Research Methods In Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

research methods3

Hypotheses are statements about the prediction of the results, that can be verified or disproved by some investigation.

There are four types of hypotheses :
  • Null Hypotheses (H0 ) – these predict that no difference will be found in the results between the conditions. Typically these are written ‘There will be no difference…’
  • Alternative Hypotheses (Ha or H1) – these predict that there will be a significant difference in the results between the two conditions. This is also known as the experimental hypothesis.
  • One-tailed (directional) hypotheses – these state the specific direction the researcher expects the results to move in, e.g. higher, lower, more, less. In a correlation study, the predicted direction of the correlation can be either positive or negative.
  • Two-tailed (non-directional) hypotheses – these state that a difference will be found between the conditions of the independent variable but does not state the direction of a difference or relationship. Typically these are always written ‘There will be a difference ….’

All research has an alternative hypothesis (either a one-tailed or two-tailed) and a corresponding null hypothesis.

Once the research is conducted and results are found, psychologists must accept one hypothesis and reject the other. 

So, if a difference is found, the Psychologist would accept the alternative hypothesis and reject the null.  The opposite applies if no difference is found.

Sampling techniques

Sampling is the process of selecting a representative group from the population under study.

Sample Target Population

A sample is the participants you select from a target population (the group you are interested in) to make generalizations about.

Representative means the extent to which a sample mirrors a researcher’s target population and reflects its characteristics.

Generalisability means the extent to which their findings can be applied to the larger population of which their sample was a part.

  • Volunteer sample : where participants pick themselves through newspaper adverts, noticeboards or online.
  • Opportunity sampling : also known as convenience sampling , uses people who are available at the time the study is carried out and willing to take part. It is based on convenience.
  • Random sampling : when every person in the target population has an equal chance of being selected. An example of random sampling would be picking names out of a hat.
  • Systematic sampling : when a system is used to select participants. Picking every Nth person from all possible participants. N = the number of people in the research population / the number of people needed for the sample.
  • Stratified sampling : when you identify the subgroups and select participants in proportion to their occurrences.
  • Snowball sampling : when researchers find a few participants, and then ask them to find participants themselves and so on.
  • Quota sampling : when researchers will be told to ensure the sample fits certain quotas, for example they might be told to find 90 participants, with 30 of them being unemployed.

Experiments always have an independent and dependent variable .

  • The independent variable is the one the experimenter manipulates (the thing that changes between the conditions the participants are placed into). It is assumed to have a direct effect on the dependent variable.
  • The dependent variable is the thing being measured, or the results of the experiment.

variables

Operationalization of variables means making them measurable/quantifiable. We must use operationalization to ensure that variables are in a form that can be easily tested.

For instance, we can’t really measure ‘happiness’, but we can measure how many times a person smiles within a two-hour period. 

By operationalizing variables, we make it easy for someone else to replicate our research. Remember, this is important because we can check if our findings are reliable.

Extraneous variables are all variables which are not independent variable but could affect the results of the experiment.

It can be a natural characteristic of the participant, such as intelligence levels, gender, or age for example, or it could be a situational feature of the environment such as lighting or noise.

Demand characteristics are a type of extraneous variable that occurs if the participants work out the aims of the research study, they may begin to behave in a certain way.

For example, in Milgram’s research , critics argued that participants worked out that the shocks were not real and they administered them as they thought this was what was required of them. 

Extraneous variables must be controlled so that they do not affect (confound) the results.

Randomly allocating participants to their conditions or using a matched pairs experimental design can help to reduce participant variables. 

Situational variables are controlled by using standardized procedures, ensuring every participant in a given condition is treated in the same way

Experimental Design

Experimental design refers to how participants are allocated to each condition of the independent variable, such as a control or experimental group.
  • Independent design ( between-groups design ): each participant is selected for only one group. With the independent design, the most common way of deciding which participants go into which group is by means of randomization. 
  • Matched participants design : each participant is selected for only one group, but the participants in the two groups are matched for some relevant factor or factors (e.g. ability; sex; age).
  • Repeated measures design ( within groups) : each participant appears in both groups, so that there are exactly the same participants in each group.
  • The main problem with the repeated measures design is that there may well be order effects. Their experiences during the experiment may change the participants in various ways.
  • They may perform better when they appear in the second group because they have gained useful information about the experiment or about the task. On the other hand, they may perform less well on the second occasion because of tiredness or boredom.
  • Counterbalancing is the best way of preventing order effects from disrupting the findings of an experiment, and involves ensuring that each condition is equally likely to be used first and second by the participants.

If we wish to compare two groups with respect to a given independent variable, it is essential to make sure that the two groups do not differ in any other important way. 

Experimental Methods

All experimental methods involve an iv (independent variable) and dv (dependent variable)..

  • Field experiments are conducted in the everyday (natural) environment of the participants. The experimenter still manipulates the IV, but in a real-life setting. It may be possible to control extraneous variables, though such control is more difficult than in a lab experiment.
  • Natural experiments are when a naturally occurring IV is investigated that isn’t deliberately manipulated, it exists anyway. Participants are not randomly allocated, and the natural event may only occur rarely.

Case studies are in-depth investigations of a person, group, event, or community. It uses information from a range of sources, such as from the person concerned and also from their family and friends.

Many techniques may be used such as interviews, psychological tests, observations and experiments. Case studies are generally longitudinal: in other words, they follow the individual or group over an extended period of time. 

Case studies are widely used in psychology and among the best-known ones carried out were by Sigmund Freud . He conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

Case studies provide rich qualitative data and have high levels of ecological validity. However, it is difficult to generalize from individual cases as each one has unique characteristics.

Correlational Studies

Correlation means association; it is a measure of the extent to which two variables are related. One of the variables can be regarded as the predictor variable with the other one as the outcome variable.

Correlational studies typically involve obtaining two different measures from a group of participants, and then assessing the degree of association between the measures. 

The predictor variable can be seen as occurring before the outcome variable in some sense. It is called the predictor variable, because it forms the basis for predicting the value of the outcome variable.

Relationships between variables can be displayed on a graph or as a numerical score called a correlation coefficient.

types of correlation. Scatter plot. Positive negative and no correlation

  • If an increase in one variable tends to be associated with an increase in the other, then this is known as a positive correlation .
  • If an increase in one variable tends to be associated with a decrease in the other, then this is known as a negative correlation .
  • A zero correlation occurs when there is no relationship between variables.

After looking at the scattergraph, if we want to be sure that a significant relationship does exist between the two variables, a statistical test of correlation can be conducted, such as Spearman’s rho.

The test will give us a score, called a correlation coefficient . This is a value between 0 and 1, and the closer to 1 the score is, the stronger the relationship between the variables. This value can be both positive e.g. 0.63, or negative -0.63.

Types of correlation. Strong, weak, and perfect positive correlation, strong, weak, and perfect negative correlation, no correlation. Graphs or charts ...

A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable. A correlation only shows if there is a relationship between variables.

Correlation does not always prove causation, as a third variable may be involved. 

causation correlation

Interview Methods

Interviews are commonly divided into two types: structured and unstructured.

A fixed, predetermined set of questions is put to every participant in the same order and in the same way. 

Responses are recorded on a questionnaire, and the researcher presets the order and wording of questions, and sometimes the range of alternative answers.

The interviewer stays within their role and maintains social distance from the interviewee.

There are no set questions, and the participant can raise whatever topics he/she feels are relevant and ask them in their own way. Questions are posed about participants’ answers to the subject

Unstructured interviews are most useful in qualitative research to analyze attitudes and values.

Though they rarely provide a valid basis for generalization, their main advantage is that they enable the researcher to probe social actors’ subjective point of view. 

Questionnaire Method

Questionnaires can be thought of as a kind of written interview. They can be carried out face to face, by telephone, or post.

The choice of questions is important because of the need to avoid bias or ambiguity in the questions, ‘leading’ the respondent or causing offense.

  • Open questions are designed to encourage a full, meaningful answer using the subject’s own knowledge and feelings. They provide insights into feelings, opinions, and understanding. Example: “How do you feel about that situation?”
  • Closed questions can be answered with a simple “yes” or “no” or specific information, limiting the depth of response. They are useful for gathering specific facts or confirming details. Example: “Do you feel anxious in crowds?”

Its other practical advantages are that it is cheaper than face-to-face interviews and can be used to contact many respondents scattered over a wide area relatively quickly.

Observations

There are different types of observation methods :
  • Covert observation is where the researcher doesn’t tell the participants they are being observed until after the study is complete. There could be ethical problems or deception and consent with this particular observation method.
  • Overt observation is where a researcher tells the participants they are being observed and what they are being observed for.
  • Controlled : behavior is observed under controlled laboratory conditions (e.g., Bandura’s Bobo doll study).
  • Natural : Here, spontaneous behavior is recorded in a natural setting.
  • Participant : Here, the observer has direct contact with the group of people they are observing. The researcher becomes a member of the group they are researching.  
  • Non-participant (aka “fly on the wall): The researcher does not have direct contact with the people being observed. The observation of participants’ behavior is from a distance

Pilot Study

A pilot  study is a small scale preliminary study conducted in order to evaluate the feasibility of the key s teps in a future, full-scale project.

A pilot study is an initial run-through of the procedures to be used in an investigation; it involves selecting a few people and trying out the study on them. It is possible to save time, and in some cases, money, by identifying any flaws in the procedures designed by the researcher.

A pilot study can help the researcher spot any ambiguities (i.e. unusual things) or confusion in the information given to participants or problems with the task devised.

Sometimes the task is too hard, and the researcher may get a floor effect, because none of the participants can score at all or can complete the task – all performances are low.

The opposite effect is a ceiling effect, when the task is so easy that all achieve virtually full marks or top performances and are “hitting the ceiling”.

Research Design

In cross-sectional research , a researcher compares multiple segments of the population at the same time

Sometimes, we want to see how people change over time, as in studies of human development and lifespan. Longitudinal research is a research design in which data-gathering is administered repeatedly over an extended period of time.

In cohort studies , the participants must share a common factor or characteristic such as age, demographic, or occupation. A cohort study is a type of longitudinal study in which researchers monitor and observe a chosen population over an extended period.

Triangulation means using more than one research method to improve the study’s validity.

Reliability

Reliability is a measure of consistency, if a particular measurement is repeated and the same result is obtained then it is described as being reliable.

  • Test-retest reliability :  assessing the same person on two different occasions which shows the extent to which the test produces the same answers.
  • Inter-observer reliability : the extent to which there is an agreement between two or more observers.

Meta-Analysis

A meta-analysis is a systematic review that involves identifying an aim and then searching for research studies that have addressed similar aims/hypotheses.

This is done by looking through various databases, and then decisions are made about what studies are to be included/excluded.

Strengths: Increases the conclusions’ validity as they’re based on a wider range.

Weaknesses: Research designs in studies can vary, so they are not truly comparable.

Peer Review

A researcher submits an article to a journal. The choice of the journal may be determined by the journal’s audience or prestige.

The journal selects two or more appropriate experts (psychologists working in a similar field) to peer review the article without payment. The peer reviewers assess: the methods and designs used, originality of the findings, the validity of the original research findings and its content, structure and language.

Feedback from the reviewer determines whether the article is accepted. The article may be: Accepted as it is, accepted with revisions, sent back to the author to revise and re-submit or rejected without the possibility of submission.

The editor makes the final decision whether to accept or reject the research report based on the reviewers comments/ recommendations.

Peer review is important because it prevent faulty data from entering the public domain, it provides a way of checking the validity of findings and the quality of the methodology and is used to assess the research rating of university departments.

Peer reviews may be an ideal, whereas in practice there are lots of problems. For example, it slows publication down and may prevent unusual, new work being published. Some reviewers might use it as an opportunity to prevent competing researchers from publishing work.

Some people doubt whether peer review can really prevent the publication of fraudulent research.

The advent of the internet means that a lot of research and academic comment is being published without official peer reviews than before, though systems are evolving on the internet where everyone really has a chance to offer their opinions and police the quality of research.

Types of Data

  • Quantitative data is numerical data e.g. reaction time or number of mistakes. It represents how much or how long, how many there are of something. A tally of behavioral categories and closed questions in a questionnaire collect quantitative data.
  • Qualitative data is virtually any type of information that can be observed and recorded that is not numerical in nature and can be in the form of written or verbal communication. Open questions in questionnaires and accounts from observational studies collect qualitative data.
  • Primary data is first-hand data collected for the purpose of the investigation.
  • Secondary data is information that has been collected by someone other than the person who is conducting the research e.g. taken from journals, books or articles.

Validity means how well a piece of research actually measures what it sets out to, or how well it reflects the reality it claims to represent.

Validity is whether the observed effect is genuine and represents what is actually out there in the world.

  • Concurrent validity is the extent to which a psychological measure relates to an existing similar measure and obtains close results. For example, a new intelligence test compared to an established test.
  • Face validity : does the test measure what it’s supposed to measure ‘on the face of it’. This is done by ‘eyeballing’ the measuring or by passing it to an expert to check.
  • Ecological validit y is the extent to which findings from a research study can be generalized to other settings / real life.
  • Temporal validity is the extent to which findings from a research study can be generalized to other historical times.

Features of Science

  • Paradigm – A set of shared assumptions and agreed methods within a scientific discipline.
  • Paradigm shift – The result of the scientific revolution: a significant change in the dominant unifying theory within a scientific discipline.
  • Objectivity – When all sources of personal bias are minimised so not to distort or influence the research process.
  • Empirical method – Scientific approaches that are based on the gathering of evidence through direct observation and experience.
  • Replicability – The extent to which scientific procedures and findings can be repeated by other researchers.
  • Falsifiability – The principle that a theory cannot be considered scientific unless it admits the possibility of being proved untrue.

Statistical Testing

A significant result is one where there is a low probability that chance factors were responsible for any observed difference, correlation, or association in the variables tested.

If our test is significant, we can reject our null hypothesis and accept our alternative hypothesis.

If our test is not significant, we can accept our null hypothesis and reject our alternative hypothesis. A null hypothesis is a statement of no effect.

In Psychology, we use p < 0.05 (as it strikes a balance between making a type I and II error) but p < 0.01 is used in tests that could cause harm like introducing a new drug.

A type I error is when the null hypothesis is rejected when it should have been accepted (happens when a lenient significance level is used, an error of optimism).

A type II error is when the null hypothesis is accepted when it should have been rejected (happens when a stringent significance level is used, an error of pessimism).

Ethical Issues

  • Informed consent is when participants are able to make an informed judgment about whether to take part. It causes them to guess the aims of the study and change their behavior.
  • To deal with it, we can gain presumptive consent or ask them to formally indicate their agreement to participate but it may invalidate the purpose of the study and it is not guaranteed that the participants would understand.
  • Deception should only be used when it is approved by an ethics committee, as it involves deliberately misleading or withholding information. Participants should be fully debriefed after the study but debriefing can’t turn the clock back.
  • All participants should be informed at the beginning that they have the right to withdraw if they ever feel distressed or uncomfortable.
  • It causes bias as the ones that stayed are obedient and some may not withdraw as they may have been given incentives or feel like they’re spoiling the study. Researchers can offer the right to withdraw data after participation.
  • Participants should all have protection from harm . The researcher should avoid risks greater than those experienced in everyday life and they should stop the study if any harm is suspected. However, the harm may not be apparent at the time of the study.
  • Confidentiality concerns the communication of personal information. The researchers should not record any names but use numbers or false names though it may not be possible as it is sometimes possible to work out who the researchers were.

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

A-level Psychology AQA Revision Notes

A-Level Psychology

A-level Psychology AQA Revision Notes

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

The newest release in the APA Handbooks in Psychology ® series

750 First Street NE Washington, DC 20002 www.apa.org | [email protected]

Terms of Use | Privacy Statement ©2023 American Psychological Association. All Rights Reserved.

APA Handbook of Research Methods in Psychology

Please select the collection(s) you would like to receive more information on.

A one-time purchase of any collection provides perpetual access to DRM-free titles to best meet the needs of your institution and users.

Table of Contents

Volume 1 — Foundations, Planning, Measures, and Psychometrics

Part I. Philosophical, Ethical, and Societal Underpinnings of Psychological Research (Chapters 1 – 6) Part II. Planning Research (Chapters 7 – 12) Part III. Measurement Methods (Chapters 13 – 32) Part IV. Psychometrics (Chapters 33 – 38)

Volume 2 — Research Designs: Quantitative, Qualitative, Neuropsychological, and Biological

Part I. Qualitative Research Methods (Chapters 1 – 11) Part II. Working Across Epistemologies, Methodologies, and Methods (Chapters 12 – 15) Part III. Sampling Across People and Time (Chapters 16 – 19) Part IV. Building and Testing Methods (Chapters 20 – 26) Part V. Designs Involving Experimental Manipulations (Chapters 27 – 32) Part VI. Quantitative Research Designs Involving Single Participants or Units (Chapters 33 – 34) Part VII. Designs in Neuropsychology and Biological Psychology (Chapters 35 – 38)

Volume 3 — Data Analysis and Research Publication

Part I. Quantitative Data Analysis (Chapters 1 – 24) Part II. Publishing and the Publication Process (Chapters 25 – 27)

This resource serves as an ideal reference for many different courses, including:

Please complete the form and an APA representative will follow up with access options.

By submitting your information, you agree to receive information about American Psychological Association (APA) products and services. You may unsubscribe at any time. Please review the APA Privacy Policy for more information.

With significant new and updated content across dozens of chapters, the second edition of the APA Handbook of Research Methods in Psychology presents the most exhaustive treatment available of the techniques psychologists and others have developed to help them pursue a shared understanding of why humans think, feel, and behave the way they do. Across three volumes, the chapters in this indispensable handbook address broad, crosscutting issues faced by researchers: the philosophical, ethical, and societal underpinnings of psychological research. Newly written chapters cover topics such as:

  • Literature searching
  • Workflow and reproducibility
  • Research funding
  • Neuroimaging
  • Data analysis methods
  • Navigating the publishing process
  • Ethics in scholarly authorship
  • Research data management and sharing
  • Applied Psychology 
  • Clinical Psychology
  • Cognitive Psychology
  • Developmental Psychology
  • Education Psychology
  • Human Development
  • Neuroscience
  • Public health

Harris Cooper, 

Duke University

Marc N. Coutanche, 

University of Pittsburgh

Linda M. McMullen, 

University of Saskatchewan (Canada) A.T. Panter, 

University of North Carolina 

at Chapel Hill ISBN: 978-1-4338-4123-1

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Understanding Methods for Research in Psychology

A Psychology Research Methods Study Guide

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

research method on psychology

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

research method on psychology

Types of Research in Psychology

  • Cross-Sectional vs. Longitudinal Research
  • Reliability and Validity

Glossary of Terms

Research in psychology focuses on a variety of topics , ranging from the development of infants to the behavior of social groups. Psychologists use the scientific method to investigate questions both systematically and empirically.

Research in psychology is important because it provides us with valuable information that helps to improve human lives. By learning more about the brain, cognition, behavior, and mental health conditions, researchers are able to solve real-world problems that affect our day-to-day lives.

At a Glance

Knowing more about how research in psychology is conducted can give you a better understanding of what those findings might mean to you. Psychology experiments can range from simple to complex, but there are some basic terms and concepts that all psychology students should understand.

Start your studies by learning more about the different types of research, the basics of experimental design, and the relationships between variables.

Research in Psychology: The Basics

The first step in your review should include a basic introduction to psychology research methods . Psychology research can have a variety of goals. What researchers learn can be used to describe, explain, predict, or change human behavior.

Psychologists use the scientific method to conduct studies and research in psychology. The basic process of conducting psychology research involves asking a question, designing a study, collecting data, analyzing results, reaching conclusions, and sharing the findings.

The Scientific Method in Psychology Research

The steps of the scientific method in psychology research are:

  • Make an observation
  • Ask a research question and make predictions about what you expect to find
  • Test your hypothesis and gather data
  • Examine the results and form conclusions
  • Report your findings

Research in psychology can take several different forms. It can describe a phenomenon, explore the causes of a phenomenon, or look at relationships between one or more variables. Three of the main types of psychological research focus on:

Descriptive Studies

This type of research can tell us more about what is happening in a specific population. It relies on techniques such as observation, surveys, and case studies.

Correlational Studies

Correlational research is frequently used in psychology to look for relationships between variables. While research look at how variables are related, they do not manipulate any of the variables.

While correlational studies can suggest a relationship between two variables, finding a correlation does not prove that one variable causes a change in another. In other words, correlation does not equal causation.

Experimental Research Methods

Experiments are a research method that can look at whether changes in one variable cause changes in another. The simple experiment is one of the most basic methods of determining if there is a cause-and-effect relationship between two variables.

A simple experiment utilizes a control group of participants who receive no treatment and an experimental group of participants who receive the treatment.

Experimenters then compare the results of the two groups to determine if the treatment had an effect.

Cross-Sectional vs. Longitudinal Research in Psychology

Research in psychology can also involve collecting data at a single point in time, or gathering information at several points over a period of time.

Cross-Sectional Research

In a cross-sectional study , researchers collect data from participants at a single point in time. These are descriptive type of research and cannot be used to determine cause and effect because researchers do not manipulate the independent variables.

However, cross-sectional research does allow researchers to look at the characteristics of the population and explore relationships between different variables at a single point in time.

Longitudinal Research

A longitudinal study is a type of research in psychology that involves looking at the same group of participants over a period of time. Researchers start by collecting initial data that serves as a baseline, and then collect follow-up data at certain intervals. These studies can last days, months, or years. 

The longest longitudinal study in psychology was started in 1921 and the study is planned to continue until the last participant dies or withdraws. As of 2003, more than 200 of the partipants were still alive.

The Reliability and Validity of Research in Psychology

Reliability and validity are two concepts that are also critical in psychology research. In order to trust the results, we need to know if the findings are consistent (reliability) and that we are actually measuring what we think we are measuring (validity).

Reliability

Reliability is a vital component of a valid psychological test. What is reliability? How do we measure it? Simply put, reliability refers to the consistency of a measure. A test is considered reliable if we get the same result repeatedly.

When determining the merits of a psychological test, validity is one of the most important factors to consider. What exactly is validity? One of the greatest concerns when creating a psychological test is whether or not it actually measures what we think it is measuring.

For example, a test might be designed to measure a stable personality trait but instead measures transitory emotions generated by situational or environmental conditions. A valid test ensures that the results accurately reflect the dimension undergoing assessment.

Review some of the key terms that you should know and understand about psychology research methods. Spend some time studying these terms and definitions before your exam. Some key terms that you should know include:

  • Correlation
  • Demand characteristic
  • Dependent variable
  • Hawthorne effect
  • Independent variable
  • Naturalistic observation
  • Placebo effect
  • Random assignment
  • Replication
  • Selective attrition

Erol A.  How to conduct scientific research ?  Noro Psikiyatr Ars . 2017;54(2):97-98. doi:10.5152/npa.2017.0120102

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Curtis EA, Comiskey C, Dempsey O. Importance and use of correlational research .  Nurse Res . 2016;23(6):20-25. doi:10.7748/nr.2016.e1382

Wang X, Cheng Z. Cross-sectional studies: Strengths, weaknesses, and recommendations .  Chest . 2020;158(1S):S65-S71. doi:10.1016/j.chest.2020.03.012

Caruana EJ, Roman M, Hernández-Sánchez J, Solli P. Longitudinal studies .  J Thorac Dis . 2015;7(11):E537-E540. doi:10.3978/j.issn.2072-1439.2015.10.63

Stanford Magazine. The vexing legacy of Lewis Terman .

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Technical Support
  • Find My Rep

You are here

Research Methods in Psychology

Research Methods in Psychology Investigating Human Behavior

  • Paul G. Nestor - University of Massachusetts Boston, USA
  • Russell K. Schutt - University of Massachusetts Boston, USA
  • Description

The authors are proud sponsors of the  2020 SAGE Keith Roberts Teaching Innovations Award —enabling graduate students and early career faculty to attend the annual ASA pre-conference teaching and learning workshop.

Research Methods in Psychology: Investigating Human Behavior draws on fascinating stories to illustrate the entire research process within a unifying conceptual framework. Bestselling authors Paul G. Nestor and Russell K. Schutt present a clear and comprehensive introduction to the logic and techniques of research methods in psychology by employing a unique combination of two distinct yet complementary pedagogical techniques. First, chapters designed for experiential, hands-on studies put the student in the roles of researcher, participant, and consumer to bring concepts to life. Second, the findings of cognitive science guide the text in a way that is most conducive to learning. This novel approach serves as an effective way to make the world of psychological research fun and rewarding for students, in addition to allowing them to gain the foundational knowledge they need to design, conduct, and present research.

See what’s new to this edition by selecting the Features tab on this page. Should you need additional information or have questions regarding the HEOA information provided for this title, including what is new to this edition, please email [email protected] . Please include your name, contact information, and the name of the title for which you would like more information. For information on the HEOA, please go to http://ed.gov/policy/highered/leg/hea08/index.html .

For assistance with your order: Please email us at [email protected] or connect with your SAGE representative.

SAGE 2455 Teller Road Thousand Oaks, CA 91320 www.sagepub.com

Supplements

SAGE edge for instructors supports teaching by making it easy to integrate quality content and create a rich learning environment for students.

  • Test banks provide a diverse range of pre-written options as well as the opportunity to edit any question and/or insert personalized questions to effectively assess students’ progress and understanding.
  • Sample course syllabi for semester and quarter courses provide suggested models for structuring one’s course.
  • Editable, chapter-specific PowerPoint ® slides offer complete flexibility in creating a multimedia presentation.
  • EXCLUSIVE! Access to full-text SAGE journal articles that have been carefully selected support and expand on the concepts presented in each chapter. 
  • Multimedia content appeals to diverse learners and includes a carefully curated list of online supporting audio and video resources.
  • Lecture notes summarize key concepts by chapter to help prepare for lectures and class discussions.

SAGE edge for students provides a personalized approach to help students accomplish their coursework goals in an easy-to-use learning environment.

  • Mobile-friendly eFlashcards strengthen understanding of key terms and concepts.
  • Mobile-friendly practice quizzes allow for independent assessment by students of their mastery of course material.
  • SPSS exercises provide opportunities for additional practice.
  • EXCLUSIVE! Access to full-text SAGE journal articles that have been carefully selected support and expand on the concepts presented in each chapter.
  • Expanded coverage of correlational, quasi-experimental, and qualitative design keeps readers informed on these increasingly popular methods.
  • Updated examples combining classic and cutting-edge research apply literature review in research to modern questions and debates.
  • Expanded coverage of rooting out error and myth with the scientific method from traditional narrative literature review to meta-analysis includes a 32-item survey used by researchers to measure “neuromyths” and show how they can be debunked by scientific evidence.
  • A new Chapter 3: Literature Review in Research show readers the different roles a literature review can play in research, including ne w sections on systematic literature reviews that reflect the rapidly increasing role of the Internet.
  • New content in Chapter 4: Ethics in Behavioral Research includes new examples of unethical practice and lessons from international and online research.
  • New content on the “replication crisis” provides lessons on the practices and techniques of research in psychology.

KEY FEATURES:

  • Case studies from psychological literature in each chapter are carefully deconstructed to illustrate the procedures, logic, and design of research.
  • An emphasis on cultural and developmental perspectives illuminates how culture shapes our thinking and how our thinking shapes culture.
  • Research in the News sections summarize scientific stories that students are then prompted to reflect on and evaluate.
  • Ethics in Action exercises encourage readers to apply ethics to a topic at hand.
  • Coverage of statistics emphasizes probabilistic reasoning in a student-friendly manner.

Sample Materials & Chapters

For instructors, select a purchasing option.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Res Metr Anal

Logo of frontrma

The Use of Research Methods in Psychological Research: A Systematised Review

Salomé elizabeth scholtz.

1 Community Psychosocial Research (COMPRES), School of Psychosocial Health, North-West University, Potchefstroom, South Africa

Werner de Klerk

Leon t. de beer.

2 WorkWell Research Institute, North-West University, Potchefstroom, South Africa

Research methods play an imperative role in research quality as well as educating young researchers, however, the application thereof is unclear which can be detrimental to the field of psychology. Therefore, this systematised review aimed to determine what research methods are being used, how these methods are being used and for what topics in the field. Our review of 999 articles from five journals over a period of 5 years indicated that psychology research is conducted in 10 topics via predominantly quantitative research methods. Of these 10 topics, social psychology was the most popular. The remainder of the conducted methodology is described. It was also found that articles lacked rigour and transparency in the used methodology which has implications for replicability. In conclusion this article, provides an overview of all reported methodologies used in a sample of psychology journals. It highlights the popularity and application of methods and designs throughout the article sample as well as an unexpected lack of rigour with regard to most aspects of methodology. Possible sample bias should be considered when interpreting the results of this study. It is recommended that future research should utilise the results of this study to determine the possible impact on the field of psychology as a science and to further investigation into the use of research methods. Results should prompt the following future research into: a lack or rigour and its implication on replication, the use of certain methods above others, publication bias and choice of sampling method.

Introduction

Psychology is an ever-growing and popular field (Gough and Lyons, 2016 ; Clay, 2017 ). Due to this growth and the need for science-based research to base health decisions on (Perestelo-Pérez, 2013 ), the use of research methods in the broad field of psychology is an essential point of investigation (Stangor, 2011 ; Aanstoos, 2014 ). Research methods are therefore viewed as important tools used by researchers to collect data (Nieuwenhuis, 2016 ) and include the following: quantitative, qualitative, mixed method and multi method (Maree, 2016 ). Additionally, researchers also employ various types of literature reviews to address research questions (Grant and Booth, 2009 ). According to literature, what research method is used and why a certain research method is used is complex as it depends on various factors that may include paradigm (O'Neil and Koekemoer, 2016 ), research question (Grix, 2002 ), or the skill and exposure of the researcher (Nind et al., 2015 ). How these research methods are employed is also difficult to discern as research methods are often depicted as having fixed boundaries that are continuously crossed in research (Johnson et al., 2001 ; Sandelowski, 2011 ). Examples of this crossing include adding quantitative aspects to qualitative studies (Sandelowski et al., 2009 ), or stating that a study used a mixed-method design without the study having any characteristics of this design (Truscott et al., 2010 ).

The inappropriate use of research methods affects how students and researchers improve and utilise their research skills (Scott Jones and Goldring, 2015 ), how theories are developed (Ngulube, 2013 ), and the credibility of research results (Levitt et al., 2017 ). This, in turn, can be detrimental to the field (Nind et al., 2015 ), journal publication (Ketchen et al., 2008 ; Ezeh et al., 2010 ), and attempts to address public social issues through psychological research (Dweck, 2017 ). This is especially important given the now well-known replication crisis the field is facing (Earp and Trafimow, 2015 ; Hengartner, 2018 ).

Due to this lack of clarity on method use and the potential impact of inept use of research methods, the aim of this study was to explore the use of research methods in the field of psychology through a review of journal publications. Chaichanasakul et al. ( 2011 ) identify reviewing articles as the opportunity to examine the development, growth and progress of a research area and overall quality of a journal. Studies such as Lee et al. ( 1999 ) as well as Bluhm et al. ( 2011 ) review of qualitative methods has attempted to synthesis the use of research methods and indicated the growth of qualitative research in American and European journals. Research has also focused on the use of research methods in specific sub-disciplines of psychology, for example, in the field of Industrial and Organisational psychology Coetzee and Van Zyl ( 2014 ) found that South African publications tend to consist of cross-sectional quantitative research methods with underrepresented longitudinal studies. Qualitative studies were found to make up 21% of the articles published from 1995 to 2015 in a similar study by O'Neil and Koekemoer ( 2016 ). Other methods in health psychology, such as Mixed methods research have also been reportedly growing in popularity (O'Cathain, 2009 ).

A broad overview of the use of research methods in the field of psychology as a whole is however, not available in the literature. Therefore, our research focused on answering what research methods are being used, how these methods are being used and for what topics in practice (i.e., journal publications) in order to provide a general perspective of method used in psychology publication. We synthesised the collected data into the following format: research topic [areas of scientific discourse in a field or the current needs of a population (Bittermann and Fischer, 2018 )], method [data-gathering tools (Nieuwenhuis, 2016 )], sampling [elements chosen from a population to partake in research (Ritchie et al., 2009 )], data collection [techniques and research strategy (Maree, 2016 )], and data analysis [discovering information by examining bodies of data (Ktepi, 2016 )]. A systematised review of recent articles (2013 to 2017) collected from five different journals in the field of psychological research was conducted.

Grant and Booth ( 2009 ) describe systematised reviews as the review of choice for post-graduate studies, which is employed using some elements of a systematic review and seldom more than one or two databases to catalogue studies after a comprehensive literature search. The aspects used in this systematised review that are similar to that of a systematic review were a full search within the chosen database and data produced in tabular form (Grant and Booth, 2009 ).

Sample sizes and timelines vary in systematised reviews (see Lowe and Moore, 2014 ; Pericall and Taylor, 2014 ; Barr-Walker, 2017 ). With no clear parameters identified in the literature (see Grant and Booth, 2009 ), the sample size of this study was determined by the purpose of the sample (Strydom, 2011 ), and time and cost constraints (Maree and Pietersen, 2016 ). Thus, a non-probability purposive sample (Ritchie et al., 2009 ) of the top five psychology journals from 2013 to 2017 was included in this research study. Per Lee ( 2015 ) American Psychological Association (APA) recommends the use of the most up-to-date sources for data collection with consideration of the context of the research study. As this research study focused on the most recent trends in research methods used in the broad field of psychology, the identified time frame was deemed appropriate.

Psychology journals were only included if they formed part of the top five English journals in the miscellaneous psychology domain of the Scimago Journal and Country Rank (Scimago Journal & Country Rank, 2017 ). The Scimago Journal and Country Rank provides a yearly updated list of publicly accessible journal and country-specific indicators derived from the Scopus® database (Scopus, 2017b ) by means of the Scimago Journal Rank (SJR) indicator developed by Scimago from the algorithm Google PageRank™ (Scimago Journal & Country Rank, 2017 ). Scopus is the largest global database of abstracts and citations from peer-reviewed journals (Scopus, 2017a ). Reasons for the development of the Scimago Journal and Country Rank list was to allow researchers to assess scientific domains, compare country rankings, and compare and analyse journals (Scimago Journal & Country Rank, 2017 ), which supported the aim of this research study. Additionally, the goals of the journals had to focus on topics in psychology in general with no preference to specific research methods and have full-text access to articles.

The following list of top five journals in 2018 fell within the abovementioned inclusion criteria (1) Australian Journal of Psychology, (2) British Journal of Psychology, (3) Europe's Journal of Psychology, (4) International Journal of Psychology and lastly the (5) Journal of Psychology Applied and Interdisciplinary.

Journals were excluded from this systematised review if no full-text versions of their articles were available, if journals explicitly stated a publication preference for certain research methods, or if the journal only published articles in a specific discipline of psychological research (for example, industrial psychology, clinical psychology etc.).

The researchers followed a procedure (see Figure 1 ) adapted from that of Ferreira et al. ( 2016 ) for systematised reviews. Data collection and categorisation commenced on 4 December 2017 and continued until 30 June 2019. All the data was systematically collected and coded manually (Grant and Booth, 2009 ) with an independent person acting as co-coder. Codes of interest included the research topic, method used, the design used, sampling method, and methodology (the method used for data collection and data analysis). These codes were derived from the wording in each article. Themes were created based on the derived codes and checked by the co-coder. Lastly, these themes were catalogued into a table as per the systematised review design.

An external file that holds a picture, illustration, etc.
Object name is frma-05-00001-g0001.jpg

Systematised review procedure.

According to Johnston et al. ( 2019 ), “literature screening, selection, and data extraction/analyses” (p. 7) are specifically tailored to the aim of a review. Therefore, the steps followed in a systematic review must be reported in a comprehensive and transparent manner. The chosen systematised design adhered to the rigour expected from systematic reviews with regard to full search and data produced in tabular form (Grant and Booth, 2009 ). The rigorous application of the systematic review is, therefore discussed in relation to these two elements.

Firstly, to ensure a comprehensive search, this research study promoted review transparency by following a clear protocol outlined according to each review stage before collecting data (Johnston et al., 2019 ). This protocol was similar to that of Ferreira et al. ( 2016 ) and approved by three research committees/stakeholders and the researchers (Johnston et al., 2019 ). The eligibility criteria for article inclusion was based on the research question and clearly stated, and the process of inclusion was recorded on an electronic spreadsheet to create an evidence trail (Bandara et al., 2015 ; Johnston et al., 2019 ). Microsoft Excel spreadsheets are a popular tool for review studies and can increase the rigour of the review process (Bandara et al., 2015 ). Screening for appropriate articles for inclusion forms an integral part of a systematic review process (Johnston et al., 2019 ). This step was applied to two aspects of this research study: the choice of eligible journals and articles to be included. Suitable journals were selected by the first author and reviewed by the second and third authors. Initially, all articles from the chosen journals were included. Then, by process of elimination, those irrelevant to the research aim, i.e., interview articles or discussions etc., were excluded.

To ensure rigourous data extraction, data was first extracted by one reviewer, and an independent person verified the results for completeness and accuracy (Johnston et al., 2019 ). The research question served as a guide for efficient, organised data extraction (Johnston et al., 2019 ). Data was categorised according to the codes of interest, along with article identifiers for audit trails such as authors, title and aims of articles. The categorised data was based on the aim of the review (Johnston et al., 2019 ) and synthesised in tabular form under methods used, how these methods were used, and for what topics in the field of psychology.

The initial search produced a total of 1,145 articles from the 5 journals identified. Inclusion and exclusion criteria resulted in a final sample of 999 articles ( Figure 2 ). Articles were co-coded into 84 codes, from which 10 themes were derived ( Table 1 ).

An external file that holds a picture, illustration, etc.
Object name is frma-05-00001-g0002.jpg

Journal article frequency.

Codes used to form themes (research topics).

These 10 themes represent the topic section of our research question ( Figure 3 ). All these topics except, for the final one, psychological practice , were found to concur with the research areas in psychology as identified by Weiten ( 2010 ). These research areas were chosen to represent the derived codes as they provided broad definitions that allowed for clear, concise categorisation of the vast amount of data. Article codes were categorised under particular themes/topics if they adhered to the research area definitions created by Weiten ( 2010 ). It is important to note that these areas of research do not refer to specific disciplines in psychology, such as industrial psychology; but to broader fields that may encompass sub-interests of these disciplines.

An external file that holds a picture, illustration, etc.
Object name is frma-05-00001-g0003.jpg

Topic frequency (international sample).

In the case of developmental psychology , researchers conduct research into human development from childhood to old age. Social psychology includes research on behaviour governed by social drivers. Researchers in the field of educational psychology study how people learn and the best way to teach them. Health psychology aims to determine the effect of psychological factors on physiological health. Physiological psychology , on the other hand, looks at the influence of physiological aspects on behaviour. Experimental psychology is not the only theme that uses experimental research and focuses on the traditional core topics of psychology (for example, sensation). Cognitive psychology studies the higher mental processes. Psychometrics is concerned with measuring capacity or behaviour. Personality research aims to assess and describe consistency in human behaviour (Weiten, 2010 ). The final theme of psychological practice refers to the experiences, techniques, and interventions employed by practitioners, researchers, and academia in the field of psychology.

Articles under these themes were further subdivided into methodologies: method, sampling, design, data collection, and data analysis. The categorisation was based on information stated in the articles and not inferred by the researchers. Data were compiled into two sets of results presented in this article. The first set addresses the aim of this study from the perspective of the topics identified. The second set of results represents a broad overview of the results from the perspective of the methodology employed. The second set of results are discussed in this article, while the first set is presented in table format. The discussion thus provides a broad overview of methods use in psychology (across all themes), while the table format provides readers with in-depth insight into methods used in the individual themes identified. We believe that presenting the data from both perspectives allow readers a broad understanding of the results. Due a large amount of information that made up our results, we followed Cichocka and Jost ( 2014 ) in simplifying our results. Please note that the numbers indicated in the table in terms of methodology differ from the total number of articles. Some articles employed more than one method/sampling technique/design/data collection method/data analysis in their studies.

What follows is the results for what methods are used, how these methods are used, and which topics in psychology they are applied to . Percentages are reported to the second decimal in order to highlight small differences in the occurrence of methodology.

Firstly, with regard to the research methods used, our results show that researchers are more likely to use quantitative research methods (90.22%) compared to all other research methods. Qualitative research was the second most common research method but only made up about 4.79% of the general method usage. Reviews occurred almost as much as qualitative studies (3.91%), as the third most popular method. Mixed-methods research studies (0.98%) occurred across most themes, whereas multi-method research was indicated in only one study and amounted to 0.10% of the methods identified. The specific use of each method in the topics identified is shown in Table 2 and Figure 4 .

Research methods in psychology.

An external file that holds a picture, illustration, etc.
Object name is frma-05-00001-g0004.jpg

Research method frequency in topics.

Secondly, in the case of how these research methods are employed , our study indicated the following.

Sampling −78.34% of the studies in the collected articles did not specify a sampling method. From the remainder of the studies, 13 types of sampling methods were identified. These sampling methods included broad categorisation of a sample as, for example, a probability or non-probability sample. General samples of convenience were the methods most likely to be applied (10.34%), followed by random sampling (3.51%), snowball sampling (2.73%), and purposive (1.37%) and cluster sampling (1.27%). The remainder of the sampling methods occurred to a more limited extent (0–1.0%). See Table 3 and Figure 5 for sampling methods employed in each topic.

Sampling use in the field of psychology.

An external file that holds a picture, illustration, etc.
Object name is frma-05-00001-g0005.jpg

Sampling method frequency in topics.

Designs were categorised based on the articles' statement thereof. Therefore, it is important to note that, in the case of quantitative studies, non-experimental designs (25.55%) were often indicated due to a lack of experiments and any other indication of design, which, according to Laher ( 2016 ), is a reasonable categorisation. Non-experimental designs should thus be compared with experimental designs only in the description of data, as it could include the use of correlational/cross-sectional designs, which were not overtly stated by the authors. For the remainder of the research methods, “not stated” (7.12%) was assigned to articles without design types indicated.

From the 36 identified designs the most popular designs were cross-sectional (23.17%) and experimental (25.64%), which concurred with the high number of quantitative studies. Longitudinal studies (3.80%), the third most popular design, was used in both quantitative and qualitative studies. Qualitative designs consisted of ethnography (0.38%), interpretative phenomenological designs/phenomenology (0.28%), as well as narrative designs (0.28%). Studies that employed the review method were mostly categorised as “not stated,” with the most often stated review designs being systematic reviews (0.57%). The few mixed method studies employed exploratory, explanatory (0.09%), and concurrent designs (0.19%), with some studies referring to separate designs for the qualitative and quantitative methods. The one study that identified itself as a multi-method study used a longitudinal design. Please see how these designs were employed in each specific topic in Table 4 , Figure 6 .

Design use in the field of psychology.

An external file that holds a picture, illustration, etc.
Object name is frma-05-00001-g0006.jpg

Design frequency in topics.

Data collection and analysis —data collection included 30 methods, with the data collection method most often employed being questionnaires (57.84%). The experimental task (16.56%) was the second most preferred collection method, which included established or unique tasks designed by the researchers. Cognitive ability tests (6.84%) were also regularly used along with various forms of interviewing (7.66%). Table 5 and Figure 7 represent data collection use in the various topics. Data analysis consisted of 3,857 occurrences of data analysis categorised into ±188 various data analysis techniques shown in Table 6 and Figures 1 – 7 . Descriptive statistics were the most commonly used (23.49%) along with correlational analysis (17.19%). When using a qualitative method, researchers generally employed thematic analysis (0.52%) or different forms of analysis that led to coding and the creation of themes. Review studies presented few data analysis methods, with most studies categorising their results. Mixed method and multi-method studies followed the analysis methods identified for the qualitative and quantitative studies included.

Data collection in the field of psychology.

An external file that holds a picture, illustration, etc.
Object name is frma-05-00001-g0007.jpg

Data collection frequency in topics.

Data analysis in the field of psychology.

Results of the topics researched in psychology can be seen in the tables, as previously stated in this article. It is noteworthy that, of the 10 topics, social psychology accounted for 43.54% of the studies, with cognitive psychology the second most popular research topic at 16.92%. The remainder of the topics only occurred in 4.0–7.0% of the articles considered. A list of the included 999 articles is available under the section “View Articles” on the following website: https://methodgarden.xtrapolate.io/ . This website was created by Scholtz et al. ( 2019 ) to visually present a research framework based on this Article's results.

This systematised review categorised full-length articles from five international journals across the span of 5 years to provide insight into the use of research methods in the field of psychology. Results indicated what methods are used how these methods are being used and for what topics (why) in the included sample of articles. The results should be seen as providing insight into method use and by no means a comprehensive representation of the aforementioned aim due to the limited sample. To our knowledge, this is the first research study to address this topic in this manner. Our discussion attempts to promote a productive way forward in terms of the key results for method use in psychology, especially in the field of academia (Holloway, 2008 ).

With regard to the methods used, our data stayed true to literature, finding only common research methods (Grant and Booth, 2009 ; Maree, 2016 ) that varied in the degree to which they were employed. Quantitative research was found to be the most popular method, as indicated by literature (Breen and Darlaston-Jones, 2010 ; Counsell and Harlow, 2017 ) and previous studies in specific areas of psychology (see Coetzee and Van Zyl, 2014 ). Its long history as the first research method (Leech et al., 2007 ) in the field of psychology as well as researchers' current application of mathematical approaches in their studies (Toomela, 2010 ) might contribute to its popularity today. Whatever the case may be, our results show that, despite the growth in qualitative research (Demuth, 2015 ; Smith and McGannon, 2018 ), quantitative research remains the first choice for article publication in these journals. Despite the included journals indicating openness to articles that apply any research methods. This finding may be due to qualitative research still being seen as a new method (Burman and Whelan, 2011 ) or reviewers' standards being higher for qualitative studies (Bluhm et al., 2011 ). Future research is encouraged into the possible biasness in publication of research methods, additionally further investigation with a different sample into the proclaimed growth of qualitative research may also provide different results.

Review studies were found to surpass that of multi-method and mixed method studies. To this effect Grant and Booth ( 2009 ), state that the increased awareness, journal contribution calls as well as its efficiency in procuring research funds all promote the popularity of reviews. The low frequency of mixed method studies contradicts the view in literature that it's the third most utilised research method (Tashakkori and Teddlie's, 2003 ). Its' low occurrence in this sample could be due to opposing views on mixing methods (Gunasekare, 2015 ) or that authors prefer publishing in mixed method journals, when using this method, or its relative novelty (Ivankova et al., 2016 ). Despite its low occurrence, the application of the mixed methods design in articles was methodologically clear in all cases which were not the case for the remainder of research methods.

Additionally, a substantial number of studies used a combination of methodologies that are not mixed or multi-method studies. Perceived fixed boundaries are according to literature often set aside, as confirmed by this result, in order to investigate the aim of a study, which could create a new and helpful way of understanding the world (Gunasekare, 2015 ). According to Toomela ( 2010 ), this is not unheard of and could be considered a form of “structural systemic science,” as in the case of qualitative methodology (observation) applied in quantitative studies (experimental design) for example. Based on this result, further research into this phenomenon as well as its implications for research methods such as multi and mixed methods is recommended.

Discerning how these research methods were applied, presented some difficulty. In the case of sampling, most studies—regardless of method—did mention some form of inclusion and exclusion criteria, but no definite sampling method. This result, along with the fact that samples often consisted of students from the researchers' own academic institutions, can contribute to literature and debates among academics (Peterson and Merunka, 2014 ; Laher, 2016 ). Samples of convenience and students as participants especially raise questions about the generalisability and applicability of results (Peterson and Merunka, 2014 ). This is because attention to sampling is important as inappropriate sampling can debilitate the legitimacy of interpretations (Onwuegbuzie and Collins, 2017 ). Future investigation into the possible implications of this reported popular use of convenience samples for the field of psychology as well as the reason for this use could provide interesting insight, and is encouraged by this study.

Additionally, and this is indicated in Table 6 , articles seldom report the research designs used, which highlights the pressing aspect of the lack of rigour in the included sample. Rigour with regards to the applied empirical method is imperative in promoting psychology as a science (American Psychological Association, 2020 ). Omitting parts of the research process in publication when it could have been used to inform others' research skills should be questioned, and the influence on the process of replicating results should be considered. Publications are often rejected due to a lack of rigour in the applied method and designs (Fonseca, 2013 ; Laher, 2016 ), calling for increased clarity and knowledge of method application. Replication is a critical part of any field of scientific research and requires the “complete articulation” of the study methods used (Drotar, 2010 , p. 804). The lack of thorough description could be explained by the requirements of certain journals to only report on certain aspects of a research process, especially with regard to the applied design (Laher, 20). However, naming aspects such as sampling and designs, is a requirement according to the APA's Journal Article Reporting Standards (JARS-Quant) (Appelbaum et al., 2018 ). With very little information on how a study was conducted, authors lose a valuable opportunity to enhance research validity, enrich the knowledge of others, and contribute to the growth of psychology and methodology as a whole. In the case of this research study, it also restricted our results to only reported samples and designs, which indicated a preference for certain designs, such as cross-sectional designs for quantitative studies.

Data collection and analysis were for the most part clearly stated. A key result was the versatile use of questionnaires. Researchers would apply a questionnaire in various ways, for example in questionnaire interviews, online surveys, and written questionnaires across most research methods. This may highlight a trend for future research.

With regard to the topics these methods were employed for, our research study found a new field named “psychological practice.” This result may show the growing consciousness of researchers as part of the research process (Denzin and Lincoln, 2003 ), psychological practice, and knowledge generation. The most popular of these topics was social psychology, which is generously covered in journals and by learning societies, as testaments of the institutional support and richness social psychology has in the field of psychology (Chryssochoou, 2015 ). The APA's perspective on 2018 trends in psychology also identifies an increased amount of psychology focus on how social determinants are influencing people's health (Deangelis, 2017 ).

This study was not without limitations and the following should be taken into account. Firstly, this study used a sample of five specific journals to address the aim of the research study, despite general journal aims (as stated on journal websites), this inclusion signified a bias towards the research methods published in these specific journals only and limited generalisability. A broader sample of journals over a different period of time, or a single journal over a longer period of time might provide different results. A second limitation is the use of Excel spreadsheets and an electronic system to log articles, which was a manual process and therefore left room for error (Bandara et al., 2015 ). To address this potential issue, co-coding was performed to reduce error. Lastly, this article categorised data based on the information presented in the article sample; there was no interpretation of what methodology could have been applied or whether the methods stated adhered to the criteria for the methods used. Thus, a large number of articles that did not clearly indicate a research method or design could influence the results of this review. However, this in itself was also a noteworthy result. Future research could review research methods of a broader sample of journals with an interpretive review tool that increases rigour. Additionally, the authors also encourage the future use of systematised review designs as a way to promote a concise procedure in applying this design.

Our research study presented the use of research methods for published articles in the field of psychology as well as recommendations for future research based on these results. Insight into the complex questions identified in literature, regarding what methods are used how these methods are being used and for what topics (why) was gained. This sample preferred quantitative methods, used convenience sampling and presented a lack of rigorous accounts for the remaining methodologies. All methodologies that were clearly indicated in the sample were tabulated to allow researchers insight into the general use of methods and not only the most frequently used methods. The lack of rigorous account of research methods in articles was represented in-depth for each step in the research process and can be of vital importance to address the current replication crisis within the field of psychology. Recommendations for future research aimed to motivate research into the practical implications of the results for psychology, for example, publication bias and the use of convenience samples.

Ethics Statement

This study was cleared by the North-West University Health Research Ethics Committee: NWU-00115-17-S1.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

  • Aanstoos C. M. (2014). Psychology . Available online at: http://eds.a.ebscohost.com.nwulib.nwu.ac.za/eds/detail/detail?sid=18de6c5c-2b03-4eac-94890145eb01bc70%40sessionmgr4006&vid$=$1&hid$=$4113&bdata$=$JnNpdGU9ZWRzL~WxpdmU%3d#AN$=$93871882&db$=$ers
  • American Psychological Association (2020). Science of Psychology . Available online at: https://www.apa.org/action/science/
  • Appelbaum M., Cooper H., Kline R. B., Mayo-Wilson E., Nezu A. M., Rao S. M. (2018). Journal article reporting standards for quantitative research in psychology: the APA Publications and Communications Board task force report . Am. Psychol. 73 :3. 10.1037/amp0000191 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bandara W., Furtmueller E., Gorbacheva E., Miskon S., Beekhuyzen J. (2015). Achieving rigor in literature reviews: insights from qualitative data analysis and tool-support . Commun. Ass. Inform. Syst. 37 , 154–204. 10.17705/1CAIS.03708 [ CrossRef ] [ Google Scholar ]
  • Barr-Walker J. (2017). Evidence-based information needs of public health workers: a systematized review . J. Med. Libr. Assoc. 105 , 69–79. 10.5195/JMLA.2017.109 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bittermann A., Fischer A. (2018). How to identify hot topics in psychology using topic modeling . Z. Psychol. 226 , 3–13. 10.1027/2151-2604/a000318 [ CrossRef ] [ Google Scholar ]
  • Bluhm D. J., Harman W., Lee T. W., Mitchell T. R. (2011). Qualitative research in management: a decade of progress . J. Manage. Stud. 48 , 1866–1891. 10.1111/j.1467-6486.2010.00972.x [ CrossRef ] [ Google Scholar ]
  • Breen L. J., Darlaston-Jones D. (2010). Moving beyond the enduring dominance of positivism in psychological research: implications for psychology in Australia . Aust. Psychol. 45 , 67–76. 10.1080/00050060903127481 [ CrossRef ] [ Google Scholar ]
  • Burman E., Whelan P. (2011). Problems in / of Qualitative Research . Maidenhead: Open University Press/McGraw Hill. [ Google Scholar ]
  • Chaichanasakul A., He Y., Chen H., Allen G. E. K., Khairallah T. S., Ramos K. (2011). Journal of Career Development: a 36-year content analysis (1972–2007) . J. Career. Dev. 38 , 440–455. 10.1177/0894845310380223 [ CrossRef ] [ Google Scholar ]
  • Chryssochoou X. (2015). Social Psychology . Inter. Encycl. Soc. Behav. Sci. 22 , 532–537. 10.1016/B978-0-08-097086-8.24095-6 [ CrossRef ] [ Google Scholar ]
  • Cichocka A., Jost J. T. (2014). Stripped of illusions? Exploring system justification processes in capitalist and post-Communist societies . Inter. J. Psychol. 49 , 6–29. 10.1002/ijop.12011 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Clay R. A. (2017). Psychology is More Popular Than Ever. Monitor on Psychology: Trends Report . Available online at: https://www.apa.org/monitor/2017/11/trends-popular
  • Coetzee M., Van Zyl L. E. (2014). A review of a decade's scholarly publications (2004–2013) in the South African Journal of Industrial Psychology . SA. J. Psychol . 40 , 1–16. 10.4102/sajip.v40i1.1227 [ CrossRef ] [ Google Scholar ]
  • Counsell A., Harlow L. (2017). Reporting practices and use of quantitative methods in Canadian journal articles in psychology . Can. Psychol. 58 , 140–147. 10.1037/cap0000074 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Deangelis T. (2017). Targeting Social Factors That Undermine Health. Monitor on Psychology: Trends Report . Available online at: https://www.apa.org/monitor/2017/11/trend-social-factors
  • Demuth C. (2015). New directions in qualitative research in psychology . Integr. Psychol. Behav. Sci. 49 , 125–133. 10.1007/s12124-015-9303-9 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Denzin N. K., Lincoln Y. (2003). The Landscape of Qualitative Research: Theories and Issues , 2nd Edn. London: Sage. [ Google Scholar ]
  • Drotar D. (2010). A call for replications of research in pediatric psychology and guidance for authors . J. Pediatr. Psychol. 35 , 801–805. 10.1093/jpepsy/jsq049 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dweck C. S. (2017). Is psychology headed in the right direction? Yes, no, and maybe . Perspect. Psychol. Sci. 12 , 656–659. 10.1177/1745691616687747 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Earp B. D., Trafimow D. (2015). Replication, falsification, and the crisis of confidence in social psychology . Front. Psychol. 6 :621. 10.3389/fpsyg.2015.00621 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ezeh A. C., Izugbara C. O., Kabiru C. W., Fonn S., Kahn K., Manderson L., et al.. (2010). Building capacity for public and population health research in Africa: the consortium for advanced research training in Africa (CARTA) model . Glob. Health Action 3 :5693. 10.3402/gha.v3i0.5693 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ferreira A. L. L., Bessa M. M. M., Drezett J., De Abreu L. C. (2016). Quality of life of the woman carrier of endometriosis: systematized review . Reprod. Clim. 31 , 48–54. 10.1016/j.recli.2015.12.002 [ CrossRef ] [ Google Scholar ]
  • Fonseca M. (2013). Most Common Reasons for Journal Rejections . Available online at: http://www.editage.com/insights/most-common-reasons-for-journal-rejections
  • Gough B., Lyons A. (2016). The future of qualitative research in psychology: accentuating the positive . Integr. Psychol. Behav. Sci. 50 , 234–243. 10.1007/s12124-015-9320-8 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grant M. J., Booth A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies . Health Info. Libr. J. 26 , 91–108. 10.1111/j.1471-1842.2009.00848.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grix J. (2002). Introducing students to the generic terminology of social research . Politics 22 , 175–186. 10.1111/1467-9256.00173 [ CrossRef ] [ Google Scholar ]
  • Gunasekare U. L. T. P. (2015). Mixed research method as the third research paradigm: a literature review . Int. J. Sci. Res. 4 , 361–368. Available online at: https://ssrn.com/abstract=2735996 [ Google Scholar ]
  • Hengartner M. P. (2018). Raising awareness for the replication crisis in clinical psychology by focusing on inconsistencies in psychotherapy Research: how much can we rely on published findings from efficacy trials? Front. Psychol. 9 :256. 10.3389/fpsyg.2018.00256 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Holloway W. (2008). Doing intellectual disagreement differently . Psychoanal. Cult. Soc. 13 , 385–396. 10.1057/pcs.2008.29 [ CrossRef ] [ Google Scholar ]
  • Ivankova N. V., Creswell J. W., Plano Clark V. L. (2016). Foundations and Approaches to mixed methods research , in First Steps in Research , 2nd Edn. K. Maree (Pretoria: Van Schaick Publishers; ), 306–335. [ Google Scholar ]
  • Johnson M., Long T., White A. (2001). Arguments for British pluralism in qualitative health research . J. Adv. Nurs. 33 , 243–249. 10.1046/j.1365-2648.2001.01659.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Johnston A., Kelly S. E., Hsieh S. C., Skidmore B., Wells G. A. (2019). Systematic reviews of clinical practice guidelines: a methodological guide . J. Clin. Epidemiol. 108 , 64–72. 10.1016/j.jclinepi.2018.11.030 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ketchen D. J., Jr., Boyd B. K., Bergh D. D. (2008). Research methodology in strategic management: past accomplishments and future challenges . Organ. Res. Methods 11 , 643–658. 10.1177/1094428108319843 [ CrossRef ] [ Google Scholar ]
  • Ktepi B. (2016). Data Analytics (DA) . Available online at: https://eds-b-ebscohost-com.nwulib.nwu.ac.za/eds/detail/detail?vid=2&sid=24c978f0-6685-4ed8-ad85-fa5bb04669b9%40sessionmgr101&bdata=JnNpdGU9ZWRzLWxpdmU%3d#AN=113931286&db=ers
  • Laher S. (2016). Ostinato rigore: establishing methodological rigour in quantitative research . S. Afr. J. Psychol. 46 , 316–327. 10.1177/0081246316649121 [ CrossRef ] [ Google Scholar ]
  • Lee C. (2015). The Myth of the Off-Limits Source . Available online at: http://blog.apastyle.org/apastyle/research/
  • Lee T. W., Mitchell T. R., Sablynski C. J. (1999). Qualitative research in organizational and vocational psychology, 1979–1999 . J. Vocat. Behav. 55 , 161–187. 10.1006/jvbe.1999.1707 [ CrossRef ] [ Google Scholar ]
  • Leech N. L., Anthony J., Onwuegbuzie A. J. (2007). A typology of mixed methods research designs . Sci. Bus. Media B. V Qual. Quant 43 , 265–275. 10.1007/s11135-007-9105-3 [ CrossRef ] [ Google Scholar ]
  • Levitt H. M., Motulsky S. L., Wertz F. J., Morrow S. L., Ponterotto J. G. (2017). Recommendations for designing and reviewing qualitative research in psychology: promoting methodological integrity . Qual. Psychol. 4 , 2–22. 10.1037/qup0000082 [ CrossRef ] [ Google Scholar ]
  • Lowe S. M., Moore S. (2014). Social networks and female reproductive choices in the developing world: a systematized review . Rep. Health 11 :85. 10.1186/1742-4755-11-85 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Maree K. (2016). Planning a research proposal , in First Steps in Research , 2nd Edn, ed Maree K. (Pretoria: Van Schaik Publishers; ), 49–70. [ Google Scholar ]
  • Maree K., Pietersen J. (2016). Sampling , in First Steps in Research, 2nd Edn , ed Maree K. (Pretoria: Van Schaik Publishers; ), 191–202. [ Google Scholar ]
  • Ngulube P. (2013). Blending qualitative and quantitative research methods in library and information science in sub-Saharan Africa . ESARBICA J. 32 , 10–23. Available online at: http://hdl.handle.net/10500/22397 . [ Google Scholar ]
  • Nieuwenhuis J. (2016). Qualitative research designs and data-gathering techniques , in First Steps in Research , 2nd Edn, ed Maree K. (Pretoria: Van Schaik Publishers; ), 71–102. [ Google Scholar ]
  • Nind M., Kilburn D., Wiles R. (2015). Using video and dialogue to generate pedagogic knowledge: teachers, learners and researchers reflecting together on the pedagogy of social research methods . Int. J. Soc. Res. Methodol. 18 , 561–576. 10.1080/13645579.2015.1062628 [ CrossRef ] [ Google Scholar ]
  • O'Cathain A. (2009). Editorial: mixed methods research in the health sciences—a quiet revolution . J. Mix. Methods 3 , 1–6. 10.1177/1558689808326272 [ CrossRef ] [ Google Scholar ]
  • O'Neil S., Koekemoer E. (2016). Two decades of qualitative research in psychology, industrial and organisational psychology and human resource management within South Africa: a critical review . SA J. Indust. Psychol. 42 , 1–16. 10.4102/sajip.v42i1.1350 [ CrossRef ] [ Google Scholar ]
  • Onwuegbuzie A. J., Collins K. M. (2017). The role of sampling in mixed methods research enhancing inference quality . Köln Z Soziol. 2 , 133–156. 10.1007/s11577-017-0455-0 [ CrossRef ] [ Google Scholar ]
  • Perestelo-Pérez L. (2013). Standards on how to develop and report systematic reviews in psychology and health . Int. J. Clin. Health Psychol. 13 , 49–57. 10.1016/S1697-2600(13)70007-3 [ CrossRef ] [ Google Scholar ]
  • Pericall L. M. T., Taylor E. (2014). Family function and its relationship to injury severity and psychiatric outcome in children with acquired brain injury: a systematized review . Dev. Med. Child Neurol. 56 , 19–30. 10.1111/dmcn.12237 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Peterson R. A., Merunka D. R. (2014). Convenience samples of college students and research reproducibility . J. Bus. Res. 67 , 1035–1041. 10.1016/j.jbusres.2013.08.010 [ CrossRef ] [ Google Scholar ]
  • Ritchie J., Lewis J., Elam G. (2009). Designing and selecting samples , in Qualitative Research Practice: A Guide for Social Science Students and Researchers , 2nd Edn, ed Ritchie J., Lewis J. (London: Sage; ), 1–23. [ Google Scholar ]
  • Sandelowski M. (2011). When a cigar is not just a cigar: alternative perspectives on data and data analysis . Res. Nurs. Health 34 , 342–352. 10.1002/nur.20437 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M., Voils C. I., Knafl G. (2009). On quantitizing . J. Mix. Methods Res. 3 , 208–222. 10.1177/1558689809334210 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Scholtz S. E., De Klerk W., De Beer L. T. (2019). A data generated research framework for conducting research methods in psychological research .
  • Scimago Journal & Country Rank (2017). Available online at: http://www.scimagojr.com/journalrank.php?category=3201&year=2015
  • Scopus (2017a). About Scopus . Available online at: https://www.scopus.com/home.uri (accessed February 01, 2017).
  • Scopus (2017b). Document Search . Available online at: https://www.scopus.com/home.uri (accessed February 01, 2017).
  • Scott Jones J., Goldring J. E. (2015). ‘I' m not a quants person'; key strategies in building competence and confidence in staff who teach quantitative research methods . Int. J. Soc. Res. Methodol. 18 , 479–494. 10.1080/13645579.2015.1062623 [ CrossRef ] [ Google Scholar ]
  • Smith B., McGannon K. R. (2018). Developing rigor in quantitative research: problems and opportunities within sport and exercise psychology . Int. Rev. Sport Exerc. Psychol. 11 , 101–121. 10.1080/1750984X.2017.1317357 [ CrossRef ] [ Google Scholar ]
  • Stangor C. (2011). Introduction to Psychology . Available online at: http://www.saylor.org/books/
  • Strydom H. (2011). Sampling in the quantitative paradigm , in Research at Grass Roots; For the Social Sciences and Human Service Professions , 4th Edn, eds de Vos A. S., Strydom H., Fouché C. B., Delport C. S. L. (Pretoria: Van Schaik Publishers; ), 221–234. [ Google Scholar ]
  • Tashakkori A., Teddlie C. (2003). Handbook of Mixed Methods in Social & Behavioural Research . Thousand Oaks, CA: SAGE publications. [ Google Scholar ]
  • Toomela A. (2010). Quantitative methods in psychology: inevitable and useless . Front. Psychol. 1 :29. 10.3389/fpsyg.2010.00029 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Truscott D. M., Swars S., Smith S., Thornton-Reid F., Zhao Y., Dooley C., et al.. (2010). A cross-disciplinary examination of the prevalence of mixed methods in educational research: 1995–2005 . Int. J. Soc. Res. Methodol. 13 , 317–328. 10.1080/13645570903097950 [ CrossRef ] [ Google Scholar ]
  • Weiten W. (2010). Psychology Themes and Variations . Belmont, CA: Wadsworth. [ Google Scholar ]
  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Research Methods

Introduction, general overviews.

  • Developmental Psychology
  • Social Psychology
  • Experimental Psychology
  • Pedagogical Textbooks
  • Personality Psychology
  • Research Design
  • Archival Research
  • Naturalistic
  • Participant Observer
  • Facial Coding
  • Protocol Analysis
  • Case Studies
  • Narrative Research
  • Survey and Questionnaire Research
  • Artifacts and Experimenter Bias
  • Quasi-Experimental Research
  • Applied Research
  • Experience Sampling
  • Internet-Based Research
  • Meta-Analytic Research
  • Qualitative Research
  • Animal Research
  • Human Research

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Action Research
  • Ambulatory Assessment in Behavioral Science
  • Behavioral Economics
  • Data Science Methods for Psychology
  • Effect Size
  • Exploratory Data Analysis
  • Factor Analysis
  • Item Response Theory
  • Mediation Analysis
  • Nonparametric Statistical Analysis in Psychology
  • Observational (Non-Randomized) Studies
  • Path Models
  • Placebo Effects in Psychology
  • Prisoner's Dilemma
  • Replication Initiatives in Psychology
  • Research Methods for Studying Daily Life
  • Signal Detection Theory and its Applications
  • Sleep and Dreaming
  • Testing and Assessment
  • Time Perception

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Data Visualization
  • Remote Work
  • Workforce Training Evaluation
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Research Methods by Dana S. Dunn LAST REVIEWED: 29 November 2011 LAST MODIFIED: 29 November 2011 DOI: 10.1093/obo/9780199828340-0049

Psychology is an empirical science, one dealing with the prediction of behavior in humans and animals. Conducting empirical research focused on predicting behavior requires the use of research methods. Research methods are the practical tools and techniques psychologists employ to scientifically investigate research questions. Once a hypothesis is formulated, research methodology allows a researcher to execute a study designed to answer such testable questions through manipulating and measuring relevant variables. Research methods in psychology are broad and varied, and their use allows psychologists to appropriately test theories in search of demonstrable cause and effect relationships. These methods lie along a continuum from more passive approaches (e.g., observation) to active interventions (e.g., experimentation) designed to explain why organisms behave as they do. In general, research methods help investigators act ethically, reduce sources of bias that can affect interpretation, rule out alternative explanations for results, demonstrate that findings are valid and reliable, and advance theory development. Research methods are distinguishable by approach (qualitative or quantitative), how the data are sampled, and the type of equipment, if any, relied on for data collection. Although all psychologists are likely to possess a shared understanding of basic research methodology (particularly, for example, the need for randomization), different subfields within psychology are apt to rely on distinct methods designed to examine different levels of behavior. Traditionally, research methods in psychology have relied as much as possible on objective or quantitative approaches, where a favored hypothesis is pitted against some alternative account. Relevant designs incorporate control groups in order to verify predicted relationships by comparing them against competing possible outcomes. Increasingly, however, psychologists are becoming open to exploring more subjective or qualitative approaches where participants’ own perspectives, beliefs, and reports constitute acceptable data. Many psychologists now employ a mix of quantitative and qualitative methods in their research efforts. The first section of this bibliography introduces general overviews, textbooks, and reference works detailing research methods used in experimental, developmental, social, and personality psychology. Attention is also paid to works examining teaching research methods, selective journals that publish articles presenting novel methods, as well as methodological controversies. The bibliography’s remaining sections examine particular methodological approaches, many of which include studies illustrating innovative or modified methods. This selective review highlights issues pertaining to data (collection methods, interpretation, and research design). The bibliography concludes with coverage of ethical debates and issues linked to human as well as animal behavior.

At one level, research methods in psychology all seem to share similar features. At another level, where subareas of the field emerge, these methods take on particular features, theoretical perspectives, and additional terminology. Before exploring the breadth of the methods psychologist use—including considering newer techniques advanced by neuroscience, for example—a reader should gain some perspective on how approaches to asking, testing, and evaluating research questions have evolved. McGuire 2000 offers a cogent account of how research methods in psychology have developed across the discipline’s relatively short history. Recognition that choice of method is also driven by the topic of inquiry is discussed by Fiske 2000 . A broad and accessible overview of research methods is provided by the Research Methods Knowledge Base website.

Fiske, D. W. 2000. Research methods: Concepts and practices. In Encyclopedia of psychology . Vol. 7. Edited by A. J. Kazdin, 84–87. Washington, DC: American Psychological Association.

This article focuses on how research in psychology is conducted, highlighting the idea that the nature of particular psychological phenomena necessarily drive the choice of method for their exploration and explication.

McGuire, W. J. 2000. Research methods: History of the field. In Encyclopedia of psychology . Vol. 7. Edited by A. J. Kazdin, 80–84. Washington, DC: American Psychological Association.

An overview of how methodological developments in psychology have influenced the nature of empirical discovery and the research process as well as the critical evaluation of these two products.

Research Methods Knowledge Base .

A website that provides a general overview of issues in research methodology for both undergraduate and graduate students. Contains a variety of hyperlinks allowing novice and expert researchers to easily browse.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Psychology »
  • Meet the Editorial Board »
  • Abnormal Psychology
  • Academic Assessment
  • Acculturation and Health
  • Action Regulation Theory
  • Addictive Behavior
  • Adolescence
  • Adoption, Social, Psychological, and Evolutionary Perspect...
  • Advanced Theory of Mind
  • Affective Forecasting
  • Affirmative Action
  • Ageism at Work
  • Allport, Gordon
  • Alzheimer’s Disease
  • Analysis of Covariance (ANCOVA)
  • Animal Behavior
  • Animal Learning
  • Anxiety Disorders
  • Art and Aesthetics, Psychology of
  • Artificial Intelligence, Machine Learning, and Psychology
  • Assessment and Clinical Applications of Individual Differe...
  • Attachment in Social and Emotional Development across the ...
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Adults
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Childre...
  • Attitudinal Ambivalence
  • Attraction in Close Relationships
  • Attribution Theory
  • Authoritarian Personality
  • Bayesian Statistical Methods in Psychology
  • Behavior Therapy, Rational Emotive
  • Behavioral Genetics
  • Belief Perseverance
  • Bereavement and Grief
  • Biological Psychology
  • Birth Order
  • Body Image in Men and Women
  • Bystander Effect
  • Categorical Data Analysis in Psychology
  • Childhood and Adolescence, Peer Victimization and Bullying...
  • Clark, Mamie Phipps
  • Clinical Neuropsychology
  • Clinical Psychology
  • Cognitive Consistency Theories
  • Cognitive Dissonance Theory
  • Cognitive Neuroscience
  • Communication, Nonverbal Cues and
  • Comparative Psychology
  • Competence to Stand Trial: Restoration Services
  • Competency to Stand Trial
  • Computational Psychology
  • Conflict Management in the Workplace
  • Conformity, Compliance, and Obedience
  • Consciousness
  • Coping Processes
  • Correspondence Analysis in Psychology
  • Counseling Psychology
  • Creativity at Work
  • Critical Thinking
  • Cross-Cultural Psychology
  • Cultural Psychology
  • Daily Life, Research Methods for Studying
  • Data Sharing in Psychology
  • Death and Dying
  • Deceiving and Detecting Deceit
  • Defensive Processes
  • Depressive Disorders
  • Development, Prenatal
  • Developmental Psychology (Cognitive)
  • Developmental Psychology (Social)
  • Diagnostic and Statistical Manual of Mental Disorders (DSM...
  • Discrimination
  • Dissociative Disorders
  • Drugs and Behavior
  • Eating Disorders
  • Ecological Psychology
  • Educational Settings, Assessment of Thinking in
  • Embodiment and Embodied Cognition
  • Emerging Adulthood
  • Emotional Intelligence
  • Empathy and Altruism
  • Employee Stress and Well-Being
  • Environmental Neuroscience and Environmental Psychology
  • Ethics in Psychological Practice
  • Event Perception
  • Evolutionary Psychology
  • Expansive Posture
  • Experimental Existential Psychology
  • Eyewitness Testimony
  • Eysenck, Hans
  • Festinger, Leon
  • Five-Factor Model of Personality
  • Flynn Effect, The
  • Forensic Psychology
  • Forgiveness
  • Friendships, Children's
  • Fundamental Attribution Error/Correspondence Bias
  • Gambler's Fallacy
  • Game Theory and Psychology
  • Geropsychology, Clinical
  • Global Mental Health
  • Habit Formation and Behavior Change
  • Health Psychology
  • Health Psychology Research and Practice, Measurement in
  • Heider, Fritz
  • Heuristics and Biases
  • History of Psychology
  • Human Factors
  • Humanistic Psychology
  • Implicit Association Test (IAT)
  • Industrial and Organizational Psychology
  • Inferential Statistics in Psychology
  • Insanity Defense, The
  • Intelligence
  • Intelligence, Crystallized and Fluid
  • Intercultural Psychology
  • Intergroup Conflict
  • International Classification of Diseases and Related Healt...
  • International Psychology
  • Interviewing in Forensic Settings
  • Intimate Partner Violence, Psychological Perspectives on
  • Introversion–Extraversion
  • Law, Psychology and
  • Lazarus, Richard
  • Learned Helplessness
  • Learning Theory
  • Learning versus Performance
  • LGBTQ+ Romantic Relationships
  • Lie Detection in a Forensic Context
  • Life-Span Development
  • Locus of Control
  • Loneliness and Health
  • Mathematical Psychology
  • Meaning in Life
  • Mechanisms and Processes of Peer Contagion
  • Media Violence, Psychological Perspectives on
  • Memories, Autobiographical
  • Memories, Flashbulb
  • Memories, Repressed and Recovered
  • Memory, False
  • Memory, Human
  • Memory, Implicit versus Explicit
  • Memory in Educational Settings
  • Memory, Semantic
  • Meta-Analysis
  • Metacognition
  • Metaphor, Psychological Perspectives on
  • Microaggressions
  • Military Psychology
  • Mindfulness
  • Mindfulness and Education
  • Minnesota Multiphasic Personality Inventory (MMPI)
  • Money, Psychology of
  • Moral Conviction
  • Moral Development
  • Moral Psychology
  • Moral Reasoning
  • Nature versus Nurture Debate in Psychology
  • Neuroscience of Associative Learning
  • Nonergodicity in Psychology and Neuroscience
  • Obsessive-Complusive Disorder (OCD)
  • Occupational Health Psychology
  • Olfaction, Human
  • Operant Conditioning
  • Optimism and Pessimism
  • Organizational Justice
  • Parenting Stress
  • Parenting Styles
  • Parents' Beliefs about Children
  • Peace Psychology
  • Perception, Person
  • Performance Appraisal
  • Personality and Health
  • Personality Disorders
  • Person-Centered and Experiential Psychotherapies: From Car...
  • Phenomenological Psychology
  • Play Behavior
  • Positive Psychological Capital (PsyCap)
  • Positive Psychology
  • Posttraumatic Stress Disorder (PTSD)
  • Prejudice and Stereotyping
  • Pretrial Publicity
  • Problem Solving and Decision Making
  • Procrastination
  • Prosocial Behavior
  • Prosocial Spending and Well-Being
  • Psycholinguistics
  • Psychological Literacy
  • Psychological Perspectives on Food and Eating
  • Psychology, Political
  • Psychoneuroimmunology
  • Psychophysics, Visual
  • Psychotherapy
  • Psychotic Disorders
  • Publication Bias in Psychology
  • Reasoning, Counterfactual
  • Rehabilitation Psychology
  • Relationships
  • Reliability–Contemporary Psychometric Conceptions
  • Religion, Psychology and
  • Research Methods
  • Risk Taking
  • Role of the Expert Witness in Forensic Psychology, The
  • Sample Size Planning for Statistical Power and Accurate Es...
  • Schizophrenic Disorders
  • School Psychology
  • School Psychology, Counseling Services in
  • Self, Gender and
  • Self, Psychology of the
  • Self-Construal
  • Self-Control
  • Self-Deception
  • Self-Determination Theory
  • Self-Efficacy
  • Self-Esteem
  • Self-Monitoring
  • Self-Regulation in Educational Settings
  • Self-Report Tests, Measures, and Inventories in Clinical P...
  • Sensation Seeking
  • Sex and Gender
  • Sexual Minority Parenting
  • Sexual Orientation
  • Simpson's Paradox in Psychology
  • Single People
  • Single-Case Experimental Designs
  • Skinner, B.F.
  • Small Groups
  • Social Class and Social Status
  • Social Cognition
  • Social Neuroscience
  • Social Support
  • Social Touch and Massage Therapy Research
  • Somatoform Disorders
  • Spatial Attention
  • Sports Psychology
  • Stanford Prison Experiment (SPE): Icon and Controversy
  • Stereotype Threat
  • Stereotypes
  • Stress and Coping, Psychology of
  • Student Success in College
  • Subjective Wellbeing Homeostasis
  • Taste, Psychological Perspectives on
  • Teaching of Psychology
  • Terror Management Theory
  • The Concept of Validity in Psychological Assessment
  • The Neuroscience of Emotion Regulation
  • The Reasoned Action Approach and the Theories of Reasoned ...
  • The Weapon Focus Effect in Eyewitness Memory
  • Theory of Mind
  • Therapy, Cognitive-Behavioral
  • Thinking Skills in Educational Settings
  • Trait Perspective
  • Trauma Psychology
  • Twin Studies
  • Type A Behavior Pattern (Coronary Prone Personality)
  • Unconscious Processes
  • Video Games and Violent Content
  • Virtues and Character Strengths
  • Women and Science, Technology, Engineering, and Math (STEM...
  • Women, Psychology of
  • Work Well-Being
  • Wundt, Wilhelm
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|185.80.149.115]
  • 185.80.149.115

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Ch 2: Psychological Research Methods

Children sit in front of a bank of television screens. A sign on the wall says, “Some content may not be suitable for children.”

Have you ever wondered whether the violence you see on television affects your behavior? Are you more likely to behave aggressively in real life after watching people behave violently in dramatic situations on the screen? Or, could seeing fictional violence actually get aggression out of your system, causing you to be more peaceful? How are children influenced by the media they are exposed to? A psychologist interested in the relationship between behavior and exposure to violent images might ask these very questions.

The topic of violence in the media today is contentious. Since ancient times, humans have been concerned about the effects of new technologies on our behaviors and thinking processes. The Greek philosopher Socrates, for example, worried that writing—a new technology at that time—would diminish people’s ability to remember because they could rely on written records rather than committing information to memory. In our world of quickly changing technologies, questions about the effects of media continue to emerge. Is it okay to talk on a cell phone while driving? Are headphones good to use in a car? What impact does text messaging have on reaction time while driving? These are types of questions that psychologist David Strayer asks in his lab.

Watch this short video to see how Strayer utilizes the scientific method to reach important conclusions regarding technology and driving safety.

You can view the transcript for “Understanding driver distraction” here (opens in new window) .

How can we go about finding answers that are supported not by mere opinion, but by evidence that we can all agree on? The findings of psychological research can help us navigate issues like this.

Introduction to the Scientific Method

Learning objectives.

  • Explain the steps of the scientific method
  • Describe why the scientific method is important to psychology
  • Summarize the processes of informed consent and debriefing
  • Explain how research involving humans or animals is regulated

photograph of the word "research" from a dictionary with a pen pointing at the word.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives. In this section, you’ll see how psychologists use the scientific method to study and understand behavior.

The Scientific Process

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see the behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This module explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Process of Scientific Research

Flowchart of the scientific method. It begins with make an observation, then ask a question, form a hypothesis that answers the question, make a prediction based on the hypothesis, do an experiment to test the prediction, analyze the results, prove the hypothesis correct or incorrect, then report the results.

Scientific knowledge is advanced through a process known as the scientific method. Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on.

The basic steps in the scientific method are:

  • Observe a natural phenomenon and define a question about it
  • Make a hypothesis, or potential solution to the question
  • Test the hypothesis
  • If the hypothesis is true, find more evidence or find counter-evidence
  • If the hypothesis is false, create a new hypothesis or try again
  • Draw conclusions and repeat–the scientific method is never-ending, and no result is ever considered perfect

In order to ask an important question that may improve our understanding of the world, a researcher must first observe natural phenomena. By making observations, a researcher can define a useful question. After finding a question to answer, the researcher can then make a prediction (a hypothesis) about what he or she thinks the answer will be. This prediction is usually a statement about the relationship between two or more variables. After making a hypothesis, the researcher will then design an experiment to test his or her hypothesis and evaluate the data gathered. These data will either support or refute the hypothesis. Based on the conclusions drawn from the data, the researcher will then find more evidence to support the hypothesis, look for counter-evidence to further strengthen the hypothesis, revise the hypothesis and create a new experiment, or continue to incorporate the information gathered to answer the research question.

Basic Principles of the Scientific Method

Two key concepts in the scientific approach are theory and hypothesis. A theory is a well-developed set of ideas that propose an explanation for observed phenomena that can be used to make predictions about future observations. A hypothesis is a testable prediction that is arrived at logically from a theory. It is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests.

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

Other key components in following the scientific method include verifiability, predictability, falsifiability, and fairness. Verifiability means that an experiment must be replicable by another researcher. To achieve verifiability, researchers must make sure to document their methods and clearly explain how their experiment is structured and why it produces certain results.

Predictability in a scientific theory implies that the theory should enable us to make predictions about future events. The precision of these predictions is a measure of the strength of the theory.

Falsifiability refers to whether a hypothesis can be disproved. For a hypothesis to be falsifiable, it must be logically possible to make an observation or do a physical experiment that would show that there is no support for the hypothesis. Even when a hypothesis cannot be shown to be false, that does not necessarily mean it is not valid. Future testing may disprove the hypothesis. This does not mean that a hypothesis has to be shown to be false, just that it can be tested.

To determine whether a hypothesis is supported or not supported, psychological researchers must conduct hypothesis testing using statistics. Hypothesis testing is a type of statistics that determines the probability of a hypothesis being true or false. If hypothesis testing reveals that results were “statistically significant,” this means that there was support for the hypothesis and that the researchers can be reasonably confident that their result was not due to random chance. If the results are not statistically significant, this means that the researchers’ hypothesis was not supported.

Fairness implies that all data must be considered when evaluating a hypothesis. A researcher cannot pick and choose what data to keep and what to discard or focus specifically on data that support or do not support a particular hypothesis. All data must be accounted for, even if they invalidate the hypothesis.

Applying the Scientific Method

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later module, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

Remember that a good scientific hypothesis is falsifiable, or capable of being shown to be incorrect. Recall from the introductory module that Sigmund Freud had lots of interesting ideas to explain various human behaviors (Figure 5). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Link to Learning

Why the scientific method is important for psychology.

The use of the scientific method is one of the main features that separates modern psychology from earlier philosophical inquiries about the mind. Compared to chemistry, physics, and other “natural sciences,” psychology has long been considered one of the “social sciences” because of the subjective nature of the things it seeks to study. Many of the concepts that psychologists are interested in—such as aspects of the human mind, behavior, and emotions—are subjective and cannot be directly measured. Psychologists often rely instead on behavioral observations and self-reported data, which are considered by some to be illegitimate or lacking in methodological rigor. Applying the scientific method to psychology, therefore, helps to standardize the approach to understanding its very different types of information.

The scientific method allows psychological data to be replicated and confirmed in many instances, under different circumstances, and by a variety of researchers. Through replication of experiments, new generations of psychologists can reduce errors and broaden the applicability of theories. It also allows theories to be tested and validated instead of simply being conjectures that could never be verified or falsified. All of this allows psychologists to gain a stronger understanding of how the human mind works.

Scientific articles published in journals and psychology papers written in the style of the American Psychological Association (i.e., in “APA style”) are structured around the scientific method. These papers include an Introduction, which introduces the background information and outlines the hypotheses; a Methods section, which outlines the specifics of how the experiment was conducted to test the hypothesis; a Results section, which includes the statistics that tested the hypothesis and state whether it was supported or not supported, and a Discussion and Conclusion, which state the implications of finding support for, or no support for, the hypothesis. Writing articles and papers that adhere to the scientific method makes it easy for future researchers to repeat the study and attempt to replicate the results.

Ethics in Research

Today, scientists agree that good research is ethical in nature and is guided by a basic respect for human dignity and safety. However, as you will read in the Tuskegee Syphilis Study, this has not always been the case. Modern researchers must demonstrate that the research they perform is ethically sound. This section presents how ethical considerations affect the design and implementation of research conducted today.

Research Involving Human Participants

Any experiment involving the participation of human subjects is governed by extensive, strict guidelines designed to ensure that the experiment does not result in harm. Any research institution that receives federal support for research involving human participants must have access to an institutional review board (IRB) . The IRB is a committee of individuals often made up of members of the institution’s administration, scientists, and community members (Figure 6). The purpose of the IRB is to review proposals for research that involves human participants. The IRB reviews these proposals with the principles mentioned above in mind, and generally, approval from the IRB is required in order for the experiment to proceed.

A photograph shows a group of people seated around tables in a meeting room.

An institution’s IRB requires several components in any experiment it approves. For one, each participant must sign an informed consent form before they can participate in the experiment. An informed consent  form provides a written description of what participants can expect during the experiment, including potential risks and implications of the research. It also lets participants know that their involvement is completely voluntary and can be discontinued without penalty at any time. Furthermore, the informed consent guarantees that any data collected in the experiment will remain completely confidential. In cases where research participants are under the age of 18, the parents or legal guardians are required to sign the informed consent form.

While the informed consent form should be as honest as possible in describing exactly what participants will be doing, sometimes deception is necessary to prevent participants’ knowledge of the exact research question from affecting the results of the study. Deception involves purposely misleading experiment participants in order to maintain the integrity of the experiment, but not to the point where the deception could be considered harmful. For example, if we are interested in how our opinion of someone is affected by their attire, we might use deception in describing the experiment to prevent that knowledge from affecting participants’ responses. In cases where deception is involved, participants must receive a full debriefing  upon conclusion of the study—complete, honest information about the purpose of the experiment, how the data collected will be used, the reasons why deception was necessary, and information about how to obtain additional information about the study.

Dig Deeper: Ethics and the Tuskegee Syphilis Study

Unfortunately, the ethical guidelines that exist for research today were not always applied in the past. In 1932, poor, rural, black, male sharecroppers from Tuskegee, Alabama, were recruited to participate in an experiment conducted by the U.S. Public Health Service, with the aim of studying syphilis in black men (Figure 7). In exchange for free medical care, meals, and burial insurance, 600 men agreed to participate in the study. A little more than half of the men tested positive for syphilis, and they served as the experimental group (given that the researchers could not randomly assign participants to groups, this represents a quasi-experiment). The remaining syphilis-free individuals served as the control group. However, those individuals that tested positive for syphilis were never informed that they had the disease.

While there was no treatment for syphilis when the study began, by 1947 penicillin was recognized as an effective treatment for the disease. Despite this, no penicillin was administered to the participants in this study, and the participants were not allowed to seek treatment at any other facilities if they continued in the study. Over the course of 40 years, many of the participants unknowingly spread syphilis to their wives (and subsequently their children born from their wives) and eventually died because they never received treatment for the disease. This study was discontinued in 1972 when the experiment was discovered by the national press (Tuskegee University, n.d.). The resulting outrage over the experiment led directly to the National Research Act of 1974 and the strict ethical guidelines for research on humans described in this chapter. Why is this study unethical? How were the men who participated and their families harmed as a function of this research?

A photograph shows a person administering an injection.

Learn more about the Tuskegee Syphilis Study on the CDC website .

Research Involving Animal Subjects

A photograph shows a rat.

This does not mean that animal researchers are immune to ethical concerns. Indeed, the humane and ethical treatment of animal research subjects is a critical aspect of this type of research. Researchers must design their experiments to minimize any pain or distress experienced by animals serving as research subjects.

Whereas IRBs review research proposals that involve human participants, animal experimental proposals are reviewed by an Institutional Animal Care and Use Committee (IACUC) . An IACUC consists of institutional administrators, scientists, veterinarians, and community members. This committee is charged with ensuring that all experimental proposals require the humane treatment of animal research subjects. It also conducts semi-annual inspections of all animal facilities to ensure that the research protocols are being followed. No animal research project can proceed without the committee’s approval.

Introduction to Approaches to Research

  • Differentiate between descriptive, correlational, and experimental research
  • Explain the strengths and weaknesses of case studies, naturalistic observation, and surveys
  • Describe the strength and weaknesses of archival research
  • Compare longitudinal and cross-sectional approaches to research
  • Explain what a correlation coefficient tells us about the relationship between variables
  • Describe why correlation does not mean causation
  • Describe the experimental process, including ways to control for bias
  • Identify and differentiate between independent and dependent variables

Three researchers review data while talking around a microscope.

Psychologists use descriptive, experimental, and correlational methods to conduct research. Descriptive, or qualitative, methods include the case study, naturalistic observation, surveys, archival research, longitudinal research, and cross-sectional research.

Experiments are conducted in order to determine cause-and-effect relationships. In ideal experimental design, the only difference between the experimental and control groups is whether participants are exposed to the experimental manipulation. Each group goes through all phases of the experiment, but each group will experience a different level of the independent variable: the experimental group is exposed to the experimental manipulation, and the control group is not exposed to the experimental manipulation. The researcher then measures the changes that are produced in the dependent variable in each group. Once data is collected from both groups, it is analyzed statistically to determine if there are meaningful differences between the groups.

When scientists passively observe and measure phenomena it is called correlational research. Here, psychologists do not intervene and change behavior, as they do in experiments. In correlational research, they identify patterns of relationships, but usually cannot infer what causes what. Importantly, with correlational research, you can examine only two variables at a time, no more and no less.

Watch It: More on Research

If you enjoy learning through lectures and want an interesting and comprehensive summary of this section, then click on the Youtube link to watch a lecture given by MIT Professor John Gabrieli . Start at the 30:45 minute mark  and watch through the end to hear examples of actual psychological studies and how they were analyzed. Listen for references to independent and dependent variables, experimenter bias, and double-blind studies. In the lecture, you’ll learn about breaking social norms, “WEIRD” research, why expectations matter, how a warm cup of coffee might make you nicer, why you should change your answer on a multiple choice test, and why praise for intelligence won’t make you any smarter.

You can view the transcript for “Lec 2 | MIT 9.00SC Introduction to Psychology, Spring 2011” here (opens in new window) .

Descriptive Research

There are many research methods available to psychologists in their efforts to understand, describe, and explain behavior and the cognitive and biological processes that underlie it. Some methods rely on observational techniques. Other approaches involve interactions between the researcher and the individuals who are being studied—ranging from a series of simple questions to extensive, in-depth interviews—to well-controlled experiments.

The three main categories of psychological research are descriptive, correlational, and experimental research. Research studies that do not test specific relationships between variables are called descriptive, or qualitative, studies . These studies are used to describe general or specific behaviors and attributes that are observed and measured. In the early stages of research it might be difficult to form a hypothesis, especially when there is not any existing literature in the area. In these situations designing an experiment would be premature, as the question of interest is not yet clearly defined as a hypothesis. Often a researcher will begin with a non-experimental approach, such as a descriptive study, to gather more information about the topic before designing an experiment or correlational study to address a specific hypothesis. Descriptive research is distinct from correlational research , in which psychologists formally test whether a relationship exists between two or more variables. Experimental research  goes a step further beyond descriptive and correlational research and randomly assigns people to different conditions, using hypothesis testing to make inferences about how these conditions affect behavior. It aims to determine if one variable directly impacts and causes another. Correlational and experimental research both typically use hypothesis testing, whereas descriptive research does not.

Each of these research methods has unique strengths and weaknesses, and each method may only be appropriate for certain types of research questions. For example, studies that rely primarily on observation produce incredible amounts of information, but the ability to apply this information to the larger population is somewhat limited because of small sample sizes. Survey research, on the other hand, allows researchers to easily collect data from relatively large samples. While this allows for results to be generalized to the larger population more easily, the information that can be collected on any given survey is somewhat limited and subject to problems associated with any type of self-reported data. Some researchers conduct archival research by using existing records. While this can be a fairly inexpensive way to collect data that can provide insight into a number of research questions, researchers using this approach have no control on how or what kind of data was collected.

Correlational research can find a relationship between two variables, but the only way a researcher can claim that the relationship between the variables is cause and effect is to perform an experiment. In experimental research, which will be discussed later in the text, there is a tremendous amount of control over variables of interest. While this is a powerful approach, experiments are often conducted in very artificial settings. This calls into question the validity of experimental findings with regard to how they would apply in real-world settings. In addition, many of the questions that psychologists would like to answer cannot be pursued through experimental research because of ethical concerns.

The three main types of descriptive studies are, naturalistic observation, case studies, and surveys.

Naturalistic Observation

If you want to understand how behavior occurs, one of the best ways to gain information is to simply observe the behavior in its natural context. However, people might change their behavior in unexpected ways if they know they are being observed. How do researchers obtain accurate information when people tend to hide their natural behavior? As an example, imagine that your professor asks everyone in your class to raise their hand if they always wash their hands after using the restroom. Chances are that almost everyone in the classroom will raise their hand, but do you think hand washing after every trip to the restroom is really that universal?

This is very similar to the phenomenon mentioned earlier in this module: many individuals do not feel comfortable answering a question honestly. But if we are committed to finding out the facts about hand washing, we have other options available to us.

Suppose we send a classmate into the restroom to actually watch whether everyone washes their hands after using the restroom. Will our observer blend into the restroom environment by wearing a white lab coat, sitting with a clipboard, and staring at the sinks? We want our researcher to be inconspicuous—perhaps standing at one of the sinks pretending to put in contact lenses while secretly recording the relevant information. This type of observational study is called naturalistic observation : observing behavior in its natural setting. To better understand peer exclusion, Suzanne Fanger collaborated with colleagues at the University of Texas to observe the behavior of preschool children on a playground. How did the observers remain inconspicuous over the duration of the study? They equipped a few of the children with wireless microphones (which the children quickly forgot about) and observed while taking notes from a distance. Also, the children in that particular preschool (a “laboratory preschool”) were accustomed to having observers on the playground (Fanger, Frankel, & Hazen, 2012).

A photograph shows two police cars driving, one with its lights flashing.

It is critical that the observer be as unobtrusive and as inconspicuous as possible: when people know they are being watched, they are less likely to behave naturally. If you have any doubt about this, ask yourself how your driving behavior might differ in two situations: In the first situation, you are driving down a deserted highway during the middle of the day; in the second situation, you are being followed by a police car down the same deserted highway (Figure 9).

It should be pointed out that naturalistic observation is not limited to research involving humans. Indeed, some of the best-known examples of naturalistic observation involve researchers going into the field to observe various kinds of animals in their own environments. As with human studies, the researchers maintain their distance and avoid interfering with the animal subjects so as not to influence their natural behaviors. Scientists have used this technique to study social hierarchies and interactions among animals ranging from ground squirrels to gorillas. The information provided by these studies is invaluable in understanding how those animals organize socially and communicate with one another. The anthropologist Jane Goodall, for example, spent nearly five decades observing the behavior of chimpanzees in Africa (Figure 10). As an illustration of the types of concerns that a researcher might encounter in naturalistic observation, some scientists criticized Goodall for giving the chimps names instead of referring to them by numbers—using names was thought to undermine the emotional detachment required for the objectivity of the study (McKie, 2010).

(a) A photograph shows Jane Goodall speaking from a lectern. (b) A photograph shows a chimpanzee’s face.

The greatest benefit of naturalistic observation is the validity, or accuracy, of information collected unobtrusively in a natural setting. Having individuals behave as they normally would in a given situation means that we have a higher degree of ecological validity, or realism, than we might achieve with other research approaches. Therefore, our ability to generalize  the findings of the research to real-world situations is enhanced. If done correctly, we need not worry about people or animals modifying their behavior simply because they are being observed. Sometimes, people may assume that reality programs give us a glimpse into authentic human behavior. However, the principle of inconspicuous observation is violated as reality stars are followed by camera crews and are interviewed on camera for personal confessionals. Given that environment, we must doubt how natural and realistic their behaviors are.

The major downside of naturalistic observation is that they are often difficult to set up and control. In our restroom study, what if you stood in the restroom all day prepared to record people’s hand washing behavior and no one came in? Or, what if you have been closely observing a troop of gorillas for weeks only to find that they migrated to a new place while you were sleeping in your tent? The benefit of realistic data comes at a cost. As a researcher you have no control of when (or if) you have behavior to observe. In addition, this type of observational research often requires significant investments of time, money, and a good dose of luck.

Sometimes studies involve structured observation. In these cases, people are observed while engaging in set, specific tasks. An excellent example of structured observation comes from Strange Situation by Mary Ainsworth (you will read more about this in the module on lifespan development). The Strange Situation is a procedure used to evaluate attachment styles that exist between an infant and caregiver. In this scenario, caregivers bring their infants into a room filled with toys. The Strange Situation involves a number of phases, including a stranger coming into the room, the caregiver leaving the room, and the caregiver’s return to the room. The infant’s behavior is closely monitored at each phase, but it is the behavior of the infant upon being reunited with the caregiver that is most telling in terms of characterizing the infant’s attachment style with the caregiver.

Another potential problem in observational research is observer bias . Generally, people who act as observers are closely involved in the research project and may unconsciously skew their observations to fit their research goals or expectations. To protect against this type of bias, researchers should have clear criteria established for the types of behaviors recorded and how those behaviors should be classified. In addition, researchers often compare observations of the same event by multiple observers, in order to test inter-rater reliability : a measure of reliability that assesses the consistency of observations by different observers.

Case Studies

In 2011, the New York Times published a feature story on Krista and Tatiana Hogan, Canadian twin girls. These particular twins are unique because Krista and Tatiana are conjoined twins, connected at the head. There is evidence that the two girls are connected in a part of the brain called the thalamus, which is a major sensory relay center. Most incoming sensory information is sent through the thalamus before reaching higher regions of the cerebral cortex for processing.

The implications of this potential connection mean that it might be possible for one twin to experience the sensations of the other twin. For instance, if Krista is watching a particularly funny television program, Tatiana might smile or laugh even if she is not watching the program. This particular possibility has piqued the interest of many neuroscientists who seek to understand how the brain uses sensory information.

These twins represent an enormous resource in the study of the brain, and since their condition is very rare, it is likely that as long as their family agrees, scientists will follow these girls very closely throughout their lives to gain as much information as possible (Dominus, 2011).

In observational research, scientists are conducting a clinical or case study when they focus on one person or just a few individuals. Indeed, some scientists spend their entire careers studying just 10–20 individuals. Why would they do this? Obviously, when they focus their attention on a very small number of people, they can gain a tremendous amount of insight into those cases. The richness of information that is collected in clinical or case studies is unmatched by any other single research method. This allows the researcher to have a very deep understanding of the individuals and the particular phenomenon being studied.

If clinical or case studies provide so much information, why are they not more frequent among researchers? As it turns out, the major benefit of this particular approach is also a weakness. As mentioned earlier, this approach is often used when studying individuals who are interesting to researchers because they have a rare characteristic. Therefore, the individuals who serve as the focus of case studies are not like most other people. If scientists ultimately want to explain all behavior, focusing attention on such a special group of people can make it difficult to generalize any observations to the larger population as a whole. Generalizing refers to the ability to apply the findings of a particular research project to larger segments of society. Again, case studies provide enormous amounts of information, but since the cases are so specific, the potential to apply what’s learned to the average person may be very limited.

Often, psychologists develop surveys as a means of gathering data. Surveys are lists of questions to be answered by research participants, and can be delivered as paper-and-pencil questionnaires, administered electronically, or conducted verbally (Figure 11). Generally, the survey itself can be completed in a short time, and the ease of administering a survey makes it easy to collect data from a large number of people.

Surveys allow researchers to gather data from larger samples than may be afforded by other research methods . A sample is a subset of individuals selected from a population , which is the overall group of individuals that the researchers are interested in. Researchers study the sample and seek to generalize their findings to the population.

A sample online survey reads, “Dear visitor, your opinion is important to us. We would like to invite you to participate in a short survey to gather your opinions and feedback on your news consumption habits. The survey will take approximately 10-15 minutes. Simply click the “Yes” button below to launch the survey. Would you like to participate?” Two buttons are labeled “yes” and “no.”

There is both strength and weakness of the survey in comparison to case studies. By using surveys, we can collect information from a larger sample of people. A larger sample is better able to reflect the actual diversity of the population, thus allowing better generalizability. Therefore, if our sample is sufficiently large and diverse, we can assume that the data we collect from the survey can be generalized to the larger population with more certainty than the information collected through a case study. However, given the greater number of people involved, we are not able to collect the same depth of information on each person that would be collected in a case study.

Another potential weakness of surveys is something we touched on earlier in this chapter: people don’t always give accurate responses. They may lie, misremember, or answer questions in a way that they think makes them look good. For example, people may report drinking less alcohol than is actually the case.

Any number of research questions can be answered through the use of surveys. One real-world example is the research conducted by Jenkins, Ruppel, Kizer, Yehl, and Griffin (2012) about the backlash against the US Arab-American community following the terrorist attacks of September 11, 2001. Jenkins and colleagues wanted to determine to what extent these negative attitudes toward Arab-Americans still existed nearly a decade after the attacks occurred. In one study, 140 research participants filled out a survey with 10 questions, including questions asking directly about the participant’s overt prejudicial attitudes toward people of various ethnicities. The survey also asked indirect questions about how likely the participant would be to interact with a person of a given ethnicity in a variety of settings (such as, “How likely do you think it is that you would introduce yourself to a person of Arab-American descent?”). The results of the research suggested that participants were unwilling to report prejudicial attitudes toward any ethnic group. However, there were significant differences between their pattern of responses to questions about social interaction with Arab-Americans compared to other ethnic groups: they indicated less willingness for social interaction with Arab-Americans compared to the other ethnic groups. This suggested that the participants harbored subtle forms of prejudice against Arab-Americans, despite their assertions that this was not the case (Jenkins et al., 2012).

Think It Over

Archival research.

(a) A photograph shows stacks of paper files on shelves. (b) A photograph shows a computer.

In comparing archival research to other research methods, there are several important distinctions. For one, the researcher employing archival research never directly interacts with research participants. Therefore, the investment of time and money to collect data is considerably less with archival research. Additionally, researchers have no control over what information was originally collected. Therefore, research questions have to be tailored so they can be answered within the structure of the existing data sets. There is also no guarantee of consistency between the records from one source to another, which might make comparing and contrasting different data sets problematic.

Longitudinal and Cross-Sectional Research

Sometimes we want to see how people change over time, as in studies of human development and lifespan. When we test the same group of individuals repeatedly over an extended period of time, we are conducting longitudinal research. Longitudinal research  is a research design in which data-gathering is administered repeatedly over an extended period of time. For example, we may survey a group of individuals about their dietary habits at age 20, retest them a decade later at age 30, and then again at age 40.

Another approach is cross-sectional research . In cross-sectional research, a researcher compares multiple segments of the population at the same time. Using the dietary habits example above, the researcher might directly compare different groups of people by age. Instead of observing a group of people for 20 years to see how their dietary habits changed from decade to decade, the researcher would study a group of 20-year-old individuals and compare them to a group of 30-year-old individuals and a group of 40-year-old individuals. While cross-sectional research requires a shorter-term investment, it is also limited by differences that exist between the different generations (or cohorts) that have nothing to do with age per se, but rather reflect the social and cultural experiences of different generations of individuals make them different from one another.

To illustrate this concept, consider the following survey findings. In recent years there has been significant growth in the popular support of same-sex marriage. Many studies on this topic break down survey participants into different age groups. In general, younger people are more supportive of same-sex marriage than are those who are older (Jones, 2013). Does this mean that as we age we become less open to the idea of same-sex marriage, or does this mean that older individuals have different perspectives because of the social climates in which they grew up? Longitudinal research is a powerful approach because the same individuals are involved in the research project over time, which means that the researchers need to be less concerned with differences among cohorts affecting the results of their study.

Often longitudinal studies are employed when researching various diseases in an effort to understand particular risk factors. Such studies often involve tens of thousands of individuals who are followed for several decades. Given the enormous number of people involved in these studies, researchers can feel confident that their findings can be generalized to the larger population. The Cancer Prevention Study-3 (CPS-3) is one of a series of longitudinal studies sponsored by the American Cancer Society aimed at determining predictive risk factors associated with cancer. When participants enter the study, they complete a survey about their lives and family histories, providing information on factors that might cause or prevent the development of cancer. Then every few years the participants receive additional surveys to complete. In the end, hundreds of thousands of participants will be tracked over 20 years to determine which of them develop cancer and which do not.

Clearly, this type of research is important and potentially very informative. For instance, earlier longitudinal studies sponsored by the American Cancer Society provided some of the first scientific demonstrations of the now well-established links between increased rates of cancer and smoking (American Cancer Society, n.d.) (Figure 13).

A photograph shows pack of cigarettes and cigarettes in an ashtray. The pack of cigarettes reads, “Surgeon general’s warning: smoking causes lung cancer, heart disease, emphysema, and may complicate pregnancy.”

As with any research strategy, longitudinal research is not without limitations. For one, these studies require an incredible time investment by the researcher and research participants. Given that some longitudinal studies take years, if not decades, to complete, the results will not be known for a considerable period of time. In addition to the time demands, these studies also require a substantial financial investment. Many researchers are unable to commit the resources necessary to see a longitudinal project through to the end.

Research participants must also be willing to continue their participation for an extended period of time, and this can be problematic. People move, get married and take new names, get ill, and eventually die. Even without significant life changes, some people may simply choose to discontinue their participation in the project. As a result, the attrition  rates, or reduction in the number of research participants due to dropouts, in longitudinal studies are quite high and increases over the course of a project. For this reason, researchers using this approach typically recruit many participants fully expecting that a substantial number will drop out before the end. As the study progresses, they continually check whether the sample still represents the larger population, and make adjustments as necessary.

Correlational Research

Did you know that as sales in ice cream increase, so does the overall rate of crime? Is it possible that indulging in your favorite flavor of ice cream could send you on a crime spree? Or, after committing crime do you think you might decide to treat yourself to a cone? There is no question that a relationship exists between ice cream and crime (e.g., Harper, 2013), but it would be pretty foolish to decide that one thing actually caused the other to occur.

It is much more likely that both ice cream sales and crime rates are related to the temperature outside. When the temperature is warm, there are lots of people out of their houses, interacting with each other, getting annoyed with one another, and sometimes committing crimes. Also, when it is warm outside, we are more likely to seek a cool treat like ice cream. How do we determine if there is indeed a relationship between two things? And when there is a relationship, how can we discern whether it is attributable to coincidence or causation?

Three scatterplots are shown. Scatterplot (a) is labeled “positive correlation” and shows scattered dots forming a rough line from the bottom left to the top right; the x-axis is labeled “weight” and the y-axis is labeled “height.” Scatterplot (b) is labeled “negative correlation” and shows scattered dots forming a rough line from the top left to the bottom right; the x-axis is labeled “tiredness” and the y-axis is labeled “hours of sleep.” Scatterplot (c) is labeled “no correlation” and shows scattered dots having no pattern; the x-axis is labeled “shoe size” and the y-axis is labeled “hours of sleep.”

Correlation Does Not Indicate Causation

Correlational research is useful because it allows us to discover the strength and direction of relationships that exist between two variables. However, correlation is limited because establishing the existence of a relationship tells us little about cause and effect . While variables are sometimes correlated because one does cause the other, it could also be that some other factor, a confounding variable , is actually causing the systematic movement in our variables of interest. In the ice cream/crime rate example mentioned earlier, temperature is a confounding variable that could account for the relationship between the two variables.

Even when we cannot point to clear confounding variables, we should not assume that a correlation between two variables implies that one variable causes changes in another. This can be frustrating when a cause-and-effect relationship seems clear and intuitive. Think back to our discussion of the research done by the American Cancer Society and how their research projects were some of the first demonstrations of the link between smoking and cancer. It seems reasonable to assume that smoking causes cancer, but if we were limited to correlational research , we would be overstepping our bounds by making this assumption.

A photograph shows a bowl of cereal.

Unfortunately, people mistakenly make claims of causation as a function of correlations all the time. Such claims are especially common in advertisements and news stories. For example, recent research found that people who eat cereal on a regular basis achieve healthier weights than those who rarely eat cereal (Frantzen, Treviño, Echon, Garcia-Dominic, & DiMarco, 2013; Barton et al., 2005). Guess how the cereal companies report this finding. Does eating cereal really cause an individual to maintain a healthy weight, or are there other possible explanations, such as, someone at a healthy weight is more likely to regularly eat a healthy breakfast than someone who is obese or someone who avoids meals in an attempt to diet (Figure 15)? While correlational research is invaluable in identifying relationships among variables, a major limitation is the inability to establish causality. Psychologists want to make statements about cause and effect, but the only way to do that is to conduct an experiment to answer a research question. The next section describes how scientific experiments incorporate methods that eliminate, or control for, alternative explanations, which allow researchers to explore how changes in one variable cause changes in another variable.

Watch this clip from Freakonomics for an example of how correlation does  not  indicate causation.

You can view the transcript for “Correlation vs. Causality: Freakonomics Movie” here (opens in new window) .

Illusory Correlations

The temptation to make erroneous cause-and-effect statements based on correlational research is not the only way we tend to misinterpret data. We also tend to make the mistake of illusory correlations, especially with unsystematic observations. Illusory correlations , or false correlations, occur when people believe that relationships exist between two things when no such relationship exists. One well-known illusory correlation is the supposed effect that the moon’s phases have on human behavior. Many people passionately assert that human behavior is affected by the phase of the moon, and specifically, that people act strangely when the moon is full (Figure 16).

A photograph shows the moon.

There is no denying that the moon exerts a powerful influence on our planet. The ebb and flow of the ocean’s tides are tightly tied to the gravitational forces of the moon. Many people believe, therefore, that it is logical that we are affected by the moon as well. After all, our bodies are largely made up of water. A meta-analysis of nearly 40 studies consistently demonstrated, however, that the relationship between the moon and our behavior does not exist (Rotton & Kelly, 1985). While we may pay more attention to odd behavior during the full phase of the moon, the rates of odd behavior remain constant throughout the lunar cycle.

Why are we so apt to believe in illusory correlations like this? Often we read or hear about them and simply accept the information as valid. Or, we have a hunch about how something works and then look for evidence to support that hunch, ignoring evidence that would tell us our hunch is false; this is known as confirmation bias . Other times, we find illusory correlations based on the information that comes most easily to mind, even if that information is severely limited. And while we may feel confident that we can use these relationships to better understand and predict the world around us, illusory correlations can have significant drawbacks. For example, research suggests that illusory correlations—in which certain behaviors are inaccurately attributed to certain groups—are involved in the formation of prejudicial attitudes that can ultimately lead to discriminatory behavior (Fiedler, 2004).

We all have a tendency to make illusory correlations from time to time. Try to think of an illusory correlation that is held by you, a family member, or a close friend. How do you think this illusory correlation came about and what can be done in the future to combat them?

Experiments

Causality: conducting experiments and using the data, experimental hypothesis.

In order to conduct an experiment, a researcher must have a specific hypothesis to be tested. As you’ve learned, hypotheses can be formulated either through direct observation of the real world or after careful review of previous research. For example, if you think that children should not be allowed to watch violent programming on television because doing so would cause them to behave more violently, then you have basically formulated a hypothesis—namely, that watching violent television programs causes children to behave more violently. How might you have arrived at this particular hypothesis? You may have younger relatives who watch cartoons featuring characters using martial arts to save the world from evildoers, with an impressive array of punching, kicking, and defensive postures. You notice that after watching these programs for a while, your young relatives mimic the fighting behavior of the characters portrayed in the cartoon (Figure 17).

A photograph shows a child pointing a toy gun.

These sorts of personal observations are what often lead us to formulate a specific hypothesis, but we cannot use limited personal observations and anecdotal evidence to rigorously test our hypothesis. Instead, to find out if real-world data supports our hypothesis, we have to conduct an experiment.

Designing an Experiment

The most basic experimental design involves two groups: the experimental group and the control group. The two groups are designed to be the same except for one difference— experimental manipulation. The experimental group  gets the experimental manipulation—that is, the treatment or variable being tested (in this case, violent TV images)—and the control group does not. Since experimental manipulation is the only difference between the experimental and control groups, we can be sure that any differences between the two are due to experimental manipulation rather than chance.

In our example of how violent television programming might affect violent behavior in children, we have the experimental group view violent television programming for a specified time and then measure their violent behavior. We measure the violent behavior in our control group after they watch nonviolent television programming for the same amount of time. It is important for the control group to be treated similarly to the experimental group, with the exception that the control group does not receive the experimental manipulation. Therefore, we have the control group watch non-violent television programming for the same amount of time as the experimental group.

We also need to precisely define, or operationalize, what is considered violent and nonviolent. An operational definition is a description of how we will measure our variables, and it is important in allowing others understand exactly how and what a researcher measures in a particular experiment. In operationalizing violent behavior, we might choose to count only physical acts like kicking or punching as instances of this behavior, or we also may choose to include angry verbal exchanges. Whatever we determine, it is important that we operationalize violent behavior in such a way that anyone who hears about our study for the first time knows exactly what we mean by violence. This aids peoples’ ability to interpret our data as well as their capacity to repeat our experiment should they choose to do so.

Once we have operationalized what is considered violent television programming and what is considered violent behavior from our experiment participants, we need to establish how we will run our experiment. In this case, we might have participants watch a 30-minute television program (either violent or nonviolent, depending on their group membership) before sending them out to a playground for an hour where their behavior is observed and the number and type of violent acts is recorded.

Ideally, the people who observe and record the children’s behavior are unaware of who was assigned to the experimental or control group, in order to control for experimenter bias. Experimenter bias refers to the possibility that a researcher’s expectations might skew the results of the study. Remember, conducting an experiment requires a lot of planning, and the people involved in the research project have a vested interest in supporting their hypotheses. If the observers knew which child was in which group, it might influence how much attention they paid to each child’s behavior as well as how they interpreted that behavior. By being blind to which child is in which group, we protect against those biases. This situation is a single-blind study , meaning that one of the groups (participants) are unaware as to which group they are in (experiment or control group) while the researcher who developed the experiment knows which participants are in each group.

A photograph shows three glass bottles of pills labeled as placebos.

In a double-blind study , both the researchers and the participants are blind to group assignments. Why would a researcher want to run a study where no one knows who is in which group? Because by doing so, we can control for both experimenter and participant expectations. If you are familiar with the phrase placebo effect, you already have some idea as to why this is an important consideration. The placebo effect occurs when people’s expectations or beliefs influence or determine their experience in a given situation. In other words, simply expecting something to happen can actually make it happen.

The placebo effect is commonly described in terms of testing the effectiveness of a new medication. Imagine that you work in a pharmaceutical company, and you think you have a new drug that is effective in treating depression. To demonstrate that your medication is effective, you run an experiment with two groups: The experimental group receives the medication, and the control group does not. But you don’t want participants to know whether they received the drug or not.

Why is that? Imagine that you are a participant in this study, and you have just taken a pill that you think will improve your mood. Because you expect the pill to have an effect, you might feel better simply because you took the pill and not because of any drug actually contained in the pill—this is the placebo effect.

To make sure that any effects on mood are due to the drug and not due to expectations, the control group receives a placebo (in this case a sugar pill). Now everyone gets a pill, and once again neither the researcher nor the experimental participants know who got the drug and who got the sugar pill. Any differences in mood between the experimental and control groups can now be attributed to the drug itself rather than to experimenter bias or participant expectations (Figure 18).

Independent and Dependent Variables

In a research experiment, we strive to study whether changes in one thing cause changes in another. To achieve this, we must pay attention to two important variables, or things that can be changed, in any experimental study: the independent variable and the dependent variable. An independent variable is manipulated or controlled by the experimenter. In a well-designed experimental study, the independent variable is the only important difference between the experimental and control groups. In our example of how violent television programs affect children’s display of violent behavior, the independent variable is the type of program—violent or nonviolent—viewed by participants in the study (Figure 19). A dependent variable is what the researcher measures to see how much effect the independent variable had. In our example, the dependent variable is the number of violent acts displayed by the experimental participants.

A box labeled “independent variable: type of television programming viewed” contains a photograph of a person shooting an automatic weapon. An arrow labeled “influences change in the…” leads to a second box. The second box is labeled “dependent variable: violent behavior displayed” and has a photograph of a child pointing a toy gun.

We expect that the dependent variable will change as a function of the independent variable. In other words, the dependent variable depends on the independent variable. A good way to think about the relationship between the independent and dependent variables is with this question: What effect does the independent variable have on the dependent variable? Returning to our example, what effect does watching a half hour of violent television programming or nonviolent television programming have on the number of incidents of physical aggression displayed on the playground?

Selecting and Assigning Experimental Participants

Now that our study is designed, we need to obtain a sample of individuals to include in our experiment. Our study involves human participants so we need to determine who to include. Participants  are the subjects of psychological research, and as the name implies, individuals who are involved in psychological research actively participate in the process. Often, psychological research projects rely on college students to serve as participants. In fact, the vast majority of research in psychology subfields has historically involved students as research participants (Sears, 1986; Arnett, 2008). But are college students truly representative of the general population? College students tend to be younger, more educated, more liberal, and less diverse than the general population. Although using students as test subjects is an accepted practice, relying on such a limited pool of research participants can be problematic because it is difficult to generalize findings to the larger population.

Our hypothetical experiment involves children, and we must first generate a sample of child participants. Samples are used because populations are usually too large to reasonably involve every member in our particular experiment (Figure 20). If possible, we should use a random sample   (there are other types of samples, but for the purposes of this section, we will focus on random samples). A random sample is a subset of a larger population in which every member of the population has an equal chance of being selected. Random samples are preferred because if the sample is large enough we can be reasonably sure that the participating individuals are representative of the larger population. This means that the percentages of characteristics in the sample—sex, ethnicity, socioeconomic level, and any other characteristics that might affect the results—are close to those percentages in the larger population.

In our example, let’s say we decide our population of interest is fourth graders. But all fourth graders is a very large population, so we need to be more specific; instead we might say our population of interest is all fourth graders in a particular city. We should include students from various income brackets, family situations, races, ethnicities, religions, and geographic areas of town. With this more manageable population, we can work with the local schools in selecting a random sample of around 200 fourth graders who we want to participate in our experiment.

In summary, because we cannot test all of the fourth graders in a city, we want to find a group of about 200 that reflects the composition of that city. With a representative group, we can generalize our findings to the larger population without fear of our sample being biased in some way.

(a) A photograph shows an aerial view of crowds on a street. (b) A photograph shows s small group of children.

Now that we have a sample, the next step of the experimental process is to split the participants into experimental and control groups through random assignment. With random assignment , all participants have an equal chance of being assigned to either group. There is statistical software that will randomly assign each of the fourth graders in the sample to either the experimental or the control group.

Random assignment is critical for sound experimental design. With sufficiently large samples, random assignment makes it unlikely that there are systematic differences between the groups. So, for instance, it would be very unlikely that we would get one group composed entirely of males, a given ethnic identity, or a given religious ideology. This is important because if the groups were systematically different before the experiment began, we would not know the origin of any differences we find between the groups: Were the differences preexisting, or were they caused by manipulation of the independent variable? Random assignment allows us to assume that any differences observed between experimental and control groups result from the manipulation of the independent variable.

Issues to Consider

While experiments allow scientists to make cause-and-effect claims, they are not without problems. True experiments require the experimenter to manipulate an independent variable, and that can complicate many questions that psychologists might want to address. For instance, imagine that you want to know what effect sex (the independent variable) has on spatial memory (the dependent variable). Although you can certainly look for differences between males and females on a task that taps into spatial memory, you cannot directly control a person’s sex. We categorize this type of research approach as quasi-experimental and recognize that we cannot make cause-and-effect claims in these circumstances.

Experimenters are also limited by ethical constraints. For instance, you would not be able to conduct an experiment designed to determine if experiencing abuse as a child leads to lower levels of self-esteem among adults. To conduct such an experiment, you would need to randomly assign some experimental participants to a group that receives abuse, and that experiment would be unethical.

Introduction to Statistical Thinking

Psychologists use statistics to assist them in analyzing data, and also to give more precise measurements to describe whether something is statistically significant. Analyzing data using statistics enables researchers to find patterns, make claims, and share their results with others. In this section, you’ll learn about some of the tools that psychologists use in statistical analysis.

  • Define reliability and validity
  • Describe the importance of distributional thinking and the role of p-values in statistical inference
  • Describe the role of random sampling and random assignment in drawing cause-and-effect conclusions
  • Describe the basic structure of a psychological research article

Interpreting Experimental Findings

Once data is collected from both the experimental and the control groups, a statistical analysis is conducted to find out if there are meaningful differences between the two groups. A statistical analysis determines how likely any difference found is due to chance (and thus not meaningful). In psychology, group differences are considered meaningful, or significant, if the odds that these differences occurred by chance alone are 5 percent or less. Stated another way, if we repeated this experiment 100 times, we would expect to find the same results at least 95 times out of 100.

The greatest strength of experiments is the ability to assert that any significant differences in the findings are caused by the independent variable. This occurs because random selection, random assignment, and a design that limits the effects of both experimenter bias and participant expectancy should create groups that are similar in composition and treatment. Therefore, any difference between the groups is attributable to the independent variable, and now we can finally make a causal statement. If we find that watching a violent television program results in more violent behavior than watching a nonviolent program, we can safely say that watching violent television programs causes an increase in the display of violent behavior.

Reporting Research

When psychologists complete a research project, they generally want to share their findings with other scientists. The American Psychological Association (APA) publishes a manual detailing how to write a paper for submission to scientific journals. Unlike an article that might be published in a magazine like Psychology Today, which targets a general audience with an interest in psychology, scientific journals generally publish peer-reviewed journal articles aimed at an audience of professionals and scholars who are actively involved in research themselves.

A peer-reviewed journal article is read by several other scientists (generally anonymously) with expertise in the subject matter. These peer reviewers provide feedback—to both the author and the journal editor—regarding the quality of the draft. Peer reviewers look for a strong rationale for the research being described, a clear description of how the research was conducted, and evidence that the research was conducted in an ethical manner. They also look for flaws in the study’s design, methods, and statistical analyses. They check that the conclusions drawn by the authors seem reasonable given the observations made during the research. Peer reviewers also comment on how valuable the research is in advancing the discipline’s knowledge. This helps prevent unnecessary duplication of research findings in the scientific literature and, to some extent, ensures that each research article provides new information. Ultimately, the journal editor will compile all of the peer reviewer feedback and determine whether the article will be published in its current state (a rare occurrence), published with revisions, or not accepted for publication.

Peer review provides some degree of quality control for psychological research. Poorly conceived or executed studies can be weeded out, and even well-designed research can be improved by the revisions suggested. Peer review also ensures that the research is described clearly enough to allow other scientists to replicate it, meaning they can repeat the experiment using different samples to determine reliability. Sometimes replications involve additional measures that expand on the original finding. In any case, each replication serves to provide more evidence to support the original research findings. Successful replications of published research make scientists more apt to adopt those findings, while repeated failures tend to cast doubt on the legitimacy of the original article and lead scientists to look elsewhere. For example, it would be a major advancement in the medical field if a published study indicated that taking a new drug helped individuals achieve a healthy weight without changing their diet. But if other scientists could not replicate the results, the original study’s claims would be questioned.

Dig Deeper: The Vaccine-Autism Myth and the Retraction of Published Studies

Some scientists have claimed that routine childhood vaccines cause some children to develop autism, and, in fact, several peer-reviewed publications published research making these claims. Since the initial reports, large-scale epidemiological research has suggested that vaccinations are not responsible for causing autism and that it is much safer to have your child vaccinated than not. Furthermore, several of the original studies making this claim have since been retracted.

A published piece of work can be rescinded when data is called into question because of falsification, fabrication, or serious research design problems. Once rescinded, the scientific community is informed that there are serious problems with the original publication. Retractions can be initiated by the researcher who led the study, by research collaborators, by the institution that employed the researcher, or by the editorial board of the journal in which the article was originally published. In the vaccine-autism case, the retraction was made because of a significant conflict of interest in which the leading researcher had a financial interest in establishing a link between childhood vaccines and autism (Offit, 2008). Unfortunately, the initial studies received so much media attention that many parents around the world became hesitant to have their children vaccinated (Figure 21). For more information about how the vaccine/autism story unfolded, as well as the repercussions of this story, take a look at Paul Offit’s book, Autism’s False Prophets: Bad Science, Risky Medicine, and the Search for a Cure.

A photograph shows a child being given an oral vaccine.

Reliability and Validity

Dig deeper:  everyday connection: how valid is the sat.

Standardized tests like the SAT are supposed to measure an individual’s aptitude for a college education, but how reliable and valid are such tests? Research conducted by the College Board suggests that scores on the SAT have high predictive validity for first-year college students’ GPA (Kobrin, Patterson, Shaw, Mattern, & Barbuti, 2008). In this context, predictive validity refers to the test’s ability to effectively predict the GPA of college freshmen. Given that many institutions of higher education require the SAT for admission, this high degree of predictive validity might be comforting.

However, the emphasis placed on SAT scores in college admissions has generated some controversy on a number of fronts. For one, some researchers assert that the SAT is a biased test that places minority students at a disadvantage and unfairly reduces the likelihood of being admitted into a college (Santelices & Wilson, 2010). Additionally, some research has suggested that the predictive validity of the SAT is grossly exaggerated in how well it is able to predict the GPA of first-year college students. In fact, it has been suggested that the SAT’s predictive validity may be overestimated by as much as 150% (Rothstein, 2004). Many institutions of higher education are beginning to consider de-emphasizing the significance of SAT scores in making admission decisions (Rimer, 2008).

In 2014, College Board president David Coleman expressed his awareness of these problems, recognizing that college success is more accurately predicted by high school grades than by SAT scores. To address these concerns, he has called for significant changes to the SAT exam (Lewin, 2014).

Statistical Significance

Coffee cup with heart shaped cream inside.

Does drinking coffee actually increase your life expectancy? A recent study (Freedman, Park, Abnet, Hollenbeck, & Sinha, 2012) found that men who drank at least six cups of coffee a day also had a 10% lower chance of dying (women’s chances were 15% lower) than those who drank none. Does this mean you should pick up or increase your own coffee habit? We will explore these results in more depth in the next section about drawing conclusions from statistics. Modern society has become awash in studies such as this; you can read about several such studies in the news every day.

Conducting such a study well, and interpreting the results of such studies requires understanding basic ideas of statistics , the science of gaining insight from data. Key components to a statistical investigation are:

  • Planning the study: Start by asking a testable research question and deciding how to collect data. For example, how long was the study period of the coffee study? How many people were recruited for the study, how were they recruited, and from where? How old were they? What other variables were recorded about the individuals? Were changes made to the participants’ coffee habits during the course of the study?
  • Examining the data: What are appropriate ways to examine the data? What graphs are relevant, and what do they reveal? What descriptive statistics can be calculated to summarize relevant aspects of the data, and what do they reveal? What patterns do you see in the data? Are there any individual observations that deviate from the overall pattern, and what do they reveal? For example, in the coffee study, did the proportions differ when we compared the smokers to the non-smokers?
  • Inferring from the data: What are valid statistical methods for drawing inferences “beyond” the data you collected? In the coffee study, is the 10%–15% reduction in risk of death something that could have happened just by chance?
  • Drawing conclusions: Based on what you learned from your data, what conclusions can you draw? Who do you think these conclusions apply to? (Were the people in the coffee study older? Healthy? Living in cities?) Can you draw a cause-and-effect conclusion about your treatments? (Are scientists now saying that the coffee drinking is the cause of the decreased risk of death?)

Notice that the numerical analysis (“crunching numbers” on the computer) comprises only a small part of overall statistical investigation. In this section, you will see how we can answer some of these questions and what questions you should be asking about any statistical investigation you read about.

Distributional Thinking

When data are collected to address a particular question, an important first step is to think of meaningful ways to organize and examine the data. Let’s take a look at an example.

Example 1 : Researchers investigated whether cancer pamphlets are written at an appropriate level to be read and understood by cancer patients (Short, Moriarty, & Cooley, 1995). Tests of reading ability were given to 63 patients. In addition, readability level was determined for a sample of 30 pamphlets, based on characteristics such as the lengths of words and sentences in the pamphlet. The results, reported in terms of grade levels, are displayed in Figure 23.

Table showing patients' reading levels and pahmphlet's reading levels.

  • Data vary . More specifically, values of a variable (such as reading level of a cancer patient or readability level of a cancer pamphlet) vary.
  • Analyzing the pattern of variation, called the distribution of the variable, often reveals insights.

Addressing the research question of whether the cancer pamphlets are written at appropriate levels for the cancer patients requires comparing the two distributions. A naïve comparison might focus only on the centers of the distributions. Both medians turn out to be ninth grade, but considering only medians ignores the variability and the overall distributions of these data. A more illuminating approach is to compare the entire distributions, for example with a graph, as in Figure 24.

Bar graph showing that the reading level of pamphlets is typically higher than the reading level of the patients.

Figure 24 makes clear that the two distributions are not well aligned at all. The most glaring discrepancy is that many patients (17/63, or 27%, to be precise) have a reading level below that of the most readable pamphlet. These patients will need help to understand the information provided in the cancer pamphlets. Notice that this conclusion follows from considering the distributions as a whole, not simply measures of center or variability, and that the graph contrasts those distributions more immediately than the frequency tables.

Finding Significance in Data

Even when we find patterns in data, often there is still uncertainty in various aspects of the data. For example, there may be potential for measurement errors (even your own body temperature can fluctuate by almost 1°F over the course of the day). Or we may only have a “snapshot” of observations from a more long-term process or only a small subset of individuals from the population of interest. In such cases, how can we determine whether patterns we see in our small set of data is convincing evidence of a systematic phenomenon in the larger process or population? Let’s take a look at another example.

Example 2 : In a study reported in the November 2007 issue of Nature , researchers investigated whether pre-verbal infants take into account an individual’s actions toward others in evaluating that individual as appealing or aversive (Hamlin, Wynn, & Bloom, 2007). In one component of the study, 10-month-old infants were shown a “climber” character (a piece of wood with “googly” eyes glued onto it) that could not make it up a hill in two tries. Then the infants were shown two scenarios for the climber’s next try, one where the climber was pushed to the top of the hill by another character (“helper”), and one where the climber was pushed back down the hill by another character (“hinderer”). The infant was alternately shown these two scenarios several times. Then the infant was presented with two pieces of wood (representing the helper and the hinderer characters) and asked to pick one to play with.

The researchers found that of the 16 infants who made a clear choice, 14 chose to play with the helper toy. One possible explanation for this clear majority result is that the helping behavior of the one toy increases the infants’ likelihood of choosing that toy. But are there other possible explanations? What about the color of the toy? Well, prior to collecting the data, the researchers arranged so that each color and shape (red square and blue circle) would be seen by the same number of infants. Or maybe the infants had right-handed tendencies and so picked whichever toy was closer to their right hand?

Well, prior to collecting the data, the researchers arranged it so half the infants saw the helper toy on the right and half on the left. Or, maybe the shapes of these wooden characters (square, triangle, circle) had an effect? Perhaps, but again, the researchers controlled for this by rotating which shape was the helper toy, the hinderer toy, and the climber. When designing experiments, it is important to control for as many variables as might affect the responses as possible. It is beginning to appear that the researchers accounted for all the other plausible explanations. But there is one more important consideration that cannot be controlled—if we did the study again with these 16 infants, they might not make the same choices. In other words, there is some randomness inherent in their selection process.

Maybe each infant had no genuine preference at all, and it was simply “random luck” that led to 14 infants picking the helper toy. Although this random component cannot be controlled, we can apply a probability model to investigate the pattern of results that would occur in the long run if random chance were the only factor.

If the infants were equally likely to pick between the two toys, then each infant had a 50% chance of picking the helper toy. It’s like each infant tossed a coin, and if it landed heads, the infant picked the helper toy. So if we tossed a coin 16 times, could it land heads 14 times? Sure, it’s possible, but it turns out to be very unlikely. Getting 14 (or more) heads in 16 tosses is about as likely as tossing a coin and getting 9 heads in a row. This probability is referred to as a p-value . The p-value represents the likelihood that experimental results happened by chance. Within psychology, the most common standard for p-values is “p < .05”. What this means is that there is less than a 5% probability that the results happened just by random chance, and therefore a 95% probability that the results reflect a meaningful pattern in human psychology. We call this statistical significance .

So, in the study above, if we assume that each infant was choosing equally, then the probability that 14 or more out of 16 infants would choose the helper toy is found to be 0.0021. We have only two logical possibilities: either the infants have a genuine preference for the helper toy, or the infants have no preference (50/50) and an outcome that would occur only 2 times in 1,000 iterations happened in this study. Because this p-value of 0.0021 is quite small, we conclude that the study provides very strong evidence that these infants have a genuine preference for the helper toy.

If we compare the p-value to some cut-off value, like 0.05, we see that the p=value is smaller. Because the p-value is smaller than that cut-off value, then we reject the hypothesis that only random chance was at play here. In this case, these researchers would conclude that significantly more than half of the infants in the study chose the helper toy, giving strong evidence of a genuine preference for the toy with the helping behavior.

Drawing Conclusions from Statistics

Generalizability.

Photo of a diverse group of college-aged students.

One limitation to the study mentioned previously about the babies choosing the “helper” toy is that the conclusion only applies to the 16 infants in the study. We don’t know much about how those 16 infants were selected. Suppose we want to select a subset of individuals (a sample ) from a much larger group of individuals (the population ) in such a way that conclusions from the sample can be generalized to the larger population. This is the question faced by pollsters every day.

Example 3 : The General Social Survey (GSS) is a survey on societal trends conducted every other year in the United States. Based on a sample of about 2,000 adult Americans, researchers make claims about what percentage of the U.S. population consider themselves to be “liberal,” what percentage consider themselves “happy,” what percentage feel “rushed” in their daily lives, and many other issues. The key to making these claims about the larger population of all American adults lies in how the sample is selected. The goal is to select a sample that is representative of the population, and a common way to achieve this goal is to select a r andom sample  that gives every member of the population an equal chance of being selected for the sample. In its simplest form, random sampling involves numbering every member of the population and then using a computer to randomly select the subset to be surveyed. Most polls don’t operate exactly like this, but they do use probability-based sampling methods to select individuals from nationally representative panels.

In 2004, the GSS reported that 817 of 977 respondents (or 83.6%) indicated that they always or sometimes feel rushed. This is a clear majority, but we again need to consider variation due to random sampling . Fortunately, we can use the same probability model we did in the previous example to investigate the probable size of this error. (Note, we can use the coin-tossing model when the actual population size is much, much larger than the sample size, as then we can still consider the probability to be the same for every individual in the sample.) This probability model predicts that the sample result will be within 3 percentage points of the population value (roughly 1 over the square root of the sample size, the margin of error. A statistician would conclude, with 95% confidence, that between 80.6% and 86.6% of all adult Americans in 2004 would have responded that they sometimes or always feel rushed.

The key to the margin of error is that when we use a probability sampling method, we can make claims about how often (in the long run, with repeated random sampling) the sample result would fall within a certain distance from the unknown population value by chance (meaning by random sampling variation) alone. Conversely, non-random samples are often suspect to bias, meaning the sampling method systematically over-represents some segments of the population and under-represents others. We also still need to consider other sources of bias, such as individuals not responding honestly. These sources of error are not measured by the margin of error.

Cause and Effect

In many research studies, the primary question of interest concerns differences between groups. Then the question becomes how were the groups formed (e.g., selecting people who already drink coffee vs. those who don’t). In some studies, the researchers actively form the groups themselves. But then we have a similar question—could any differences we observe in the groups be an artifact of that group-formation process? Or maybe the difference we observe in the groups is so large that we can discount a “fluke” in the group-formation process as a reasonable explanation for what we find?

Example 4 : A psychology study investigated whether people tend to display more creativity when they are thinking about intrinsic (internal) or extrinsic (external) motivations (Ramsey & Schafer, 2002, based on a study by Amabile, 1985). The subjects were 47 people with extensive experience with creative writing. Subjects began by answering survey questions about either intrinsic motivations for writing (such as the pleasure of self-expression) or extrinsic motivations (such as public recognition). Then all subjects were instructed to write a haiku, and those poems were evaluated for creativity by a panel of judges. The researchers conjectured beforehand that subjects who were thinking about intrinsic motivations would display more creativity than subjects who were thinking about extrinsic motivations. The creativity scores from the 47 subjects in this study are displayed in Figure 26, where higher scores indicate more creativity.

Image showing a dot for creativity scores, which vary between 5 and 27, and the types of motivation each person was given as a motivator, either extrinsic or intrinsic.

In this example, the key question is whether the type of motivation affects creativity scores. In particular, do subjects who were asked about intrinsic motivations tend to have higher creativity scores than subjects who were asked about extrinsic motivations?

Figure 26 reveals that both motivation groups saw considerable variability in creativity scores, and these scores have considerable overlap between the groups. In other words, it’s certainly not always the case that those with extrinsic motivations have higher creativity than those with intrinsic motivations, but there may still be a statistical tendency in this direction. (Psychologist Keith Stanovich (2013) refers to people’s difficulties with thinking about such probabilistic tendencies as “the Achilles heel of human cognition.”)

The mean creativity score is 19.88 for the intrinsic group, compared to 15.74 for the extrinsic group, which supports the researchers’ conjecture. Yet comparing only the means of the two groups fails to consider the variability of creativity scores in the groups. We can measure variability with statistics using, for instance, the standard deviation: 5.25 for the extrinsic group and 4.40 for the intrinsic group. The standard deviations tell us that most of the creativity scores are within about 5 points of the mean score in each group. We see that the mean score for the intrinsic group lies within one standard deviation of the mean score for extrinsic group. So, although there is a tendency for the creativity scores to be higher in the intrinsic group, on average, the difference is not extremely large.

We again want to consider possible explanations for this difference. The study only involved individuals with extensive creative writing experience. Although this limits the population to which we can generalize, it does not explain why the mean creativity score was a bit larger for the intrinsic group than for the extrinsic group. Maybe women tend to receive higher creativity scores? Here is where we need to focus on how the individuals were assigned to the motivation groups. If only women were in the intrinsic motivation group and only men in the extrinsic group, then this would present a problem because we wouldn’t know if the intrinsic group did better because of the different type of motivation or because they were women. However, the researchers guarded against such a problem by randomly assigning the individuals to the motivation groups. Like flipping a coin, each individual was just as likely to be assigned to either type of motivation. Why is this helpful? Because this random assignment  tends to balance out all the variables related to creativity we can think of, and even those we don’t think of in advance, between the two groups. So we should have a similar male/female split between the two groups; we should have a similar age distribution between the two groups; we should have a similar distribution of educational background between the two groups; and so on. Random assignment should produce groups that are as similar as possible except for the type of motivation, which presumably eliminates all those other variables as possible explanations for the observed tendency for higher scores in the intrinsic group.

But does this always work? No, so by “luck of the draw” the groups may be a little different prior to answering the motivation survey. So then the question is, is it possible that an unlucky random assignment is responsible for the observed difference in creativity scores between the groups? In other words, suppose each individual’s poem was going to get the same creativity score no matter which group they were assigned to, that the type of motivation in no way impacted their score. Then how often would the random-assignment process alone lead to a difference in mean creativity scores as large (or larger) than 19.88 – 15.74 = 4.14 points?

We again want to apply to a probability model to approximate a p-value , but this time the model will be a bit different. Think of writing everyone’s creativity scores on an index card, shuffling up the index cards, and then dealing out 23 to the extrinsic motivation group and 24 to the intrinsic motivation group, and finding the difference in the group means. We (better yet, the computer) can repeat this process over and over to see how often, when the scores don’t change, random assignment leads to a difference in means at least as large as 4.41. Figure 27 shows the results from 1,000 such hypothetical random assignments for these scores.

Standard distribution in a typical bell curve.

Only 2 of the 1,000 simulated random assignments produced a difference in group means of 4.41 or larger. In other words, the approximate p-value is 2/1000 = 0.002. This small p-value indicates that it would be very surprising for the random assignment process alone to produce such a large difference in group means. Therefore, as with Example 2, we have strong evidence that focusing on intrinsic motivations tends to increase creativity scores, as compared to thinking about extrinsic motivations.

Notice that the previous statement implies a cause-and-effect relationship between motivation and creativity score; is such a strong conclusion justified? Yes, because of the random assignment used in the study. That should have balanced out any other variables between the two groups, so now that the small p-value convinces us that the higher mean in the intrinsic group wasn’t just a coincidence, the only reasonable explanation left is the difference in the type of motivation. Can we generalize this conclusion to everyone? Not necessarily—we could cautiously generalize this conclusion to individuals with extensive experience in creative writing similar the individuals in this study, but we would still want to know more about how these individuals were selected to participate.

Close-up photo of mathematical equations.

Statistical thinking involves the careful design of a study to collect meaningful data to answer a focused research question, detailed analysis of patterns in the data, and drawing conclusions that go beyond the observed data. Random sampling is paramount to generalizing results from our sample to a larger population, and random assignment is key to drawing cause-and-effect conclusions. With both kinds of randomness, probability models help us assess how much random variation we can expect in our results, in order to determine whether our results could happen by chance alone and to estimate a margin of error.

So where does this leave us with regard to the coffee study mentioned previously (the Freedman, Park, Abnet, Hollenbeck, & Sinha, 2012 found that men who drank at least six cups of coffee a day had a 10% lower chance of dying (women 15% lower) than those who drank none)? We can answer many of the questions:

  • This was a 14-year study conducted by researchers at the National Cancer Institute.
  • The results were published in the June issue of the New England Journal of Medicine , a respected, peer-reviewed journal.
  • The study reviewed coffee habits of more than 402,000 people ages 50 to 71 from six states and two metropolitan areas. Those with cancer, heart disease, and stroke were excluded at the start of the study. Coffee consumption was assessed once at the start of the study.
  • About 52,000 people died during the course of the study.
  • People who drank between two and five cups of coffee daily showed a lower risk as well, but the amount of reduction increased for those drinking six or more cups.
  • The sample sizes were fairly large and so the p-values are quite small, even though percent reduction in risk was not extremely large (dropping from a 12% chance to about 10%–11%).
  • Whether coffee was caffeinated or decaffeinated did not appear to affect the results.
  • This was an observational study, so no cause-and-effect conclusions can be drawn between coffee drinking and increased longevity, contrary to the impression conveyed by many news headlines about this study. In particular, it’s possible that those with chronic diseases don’t tend to drink coffee.

This study needs to be reviewed in the larger context of similar studies and consistency of results across studies, with the constant caution that this was not a randomized experiment. Whereas a statistical analysis can still “adjust” for other potential confounding variables, we are not yet convinced that researchers have identified them all or completely isolated why this decrease in death risk is evident. Researchers can now take the findings of this study and develop more focused studies that address new questions.

Explore these outside resources to learn more about applied statistics:

  • Video about p-values:  P-Value Extravaganza
  • Interactive web applets for teaching and learning statistics
  • Inter-university Consortium for Political and Social Research  where you can find and analyze data.
  • The Consortium for the Advancement of Undergraduate Statistics
  • Find a recent research article in your field and answer the following: What was the primary research question? How were individuals selected to participate in the study? Were summary results provided? How strong is the evidence presented in favor or against the research question? Was random assignment used? Summarize the main conclusions from the study, addressing the issues of statistical significance, statistical confidence, generalizability, and cause and effect. Do you agree with the conclusions drawn from this study, based on the study design and the results presented?
  • Is it reasonable to use a random sample of 1,000 individuals to draw conclusions about all U.S. adults? Explain why or why not.

How to Read Research

In this course and throughout your academic career, you’ll be reading journal articles (meaning they were published by experts in a peer-reviewed journal) and reports that explain psychological research. It’s important to understand the format of these articles so that you can read them strategically and understand the information presented. Scientific articles vary in content or structure, depending on the type of journal to which they will be submitted. Psychological articles and many papers in the social sciences follow the writing guidelines and format dictated by the American Psychological Association (APA). In general, the structure follows: abstract, introduction, methods, results, discussion, and references.

  • Abstract : the abstract is the concise summary of the article. It summarizes the most important features of the manuscript, providing the reader with a global first impression on the article. It is generally just one paragraph that explains the experiment as well as a short synopsis of the results.
  • Introduction : this section provides background information about the origin and purpose of performing the experiment or study. It reviews previous research and presents existing theories on the topic.
  • Method : this section covers the methodologies used to investigate the research question, including the identification of participants , procedures , and  materials  as well as a description of the actual procedure . It should be sufficiently detailed to allow for replication.
  • Results : the results section presents key findings of the research, including reference to indicators of statistical significance.
  • Discussion : this section provides an interpretation of the findings, states their significance for current research, and derives implications for theory and practice. Alternative interpretations for findings are also provided, particularly when it is not possible to conclude for the directionality of the effects. In the discussion, authors also acknowledge the strengths and limitations/weaknesses of the study and offer concrete directions about for future research.

Watch this 3-minute video for an explanation on how to read scholarly articles. Look closely at the example article shared just before the two minute mark.

https://digitalcommons.coastal.edu/kimbel-library-instructional-videos/9/

Practice identifying these key components in the following experiment: Food-Induced Emotional Resonance Improves Emotion Recognition.

In this chapter, you learned to

  • define and apply the scientific method to psychology
  • describe the strengths and weaknesses of descriptive, experimental, and correlational research
  • define the basic elements of a statistical investigation

Putting It Together: Psychological Research

Psychologists use the scientific method to examine human behavior and mental processes. Some of the methods you learned about include descriptive, experimental, and correlational research designs.

Watch the CrashCourse video to review the material you learned, then read through the following examples and see if you can come up with your own design for each type of study.

You can view the transcript for “Psychological Research: Crash Course Psychology #2” here (opens in new window).

Case Study: a detailed analysis of a particular person, group, business, event, etc. This approach is commonly used to to learn more about rare examples with the goal of describing that particular thing.

  • Ted Bundy was one of America’s most notorious serial killers who murdered at least 30 women and was executed in 1989. Dr. Al Carlisle evaluated Bundy when he was first arrested and conducted a psychological analysis of Bundy’s development of his sexual fantasies merging into reality (Ramsland, 2012). Carlisle believes that there was a gradual evolution of three processes that guided his actions: fantasy, dissociation, and compartmentalization (Ramsland, 2012). Read   Imagining Ted Bundy  (http://goo.gl/rGqcUv) for more information on this case study.

Naturalistic Observation : a researcher unobtrusively collects information without the participant’s awareness.

  • Drain and Engelhardt (2013) observed six nonverbal children with autism’s evoked and spontaneous communicative acts. Each of the children attended a school for children with autism and were in different classes. They were observed for 30 minutes of each school day. By observing these children without them knowing, they were able to see true communicative acts without any external influences.

Survey : participants are asked to provide information or responses to questions on a survey or structure assessment.

  • Educational psychologists can ask students to report their grade point average and what, if anything, they eat for breakfast on an average day. A healthy breakfast has been associated with better academic performance (Digangi’s 1999).
  • Anderson (1987) tried to find the relationship between uncomfortably hot temperatures and aggressive behavior, which was then looked at with two studies done on violent and nonviolent crime. Based on previous research that had been done by Anderson and Anderson (1984), it was predicted that violent crimes would be more prevalent during the hotter time of year and the years in which it was hotter weather in general. The study confirmed this prediction.

Longitudinal Study: researchers   recruit a sample of participants and track them for an extended period of time.

  • In a study of a representative sample of 856 children Eron and his colleagues (1972) found that a boy’s exposure to media violence at age eight was significantly related to his aggressive behavior ten years later, after he graduated from high school.

Cross-Sectional Study:  researchers gather participants from different groups (commonly different ages) and look for differences between the groups.

  • In 1996, Russell surveyed people of varying age groups and found that people in their 20s tend to report being more lonely than people in their 70s.

Correlational Design:  two different variables are measured to determine whether there is a relationship between them.

  • Thornhill et al. (2003) had people rate how physically attractive they found other people to be. They then had them separately smell t-shirts those people had worn (without knowing which clothes belonged to whom) and rate how good or bad their body oder was. They found that the more attractive someone was the more pleasant their body order was rated to be.
  • Clinical psychologists can test a new pharmaceutical treatment for depression by giving some patients the new pill and others an already-tested one to see which is the more effective treatment.

American Cancer Society. (n.d.). History of the cancer prevention studies. Retrieved from http://www.cancer.org/research/researchtopreventcancer/history-cancer-prevention-study

American Psychological Association. (2009). Publication Manual of the American Psychological Association (6th ed.). Washington, DC: Author.

American Psychological Association. (n.d.). Research with animals in psychology. Retrieved from https://www.apa.org/research/responsible/research-animals.pdf

Arnett, J. (2008). The neglected 95%: Why American psychology needs to become less American. American Psychologist, 63(7), 602–614.

Barton, B. A., Eldridge, A. L., Thompson, D., Affenito, S. G., Striegel-Moore, R. H., Franko, D. L., . . . Crockett, S. J. (2005). The relationship of breakfast and cereal consumption to nutrient intake and body mass index: The national heart, lung, and blood institute growth and health study. Journal of the American Dietetic Association, 105(9), 1383–1389. Retrieved from http://dx.doi.org/10.1016/j.jada.2005.06.003

Chwalisz, K., Diener, E., & Gallagher, D. (1988). Autonomic arousal feedback and emotional experience: Evidence from the spinal cord injured. Journal of Personality and Social Psychology, 54, 820–828.

Dominus, S. (2011, May 25). Could conjoined twins share a mind? New York Times Sunday Magazine. Retrieved from http://www.nytimes.com/2011/05/29/magazine/could-conjoined-twins-share-a-mind.html?_r=5&hp&

Fanger, S. M., Frankel, L. A., & Hazen, N. (2012). Peer exclusion in preschool children’s play: Naturalistic observations in a playground setting. Merrill-Palmer Quarterly, 58, 224–254.

Fiedler, K. (2004). Illusory correlation. In R. F. Pohl (Ed.), Cognitive illusions: A handbook on fallacies and biases in thinking, judgment and memory (pp. 97–114). New York, NY: Psychology Press.

Frantzen, L. B., Treviño, R. P., Echon, R. M., Garcia-Dominic, O., & DiMarco, N. (2013). Association between frequency of ready-to-eat cereal consumption, nutrient intakes, and body mass index in fourth- to sixth-grade low-income minority children. Journal of the Academy of Nutrition and Dietetics, 113(4), 511–519.

Harper, J. (2013, July 5). Ice cream and crime: Where cold cuisine and hot disputes intersect. The Times-Picaune. Retrieved from http://www.nola.com/crime/index.ssf/2013/07/ice_cream_and_crime_where_hot.html

Jenkins, W. J., Ruppel, S. E., Kizer, J. B., Yehl, J. L., & Griffin, J. L. (2012). An examination of post 9-11 attitudes towards Arab Americans. North American Journal of Psychology, 14, 77–84.

Jones, J. M. (2013, May 13). Same-sex marriage support solidifies above 50% in U.S. Gallup Politics. Retrieved from http://www.gallup.com/poll/162398/sex-marriage-support-solidifies-above.aspx

Kobrin, J. L., Patterson, B. F., Shaw, E. J., Mattern, K. D., & Barbuti, S. M. (2008). Validity of the SAT for predicting first-year college grade point average (Research Report No. 2008-5). Retrieved from https://research.collegeboard.org/sites/default/files/publications/2012/7/researchreport-2008-5-validity-sat-predicting-first-year-college-grade-point-average.pdf

Lewin, T. (2014, March 5). A new SAT aims to realign with schoolwork. New York Times. Retreived from http://www.nytimes.com/2014/03/06/education/major-changes-in-sat-announced-by-college-board.html.

Lowry, M., Dean, K., & Manders, K. (2010). The link between sleep quantity and academic performance for the college student. Sentience: The University of Minnesota Undergraduate Journal of Psychology, 3(Spring), 16–19. Retrieved from http://www.psych.umn.edu/sentience/files/SENTIENCE_Vol3.pdf

McKie, R. (2010, June 26). Chimps with everything: Jane Goodall’s 50 years in the jungle. The Guardian. Retrieved from http://www.theguardian.com/science/2010/jun/27/jane-goodall-chimps-africa-interview

Offit, P. (2008). Autism’s false prophets: Bad science, risky medicine, and the search for a cure. New York: Columbia University Press.

Perkins, H. W., Haines, M. P., & Rice, R. (2005). Misperceiving the college drinking norm and related problems: A nationwide study of exposure to prevention information, perceived norms and student alcohol misuse. J. Stud. Alcohol, 66(4), 470–478.

Rimer, S. (2008, September 21). College panel calls for less focus on SATs. The New York Times. Retrieved from http://www.nytimes.com/2008/09/22/education/22admissions.html?_r=0

Rothstein, J. M. (2004). College performance predictions and the SAT. Journal of Econometrics, 121, 297–317.

Rotton, J., & Kelly, I. W. (1985). Much ado about the full moon: A meta-analysis of lunar-lunacy research. Psychological Bulletin, 97(2), 286–306. doi:10.1037/0033-2909.97.2.286

Santelices, M. V., & Wilson, M. (2010). Unfair treatment? The case of Freedle, the SAT, and the standardization approach to differential item functioning. Harvard Education Review, 80, 106–134.

Sears, D. O. (1986). College sophomores in the laboratory: Influences of a narrow data base on social psychology’s view of human nature. Journal of Personality and Social Psychology, 51, 515–530.

Tuskegee University. (n.d.). About the USPHS Syphilis Study. Retrieved from http://www.tuskegee.edu/about_us/centers_of_excellence/bioethics_center/about_the_usphs_syphilis_study.aspx.

CC licensed content, Original

  • Psychological Research Methods. Provided by : Karenna Malavanti. License : CC BY-SA: Attribution ShareAlike

CC licensed content, Shared previously

  • Psychological Research. Provided by : OpenStax College. License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction. Located at : https://openstax.org/books/psychology-2e/pages/2-introduction .
  • Why It Matters: Psychological Research. Provided by : Lumen Learning. License : CC BY: Attribution   Located at: https://pressbooks.online.ucf.edu/lumenpsychology/chapter/introduction-15/
  • Introduction to The Scientific Method. Provided by : Lumen Learning. License : CC BY: Attribution   Located at:   https://pressbooks.online.ucf.edu/lumenpsychology/chapter/outcome-the-scientific-method/
  • Research picture. Authored by : Mediterranean Center of Medical Sciences. Provided by : Flickr. License : CC BY: Attribution   Located at : https://www.flickr.com/photos/mcmscience/17664002728 .
  • The Scientific Process. Provided by : Lumen Learning. License : CC BY-SA: Attribution ShareAlike   Located at:  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/reading-the-scientific-process/
  • Ethics in Research. Provided by : Lumen Learning. License : CC BY: Attribution   Located at:  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/ethics/
  • Ethics. Authored by : OpenStax College. Located at : https://openstax.org/books/psychology-2e/pages/2-4-ethics . License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction .
  • Introduction to Approaches to Research. Provided by : Lumen Learning. License : CC BY-NC-SA: Attribution NonCommercial ShareAlike   Located at:   https://pressbooks.online.ucf.edu/lumenpsychology/chapter/outcome-approaches-to-research/
  • Lec 2 | MIT 9.00SC Introduction to Psychology, Spring 2011. Authored by : John Gabrieli. Provided by : MIT OpenCourseWare. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike Located at : https://www.youtube.com/watch?v=syXplPKQb_o .
  • Paragraph on correlation. Authored by : Christie Napa Scollon. Provided by : Singapore Management University. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike Located at : http://nobaproject.com/modules/research-designs?r=MTc0ODYsMjMzNjQ%3D . Project : The Noba Project.
  • Descriptive Research. Provided by : Lumen Learning. License : CC BY-SA: Attribution ShareAlike   Located at: https://pressbooks.online.ucf.edu/lumenpsychology/chapter/reading-clinical-or-case-studies/
  • Approaches to Research. Authored by : OpenStax College.  License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction. Located at : https://openstax.org/books/psychology-2e/pages/2-2-approaches-to-research
  • Analyzing Findings. Authored by : OpenStax College. Located at : https://openstax.org/books/psychology-2e/pages/2-3-analyzing-findings . License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction.
  • Experiments. Provided by : Lumen Learning. License : CC BY: Attribution   Located at:  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/reading-conducting-experiments/
  • Research Review. Authored by : Jessica Traylor for Lumen Learning. License : CC BY: Attribution Located at:  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/reading-conducting-experiments/
  • Introduction to Statistics. Provided by : Lumen Learning. License : CC BY: Attribution   Located at:  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/outcome-statistical-thinking/
  • histogram. Authored by : Fisher’s Iris flower data set. Provided by : Wikipedia.
  • License : CC BY-SA: Attribution-ShareAlike   Located at : https://en.wikipedia.org/wiki/Wikipedia:Meetup/DC/Statistics_Edit-a-thon#/media/File:Fisher_iris_versicolor_sepalwidth.svg .
  • Statistical Thinking. Authored by : Beth Chance and Allan Rossman . Provided by : California Polytechnic State University, San Luis Obispo.  
  • License : CC BY-NC-SA: Attribution-NonCommerci al-S hareAlike .  License Terms : http://nobaproject.com/license-agreement   Located at : http://nobaproject.com/modules/statistical-thinking . Project : The Noba Project.
  • Drawing Conclusions from Statistics. Authored by: Pat Carroll and Lumen Learning. Provided by : Lumen Learning. License : CC BY: Attribution   Located at: https://pressbooks.online.ucf.edu/lumenpsychology/chapter/reading-drawing-conclusions-from-statistics/
  • Statistical Thinking. Authored by : Beth Chance and Allan Rossman, California Polytechnic State University, San Luis Obispo. Provided by : Noba. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike Located at : http://nobaproject.com/modules/statistical-thinking .
  • The Replication Crisis. Authored by : Colin Thomas William. Provided by : Ivy Tech Community College. License: CC BY: Attribution
  • How to Read Research. Provided by : Lumen Learning. License : CC BY: Attribution   Located at:  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/how-to-read-research/
  • What is a Scholarly Article? Kimbel Library First Year Experience Instructional Videos. 9. Authored by:  Joshua Vossler, John Watts, and Tim Hodge.  Provided by : Coastal Carolina University  License :  CC BY NC ND:  Attribution-NonCommercial-NoDerivatives Located at :  https://digitalcommons.coastal.edu/kimbel-library-instructional-videos/9/
  • Putting It Together: Psychological Research. Provided by : Lumen Learning. License : CC BY: Attribution   Located at:  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/putting-it-together-psychological-research/
  • Research. Provided by : Lumen Learning. License : CC BY: Attribution   Located at:

All rights reserved content

  • Understanding Driver Distraction. Provided by : American Psychological Association. License : Other. License Terms: Standard YouTube License Located at : https://www.youtube.com/watch?v=XToWVxS_9lA&list=PLxf85IzktYWJ9MrXwt5GGX3W-16XgrwPW&index=9 .
  • Correlation vs. Causality: Freakonomics Movie. License : Other. License Terms : Standard YouTube License Located at : https://www.youtube.com/watch?v=lbODqslc4Tg.
  • Psychological Research – Crash Course Psychology #2. Authored by : Hank Green. Provided by : Crash Course. License : Other. License Terms : Standard YouTube License Located at : https://www.youtube.com/watch?v=hFV71QPvX2I .

Public domain content

  • Researchers review documents. Authored by : National Cancer Institute. Provided by : Wikimedia. Located at : https://commons.wikimedia.org/wiki/File:Researchers_review_documents.jpg . License : Public Domain: No Known Copyright

grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing

well-developed set of ideas that propose an explanation for observed phenomena

(plural: hypotheses) tentative and testable statement about the relationship between two or more variables

an experiment must be replicable by another researcher

implies that a theory should enable us to make predictions about future events

able to be disproven by experimental results

implies that all data must be considered when evaluating a hypothesis

committee of administrators, scientists, and community members that reviews proposals for research involving human participants

process of informing a research participant about what to expect during an experiment, any risks involved, and the implications of the research, and then obtaining the person’s consent to participate

purposely misleading experiment participants in order to maintain the integrity of the experiment

when an experiment involved deception, participants are told complete and truthful information about the experiment at its conclusion

committee of administrators, scientists, veterinarians, and community members that reviews proposals for research involving non-human animals

research studies that do not test specific relationships between variables

research investigating the relationship between two or more variables

research method that uses hypothesis testing to make inferences about how one variable impacts and causes another

observation of behavior in its natural setting

inferring that the results for a sample apply to the larger population

when observations may be skewed to align with observer expectations

measure of agreement among observers on how they record and classify a particular event

observational research study focusing on one or a few people

list of questions to be answered by research participants—given as paper-and-pencil questionnaires, administered electronically, or conducted verbally—allowing researchers to collect data from a large number of people

subset of individuals selected from the larger population

overall group of individuals that the researchers are interested in

method of research using past records or data sets to answer various research questions, or to search for interesting patterns or relationships

studies in which the same group of individuals is surveyed or measured repeatedly over an extended period of time

compares multiple segments of a population at a single time

reduction in number of research participants as some drop out of the study over time

relationship between two or more variables; when two variables are correlated, one variable changes as the other does

number from -1 to +1, indicating the strength and direction of the relationship between variables, and usually represented by r

two variables change in the same direction, both becoming either larger or smaller

two variables change in different directions, with one becoming larger as the other becomes smaller; a negative correlation is not the same thing as no correlation

changes in one variable cause the changes in the other variable; can be determined only through an experimental research design

unanticipated outside factor that affects both variables of interest, often giving the false impression that changes in one variable causes changes in the other variable, when, in actuality, the outside factor causes changes in both variables

seeing relationships between two things when in reality no such relationship exists

tendency to ignore evidence that disproves ideas or beliefs

group designed to answer the research question; experimental manipulation is the only difference between the experimental and control groups, so any differences between the two are due to experimental manipulation rather than chance

serves as a basis for comparison and controls for chance factors that might influence the results of the study—by holding such factors constant across groups so that the experimental manipulation is the only difference between groups

description of what actions and operations will be used to measure the dependent variables and manipulate the independent variables

researcher expectations skew the results of the study

experiment in which the researcher knows which participants are in the experimental group and which are in the control group

experiment in which both the researchers and the participants are blind to group assignments

people's expectations or beliefs influencing or determining their experience in a given situation

variable that is influenced or controlled by the experimenter; in a sound experimental study, the independent variable is the only important difference between the experimental and control group

variable that the researcher measures to see how much effect the independent variable had

subjects of psychological research

subset of a larger population in which every member of the population has an equal chance of being selected

method of experimental group assignment in which all participants have an equal chance of being assigned to either group

consistency and reproducibility of a given result

accuracy of a given result in measuring what it is designed to measure

determines how likely any difference between experimental groups is due to chance

statistical probability that represents the likelihood that experimental results happened by chance

Psychological Science is the scientific study of mind, brain, and behavior. We will explore what it means to be human in this class. It has never been more important for us to understand what makes people tick, how to evaluate information critically, and the importance of history. Psychology can also help you in your future career; indeed, there are very little jobs out there with no human interaction!

Because psychology is a science, we analyze human behavior through the scientific method. There are several ways to investigate human phenomena, such as observation, experiments, and more. We will discuss the basics, pros and cons of each! We will also dig deeper into the important ethical guidelines that psychologists must follow in order to do research. Lastly, we will briefly introduce ourselves to statistics, the language of scientific research. While reading the content in these chapters, try to find examples of material that can fit with the themes of the course.

To get us started:

  • The study of the mind moved away Introspection to reaction time studies as we learned more about empiricism
  • Psychologists work in careers outside of the typical "clinician" role. We advise in human factors, education, policy, and more!
  • While completing an observation study, psychologists will work to aggregate common themes to explain the behavior of the group (sample) as a whole. In doing so, we still allow for normal variation from the group!
  • The IRB and IACUC are important in ensuring ethics are maintained for both human and animal subjects

Psychological Science: Understanding Human Behavior Copyright © by Karenna Malavanti is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Book Title: Research Methods in Psychology

Author: [Author removed at request of original publisher]

Cover image for Research Methods in Psychology

Download this book

  • Digital PDF
  • Pressbooks XML
  • OpenDocument

Book Description: While Research Methods in Psychology is fairly traditional— making it easy for you to use with your existing courses — it also emphasizes a fundamental idea that is often lost on undergraduates: research methods are not a peripheral concern in our discipline; they are central. For questions about this textbook please contact [email protected]

Book Information

Book description.

Research Methods in Psychology is adapted from a work produced by a publisher who has requested that they and the original author not receive attribution. This adapted edition is produced by the University of Minnesota Libraries Publishing through the eLearning Support Initiative. For questions about this textbook please contact [email protected]

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Library Home

Research Methods in Psychology - 2nd Canadian Edition

(2 reviews)

research method on psychology

Rajiv S. Jhangiani, Kwantlen Polytechnic University

I-Chant A. Chiang, Quest University Canada

Copyright Year: 2015

Publisher: BCcampus

Language: English

Formats Available

Conditions of use.

Attribution-NonCommercial-ShareAlike

Learn more about reviews.

Reviewed by Bettina Spencer, Professor of Psychology, Saint Mary's College on 12/4/23

This book covers all of the main topics in research methods for psychology students. I appreciate that it also includes sections on qualitative methods as well as how to present results. read more

Comprehensiveness rating: 5 see less

This book covers all of the main topics in research methods for psychology students. I appreciate that it also includes sections on qualitative methods as well as how to present results.

Content Accuracy rating: 4

All of the information on methods is accurate, but the book references 6th edition APA style rather than 7th edition. As such, instructors will have to modify this particular portion although the general information about writing in APA style is good.

Relevance/Longevity rating: 4

Aside from the 6th edition APA style, this book is generally relevant and up to date. It does, however, often reference classic social psychology studies without addressing the limitations in the sampling.

Clarity rating: 5

This book is very clearly written and easily accessible. The sections on statistics are especially clear and organized, which is useful because this is an area students often need extra support in. All of the technical terminology throughout the book is thoroughly explained.

Consistency rating: 5

There is consistent writing and clarity throughout this book. The technical terms are consistent throughout the book which is good because we, psychologists, do sometimes use different jargon for the same thing depending on our subfield. The sections all build off of one another and reference back to each other in a way that makes the book easy to use.

Modularity rating: 5

An instructor could easily assign certain sections of the book. For example, you could just assign the chapter on experimental design, or research ethics, etc. without assigning the whole. There are times where a later section will reference a study that was used an example earlier, but it always restates the results so the reader does not have to actually go back and read the previous section,

Organization/Structure/Flow rating: 5

This book is very well organized, beginning with theories and ethics, moving into the range of designs and approaches, and ending with how to present research and write statistics. The statistics sections almost feel like a bonus because students will most likely have taken a statistics course before taking a research methods course, so these parts serve as a good refresher.

Interface rating: 5

In the PDF version, sections are linked from the table of contents, and you can search and find specific sections quite easily.

Grammatical Errors rating: 5

The writing is very clear with no grammatical errors.

Cultural Relevance rating: 3

This book references many classic social psychology studies for it's examples, but many of those studies were conducted with white, middle-class Americans. These old studies can't be changed, but instructors should address the problems and limitations with these findings, and the book does not do that. It generally takes a "color blind" approach and does not really mention cultural differences, which is a problem for teaching. For example, topics such as how to collect and report demographics is much more complicated than reported in the book.

Reviewed by Lisa Elliott, Assistant Teaching Professor, Pennsylvania State University- The Behrend College on 2/1/18

The book covers all of the standard research methods topics that I cover in class. I believe that it is more comprehensive than most commercial texts as it includes how to write survey questions, a chapter on the significance/replicability... read more

The book covers all of the standard research methods topics that I cover in class. I believe that it is more comprehensive than most commercial texts as it includes how to write survey questions, a chapter on the significance/replicability discussion, and qualitative methodologies with grounded theory. In the past, I have added a separate lecture to discuss qualitative methodologies. I am glad to see it covered with comprehensiveness in this book. I also liked the indepth discussion of measurement in relation to statistical analysis, operationalizing, and developing new measures. This is a finer point that I cover in class but rarely see covered indepth in the text.

Content Accuracy rating: 5

My measure of accuracy, comprehensiveness, and clarity in a research methods textbook is how well the authors describe type I and type II errors. In this book, they use the metaphor of pregnancy: a type I error is a false positive such as when a man is diagnosed as pregnant; a type II error is a false negative such as when a clearly pregnant woman is diagnosed as not pregnant. This was illustrated very clearly with wonderful, tasteful photos. This difficult concept is the keystone for discussions on power and p value which are the topics that the authors tackle next. This example defines how carefully and well this book is written. If I were to place it next to publishers volumes of the same material. This book is better. It does a better job of describing important points in a coherent and clear manner. If there are mistakes, they must be very minor. All that I could find was a misspelled website url.

Relevance/Longevity rating: 5

The only concern about longevity is over the permanence of the urls referred to in the book. However, the book functions without the urls and they are easily updated by the instructor during the lecture. With the exception of the significance/replicability discussion, the material covered in a current methods course has remained consistent over the past decade. I don't foresee the significance/replicability discussion resolved in the near future. This is a challenge that students should be prepared to face as they begin as junior researchers. I appreciate the authors including this chapter in the book as I will use this book if only for these chapters. No commercial textbook that I know about has this information presented in such a clear and objective manner.

I enjoyed the writing. It was very clear and concise. It was much better than the usual textbooks that students are forced to muddle through. The authors used good examples which should be accessible to an undergraduate audience. I particularly like that the authors gave good examples and bad examples of important concepts. Then, they went into detail as to why particular items were good and what was good about them. They detailed why particular items were bad and what made them poor choices. Finally, they describe the outcome of bad choices in the larger scheme. There is much jargon in every methods textbook. These authors define things well in concrete terms. I particularly liked the clarity of writing in this book.

The chapters in this book all have the same format. The authors begin with a brief paragraph which focuses on a modern experiment or study. Then, they use that as a basis to describe the topic in detail. This approach introduces students to a variety of research in a very accessible way. Each chapter is formatted in this way. All of the chapters have sections which focus in detail on a particular topic. Then these topics are cross listed across the different chapters through hyperlinks. Each topic is short with a summary and a suggestion for exercises at the end.

Often, authors in Methods textbooks are unclear where to put important topics such as reliability, validity, operationalizing, what a p-value really means, and sampling. In the textbook that I currently use, the authors have put all of these items into one omnibus chapter. I find that I must go back to this chapter again throughout the semester and then search for the particular item within the chapter. I like how this book separates these items and concentrates on explaining them in depth. I also like how the authors chose to create hyperlinks to the other places in the book that used these items. This allows me, as the instructor, to reorder the chapters in a way that fits with the class. In some courses, not all chapters will be needed. I could use some chapters for a graduate course in methods along with another book. Then, I could use the same book in its entirety for the undergraduate course. Sometimes, I have students in a more advanced course who took Methods at a different university or not at all. I like that this book is free and modular. I can refer these students to this book for review before a qualifying exam or before an important lesson that relies on pre-existing methods knowledge.

I liked the order of the chapters. This is how i prefer to teach methods with the experiment chapters before the qualitative chapters. However, other instructors may like the opposite. The modularity of this book allows either approach. I also like that the book has hyperlinks between the chapters. Often, students will need to review reliability and validity when they get to quasi experimental designs (several chapters ahead). They will have forgotten this information. The hyperlinks make it easy to go back and review. The short sections also create an easiness that encourages exploration. Within the chapters, I like how the authors begin with a description of a study and then use that description to illustrate the points throughout the entire chapter. The descriptions are brief and interesting. Then, there is the APA citation at the bottom of the page. It is easy to look up the article this way. Other textbooks put all of the references at the back of the book. It is much more effortful to find an interesting article when the references are at the back. By the time that you have found it, you forget what you just read.

I liked that the book was available in a variety of formats. I downloaded the pdf on my smart phone and found it fairly easy to read. Although I could not set bookmarks and that was frustrating. I also like to make comments and notes in my books. I think with a different app, I would be able to do these things just fine. Maybe there could be a few recommendations for apps on the website and which format works best with which app. I like that students can download the book on their phone. Most of them do this anyway from the publishers website. For the important classes (in their mind), they also have the printed copy or they rent the printed copy too. With the pdf, they have the option to print it out.

I found no grammar or spelling errors. There was a link that seemed to be misspelled on page 71 the link to Hanover's Rescorla Wagner page.

Cultural Relevance rating: 5

As an instructor who is a woman at a male dominated engineering school, sometimes the examples in psychology textbooks make me uncomfortable to discuss in class. This book's examples would not make me uncomfortable. There seems to be an equal number of men and women portrayed in the book as researchers and I don't sense a bias against any particular group. The writing is objective and sticks to the point without an agenda.

I wish that you had added a bit more about noisey data and maybe used some examples that had outliers. I also wish that you had discussed the issue of cherry picking.

Many commercial textbooks focus on research as a student's exploration or journey in science. Students misunderstand this perspective. I was very glad that you urge students to look for research ideas in the discussion section of peer reviewed articles, to base their methods on those that are previously published, and to use validated measures in their work. This approach trains students to rely on previous research and build on sound scientific foundations using theory. Thank you.

Table of Contents

Chapter 1: The Science of Psychology

  • Understanding Science
  • Scientific Research in Psychology
  • Science and Common Sense
  • Science and Clinical Practice

Chapter 2: Getting Started in Research

  • Basic Concepts
  • Generating Good Research Questions
  • Reviewing the Research Literature

Chapter 3: Research Ethics

  • Moral Foundations of Ethical Research
  • From Moral Principles to Ethics Codes
  • Putting Ethics Into Practice

Chapter 4: Theory in Psychology

  • Phenomena and Theories
  • The Variety of Theories in Psychology
  • Using Theories in Psychological Research

Chapter 5: Psychological Measurement

  • Understanding Psychological Measurement
  • Reliability and Validity of Measurement
  • Practical Strategies for Psychological Measurement

Chapter 6: Experimental Research

  • Experiment Basics
  • Experimental Design
  • Conducting Experiments

Chapter 7: Nonexperimental Research

  • Overview of Nonexperimental Research
  • Correlational Research
  • Quasi-Experimental Research
  • Qualitative Research

Chapter 8: Complex Research Designs

  • Multiple Dependent Variables
  • Multiple Independent Variables
  • Complex Correlational Designs

Chapter 9: Survey Research

  • Overview of Survey Research
  • Constructing Survey Questionnaires
  • Conducting Surveys

Chapter 10: Single-Subject Research

  • Overview of Single-Subject Research
  • Single-Subject Research Designs
  • The Single-Subject Versus Group “Debate”

Chapter 11: Presenting Your Research

  • American Psychological Association (APA) Style
  • Writing a Research Report in American Psychological Association (APA) Style
  • Other Presentation Formats

Chapter 12: Descriptive Statistics

  • Describing Single Variables
  • Describing Statistical Relationships
  • Expressing Your Results
  • Conducting Your Analyses

Chapter 13: Inferential Statistics

  • Understanding Null Hypothesis Testing
  • Some Basic Null Hypothesis Tests
  • Additional Considerations
  • From the “Replicability Crisis” to Open Science Practices

Ancillary Material

About the book.

The present adaptation constitutes the second Canadian edition and was co-authored by Rajiv S. Jhangiani (Kwantlen Polytechnic University) and I-Chant A. Chiang (Quest University Canada) and is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Revisions include the following:

Chapter 1: Added a description of the “Many Labs Replication Project,” added a reference to the Neurobonkers website, and embedded videos about open access publishing, driver distraction, two types of empirical studies, and the use of evidence to evaluate the world around us. Chapter 2: Updated the exemplar study in the chapter overview, added relevant examples and descriptions of contemporary studies, provided a link to an interactive visualization for correlations, added a description of double-blind peer review, added a figure to illustrate a spurious correlation, and embedded videos about how to develop a good research topic, searching the PsycINFO database, using Google Scholar, and how to read an academic paper. Chapter 3: Added in LaCour ethical violation. Revised chapter headings and order to reflect TCPS-2 moral principles. Chapter 4: Added in difference between laws and effects and theoretical framework. Chapter 5: Added fuller descriptions of the levels of measurement, added a table to summarize the levels of measurement, added a fuller description of the MMPI, removed the discussion of the IAT, and added descriptions of concurrent, predictive, and convergent validity. Chapter 6: Added in construct validity, statistical validity, mundane realism, psychological realism, Latin Square Design. Updated references. Chapter 7: Added in mixed-design studies and fuller discussion of qualitative-quantitative debate. Chapter 8: Added an exercise to sketch the 8 possible results of a 2 x 2 factorial experiment. Chapter 9: Added information about Canadian Election Studies, more references, specific guidelines about order and open-ended questions, and rating scale. Updated online survey creation sites. Chapter 11: Updated examples and links to online resources. Chapter 13: Added discussion of p-curve and BASP announcement about banning p-values. Added a section that introduces the “replicability crisis” in psychology, along with discussions of questionable research practices, best practices in research design and data management, and the emergence of open science practices and Transparency and Openness Promotion guidelines.

Glossary of key terms: Added.

In addition, throughout the textbook, we revised the language to be more precise and to improve flow, added links to other chapters, added images, updated hyperlinks, corrected spelling and formatting errors, and changed references to reflect the contemporary Canadian context.

About the Contributors

Rajiv S. Jhangiani . Faculty member in the Department of Psychology at Kwantlen Polytechnic University, where I conduct research on open education, the scholarship of teaching and learning, and political psychology.

I am also an Open Learning Faculty Member at Thompson Rivers University, an OER Research Fellow with the Open Education Group, and an Associate Editor of Psychology Learning & Teaching. I formerly served as the Associate Editor of NOBA Psychology and as a Faculty Fellow with the BC Open Textbook Project

My professional affiliations include the Association for Psychological Science, the Society for the Teaching of Psychology, the Society for Personality & Social Psychology, the Social Psychology Network, Sigma Xi, and the International Society of Political Psychology.

I-Chant A. Chiang . Growing up in a bilingual environment was the start of I-Chant’s interest in the intersection of language, culture, and thinking. Through studying English, she pursued her love of literature, writing and words. At the same time, I-Chant became fascinated with studying human behaviour through psychology. She received a BA and BS from the University of Illinois at Urbana-Champaign before heading to Stanford University for an MA and PhD in psychology. Her dual interests are combined by studying the psychology of language in the context of other disciplines, such as political science, communication, and education. Prior to Quest, I-Chant was at Aberystwyth University in Wales where she was a founding member of their psychology department. She recently published a textbook, Research Methods in Psychology – 2nd Canadian Edition, and an edited volume, Explorations in Political Psychology.

Contribute to this Page

Explore Psychology

Psychological Research Methods: Types and Tips

Categories Research Methods

Psychological research methods are the techniques used by scientists and researchers to study human behavior and mental processes. These methods are used to gather empirical evidence.

The goal of psychological research methods is to obtain objective and verifiable data collected through scientific experimentation and observation. 

The research methods that are used in psychology are crucial for understanding how and why people behave the way they do, as well as for developing and testing theories about human behavior.

Table of Contents

Reasons to Learn More About Psychological Research Methods

One of the key goals of psychological research is to make sure that the data collected is reliable and valid.

  • Reliability means that the data is consistent and can be replicated
  • Validity refers to the accuracy of the data collected

Researchers must take great care to ensure that their research methods are reliable and valid, as this is essential for drawing accurate conclusions and making valid claims about human behavior.

High school and college students who are interested in psychology can benefit greatly from learning about research methods. Understanding how psychologists study human behavior and mental processes can help students develop critical thinking skills and a deeper appreciation for the complexity of human behavior.

Having an understanding of these research methods can prepare students for future coursework in psychology, as well as for potential careers in the field.

Quantitative vs. Qualitative Psychological Research Methods

Psychological research methods can be broadly divided into two main types: quantitative and qualitative. These two methods differ in their approach to data collection and analysis.

Quantitative Research Methods

Quantitative research methods involve collecting numerical data through controlled experiments, surveys, and other objective measures.

The goal of quantitative research is to identify patterns and relationships in the data that can be analyzed statistically.

Researchers use statistical methods to test hypotheses, identify significant differences between groups, and make predictions about future behavior.

Qualitative Research Methods

Qualitative research methods, on the other hand, involve collecting non-numerical data through open-ended interviews, observations, and other subjective measures.

Qualitative research aims to understand the subjective experiences and perspectives of individuals and groups.

Researchers use methods such as content analysis and thematic analysis to identify themes and patterns in the data and to develop rich descriptions of the phenomenon under study.

How Quantitative and Qualitative Methods Are Used

While quantitative and qualitative research methods differ in their approach to data collection and analysis, they are often used together to gain a more complete understanding of complex phenomena.

For example, a researcher studying the impact of social media on mental health might use a quantitative survey to gather numerical data on social media use and a qualitative interview to gain insight into participants’ subjective experiences with social media.

Types of Psychological Research Methods

There are several types of research methods used in psychology, including experiments, surveys, case studies, and observational studies. Each method has its strengths and weaknesses, and researchers must choose the most appropriate method based on their research question and the data they hope to collect.

Case Studies

A case study is a research method used in psychology to investigate an individual, group, or event in great detail. In a case study, the researcher gathers information from a variety of sources, including:

  • Observation
  • Document analysis

These methods allow researchers to gain an in-depth understanding of the case being studied.

Case studies are particularly useful when the phenomenon under investigation is rare or complex, and when it is difficult to replicate in a laboratory setting.

Surveys are a commonly used research method in psychology that involve gathering data from a large number of people about their thoughts, feelings, behaviors, and attitudes.

Surveys can be conducted in a variety of ways, including:

  • In-person interviews
  • Online questionnaires
  • Paper-and-pencil surveys

Surveys are particularly useful when researchers want to study attitudes or behaviors that are difficult to observe directly or when they want to generalize their findings to a larger population.

Experimental Psychological Research Methods

Experimental studies are a research method commonly used in psychology to investigate cause-and-effect relationships between variables. In an experimental study, the researcher manipulates one or more variables to see how they affect another variable, while controlling for other factors that may influence the outcome.

Experimental studies are considered the gold standard for establishing cause-and-effect relationships, as they allow researchers to control for potential confounding variables and to manipulate variables in a systematic way.

Correlational Psychological Research Methods

Correlational research is a research method used in psychology to investigate the relationship between two or more variables without manipulating them. The goal of correlational research is to determine the extent to which changes in one variable are associated with changes in another variable.

In other words, correlational research aims to establish the direction and strength of the relationship between two or more variables.

Naturalistic Observation

Naturalistic observation is a research method used in psychology to study behavior in natural settings, without any interference or manipulation from the researcher.

The goal of naturalistic observation is to gain insight into how people or animals behave in their natural environment without the influence of laboratory conditions.

Meta-Analysis

A meta-analysis is a research method commonly used in psychology to combine and analyze the results of multiple studies on a particular topic.

The goal of a meta-analysis is to provide a comprehensive and quantitative summary of the existing research on a topic, in order to identify patterns and relationships that may not be apparent in individual studies.

Tips for Using Psychological Research Methods

Here are some tips for high school and college students who are interested in using psychological research methods:

Understand the different types of research methods: 

Before conducting any research, it is important to understand the different types of research methods that are available, such as surveys, case studies, experiments, and naturalistic observation.

Each method has its strengths and limitations, and selecting the appropriate method depends on the research question and variables being investigated.

Develop a clear research question: 

A good research question is essential for guiding the research process. It should be specific, clear, and relevant to the field of psychology. It is also important to consider ethical considerations when developing a research question.

Use proper sampling techniques: 

Sampling is the process of selecting participants for a study. It is important to use proper sampling techniques to ensure that the sample is representative of the population being studied.

Random sampling is considered the gold standard for sampling, but other techniques, such as convenience sampling, may also be used depending on the research question.

Use reliable and valid measures:

It is important to use reliable and valid measures to ensure the data collected is accurate and meaningful. This may involve using established measures or developing new measures and testing their reliability and validity.

Consider ethical issues:

It is important to consider ethical considerations when conducting psychological research, such as obtaining informed consent from participants, maintaining confidentiality, and minimizing any potential harm to participants.

In many cases, you will need to submit your study proposal to your school’s institutional review board for approval.

Analyze and interpret the data appropriately : 

After collecting the data, it is important to analyze and interpret the data appropriately. This may involve using statistical techniques to identify patterns and relationships between variables, and using appropriate software tools for analysis.

Communicate findings clearly: 

Finally, it is important to communicate the findings clearly in a way that is understandable to others. This may involve writing a research report, giving a presentation, or publishing a paper in a scholarly journal.

Clear communication is essential for advancing the field of psychology and informing future research.

Frequently Asked Questions

What are the 5 methods of psychological research.

The five main methods of psychological research are:

  • Experimental research : This method involves manipulating one or more independent variables to observe their effect on one or more dependent variables while controlling for other variables. The goal is to establish cause-and-effect relationships between variables.
  • Correlational research : This method involves examining the relationship between two or more variables, without manipulating them. The goal is to determine whether there is a relationship between the variables and the strength and direction of that relationship.
  • Survey research : This method involves gathering information from a sample of participants using questionnaires or interviews. The goal is to collect data on attitudes, opinions, behaviors, or other variables of interest.
  • Case study research : This method involves an in-depth analysis of a single individual, group, or event. The goal is to gain insight into specific behaviors, attitudes, or phenomena.
  • Naturalistic observation research : This method involves observing and recording behavior in natural settings without any manipulation or interference from the researcher. The goal is to gain insight into how people or animals behave in their natural environment.

What is the most commonly used psychological research method?

The most common research method used in psychology varies depending on the research question and the variables being investigated. However, correlational research is one of the most frequently used methods in psychology.

This is likely because correlational research is useful in studying a wide range of psychological phenomena, and it can be used to examine the relationships between variables that cannot be manipulated or controlled, such as age, gender, and personality traits. 

Experimental research is also a widely used method in psychology, particularly in the areas of cognitive psychology , social psychology , and developmental psychology .

Other methods, such as survey research, case study research, and naturalistic observation, are also commonly used in psychology research, depending on the research question and the variables being studied.

How do you know which research method to use?

Deciding which type of research method to use depends on the research question, the variables being studied, and the practical considerations involved. Here are some general guidelines to help students decide which research method to use:

  • Identify the research question : The first step is to clearly define the research question. What are you trying to study? What is the hypothesis you want to test? Answering these questions will help you determine which research method is best suited for your study.
  • Choose your variables : Identify the independent and dependent variables involved in your research question. This will help you determine whether an experimental or correlational research method is most appropriate.
  • Consider your resources : Think about the time, resources, and ethical considerations involved in conducting the research. For example, if you are working on a tight budget, a survey or correlational research method may be more feasible than an experimental study.
  • Review existing literature : Conducting a literature review of previous studies on the topic can help you identify the most appropriate research method. This can also help you identify gaps in the literature that your study can fill.
  • Consult with a mentor or advisor : If you are still unsure which research method to use, consult with a mentor or advisor who has experience in conducting research in your area of interest. They can provide guidance and help you make an informed decision.

Scholtz SE, de Klerk W, de Beer LT. The use of research methods in psychological research: A systematised review . Front Res Metr Anal . 2020;5:1. doi:10.3389/frma.2020.00001

Palinkas LA. Qualitative and mixed methods in mental health services and implementation research . J Clin Child Adolesc Psychol . 2014;43(6):851-861. doi:10.1080/15374416.2014.910791

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach . BMC Med Res Methodol . 2011;11(1):100. doi:10.1186/1471-2288-11-100

Psychology A Level

Overview – Research Methods

Research methods are how psychologists and scientists come up with and test their theories. The A level psychology syllabus covers several different types of studies and experiments used in psychology as well as how these studies are conducted and reported:

  • Types of psychological studies (including experiments , observations , self-reporting , and case studies )
  • Scientific processes (including the features of a study , how findings are reported , and the features of science in general )
  • Data handling and analysis (including descriptive statistics and different ways of presenting data ) and inferential testing

Note: Unlike all other sections across the 3 exam papers, research methods is worth 48 marks instead of 24. Not only that, the other sections often include a few research methods questions, so this topic is the most important on the syllabus!

research method on psychology

Example question: Design a matched pairs experiment the researchers could conduct to investigate differences in toy preferences between boys and girls. [12 marks]

Types of study

There are several different ways a psychologist can research the mind, including:

  • Experiments
  • Observation
  • Self-reporting

Case studies

Each of these methods has its strengths and weaknesses. Different methods may be better suited to different research studies.

Experimental method

The experimental method looks at how variables affect outcomes. A variable is anything that changes between two situations ( see below for the different types of variables ). For example, Bandura’s Bobo the doll experiment looked at how changing the variable of the role model’s behaviour affected how the child played.

Experimental designs

Experiments can be designed in different ways, such as:

  • Independent groups: Participants are divided into two groups. One group does the experiment with variable 1, the other group does the experiment with variable 2. Results are compared.
  • Repeated measures: Participants are not divided into groups. Instead, all participants do the experiment with variable 1, then afterwards the same participants do the experiment with variable 2. Results are compared.

A matched pairs design is another form of independent groups design. Participants are selected. Then, the researchers recruit another group of participants one-by-one to match the characteristics of each member of the original group. This provides two groups that are relevantly similar and controls for differences between groups that might skew results. The experiment is then conducted as a normal independent groups design.

Types of experiment

Laboratory vs. field experiment.

Experiments are carried out in two different types of settings:

  • E.g. Bandura’s Bobo the doll experiment or Asch’s conformity experiments
  • E.g. Bickman’s study of the effects of uniforms on obedience

Strengths of laboratory experiment over field experiment:

The controlled environment of a laboratory experiment minimises the risk of other variables outside the researchers’ control skewing the results of the trial, making it more clear what (if any) the causal effects of a variable are. Because the environment is tightly controlled, any changes in outcome must be a result of a change in the variable.

Weaknesses of laboratory experiment over field experiment:

However, the controlled nature of a laboratory experiment might reduce its ecological validity . Results obtained in an artificial environment might not translate to real-life. Further, participants may be influenced by demand characteristics : They know they are taking part in a test, and so behave how they think they’re expected to behave rather than how they would naturally behave.

Natural and quasi experiment

Natural experiments are where variables vary naturally. In other words, the researcher can’t or doesn’t manipulate the variables . There are two types of natural experiment:

  • E.g. studying the effect a change in drug laws (variable) has on addiction
  • E.g. studying differences between men (variable) and women (variable)

Observational method

The observational method looks at and examines behaviour. For example, Zimbardo’s prison study observed how participants behaved when given certain social roles.

Observational design

Behavioural categories.

An observational study will use behavioural categories to prioritise which behaviours are recorded and ensure the different observers are consistent in what they are looking for.

For example, a study of the effects of age and sex on stranger anxiety in infants might use the following behavioural categories to organise observational data:

Rather than writing complete descriptions of behaviours, the behaviours can be coded into categories. For example, IS = interacted with stranger, and AS = avoided stranger. Researchers can also create numerical ratings to categorise behaviour, like the anxiety rating example above.

Inter-observer reliability : In order for observations to produce reliable findings, it is important that observers all code behaviour in the same way. For example, researchers would have to make it very clear to the observers what the difference between a ‘3’ on the anxiety scale above would be compared to a ‘7’. This inter-observer reliability avoids subjective interpretations of the different observers skewing the findings.

Event and time sampling

Because behaviour is constant and varied, it may not be possible to record every single behaviour during the observation period. So, in addition to categorising behaviour , study designers will also decide when to record a behaviour:

  • Event sampling: Counting how many times the participant behaves in a certain way.
  • Time sampling: Recording participant behaviour at regular time intervals. For example, making notes of the participant’s behaviour after every 1 minute has passed.

Note: Don’t get event and time sampling confused with participant sampling , which is how researchers select participants to study from a population.

Types of observation

Naturalistic vs. controlled.

Observations can be made in either a naturalistic or a controlled setting:

  • E.g. setting up cameras in an office or school to observe how people interact in those environments
  • E.g. Ainsworth’s strange situation or Zimbardo’s prison study

Covert vs. overt

Observations can be either covert or overt :

  • E.g. setting up hidden cameras in an office
  • E.g. Zimbardo’s prison study

Participant vs. non-participant

In observational studies, the researcher/observer may or may not participate in the situation being observed:

  • E.g. in Zimbardo’s prison study , Zimbardo played the role of prison superintendent himself
  • E.g. in Bandura’s Bobo the doll experiment and Ainsworth’s strange situation , the observers did not interact with the children being observed

Self-report method

Self-report methods get participants to provide information about themselves. Information can be obtained via questionnaires or interviews .

Types of self-report

Questionnaires.

A questionnaire is a standardised list of questions that all participants in a study answer. For example, Hazan and Shaver used questionnaires to collate self-reported data from participants in order to identify correlations between attachment as infants and romantic attachment as adults.

Questions in a questionnaire can be either open or closed :

  • >8 hours
  • E.g. “How did you feel when you thought you were administering a lethal shock?” or “What do you look for in a romantic partner and why?”

Strengths of questionnaires:

  • Quantifiable: Closed questions provide quantifiable data in a consistent format, which enables to statistically analyse information in an objective way.
  • Replicability: Because questionnaires are standardised (i.e. pre-set, all participants answer the same questions), studies involving them can be easily replicated . This means the results can be confirmed by other researchers, strengthening certainty in the findings.

Weaknesses of questionnaires:

  • Biased samples: Questionnaires handed out to people at random will select for participants who actually have the time and are willing to complete the questionnaire. As such, the responses may be biased towards those of people who e.g. have a lot of spare time.
  • Dishonest answers: Participants may lie in their responses – particularly if the true answer is something they are embarrassed or ashamed of (e.g. on controversial topics or taboo topics like sex)
  • Misunderstanding/differences in interpretation: Different participants may interpret the same question differently. For example, the “are you religious?” example above could be interpreted by one person to mean they go to church every Sunday and pray daily, whereas another person may interpret religious to mean a vague belief in the supernatural.
  • Less detail: Interviews may be better suited for detailed information – especially on sensitive topics – than questionnaires. For example, participants are unlikely to write detailed descriptions of private experiences in a questionnaire handed to them on the street.

In an interview , participants are asked questions in person. For example, Bowlby interviewed 44 children when studying the effects of maternal deprivation.

Interviews can be either structured or unstructured :

  • Structured interview: Questions are standardised and pre-set. The interviewer asks all participants the same questions in the same order.
  • Unstructured interview: The interviewer discusses a topic with the participant in a less structured and more spontaneous way, pursuing avenues of discussion as they come up.

Interviews can also be a cross between the two – these are called semi-structured interviews .

Strengths of interviews:

  • More detail: Interviews – particularly unstructured interviews conducted by a skilled interviewer – enable researchers to delve deeper into topics of interest, for example by asking follow-up questions. Further, the personal touch of an interviewer may make participants more open to discussing personal or sensitive issues.
  • Replicability: Structured interviews are easily replicated because participants are all asked the same pre-set list of questions. This replicability means the results can be confirmed by other researchers, strengthening certainty in the findings.

Weaknesses of interviews:

  • Lack of quantifiable data: Although unstructured interviews enable researchers to delve deeper into interesting topics, this lack of structure may produce difficulties in comparing data between participants. For example, one interview may go down one avenue of discussion and another interview down a different avenue. This qualitative data may make objective or statistical analysis difficult.
  • Interviewer effects : The interviewer’s appearance or character may bias the participant’s answers. For example, a female participant may be less comfortable answering questions on sex asked by a male interviewer and and thus give different answers than if she were asked by a female interviewer.

Note: This topic is A level only, you don’t need to learn about case studies if you are taking the AS exam only.

Case studies are detailed investigations into an individual, a group of people, or an event. For example, the biopsychology page describes a case study of a young boy who had the left hemisphere of his brain removed and the effects this had on his language skills.

In a case study, researchers use many of the methods described above – observation , questionnaires , interviews – to gather data on a subject. However, because case studies are studies of a single subject, the data they provide is primarily qualitative rather than quantitative . This data is then used to build a case history of the subject. Researchers then interpret this case history to draw their conclusions.

Types of case study

Typical vs. unusual cases.

Most case studies focus on unusual individuals, groups, and events.

Longitudinal

Many case studies are longitudinal . This means they take place over an extended time period, with researchers checking in with the subject at various intervals. For example, the case study of the boy who had his left hemisphere removed collected data on the boy’s language skills at ages 2.5, 4, and 14 to see how he progressed.

Strengths of case studies:

  • Provides detailed qualitative data: Rather than focusing on one or two aspects of behaviour at a single point in time (e.g. in an experiment ), case studies produce detailed qualitative data.
  • Allows for investigation into issues that may be impractical or unethical to study otherwise. For example, it would be unethical to remove half a toddler’s brain just to experiment , but if such a procedure is medically necessary then researchers can use this opportunity to learn more about the brain.

Weaknesses of case studies:

  • Lack of scientific rigour: Because case studies are often single examples that cannot be replicated , the results may not be valid when applied to the general population.
  • Researcher bias: The small sample size of case studies also means researchers need to apply their own subjective interpretation when drawing conclusions from them. As such, these conclusions may be skewed by the researcher’s own bias and not be valid when applied more generally. This criticism is often directed at Freud’s psychoanalytic theory because it draws heavily on isolated case studies of individuals.

Scientific processes

This section looks at how science works more generally – in particular how scientific studies are organised and reported . It also covers ways of evaluating a scientific study.

Study features and design

Studies will usually have an aim . The aim of a study is a description of what the researchers are investigating and why . For example, “to investigate the effect of SSRIs on symptoms of depression” or “to understand the effect uniforms have on obedience to authority”.

Studies seek to test a hypothesis . The experimental/alternate hypothesis of a study is a testable prediction of what the researchers expect to happen.

  • E.g. “That SSRIs will reduce symptoms of depression” or “subjects are more likely to comply when orders are issued by someone wearing a uniform”.
  • E.g. “That SSRIs have no effect on symptoms on depression” or “subject conformity will be the same when orders are issued by someone wearing a uniform as when orders are issued by someone bot wearing a uniform”

Either the experimental/alternate hypothesis or the null hypothesis will be supported by the results of the experiment.

It’s often not possible or practical to conduct research on everyone your study is supposed to apply to. So, researchers use sampling to select participants for their study.

  • E.g. all humans, all women, all men, all children, etc.
  • E.g. 10,000 humans, 200 women from the USA, children at a certain school

For example, the target population (i.e. who the results apply to) of Asch’s conformity experiments is all humans – but Asch didn’t conduct the experiment on that many people! Instead, Asch recruited 123 males and generalised the findings from this sample to the rest of the population.

Researchers choose from different sampling techniques – each has strengths and weaknesses.

Sampling techniques

Random sampling.

The random sampling method involves selecting participants from a target population at random – such as by drawing names from a hat or using a computer program to select them. This method means each member of the population has an equal chance of being selected and thus is not subject to any bias.

Strengths of random sampling:

  • Unbiased: Selecting participants by random chance reduces the likelihood that researcher bias will skew the results of the study.
  • Representative: If participants are selected at random – particularly if the sample size is large – it is likely that the sample will be representative of the population as a whole. For example, if the ratio of men:women in a population is 50:50 and participants are selected at random, it is likely that the sample will also have a ratio of men to women that is 50:50.

Weaknesses of random sampling:

  • Impractical: It’s often impractical/impossible to include all members of a target population for selection. For example, it wouldn’t be feasible for a study on women to include the name of every woman on the planet for selection. But even if this was done, the randomly selected women may not agree to take part in the study anyway.

Systematic sampling

The systematic sampling method involves selecting participants from a target population by selecting them at pre-set intervals. For example, selecting every 50th person from a list, or every 7th, or whatever the interval is.

Strengths of systematic sampling:

  • Unbiased and representative: Like random sampling , selecting participants according to a numerical interval provides an objective means of selecting participants that prevents researcher bias being able to skew the sample. Further, because the sampling method is independent of any particular characteristic (besides the arbitrary characteristic of the participant’s order in the list) this sample is likely to be representative of the population as a whole.

Weaknesses of systematic sampling:

  • Unexpected bias: Some characteristics could occur more or less frequently at certain intervals, making a sample that is selected based on that interval biased. For example, houses tend to be have even numbers on one side of a road and odd numbers on the other. If one side of the road is more expensive than the other and you select every 4th house, say, then you will only select even numbers from one side of the road – and this sample may not be representative of the road as a whole.

Stratified sampling

The stratified sampling method involves dividing the population into relevant groups for study, working out what percentage of the population is in each group, and then randomly sampling the population according to these percentages.

For example, let’s say 20% of the population is aged 0-18, and 50% of the population is aged 19-65, and 30% of the population is aged >65. A stratified sample of 100 participants would randomly select 20x 0-18 year olds, 50x 19-65 year olds, and 30x people over 65.

Strengths of stratified sampling:

  • Representative: The stratification is deliberately designed to yield a sample that is representative of the population as a whole. You won’t get people with certain characteristics being over- or under-represented within the sample.
  • Unbiased: Because participants within each group are selected randomly , researcher bias is unable to skew who is included in the study.

Weaknesses of stratified sampling:

  • Requires knowledge of population breakdown: Researchers need to accurately gauge what percentage of the population falls into what group. If the researchers get these percentages wrong, the sample will be biased and some groups will be over- or under-represented.

Opportunity and volunteer sampling

The opportunity and volunteer sampling methods:

  • E.g. Approaching people in the street and asking them to complete a questionnaire.
  • E.g. Placing an advert online inviting people to complete a questionnaire.

Strengths of opportunity and volunteer sampling:

  • Quick and easy: Approaching participants ( opportunity sampling) or inviting participants ( volunteer sampling) is quick and straightforward. You don’t have to spend time compiling details of the target population (like in e.g. random or systematic sampling ), nor do you have to spend time dividing participants according to relevant categories (like in stratified sampling ).
  • May be the only option: With natural experiments – where a variable changes as a result of something outside the researchers’ control – opportunity sampling may be the only viable sampling method. For example, researchers couldn’t randomly sample 10 cities from all the cities in the world and change the drug laws in those cities to see the effects – they don’t have that kind of power. However, if a city is naturally changing its drug laws anyway, researchers could use opportunity sampling to study that city for research.

Weaknesses of opportunity and volunteer sampling:

  • Unrepresentative: The pool of participants will likely be biased towards certain kinds of people. For example, if you conduct opportunity sampling on a weekday at 10am, this sample will likely exclude people who are at work. Similarly, volunteer sampling is likely to exclude people who are too busy to take part in the study.

Independent vs. dependent variables

If the study involves an experiment , the researchers will alter an independent variable to measure its effects on a dependent variable :

  • E.g. In Bickman’s study of the effects of uniforms on obedience , the independent variable was the uniform of the person giving orders.
  • E.g. In Bickman’s study of the effects of uniforms on obedience , the dependent variable was how many people followed the orders.

Extraneous and confounding variables

In addition to the variables actually being investigated ( independent and dependent ), there may be additional (unwanted) variables in the experiment. These additional variables are called extraneous variables .

Researchers must control for extraneous variables to prevent them from skewing the results and leading to false conclusions. When extraneous variables are not properly controlled for they are known as confounding variables .

For example, if you’re studying the effect of caffeine on reaction times, it might make sense to conduct all experiments at the same time of day to prevent this extraneous variable from confounding the results. Reaction times change throughout the day and so if you test one group of subjects at 3pm and another group right before they go to bed, you may falsely conclude that the second group had slower reaction times.

Operationalisation of variables

Operationalisation of variables is where researchers clearly and measurably define the variables in their study.

For example, an experiment on the effects of sleep ( independent variable ) on anxiety ( dependent variable ) would need to clearly operationalise each variable. Sleep could be defined by number of hours spent in bed, but anxiety is a bit more abstract and so researchers would need to operationalise (i.e. define) anxiety such that it can be quantified in a measurable and objective way.

If variables are not properly operationalised, the experiment cannot be properly replicated , experimenters’ subjective interpretations may skew results, and the findings may not be valid .

Pilot studies

A pilot study is basically a practice run of the proposed research project. Researchers will use a small number of participants and run through the procedure with them. The purpose of this is to identify any problems or areas for improvement in the study design before conducting the research in full. A pilot study may also give an early indication of whether the results will be statistically significant .

For example, if a task is too easy for participants, or it’s too obvious what the real purpose of an experiment is, or questions in a questionnaire are ambiguous, then the results may not be valid . Conducting a pilot study first may save time and money as it enables researchers to identify and address such issues before conducting the full study on thousands of participants.

Study reporting

Features of a psychological report.

The report of a psychological study (research paper) typically contains the following sections in the following order:

  • Title: A short and clear description of the research.
  • Abstract: A summary of the research. This typically includes the aim and hypothesis , methods, results, and conclusion.
  • Introduction: Funnel technique: Broad overview of the context (e.g. current theories, previous studies, etc.) before focusing in on this particular study, why it was conducted, its aims and hypothesis .
  • Study design: This will explain what method was used (e.g. experiment or observation ), how the study was designed (e.g. independent groups or repeated measures ), and identification and operationalisation of variables .
  • Participants: A description of the target population to be studied, the sampling method , how many participants were included.
  • Equipment used: A description of any special equipment used in the study and how it was used.
  • Standardised procedure: A detailed step-by-step description of how the study was conducted. This allows for the study to be replicated by other researchers.
  • Controls : An explanation of how extraneous variables were controlled for so as to generate accurate results.
  • Results: A presentation of the key findings from the data collected. This is typically written summaries of the raw data ( descriptive statistics ), which may also be presented in tables , charts, graphs , etc. The raw data itself is typically included in appendices.
  • Discussion: An explanation of what the results mean and how they relate to the experimental hypothesis (supporting or contradicting it), any issues with how results were generated, how the results fit with other research, and suggestions for future research.
  • Conclusion: A short summary of the key findings from the study.
  • Book: Milgram, S., 2010. Obedience to Authority . 1st ed. Pinter & Martin.
  • Journal article: Bandura, A., Ross, D. and Ross, S., 1961. Transmission of Aggression through Imitation of Aggressive Models . The Journal of Abnormal and Social Psychology, 63(3), pp.575-582.
  • Appendices: This is where you put any supporting materials that are too detailed or long to include in the main report. For example, the raw data collected from a study, or the complete list of questions in a questionnaire .

Peer review

Peer review is a way of assessing the scientific credibility of a research paper before it is published in a scientific journal. The idea with peer review is to prevent false ideas and bad research from being accepted as fact.

It typically works as follows: The researchers submit their paper to the journal they want it to be published in, and the editor of that journal sends the paper to expert reviewers (i.e. psychologists who are experts in that area – the researchers’ ‘peers’) who evaluate the paper’s scientific validity. The reviewers may accept the paper as it is, accept it with a few changes, reject it and suggest revisions and resubmission at a later date, or reject it completely.

There are several different methods of peer review:

  • Open review: The researchers and the reviewers are known to each other.
  • Single-blind: The researchers do not know the names of the reviewers. This prevents the researchers from being able to influence the reviewer. This is the most common form of peer review.
  • Double-blind: The researchers do not know the names of the reviewers, and the reviewers do not know the names of the researchers. This additionally prevents the reviewer’s bias towards the researcher from influencing their decision whether to accept their paper or not.

Criticisms of peer review:

  • Bias: There are several ways peer review can be subject to bias. For example, academic research (particularly in niche areas) takes place among a fairly small circle of people who know each other and so these relationships may affect publication decisions. Further, many academics are funded by organisations and companies that may prefer certain ideas to be accepted as scientifically legitimate, and so this funding may produce conflicts of interest.
  • Doesn’t always prevent fraudulent/bad research from being published: There are many examples of fraudulent research passing peer review and being published (see this Wikipedia page for examples).
  • Prevents progress of new ideas: Reviewers of papers are typically older and established academics who have made their careers within the current scientific paradigm. As such, they may reject new or controversial ideas simply because they go against the current paradigm rather than because they are unscientific.
  • Plagiarism: In single-blind and double-blind peer reviews, the reviewer may use their anonymity to reject or delay a paper’s publication and steal the good ideas for themself.
  • Slow: Peer review can mean it takes months or even years between the researcher submitting a paper and its publication.

Study evaluation

In psychological studies, ethical issues are questions of what is morally right and wrong. An ethically-conducted study will protect the health and safety of the participants involved and uphold their dignity, privacy, and rights.

To provide guidance on this, the British Psychological Association has published a code of human research ethics :

  • Participants are told the project’s aims , the data being collected, and any risks associated with participation.
  • Participants have the right to withdraw or modify their consent at any time.
  • Researchers can use incentives (e.g. money) to encourage participation, but these incentives can’t be so big that they would compromise a participant’s freedom of choice.
  • Researchers must consider the participant’s ability to consent (e.g. age, mental ability, etc.)
  • Prior (general) consent: Informing participants that they will be deceived without telling them the nature of the deception. However, this may affect their behaviour as they try to guess the real nature of the study.
  • Retrospective consent: Informing participants that they were deceived after the study is completed and asking for their consent. The problem with this is that if they don’t consent then it’s too late.
  • Presumptive consent: Asking people who aren’t participating in the study if they would be willing to participate in the study. If these people would be willing to give consent, then it may be reasonable to assume that those taking part in the study would also give consent.
  • Confidentiality: Personal data obtained about participants should not be disclosed (unless the participant agreed to this in advance). Any data that is published will not be publicly identifiable as the participant’s.
  • Debriefing: Once data gathering is complete, researchers must explain all relevant details of the study to participants – especially if deception was involved. If a study might have harmed the individual (e.g. its purpose was to induce a negative mood), it is ethical for the debrief to address this harm (e.g. by inducing a happy mood) so that the participant does not leave the study in a worse state than when they entered.

Reliability

Study results are reliable if the same results can be consistently replicated under the same circumstances. If results are inconsistent then the study is unreliable.

Note: Just because a study is reliable, its results are not automatically valid . A broken tape measure may reliably (i.e. consistently) record a person’s height as 200m, but that doesn’t mean this measurement is accurate.

There are several ways researchers can assess a study’s reliability:

Test-retest

Test-retest is when you give the same test to the same person on two different occasions. If the results are the same or similar both times, this suggests they are reliable.

For example, if your study used scales to measure participants’ weight, you would expect the scales to record the same (or a very similar) weight for the same person in the morning as in the evening. If the scales said the person weighed 100kg more later that same day, the scales (and therefore the results of the study) would be unreliable.

Inter-observer

Inter-observer reliability is a way to test the reliability of observational studies .

For example, if your study required observers to assess participants’ anxiety levels, you would expect different observers to grade the same behaviour in the same way. If one observer rated a participant’s behaviour a 3 for anxiety, and another observer rated the exact same behaviour an 8, the results would be unreliable.

Inter-observer reliability can be assessed mathematically by looking for correlation between observers’ scores. Inter-observer reliability can be improved by setting clearly defined behavioural categories .

Study results are valid if they accurately measure what they are supposed to. There are several ways researchers can assess a study’s validity:

  • E.g. let’s say you come up with a new test to measure participants’ intelligence levels. If participants scoring highly on your test also scored highly on a standardised IQ test and vice versa, that would suggest your test has concurrent validity because participants’ scores are correlated with a known accurate test.
  • E.g. a study that measures participants’ intelligence levels by asking them when their birthday is would not have face validity. Getting participants to complete a standardised IQ test would have greater face validity.
  • E.g. let’s say your study was supposed to measure aggression levels in response to someone annoying. If the study was conducted in a lab and the participant knew they were taking part in a study, the results probably wouldn’t have much ecological validity because of the unrealistic environment.
  • E.g. a study conducted in 1920 that measured participants’ attitudes towards social issues may have low temporal validity because societal attitudes have changed since then.

Control of extraneous variables

There are several different types of extraneous variables that can reduce the validity of a study. A well-conducted psychological study will control for these extraneous variables so that they do not skew the results.

Demand characteristics

Demand characteristics are extraneous variables where the demands of a study make participants behave in ways they wouldn’t behave outside of the study. This reduces the study’s ecological validity .

For example, if a participant guesses the purpose of an experiment they are taking part in, they may try to please the researcher by behaving in the ‘right’ way rather than the way they would naturally. Alternatively, the participant might rebel against the study and deliberately try to sabotage it (e.g. by deliberately giving wrong answers).

In some study designs, researchers can control for demand characteristics using single- blind methods. For example, a drug trial could give half the participants the actual drug and the other half a placebo but not tell participants which treatment they received. This way, both groups will have equal demand characteristics and so any differences between them should be down to the drug itself.

Investigator effects

Investigator effects are another extraneous variable where the characteristics of the researcher affect the participant’s behaviour. Again, this reduces the study’s ecological validity .

Many characteristics – e.g. the researcher’s age, gender, accent, what they’re wearing – could potentially influence the participant’s responses. For example, in an interview about sex, females may feel less comfortable answering questions asked by a male interviewer and thus give different answers than if they were asked by a female. The researcher’s biases may also come across in their body language or tone of voice, affecting the participant’s responses.

In some study designs, researchers can control for demand characteristics using double- blind methods. In a double-blind drug trial, for example, neither the participants nor the researchers know which participants get the actual drug and which get the placebo. This way, the researcher is unable to give any clues (consciously or unconsciously) to participants that would affect their behaviour.

Participant variables

Participant variables are differences between participants. These can be controlled for by random allocation .

For example, in an experiment on the effect of caffeine on reaction times, participants would be randomly allocated into either the caffeine group or the non-caffeine group. A non -random allocation method, such as allocating caffeine to men and placebo to women, could mean variables in the allocation method (in this case gender) skew the results. When participants are randomly allocated, any extraneous variables (e.g. gender in this case) will be allocated evenly between each group and so not skew the results of one group more than the other.

Situational variables

Situational variables are the environment the experiment is conducted in. These can be controlled for by standardisation .

For example, all the tests of caffeine on reaction times would be conducted in the same room, at the same time of day, using the same equipment, and so on to prevent these features of the environment from skewing the results.

In a repeated measures experiment, researchers may use counterbalancing to control for the order in which tasks are completed.

For example, half of participants would do task A followed by task B, and the other half would do task B followed by task A.

Implications of psychological research for the economy

Psychological research often has practical applications in real life. The following are some examples of how psychological findings may affect the economy:

  • Attachment : Bowlby’s maternal deprivation hypothesis suggests that periods of extended separation between mother and child before age 3 are harmful to the child’s psychological development. And if mothers stay at home during this period, they can’t go out to work. However, some more recent research challenges Bowlby’s conclusions, suggesting that substitutes (e.g. the father , or nursery care) can care for the child, allowing the mother to go back to work sooner and remain economically active.
  • Depression : Psychological research has found effective therapies for treating depression, such as cognitive behavioural therapy and SSRIs. The benefits of such therapies – if they are effective – are likely to outweigh the costs because they enable the person to return to work and pay taxes, as well avoiding long-term costs to the health service.
  • OCD : Similar to above: Drug therapies (e.g. SSRIs) and behavioural approaches (e.g. CBT) may alleviate OCD symptoms, enabling OCD sufferers to return to work, pay taxes, and avoid reliance on healthcare services.
  • Memory : Public money is required to fund police investigations. Psychological tools, such as the cognitive interview , have improved the accuracy of eyewitness testimonies, which equates to more efficient use of police time and resources.

Features of science

Theory construction and hypothesis testing.

Science works by making empirical observations of the world, formulating hypotheses /theories that explain these observations, and repeatedly testing these hypotheses /theories via experimentation.

  • E.g. A tape measure provides a more objective measurement of something compared to a researcher’s guess. Similarly, a set of scales is a more objective way of determining which of two objects is heavier than a researcher lifting each up and giving their opinion.
  • E.g. Burger (2009) replicated Milgram’s experiments with similar results.
  • E.g. The hypothesis that “water boils at 100°c” could be falsified by an experiment where you heated water to 999°c and it didn’t boil. In contrast, “everything doubles in size every 10 seconds” could not be falsified by any experiment because whatever equipment you used to measure everything would also double in size.
  • Freud’s psychodynamic theories are often criticised for being unfalsifiable: There’s not really any observations that could disprove them because every possible behaviour (e.g. crying or not crying) could be explained as the result of some unconscious thought process.

Paradigm shifts

Philosopher Thomas Kuhn argues that science is not as unbiased and objective as it seems. Instead, the majority of scientists just accept the existing scientific theories (i.e. the existing paradigm) as true and then find data that supports these theories while ignoring/rejecting data that refutes them.

Rarely, though, minority voices are able to successfully challenge the existing paradigm and replace it with a new one. When this happens it is a paradigm shift . An example of a paradigm shift in science is that from Newtonian gravity to Einstein’s theory of general relativity.

Data handling and analysis

Types of data, quantitative vs. qualitative.

Data from studies can be quantitative or qualitative :

  • Quantitative: Numerical
  • Qualitative: Non-numerical

For example, some quantitative data in the Milgram experiment would be how many subjects delivered a lethal shock. In contrast, some qualitative data would be asking the subjects afterwards how they felt about delivering the lethal shock.

Strengths of quantitative data / weaknesses of qualitative data:

  • Can be compared mathematically and scientifically: Quantitative data enables researchers to mathematically and objectively analyse data. For example, mood ratings of 7 and 6 can be compared objectively, whereas qualitative assessments such as ‘sad’ and ‘unhappy’ are hard to compare scientifically.

Weaknesses of quantitative data / strengths of qualitative data:

  • Less detailed: In reducing data to numbers and narrow definitions, quantitative data may miss important details and context.

Content analysis

Although the detail of qualitative data may be valuable, this level of detail can also make it hard to objectively or mathematically analyse. Content analysis is a way of analysing qualitative data. The process is as follows:

  • E.g. A bunch of unstructured interviews on the topic of childhood
  • E.g. Discussion of traumatic events, happy memories, births, and deaths
  • E.g. Researchers listen to the unstructured interviews and count how often traumatic events are mentioned
  • Statistical analysis is carried out on this data

Primary vs. secondary

Researchers can produce primary data or use secondary data to achieve the research aims of their study:

  • Primary data: Original data collected for the study
  • Secondary data: Data from another study previously conducted

Meta-analysis

A meta-analysis is a study of studies. It involves taking several smaller studies within a certain research area and using statistics to identify similarities and trends within those studies to create a larger study.

We have looked at some examples of meta-analyses elsewhere in the course such as Van Ijzendoorn’s meta-analysis of several strange situation studies and Grootheest et al’s meta-analysis of twin studies on OCD .

A good meta-analysis is often more reliable than a regular study because it is based on a larger data set, and any issues with one single study will be balanced out by the other studies.

Descriptive statistics

Measures of central tendency: mean, median, mode.

Mean , median , and mode are measures of central tendency . In other words, they are ways of reducing large data sets into averages .

The mean is calculated by adding all the numbers in a set together and dividing the total by the number of numbers.

  • Example set: 22, 78, 3, 33, 90
  • 22+78+3+33+90=226
  • The mean is 45.2
  • Uses all data in the set.
  • Accurate: Provides a precise number based on all the data in a set.

Weaknesses:

  • E.g.: 1, 3, 2, 5, 9, 4, 913 <- the mean is 133.9, but the 913 could be a measurement error or something and thus the mean is not representative of the data set

The median is calculated by arranging all the numbers in a set from smallest to biggest and then finding the number in the middle. Note: If the total number of numbers is odd, you just pick the middle one. But if the total number of numbers is even, you take the mid-point between the two numbers in the middle.

  • Example set: 20, 66, 85, 45, 18, 13, 90, 28, 9
  • 9, 13, 18, 20, 28 , 45, 66, 85, 90
  • The median is 28
  • Won’t be skewed by freak scores (unlike the mean).
  • E.g.: 1, 1, 3 , 9865, 67914 <- 3 is not really representative of the larger numbers in the set.
  • Less accurate/sensitive than the mean.

The mode is calculated by counting which is the most commonly occurring number in a set.

  • Example set: 7, 7, 20 , 16, 1, 20 , 25, 16, 20 , 9
  • There are two 7’s, but three 20’s
  • The mode is 20
  • Makes more sense for presenting the central tendency in data sets with whole numbers. For example, the average number of limbs for a human being will have a mean of something like 3.99, but a mode of 4.
  • Does not use all the data in a set.
  • A data set may have more than one mode.

Measures of dispersion: Range and standard deviation

Range and standard deviation are measures of dispersion . In other words, they quantify how much scores in a data set vary .

The range is calculated by subtracting the smallest number in the data set from the largest number.

  • Example set: 59, 8, 7, 84, 9, 49, 14, 75, 88, 11
  • The largest number is 88
  • The smallest number is 7
  • The range is 81
  • Easy and quick to calculate: You just subtract one number from another
  • Accounts for freak scores (highest and lowest)
  • Can be skewed by freak scores: The difference between the biggest and smallest numbers can be skewed by a single anomalous result or error, which may give an exaggerated impression of the data distribution compared to standard deviation .
  • 4, 4, 5, 5, 5, 6, 6, 7, 19
  • 4, 16, 16, 17, 17, 17, 18, 19 19

Standard deviation

The standard deviation (σ) is a measure of how much numbers in a data set deviate from the mean (average). It is calculated as follows:

  • Example data set: 59, 79, 43, 42, 81, 100, 38, 54, 92, 62
  • Calculate the mean (65)
  • -6, 14, -22, -23, 16, 35, -27, -11, 27, -3
  • 36, 196, 484, 529, 256, 1225, 729, 121, 729, 9
  • 36+196+484+529+256+1225+729+121+729+9=4314
  • 4314/10=431.4
  • √431.4=20.77
  • The standard deviation is 20.77

Note: This method of standard deviation is based on the entire population. There is a slightly different method for calculating based on a sample where instead of dividing by the number of numbers in the second to last step, you divide by the number of numbers-1 (in this case 4314/9=479.333). This gives a standard deviation of 21.89.

  • Is less skewed by freak scores: Standard deviation measures the average difference from the mean and so is less likely to be skewed by a single freak score (compared to the range ).
  • Takes longer to calculate than the range .

Percentages

A percentage (%) describes how much out of 100 something occurs. It is calculated as follows:

  • Example: 63 out of a total of 82 participants passed the test
  • 63/82=0.768
  • 0.768*100=76.8
  • 76.8% of participants passed the test

Percentage change

To calculate a percentage change, work out the difference between the original number and the after number, divide that difference by the original number, then multiply the result by 100:

  • Example: He got 80 marks on the test but after studying he got 88 marks on the test
  • His test score increased by 10% after studying

Normal and skewed distributions

Normal distribution.

A data set that has a normal distribution will have the majority of scores on or near the mean average. A normal distribution is also symmetrical: There are an equal number of scores above the mean as below it. In a normal distribution, scores become rarer and rarer the more they deviate from the mean.

An example of a normal distribution is IQ scores. As you can see from the histogram below, there are as many IQ scores below the mean as there are above the mean :

statistical infrequency bell curve

When plotted on a histogram , data that follows a normal distribution will form a bell-shaped curve like the one above.

Skewed distribution

positive skew and negative skew histograms

Skewed distributions are caused by outliers: Freak scores that throw off the mean . Skewed distributions can be positive or negative :

  • Mean > Median > Mode
  • Mean < Median < Mode

Correlation

Correlation refers to how closely related two (or more) things are related. For example, hot weather and ice cream sales may be positively correlated: When hot weather goes up, so do ice cream sales.

Correlations are measured mathematically using correlation coefficients (r). A correlation coefficient will be anywhere between +1 and -1:

  • r=+1 means two things are perfectly positively correlated: When one goes up , so does the other by the same amount
  • r=-1 means two things perfectly negatively correlated: When one goes up , the other goes down by the same amount
  • r=0 means two things are not correlated at all: A change in one is totally independent of a change in the other

The following scattergrams illustrate various correlation coefficients:

correlation coefficient scatter graph examples

Presentation of data

table example

For example, the behavioural categories table above presents the raw data of each student in this made-up study. But in the results section, researchers might include another table that compares average anxiety rating scores for males and females.

Scattergrams

scattergram example

For example, each dot on the correlation scattergram opposite could represent a student. The x-axis could represent the number of hours the student studied, and the y-axis could represent the student’s test score.

eyewitness testimony loftus and palmer

For example, the results of Loftus and Palmer’s study into the effects of different leading questions on memory could be presented using the bar chart above. It’s not like there are categories in-between ‘contacted’ and ‘hit’, so the bars have gaps between them (unlike a histogram ).

A histogram is a bit like a bar chart but is used to illustrate continuous or interval data (rather than discrete data or whole numbers).

histogram example

Because the data on the x axis is continuous, there are no gaps between the bars.

line graph example

For example, the line graph above illustrates 3 different people’s progression in a strength training program over time.

pie chart example

For example, the frequency with which different attachment styles occurred in Ainsworth’s strange situation could be represented by the pie chart opposite.

Inferential testing

Probability and significance.

The point of inferential testing is to see whether a study’s results are statistically significant , i.e. whether any observed effects are as a result of whatever is being studied rather than just random chance.

For example, let’s say you are studying whether flipping a coin outdoors increases the likelihood of getting heads. You flip the coin 100 times and get 52 heads and 48 tails. Assuming a baseline expectation of 50:50, you might take these results to mean that flipping the coin outdoors does increase the likelihood of getting heads. However, from 100 coin flips, a ratio of 52:48 between heads and tails is not very significant and could have occurred due to luck. So, the probability that this difference in heads and tails is because you flipped the coin outside (rather than just luck) is low.

Probability is denoted by the symbol p . The lower the p value, the more statistically significant your results are. You can never get a p value of 0, though, so researchers will set a threshold at which point the results are considered statistically significant enough to reject the null hypothesis . In psychology, this threshold is usually <0.05, which means there is a less than 5% chance the observed effect is due to luck and a >95% chance it is a real effect.

Type 1 and type 2 errors

When interpreting statistical significance, there are two types of errors:

  • E.g. The p threshold is <0.05, but the researchers’ results are among the 5% of fluke outcomes that look significant but are just due to luck
  • E.g. The p threshold is set too low (e.g. <0.01), and the data falls short (e.g. p=<0.02)

Increasing the sample size reduces the likelihood of type 1 and type 2 errors.

Key maths skills made easy!

psychology research methods maths skills revision guide

Types of statistical test

Note: The inferential tests below are needed for A level only, if you are taking the AS exam , you only need to know the sign test .

There are several different types of inferential test in addition to the sign test . Which inferential test is best for a study will depend on the following three criteria:

  • Whether you are looking for a difference or a correlation
  • E.g. at the competition there were 8 runners, 12 swimmers, and 6 long jumpers (it’s not like there are in-between measurements between ‘swimmer’ and ‘runner’)
  • E.g. First, second, and third place in a race
  • E.g. Ranking your mood on a scale of 1-10
  • E.g. Weights in kg
  • E.g. Heights in cm
  • E.g. Times in seconds
  • Whether the experimental design is related (i.e. repeated measures ) or unrelated (i.e. independent groups )

The following table shows which inferential test is appropriate according to these criteria:

Note: You won’t have to work out all these tests from scratch, but you may need to:

  • Say which of the statistical tests is appropriate (i.e. based on whether it’s a difference or correlation; whether the data is nominal, ordinal, or interval; and whether the data is related or unrelated).
  • Identify the critical value from a critical values table and use this to say whether a result (which will be given to you in the exam) is statistically significant.

The sign test

The sign test is a way to calculate the statistical significance of differences between related pairs (e.g. before and after in a repeated measures experiment ) of nominal data. If the observed value (s) is equal or less than the critical value (cv), the results are statistically significant.

Example: Let’s say we ran an experiment on 10 participants to see whether they prefer movie A or movie B .

  • n = 9 (because even though there are 10 participants, one participant had no change so we exclude them from our calculation)
  • In this case our experimental hypothesis is two-tailed: Participants may prefer movie A or movie B
  • (The null hypothesis is that participants like both movies equally)
  • In this case, let’s say it’s 0.1
  • The experimental hypothesis is two-tailed
  • So, in this example, our critical value (cv) is 1
  • In this example, there are 2 As, so our observed value (s) is 2
  • In this example, the observed value (2) is greater than the critical value (1) and so the results are not statistically significant. This means we must accept the null hypothesis and reject the experimental hypothesis .

<<<Biopsychology

PSYC 118 - Advanced Research Methods in Psychology

Class Schedule | Syllabus Information | University Bookstore

  • Open access
  • Published: 16 May 2024

Procrastination, depression and anxiety symptoms in university students: a three-wave longitudinal study on the mediating role of perceived stress

  • Anna Jochmann 1 ,
  • Burkhard Gusy 1 ,
  • Tino Lesener 1 &
  • Christine Wolter 1  

BMC Psychology volume  12 , Article number:  276 ( 2024 ) Cite this article

83 Accesses

Metrics details

It is generally assumed that procrastination leads to negative consequences. However, evidence for negative consequences of procrastination is still limited and it is also unclear by which mechanisms they are mediated. Therefore, the aim of our study was to examine the harmful consequences of procrastination on students’ stress and mental health. We selected the procrastination-health model as our theoretical foundation and tried to evaluate the model’s assumption that trait procrastination leads to (chronic) disease via (chronic) stress in a temporal perspective. We chose depression and anxiety symptoms as indicators for (chronic) disease and hypothesized that procrastination leads to perceived stress over time, that perceived stress leads to depression and anxiety symptoms over time, and that procrastination leads to depression and anxiety symptoms over time, mediated by perceived stress.

To examine these relationships properly, we collected longitudinal data from 392 university students at three occasions over a one-year period and analyzed the data using autoregressive time-lagged panel models.

Procrastination did lead to depression and anxiety symptoms over time. However, perceived stress was not a mediator of this effect. Procrastination did not lead to perceived stress over time, nor did perceived stress lead to depression and anxiety symptoms over time.

Conclusions

We could not confirm that trait procrastination leads to (chronic) disease via (chronic) stress, as assumed in the procrastination-health model. Nonetheless, our study demonstrated that procrastination can have a detrimental effect on mental health. Further health outcomes and possible mediators should be explored in future studies.

Peer Review reports

Introduction

“Due tomorrow? Do tomorrow.”, might be said by someone who has a tendency to postpone tasks until the last minute. But can we enjoy today knowing about the unfinished task and tomorrow’s deadline? Or do we feel guilty for postponing a task yet again? Do we get stressed out because we have little time left to complete it? Almost everyone has procrastinated at some point when it came to completing unpleasant tasks, such as mowing the lawn, doing the taxes, or preparing for exams. Some tend to procrastinate more frequently and in all areas of life, while others are less inclined to do so. Procrastination is common across a wide range of nationalities, as well as socioeconomic and educational backgrounds [ 1 ]. Over the last fifteen years, there has been a massive increase in research on procrastination [ 2 ]. Oftentimes, research focuses on better understanding the phenomenon of procrastination and finding out why someone procrastinates in order to be able to intervene. Similarly, the internet is filled with self-help guides that promise a way to overcome procrastination. But why do people seek help for their procrastination? Until now, not much research has been conducted on the negative consequences procrastination could have on health and well-being. Therefore, in the following article we examine the effect of procrastination on mental health over time and stress as a possible facilitator of this relationship on the basis of the procrastination-health model by Sirois et al. [ 3 ].

Procrastination and its negative consequences

Procrastination can be defined as the tendency to voluntarily and irrationally delay intended activities despite expecting negative consequences as a result of the delay [ 4 , 5 ]. It has been observed in a variety of groups across the lifespan, such as students, teachers, and workers [ 1 ]. For example, some students tend to regularly delay preparing for exams and writing essays until the last minute, even if this results in time pressure or lower grades. Procrastination must be distinguished from strategic delay [ 4 , 6 ]. Delaying a task is considered strategic when other tasks are more important or when more resources are needed before the task can be completed. While strategic delay is viewed as functional and adaptive, procrastination is classified as dysfunctional. Procrastination is predominantly viewed as the result of a self-regulatory failure [ 7 ]. It can be understood as a trait, that is, as a cross-situational and time-stable behavioral disposition [ 8 ]. Thus, it is assumed that procrastinators chronically delay tasks that they experience as unpleasant or difficult [ 9 ]. Approximately 20 to 30% of adults have been found to procrastinate chronically [ 10 , 11 , 12 ]. Prevalence estimates for students are similar [ 13 ]. It is believed that students do not procrastinate more often than other groups. However, it is easy to examine procrastination in students because working on study tasks requires a high degree of self-organization and time management [ 14 ].

It is generally assumed that procrastination leads to negative consequences [ 4 ]. Negative consequences are even part of the definition of procrastination. Research indicates that procrastination is linked to lower academic performance [ 15 ], health impairment (e.g., stress [ 16 ], physical symptoms [ 17 ], depression and anxiety symptoms [ 18 ]), and poor health-related behavior (e.g., heavier alcohol consumption [ 19 ]). However, most studies targeting consequences of procrastination are cross-sectional [ 4 ]. For that reason, it often remains unclear whether an examined outcome is a consequence or an antecedent of procrastination, or whether a reciprocal relationship between procrastination and the examined outcome can be assumed. Additionally, regarding negative consequences of procrastination on health, it is still largely unknown by which mechanisms they are mediated. Uncovering such mediators would be helpful in developing interventions that can prevent negative health consequences of procrastination.

The procrastination-health model

The first and only model that exclusively focuses on the effect of procrastination on health and the mediators of this effect is the procrastination-health model [ 3 , 9 , 17 ]. Sirois [ 9 ] postulates three pathways: An immediate effect of trait procrastination on (chronic) disease and two mediated pathways (see Fig.  1 ).

figure 1

Adopted from the procrastination-health model by Sirois [ 9 ]

The immediate effect is not further explained. Research suggests that procrastination creates negative feelings, such as shame, guilt, regret, and anger [ 20 , 21 , 22 ]. The described feelings could have a detrimental effect on mental health [ 23 , 24 , 25 ].

The first mediated pathway leads from trait procrastination to (chronic) disease via (chronic) stress. Sirois [ 9 ] assumes that procrastination creates stress because procrastinators are constantly aware of the fact that they still have many tasks to complete. Stress activates the hypothalamic-pituitary-adrenocortical (HPA) system, increases autonomic nervous system arousal, and weakens the immune system, which in turn contributes to the development of diseases. Sirois [ 9 ] distinguishes between short-term and long-term effects of procrastination on health mediated by stress. She believes that, in the short term, single incidents of procrastination cause acute stress, which leads to acute health problems, such as infections or headaches. In the long term, chronic procrastination, as you would expect with trait procrastination, causes chronic stress, which leads to chronic diseases over time. There is some evidence in support of the stress-related pathway, particularly regarding short-term effects [ 3 , 17 , 26 , 27 , 28 ]. However, as we mentioned above, most of these studies are cross-sectional. Therefore, the causal direction of these effects remains unclear. To our knowledge, long-term effects of trait procrastination on (chronic) disease mediated by (chronic) stress have not yet been investigated.

The second mediated pathway leads from trait procrastination to (chronic) disease via poor health-related behavior. According to Sirois [ 9 ], procrastinators form lower intentions to carry out health-promoting behavior or to refrain from health-damaging behavior because they have a low self-efficacy of being able to care for their own health. In addition, they lack the far-sighted view that the effects of health-related behavior only become apparent in the long term. For the same reason, Sirois [ 9 ] believes that there are no short-term, but only long-term effects of procrastination on health mediated by poor health-related behavior. For example, an unhealthy diet leads to diabetes over time. The findings of studies examining the behavioral pathway are inconclusive [ 3 , 17 , 26 , 28 ]. Furthermore, since most of these studies are cross-sectional, they are not suitable for uncovering long-term effects of trait procrastination on (chronic) disease mediated by poor health-related behavior.

In summary, previous research on the two mediated pathways of the procrastination-health model mainly found support for the role of (chronic) stress in the relationship between trait procrastination and (chronic) disease. However, only short-term effects have been investigated so far. Moreover, longitudinal studies are needed to be able to assess the causal direction of the relationship between trait procrastination, (chronic) stress, and (chronic) disease. Consequently, our study is the first to examine long-term effects of trait procrastination on (chronic) disease mediated by (chronic) stress, using a longitudinal design. (Chronic) disease could be measured by a variety of different indicators (e.g., physical symptoms, diabetes, or coronary heart disease). We choose depression and anxiety symptoms as indicators for (chronic) disease because they signal mental health complaints before they manifest as (chronic) diseases. Additionally, depression and anxiety symptoms are two of the most common mental health complaints among students [ 29 , 30 ] and procrastination has been shown to be a significant predictor of depression and anxiety symptoms [ 18 , 31 , 32 , 33 , 34 ]. Until now, the stress-related pathway of the procrastination-health model with depression and anxiety symptoms as the health outcome has only been analyzed in one cross-sectional study that confirmed the predictions of the model [ 35 ].

The aim of our study is to evaluate some of the key assumptions of the procrastination-health model, particularly the relationships between trait procrastination, (chronic) stress, and (chronic) disease over time, surveyed in the following analysis using depression and anxiety symptoms.

In line with the key assumptions of the procrastination-health model, we postulate (see Fig.  2 ):

Procrastination leads to perceived stress over time.

Perceived stress leads to depression and anxiety symptoms over time.

Procrastination leads to depression and anxiety symptoms over time, mediated by perceived stress.

figure 2

The section of the procrastination-health model we examined

Materials and methods

Our study was part of a health monitoring at a large German university Footnote 1 . Ethical approval for our study was granted by the Ethics Committee of the university’s Department of Education and Psychology. We collected the initial data in 2019. Two occasions followed, each at an interval of six months. In January 2019, we sent out 33,267 invitations to student e-mail addresses. Before beginning the survey, students provided their written informed consent to participate in our study. 3,420 students took part at the first occasion (T1; 10% response rate). Of these, 862 participated at the second (T2) and 392 at the third occasion (T3). In order to test whether dropout was selective, we compared sociodemographic and study specific characteristics (age, gender, academic semester, number of assessments/exams) as well as behavior and health-related variables (procrastination, perceived stress, depression and anxiety symptoms) between the participants of the first wave ( n  = 3,420) and those who participated three times ( n  = 392). Results from independent-samples t-tests and chi-square analysis showed no significant differences regarding sociodemographic and study specific characteristics (see Additional file 1: Table S1 and S2 ). Regarding behavior and health-related variables, independent-samples t-tests revealed a significant difference in procrastination between the two groups ( t (3,409) = 2.08, p  < .05). The mean score of procrastination was lower in the group that participated in all three waves.

The mean age of the longitudinal respondents was 24.1 years ( SD  = 5.5 years), the youngest participants were 17 years old, the oldest one was 59 years old. The majority of participants was female (74.0%), 7 participants identified neither as male nor as female (1.8%). The respondents were on average enrolled in the third year of studying ( M  = 3.9; SD  = 2.3). On average, the students worked about 31.2 h ( SD  = 14.1) per week for their studies, and an additional 8.5 h ( SD  = 8.5) for their (part-time) jobs. The average income was €851 ( SD  = 406), and 4.9% of the students had at least one child. The students were mostly enrolled in philosophy and humanities (16.5%), education and psychology (15.8%), biology, chemistry, and pharmacy (12.5%), political and social sciences (10.6%), veterinary medicine (8.9%), and mathematics and computer science (7.7%).

We only used established and well evaluated instruments for our analyses.

  • Procrastination

We adopted the short form of the Procrastination Questionnaire for Students (PFS-4) [ 36 ] to measure procrastination. The PFS-4 assesses procrastination at university as a largely stable behavioral disposition across situations, that is, as a trait. The questionnaire consists of four items (e.g., I put off starting tasks until the last moment.). Each item was rated on a 5-point scale ((almost) never = 1 to (almost) always = 5) for the last two weeks. All items were averaged, with higher scores indicating a greater tendency to procrastinate. The PFS-4 has been proven to be reliable and valid, showing very high correlations with other established trait procrastination scales, for example, with the German short form of the General Procrastination Scale [ 37 , 38 ]. We also proved the scale to be one-dimensional in a factor analysis, with a Cronbach’s alpha of 0.90.

Perceived stress

The Heidelberger Stress Index (HEI-STRESS) [ 39 ] is a three-item measure of current perceived stress due to studying as well as in life in general. For the first item, respondents enter a number between 0 (not stressed at all) and 100 (completely stressed) to indicate how stressed their studies have made them feel over the last four weeks. For the second and third item, respondents rate on a 5-point scale how often they feel “stressed and tense” and as how stressful they would describe their life at the moment. We transformed the second and third item to match the range of the first item before we averaged all items into a single score with higher values indicating greater perceived stress. We proved the scale to be one-dimensional and Cronbach’s alpha for our study was 0.86.

Depression and anxiety symptoms

We used the Patient Health Questionnaire-4 (PHQ-4) [ 40 ], a short form of the Patient Health Questionnaire [ 41 ] with four items, to measure depression and anxiety symptoms. The PHQ-4 contains two items from the Patient Health Questionnaire-2 (PHQ-2) [ 42 ] and the Generalized Anxiety Disorder Scale-2 (GAD-2) [ 43 ], respectively. It is a well-established screening scale designed to assess the core criteria of major depressive disorder (PHQ-2) and generalized anxiety disorder (GAD-2) according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). However, it was shown that the GAD-2 is also appropriate for screening other anxiety disorders. According to Kroenke et al. [ 40 ], the PHQ-4 can be used to assess a person’s symptom burden and impairment. We asked the participants to rate how often they have been bothered over the last two weeks by problems, such as “Little interest or pleasure in doing things”. Response options were 0 = not at all, 1 = several days, 2 = more than half the days, and 3 = nearly every day. Calculated as the sum of the four items, the total scores range from 0 to 12 with higher scores indicating more frequent depression and anxiety symptoms. The total scores can be categorized as none-to-minimal (0–2), mild (3–5), moderate (6–8), and severe (9–12) depression and anxiety symptoms. The PHQ-4 was shown to be reliable and valid [ 40 , 44 , 45 ]. We also proved the scale to be one-dimensional in a factor analysis, with a Cronbach’s alpha of 0.86.

Data analysis

To test our hypotheses, we performed structural equation modelling (SEM) using R (Version 4.1.1) with the package lavaan. All items were standardized ( M  = 0, SD  = 1). Due to the non-normality of some study variables and a sufficiently large sample size of N near to 400 [ 46 ], we used robust maximum likelihood estimation (MLR) for all model estimations. As recommended by Hu and Bentler [ 47 ], we assessed the models’ goodness of fit by chi-square test statistic, root mean square error of approximation (RMSEA), standardized root mean square residual (SRMR), Tucker-Lewis index (TLI), and comparative fit index (CFI). A non-significant chi-square indicates good model fit. Since chi-square is sensitive to sample size, we also evaluated fit indices less sensitive to the number of observations. RMSEA and SRMR values of 0.05 or lower as well as TLI and CFI values of 0.97 or higher indicate good model fit. RMSEA values of 0.08 or lower, SRMR values of 0.10 or lower, as well as TLI and CFI values of 0.95 or higher indicate acceptable model fit [ 48 , 49 ]. First, we conducted confirmatory factor analysis for the first occasion, defining three factors that correspond to the measures of procrastination, perceived stress, and depression and anxiety symptoms. Next, we tested for measurements invariance over time and specified the measurement model, before testing our hypotheses.

Measurement invariance over time

To test for measurement invariance over time, we defined one latent variable for each of the three occasions, corresponding to the measures of procrastination, perceived stress, and depression and anxiety symptoms, respectively. As recommended by Geiser and colleagues [ 50 ], the links between indicators and factors (i.e., factor loadings and intercepts) should be equal over measurement occasions; therefore, we added indicator specific factors. A first and least stringent step of testing measurement invariance is configural invariance (M CI ). It was examined whether the included constructs (procrastination, perceived stress, depression and anxiety symptoms) have the same pattern of free and fixed loadings over time. This means that the assignment of the indicators to the three latent factors over time is supported by the underlying data. If configural invariance was supported, restrictions for the next step of testing measurement invariance (metric or weak invariance; M MI ) were added. This means that each item contributes to the latent construct to a similar degree over time. Metric invariance was tested by constraining the factor loadings of the constructs over time. The next step of testing measurement invariance (scalar or strong invariance; M SI ) consisted of checking whether mean differences in the latent construct capture all mean differences in the shared variance of the items. Scalar invariance was tested by constraining the item intercepts over time. The constraints applied in the metric invariance model were retained [ 51 ]. For the last step of testing measurement invariance (residual or strict invariance; M RI ), the residual variables were also set equal over time. If residual invariance is supported, differences in the observed variables can exclusively be attributed to differences in the variances of the latent variables.

We used the Satorra-Bentler chi-square difference test to evaluate the superiority of a more stringent model [ 52 ]. We assumed the model with the largest number of invariance restrictions – which still has an acceptable fit and no substantial deterioration of the chi-square value – to be the final model [ 53 ]. Following previous recommendations, we considered a decrease in CFI of 0.01 and an increase in RMSEA of 0.015 as unacceptable to establish measurement invariance [ 54 ]. If a more stringent model had a significant worse chi-square value, but the model fit was still acceptable and the deterioration in model fit fell within the change criteria recommended for CFI and RMSEA values, we still considered the more stringent model to be superior.

Hypotheses testing

As recommended by Dormann et al. [ 55 ], we applied autoregressive time-lagged panel models to test our hypotheses. In the first step, we specified a model (M 0 ) that only included the stabilities of the three variables (procrastination, perceived stress, depression and anxiety symptoms) over time. In the next step (M 1 ), we added the time-lagged effects from procrastination (T1) to perceived stress (T2) and from procrastination (T2) to perceived stress (T3) as well as from perceived stress (T1) to depression and anxiety symptoms (T2) and from perceived stress (T2) to depression and anxiety symptoms (T3). Additionally, we included a direct path from procrastination (T1) to depression and anxiety symptoms (T3). If this path becomes significant, we can assume a partial mediation [ 55 ]. Otherwise, we can assume a full mediation. We compared these nested models using the Satorra-Bentler chi-square difference test and the Akaike information criterion (AIC). The chi-square difference value should either be non-significant, indicating that the proposed model including our hypotheses (M 1 ) does not have a significant worse model fit than the model including only stabilities (M 0 ), or, if significant, it should be in the direction that M 1 fits the data better than M 0 . Regarding the AIC, M 1 should have a lower value than M 0 .

Table  1 displays the means, standard deviations, internal consistencies (Cronbach’s alpha), and stabilities (correlations) of all study variables. The alpha values of procrastination, perceived stress, and depression and anxiety symptoms are classified as good (> 0.80) [ 56 ]. The correlation matrix of the manifest variables used for the analyses can be found in the Additional file 1: Table  S3 .

We observed the highest test-retest reliabilities for procrastination ( r  ≥ .74). The test-retest reliabilities for depression and anxiety symptoms ( r  ≥ .64) and for perceived stress ( r  ≥ .54) were a bit lower (see Table  1 ). The pattern of correlations shows a medium to large but positive relationship between procrastination and depression and anxiety symptoms [ 57 , 58 ]. The association between procrastination and perceived stress was small, the one between perceived stress and depression and anxiety symptoms very large (see Table  1 ).

Confirmatory factor analysis showed an acceptable to good fit (x 2 (41) = 118.618, p  < .001; SRMR = 0.042; RMSEA = 0.071; TLI = 0.95; CFI = 0.97). When testing for measurement invariance over time for each construct, the residual invariance models with indicator specific factors provided good fit to the data (M RI ; see Table  2 ), suggesting that differences in the observed variables can exclusively be attributed to differences of the latent variables. We then specified and tested the measurement model of the latent constructs prior to model testing based on the items of procrastination, perceived stress, and depression and anxiety symptoms. The measurement model fitted the data well (M M ; see Table  3 ). All items loaded solidly on their respective factors (0.791 ≤ β ≤ 0.987; p  < .001).

To test our hypotheses, we analyzed the two models described in the methods section.

The fit of the stability model (M 0 ) was acceptable (see Table  3 ). Procrastination was stable over time, with stabilities above 0.82. The stabilities of perceived stress as well as depression and anxiety symptoms were somewhat lower, ranging from 0.559 (T1 -> T2) to 0.696 (T2 -> T3) for perceived stress and from 0.713 (T2 -> T3) to 0.770 (T1 -> T2) for depression and anxiety symptoms, respectively.

The autoregressive mediation model (M 1 ) fitted the data significantly better than M 0 . The direct path from procrastination (T1) to depression and anxiety symptoms (T3) was significant (β = 0.16; p  < .001), however, none of the mediated paths (from procrastination (T1) to perceived stress (T2) and from perceived stress (T2) to depression and anxiety symptoms (T3)) proved to be substantial. Also, the time-lagged paths from perceived stress (T1) to depression and anxiety symptoms (T2) and from procrastination (T2) to perceived stress (T3) were not substantial either (see Fig.  3 ).

To examine whether the hypothesized effects would occur over a one-year period rather than a six-months period, we specified an additional model with paths from procrastination (T1) to perceived stress (T3) and from perceived stress (T1) to depression and anxiety symptoms (T3), also including the stabilities of the three constructs as in the stability model M 0 . The model showed an acceptable fit (χ 2 (486) = 831.281, p  < .001; RMSEA = 0.048; SRMR = 0.091; TLI = 0.95; CFI = 0.95), but neither of the two paths were significant.

Therefore, our hypotheses, that procrastination leads to perceived stress over time (H1) and that perceived stress leads to depression and anxiety symptoms over time (H2) must be rejected. We could only partially confirm our third hypothesis, that procrastination leads to depression and anxiety over time, mediated by perceived stress (H3), since procrastination did lead to depression and anxiety symptoms over time. However, this effect was not mediated by perceived stress.

figure 3

Results of the estimated model including all hypotheses (M 1 ). Note Non-significant paths are dotted. T1 = time 1; T2 = time 2; T3 = time 3. *** p  < .001

To sum up, we tried to examine the harmful consequences of procrastination on students’ stress and mental health. Hence, we selected the procrastination-health model by Sirois [ 9 ] as a theoretical foundation and tried to evaluate some of its key assumptions in a temporal perspective. The author assumes that trait procrastination leads to (chronic) disease via (chronic) stress. We chose depression and anxiety symptoms as indicators for (chronic) disease and postulated, in line with the key assumptions of the procrastination-health model, that procrastination leads to perceived stress over time (H1), that perceived stress leads to depression and anxiety symptoms over time (H2), and that procrastination leads to depression and anxiety symptoms over time, mediated by perceived stress (H3). To examine these relationships properly, we collected longitudinal data from students at three occasions over a one-year period and analyzed the data using autoregressive time-lagged panel models. Our first and second hypotheses had to be rejected: Procrastination did not lead to perceived stress over time, and perceived stress did not lead to depression and anxiety symptoms over time. However, procrastination did lead to depression and anxiety symptoms over time – which is in line with our third hypothesis – but perceived stress was not a mediator of this effect. Therefore, we could only partially confirm our third hypothesis.

Our results contradict previous studies on the stress-related pathway of the procrastination-health model, which consistently found support for the role of (chronic) stress in the relationship between trait procrastination and (chronic) disease. Since most of these studies were cross-sectional, though, the causal direction of these effects remained uncertain. There are two longitudinal studies that confirm the stress-related pathway of the procrastination-health model [ 27 , 28 ], but both studies examined short-term effects (≤ 3 months), whereas we focused on more long-term effects. Therefore, the divergent findings may indicate that there are short-term, but no long-term effects of trait procrastination on (chronic) disease mediated by (chronic) stress.

Our results especially raise the question whether trait procrastination leads to (chronic) stress in the long term. Looking at previous longitudinal studies on the effect of procrastination on stress, the following stands out: At shorter study periods of two weeks [ 27 ] and four weeks [ 28 ], the effect of procrastination on stress appears to be present. At longer study periods of seven weeks [ 59 ], three months [ 28 ], six months, and twelve months, as in our study, the effect of procrastination on stress does not appear to be present. There is one longitudinal study in which procrastination was a significant predictor of stress symptoms nine months later [ 34 ]. The results of this study should be interpreted with caution, though, because the outbreak of the COVID-19 pandemic fell within the study period, which could have contributed to increased stress symptoms [ 60 ]. Unfortunately, Johansson et al. [ 34 ] did not report whether average stress symptoms increased during their study. In one of the two studies conducted by Fincham and May [ 59 ], the COVID-19 pandemic outbreak also fell within their seven-week study period. However, they reported that in their study, average stress symptoms did not increase from baseline to follow-up. Taken together, the findings suggest that procrastination can cause acute stress in the short term, for example during times when many tasks need to be completed, such as at the end of a semester, but that procrastination does not lead to chronic stress over time. It seems possible that students are able to recover during the semester from the stress their procrastination caused at the end of the previous semester. Because of their procrastination, they may also have more time to engage in relaxing activities, which could further mitigate the effect of procrastination on stress. Our conclusions are supported by an early and well-known longitudinal study by Tice and Baumeister [ 61 ], which compared procrastinating and non-procrastinating students with regard to their health. They found that procrastinators experienced less stress than their non-procrastinating peers at the beginning of the semester, but more at the end of the semester. Additionally, our conclusions are in line with an interview study in which university students were asked about the consequences of their procrastination [ 62 ]. The students reported that, due to their procrastination, they experience high levels of stress during periods with heavy workloads (e.g., before deadlines or exams). However, the stress does not last, instead, it is relieved immediately after these periods.

Even though research indicates, in line with the assumptions of the procrastination-health model, that stress is a risk factor for physical and mental disorders [ 63 , 64 , 65 , 66 ], perceived stress did not have a significant effect on depression and anxiety symptoms in our study. The relationship between stress and mental health is complex, as people respond to stress in many different ways. While some develop stress-related mental disorders, others experience mild psychological symptoms or no symptoms at all [ 67 ]. This can be explained with the help of vulnerability-stress models. According to vulnerability-stress models, mental illnesses emerge from an interaction of vulnerabilities (e.g., genetic factors, difficult family backgrounds, or weak coping abilities) and stress (e.g., minor or major life events or daily hassles) [ 68 , 69 ]. The stress perceived by the students in our sample may not be sufficient enough on its own, without the presence of other risk factors, to cause depression and anxiety symptoms. However, since we did not assess individual vulnerability and stress factors in our study, these considerations are mere speculation.

In our study, procrastination led to depression and anxiety symptoms over time, which is consistent with the procrastination-health model as well as previous cross-sectional and longitudinal evidence [ 18 , 21 , 31 , 32 , 33 , 34 ]. However, it is still unclear by which mechanisms this effect is mediated, as perceived stress did not prove to be a substantial mediator in our study. One possible mechanism would be that procrastination impairs affective well-being [ 70 ] and creates negative feelings, such as shame, guilt, regret, and anger [ 20 , 21 , 22 , 62 , 71 ], which in turn could lead to depression and anxiety symptoms [ 23 , 24 , 25 ]. Other potential mediators of the relationship between procrastination and depression and anxiety symptoms emerge from the behavioral pathway of the procrastination-health model, suggesting that poor health-related behaviors mediate the effect of trait procrastination on (chronic) disease. Although evidence for this is still scarce, the results of one cross-sectional study, for example, indicate that poor sleep quality might mediate the effect of procrastination on depression and anxiety symptoms [ 35 ].

In summary, we found that procrastination leads to depression and anxiety symptoms over time and that perceived stress is not a mediator of this effect. We could not show that procrastination leads to perceived stress over time, nor that perceived stress leads to depression and anxiety symptoms over time. For the most part, the relationships between procrastination, perceived stress, and depression and anxiety symptoms did not match the relationships between trait procrastination, (chronic) stress, and (chronic) disease as assumed in the procrastination-health model. Explanations for this could be that procrastination might only lead to perceived stress in the short term, for example, during preparations for end-of-semester exams, and that perceived stress may not be sufficient enough on its own, without the presence of other risk factors, to cause depression and anxiety symptoms. In conclusion, we could not confirm long-term effects of trait procrastination on (chronic) disease mediated by (chronic) stress, as assumed for the stress-related pathway of the procrastination-health model.

Limitations and suggestions for future research

In our study, we tried to draw causal conclusions about the harmful consequences of procrastination on students’ stress and mental health. However, since procrastination is a trait that cannot be manipulated experimentally, we have conducted an observational rather than an experimental study, which makes causal inferences more difficult. Nonetheless, a major strength of our study is that we used a longitudinal design with three waves. This made it possible to draw conclusions about the causal direction of the effects, as in hardly any other study targeting consequences of procrastination on health before [ 4 , 28 , 55 ]. Therefore, we strongly recommend using a similar longitudinal design in future studies on the procrastination-health model or on consequences of procrastination on health in general.

We chose a time lag of six months between each of the three measurement occasions to examine long-term effects of procrastination on depression and anxiety symptoms mediated by perceived stress. However, more than six months may be necessary for the hypothesized effects to occur [ 72 ]. The fact that the temporal stabilities of the examined constructs were moderate or high (0.559 ≤ β ≤ 0.854) [ 73 , 74 ] also suggests that the time lags may have been too short. The larger the time lag, the lower the temporal stabilities, as shown for depression and anxiety symptoms, for example [ 75 ]. High temporal stabilities make it more difficult to detect an effect that actually exists [ 76 ]. Nonetheless, Dormann and Griffin [ 77 ] recommend using shorter time lags of less than one year, even with high stabilities, because of other influential factors, such as unmeasured third variables. Therefore, our time lags of six months seem appropriate.

It should be discussed, though, whether it is possible to detect long-term effects of the stress-related pathway of the procrastination-health model within a total study period of one year. Sirois [ 9 ] distinguishes between short-term and long-term effects of procrastination on health mediated by stress, but does not address how long it might take for long-term effects to occur or when effects can be considered long-term instead of short-term. The fact that an effect of procrastination on stress is evident at shorter study periods of four weeks or less but in most cases not at longer study periods of seven weeks or more, as we mentioned earlier, could indicate that short-term effects occur within the time frame of one to three months, considering the entire stress-related pathway. Hence, it seems appropriate to assume that we have examined rather long-term effects, given our study period of six and twelve months. Nevertheless, it would be beneficial to use varying study periods in future studies, in order to be able to determine when effects can be considered long-term.

Concerning long-term effects of the stress-related pathway, Sirois [ 9 ] assumes that chronic procrastination causes chronic stress, which leads to chronic diseases over time. The term “chronic stress” refers to prolonged stress episodes associated with permanent tension. The instrument we used captures perceived stress over the last four weeks. Even though the perceived stress of the students in our sample was relatively stable (0.559 ≤ β ≤ 0.696), we do not know how much fluctuation occurred between each of the three occasions. However, there is some evidence suggesting that perceived stress is strongly associated with chronic stress [ 78 ]. Thus, it seems acceptable that we used perceived stress as an indicator for chronic stress in our study. For future studies, we still suggest the use of an instrument that can more accurately reflect chronic stress, for example, the Trier Inventory for Chronic Stress (TICS) [ 79 ].

It is also possible that the occasions were inconveniently chosen, as they all took place in a critical academic period near the end of the semester, just before the examination period began. We chose a similar period in the semester for each occasion for the sake of comparability. However, it is possible that, during this preparation periods, stress levels peaked and procrastinators procrastinated less because they had to catch up after delaying their work. This could have introduced bias to the data. Therefore, in future studies, investigation periods should be chosen that are closer to the beginning or in the middle of a semester.

Furthermore, Sirois [ 9 ] did not really explain her understanding of “chronic disease”. However, it seems clear that physical illnesses, such as diabetes or cardiovascular diseases, are meant. Depression and anxiety symptoms, which we chose as indicators for chronic disease, represent mental health complaints that do not have to be at the level of a major depressive disorder or an anxiety disorder, in terms of their quantity, intensity, or duration [ 40 ]. But they can be viewed as precursors to a major depressive disorder or an anxiety disorder. Therefore, given our study period of one year, it seems appropriate to use depression and anxiety symptoms as indicators for chronic disease. At longer study periods, we would expect these mental health complaints to manifest as mental disorders. Moreover, the procrastination-health model was originally designed to be applied to physical diseases [ 3 ]. Perhaps, the model assumptions are more applicable to physical diseases than to mental disorders. By applying parts of the model to mental health complaints, we have taken an important step towards finding out whether the model is applicable to mental disorders as well. Future studies should examine additional long-term health outcomes, both physical and psychological. This would help to determine whether trait procrastination has varying effects on different diseases over time. Furthermore, we suggest including individual vulnerability and stress factors in future studies in order to be able to analyze the effect of (chronic) stress on (chronic) diseases in a more differentiated way.

Regarding our sample, 3,420 students took part at the first occasion, but only 392 participated three times, which results in a dropout rate of 88.5%. At the second and third occasion, invitation e-mails were only sent to participants who had indicated at the previous occasion that they would be willing to participate in a repeat survey and provided their e-mail address. This is probably one of the main reasons for our high dropout rate. Other reasons could be that the students did not receive any incentives for participating in our study and that some may have graduated between the occasions. Selective dropout analysis revealed that the mean score of procrastination was lower in the group that participated in all three waves ( n  = 392) compared to the group that participated in the first wave ( n  = 3,420). One reason for this could be that those who have a higher tendency to procrastinate were more likely to procrastinate on filling out our survey at the second and third occasion. The findings of our dropout analysis should be kept in mind when interpreting our results, as lower levels of procrastination may have eliminated an effect on perceived stress or on depression and anxiety symptoms. Additionally, across all age groups in population-representative samples, the student age group reports having the best subjective health [ 80 ]. Therefore, it is possible that they are more resilient to stress and experience less impairment of well-being than other age groups. Hence, we recommend that future studies focus on other age groups as well.

It is generally assumed that procrastination leads to lower academic performance, health impairment, and poor health-related behavior. However, evidence for negative consequences of procrastination is still limited and it is also unclear by which mechanisms they are mediated. In consequence, the aim of our study was to examine the effect of procrastination on mental health over time and stress as a possible facilitator of this relationship. We selected the procrastination-health model as a theoretical foundation and used the stress-related pathway of the model, assuming that trait procrastination leads to (chronic) disease via (chronic) stress. We chose depression and anxiety symptoms as indicators for (chronic) disease and collected longitudinal data from students at three occasions over a one-year period. This allowed us to draw conclusions about the causal direction of the effects, as in hardly any other study examining consequences of procrastination on (mental) health before. Our results indicate that procrastination leads to depression and anxiety symptoms over time and that perceived stress is not a mediator of this effect. We could not show that procrastination leads to perceived stress over time, nor that perceived stress leads to depression and anxiety symptoms over time. Explanations for this could be that procrastination might only lead to perceived stress in the short term, for example, during preparations for end-of-semester exams, and that perceived stress may not be sufficient on its own, that is, without the presence of other risk factors, to cause depression and anxiety symptoms. Overall, we could not confirm long-term effects of trait procrastination on (chronic) disease mediated by (chronic) stress, as assumed for the stress-related pathway of the procrastination-health model. Our study emphasizes the importance of identifying the consequences procrastination can have on health and well-being and determining by which mechanisms they are mediated. Only then will it be possible to develop interventions that can prevent negative health consequences of procrastination. Further health outcomes and possible mediators should be explored in future studies, using a similar longitudinal design.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

University Health Report at Freie Universität Berlin.

Abbreviations

Comparative fit index

Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition

Generalized Anxiety Disorder Scale-2

Heidelberger Stress Index

Hypothalamic-pituitary-adrenocortical

Robust maximum likelihood estimation

Short form of the Procrastination Questionnaire for Students

Patient Health Questionnaire-2

Patient Health Questionnaire-4

Root mean square error of approximation

Structural equation modeling

Standardized root mean square residual

Tucker-Lewis index

Lu D, He Y, Tan Y, Gender S, Status. Cultural differences, Education, family size and procrastination: a sociodemographic Meta-analysis. Front Psychol. 2021. https://doi.org/10.3389/fpsyg.2021.719425 .

Article   PubMed   PubMed Central   Google Scholar  

Yan B, Zhang X. What research has been conducted on Procrastination? Evidence from a systematical bibliometric analysis. Front Psychol. 2022. https://doi.org/10.3389/fpsyg.2022.809044 .

Sirois FM, Melia-Gordon ML, Pychyl TA. I’ll look after my health, later: an investigation of procrastination and health. Pers Individ Dif. 2003;35:1167–84. https://doi.org/10.1016/S0191-8869(02)00326-4 .

Article   Google Scholar  

Grunschel C. Akademische Prokrastination: Eine qualitative und quantitative Untersuchung von Gründen und Konsequenzen [Unpublished doctoral dissertation]: Universität Bielefeld; 2013.

Steel P. The Nature of Procrastination: a Meta-Analytic and Theoretical Review of Quintessential Self-Regulatory failure. Psychol Bull. 2007;133:65–94. https://doi.org/10.1037/0033-2909.133.1.65 .

Article   PubMed   Google Scholar  

Corkin DM, Yu SL, Lindt SF. Comparing active delay and procrastination from a self-regulated learning perspective. Learn Individ Differ. 2011;21:602–6. https://doi.org/10.1016/j.lindif.2011.07.005 .

Balkis M, Duru E. Procrastination, self-regulation failure, academic life satisfaction, and affective well-being: underregulation or misregulation form. Eur J Psychol Educ. 2016;31:439–59. https://doi.org/10.1007/s10212-015-0266-5 .

Schulz N. Procrastination und Planung – Eine Untersuchung zum Einfluss von Aufschiebeverhalten und Depressivität auf unterschiedliche Planungskompetenzen [Doctoral dissertation]: Westfälische Wilhelms-Universität Münster; 2007.

Sirois FM. Procrastination, stress, and Chronic Health conditions: a temporal perspective. In: Sirois FM, Pychyl TA, editors. Procrastination, Health, and well-being. London: Academic; 2016. pp. 67–92. https://doi.org/10.1016/B978-0-12-802862-9.00004-9 .

Harriott J, Ferrari JR. Prevalence of procrastination among samples of adults. Psychol Rep. 1996;78:611–6. https://doi.org/10.2466/pr0.1996.78.2.611 .

Ferrari JR, O’Callaghan J, Newbegin I. Prevalence of Procrastination in the United States, United Kingdom, and Australia: Arousal and Avoidance delays among adults. N Am J Psychol. 2005;7:1–6.

Google Scholar  

Ferrari JR, Díaz-Morales JF, O’Callaghan J, Díaz K, Argumedo D. Frequent behavioral Delay tendencies by adults. J Cross Cult Psychol. 2007;38:458–64. https://doi.org/10.1177/0022022107302314 .

Day V, Mensink D, O’Sullivan M. Patterns of academic procrastination. JCRL. 2000;30:120–34. https://doi.org/10.1080/10790195.2000.10850090 .

Höcker A, Engberding M, Rist F, Prokrastination. Ein Manual Zur Behandlung Des Pathologischen Aufschiebens. 2nd ed. Göttingen: Hogrefe; 2017.

Kim KR, Seo EH. The relationship between procrastination and academic performance: a meta-analysis. Pers Individ Dif. 2015;82:26–33. https://doi.org/10.1016/j.paid.2015.02.038 .

Khalid A, Zhang Q, Wang W, Ghaffari AS, Pan F. The relationship between procrastination, perceived stress, saliva alpha-amylase level and parenting styles in Chinese first year medical students. Psychol Res Behav Manag. 2019;12:489–98. https://doi.org/10.2147/PRBM.S207430 .

Sirois FM. I’ll look after my health, later: a replication and extension of the procrastination–health model with community-dwelling adults. Pers Individ Dif. 2007;43:15–26. https://doi.org/10.1016/j.paid.2006.11.003 .

Reinecke L, Meier A, Aufenanger S, Beutel ME, Dreier M, Quiring O, et al. Permanently online and permanently procrastinating? The mediating role of internet use for the effects of trait procrastination on psychological health and well-being. New Media Soc. 2018;20:862–80. https://doi.org/10.1177/1461444816675437 .

Westgate EC, Wormington SV, Oleson KC, Lindgren KP. Productive procrastination: academic procrastination style predicts academic and alcohol outcomes. J Appl Soc Psychol. 2017;47:124–35. https://doi.org/10.1111/jasp.12417 .

Feyzi Behnagh R, Ferrari JR. Exploring 40 years on affective correlates to procrastination: a literature review of situational and dispositional types. Curr Psychol. 2022;41:1097–111. https://doi.org/10.1007/s12144-021-02653-z .

Rahimi S, Hall NC, Sticca F. Understanding academic procrastination: a longitudinal analysis of procrastination and emotions in undergraduate and graduate students. Motiv Emot. 2023. https://doi.org/10.1007/s11031-023-10010-9 .

Patrzek J, Grunschel C, Fries S. Academic procrastination: the perspective of University counsellors. Int J Adv Counselling. 2012;34:185–201. https://doi.org/10.1007/s10447-012-9150-z .

Watson D, Clark LA, Carey G. Positive and negative affectivity and their relation to anxiety and depressive disorders. J Abnorm Psychol. 1988;97:346–53. https://doi.org/10.1037//0021-843x.97.3.346 .

Cândea D-M, Szentagotai-Tătar A. Shame-proneness, guilt-proneness and anxiety symptoms: a meta-analysis. J Anxiety Disord. 2018;58:78–106. https://doi.org/10.1016/j.janxdis.2018.07.005 .

Young CM, Neighbors C, DiBello AM, Traylor ZK, Tomkins M. Shame and guilt-proneness as mediators of associations between General Causality orientations and depressive symptoms. J Soc Clin Psychol. 2016;35:357–70. https://doi.org/10.1521/jscp.2016.35.5.357 .

Stead R, Shanahan MJ, Neufeld RW. I’ll go to therapy, eventually: Procrastination, stress and mental health. Pers Individ Dif. 2010;49:175–80. https://doi.org/10.1016/j.paid.2010.03.028 .

Dow NM. Procrastination, stress, and sleep in tertiary students [Master’s thesis]: University of Canterbury; 2018.

Sirois FM, Stride CB, Pychyl TA. Procrastination and health: a longitudinal test of the roles of stress and health behaviours. Br J Health Psychol. 2023. https://doi.org/10.1111/bjhp.12658 .

Hofmann F-H, Sperth M, Holm-Hadulla RM. Psychische Belastungen Und Probleme Studierender. Psychotherapeut. 2017;62:395–402. https://doi.org/10.1007/s00278-017-0224-6 .

Liu CH, Stevens C, Wong SHM, Yasui M, Chen JA. The prevalence and predictors of mental health diagnoses and suicide among U.S. college students: implications for addressing disparities in service use. Depress Anxiety. 2019;36:8–17. https://doi.org/10.1002/da.22830 .

Aftab S, Klibert J, Holtzman N, Qadeer K, Aftab S. Schemas mediate the Link between Procrastination and Depression: results from the United States and Pakistan. J Rat-Emo Cognitive-Behav Ther. 2017;35:329–45. https://doi.org/10.1007/s10942-017-0263-5 .

Flett AL, Haghbin M, Pychyl TA. Procrastination and depression from a cognitive perspective: an exploration of the associations among Procrastinatory Automatic thoughts, rumination, and Mindfulness. J Rat-Emo Cognitive-Behav Ther. 2016;34:169–86. https://doi.org/10.1007/s10942-016-0235-1 .

Saddler CD, Sacks LA. Multidimensional perfectionism and academic procrastination: relationships with Depression in University students. Psychol Rep. 1993;73:863–71. https://doi.org/10.1177/00332941930733pt123 .

Johansson F, Rozental A, Edlund K, Côté P, Sundberg T, Onell C, et al. Associations between procrastination and subsequent Health outcomes among University students in Sweden. JAMA Netw Open. 2023. https://doi.org/10.1001/jamanetworkopen.2022.49346 .

Gusy B, Jochmann A, Lesener T, Wolter C, Blaszcyk W. „Get it done – schadet Aufschieben Der Gesundheit? Präv Gesundheitsf. 2023;18:228–33. https://doi.org/10.1007/s11553-022-00950-4 .

Glöckner-Rist A, Engberding M, Höcker A, Rist F. Prokrastinationsfragebogen für Studierende (PFS): Zusammenstellung sozialwissenschaftlicher items und Skalen. ZIS - GESIS Leibniz Institute for the Social Sciences; 2014.

Klingsieck KB, Fries S. Allgemeine Prokrastination: Entwicklung Und Validierung Einer Deutschsprachigen Kurzskala Der General Procrastination Scale (Lay, 1986). Diagnostica. 2012;58:182–93. https://doi.org/10.1026/0012-1924/a000060 .

Lay CH. At last, my research article on procrastination. J Res Pers. 1986;20:474–95. https://doi.org/10.1016/0092-6566(86)90127-3 .

Schmidt LI, Obergfell J. Zwangsjacke Bachelor?! Stressempfinden Und Gesundheit Studierender: Der Einfluss Von Anforderungen Und Entscheidungsfreiräumen Bei Bachelor- Und Diplomstudierenden Nach Karaseks Demand-Control-Modell. Saarbrücken: VDM Verlag Dr. Müller; 2011.

Kroenke K, Spitzer RL, Williams JB, Löwe B. An Ultra-brief Screening Scale for anxiety and depression: the PHQ-4. Psychosomatics. 2009;50:613–21. https://doi.org/10.1016/S0033-3182(09)70864-3 .

Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version of PRIME-MD: the PHQ Primary Care Study. JAMA. 1999;282:1737–44. https://doi.org/10.1001/jama.282.18.1737 .

Kroenke K, Spitzer RL, Williams JB. The Patient Health Questionnaire-2: validity of a two-item Depression Screener. Med Care. 2003;41:1284–92.

Kroenke K, Spitzer RL, Williams JB, Monahan PO, Löwe B. Anxiety disorders in Primary Care: prevalence, impairment, Comorbidity, and detection. Ann Intern Med. 2007;146:317–25. https://doi.org/10.7326/0003-4819-146-5-200703060-00004 .

Khubchandani J, Brey R, Kotecki J, Kleinfelder J, Anderson J. The Psychometric properties of PHQ-4 depression and anxiety screening scale among College Students. Arch Psychiatr Nurs. 2016;30:457–62. https://doi.org/10.1016/j.apnu.2016.01.014 .

Löwe B, Wahl I, Rose M, Spitzer C, Glaesmer H, Wingenfeld K, et al. A 4-item measure of depression and anxiety: validation and standardization of the Patient Health Questionnaire-4 (PHQ-4) in the general population. J Affect Disorders. 2010;122:86–95. https://doi.org/10.1016/j.jad.2009.06.019 .

Boomsma A, Hoogland JJ. The robustness of LISREL modeling revisited. In: Cudeck R, Du Toit S, Sörbom D, editors. Structural equation modeling: Present and Future: a festschrift in honor of Karl Jöreskog. Lincolnwood: Scientific Software International; 2001. pp. 139–68.

Hu L, Bentler PM. Fit indices in Covariance structure modeling: sensitivity to Underparameterized Model Misspecification. Psychol Methods. 1998;3:424–53. https://doi.org/10.1037/1082-989X.3.4.424 .

Schermelleh-Engel K, Moosbrugger H, Müller H. Evaluating the fit of structural equation models: test of significance and descriptive goodness-of-fit measures. MPR. 2003;8:23–74.

Hu L, Bentler PM. Cutoff criteria for fit indexes in Covariance structure analysis: conventional criteria Versus New Alternatives. Struct Equ Model. 1999;6:1–55. https://doi.org/10.1080/10705519909540118 .

Geiser C, Eid M, Nussbeck FW, Courvoisier DS, Cole DA. Analyzing true change in Longitudinal Multitrait-Multimethod studies: application of a Multimethod Change Model to Depression and anxiety in children. Dev Psychol. 2010;46:29–45. https://doi.org/10.1037/a0017888 .

Putnick DL, Bornstein MH. Measurement invariance conventions and reporting: the state of the art and future directions for psychological research. Dev Rev. 2016;41:71–90. https://doi.org/10.1016/j.dr.2016.06.004 .

Satorra A, Bentler PM. A scaled difference chi-square test statistic for moment structure analysis. Psychometrika. 2001;66:507–14. https://doi.org/10.1007/BF02296192 .

Geiser C. Datenanalyse Mit Mplus: Eine Anwendungsorientierte Einführung. Wiesbaden: VS Verlag für Sozialwissenschaften; 2010.

Book   Google Scholar  

Chen F, Curran PJ, Bollen KA, Kirby J, Paxton P. An empirical evaluation of the use of fixed cutoff points in RMSEA Test Statistic in Structural equation models. Sociol Methods Res. 2008;36:462–94. https://doi.org/10.1177/0049124108314720 .

Dormann C, Zapf D, Perels F. Quer- und Längsschnittstudien in der Arbeitspsychologie [Cross-sectional and longitudinal studies in occupational psychology.]. In: Kleinbeck U, Schmidt K-H,Enzyklopädie der Psychologie [Encyclopedia of psychology]:, Themenbereich D, Serie III, Band 1, Arbeitspsychologie [Subject Area, Series D. III, Volume 1, Industrial Psychology]. Göttingen: Hogrefe Verlag; 2010. pp. 923–1001.

Nunnally JC, Bernstein IH. Psychometric theory. 3rd ed. New York: McGraw-Hill; 1994.

Gignac GE, Szodorai ET. Effect size guidelines for individual differences researchers. Pers Indiv Differ. 2016;102:74–8. https://doi.org/10.1016/j.paid.2016.06.069 .

Funder DC, Ozer DJ. Evaluating effect size in Psychological Research: sense and nonsense. Adv Methods Practices Psychol Sci. 2019;2:156–68. https://doi.org/10.1177/2515245919847202 .

Fincham FD, May RW. My stress led me to procrastinate: temporal relations between perceived stress and academic procrastination. Coll Stud J. 2021;55:413–21.

Daniali H, Martinussen M, Flaten MA. A Global Meta-Analysis of Depression, anxiety, and stress before and during COVID-19. Health Psychol. 2023;42:124–38. https://doi.org/10.1037/hea0001259 .

Tice DM, Baumeister RF. Longitudinal study of procrastination, performance, stress, and Health: the costs and benefits of Dawdling. Psychol Sci. 1997;8:454–8. https://doi.org/10.1111/j.1467-9280.1997.tb00460.x .

Schraw G, Wadkins T, Olafson L. Doing the things we do: a grounded theory of academic procrastination. J Educ Psychol. 2007;99:12–25. https://doi.org/10.1037/0022-0663.99.1.12 .

Slavich GM. Life Stress and Health: a review of conceptual issues and recent findings. Teach Psychol. 2016;43:346–55. https://doi.org/10.1177/0098628316662768 .

Phillips AC, Carroll D, Der G. Negative life events and symptoms of depression and anxiety: stress causation and/or stress generation. Anxiety Stress Coping. 2015;28:357–71. https://doi.org/10.1080/10615806.2015.1005078 .

Hammen C. Stress and depression. Annu Rev Clin Psychol. 2005;1:293–319. https://doi.org/10.1146/annurev.clinpsy.1.102803.143938 .

Blazer D, Hughes D, George LK. Stressful life events and the onset of a generalized anxiety syndrome. Am J Psychiatry. 1987;144:1178–83. https://doi.org/10.1176/ajp.144.9.1178 .

Southwick SM, Charney DS. The Science of Resilience: implications for the Prevention and Treatment of Depression. Science. 2012;338:79–82. https://doi.org/10.1126/science.1222942 .

Ingram RE, Luxton DD. Vulnerability-stress models. In: Hankin BL, Abela JR, editors. Development of psychopathology: a vulnerability-stress perspective. Thousand Oaks: Sage; 2005. pp. 32–46.

Chapter   Google Scholar  

Maercker A. Modelle Der Klinischen Psychologie. In: Petermann F, Maercker A, Lutz W, Stangier U, editors. Klinische psychologie – Grundlagen. Göttingen: Hogrefe; 2018. pp. 13–31.

Krause K, Freund AM. Delay or procrastination – a comparison of self-report and behavioral measures of procrastination and their impact on affective well-being. Pers Individ Dif. 2014;63:75–80. https://doi.org/10.1016/j.paid.2014.01.050 .

Grunschel C, Patrzek J, Fries S. Exploring reasons and consequences of academic procrastination: an interview study. Eur J Psychol Educ. 2013;28:841–61. https://doi.org/10.1007/s10212-012-0143-4 .

Dwyer JH. Statistical models for the social and behavioral sciences. New York: Oxford University Press; 1983.

Cohen JA, Power Primer. Psychol Bull. 1992;112:155–9. https://doi.org/10.1037//0033-2909.112.1.155 .

Ferguson CJ. An effect size primer: a Guide for clinicians and Researchers. Prof Psychol Res Pr. 2009;40:532–8. https://doi.org/10.1037/a0015808 .

Hinz A, Berth H, Kittel J, Singer S. Die zeitliche Stabilität (Test-Retest-Reliabilität) Von Angst Und Depressivität Bei Patienten Und in Der Allgemeinbevölkerung. Z Med Psychol. 2011;20:24–31. https://doi.org/10.3233/ZMP-2010-2012 .

Adachi P, Willoughby T. Interpreting effect sizes when controlling for stability effects in longitudinal autoregressive models: implications for psychological science. Eur J Dev Psychol. 2015;12:116–28. https://doi.org/10.1080/17405629.2014.963549 .

Dormann C, Griffin M. Optimal time lags in Panel studies. Psychol Methods. 2015;20:489–505. https://doi.org/10.1037/met0000041 .

Weckesser LJ, Dietz F, Schmidt K, Grass J, Kirschbaum C, Miller R. The psychometric properties and temporal dynamics of subjective stress, retrospectively assessed by different informants and questionnaires, and hair cortisol concentrations. Sci Rep. 2019. https://doi.org/10.1038/s41598-018-37526-2 .

Schulz P, Schlotz W, Becker P. TICS: Trierer Inventar Zum chronischen stress. Göttingen: Hogrefe; 2004.

Heidemann C, Scheidt-Nave C, Beyer A-K, Baumert J, Thamm R, Maier B, et al. Health situation of adults in Germany - results for selected indicators from GEDA 2019/2020-EHIS. J Health Monit. 2021;6:3–25. https://doi.org/10.25646/8459 .

Download references

Acknowledgements

Not applicable.

Open Access Funding provided by Freie Universität Berlin.

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and affiliations.

Division of Prevention and Psychosocial Health Research, Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195, Berlin, Germany

Anna Jochmann, Burkhard Gusy, Tino Lesener & Christine Wolter

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: A.J., B.G., T.L.; methodology: B.G., A.J.; validation: B.G.; formal analysis: A.J., B.G.; investigation: C.W., T.L., B.G.; data curation: C.W., T.L., B.G.; writing–original draft preparation: A.J., B.G.; writing–review and editing: A.J., T.L., B.G., C.W.; visualization: A.J., B.G.; supervision: B.G., T.L.; project administration: C.W., T.L., B.G.; All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Anna Jochmann or Burkhard Gusy .

Ethics declarations

Ethics approval and consent to participate.

This study was performed in line with the principles of the Declaration of Helsinki. Ethical approval was obtained from the Ethics Committee of the Department of Education and Psychology, Freie Universität Berlin. All methods were carried out in accordance with relevant guidelines and regulations. The participants provided their written informed consent to participate in this study.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Selective dropout analysis and correlation matrix of the manifest variables

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Jochmann, A., Gusy, B., Lesener, T. et al. Procrastination, depression and anxiety symptoms in university students: a three-wave longitudinal study on the mediating role of perceived stress. BMC Psychol 12 , 276 (2024). https://doi.org/10.1186/s40359-024-01761-2

Download citation

Received : 25 May 2023

Accepted : 02 May 2024

Published : 16 May 2024

DOI : https://doi.org/10.1186/s40359-024-01761-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Student health
  • Longitudinal study

BMC Psychology

ISSN: 2050-7283

research method on psychology

Yellowlees Douglas Ph.D.

The One Method That Changes Your—and All Students’—Writing

Science-based writing methods can achieve dramatic results..

Posted May 14, 2024 | Reviewed by Abigail Fagan

  • Why Education Is Important
  • Find a Child Therapist
  • A systematic writing framework offers a method for dramatically improving the teaching of writing.
  • This method received only limited uptake, despite high-profile research publications and textbooks.
  • A focus on writing style might have limited the method's impacts.

Andy Barbour, Envato

I remember spending hours commenting painstakingly on my students’ papers when I was a graduate student teaching in the Expository Writing Program at New York University. My students loved our classes, and they filled my sections and gave me terrific course evaluations. Yet I could see that their writing failed to change significantly over the course of the semester. I ended up feeling as if I should refund their money, haunted by the blunt instruments we had to teach writing.

As I’ve learned from directing five writing programs at three different universities, methods matter. When I reviewed comments on papers from instructors who taught in my programs, I discovered that the quantity and quality of comments on students’ papers made only a slight impact on writing outcomes. For instance, one notoriously lazy instructor took several weeks to return assignments and only used spelling and grammar checkers to automate comments. But his conscientious colleague made dozens of sharp observations about students’ arguments, paragraphs, and sentences. However, Mr. Conscientious’ students improved perhaps only 10% over Mr. Minimalist’s students. Even then, the differences stemmed from basic guidelines Mr. Conscientious insisted his students write to, which included providing context sentences at the outset of their essay introductions.

Educators have also poured resources into teaching writing, with increasing numbers of hours dedicated to teaching writing across primary, secondary, and higher education . Yet studies continue to find writing skills inadequate . In higher education, most universities require at least a year of writing-intensive courses, with many universities also requiring writing across the curriculum or writing in the disciplines to help preserve students’ writing skills. However, writing outcomes have remained mostly unchanged .

While pursuing my doctorate, I dedicated my research to figuring out how writing worked. As a graduate student also teaching part-time, I was an early convert to process writing. I also taught those ancient principles of logos, ethos, and pathos, as well as grammar and punctuation. Nevertheless, these frameworks only created a canvas for students’ writing. What was missing: how writers should handle words, sentence structure, and relationships between sentences.

Yet researchers published the beginnings of a science-based writing method over 30 years ago. George Gopen, Gregory Colomb, and Joseph Williams created a framework for identifying how to maximize the clarity, coherence, and continuity of writing. In particular, Gopen and Swan (1990) created a methodology for making scientific writing readable . This work should have been a revelation to anyone teaching in or directing a writing program. But, weirdly, comparatively few writing programs or faculty embraced this work, despite Williams, Colomb, and Gopen publishing both research and textbooks outlining the method and process.

Peculiarly, this framework—represented by Williams’ Style series of textbooks and Gopen’s reader expectation approach—failed to become standard in writing courses, likely because of two limitations. First, both Gopen and Williams hewed to a relativistic stance on writing methods, noting that rule-flouting often creates a memorable style. This stance created a raft of often-contradictory principles for writing. For example, Williams demonstrated that beginning sentences with There is or There are openings hijacked the clarity of sentences, then argued writers should use There is or There are to shunt important content into sentence emphasis positions, where readers recall content best. Second, these researchers failed to tie this writing framework to the wealth of data in psycholinguistics, cognitive neuroscience , or cognitive psychology on how our reading brains process written English. For instance, textbooks written by these three principal researchers avoid any mention of why emphasis positions exist at the ends of sentences and paragraphs—despite the concept clearly originating in the recency effect. This limitation may stem from the humanities’ long-held antipathy to the idea that writing is a product, rather than a process. Or even that science-based methods can help teachers and programs measure the effectiveness of writing, one reason why university First-Year Writing programs have failed to improve students’ writing in any measurable way.

Nevertheless, when you teach students how our reading brains work, you create a powerful method for rapidly improving their writing—in any course that requires writing and at all levels of education. Students can grasp how writing works as a system and assess the costs and benefits of decisions writers face, even as they choose their first words. This method also works powerfully to help students immediately understand how, for instance, paragraph heads leverage priming effects to shape readers’ understanding of paragraph content.

Using this method, I and my colleagues have helped students use a single writing assignment to secure hundreds of jobs, win millions in grant funding, and advance through the ranks in academia. However, we’ve also used the same method without modifications in elementary and secondary classrooms to bolster students’ writing by as much as three grade levels in a single year.

Perhaps the time has arrived for this well-kept secret to revolutionizing student writing outcomes to begin making inroads into more writing classrooms.

Gopen, G. D. and J. A. Swan (1990). "The Science of Scientific Writing." American Scientist 78(6): 550-558.

Gopen, George. The Sense of Structure: Writing from the Reader’s Perspective . Pearson, 2004.

Gopen, George. Expectations: Teaching Writing from the Reader’s Perspective . Pearson, 2004.

Williams, Joseph. Style: Toward Clarity and Grace . University of Chicago Press, 1995.

Williams, Joseph. Style: Ten Lessons in Clarity and Grace . Harper Collins, 1994.

Williams, Joseph. Style: The Basics of Clarity and Grace . Longman, 2002.

Yellowlees Douglas Ph.D.

Jane Yellowlees Douglas, Ph.D. , is a consultant on writing and organizations. She is also the author, with Maria B. Grant, MD, of The Biomedical Writer: What You Need to Succeed in Academic Medicine .

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

IMAGES

  1. Scientific Research in Psychology

    research method on psychology

  2. 4.3 Using Theories in Psychological Research

    research method on psychology

  3. Psychology research methods

    research method on psychology

  4. A Level Psychology

    research method on psychology

  5. Research Methods in Psychology

    research method on psychology

  6. PPT

    research method on psychology

VIDEO

  1. PSY 2120: Why study research methods in psychology?

  2. Research Methods in Psychology

  3. Class 11 Psychology Chapter 2

  4. The Case Study Method

  5. TYPES OF SURVEY RESEARCH- Survey Research Method in Psychology

  6. What are Scientific methods used in Psychology ?

COMMENTS

  1. Research Methods In Psychology

    Olivia Guy-Evans, MSc. Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

  2. PDF APA Handbook of Research Methods in Psychology

    Research Methods in Psychology AP A Han dbook s in Psychology VOLUME Research Designs: Quantitative, Qualitative, Neuropsychological, and Biological SECOND EDITION Harris Cooper, Editor-in-Chief Marc N. Coutanche, Linda M. McMullen, A. T. Panter, sychological Association. Not for further distribution.

  3. Research Methods in Psychology

    "Research Methods in Psychology" covers most research method topics comprehensively. The author does an excellent job explaining main concepts. The chapter on causation is very detailed and well-written as well as the chapter on research ethics. However, the explanations of data analysis seem to address upper level students rather than beginners.

  4. APA Handbook of Research Methods in Psychology

    His research interests concern research synthesis and research methodology, and he also studies the application of social and developmental psychology to education policy. His book Research Synthesis and Meta-Analysis: A Step-by-Step Approach (2017) is in its fifth edition.

  5. APA Handbook of Research Methods in Psychology

    With significant new and updated content across dozens of chapters, the second edition of the APA Handbook of Research Methods in Psychology presents the most exhaustive treatment available of the techniques psychologists and others have developed to help them pursue a shared understanding of why humans think, feel, and behave the way they do. Across three volumes, the chapters in this ...

  6. Introduction to Research Methods in Psychology

    An example of this type of research in psychology would be changing the length of a specific mental health treatment and measuring the effect on study participants. 2. Descriptive Research . Descriptive research seeks to depict what already exists in a group or population. Three types of psychology research utilizing this method are: Case studies

  7. Research in Psychology: Methods You Should Know

    Research in psychology focuses on a variety of topics, ranging from the development of infants to the behavior of social groups. Psychologists use the scientific method to investigate questions both systematically and empirically. Research in psychology is important because it provides us with valuable information that helps to improve human lives.

  8. PDF APA Handbook of Research Methods in Psychology

    III. Title: Handbook of research methods in psychology. BF76.5.A73 2012 150.72 1 dc23 2011045200 British Library Cataloguing-in-Publication Data A CIP record is available from the British Library. Printed in the United States of America First Edition DOI: 10.1037/13619-000

  9. APA handbook of research methods in psychology: Research designs

    This handbook provides descriptions of many techniques that psychologists and others have developed to help them pursue a shared understanding of why humans think, feel, and behave the way they do. These are the tools that can be used to conduct rational analyses. At the broadest level, when choosing a method you make decisions about (a) what data or measurement techniques will best capture ...

  10. Research Methods in Psychology

    Research Methods in Psychology: Investigating Human Behavior draws on fascinating stories to illustrate the entire research process within a unifying conceptual framework. Bestselling authors Paul G. Nestor and Russell K. Schutt present a clear and comprehensive introduction to the logic and techniques of research methods in psychology by ...

  11. The Use of Research Methods in Psychological Research: A Systematised

    Introduction. Psychology is an ever-growing and popular field (Gough and Lyons, 2016; Clay, 2017).Due to this growth and the need for science-based research to base health decisions on (Perestelo-Pérez, 2013), the use of research methods in the broad field of psychology is an essential point of investigation (Stangor, 2011; Aanstoos, 2014).Research methods are therefore viewed as important ...

  12. Research Methods

    Psychology is an empirical science, one dealing with the prediction of behavior in humans and animals. Conducting empirical research focused on predicting behavior requires the use of research methods. Research methods are the practical tools and techniques psychologists employ to scientifically investigate research questions.

  13. Ch 2: Psychological Research Methods

    In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives. In this section, you'll see how psychologists use the scientific method to study and understand behavior.

  14. Research Methods in Psychology

    Download this book. While Research Methods in Psychology is fairly traditional— making it easy for you to use with your existing courses — it also emphasizes a fundamental idea that is often lost on undergraduates: research methods are not a peripheral concern in our discipline; they are central. For questions about this textbook please ...

  15. Research Methods in Psychology

    This book covers all of the main topics in research methods for psychology students. I appreciate that it also includes sections on qualitative methods as well as how to present results. Content Accuracy rating: 4 All of the information on methods is accurate, but the book references 6th edition APA style rather than 7th edition. As such ...

  16. PDF APA Handbook of Research Methods in Psychology, Second Edition Sample Pages

    Chapter˜12. Mixed Methods Research in Psychology ..... 235 Timothy C. Guetterman and Analay Perez Chapter˜13. The "Cases Within Trials" (CWT) Method: An Example of a Mixed-Methods Research Design ..... 257 Daniel B. Fishman Chapter˜14. Researching With American Indian and Alaska Native Communities:

  17. Psychology

    Psychology - Research Methods, Experiments, Observations: An extremely wide range of diverse research methods are used by psychological scientists to pursue their particular goals. To study verbal and nonverbal behaviour and mental processes in humans, these include questionnaires, ratings, self-reports, and case studies; tests of personality, attitudes, and intelligence; structured interviews ...

  18. Psychological Research Methods: Types and Tips

    Surveys. Surveys are a commonly used research method in psychology that involve gathering data from a large number of people about their thoughts, feelings, behaviors, and attitudes. Surveys can be conducted in a variety of ways, including: In-person interviews. Online questionnaires. Paper-and-pencil surveys.

  19. APA handbook of research methods in psychology, Vol 2: Research designs

    At the broadest level, when choosing a method you make decisions about (a) what data or measurement techniques will best capture the thoughts, feelings, and behaviors that interest you; (b) what research design best fits the question that you want to answer; and (c) what strategies for data analysis best match the characteristics of your design ...

  20. Research Methods

    Overview - Research Methods. Research methods are how psychologists and scientists come up with and test their theories. The A level psychology syllabus covers several different types of studies and experiments used in psychology as well as how these studies are conducted and reported:. Types of psychological studies (including experiments, observations, self-reporting, and case studies)

  21. A Guide to 10 Research Methods in Psychology (With Tips)

    10 research methods in psychology Research methods in psychology can have a quantitative or qualitative context, and they can focus on how people perceive the world, process information, make decisions and react to stimuli. Quantitative research methods use numbers and statistical techniques to make conclusions about a population. Qualitative-based research methods in psychology use ...

  22. APA resources to help teachers engage students in research

    These additional free APA resources are also helpful to teachers: Psychology topics: Access research, podcasts, and publications on nearly 100 topics. APA Dictionary of Psychology: Over 25,000 authoritative entries across 90 subfields of psychology. APA Style Journal Article Reporting Standards: These standards offer guidance on what ...

  23. PSYC 118

    PSYC 118 - Advanced Research Methods in Psychology . ... Experience designing, conducting, analyzing, and presenting (verbal and written) research findings. Topics include: hypothesis testing, validity, reliability, scales of measurement, questionnaire development, power, statistical significance, and effect size.

  24. Procrastination, depression and anxiety symptoms in university students

    The immediate effect is not further explained. Research suggests that procrastination creates negative feelings, such as shame, guilt, regret, and anger [20,21,22].The described feelings could have a detrimental effect on mental health [23,24,25].The first mediated pathway leads from trait procrastination to (chronic) disease via (chronic) stress.

  25. Discuss some of the research methods that social psychologist

    To make sure that research is done in an ethical way, researchers must also follow professional standards and rules set by the Institutional Review Board (IRB). Some of the research methods used in social psychology are experimental, correlational, observational, and poll research. These are used to learn more about how people behave and ...

  26. <em>Family Relations</em>

    Family Relations is an international journal publishing original research on all aspects of psychology related to health and illness. Abstract Objective This study examined family dynamics that are common in families experiencing elder family financial exploitation (EFFE) using an innovative analytical protocol, qualitative genog ...

  27. APA handbook of research methods in psychology ...

    These involve both (a) which research designs are most appropriate for which question and (b) how to think about the ethicality the research that address the question, and (c) how to conduct research with participants drawn from more diverse populations. ... APA handbook of research methods in psychology: Foundations, planning, measures, and ...

  28. The One Method That Changes Your—and All Students'—Writing

    A systematic writing framework offers a method for dramatically improving the teaching of writing. This method received only limited uptake, despite high-profile research publications and ...

  29. Seminar in Advanced Research Methods: Melissa Thye

    Seminar in Advanced Research Methods: Melissa Thye - Postdoctoral Research Fellow, University of Edinburgh Date. Nov 5, 2024, 12:00 pm - 1:00 pm. Location. ... Department of Psychology. Contact. Jason Geller [email protected] Event Series. Seminar in Advanced Research Methods. Footer. Contact Us. Phone: 609-258-2600