandos N, Pérez-Grijalba V, Pesini P, Olmos S, Bossa M, Villemagne VL, Doecke J, Fowler C, Masters CL, Sarasa M. Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals. Alzheimers Dement (Amst). 2017;8:179–87.

De Meyer S, Schaeverbeke JM, Verberk IMW, Gille B, De Schaepdryver M, Luckett ES, Gabel S, Bruffaerts R, Mauroo K, Thijssen EH, et al. Comparison of ELISA- and SIMOA-based quantification of plasma Aβ ratios for early detection of cerebral amyloidosis. Alzheimers Res Ther. 2020;12:162.

Doecke JD, Pérez-Grijalba V, Fandos N, Fowler C, Villemagne VL, Masters CL, Pesini P, Sarasa M. Total Aβ(42)/Aβ(40) ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis. Neurology. 2020;94:e1580–91.

Vogelgsang J, Shahpasand-Kroner H, Vogelgsang R, Streit F, Vukovich R, Wiltfang J. Multiplex immunoassay measurement of amyloid-β42 to amyloid-β40 ratio in plasma discriminates between dementia due to Alzheimer’s disease and dementia not due to Alzheimer’s disease. Exp Brain Res. 2018;236:1241–50.

Palmqvist S, Janelidze S, Stomrud E, Zetterberg H, Karl J, Zink K, Bittner T, Mattsson N, Eichenlaub U, Blennow K, Hansson O. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status. JAMA Neurol. 2019;76:1060–9.

Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T, Campbell TG, Meyer RE, Fishburn MW, Cabrera C, Patel PP, et al. The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom. 2016;21:533–47.

Keshavan A, Pannee J, Karikari TK, Rodriguez JL, Ashton NJ, Nicholas JM, Cash DM, Coath W, Lane CA, Parker TD, et al. Population-based blood screening for preclinical Alzheimer’s disease in a British birth cohort at age 70. Brain. 2021;144:434–49.

Aldo P, Marusov G, Svancara D, David J, Mor G. Simple Plex(™): a novel multi-analyte, automated microfluidic immunoassay platform for the detection of human and mouse cytokines and chemokines. Am J Reprod Immunol. 2016;75:678–93.

Kaneko N, Nakamura A, Washimi Y, Kato T, Sakurai T, Arahata Y, Bundo M, Takeda A, Niida S, Ito K, et al. Novel plasma biomarker surrogating cerebral amyloid deposition. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90:353–64.

Kirmess KM, Meyer MR, Holubasch MS, Knapik SS, Hu Y, Jackson EN, Harpstrite SE, Verghese PB, West T, Fogelman I, et al. The PrecivityAD™ test: accurate and reliable LC-MS/MS assays for quantifying plasma amyloid beta 40 and 42 and apolipoprotein E proteotype for the assessment of brain amyloidosis. Clin Chim Acta. 2021;519:267–75.

Hong C-Y, Wu CC, Chiu YC, Yang SY, Horng HE, Yang HC. Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl Phys Lett. 2006;88:212512.

Chieh JJ, Yang SY, Jian ZF, Wang WC, Horng HE, Yang HC, Hong C-Y. Hyper-high-sensitivity wash-free magnetoreduction assay on biomolecules using high-Tc superconducting quantum interference devices. J Appl Phys. 2008;103:014703.

Yang Y-H, Situmeang RFV, Ong PA. Can blood amyloid levels be used as a biomarker for Alzheimer’s disease? Brain Sci Adv. 2021;7:17–25.

Lue L-F, Kuo Y-M, Sabbagh M. Advance in plasma AD core biomarker development: current findings from immunomagnetic reduction-based SQUID technology. Neurol Ther. 2019;8:95–111.

Kim Y, Yoo YK, Kim HY, Roh JH, Kim J, Baek S, Lee JC, Kim HJ, Chae M-S, Jeong D, et al. Comparative analyses of plasma amyloid-β levels in heterogeneous and monomerized states by interdigitated microelectrode sensor system. Sci Adv. 2019;5:eaav1388.

Wilson EN, Young CB, Ramos Benitez J, Swarovski MS, Feinstein I, Vandijck M, Le Guen Y, Kasireddy NM, Shahid M, Corso NK, et al. Performance of a fully-automated Lumipulse plasma phospho-tau181 assay for Alzheimer’s disease. Alzheimers Res Ther. 2022;14:172.

Gauthier A, Viel S, Perret M, Brocard G, Casey R, Lombard C, Laurent-Chabalier S, Debouverie M, Edan G, Vukusic S, et al. Comparison of SimoaTM and EllaTM to assess serum neurofilament-light chain in multiple sclerosis. Ann Clin Transl Neurol. 2021;8:1141–50.

Truffi M, Garofalo M, Ricciardi A, Cotta Ramusino M, Perini G, Scaranzin S, Gastaldi M, Albasini S, Costa A, Chiavetta V, et al. Neurofilament-light chain quantification by Simoa and Ella in plasma from patients with dementia: a comparative study. Sci Rep. 2023;13:4041.

Ding XL, Tuo QZ, Lei P. An introduction to ultrasensitive assays for plasma tau detection. J Alzheimers Dis. 2021;80:1353–62.

Lue LF, Guerra A, Walker DG. Amyloid beta and tau as Alzheimer’s disease blood biomarkers: promise from new technologies. Neurol Ther. 2017;6:25–36.

Li D, Mielke MM. An update on blood-based markers of Alzheimer’s disease using the SiMoA platform. Neurol Ther. 2019;8:73–82.

Barthélemy NR, Horie K, Sato C, Bateman RJ. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med. 2020;217(11):e20200861.

Jang H, Kim JS, Lee HJ, Kim C-H, Na DL, Kim HJ, Allué JA, Sarasa L, Castillo S, Pesini P, et al. Performance of the plasma Aβ42/Aβ40 ratio, measured with a novel HPLC-MS/MS method, as a biomarker of amyloid PET status in a DPUK-KOREAN cohort. Alzheimers Res Ther. 2021;13:179.

Montoliu-Gaya L, Benedet AL, Tissot C, Vrillon A, Ashton NJ, Brum WS, Lantero-Rodriguez J, Stevenson J, Nilsson J, Sauer M, et al. Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies. Nat Aging. 2023;3:661–9.

Palmqvist S, Stomrud E, Cullen N, Janelidze S, Manuilova E, Jethwa A, Bittner T, Eichenlaub U, Suridjan I, Kollmorgen G, et al. An accurate fully automated panel of plasma biomarkers for Alzheimer’s disease. Alzheimers Dement. 2023;19:1204–15.

Feng W, Beer JC, Hao Q, Ariyapala IS, Sahajan A, Komarov A, Cha K, Moua M, Qiu X, Xu X, et al. NULISA: a proteomic liquid biopsy platform with attomolar sensitivity and high multiplexing. Nat Commun. 2023;14:7238.

Yang S-Y, Chiu M-J, Chen T-F, Horng H-E. Detection of plasma biomarkers using immunomagnetic reduction: a promising method for the early diagnosis of Alzheimer’s disease. Neurol Ther. 2017;6:37–56.

Pannee J, Shaw LM, Korecka M, Waligorska T, Teunissen CE, Stoops E, Vanderstichele HMJ, Mauroo K, Verberk IMW, Keshavan A, et al. The global Alzheimer’s Association round robin study on plasma amyloid β methods. Alzheimers Dement (Amst). 2021;13:e12242.

Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer’s disease biomarkers in biological fluids. J Neurochem. 2021;159:211–33.

Palmqvist S, Zetterberg H, Mattsson N, Johansson P, Minthon L, Blennow K, Olsson M, Hansson O. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology. 2015;85:1240–9.

Palmqvist S, Zetterberg H, Blennow K, Vestberg S, Andreasson U, Brooks DJ, Owenius R, Hägerström D, Wollmer P, Minthon L, Hansson O. Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid β-amyloid 42: a cross-validation study against amyloid positron emission tomography. JAMA Neurol. 2014;71:1282–9.

Qu Y, Ma Y-H, Huang Y-Y, Ou Y-N, Shen X-N, Chen S-D, Dong Q, Tan L, Yu J-T. Blood biomarkers for the diagnosis of amnestic mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;128:479–86.

Koychev I, Jansen K, Dette A, Shi L, Holling H. Blood-based ATN biomarkers of Alzheimer’s disease: a meta-analysis. J Alzheimers Dis. 2021;79:177–95.

Janelidze S, Teunissen CE, Zetterberg H, Allué JA, Sarasa L, Eichenlaub U, Bittner T, Ovod V, Verberk IMW, Toba K, et al. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer disease. JAMA Neurol. 2021;78:1375–82.

Mattsson N, Insel PS, Palmqvist S, Portelius E, Zetterberg H, Weiner M, Blennow K, Hansson O. Initiative tAsDN: cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Mol Med. 2016;8:1184–96.

Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, Hansson O. Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther. 2013;5:9.

Mattsson N, Zetterberg H, Janelidze S, Insel PS, Andreasson U, Stomrud E, Palmqvist S, Baker D, Tan Hehir CA, Jeromin A, et al. Plasma tau in Alzheimer disease. Neurology. 2016;87:1827–35.

Chen Z, Mengel D, Keshavan A, Rissman RA, Billinton A, Perkinton M, Percival-Alwyn J, Schultz A, Properzi M, Johnson K, et al. Learnings about the complexity of extracellular tau aid development of a blood-based screen for Alzheimer’s disease. Alzheimers Dement. 2019;15:487–96.

Snellman A, Lantero-Rodriguez J, Emeršič A, Vrillon A, Karikari TK, Ashton NJ, Gregorič Kramberger M, Čučnik S, Paquet C, Rot U, et al. N-terminal and mid-region tau fragments as fluid biomarkers in neurological diseases. Brain. 2022;145:2834–48.

Ashton NJ, Benedet AL, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brum WS, Mathotaarachchi S, Therriault J, Savard M, Chamoun M, et al. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer’s disease. eBioMedicine. 2022;76:103836.

Karikari TK, Emeršič A, Vrillon A, Lantero-Rodriguez J, Ashton NJ, Kramberger MG, Dumurgier J, Hourregue C, Čučnik S, Brinkmalm G, et al. Head-to-head comparison of clinical performance of CSF phospho-tau T181 and T217 biomarkers for Alzheimer’s disease diagnosis. Alzheimers Dement. 2021;17:755–67.

Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet AL, Rodriguez JL, Chamoun M, Savard M, Kang MS, Therriault J, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–33.

Karikari TK, Benedet AL, Ashton NJ, Lantero Rodriguez J, Snellman A, Suárez-Calvet M, Saha-Chaudhuri P, Lussier F, Kvartsberg H, Rial AM, et al. Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer’s Disease Neuroimaging Initiative. Mol Psychiatry. 2021;26:429–42.

Ashton NJ, Pascoal TA, Karikari TK, Benedet AL, Lantero-Rodriguez J, Brinkmalm G, Snellman A, Schöll M, Troakes C, Hye A, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021;141:709–24.

Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, Su Y, Chen Y, Serrano GE, Leuzy A, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324:772–81.

Mielke MM, Frank RD, Dage JL, Jeromin A, Ashton NJ, Blennow K, Karikari TK, Vanmechelen E, Zetterberg H, Algeciras-Schimnich A, et al. Comparison of plasma phosphorylated tau species with amyloid and tau positron emission tomography, neurodegeneration, vascular pathology, and cognitive outcomes. JAMA Neurol. 2021;78:1108–17.

Ashton NJ, Puig-Pijoan A, Milà-Alomà M, Fernández-Lebrero A, García-Escobar G, González-Ortiz F, Kac PR, Brum WS, Benedet AL, Lantero-Rodriguez J, et al. Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays. Alzheimers Dement. 2023;19:1913–24.

Bayoumy S, Verberk IMW, den Dulk B, Hussainali Z, Zwan M, van der Flier WM, Ashton NJ, Zetterberg H, Blennow K, Vanbrabant J, et al. Clinical and analytical comparison of six Simoa assays for plasma P-tau isoforms P-tau181, P-tau217, and P-tau231. Alzheimers Res Ther. 2021;13:198.

Janelidze S, Bali D, Ashton NJ, Barthélemy NR, Vanbrabant J, Stoops E, Vanmechelen E, He Y, Dolado AO, Triana-Baltzer G, et al. Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer’s disease. Brain. 2023;146:1592–601.

Kac PR, González-Ortiz F, Emeršič A, Dulewicz M, Koutarapu S, Turton M, An Y, Smirnov D, Kulczyńska-Przybik A, Varma V, et al. Plasma p-tau212: antemortem diagnostic performance and prediction of autopsy verification of Alzheimer’s disease neuropathology. medRxiv. 2023:2023.2012.2011.23299806.

Ashton NJ, Janelidze S, Mattsson-Carlgren N, Binette AP, Strandberg O, Brum WS, Karikari TK, González-Ortiz F, Di Molfetta G, Meda FJ, et al. Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nat Med. 2022;28:2555–62.

Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38:364–74.

Monterey MD, Wei H, Wu X, Wu JQ. The many faces of astrocytes in Alzheimer’s disease. Front Neurol. 2021;12:619626.

Chatterjee P, Pedrini S, Stoops E, Goozee K, Villemagne VL, Asih PR, Verberk IMW, Dave P, Taddei K, Sohrabi HR, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry. 2021;11:27.

Benedet AL, Milà-Alomà M, Vrillon A, Ashton NJ, Pascoal TA, Lussier F, Karikari TK, Hourregue C, Cognat E, Dumurgier J, et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum. JAMA Neurol. 2021;78:1471–83.

Papa L, Ladde JG, O’Brien JF, Thundiyil JG, Tesar J, Leech S, Cassidy DD, Roa J, Hunter C, Miller S, et al. Evaluation of glial and neuronal blood biomarkers compared with clinical decision rules in assessing the need for computed tomography in patients with mild traumatic brain injury. JAMA Netw Open. 2022;5:e221302.

Sjögren M, Blomberg M, Jonsson M, Wahlund LO, Edman A, Lind K, Rosengren L, Blennow K, Wallin A. Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res. 2001;66:510–6.

Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, Bestwick JP, Monsch AU, Regeniter A, Lindberg RL, et al. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One. 2013;8:e75091.

Ashton NJ, Janelidze S, Al Khleifat A, Leuzy A, van der Ende EL, Karikari TK, Benedet AL, Pascoal TA, Lleó A, Parnetti L, et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun. 2021;12:3400.

Ashton NJ, Suárez-Calvet M, Karikari TK, Lantero-Rodriguez J, Snellman A, Sauer M, Simrén J, Minguillon C, Fauria K, Blennow K, Zetterberg H. Effects of pre-analytical procedures on blood biomarkers for Alzheimer’s pathophysiology, glial activation, and neurodegeneration. Alzheimers Dement (Amst). 2021;13:e12168.

O’Connell GC, Alder ML, Webel AR, Moore SM. Neuro biomarker levels measured with high-sensitivity digital ELISA differ between serum and plasma. Bioanalysis. 2019;11:2087–94.

Kac PR, Gonzalez-Ortiz F, Simrén J, Dewit N, Vanmechelen E, Zetterberg H, Blennow K, Ashton NJ, Karikari TK. Diagnostic value of serum versus plasma phospho-tau for Alzheimer’s disease. Alzheimers Res Ther. 2022;14:65.

Jonaitis EM, Zetterberg H, Koscik RL, Betthauser TJ, Van Hulle CA, Hogan K, Hegge L, Kollmorgen G, Suridjan I, Gleason CE, et al. Crosswalk study on blood collection-tube types for Alzheimer’s disease biomarkers. Alzheimers Dement. 2022;14:e12266.

Google Scholar  

Gonzalez-Ortiz F, Dias A, Turton M, Magalhães R, Kac PR, Correia M, Harrison P, Zetterberg H, Maia LF, Blennow K, Karikari TK. Preanalytical stability of plasma/serum brain-derived tau. Alzheimers Dement. 2023;19(10):4764–70.

Gonzalez-Ortiz F, Ferreira PCL, González-Escalante A, Montoliu-Gaya L, Ortiz-Romero P, Kac PR, Turton M, Kvartsberg H, Ashton NJ, Zetterberg H, et al. A novel ultrasensitive assay for plasma p-tau217: performance in individuals with subjective cognitive decline and early Alzheimer’s disease. Alzheimers Dement. 2023. https://doi.org/10.1002/alz.13525 .

Tumani H, Hegen H. CSF albumin: albumin CSF/serum ratio (marker for blood-CSF barrier function). 2015. pp. 111–114.

Mayo Clinic Test Catalog. https://www.mayocliniclabs.com/en/test-catalog .

Bowen RA, Remaley AT. Interferences from blood collection tube components on clinical chemistry assays. Biochem Med (Zagreb). 2014;24:31–44.

Rózga M, Bittner T, Batrla R, Karl J. Preanalytical sample handling recommendations for Alzheimer’s disease plasma biomarkers. Alzheimers Dement (Amst). 2019;11:291–300.

van Lierop Z, Verberk IMW, van Uffelen KWJ, Koel-Simmelink MJA, In ‘t Veld L, Killestein J, Teunissen CE. Pre-analytical stability of serum biomarkers for neurological disease: neurofilament-light, glial fibrillary acidic protein and contactin-1. Clin Chem Lab Med. 2022;60:842–50.

Jiang L, Ding X, Wang W, Yang X, Li T, Lei P. Head-to-head comparison of different blood collecting tubes for quantification of Alzheimer’s disease biomarkers in plasma. Biomolecules. 2022;12:1194.

Walsh G. Difficult peripheral venous access: recognizing and managing the patient at risk. J Assoc Vasc Access. 2008;13:198–203.

Walter M, Wiltfang J, Vogelgsang J. Pre-analytical sampling and storage conditions of amyloid-β peptides in venous and capillary blood. J Alzheimers Dis. 2020;78:529–35.

Lombardi V, Carassiti D, Giovannoni G, Lu CH, Adiutori R, Malaspina A. The potential of neurofilaments analysis using dry-blood and plasma spots. Sci Rep. 2020;10:97.

Simrén J, Ashton NJ, Blennow K, Zetterberg H. Blood neurofilament light in remote settings: alternative protocols to support sample collection in challenging pre-analytical conditions. Alzheimers Dement. 2021;13:e12145.

Meyer P-F, Ashton NJ, Karikari TK, Strikwerda-Brown C, Köbe T, Gonneaud J, Pichet Binette A, Ozlen H, Yakoub Y, Simrén J, et al. Plasma p-tau231, p-tau181, PET biomarkers, and cognitive change in older adults. Ann Neurol. 2022;91:548–60.

Brum WS, Ashton NJ, Simrén J, di Molfetta G, Karikari TK, Benedet AL, Zimmer ER, Lantero-Rodriguez J, Montoliu-Gaya L, Jeromin A, et al. Biological variation estimates of Alzheimer’s disease plasma biomarkers in healthy individuals. Alzheimers Dement. 2024;20:1284–97.

Heyer NJ, Derzon JH, Winges L, Shaw C, Mass D, Snyder SR, Epner P, Nichols JH, Gayken JA, Ernst D, Liebow EB. Effectiveness of practices to reduce blood sample hemolysis in EDs: a laboratory medicine best practices systematic review and meta-analysis. Clin Biochem. 2012;45:1012–32.

Dugan L, Leech L, Speroni KG, Corriher J. Factors affecting hemolysis rates in blood samples drawn from newly placed IV sites in the emergency department. J Emerg Nurs. 2005;31:338–45.

Bowen RA, Hortin GL, Csako G, Otañez OH, Remaley AT. Impact of blood collection devices on clinical chemistry assays. Clin Biochem. 2010;43:4–25.

Bowen RA, Sattayapiwat A, Gounden V, Remaley AT. Blood collection tube-related alterations in analyte concentrations in quality control material and serum specimens. Clin Biochem. 2014;47:150–7.

Schrapp A, Mory C, Duflot T, Pereira T, Imbert L, Lamoureux F. The right blood collection tube for therapeutic drug monitoring and toxicology screening procedures: standard tubes, gel or mechanical separator? Clin Chim Acta. 2019;488:196–201.

Lewczuk P, Beck G, Esselmann H, Bruckmoser R, Zimmermann RD, Fiszer M, Bibl M, Maler JM, Kornhuber J, Wiltfang J. Effect of sample collection tubes on cerebrospinal fluid concentrations of tau proteins and amyloid β peptides. Clin Chem. 2006;52:332–4.

Perret-Liaudet A, Pelpel M, Tholance Y, Dumont B, Vanderstichele H, Zorzi W, ElMoualij B, Schraen S, Moreaud O, Gabelle A, et al. Cerebrospinal fluid collection tubes: a critical issue for Alzheimer disease diagnosis. Clin Chem. 2012;58:787–9.

Bjerke M, Portelius E, Minthon L, Wallin A, Anckarsäter H, Anckarsäter R, Andreasen N, Zetterberg H, Andreasson U, Blennow K. Confounding factors influencing amyloid Beta concentration in cerebrospinal fluid. Int J Alzheimers Dis. 2010;2010:986310.

Pica-Mendez AM, Tanen M, Dallob A, Tanaka W, Laterza OF. Nonspecific binding of Aβ42 to polypropylene tubes and the effect of Tween-20. Clin Chim Acta. 1833;2010:411.

Toombs J, Paterson RW, Schott JM, Zetterberg H. Amyloid-beta 42 adsorption following serial tube transfer. Alzheimers Res Ther. 2014;6:5.

Lachno DR, Vanderstichele H, De Groote G, Kostanjevecki V, De Meyer G, Siemers ER, Willey MB, Bourdage JS, Konrad RJ, Dean RA. The influence of matrix type, diurnal rhythm and sample collection and processing on the measurement of plasma β-amyloid isoforms using the INNO-BIA plasma Aβ forms multiplex assay. J Nutr Health Aging. 2009;13:220–5.

(CLSI). CaLSI: collection, transport, and processing of blood specimens for testing plasma-based coagulation assays and molecular hemostasis assays; approved guideline—fourth edition. CLSI document H21–A4. Wayne: Clinical and Laboratory Standards Institute; 2017.

Reichstein E. The importance of preanalytical factors in immunodiagnostic testing. EJIFCC. 2003;14:124–7.

Timms JF, Arslan-Low E, Gentry-Maharaj A, Luo Z, T’Jampens D, Podust VN, Ford J, Fung ET, Gammerman A, Jacobs I, Menon U. Preanalytic influence of sample handling on SELDI-TOF serum protein profiles. Clin Chem. 2007;53:645–56.

Sunde AL, Alsnes IV, Aarsland D, Ashton NJ, Tovar-Rios DA, De Santis G, Blennow K, Zetterberg H, Kjosavik SR. Preanalytical stability of plasma biomarkers for Alzheimer’s disease pathology. Alzheimers Dement. 2023;15:e12439.

Lippi G, Blanckaert N, Bonini P, Green S, Kitchen S, Palicka V, Vassault AJ, Plebani M. Haemolysis: an overview of the leading cause of unsuitable specimens in clinical laboratories. Clin Chem Lab Med. 2008;46:764–72.

Keshavan A, Heslegrave A, Zetterberg H, Schott JM. Stability of blood-based biomarkers of Alzheimer’s disease over multiple freeze-thaw cycles. Alzheimers Dement. 2018;10:448–51.

Lierop ZYGJv, Verberk IMW, Uffelen KWJv, Koel-Simmelink MJA, Veld Lit, Killestein J, Teunissen CE. Pre-analytical stability of serum biomarkers for neurological disease: neurofilament-light, glial fibrillary acidic protein and contactin-1. Clin Chem Lab Med. 2022;60:842–850.

Liu HC, Chiu MJ, Lin CH, Yang SY. Stability of plasma amyloid-β 1–40, amyloid-β 1–42, and total tau protein over repeated freeze/thaw cycles. Dement Geriatr Cogn Dis Extra. 2020;10:46–55.

Murphy BM, Swarts S, Mueller BM, van der Geer P, Manning MC, Fitchmun MI. Protein instability following transport or storage on dry ice. Nat Methods. 2013;10:278–9.

Schindler SE, Sutphen CL, Teunissen C, McCue LM, Morris JC, Holtzman DM, Mulder SD, Scheltens P, Xiong C, Fagan AM. Upward drift in cerebrospinal fluid amyloid β 42 assay values for more than 10 years. Alzheimers Dement. 2018;14:62–70.

Kang M, Ragan BG, Park JH. Issues in outcomes research: an overview of randomization techniques for clinical trials. J Athl Train. 2008;43:215–21.

Boulo S, Kuhlmann J, Andreasson U, Brix B, Venkataraman I, Herbst V, Rutz S, Manuilova E, Vandijck M, Dekeyser F, et al. First amyloid β1-42 certified reference material for re-calibrating commercial immunoassays. Alzheimers Dement. 2020;16:1493–503.

Download references

Acknowledgements

R01 AG064877 (MIK), P30 AG066468 (University of Pittsburgh ADRC, OIL as PI), R01 MH116046 (RAS, JK), P01 AG14449 and P01 AG025204 (MDI). HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2022-01018 and #2019-02397), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003). KB is supported by the Swedish Research Council (#2017-00915 and #2022-00732), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), and the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240). TKK was supported by the NIH (R01 AG083874, U24 AG082930, P30 AG066468, RF1 AG052525-01A1, R01 AG053952-05, R37 AG023651-17, RF1 AG025516-12A1, R01 AG073267-02, R01 AG075336-01, R01 AG072641-02, P01 AG025204-16), the Swedish Research Council (Vetenskåpradet; #2021-03244), the Alzheimer’s Association (#AARF-21-850325), the Swedish Alzheimer Foundation (Alzheimerfonden), the Aina (Ann) Wallströms and Mary-Ann Sjöbloms stiftelsen, and the Emil och Wera Cornells stiftelsen.

Author information

Authors and affiliations.

Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA, 15213, USA

Xuemei Zeng, Anuradha Sehrawat, Jihui Lee, Tara K. Lafferty, Robert A. Sweet, Dana L. Tudorascu, William E. Klunk, Milos D. Ikonomovic, Anne D. Cohen, Victor L. Villemagne, Tharick A. Pascoal & Thomas K. Karikari

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA

Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA

Julia Kofler

Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA

Sarah B. Berman, Robert A. Sweet, Milos D. Ikonomovic, Beth E. Snitz, Tharick A. Pascoal & Oscar I. Lopez

Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA

Milos D. Ikonomovic

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden

Anna Pfister, Henrik Zetterberg, Kaj Blennow & Thomas K. Karikari

Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden

Anna Pfister, Henrik Zetterberg & Kaj Blennow

Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK

Henrik Zetterberg

UK Dementia Research Institute at UCL, London, UK

Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China

Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA

Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA

M. llyas Kamboh

You can also search for this author in PubMed   Google Scholar

Contributions

XZ and TKK contributed to the conception and design of the review. XZ, YC, AS and TKL prepared the first draft of the manuscript, which was critically revised by all authors. All authors contributed to and approved the final version of the manuscript.

Authors’ information

Corresponding author.

Correspondence to Thomas K. Karikari .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

MDI has received research funding from GE Healthcare and Avid Radiopharmaceuticals. HZ has served at scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector, Alzinova, ALZPath, Annexon, Apellis, Artery Therapeutics, AZTherapies, CogRx, Denali, Eisai, Nervgen, Novo Nordisk, Optoceutics, Passage Bio, Pinteon Therapeutics, Prothena, Red Abbey Labs, reMYND, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics, and Wave, has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure, Biogen, and Roche, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). KB has served as a consultant and at advisory boards for Acumen, ALZPath, BioArctic, Biogen, Eisai, Lilly, Moleac Pte. Ltd, Novartis, Ono Pharma, Prothena, Roche Diagnostics, and Siemens Healthineers; has served at data monitoring committees for Julius Clinical and Novartis; has given lectures, produced educational materials and participated in educational programs for AC Immune, Biogen, Celdara Medical, Eisai and Roche Diagnostics; and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program, outside the work presented in this paper. The other authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1..

Step-by-step blood specimen collection procedures.

Additional file 2.

Simulation datasets used to generate the plots in Fig.  4 .

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Zeng, X., Chen, Y., Sehrawat, A. et al. Alzheimer blood biomarkers: practical guidelines for study design, sample collection, processing, biobanking, measurement and result reporting. Mol Neurodegeneration 19 , 40 (2024). https://doi.org/10.1186/s13024-024-00711-1

Download citation

Received : 25 July 2023

Accepted : 13 February 2024

Published : 15 May 2024

DOI : https://doi.org/10.1186/s13024-024-00711-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Blood biomarker
  • Standardization
  • Preanalytical factors
  • Neurodegeneration

Molecular Neurodegeneration

ISSN: 1750-1326

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

example of practical research paper

  • Privacy Policy

Research Method

Home » Research Recommendations – Examples and Writing Guide

Research Recommendations – Examples and Writing Guide

Table of Contents

Research Recommendations

Research Recommendations

Definition:

Research recommendations refer to suggestions or advice given to someone who is looking to conduct research on a specific topic or area. These recommendations may include suggestions for research methods, data collection techniques, sources of information, and other factors that can help to ensure that the research is conducted in a rigorous and effective manner. Research recommendations may be provided by experts in the field, such as professors, researchers, or consultants, and are intended to help guide the researcher towards the most appropriate and effective approach to their research project.

Parts of Research Recommendations

Research recommendations can vary depending on the specific project or area of research, but typically they will include some or all of the following parts:

  • Research question or objective : This is the overarching goal or purpose of the research project.
  • Research methods : This includes the specific techniques and strategies that will be used to collect and analyze data. The methods will depend on the research question and the type of data being collected.
  • Data collection: This refers to the process of gathering information or data that will be used to answer the research question. This can involve a range of different methods, including surveys, interviews, observations, or experiments.
  • Data analysis : This involves the process of examining and interpreting the data that has been collected. This can involve statistical analysis, qualitative analysis, or a combination of both.
  • Results and conclusions: This section summarizes the findings of the research and presents any conclusions or recommendations based on those findings.
  • Limitations and future research: This section discusses any limitations of the study and suggests areas for future research that could build on the findings of the current project.

How to Write Research Recommendations

Writing research recommendations involves providing specific suggestions or advice to a researcher on how to conduct their study. Here are some steps to consider when writing research recommendations:

  • Understand the research question: Before writing research recommendations, it is important to have a clear understanding of the research question and the objectives of the study. This will help to ensure that the recommendations are relevant and appropriate.
  • Consider the research methods: Consider the most appropriate research methods that could be used to collect and analyze data that will address the research question. Identify the strengths and weaknesses of the different methods and how they might apply to the specific research question.
  • Provide specific recommendations: Provide specific and actionable recommendations that the researcher can implement in their study. This can include recommendations related to sample size, data collection techniques, research instruments, data analysis methods, or other relevant factors.
  • Justify recommendations : Justify why each recommendation is being made and how it will help to address the research question or objective. It is important to provide a clear rationale for each recommendation to help the researcher understand why it is important.
  • Consider limitations and ethical considerations : Consider any limitations or potential ethical considerations that may arise in conducting the research. Provide recommendations for addressing these issues or mitigating their impact.
  • Summarize recommendations: Provide a summary of the recommendations at the end of the report or document, highlighting the most important points and emphasizing how the recommendations will contribute to the overall success of the research project.

Example of Research Recommendations

Example of Research Recommendations sample for students:

  • Further investigate the effects of X on Y by conducting a larger-scale randomized controlled trial with a diverse population.
  • Explore the relationship between A and B by conducting qualitative interviews with individuals who have experience with both.
  • Investigate the long-term effects of intervention C by conducting a follow-up study with participants one year after completion.
  • Examine the effectiveness of intervention D in a real-world setting by conducting a field study in a naturalistic environment.
  • Compare and contrast the results of this study with those of previous research on the same topic to identify any discrepancies or inconsistencies in the findings.
  • Expand upon the limitations of this study by addressing potential confounding variables and conducting further analyses to control for them.
  • Investigate the relationship between E and F by conducting a meta-analysis of existing literature on the topic.
  • Explore the potential moderating effects of variable G on the relationship between H and I by conducting subgroup analyses.
  • Identify potential areas for future research based on the gaps in current literature and the findings of this study.
  • Conduct a replication study to validate the results of this study and further establish the generalizability of the findings.

Applications of Research Recommendations

Research recommendations are important as they provide guidance on how to improve or solve a problem. The applications of research recommendations are numerous and can be used in various fields. Some of the applications of research recommendations include:

  • Policy-making: Research recommendations can be used to develop policies that address specific issues. For example, recommendations from research on climate change can be used to develop policies that reduce carbon emissions and promote sustainability.
  • Program development: Research recommendations can guide the development of programs that address specific issues. For example, recommendations from research on education can be used to develop programs that improve student achievement.
  • Product development : Research recommendations can guide the development of products that meet specific needs. For example, recommendations from research on consumer behavior can be used to develop products that appeal to consumers.
  • Marketing strategies: Research recommendations can be used to develop effective marketing strategies. For example, recommendations from research on target audiences can be used to develop marketing strategies that effectively reach specific demographic groups.
  • Medical practice : Research recommendations can guide medical practitioners in providing the best possible care to patients. For example, recommendations from research on treatments for specific conditions can be used to improve patient outcomes.
  • Scientific research: Research recommendations can guide future research in a specific field. For example, recommendations from research on a specific disease can be used to guide future research on treatments and cures for that disease.

Purpose of Research Recommendations

The purpose of research recommendations is to provide guidance on how to improve or solve a problem based on the findings of research. Research recommendations are typically made at the end of a research study and are based on the conclusions drawn from the research data. The purpose of research recommendations is to provide actionable advice to individuals or organizations that can help them make informed decisions, develop effective strategies, or implement changes that address the issues identified in the research.

The main purpose of research recommendations is to facilitate the transfer of knowledge from researchers to practitioners, policymakers, or other stakeholders who can benefit from the research findings. Recommendations can help bridge the gap between research and practice by providing specific actions that can be taken based on the research results. By providing clear and actionable recommendations, researchers can help ensure that their findings are put into practice, leading to improvements in various fields, such as healthcare, education, business, and public policy.

Characteristics of Research Recommendations

Research recommendations are a key component of research studies and are intended to provide practical guidance on how to apply research findings to real-world problems. The following are some of the key characteristics of research recommendations:

  • Actionable : Research recommendations should be specific and actionable, providing clear guidance on what actions should be taken to address the problem identified in the research.
  • Evidence-based: Research recommendations should be based on the findings of the research study, supported by the data collected and analyzed.
  • Contextual: Research recommendations should be tailored to the specific context in which they will be implemented, taking into account the unique circumstances and constraints of the situation.
  • Feasible : Research recommendations should be realistic and feasible, taking into account the available resources, time constraints, and other factors that may impact their implementation.
  • Prioritized: Research recommendations should be prioritized based on their potential impact and feasibility, with the most important recommendations given the highest priority.
  • Communicated effectively: Research recommendations should be communicated clearly and effectively, using language that is understandable to the target audience.
  • Evaluated : Research recommendations should be evaluated to determine their effectiveness in addressing the problem identified in the research, and to identify opportunities for improvement.

Advantages of Research Recommendations

Research recommendations have several advantages, including:

  • Providing practical guidance: Research recommendations provide practical guidance on how to apply research findings to real-world problems, helping to bridge the gap between research and practice.
  • Improving decision-making: Research recommendations help decision-makers make informed decisions based on the findings of research, leading to better outcomes and improved performance.
  • Enhancing accountability : Research recommendations can help enhance accountability by providing clear guidance on what actions should be taken, and by providing a basis for evaluating progress and outcomes.
  • Informing policy development : Research recommendations can inform the development of policies that are evidence-based and tailored to the specific needs of a given situation.
  • Enhancing knowledge transfer: Research recommendations help facilitate the transfer of knowledge from researchers to practitioners, policymakers, or other stakeholders who can benefit from the research findings.
  • Encouraging further research : Research recommendations can help identify gaps in knowledge and areas for further research, encouraging continued exploration and discovery.
  • Promoting innovation: Research recommendations can help identify innovative solutions to complex problems, leading to new ideas and approaches.

Limitations of Research Recommendations

While research recommendations have several advantages, there are also some limitations to consider. These limitations include:

  • Context-specific: Research recommendations may be context-specific and may not be applicable in all situations. Recommendations developed in one context may not be suitable for another context, requiring adaptation or modification.
  • I mplementation challenges: Implementation of research recommendations may face challenges, such as lack of resources, resistance to change, or lack of buy-in from stakeholders.
  • Limited scope: Research recommendations may be limited in scope, focusing only on a specific issue or aspect of a problem, while other important factors may be overlooked.
  • Uncertainty : Research recommendations may be uncertain, particularly when the research findings are inconclusive or when the recommendations are based on limited data.
  • Bias : Research recommendations may be influenced by researcher bias or conflicts of interest, leading to recommendations that are not in the best interests of stakeholders.
  • Timing : Research recommendations may be time-sensitive, requiring timely action to be effective. Delayed action may result in missed opportunities or reduced effectiveness.
  • Lack of evaluation: Research recommendations may not be evaluated to determine their effectiveness or impact, making it difficult to assess whether they are successful or not.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

IMAGES

  1. How to Write a Research Paper in English

    example of practical research paper

  2. Write my essay

    example of practical research paper

  3. 43+ Research Paper Examples

    example of practical research paper

  4. Practical Research 1

    example of practical research paper

  5. Sample Research Paper

    example of practical research paper

  6. How to Write a Research Paper Outline With Examples?

    example of practical research paper

VIDEO

  1. Chapter 4

  2. Step-by-step guide on how to write a research paper

  3. Practical Research 2 Quarter 1 Module 3: Kinds of Variables and Their Uses

  4. SAMPLING PROCEDURE AND SAMPLE (QUALITATIVE RESEARCH)

  5. Session-1: Introduction to Research Paper Writing

  6. How to Write RESEARCH ABSTRACT

COMMENTS

  1. Writing the Research Paper

    Writing the Research Paper. Writing in a formal, academic, and technical manner can prove a difficult transition for clinicians turned researchers; however, there are several ways to improve your professional writing skills. This chapter should be considered a collection of tools to consider as you work to articulate and disseminate your research.

  2. How To Write A Research Paper (FREE Template

    Step 1: Find a topic and review the literature. As we mentioned earlier, in a research paper, you, as the researcher, will try to answer a question.More specifically, that's called a research question, and it sets the direction of your entire paper. What's important to understand though is that you'll need to answer that research question with the help of high-quality sources - for ...

  3. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  4. How to Write a Research Paper

    Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft. The revision process. Research paper checklist.

  5. Writing a Research Paper Introduction

    Table of contents. Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  6. How to Write Your First Research Paper

    After you get enough feedback and decide on the journal you will submit to, the process of real writing begins. Copy your outline into a separate file and expand on each of the points, adding data and elaborating on the details. When you create the first draft, do not succumb to the temptation of editing.

  7. Research Paper Format

    Formatting a Chicago paper. The main guidelines for writing a paper in Chicago style (also known as Turabian style) are: Use a standard font like 12 pt Times New Roman. Use 1 inch margins or larger. Apply double line spacing. Indent every new paragraph ½ inch. Place page numbers in the top right or bottom center.

  8. How to Write a Brilliant Research Paper

    What follows is a step-by-step guide on how you can make your research paper a good read and improve the chances of your paper's acceptance: CONTENTS. 1. How to dive into the process of writing. Outline of a research paper. Keep sub-topics and references ready. 2. Getting the title of your research paper right. 3.

  9. Research Paper Examples

    Research paper examples provided by iResearchNet are meticulously crafted to demonstrate the essential elements of effective academic writing. These examples offer clear insights into how to organize a paper, from the introductory paragraph, through the development of arguments and analysis, to the concluding remarks. ... At a practical level ...

  10. 20+ Research Paper Example

    Research Paper Example Outline. Before you plan on writing a well-researched paper, make a rough draft. An outline can be a great help when it comes to organizing vast amounts of research material for your paper. Here is an outline of a research paper example: I. Title Page. A. Title of the Research Paper.

  11. Research Paper Introduction

    Research Paper Introduction. Research paper introduction is the first section of a research paper that provides an overview of the study, its purpose, and the research question(s) or hypothesis(es) being investigated. It typically includes background information about the topic, a review of previous research in the field, and a statement of the research objectives.

  12. 13.1 Formatting a Research Paper

    Set the top, bottom, and side margins of your paper at 1 inch. Use double-spaced text throughout your paper. Use a standard font, such as Times New Roman or Arial, in a legible size (10- to 12-point). Use continuous pagination throughout the paper, including the title page and the references section.

  13. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research. There are often many possible paths you can take to answering ...

  14. Research Paper Format

    Research paper format is an essential aspect of academic writing that plays a crucial role in the communication of research findings.The format of a research paper depends on various factors such as the discipline, style guide, and purpose of the research. It includes guidelines for the structure, citation style, referencing, and other elements of the paper that contribute to its overall ...

  15. How to Write an "Implications of Research" Section

    To summarize, remember these key pointers: Implications are the impact of your findings on the field of study. They serve as a reflection of the research you've conducted. They show the specific contributions of your findings and why the audience should care. They can be practical or theoretical. They aren't the same as recommendations.

  16. Practical Research 1 Paper Format

    Practical Research 1 Paper Format - Free download as Word Doc (.doc / .docx), PDF File (.pdf), Text File (.txt) or read online for free. This document outlines the structure and contents of a research paper. It includes sections for an introduction with the background, problem statement, significance and scope; a literature review and conceptual framework; methodology; data presentation and ...

  17. 113 Great Research Paper Topics

    113 Great Research Paper Topics. One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily ...

  18. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  19. Research Methodology

    Qualitative Research Methodology. This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

  20. Practical Research 1 Example for Students

    Students also viewed. Practical Research 1- Research Ethics (Akari) Practical Research 2 Quarter 2 - Module 11 Formulating Recommendations; Practical Research 2 Quarter 2 - Module 10 Drawing Logical Conclusions from Research Findings

  21. Writing a Research Paper Conclusion

    This means expressing the key takeaways, practical or theoretical, from your paper—often in the form of a call for action or suggestions for future research. ... Example A research paper outline makes writing your paper more efficient. It organizes your thoughts and helps shape the flow of information. 948.

  22. Alzheimer blood biomarkers: practical guidelines for study design

    Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly ...

  23. Research Recommendations

    For example, recommendations from research on climate change can be used to develop policies that reduce carbon emissions and promote sustainability. Program development: Research recommendations can guide the development of programs that address specific issues. For example, recommendations from research on education can be used to develop ...