StatAnalytica

121+ Experimental Research Topics Across Different Disciplines

experimental research topics

Experimental research is a cornerstone of scientific inquiry, providing a systematic approach to investigating phenomena and testing hypotheses. This method allows researchers to establish cause-and-effect relationships, contributing valuable insights to diverse fields.

In this blog post, we’ll delve into the world of experimental research topics, exploring their significance, ethical considerations, and providing a rich array of ideas spanning psychology, biology, physics, and education.

Definition and Importance of Experimental Research

Table of Contents

At its core, experimental research involves manipulating one or more variables to observe the effects on another variable, while controlling for extraneous influences. This method is crucial in establishing causation, distinguishing it from correlational studies that merely identify relationships between variables.

Experimental research holds immense importance across various disciplines. 

  • In psychology, it helps unravel the complexities of human behavior, cognition, and social dynamics. 
  • In biology, it uncovers the mysteries of genetics, ecology, and environmental science. 
  • Physics relies on experimental research to test and refine theories, while education benefits from insights into effective teaching methods and learning environments.

General Considerations for Experimental Research Topics

Before delving into specific topics, it’s essential to consider general principles when selecting experimental research ideas:

Ethical Considerations

Ethical guidelines are paramount in experimental research. Researchers must ensure the well-being of participants, obtain informed consent, and uphold confidentiality. Ethical considerations extend to the treatment of animals in biological experiments and the responsible use of technology in various fields.

Feasibility and Resources

Selecting research topics should align with available resources, including time, funding, and access to necessary equipment. Researchers must carefully assess the feasibility of their experiments and plan accordingly.

Relevance to Current Issues or Trends

To maximize the impact of experimental research, topics should address current issues or trends within a given field. This ensures that the findings contribute meaningfully to existing knowledge and potentially address real-world challenges.

121+ Experimental Research Topics in Different Categories

  • The impact of sleep deprivation on cognitive performance
  • Effects of mindfulness meditation on stress reduction
  • Relationship between screen time and mental health in adolescents
  • Influence of music tempo on productivity and mood
  • Investigating the placebo effect in pain management
  • The role of nutrition in cognitive function and memory
  • Effects of color on consumer perceptions and behavior
  • Impact of social support on recovery from traumatic events
  • Examining the effectiveness of virtual reality in therapy
  • The relationship between exercise and mental well-being
  • Exploring the link between creativity and sleep patterns
  • Effects of bilingualism on cognitive abilities
  • Investigating the impact of social media on body image
  • The role of laughter in stress reduction and health
  • Effects of environmental factors on workplace productivity
  • Examining the impact of video games on attention span
  • Influence of weather on mood and emotional well-being
  • Investigating the effectiveness of cognitive-behavioral therapy
  • The relationship between personality traits and job satisfaction
  • Effects of caffeine on cognitive performance and alertness
  • Impact of childhood trauma on adult mental health
  • The role of scent in influencing consumer behavior
  • Investigating the effects of positive affirmations on self-esteem
  • Examining the relationship between music and learning
  • Effects of social isolation on mental and physical health
  • The impact of exercise on the aging process
  • Investigating the relationship between diet and depression
  • Effects of technology use on interpersonal relationships
  • Influence of parental involvement on academic achievement
  • Examining the effects of nature exposure on stress reduction
  • The relationship between personality and response to stress
  • Impact of workplace design on employee satisfaction
  • Investigating the effectiveness of art therapy in trauma recovery
  • Effects of color in marketing and consumer behavior
  • The role of emotional intelligence in leadership
  • Examining the impact of gender stereotypes on career choices
  • Influence of social support on weight loss and fitness goals
  • Investigating the effects of video game violence on behavior
  • The relationship between music and exercise performance
  • Effects of mindfulness interventions on anxiety levels
  • Impact of parental involvement in early childhood education
  • Examining the effectiveness of peer mentoring programs
  • Effects of environmental noise on cognitive performance
  • Influence of social media on political opinions and beliefs
  • Investigating the relationship between gratitude and well-being
  • The role of humor in coping with stress and adversity
  • Effects of aroma therapy on sleep quality and relaxation
  • Impact of workplace diversity on team performance
  • Examining the relationship between humor and creativity
  • Influence of cultural factors on mental health stigma
  • Investigating the effects of technology on sleep patterns
  • The relationship between personality and response to pain
  • Effects of nature exposure on creativity and problem-solving
  • Impact of parental involvement on childhood development
  • Examining the effectiveness of group therapy for depression
  • Influence of social media on political polarization
  • Investigating the effects of social exclusion on behavior
  • The role of nutrition in athletic performance and recovery
  • Effects of positive reinforcement on behavior modification
  • Impact of workplace flexibility on employee satisfaction
  • Examining the relationship between gratitude and happiness
  • Influence of social support on cardiovascular health
  • Investigating the effects of aromatherapy on stress levels
  • The relationship between personality and response to medication
  • Effects of mindfulness interventions on academic performance
  • Impact of parental involvement on adolescent mental health
  • Examining the effectiveness of peer support programs
  • Influence of social media on body image dissatisfaction
  • Investigating the effects of laughter therapy on well-being
  • The role of scent in enhancing learning and memory
  • Effects of positive affirmations on athletic performance
  • Impact of workplace culture on employee mental health
  • Examining the relationship between humor and resilience
  • Influence of social support on weight management
  • Investigating the effects of technology on social skills
  • The relationship between personality and response to treatment
  • Effects of nature exposure on mood and emotional well-being
  • Impact of parental involvement on academic motivation
  • Examining the effectiveness of art therapy for stress reduction
  • Influence of social media on consumer purchasing decisions
  • Investigating the effects of mindfulness on sleep quality
  • The role of scent in enhancing emotional experiences
  • Effects of positive affirmations on academic achievement
  • Impact of workplace design on employee well-being
  • Examining the relationship between humor and job satisfaction
  • Influence of social support on coping with chronic illness
  • Investigating the effects of technology on attention span
  • The relationship between personality and response to stressors
  • Effects of nature exposure on cognitive performance
  • Impact of parental involvement on child behavior
  • Examining the effectiveness of group therapy for anxiety
  • Influence of social media on social connectedness
  • Investigating the effects of social isolation on mental health
  • The role of scent in enhancing cognitive performance
  • Effects of positive affirmations on goal achievement
  • Impact of workplace diversity on organizational performance
  • Examining the relationship between humor and team dynamics
  • Influence of social support on academic success
  • Investigating the effects of technology on sleep quality
  • The relationship between personality and response to challenges
  • Effects of nature exposure on creativity and innovation
  • Impact of parental involvement on adolescent behavior
  • Examining the effectiveness of art therapy for trauma recovery
  • Influence of social media on political engagement
  • Investigating the effects of mindfulness on emotional regulation
  • Effects of positive affirmations on stress resilience
  • Impact of workplace culture on employee satisfaction
  • Examining the relationship between humor and job performance
  • Influence of social support on coping with grief
  • Investigating the effects of technology on social relationships
  • The relationship between personality and response to therapy
  • Effects of nature exposure on mood and psychological well-being
  • Impact of parental involvement on academic achievement motivation
  • Influence of social media on body image and self-esteem
  • The role of scent in enhancing cognitive performance and memory
  • Effects of positive affirmations on athletic performance and motivation
  • Impact of workplace design on employee mental and physical well-being
  • Examining the relationship between humor and workplace satisfaction

Tips for Selecting Experimental Research Topics

Interest and Passion

  • Choose a topic that genuinely interests you. Your enthusiasm for the subject will sustain you through the research process.
  • Consider areas of personal or professional passion, as this can drive motivation and dedication.
  • Ensure that your chosen topic is relevant to your field of study. Consider current trends, emerging issues, or gaps in existing knowledge that your research could address.

Feasibility

  • Assess the feasibility of your research topic in terms of time, resources, and accessibility. Ensure you have the means to conduct the experiments and gather data effectively.
  • Look for gaps or areas with limited research in your chosen field. Novelty in your research can contribute significantly to academic discussions and the advancement of knowledge.

Practicality

  • Consider the practical implications of your research. Can the findings be applied in real-world situations? Practical relevance adds value to your work.
  • Ensure that your research adheres to ethical guidelines. Consider the potential impact on human subjects, animals, or the environment and address these concerns appropriately.

Collaboration Opportunities

  • Explore the possibility of collaborating with experts in related fields. Interdisciplinary research can provide a broader perspective and enhance the impact of your work.

Literature Review

  • Conduct a thorough literature review to understand existing research on the chosen topic. Identify gaps, controversies, or areas where further exploration is needed.
  • Define the scope of your research clearly. Ensure that the topic is neither too broad nor too narrow. A well-defined scope allows for focused and meaningful investigation.

Methodology

  • Consider the methodologies you will use in your experiments. Ensure they are appropriate for the research question and feasible given your resources.
  • Consider the potential impact of your research. Will it contribute significantly to the field, address practical problems, or open avenues for further exploration?

Consultation

  • Discuss your ideas with mentors, colleagues, or experts in the field. Their insights can help refine your topic and provide valuable perspectives.

Accessibility of Data

  • Ensure that the data required for your experiments is accessible. If your research involves data collection, make sure you can obtain the necessary information.

Peer Review

  • Share your proposed topics with peers or advisors and seek feedback. Constructive criticism can help refine your ideas and identify potential challenges.

Flexibility

  • Be open to adjusting your research topic based on evolving circumstances or new insights. Flexibility is crucial in the dynamic landscape of research.

Experimental research topics form the bedrock of scientific advancement, driving our understanding of the world and contributing to innovations across disciplines. As we explore the vast landscape of experimental research, it’s crucial to recognize the ethical considerations, feasibility, and relevance of chosen topics. 

Whether probing the intricacies of the human mind, unraveling the mysteries of the natural world, or enhancing educational practices, experimental research continues to push the boundaries of knowledge and shape the future of scientific inquiry. 

As researchers embark on these explorations, they contribute not only to their respective fields but also to the collective pursuit of understanding and progress.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

143 Experiment Research Topics

Welcome to our collection of experimental research topics! Experiments are the cornerstone of empirical research, allowing scholars to test hypotheses and expand knowledge. With our experimental research questions ideas, you can uncover the diverse realms of empirical studies, from the natural sciences to social sciences and beyond.

🧪 7 Best Experimental Research Questions Ideas

🏆 best experimental research topics, 💡 simple experimental essay titles, 👍 catchy experimental research questions ideas, ❓ more experimental research questions ideas, 🎓 interesting experimental research topics.

  • Bean Seed Germination Experiment Results
  • Archimedes’ Principle Experiment: Determining Gravity of Objects
  • Water Quality and Contamination Experiment Report
  • Physical Health Indicator: Pulse Rate Experiment
  • Static and Kinetic Friction: A Lab Experiment
  • Human Transport Systems: The Pulse Rate Experiment
  • Experiment: Flame Test and Chemical Fingerprinting
  • “Stanford Prison Experiment Ethics” by Philip Zimbardo The primary purpose of Zimbardo’s work was to explore how quickly individuals would identify with corrections officers and prisoner roles during the prison simulation.
  • Chemical Experiment on Enzyme Amylase This paper presents an experiment that was conducted to determine the activity of amylase on starch at various pH levels.
  • Ideal Gas Expansion Law: Experiment The purpose of the experiment was to understand the differences between different types of ideal gas expansions, paying attention to the amount of work done.
  • Scientific Report Draft on Osmosis Egg Experiment Understanding how an egg reacts when placed in solutions of different concentrations enables one to understand the role of osmosis in the human body.
  • Miles Davis and Steve Reich: Geniuses of Experiments and Creativity Although Miles Davis’ and Steve Reich’s music belongs to different genres, they are connected in their constant search for a new sound by experimenting and improvising.
  • Kant’s Ethical Philosophy and Milgram’s Experiments The problem for Kant’s ethical philosophy is whether moral principles are applicable to nonhumans, such as Galacticans.
  • John Watson and the “Little Albert” Experiment John Watson is considered to be the founder of behaviorism, a psychological theory that focuses on visible behavior while diminishing the notion of consciousness.
  • Why People Obey Authority: Milgram Experiment and Real-World Situation Human beings would obey authority depending on the overall rewards, potential personal gains, and the consequences of failing to do so.
  • Hawthorne Experiments – Elton Mayo With Roethlisberger and Dickson The Hawthorne theories have brought about a positive change in the behavior and attitude of the managers as well as the workers.
  • Fiji Water Quality: Biology Lab Experiment Since Fiji water is among the popular brands in the US, it is essential to evaluate whether it is clean, that is, safe for human consumption.
  • Unethical Research Experiments Violation of ethical principles can be traced in two analyzed cases; only in Landis’s experiment harm and killing were real in relation to animals.
  • Conducting a Titration Experiment Titration studies are conducted to quantify the amount of an unidentified element in the sample using a methodological approach.
  • Metal and Non-metal Redox Reactions Experiment The following experiment aimed to investigate Redox reaction and hence determine which elements were reactive; metal v. metal redox reactions, and non-metal v. non-metal reactions.
  • Acoustics Experiment in Brunel’s Thames Tunnel In this project, tunnels that exist below London streets for a variety of communications, civil defense, and military purposes will be used as the objects of the experiment.
  • Helicopter Experiment Assessment This report of a paper helicopter experiment involved designating a paper helicopter in varied designs and then dropping it severally while recording the flight time.
  • Metrology Experiment with Measurement Tools The experiment concerned testing the efficacy of the measurement tools such as the Vernier caliper, a depth gauge, a micrometer, and a gauge in an uncertainty analysis.
  • P. Zimbardo’s Stanford Experiment A psychological experiment is an event conducted to acquire new scientific knowledge about psychology through the researcher’s deliberate intervention in the life of the examinee.
  • Experiment on Effect of Energy Drinks on Athletic Performance Experimental research is a study that a researcher sets up to evaluate a given situation, such as a drug or treatment intervention.
  • Inductor-Capacitor-Resistor Circuit Experiment The article presents the experiment that will demonstrate the relationship between an inductor, voltmeter, and resistor in an inductor-capacitor-resistor (LCR) circuit.
  • Ethical Analysis of the Tuskegee Syphilis Experiments The Tuskegee Syphilis Study failed to take into account several critical ethical considerations. This essay examines some of the ethical problems linked to the investigation.
  • Social Experiment: Informal Norms of Gender Issues The social experiment presents a contradiction between the socially-accepted norms and the understanding of equality between men and women.
  • Virtue Ethics in Stanford and Milgram’s Experiments This paper investigates the notion of virtue ethics, discussing two major studies, the Stanford prison experiment, and Milgram’s obedience studies.
  • Pasture Experiment: Fertiliser Treatments Response This work is an experiment that defines the role of fertilizers in pasture production and to establish the appropriate use of pasture sampling to assess pasture mass.
  • Isopods and Their Use in Experiments Isopod is a large family belonging to the crayfish order. The fact that isopods are good to use in various experiments is related to their habitat.
  • Putnam’s “Twin Earth” Thought-Experiment Throughout the history of analytic philosophy, the problem of meaning has been and remains one of its central themes.
  • Osmosis Experiment With Parsnip Through Differing Concentration of Sucrose
  • Identifying the Benefits of Home Ownership: A Swedish Experiment
  • Experiment for Cancer Risk Factors
  • Hydrochloric Acid Into Tubes of Water and Sodium Thiosulphate Experiment
  • General Information about Monkey Drug Trials Experiment
  • Reaction Rates Experiment Hydrochloric Acid
  • Hydrochloric Acid and Marble Chips Experiment
  • Physical Disability and Labor Market Discrimination: Evidence From a Field Experiment
  • Canadian Advanced Nanosatellite Experiment Biology
  • Dr. Heidegger’s Experiment: Reality or Illusion
  • Experiment and Multi-Grid Modeling of Evacuation From a Classroom
  • High-Performance Liquid Chromatography Experiment
  • Social Capital and Contributions in a Public-Goods Experiment
  • Illusory Gains From Chile’s Targeted School Voucher Experiment
  • Short Selling and Earnings Management: A Controlled Experiment
  • Theft and Rural Poverty: Results of a Natural Experiment
  • Lab Experiment: The Effectiveness of Different Antibiotics on Bacteria
  • Brucellosis and Its Treatment: Experiment With Doxycycline
  • The Link Between Stanford Prison Experiment and Milgram Study
  • Four Fundamental Results From the Mice Experiment
  • The Use of Animals in Psychological Experiments The method of experimentation is of great significance for multiple fields of psychology, especially for the behaviorist branch.
  • Air Pressure Experiment Methods and Results The plastic mesh fabric was placed over the mouth of the Mason jar, and the metal screw band of the latter was fastened firmly over the plastic mesh sheet.
  • Situation, Institutional Norms, and Roles: The Stanford Experiment of Zimbardo Philip Zimbardo’s Stanford Experiment brought him critical acclaim. At the same time, it accorded him a certain level of notoriety; because of the methodologies he utilized to conduct the experiment.
  • An Observable Experiment: Control Over the Variables An observable experiment is defined as the experiment in which the independent variables cannot possibly be controlled by the person or person setting the test.
  • The Milgram Experiment: Ethical Issues The Milgram experiment is a controversial study on the subject of obedience to authority figures. The participants were asked to deliver electric shocks to other people.
  • Stanford Prison Experiment: Behind the Mask Stanford Prison Experiment organized by Stanford researcher Philip Zimbardo led to a strong public response and still discussed today.
  • A Hypothesis and an Experiment: A Case Study On the control experiment, there would be a seed grown at normal aeration, and wind conditions. All should have a viable bean seed planted centrally on watered soil preferably.
  • Milgram Experiment: The Question of Ethics This essay will discuss the Milgram experiment and also argue that it was ethical as medical research standards were met, and no undue harm to the participants was caused.
  • Social Experiment: Wrong Outfit in a Wedding Event The attendees of the wedding event displayed disappointment, discomfort, and open resentment towards the dressing style.
  • Scientific Experiments on Animals from Ethical Perspectives This paper discusses using animals in scientific experiments from the consequentialist, Kantian deontological and Donna Yarri’s Christian character-based perspectives.
  • Ethical Implications of the Early Studies in Psychology: Milgram’s Experiment Milgram’s experiment on obedience content and results are valuable for understanding the ethical issues that may occur in social and behavioral research.
  • Bolted & Welded Connections and Tension Experiment Exploring and comparing the expected and actual failure modes of both bottled and welded connections in tension are the primary purposes of the paper.
  • Ideal Experiment Design: Independent and Dependent Variables This work describes the ideal experiment, that is designed to verify the causal relationship between independent and dependent variables.
  • Extraneous Variables in Experiments There are some variables in experiments besides the independent variables that usually cause a variation or a change to the dependent variables.
  • The Stanford Prison Experiment Analysis Abuse between guards and prisoners is an imminent factor attributed to the differential margin on duties and responsibilities.
  • The Stanford Prison Experiment’s Historical Record The Stanford Prison Experiment is a seminal investigation into the dynamics of peer pressure in human psychology.
  • Socioeconomic Status and Sentencing Severity Experiment There are two types of validity threats: external and internal. External validity refers to the degree to which the study can be applied to situations outside the research context.
  • Psychology: Zimbardo Prison Experiment Despite all the horrors that contradict ethics, Zimbardo’s research contributed to the formation of social psychology. It was unethical to conduct this experiment.
  • Post-Covid Adaptation Laboratory Experiment The goal of the laboratory experiment that this paper will outline is to test the hypothesis about the needs of senior citizens in the post-pandemic era.
  • Psychology: Milgram Obedience Experiment Milgram’s experiment may be the last psychological experiment that has had a significant impact on psychology and public opinion.
  • Predicting the Replicability of Social Science Lab Experiments The quality of work is the most significant factor for any academic organization. A research process for any scientific project requires careful evaluation of information sources.
  • Moral Dilemma and Thought Experiments The aim of this essay is to set up a thought experiment in which a moral dilemma must be resolved. A person is invited to make a choice as a result of which people should suffer.
  • Experiments in High-Frequency Trading High-frequency trading (HFT) is becoming increasingly popular with private businesses and traders. HFT allows traders to make transactions within fractions of seconds.
  • The Ethical Issues in 1940’s U.S. Experiments With Syphilis in Guatemala The Guatemala tests have been viewed as a dark side of the U.S. clinical examination: in the 1940s, they purposely uncovered over 5,000 individuals with syphilis and gonorrhea.
  • Sociological Experiment: The Salience of Social Norms Based on the sociological experiment described in the paper, the author demonstrated the salience of social norms that exist in our culture.
  • Thought Experiment: The Morality of Human Actions A thought experiment aimed at assessing the morality of human actions motivated by divine punishment or reward raises the question of morality and religion correlation.
  • Blue-Eyed vs. Brown-Eyed Experiment Elliot exposed the learners to discrimination, in which blue-eyed children were initially preferred and given more privileges in the classroom than brown-eyed students.
  • Experiment: Science Meets Real Life The experiment involves the sequential study of the dog’s behavior and its reaction to a change in some factors, such as food and bowl.
  • Should Animals Be Used for Scientific Experiments? Unfortunately, at the moment, the use of animals in science and medicine cannot be excluded entirely. However, it is possible to conduct experiments using mathematical models.
  • Smoking: An Idea for a Statistical Experiment The hypothesis is that people who smoke cigarettes daily tend to earn more than others: this is a personal observation that requires careful experimental testing.
  • The Stanford Jail Experiment Critiques One of the most important critiques leveled at the Stanford Jail Experiment is the length of time it took Zimbardo to call a halt to the experiment.
  • Super Size Me and Jogn Cisna Experiments In comparison to Super Size Me, the experiment of John Cisna immediately stands out with a positive attitude towards fast food.
  • Can Nonrandomized Experiments Yield Accurate Answers?
  • What Kind of Experiments Are Done on Animals?
  • Is It Good to Use Animals for Experiments?
  • What Are the Types of Experiments?
  • Is There Any Healthy Way to Experiment With Drugs?
  • What Are the Top Experiments of All Time?
  • Are Breaching Experiments Ethical?
  • What Does It Mean to Experiment With a Drug?
  • Why Do We Use Factorial Experiments?
  • How Does Temperature Affect the Rate of Reaction Experiment?
  • What Are the Easiest Experiments to Do?
  • How Can Rushing Harm the Data and the Experiment Overall?
  • What Are the Steps to a Science Experiment?
  • How Do Errors Affect the Experiment?
  • What Is the Purpose of the Wax Experiment and What Conclusion Does Descartes Reach on Its Basis?
  • Can an Experiment Be Invalid but Reliable?
  • What Is the Most Influential Experiment in Psychology?
  • Why Are Fruit Flies Used for Experiments?
  • How Can You Improve the Accuracy of an Experiment?
  • What Was Galileo’s Famous Cannonball Drop Experiment?
  • What Can Knowledge Be Gained From Conducting a Breaching Experiment?
  • How Do You Identify the Independent and Dependent Variables in an Experiment?
  • What Was Griffith’s Experiment and Why Was It Important?
  • What Is the Difference Between Contingent Valuation and Choice Experiment?
  • What Is the Choice Experiment Valuation Method?
  • Health and Medicine: Experiments and Discussions In the first experiment, researchers tested the subjectivity of polygraph examiners’ assessments. The specialist was given a specific name before the test began to do it.
  • “Tuskegee Syphilis Experiment – The Deadly Deception”: Unethical Scientific Experiment “Tuskegee Syphilis Experiment – The Deadly Deception” reviews an unethical scientific experiment on humans that was conducted by White physicians on African-Americans.
  • An Experiment in DNA Cloning and Sequencing The aim of this experiment is to clone a fragment of DNA that includes the Green Fluorescent Protein (GFP) gene into the vector pTTQ18, which is an expression vector.
  • Lab Experiment on Animals’ Taste or Smell Senses The hypothesis of the study is that taste perception and detection of different sugars by insects were similar to that of humans.
  • An Enzyme Linked Immunosorbent Assay Experiment In our society presently, immunoassay techniques used in data analyses have assumed a place of high significance, particularly as it applies to pure/applied research.
  • Anaerobic Threshold: An Experiment Anaerobic Threshold refers to the minimum level below which no increase in blood lactose can occur. At levels above AT, supplementing aerobic production needs aerobic energy.
  • Comparative Effectiveness of Various Surfactants: Experiment Surfactants refer to chemical substances that lessen the surface tension in water. This experiment aimed at establishing the comparative effectiveness of various surfactants.
  • An Experiment on Data Mining Extend This experiment aims to utilize knowledge and principles of data mining in depicting the investigation of emergent data in biology- particularly on the development of ELISAs.
  • Lab Experiment on Photovoltaics The experiment was done specifically to ascertain how various connected units could be coordinated to give a more reliable and controllable functioning.
  • Mind Control: Ethics of the Experiment The topics of mind control and free will has always been seen as a morally grey area in terms of its research potential.
  • A Personal Behavior Modification Experiment Using Operant Conditioning This research paper points out the positive outcomes of swearing: it can relieve stress and help one cope with emotional work.
  • Jane Elliott’s Experiment on Discrimination The teacher Jane Elliott from Iowa decided to conduct an experiment demonstrating to her students what discrimination is and what it feels like.
  • The Tuskegee Syphilis Experiment When the Tuskegee Syphilis Experiment was begun, over 75 years ago, no such principles were officially in place.
  • The Power of Conformity: Asch’s Experiments The article examines a series of experiments by Asch that helped him identify the factors influencing social conformity.
  • The Critical Characteristics of an Experiment The main aim of this assignment is to evaluate the thought control experiment by famous psychologist Ellen Langer and determine whether it is a qualitative experiment.
  • Boston’s Experiment: Harvard Business Review’s Lessons In Harvard Business Review’s Lessons from Boston’s Experiment with The One Fund, Mitchell discusses his experience with fund distribution to the victims of the Boston bombing.
  • The Stanford Prison Experiment Review The video presents an experiment held in 1971. In general, a viewer can observe that people are subjected to behavior and opinion change when affected by others.
  • The Way to Come To Terms With Yourself: Social Distancing Experiment In this work, the author describes the course and results of an experiment on social distance: refusal to use gadgets, any communication, and going out.
  • Experiment: Bacteria vs Antibiotics The experiment aimed was to test the reaction of bacteria towards some antibiotics and determine the effectiveness of those antibiotics in treating some diseases.
  • Ethics: Experiments on Animals Industrial and biomedical research is often painful and most of the test ends up killing the animals. Experiments such as these often incur the wrath of the animal rights movement.
  • Impact of the Stanford Prison Experiment Have on Psychology This essay will begin with a brief description of Zimbardo’s Stanford Prison Experiment then it will move to explore two main issues that arose from the said experiment.
  • Medical Pharmacology: The Langendorff Experiment The Langendorff experiment aimed at using an ex vivo isolated rat heart preparation to demonstrate the pharmacological effects of two unknown drugs.
  • Studying Organisations: The Hawthorne Experiments The Hawthorn experiments marked a new direction in research of motivation and productivity. More than half a century has passed, and productivity remains a concern of management.
  • Chemistry of Cooking. Saffron Rice Experiment This research project outlines an experiment that aims to determine the temperature at which Saffron rice turns yellow.
  • Worldview Changes After the Blindness Experiment Our senses are the central source of information about the world and events that happen around us. So, the loss of one of these is a significant challenge for a person.
  • Evaluation of the Stanford Prison Experiment’ Role The Stanford Prison Experiment is a study that was conducted on August 20, 1971 by a group of researchers headed by the psychology professor Philip Zimbardo.
  • Heat Transfer Rates in a Hot Jet: Experiment The experiment is aimed at determining the heat transfer rates in a hot jet. The reasons for the hot jet to have different heat rates in different areas will be determined.
  • Inattentive Blindness in Psychological Experiment The features of the human consciousness not to notice quite obvious changes are natural and innate. Such blindness can be caused by several factors.
  • The Stanford Prison Experiment The Stanford prison experiment is an example of how outside social situations influence changes in thought and behavior among humans.
  • Tuskegee Syphilis Experiment: Ethical Controversy Tuskegee case set the background for the reconsideration of healthcare ethics, which means that the ethical value of the given case deserves reconsideration.
  • Gender Stereotyping Experiment: The Level of Gender Stereotyping in Society The present study measures the effects of stereotyping women. It examines the first impression formed by subjects based on the information about a fictitious man or a woman.
  • Psychological Studies and Experiments: Code of Conduct The following paper is based on past psychological studies i.e. Stanly Milgram’s ‘Obedience Experiment’, Philip Zimbardo’s ‘Stanford Prison Experiment, and Jane Elliott’s ‘Class Divided’.
  • Using Animals in Medical Experiments This paper explores how the principles of the character-based ethical approach can be applied to the discussion of using animals in the medical research and experiments.
  • The Stanford Experiment by Philip Zimbardo Philip Zimbardo’s Stanford Experiment shows that situational power and norms dictate the behavior of the individual more than the core beliefs that made up his personal identity.

Cite this post

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2021, December 21). 143 Experiment Research Topics. https://studycorgi.com/ideas/experiment-essay-topics/

"143 Experiment Research Topics." StudyCorgi , 21 Dec. 2021, studycorgi.com/ideas/experiment-essay-topics/.

StudyCorgi . (2021) '143 Experiment Research Topics'. 21 December.

1. StudyCorgi . "143 Experiment Research Topics." December 21, 2021. https://studycorgi.com/ideas/experiment-essay-topics/.

Bibliography

StudyCorgi . "143 Experiment Research Topics." December 21, 2021. https://studycorgi.com/ideas/experiment-essay-topics/.

StudyCorgi . 2021. "143 Experiment Research Topics." December 21, 2021. https://studycorgi.com/ideas/experiment-essay-topics/.

These essay examples and topics on Experiment were carefully selected by the StudyCorgi editorial team. They meet our highest standards in terms of grammar, punctuation, style, and fact accuracy. Please ensure you properly reference the materials if you’re using them to write your assignment.

This essay topic collection was updated on January 22, 2024 .

ZumaFOX

Advertisements

Top 100 Experimental Research Topics for School & College Students

Top 100 Experimental Research Topics for School & College Students: Are you a student looking for inspiration for your next research project? Research is a vital aspect of your educational journey, and choosing the right topic is often the first step to success. Whether you’re in school or college, finding a compelling experimental research topic can be a daunting task. But fear not! We’ve compiled a list of the top 100 experimental research topics to ignite your curiosity and help you embark on an exciting research journey.

What is Experimental Research?

Experimental research is a research approach that entails the deliberate manipulation of one or more independent variables to assess their impact on one or more dependent variables. It is widely regarded as the “gold standard” of research methodologies due to its capacity to establish causal relationships between variables.

Typically, experimental research designs involve the creation of two distinct groups: the experimental group and the control group. The experimental group is exposed to the independent variable, while the control group is not. Subsequently, the researcher compares the outcomes of these two groups to identify any disparities.

Two primary categories of experimental research designs exist: true experiments and quasi-experiments. True experiments employ random assignment of participants to the experimental and control groups, ensuring initial equivalency between the groups and minimizing alternative explanations for observed differences.

Conversely, quasi-experiments lack random assignment, potentially introducing disparities between the experimental and control groups at the outset, which may confound the results. Nevertheless, quasi-experiments can still be valuable in studying cause-and-effect relationships, particularly when random assignment is impractical or ethically challenging.

Experimental research finds applications across diverse fields such as science, medicine, education, and business. It serves as a potent tool for comprehending how various factors influence outcomes and for developing novel products and interventions.

Consider the following examples of experimental research :

A scientist aims to assess a new drug’s effectiveness in treating high blood pressure. Participants are randomly assigned to receive either the new drug or a placebo. After several weeks, their blood pressure is measured, and the results between the two groups are compared.

A teacher seeks to investigate the impact of various teaching methods on student achievement. Students are randomly allocated to different classrooms, each utilizing a distinct teaching method. At the end of the semester, the students’ test scores are compared to identify the most effective teaching method.

A marketing manager intends to evaluate the influence of a new advertising campaign on product sales. A random sample of customers is chosen and assigned to either view the new advertising campaign or not. After several weeks, sales data from the two groups are compared to determine the campaign’s effectiveness.

Major Types of Experimental Research Design

There are three main types of experimental research designs:

1. Pre-experimental research designs

Pre-experimental research designs are the simplest type of experimental design. They do not involve random assignment, and the researcher typically only tests one group of participants. Pre-experimental research designs are often used to generate preliminary data or to explore new research questions. However, they are not considered to be as rigorous as other types of experimental designs because they are more prone to confounding variables.

Here are some examples of pre-experimental research designs:

  • One-shot case study design: The researcher tests a single group of participants after they have been exposed to the independent variable.
  • One-group pretest-posttest design: The researcher tests a single group of participants before and after they have been exposed to the independent variable.
  • Static-group comparison design: The researcher compares two groups of participants, one of which has been exposed to the independent variable and the other of which has not.

2. Quasi-experimental research designs

Quasi-experimental research designs are more rigorous than pre-experimental research designs because they involve some form of control group. However, they do not involve random assignment. Quasi-experimental research designs are often used in situations where random assignment is not feasible or ethical.

Here are some examples of quasi-experimental research designs:

  • Non-equivalent control group design: The researcher compares two groups of participants, one of which has been exposed to the independent variable and the other of which has not. The two groups are not randomly assigned, but the researcher tries to match them on relevant characteristics to reduce the risk of confounding variables.
  • Time series design: The researcher tests a single group of participants multiple times over time, both before and after they have been exposed to the independent variable.
  • Interrupted time series design: The researcher tests a single group of participants multiple times over time, both before and after they have been exposed to the independent variable. However, there is an interruption in the time series, such as a change in policy or practice, that may affect the dependent variable.

3. True experimental research designs

True experimental research designs are the most rigorous type of experimental design. They involve random assignment and a control group. True experimental research designs are considered to be the best way to establish cause-and-effect relationships between variables.

Here are some examples of true experimental research designs:

  • Randomized controlled trial (RCT): The researcher randomly assigns participants to either the experimental group or the control group. The experimental group is exposed to the independent variable, while the control group is not. The researcher then compares the outcomes of the two groups to see if there is a difference.
  • Posttest-only control group design: The researcher randomly assigns participants to either the experimental group or the control group. The experimental group is exposed to the independent variable, while the control group is not. The researcher then measures the dependent variable in both groups after the experiment is complete.
  • Solomon four-group design: This design is similar to the posttest-only control group design, but it also includes two additional groups: a pretest-posttest experimental group and a pretest-posttest control group. This allows the researcher to control for the effects of testing.

Experimental research is a powerful tool for understanding the world around us and developing new ways to improve our lives. By understanding the different types of experimental research designs, we can better evaluate the quality of research and make informed decisions about the findings.

Elements of Experimental Research

Experimental research typically comprises several essential elements that help structure and conduct a rigorous scientific investigation. These elements are crucial for designing, executing, and analyzing experiments effectively. Here are the key elements of experimental research:

  • Research Question or Hypothesis : Every experiment begins with a clear research question or a testable hypothesis. This question or hypothesis specifies what the researcher aims to investigate or the relationship they seek to explore.
  • Independent Variable : The independent variable is the factor that the researcher intentionally manipulates or varies in the experiment. It is the presumed cause and is under the researcher’s control. In some cases, there may be more than one independent variable.
  • Dependent Variable : The dependent variable is the outcome or response that the researcher measures or observes. It is the variable that may be influenced by changes in the independent variable. The dependent variable is what researchers are trying to understand or explain.
  • Experimental and Control Groups : To assess the impact of the independent variable, participants or subjects are typically divided into at least two groups: the experimental group and the control group. The experimental group is exposed to the independent variable, while the control group is not. This comparison helps determine whether any observed effects are due to the manipulation of the independent variable.
  • Random Assignment : In true experimental designs, participants are randomly assigned to the experimental and control groups. Random assignment helps ensure that the groups are comparable and minimizes bias, increasing the internal validity of the experiment.
  • Controlled Conditions : Experimental research strives to control and minimize the influence of extraneous variables, which are factors other than the independent variable that could affect the results. This control helps isolate the effects of the independent variable.
  • Experimental Procedure : Researchers outline the specific steps and procedures that participants will undergo during the experiment. This includes how the independent variable will be manipulated, how data will be collected, and the sequence of events.
  • Data Collection : Data collection involves gathering information about the dependent variable’s responses or outcomes. This is typically done through measurements, observations, surveys, or other data collection methods.
  • Data Analysis : After data collection, researchers analyze the collected data using statistical methods to determine whether there are significant differences or relationships between groups. This analysis helps draw conclusions about the impact of the independent variable on the dependent variable.
  • Replication : To enhance the reliability of experimental findings, replication involves repeating the experiment under similar conditions to see if the results can be consistently reproduced.
  • Ethical Considerations : Researchers must adhere to ethical principles when conducting experiments involving human or animal subjects. This includes obtaining informed consent, ensuring participant well-being, and minimizing harm.
  • Reporting and Communication : Researchers communicate their findings by writing research papers or reports that describe the experiment, its methods, results, and conclusions. This enables other scientists to assess and build upon the research.

These elements collectively form the foundation of experimental research, allowing researchers to systematically investigate and establish cause-and-effect relationships between variables in a controlled and methodical manner.

Top Best Experimental Research Topics for School Students

Natural sciences research topics for school students:.

  • Investigating How Light Intensity Affects Plant Growth
  • Exploring the Relationship Between Salt Concentrations and the Freezing Point of Water
  • Comparing Battery Lifespan Among Various Brands
  • Studying the Influence of pH on Enzyme Activity
  • Examining the Effect of Magnet Strength on the Attraction Distance of a Paperclip

Behavioral Sciences Research Topics for School Students:

  • Analyzing the Impact of Music on Concentration
  • Contrasting Group Study and Individual Study to Assess Their Effects on Academic Performance
  • Investigating the Influence of Reward Systems on Student Motivation
  • Exploring the Role of Different Colors in Shaping Mood
  • Assessing How Sleep Patterns Affect Academic Performance

Environmental Studies Research Topics for School Students:

  • Investigating How Temperature Affects Composting Processes
  • Assessing the Consequences of Water Pollution on Aquatic Life
  • Exploring the Impact of Urbanization on Local Bird Species
  • Studying the Influence of Different Soil Types on Plant Growth
  • Examining the Effects of Acid Rain on Plant Growth

Best Experimental Research Topics for College Students

Social sciences research topics for college students:.

  • Examining the Relationship Between Socioeconomic Status and Mental Health
  • Analyzing the Influence of Media Portrayals on Body Image
  • Investigating the Effects of Bilingual Education on Academic Achievement
  • Exploring the Role of Social Media in Political Campaigns
  • Assessing the Impact of Gender Stereotypes on Career Choices

Business and Economics:

  • Evaluating the Influence of Online Reviews on Consumer Purchasing Decisions
  • The Effect of Advertising on Brand Loyalty
  • Analyzing the Impact of Corporate Social Responsibility on Profitability
  • The Efficacy of Different Pricing Strategies on Sales
  • Investigating the Relationship Between Employee Satisfaction and Productivity
  • Effects of Economic Policy Changes on Small Businesses
  • The Role of Market Research in Product Development
  • The Impact of Globalization on International Trade
  • Comparing the Performance of Different Investment Strategies
  • Evaluating the Effects of Tax Policies on Economic Growth

Natural Sciences Research Topics for College Students:

  • Investigating the Genetic Factors Contributing to Obesity
  • Analyzing the Effects of Climate Change on Marine Ecosystems
  • Assessing the Impact of Pesticides on Bee Populations
  • Studying the Consequences of Pollution on Urban Wildlife
  • Examining the Role of Microplastics in Freshwater Ecosystems

Applied Sciences Research Topics for College Students:

  • Evaluating the Effectiveness of Machine Learning Algorithms in Predicting Stock Prices
  • Analyzing the Significance of Encryption in Ensuring Data Security
  • Investigating the Influence of Aerodynamics on Vehicle Fuel Efficiency
  • Assessing the Impact of Material Properties on Bridge Stability
  • Studying the Efficiency of Solar Panels at Different Angles

Health Sciences Research Topics for College Students:

  • Investigating the Role of Exercise in the Management of Type 2 Diabetes
  • Analyzing the Effects of Caffeine on Cognitive Performance
  • Assessing the Impact of Plant-Based Diets on Heart Health
  • Evaluating the Effectiveness of Various Physical Therapy Methods in Knee Rehabilitation
  • Studying the Role of Mindfulness Meditation in Reducing Stress

Environmental Sciences Research Topics for College Students:

  • Examining the Consequences of Deforestation on Local Climate Patterns
  • Investigating the Efficacy of Different Oil Spill Cleanup Techniques
  • Analyzing the Effects of Organic Farming on Crop Yield
  • Assessing the Impact of Noise Pollution on Urban Wildlife
  • Examining the Influence of Electronic Waste (E-Waste) on Soil Quality

Computer Sciences Research Topics for College Students:

  • Comparing Various Sorting Algorithms for Efficiency
  • Evaluating the Security Implications of Different Password Policies
  • Analyzing the Impact of User Interface Design on User Experience
  • Investigating the Role of Artificial Intelligence in Image Recognition
  • Assessing the Energy Efficiency of Different Computer Processors

Economics Research Topics for College Students:

  • Examining the Effects of Economic Policies on Inflation
  • Analyzing the Role of Microfinance in Alleviating Poverty
  • Assessing the Impact of Globalization on Small Businesses
  • Investigating the Influence of Exchange Rates on the Export Market
  • Evaluating the Relationship Between Unemployment and Crime Rates

Tips for Selecting an Appropriate Experimental Research Topic

Choosing the right topic is fundamental to the success of an experimental research project. Here are some valuable tips to assist students in this selection process:

  • Interest : Opt for a topic that genuinely piques your interest. Your passion for the subject will serve as a motivating force throughout the research journey.
  • Relevance : Pick a topic that aligns with your field of study. It should complement your academic objectives and enrich your comprehension of the subject matter.
  • Feasibility : Ensure that the chosen topic is practical and feasible for research. Consider factors such as resource availability, time constraints, and ethical considerations.
  • Uniqueness : Choose a topic that is original and distinctive. This not only enhances the appeal of your research but also contributes to the advancement of your academic field.

Conclusion: 100 Experimental Research Topics for Students

Experimental research is a pivotal component of scientific exploration. It empowers us to establish causal relationships, expand our comprehension of the world, and discover solutions to issues across diverse fields of study.

Engaging in an experimental research project can be a gratifying experience. It enables students to apply their knowledge, cultivate critical thinking and problem-solving skills, and make meaningful contributions to their academic discipline.

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

55 Brilliant Research Topics For STEM Students

Research Topics For STEM Students

Primarily, STEM is an acronym for Science, Technology, Engineering, and Mathematics. It’s a study program that weaves all four disciplines for cross-disciplinary knowledge to solve scientific problems. STEM touches across a broad array of subjects as STEM students are required to gain mastery of four disciplines.

As a project-based discipline, STEM has different stages of learning. The program operates like other disciplines, and as such, STEM students embrace knowledge depending on their level. Since it’s a discipline centered around innovation, students undertake projects regularly. As a STEM student, your project could either be to build or write on a subject. Your first plan of action is choosing a topic if it’s written. After selecting a topic, you’ll need to determine how long a thesis statement should be .

Given that topic is essential to writing any project, this article focuses on research topics for STEM students. So, if you’re writing a STEM research paper or write my research paper , below are some of the best research topics for STEM students.

List of Research Topics For STEM Students

Quantitative research topics for stem students, qualitative research topics for stem students, what are the best experimental research topics for stem students, non-experimental research topics for stem students, capstone research topics for stem students, correlational research topics for stem students, scientific research topics for stem students, simple research topics for stem students, top 10 research topics for stem students, experimental research topics for stem students about plants, research topics for grade 11 stem students, research topics for grade 12 stem students, quantitative research topics for stem high school students, survey research topics for stem students, interesting and informative research topics for senior high school stem students.

Several research topics can be formulated in this field. They cut across STEM science, engineering, technology, and math. Here is a list of good research topics for STEM students.

  • The effectiveness of online learning over physical learning
  • The rise of metabolic diseases and their relationship to increased consumption
  • How immunotherapy can improve prognosis in Covid-19 progression

For your quantitative research in STEM, you’ll need to learn how to cite a thesis MLA for the topic you’re choosing. Below are some of the best quantitative research topics for STEM students.

  • A study of the effect of digital technology on millennials
  • A futuristic study of a world ruled by robotics
  • A critical evaluation of the future demand in artificial intelligence

There are several practical research topics for STEM students. However, if you’re looking for qualitative research topics for STEM students, here are topics to explore.

  • An exploration into how microbial factories result in the cause shortage in raw metals
  • An experimental study on the possibility of older-aged men passing genetic abnormalities to children
  • A critical evaluation of how genetics could be used to help humans live healthier and longer.
Experimental research in STEM is a scientific research methodology that uses two sets of variables. They are dependent and independent variables that are studied under experimental research. Experimental research topics in STEM look into areas of science that use data to derive results.

Below are easy experimental research topics for STEM students.

  • A study of nuclear fusion and fission
  • An evaluation of the major drawbacks of Biotechnology in the pharmaceutical industry
  • A study of single-cell organisms and how they’re capable of becoming an intermediary host for diseases causing bacteria

Unlike experimental research, non-experimental research lacks the interference of an independent variable. Non-experimental research instead measures variables as they naturally occur. Below are some non-experimental quantitative research topics for STEM students.

  • Impacts of alcohol addiction on the psychological life of humans
  • The popularity of depression and schizophrenia amongst the pediatric population
  • The impact of breastfeeding on the child’s health and development

STEM learning and knowledge grow in stages. The older students get, the more stringent requirements are for their STEM research topic. There are several capstone topics for research for STEM students .

Below are some simple quantitative research topics for stem students.

  • How population impacts energy-saving strategies
  • The application of an Excel table processor capabilities for cost calculation
  •  A study of the essence of science as a sphere of human activity

Correlations research is research where the researcher measures two continuous variables. This is done with little or no attempt to control extraneous variables but to assess the relationship. Here are some sample research topics for STEM students to look into bearing in mind how to cite a thesis APA style for your project.

  • Can pancreatic gland transplantation cure diabetes?
  • A study of improved living conditions and obesity
  • An evaluation of the digital currency as a valid form of payment and its impact on banking and economy

There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students.

  • A study of protease inhibitor and how it operates
  • A study of how men’s exercise impacts DNA traits passed to children
  • A study of the future of commercial space flight

If you’re looking for a simple research topic, below are easy research topics for STEM students.

  • How can the problem of Space junk be solved?
  • Can meteorites change our view of the universe?
  • Can private space flight companies change the future of space exploration?

For your top 10 research topics for STEM students, here are interesting topics for STEM students to consider.

  • A comparative study of social media addiction and adverse depression
  • The human effect of the illegal use of formalin in milk and food preservation
  • An evaluation of the human impact on the biosphere and its results
  • A study of how fungus affects plant growth
  • A comparative study of antiviral drugs and vaccine
  • A study of the ways technology has improved medicine and life science
  • The effectiveness of Vitamin D among older adults for disease prevention
  • What is the possibility of life on other planets?
  • Effects of Hubble Space Telescope on the universe
  • A study of important trends in medicinal chemistry research

Below are possible research topics for STEM students about plants:

  • How do magnetic fields impact plant growth?
  • Do the different colors of light impact the rate of photosynthesis?
  • How can fertilizer extend plant life during a drought?

Below are some examples of quantitative research topics for STEM students in grade 11.

  • A study of how plants conduct electricity
  • How does water salinity affect plant growth?
  • A study of soil pH levels on plants

Here are some of the best qualitative research topics for STEM students in grade 12.

  • An evaluation of artificial gravity and how it impacts seed germination
  • An exploration of the steps taken to develop the Covid-19 vaccine
  • Personalized medicine and the wave of the future

Here are topics to consider for your STEM-related research topics for high school students.

  • A study of stem cell treatment
  • How can molecular biological research of rare genetic disorders help understand cancer?
  • How Covid-19 affects people with digestive problems

Below are some survey topics for qualitative research for stem students.

  • How does Covid-19 impact immune-compromised people?
  • Soil temperature and how it affects root growth
  • Burned soil and how it affects seed germination

Here are some descriptive research topics for STEM students in senior high.

  • The scientific information concept and its role in conducting scientific research
  • The role of mathematical statistics in scientific research
  • A study of the natural resources contained in oceans

Final Words About Research Topics For STEM Students

STEM topics cover areas in various scientific fields, mathematics, engineering, and technology. While it can be tasking, reducing the task starts with choosing a favorable topic. If you require external assistance in writing your STEM research, you can seek professional help from our experts.

Leave a Reply Cancel reply

ct-logo

151+ Experimental Research Topics For Students

Welcome to our blog post about fun new experimental research topics! This blog is for anyone who likes to learn more about experiments and discoveries. Experiments help researchers test ideas and find new facts. They are essential for learning new things in science, health, and more.

In this blog, we will examine some new topics researchers explore through experiments. You’ll learn about new studies in many different areas. This includes new technology, medicine, psychology, business, and nature.

The goals are to show how experiments work and highlight excellent new topics. We want this blog to explain experiments simply for everyone to understand. Get ready to learn about the interesting experimental research topics researchers are testing now. The experiments could lead to significant breakthroughs and new knowledge.

Why Choose Experimental Research?

Table of Contents

Experiments help us learn new things. By doing experiments, researchers can test ideas to see if they are true. Here are some key reasons experiments are helpful:

  • Experiments allow researchers to study cause and effect. They can change things on purpose to see what happens.
  • It helps control variables. Researchers change some things but keep other things the same. This helps them know what caused the effect.
  • Experiments allow repetition. Researchers can repeat experiments many times to confirm results.
  • It reduces bias. Careful experiments follow set scientific methods to get objective data.
  • Experiments lead to discoveries. Many innovations and breakthroughs started from experiments.
  • It tests new theories. Researchers can use experiments to support or disprove theories.
  • Experiments drive progress. As we learn from experiments, science and technology move forward.

The controlled setting of experiments helps researchers gain new knowledge. Experiments will continue helping us make new findings and innovations.

How to Select Experimental Research Topics

Selecting experimental research topics can be exciting yet challenging. Here are some steps to guide you through the process:

  • Choose topics you are curious about. Pick questions you really want to find answers for. This will keep you motivated.
  • Look for topics with gaps in knowledge. Focus on questions where experiments can uncover new findings.
  • Consider practical topics. Research things that could lead to useful applications if successful.
  • Review current research. Build on what others have already studied in your topic area.
  • Match topics to available resources. Make sure you have the budget, equipment, and access needed.
  • Evaluate risks and ethics. Avoid topics if experiments could be dangerous or unethical.
  • Get feedback on ideas. Discuss potential issues with advisors to refine them.
  • Be open to discoveries. Sometimes, experiments lead to unexpected new insights.
  • Make topics specific. Narrow down broad areas into specific, testable questions.
  • Double-check methods are valid. Confirm you can adequately test your topic through experiments.

The proper research topic will be feasible, ethical, and specific, leading to new knowledge. By following these tips, you can select exciting experimental research topics.

151+ Experimental Research Topics

Here are the 151+ experimental research topics across various fields. 

  • How do different teaching methods affect learning math?
  • Using music therapy to reduce anxiety in hospital patients.
  • The link between exercise and thinking skills in older adults.
  • Can meditation lower stress levels in college students?
  • Social media’s effect on how teenagers view their bodies.
  • Testing a new medicine for a specific illness.
  • How lack of sleep affects decision-making.
  • Does speaking two languages impact children’s thinking?
  • A new way to help kids understand what they read.
  • Does diet affect how well students do in school?
  • Using virtual reality to treat fears.
  • Learning outdoors and how it helps kids learn.
  • Does music help people work better?
  • Do happy workers do better at their jobs?
  • A new way to sell products and increase sales.
  • How video games affect kids’ attention spans.
  • Testing a vaccine to prevent disease.
  • Does a more interesting environment change animals’ behavior?
  • Parental involvement and kids’ grades.
  • Does talking to someone help with depression?
  • Does using screens before bed affect sleep?
  • Which exercises are best for heart health?
  • How friends and family affect someone’s health.
  • Learning new words in another language.
  • Does drawing or painting help cancer patients feel better?
  • How does caffeine affect how fast people react?
  • How parents’ relationships affect their kids’ relationships.
  • A new way to help kids who break the rules.
  • Does having parks in a city make people happier?
  • Can mindfulness help with pain?
  • Does being rich or poor affect kids’ grades?
  • Different ways to lead a team at work.
  • Can older students help younger students do better in school?
  • Does color affect what people buy?
  • Does exercise help college students feel better?
  • A new way to help people who had bad experiences.
  • How divorce affects kids’ feelings.
  • Does the weather affect how plants grow?
  • Do kids who feel good do better in school?
  • Testing a new way to find kids with autism.
  • How social media affects how teenagers feel about themselves.
  • Can mindfulness make people feel better at work?
  • Does personality affect how good a leader someone is?
  • Does a new way to teach science help kids learn?
  • Does sleep affect how well people play sports?
  • Can eating certain foods help hearts stay healthy?
  • A new way to help parents handle kids’ behavior.
  • How lights at night affect animals.
  • Does virtual reality help people get over fears?
  • Does watching TV affect how well little kids talk to others?
  • A new way to help kids learn math.
  • Can mindfulness make people do better at work?
  • Does personality affect how good a leader is?
  • Do ideas about what boys and girls can do affect their desires?
  • Can a new way to help kids learn math?
  • How does reading affect how well kids do in school?
  • Does coloring or drawing help people with cancer feel better?
  • How does drinking coffee or tea affect how fast people think?
  • Can parents’ relationships affect their kids’ relationships?
  • How does spending time outside affect how well kids do in school?
  • How does music affect how well people work?
  • Can a new way to sell things make more money?
  • How do video games affect how well kids pay attention?
  • Does a shot prevent a certain sickness?
  • How do different rooms affect how animals act?
  • Does spending time with family and friends affect how healthy someone is?
  • How does learning a new language affect kids’ grades?
  • Can talking to someone help with feeling sad?
  • How does watching TV or phone before bed affect sleep?
  • Which exercises are best for keeping hearts healthy?
  • How does having good friends affect how well kids do in school?
  • How does talking to someone about problems help?
  • How does having parents who are divorced affect kids’ feelings?
  • How does playing with friends affect how well kids learn?
  • Can learning mindfulness make people feel better at work?
  • How does someone’s personality affect how good they are at leading?
  • Can a new way to teach science make kids learn better?
  • How do ideas about what boys and girls can do affect what they want to do?
  • Can getting enough sleep help kids play sports better?
  • How does eating healthy food affect how healthy someone’s heart is?
  • Can learning a new way to be a parent help kids behave better?
  • How does light at night affect animals’ behavior?
  • Can using virtual reality help people stop being afraid of something?
  • How does watching TV affect how well little kids can talk to others?
  • Can a new way to teach math help kids learn better?
  • Can coloring or drawing help people who have cancer feel better?
  • How does coffee or tea affect how fast people think?
  • Can having parents who get along well affect how kids get along with others?
  • Can listening to music help people work better?
  • How do different exercises affect how well someone’s heart works?
  • Can having good friends help kids do better in school?
  • Can having parents who are divorced affect kids’ feelings?
  • How does the weather affect how plants grow?
  • Can playing with friends help kids learn better?
  • How does learning mindfulness make people feel at work?
  • Can someone’s personality affect how good they are at leading?
  • How does learning a new way to teach science make kids learn better?
  • Can ideas about what boys and girls can do affect what they want to do?
  • How does getting enough sleep help kids play sports better?
  • Can eating healthy food help someone’s heart stay healthy?
  • How does learning a new way to be a parent help kids behave better?
  • Can light at night affect how animals behave?
  • How does using virtual reality help people stop being afraid of something?
  • Can watching TV affect how well little kids can talk to others?
  • How does a new way to teach math help kids learn better?
  • How does drinking coffee or tea affect how fast people can think?
  • How does playing outside affect kids’ happiness?
  • Can listening to music help people relax?
  • How does eating breakfast affect students’ concentration in school?

Challenges and Considerations in Experimental Research

Here are some key challenges and considerations in experimental research:

  • Controlling variables can be complex. Researchers must identify and control all factors that could impact results.
  • Results may not be reproducible. Other scientists may get different results when repeating experiments.
  • Bias can influence outcomes. Researchers may unintentionally skew results based on expectations.
  • Experiments can be time-consuming. Planning, running, and analyzing experiments takes a lot of time.
  • Studies can be expensive. Equipment, materials, and personnel costs add up.
  • Ethical issues may arise. Experiments must not harm people, animals, or environments.
  • Applications can be limited. Discoveries may only apply to limited settings or samples.
  • Collaborators may be needed. Complex experiments often require teamwork with experts.
  • Negative results happen. An experiment can fail to prove a hypothesis.

Quality experimental research takes careful planning, rigorous methods, and critical thinking. Researchers must address these challenges through their experimental design and protocols.

Tips for Conducting Successful Experimental Research

Here are some tips for conducting successful experimental research:

  • Ask a specific question you want to answer
  • Do background research to understand what is known
  • Create a detailed protocol before starting
  • Use control groups for comparison
  • Change only one variable at a time
  • Use enough participants to get meaningful data
  • Carefully record all observations and results
  • Use the right tools and methods for measurements
  • Analyze data objectively without bias
  • Try repeating experiments to confirm the findings
  • Document everything thoroughly so others can repeat
  • Follow ethical guidelines and get approvals
  • Partner with other qualified researchers
  • Accept that experiments can fail, but learn from them
  • Share your findings through papers and presentations

Careful planning, good protocols, and critical thinking are essential. Following sound scientific methods will lead to meaningful experimental research.

Final Remarks

In conclusion, doing research experiments is a good learning experience. It takes careful planning, paying attention to details, and being ethical. Following the tips in this post, you can handle the complex parts of research experiments and get good results.

Remember to have clear goals, make good plans for the experiments, and check that things are working right. This helps make sure your results are accurate and can be trusted. Work with others, get feedback, and explain your results clearly. This helps science and understanding move forward.

If you’re a student, researcher, or just interested, these ideas will help you do good research experiments. They will help you learn new things and add to what we know in your field.

Similar Articles

How To Do Homework Fast

How To Do Homework Fast – 11 Tips To Do Homework Fast

Homework is one of the most important parts that have to be done by students. It has been around for…

Write assignment introduction

How to Write an Assignment Introduction – 6 Best Tips

In essence, the writing tasks in academic tenure students are an integral part of any curriculum. Whether in high school,…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Techs Tour – Home

Top 50 Experimental Research Topic for School & College Students

Understanding experimental research, 1. elements of experimental research.

There are three primary elements of experimental research: the independent variable (the factor that the researcher manipulates), the dependent variable (the factor that changes as a result of the manipulation), and controlled variables (factors that are kept constant to ensure that the effects are due to the independent variable alone).

2. Different Types of Experimental Research

There are various types of experimental research, including laboratory experiments, field experiments, and natural experiments. The choice of experiment type depends on the research question, the field of study, and the resources available.

3. Advantages and Disadvantages of Experimental Research

Experimental research can provide strong evidence for cause-and-effect relationships, and it allows researchers to control the experimental environment. However, it can also be time-consuming, costly, and sometimes not easily generalizable to real-world settings.

Best Experimental Research Topics for School Students

1. natural sciences research topics for school students :.

  • Effects of Light Intensity on Plant Growth
  • Impact of Different Salt Concentrations on the Freezing Point of Water
  • Comparing Battery Life across Different Brands
  • Studying the Effects of pH on Enzyme Activity
  • Impact of Magnet Strength on the Distance a Paperclip is Attracted

2. Behavioral Sciences Research Topics for School Students :

  • Influence of Music on Concentration
  • Effects of Group Study vs Individual Study on Academic Performance
  • The Impact of Reward Systems on Student Motivation
  • Role of Different Colors on Mood
  • Effects of Sleep Patterns on Academic Performance

3. Environmental Studies Research Topics for School Students :

  • The Impact of Temperature on Composting
  • Effects of Water Pollution on Aquatic Life
  • Impact of Urbanization on Local Bird Species
  • The Effect of Different Soil Types on Plant Growth
  • Examining the Impact of Acid Rain on Plant Growth

Also Check:  How to Use ChatGPT to Write Cover Letter: A Step-by-Step Guide

Best Experimental Research Topics for College Students

1. social sciences research topics for college students: .

  • Effects of Socioeconomic Status on Mental Health
  • Influence of Media Representation on Body Image
  • The Impact of Bilingual Education on Academic Success
  • The Role of Social Media in Political Campaigns
  • The Impact of Gender Stereotypes on Career Choices

2. Natural Sciences Research Topics for College Students:

  • The Role of Genetics in Obesity
  • Influence of Climate Change on Marine Life
  • The Impact of Pesticides on Bee Populations
  • Studying the Effects of Pollution on Urban Wildlife
  • Investigating the Role of Microplastics in Freshwater Ecosystems

3. Applied Sciences Research Topics for College Students:

  • Efficacy of Machine Learning Algorithms in Predicting Stock Prices
  • The Role of Encryption in Data Security
  • Effects of Aerodynamics on Vehicle Fuel Efficiency
  • The Impact of Material Properties on Bridge Stability
  • Investigating the Efficiency of Solar Panels at Different Angles

4. Health Sciences Research Topics for College Students:

  • The Role of Exercise in Managing Type 2 Diabetes
  • Effects of Caffeine on Cognitive Performance
  • The Impact of Plant-Based Diets on Heart Health
  • Investigating the Effectiveness of Different Forms of Physical Therapy in Knee Rehabilitation
  • Role of Mindfulness Meditation in Stress Reduction

5. Environmental Sciences Research Topics for College Students:

  • The Impact of Deforestation on Local Climate
  • Investigating the Effectiveness of Different Oil Spill Cleanup Methods
  • The Effects of Organic Farming on Crop Yield
  • The Impact of Noise Pollution on Urban Wildlife
  • Examining the Effect of E-Waste on Soil Quality

6. Computer Sciences Research Topics for College Students:

  • Comparison of Different Sorting Algorithms
  • Evaluating the Security of Different Password Policies
  • The Impact of User Interface Design on User Experience
  • The Role of Artificial Intelligence in Image Recognition
  • Evaluating the Energy Efficiency of Different Computer Processors

7. Economics Research Topics for College Students:

  • The Impact of Economic Policies on Inflation
  • The Role of Microfinance in Poverty Reduction
  • Effects of Globalization on Small Businesses
  • The Impact of Exchange Rates on the Export Market
  • Evaluating the Effects of Unemployment on Crime Rates

Tips for Choosing a Topic Suitable Experimental Research Topic

Choosing the right topic is crucial for a successful experimental research project. Here are a few tips to guide students in this process:

  • Interest : Choose a topic you are genuinely interested in. Your passion for the subject will keep you motivated throughout the research process.
  • Relevance : Select a topic that is relevant to your field of study. It should align with your course objectives and enhance your understanding of the subject matter.
  • Feasibility : Ensure the topic is practical and feasible to research. Consider the availability of resources, time constraints, and ethical considerations.
  • Uniqueness : Opt for a topic that is original and unique. This will not only make your research more interesting but also contribute to your field of study.

Experimental research is a critical aspect of scientific inquiry. It allows us to establish cause-and-effect relationships, contribute to our understanding of the world, and find solutions to problems in various fields of study.

Embarking on an experimental research project can be a rewarding experience. It allows students to apply their knowledge, develop critical thinking and problem-solving skills, and contribute to their academic field.

Frequently Asked Questions about Experimental Research Topic

How do i select an appropriate experimental research topic for the school or college level.

Choosing an experimental research topic depends on your personal interests, the course requirements, and the resources available. Try to pick a topic that genuinely excites you, is relevant to your field of study, and is feasible considering your time frame and the resources at your disposal.

What if my experimental research does not support my initial hypothesis?

If your experimental research does not support your initial hypothesis, it does not mean your research is a failure. Often, unexpected results can lead to new insights and directions for future research. It’s important to accurately report your findings, whether they support your hypothesis or not, and discuss potential reasons for the outcome in your conclusion.

How can I ensure my experimental research is ethically sound?

To ensure your experimental research is ethically sound, you need to consider informed consent, confidentiality, and avoidance of harm. If you’re working with human subjects, they need to be aware of the study’s purpose, potential risks, and their right to withdraw. You should also safeguard participants’ information and protect their identities.

What are some key steps in conducting experimental research?

Key steps in conducting experimental research include formulating a clear, testable hypothesis, designing and conducting the experiment, systematically collecting data, analyzing this data using suitable methods, and interpreting the results. It’s also crucial to consider ethical aspects throughout the research process.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Notify me of follow-up comments by email.

Notify me of new posts by email.

Grad Coach

Research Topics & Ideas: Environment

100+ Environmental Science Research Topics & Ideas

Research topics and ideas within the environmental sciences

Finding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. Here, we’ll explore a variety research ideas and topic thought-starters related to various environmental science disciplines, including ecology, oceanography, hydrology, geology, soil science, environmental chemistry, environmental economics, and environmental ethics.

NB – This is just the start…

The topic ideation and evaluation process has multiple steps . In this post, we’ll kickstart the process by sharing some research topic ideas within the environmental sciences. This is the starting point though. To develop a well-defined research topic, you’ll need to identify a clear and convincing research gap , along with a well-justified plan of action to fill that gap.

If you’re new to the oftentimes perplexing world of research, or if this is your first time undertaking a formal academic research project, be sure to check out our free dissertation mini-course. Also be sure to also sign up for our free webinar that explores how to develop a high-quality research topic from scratch.

Overview: Environmental Topics

  • Ecology /ecological science
  • Atmospheric science
  • Oceanography
  • Soil science
  • Environmental chemistry
  • Environmental economics
  • Environmental ethics
  • Examples  of dissertations and theses

Topics & Ideas: Ecological Science

  • The impact of land-use change on species diversity and ecosystem functioning in agricultural landscapes
  • The role of disturbances such as fire and drought in shaping arid ecosystems
  • The impact of climate change on the distribution of migratory marine species
  • Investigating the role of mutualistic plant-insect relationships in maintaining ecosystem stability
  • The effects of invasive plant species on ecosystem structure and function
  • The impact of habitat fragmentation caused by road construction on species diversity and population dynamics in the tropics
  • The role of ecosystem services in urban areas and their economic value to a developing nation
  • The effectiveness of different grassland restoration techniques in degraded ecosystems
  • The impact of land-use change through agriculture and urbanisation on soil microbial communities in a temperate environment
  • The role of microbial diversity in ecosystem health and nutrient cycling in an African savannah

Topics & Ideas: Atmospheric Science

  • The impact of climate change on atmospheric circulation patterns above tropical rainforests
  • The role of atmospheric aerosols in cloud formation and precipitation above cities with high pollution levels
  • The impact of agricultural land-use change on global atmospheric composition
  • Investigating the role of atmospheric convection in severe weather events in the tropics
  • The impact of urbanisation on regional and global atmospheric ozone levels
  • The impact of sea surface temperature on atmospheric circulation and tropical cyclones
  • The impact of solar flares on the Earth’s atmospheric composition
  • The impact of climate change on atmospheric turbulence and air transportation safety
  • The impact of stratospheric ozone depletion on atmospheric circulation and climate change
  • The role of atmospheric rivers in global water supply and sea-ice formation

Research topic evaluator

Topics & Ideas: Oceanography

  • The impact of ocean acidification on kelp forests and biogeochemical cycles
  • The role of ocean currents in distributing heat and regulating desert rain
  • The impact of carbon monoxide pollution on ocean chemistry and biogeochemical cycles
  • Investigating the role of ocean mixing in regulating coastal climates
  • The impact of sea level rise on the resource availability of low-income coastal communities
  • The impact of ocean warming on the distribution and migration patterns of marine mammals
  • The impact of ocean deoxygenation on biogeochemical cycles in the arctic
  • The role of ocean-atmosphere interactions in regulating rainfall in arid regions
  • The impact of ocean eddies on global ocean circulation and plankton distribution
  • The role of ocean-ice interactions in regulating the Earth’s climate and sea level

Research topic idea mega list

Tops & Ideas: Hydrology

  • The impact of agricultural land-use change on water resources and hydrologic cycles in temperate regions
  • The impact of agricultural groundwater availability on irrigation practices in the global south
  • The impact of rising sea-surface temperatures on global precipitation patterns and water availability
  • Investigating the role of wetlands in regulating water resources for riparian forests
  • The impact of tropical ranches on river and stream ecosystems and water quality
  • The impact of urbanisation on regional and local hydrologic cycles and water resources for agriculture
  • The role of snow cover and mountain hydrology in regulating regional agricultural water resources
  • The impact of drought on food security in arid and semi-arid regions
  • The role of groundwater recharge in sustaining water resources in arid and semi-arid environments
  • The impact of sea level rise on coastal hydrology and the quality of water resources

Research Topic Kickstarter - Need Help Finding A Research Topic?

Topics & Ideas: Geology

  • The impact of tectonic activity on the East African rift valley
  • The role of mineral deposits in shaping ancient human societies
  • The impact of sea-level rise on coastal geomorphology and shoreline evolution
  • Investigating the role of erosion in shaping the landscape and impacting desertification
  • The impact of mining on soil stability and landslide potential
  • The impact of volcanic activity on incoming solar radiation and climate
  • The role of geothermal energy in decarbonising the energy mix of megacities
  • The impact of Earth’s magnetic field on geological processes and solar wind
  • The impact of plate tectonics on the evolution of mammals
  • The role of the distribution of mineral resources in shaping human societies and economies, with emphasis on sustainability

Topics & Ideas: Soil Science

  • The impact of dam building on soil quality and fertility
  • The role of soil organic matter in regulating nutrient cycles in agricultural land
  • The impact of climate change on soil erosion and soil organic carbon storage in peatlands
  • Investigating the role of above-below-ground interactions in nutrient cycling and soil health
  • The impact of deforestation on soil degradation and soil fertility
  • The role of soil texture and structure in regulating water and nutrient availability in boreal forests
  • The impact of sustainable land management practices on soil health and soil organic matter
  • The impact of wetland modification on soil structure and function
  • The role of soil-atmosphere exchange and carbon sequestration in regulating regional and global climate
  • The impact of salinization on soil health and crop productivity in coastal communities

Topics & Ideas: Environmental Chemistry

  • The impact of cobalt mining on water quality and the fate of contaminants in the environment
  • The role of atmospheric chemistry in shaping air quality and climate change
  • The impact of soil chemistry on nutrient availability and plant growth in wheat monoculture
  • Investigating the fate and transport of heavy metal contaminants in the environment
  • The impact of climate change on biochemical cycling in tropical rainforests
  • The impact of various types of land-use change on biochemical cycling
  • The role of soil microbes in mediating contaminant degradation in the environment
  • The impact of chemical and oil spills on freshwater and soil chemistry
  • The role of atmospheric nitrogen deposition in shaping water and soil chemistry
  • The impact of over-irrigation on the cycling and fate of persistent organic pollutants in the environment

Topics & Ideas: Environmental Economics

  • The impact of climate change on the economies of developing nations
  • The role of market-based mechanisms in promoting sustainable use of forest resources
  • The impact of environmental regulations on economic growth and competitiveness
  • Investigating the economic benefits and costs of ecosystem services for African countries
  • The impact of renewable energy policies on regional and global energy markets
  • The role of water markets in promoting sustainable water use in southern Africa
  • The impact of land-use change in rural areas on regional and global economies
  • The impact of environmental disasters on local and national economies
  • The role of green technologies and innovation in shaping the zero-carbon transition and the knock-on effects for local economies
  • The impact of environmental and natural resource policies on income distribution and poverty of rural communities

Topics & Ideas: Environmental Ethics

  • The ethical foundations of environmentalism and the environmental movement regarding renewable energy
  • The role of values and ethics in shaping environmental policy and decision-making in the mining industry
  • The impact of cultural and religious beliefs on environmental attitudes and behaviours in first world countries
  • Investigating the ethics of biodiversity conservation and the protection of endangered species in palm oil plantations
  • The ethical implications of sea-level rise for future generations and vulnerable coastal populations
  • The role of ethical considerations in shaping sustainable use of natural forest resources
  • The impact of environmental justice on marginalized communities and environmental policies in Asia
  • The ethical implications of environmental risks and decision-making under uncertainty
  • The role of ethics in shaping the transition to a low-carbon, sustainable future for the construction industry
  • The impact of environmental values on consumer behaviour and the marketplace: a case study of the ‘bring your own shopping bag’ policy

Examples: Real Dissertation & Thesis Topics

While the ideas we’ve presented above are a decent starting point for finding a research topic, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses to see how this all comes together.

Below, we’ve included a selection of research projects from various environmental science-related degree programs to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • The physiology of microorganisms in enhanced biological phosphorous removal (Saunders, 2014)
  • The influence of the coastal front on heavy rainfall events along the east coast (Henson, 2019)
  • Forage production and diversification for climate-smart tropical and temperate silvopastures (Dibala, 2019)
  • Advancing spectral induced polarization for near surface geophysical characterization (Wang, 2021)
  • Assessment of Chromophoric Dissolved Organic Matter and Thamnocephalus platyurus as Tools to Monitor Cyanobacterial Bloom Development and Toxicity (Hipsher, 2019)
  • Evaluating the Removal of Microcystin Variants with Powdered Activated Carbon (Juang, 2020)
  • The effect of hydrological restoration on nutrient concentrations, macroinvertebrate communities, and amphibian populations in Lake Erie coastal wetlands (Berg, 2019)
  • Utilizing hydrologic soil grouping to estimate corn nitrogen rate recommendations (Bean, 2019)
  • Fungal Function in House Dust and Dust from the International Space Station (Bope, 2021)
  • Assessing Vulnerability and the Potential for Ecosystem-based Adaptation (EbA) in Sudan’s Blue Nile Basin (Mohamed, 2022)
  • A Microbial Water Quality Analysis of the Recreational Zones in the Los Angeles River of Elysian Valley, CA (Nguyen, 2019)
  • Dry Season Water Quality Study on Three Recreational Sites in the San Gabriel Mountains (Vallejo, 2019)
  • Wastewater Treatment Plan for Unix Packaging Adjustment of the Potential Hydrogen (PH) Evaluation of Enzymatic Activity After the Addition of Cycle Disgestase Enzyme (Miessi, 2020)
  • Laying the Genetic Foundation for the Conservation of Longhorn Fairy Shrimp (Kyle, 2021).

Looking at these titles, you can probably pick up that the research topics here are quite specific and narrowly-focused , compared to the generic ones presented earlier. To create a top-notch research topic, you will need to be precise and target a specific context with specific variables of interest . In other words, you’ll need to identify a clear, well-justified research gap.

Need more help?

If you’re still feeling a bit unsure about how to find a research topic for your environmental science dissertation or research project, be sure to check out our private coaching services below, as well as our Research Topic Kickstarter .

Need a helping hand?

experimental research topics about science

You Might Also Like:

Topic Kickstarter: Research topics in education

research topics on climate change and environment

Masango Dieudonne

I wish to learn things in a more advanced but simple way and with the hopes that I am in the right place.

Olusegunbukola Olubukola janet

Thank so much for the research topics. It really helped

saheed

the guides were really helpful

Nandir Elaine shelbut

Research topics on environmental geology

Blessing

Thanks for the research topics….I need a research topic on Geography

jeanne uwamahoro

I want the research on environmental planning and management

Mvuyisi

I want a topic on environmental sustainability

Micah Evelyn Joshua

It good coaching

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

experimental research topics about science

Home Market Research

Experimental Research: What it is + Types of designs

Experimental Research Design

Any research conducted under scientifically acceptable conditions uses experimental methods. The success of experimental studies hinges on researchers confirming the change of a variable is based solely on the manipulation of the constant variable. The research should establish a notable cause and effect.

What is Experimental Research?

Experimental research is a study conducted with a scientific approach using two sets of variables. The first set acts as a constant, which you use to measure the differences of the second set. Quantitative research methods , for example, are experimental.

If you don’t have enough data to support your decisions, you must first determine the facts. This research gathers the data necessary to help you make better decisions.

You can conduct experimental research in the following situations:

  • Time is a vital factor in establishing a relationship between cause and effect.
  • Invariable behavior between cause and effect.
  • You wish to understand the importance of cause and effect.

Experimental Research Design Types

The classic experimental design definition is: “The methods used to collect data in experimental studies.”

There are three primary types of experimental design:

  • Pre-experimental research design
  • True experimental research design
  • Quasi-experimental research design

The way you classify research subjects based on conditions or groups determines the type of research design  you should use.

0 1. Pre-Experimental Design

A group, or various groups, are kept under observation after implementing cause and effect factors. You’ll conduct this research to understand whether further investigation is necessary for these particular groups.

You can break down pre-experimental research further into three types:

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

0 2. True Experimental Design

It relies on statistical analysis to prove or disprove a hypothesis, making it the most accurate form of research. Of the types of experimental design, only true design can establish a cause-effect relationship within a group. In a true experiment, three factors need to be satisfied:

  • There is a Control Group, which won’t be subject to changes, and an Experimental Group, which will experience the changed variables.
  • A variable that can be manipulated by the researcher
  • Random distribution

This experimental research method commonly occurs in the physical sciences.

0 3. Quasi-Experimental Design

The word “Quasi” indicates similarity. A quasi-experimental design is similar to an experimental one, but it is not the same. The difference between the two is the assignment of a control group. In this research, an independent variable is manipulated, but the participants of a group are not randomly assigned. Quasi-research is used in field settings where random assignment is either irrelevant or not required.

Importance of Experimental Design

Experimental research is a powerful tool for understanding cause-and-effect relationships. It allows us to manipulate variables and observe the effects, which is crucial for understanding how different factors influence the outcome of a study.

But the importance of experimental research goes beyond that. It’s a critical method for many scientific and academic studies. It allows us to test theories, develop new products, and make groundbreaking discoveries.

For example, this research is essential for developing new drugs and medical treatments. Researchers can understand how a new drug works by manipulating dosage and administration variables and identifying potential side effects.

Similarly, experimental research is used in the field of psychology to test theories and understand human behavior. By manipulating variables such as stimuli, researchers can gain insights into how the brain works and identify new treatment options for mental health disorders.

It is also widely used in the field of education. It allows educators to test new teaching methods and identify what works best. By manipulating variables such as class size, teaching style, and curriculum, researchers can understand how students learn and identify new ways to improve educational outcomes.

In addition, experimental research is a powerful tool for businesses and organizations. By manipulating variables such as marketing strategies, product design, and customer service, companies can understand what works best and identify new opportunities for growth.

Advantages of Experimental Research

When talking about this research, we can think of human life. Babies do their own rudimentary experiments (such as putting objects in their mouths) to learn about the world around them, while older children and teens do experiments at school to learn more about science.

Ancient scientists used this research to prove that their hypotheses were correct. For example, Galileo Galilei and Antoine Lavoisier conducted various experiments to discover key concepts in physics and chemistry. The same is true of modern experts, who use this scientific method to see if new drugs are effective, discover treatments for diseases, and create new electronic devices (among others).

It’s vital to test new ideas or theories. Why put time, effort, and funding into something that may not work?

This research allows you to test your idea in a controlled environment before marketing. It also provides the best method to test your theory thanks to the following advantages:

Advantages of experimental research

  • Researchers have a stronger hold over variables to obtain desired results.
  • The subject or industry does not impact the effectiveness of experimental research. Any industry can implement it for research purposes.
  • The results are specific.
  • After analyzing the results, you can apply your findings to similar ideas or situations.
  • You can identify the cause and effect of a hypothesis. Researchers can further analyze this relationship to determine more in-depth ideas.
  • Experimental research makes an ideal starting point. The data you collect is a foundation for building more ideas and conducting more action research .

Whether you want to know how the public will react to a new product or if a certain food increases the chance of disease, experimental research is the best place to start. Begin your research by finding subjects using  QuestionPro Audience  and other tools today.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

data information vs insight

Data Information vs Insight: Essential differences

May 14, 2024

pricing analytics software

Pricing Analytics Software: Optimize Your Pricing Strategy

May 13, 2024

relationship marketing

Relationship Marketing: What It Is, Examples & Top 7 Benefits

May 8, 2024

email survey tool

The Best Email Survey Tool to Boost Your Feedback Game

May 7, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

share this!

May 15, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

Experimental demonstration of inequivalent mutually unbiased bases for quantum information processing

by University of Science and Technology of China

USTC reveals experimental demonstration of inequivalent mutually unbiased bases

Research groups demonstrated for the first time that inequivalent mutually unbiased bases (MUBs) have different information extraction capabilities for quantum information processing. The research results were published in Physical Review Letters .

Complementary observables, such as coordinates and momentum, are core concepts in quantum mechanics . The corresponding measurements are called mutually unbiased measurements, which are inextricably linked to MUBs.

MUBs are deeply related to both the complementarity principle and the uncertainty relation, playing an important role in the fundamental study of quantum mechanics. It is shown that not all unbiased bases are equivalent. Inequivalent MUBs can be constructed when the dimension of the Hilbert space is equal to or more than 4.

Most of the related studies have been confined to the mathematical differences of inequivalent MUBs, and seldom deal with the endowment differences of inequivalent MUBs in quantum information processing. Therefore, the researchers were interested in whether inequivalent MUBs would show significant differences in quantum information processing.

Starting from a simple quantum estimation problem, the researchers proposed a new method to distinguish the operational distinctions between inequivalent MUBs. In particular, the three-copy estimation fidelity can distinguish between inequivalent MUBs in a dimension 4 Hilbert space.

In order to facilitate the experimental demonstration of this method, researchers constructed two 4-designs with smaller cardinalities in dimension 4, one of which was generated with the Clifford group, and the other which was generated by a numerical optimization procedure.

The 4-designs-based ensemble of pure states ensures that the estimation fidelity does not depend on the unitary transformations, thus reflecting the intrinsic properties of unbiased bases.

The research team, by employing the high-precision multi-copy optical quantum precision measurement platform, experimentally verified that inequivalent MUBs in 4-dimensional space had different information extraction capabilities in the actual measurement of three-copy quantum states

With mutually unbiased measurements used in the experiment for quantum state information extraction, it was revealed that the estimation fidelity was related to the intrinsic properties of the MUBs.

With the different selection of the MUBs, the experimentally obtained maximum fidelity differs from the minimum fidelity by about 4%, and it responded well to the theoretical prediction with only 0.16% average deviation.

This study marks a big step forward in the study of inequivalent MUBs, and it has potential applications in many quantum information processing tasks such as quantum state estimation, entanglement detection and quantum communication.

The research groups include Prof. Li Chuanfeng, Prof. Xiang Guoyong and Prof. Hou Zhibo, led by Academician Guo Guangchan from University of Science and Technology of China (USTC) of Chinese Academy of Science (CAS), in collaboration with Professor Zhu Huangjun from Fudan University,

Journal information: Physical Review Letters

Provided by University of Science and Technology of China

Explore further

Feedback to editors

experimental research topics about science

From roots to resilience: Investigating the vital role of microbes in coastal plant health

4 hours ago

experimental research topics about science

Temperature, time and blueberry wine: Researchers examine fermentation's effects on health-promoting compounds

experimental research topics about science

Heating proteins to body temperature reveals new drug targets

5 hours ago

experimental research topics about science

What fire ants can teach us about making better self-healing materials

experimental research topics about science

Robotic 'superlimbs' could help moonwalkers recover from falls

6 hours ago

experimental research topics about science

A novel multifunctional catalyst turns methane into valuable hydrocarbons

experimental research topics about science

NASA's Juno provides high-definition views of Europa's icy shell

experimental research topics about science

New research addresses alleged benefits of a vegan diet for dogs

experimental research topics about science

Trees on a university campus endure droughts with help from leaky pipes

7 hours ago

experimental research topics about science

First direct imaging of radioactive cesium atoms in environmental samples

Relevant physicsforums posts, eigenstates of particle with 1/2 spin (qbit), how produce twin photons in practice.

9 hours ago

What are anomalies in quantum field theory?

May 14, 2024

Qubits state calculation

May 13, 2024

Quantum mechanics formalisms and conservation of energy

May 12, 2024

When and why can ∂p/∂t=0 in position space?

May 11, 2024

More from Quantum Physics

Related Stories

experimental research topics about science

Researchers provide comprehensive review of quantum teleportation

Jun 13, 2023

experimental research topics about science

The first quantum orienteering by quantum entangling measurements enhancement

Feb 26, 2020

experimental research topics about science

Shortcut to success: Toward fast and robust quantum control through accelerating adiabatic passage

Mar 5, 2024

experimental research topics about science

Ultimate precision limit of multi-parameter quantum magnetometry

Jul 20, 2020

experimental research topics about science

Optimized method to detect high-dimensional entanglement

Dec 6, 2021

experimental research topics about science

Researchers develop improved quantum gate testing method

Jan 27, 2022

Recommended for you

experimental research topics about science

Physicists demonstrate first metro-area quantum computer network in Boston

10 hours ago

experimental research topics about science

New method of wavefunction matching helps solve quantum many-body problems

experimental research topics about science

A new family of beautiful-charming tetraquarks: Study illuminates a new horizon within quantum chromodynamics

8 hours ago

experimental research topics about science

Spooky states and figure eights: Stepping into the quantum computing 'ring'

experimental research topics about science

Quantum geometry offers new insights into 'smart' materials with switchable electric polarity

12 hours ago

experimental research topics about science

Study uncovers technologies that could unveil energy-efficient information processing and sophisticated data security

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10 Experimental research

Experimental research—often considered to be the ‘gold standard’ in research designs—is one of the most rigorous of all research designs. In this design, one or more independent variables are manipulated by the researcher (as treatments), subjects are randomly assigned to different treatment levels (random assignment), and the results of the treatments on outcomes (dependent variables) are observed. The unique strength of experimental research is its internal validity (causality) due to its ability to link cause and effect through treatment manipulation, while controlling for the spurious effect of extraneous variable.

Experimental research is best suited for explanatory research—rather than for descriptive or exploratory research—where the goal of the study is to examine cause-effect relationships. It also works well for research that involves a relatively limited and well-defined set of independent variables that can either be manipulated or controlled. Experimental research can be conducted in laboratory or field settings. Laboratory experiments , conducted in laboratory (artificial) settings, tend to be high in internal validity, but this comes at the cost of low external validity (generalisability), because the artificial (laboratory) setting in which the study is conducted may not reflect the real world. Field experiments are conducted in field settings such as in a real organisation, and are high in both internal and external validity. But such experiments are relatively rare, because of the difficulties associated with manipulating treatments and controlling for extraneous effects in a field setting.

Experimental research can be grouped into two broad categories: true experimental designs and quasi-experimental designs. Both designs require treatment manipulation, but while true experiments also require random assignment, quasi-experiments do not. Sometimes, we also refer to non-experimental research, which is not really a research design, but an all-inclusive term that includes all types of research that do not employ treatment manipulation or random assignment, such as survey research, observational research, and correlational studies.

Basic concepts

Treatment and control groups. In experimental research, some subjects are administered one or more experimental stimulus called a treatment (the treatment group ) while other subjects are not given such a stimulus (the control group ). The treatment may be considered successful if subjects in the treatment group rate more favourably on outcome variables than control group subjects. Multiple levels of experimental stimulus may be administered, in which case, there may be more than one treatment group. For example, in order to test the effects of a new drug intended to treat a certain medical condition like dementia, if a sample of dementia patients is randomly divided into three groups, with the first group receiving a high dosage of the drug, the second group receiving a low dosage, and the third group receiving a placebo such as a sugar pill (control group), then the first two groups are experimental groups and the third group is a control group. After administering the drug for a period of time, if the condition of the experimental group subjects improved significantly more than the control group subjects, we can say that the drug is effective. We can also compare the conditions of the high and low dosage experimental groups to determine if the high dose is more effective than the low dose.

Treatment manipulation. Treatments are the unique feature of experimental research that sets this design apart from all other research methods. Treatment manipulation helps control for the ‘cause’ in cause-effect relationships. Naturally, the validity of experimental research depends on how well the treatment was manipulated. Treatment manipulation must be checked using pretests and pilot tests prior to the experimental study. Any measurements conducted before the treatment is administered are called pretest measures , while those conducted after the treatment are posttest measures .

Random selection and assignment. Random selection is the process of randomly drawing a sample from a population or a sampling frame. This approach is typically employed in survey research, and ensures that each unit in the population has a positive chance of being selected into the sample. Random assignment, however, is a process of randomly assigning subjects to experimental or control groups. This is a standard practice in true experimental research to ensure that treatment groups are similar (equivalent) to each other and to the control group prior to treatment administration. Random selection is related to sampling, and is therefore more closely related to the external validity (generalisability) of findings. However, random assignment is related to design, and is therefore most related to internal validity. It is possible to have both random selection and random assignment in well-designed experimental research, but quasi-experimental research involves neither random selection nor random assignment.

Threats to internal validity. Although experimental designs are considered more rigorous than other research methods in terms of the internal validity of their inferences (by virtue of their ability to control causes through treatment manipulation), they are not immune to internal validity threats. Some of these threats to internal validity are described below, within the context of a study of the impact of a special remedial math tutoring program for improving the math abilities of high school students.

History threat is the possibility that the observed effects (dependent variables) are caused by extraneous or historical events rather than by the experimental treatment. For instance, students’ post-remedial math score improvement may have been caused by their preparation for a math exam at their school, rather than the remedial math program.

Maturation threat refers to the possibility that observed effects are caused by natural maturation of subjects (e.g., a general improvement in their intellectual ability to understand complex concepts) rather than the experimental treatment.

Testing threat is a threat in pre-post designs where subjects’ posttest responses are conditioned by their pretest responses. For instance, if students remember their answers from the pretest evaluation, they may tend to repeat them in the posttest exam.

Not conducting a pretest can help avoid this threat.

Instrumentation threat , which also occurs in pre-post designs, refers to the possibility that the difference between pretest and posttest scores is not due to the remedial math program, but due to changes in the administered test, such as the posttest having a higher or lower degree of difficulty than the pretest.

Mortality threat refers to the possibility that subjects may be dropping out of the study at differential rates between the treatment and control groups due to a systematic reason, such that the dropouts were mostly students who scored low on the pretest. If the low-performing students drop out, the results of the posttest will be artificially inflated by the preponderance of high-performing students.

Regression threat —also called a regression to the mean—refers to the statistical tendency of a group’s overall performance to regress toward the mean during a posttest rather than in the anticipated direction. For instance, if subjects scored high on a pretest, they will have a tendency to score lower on the posttest (closer to the mean) because their high scores (away from the mean) during the pretest were possibly a statistical aberration. This problem tends to be more prevalent in non-random samples and when the two measures are imperfectly correlated.

Two-group experimental designs

R

Pretest-posttest control group design . In this design, subjects are randomly assigned to treatment and control groups, subjected to an initial (pretest) measurement of the dependent variables of interest, the treatment group is administered a treatment (representing the independent variable of interest), and the dependent variables measured again (posttest). The notation of this design is shown in Figure 10.1.

Pretest-posttest control group design

Statistical analysis of this design involves a simple analysis of variance (ANOVA) between the treatment and control groups. The pretest-posttest design handles several threats to internal validity, such as maturation, testing, and regression, since these threats can be expected to influence both treatment and control groups in a similar (random) manner. The selection threat is controlled via random assignment. However, additional threats to internal validity may exist. For instance, mortality can be a problem if there are differential dropout rates between the two groups, and the pretest measurement may bias the posttest measurement—especially if the pretest introduces unusual topics or content.

Posttest -only control group design . This design is a simpler version of the pretest-posttest design where pretest measurements are omitted. The design notation is shown in Figure 10.2.

Posttest-only control group design

The treatment effect is measured simply as the difference in the posttest scores between the two groups:

\[E = (O_{1} - O_{2})\,.\]

The appropriate statistical analysis of this design is also a two-group analysis of variance (ANOVA). The simplicity of this design makes it more attractive than the pretest-posttest design in terms of internal validity. This design controls for maturation, testing, regression, selection, and pretest-posttest interaction, though the mortality threat may continue to exist.

C

Because the pretest measure is not a measurement of the dependent variable, but rather a covariate, the treatment effect is measured as the difference in the posttest scores between the treatment and control groups as:

Due to the presence of covariates, the right statistical analysis of this design is a two-group analysis of covariance (ANCOVA). This design has all the advantages of posttest-only design, but with internal validity due to the controlling of covariates. Covariance designs can also be extended to pretest-posttest control group design.

Factorial designs

Two-group designs are inadequate if your research requires manipulation of two or more independent variables (treatments). In such cases, you would need four or higher-group designs. Such designs, quite popular in experimental research, are commonly called factorial designs. Each independent variable in this design is called a factor , and each subdivision of a factor is called a level . Factorial designs enable the researcher to examine not only the individual effect of each treatment on the dependent variables (called main effects), but also their joint effect (called interaction effects).

2 \times 2

In a factorial design, a main effect is said to exist if the dependent variable shows a significant difference between multiple levels of one factor, at all levels of other factors. No change in the dependent variable across factor levels is the null case (baseline), from which main effects are evaluated. In the above example, you may see a main effect of instructional type, instructional time, or both on learning outcomes. An interaction effect exists when the effect of differences in one factor depends upon the level of a second factor. In our example, if the effect of instructional type on learning outcomes is greater for three hours/week of instructional time than for one and a half hours/week, then we can say that there is an interaction effect between instructional type and instructional time on learning outcomes. Note that the presence of interaction effects dominate and make main effects irrelevant, and it is not meaningful to interpret main effects if interaction effects are significant.

Hybrid experimental designs

Hybrid designs are those that are formed by combining features of more established designs. Three such hybrid designs are randomised bocks design, Solomon four-group design, and switched replications design.

Randomised block design. This is a variation of the posttest-only or pretest-posttest control group design where the subject population can be grouped into relatively homogeneous subgroups (called blocks ) within which the experiment is replicated. For instance, if you want to replicate the same posttest-only design among university students and full-time working professionals (two homogeneous blocks), subjects in both blocks are randomly split between the treatment group (receiving the same treatment) and the control group (see Figure 10.5). The purpose of this design is to reduce the ‘noise’ or variance in data that may be attributable to differences between the blocks so that the actual effect of interest can be detected more accurately.

Randomised blocks design

Solomon four-group design . In this design, the sample is divided into two treatment groups and two control groups. One treatment group and one control group receive the pretest, and the other two groups do not. This design represents a combination of posttest-only and pretest-posttest control group design, and is intended to test for the potential biasing effect of pretest measurement on posttest measures that tends to occur in pretest-posttest designs, but not in posttest-only designs. The design notation is shown in Figure 10.6.

Solomon four-group design

Switched replication design . This is a two-group design implemented in two phases with three waves of measurement. The treatment group in the first phase serves as the control group in the second phase, and the control group in the first phase becomes the treatment group in the second phase, as illustrated in Figure 10.7. In other words, the original design is repeated or replicated temporally with treatment/control roles switched between the two groups. By the end of the study, all participants will have received the treatment either during the first or the second phase. This design is most feasible in organisational contexts where organisational programs (e.g., employee training) are implemented in a phased manner or are repeated at regular intervals.

Switched replication design

Quasi-experimental designs

Quasi-experimental designs are almost identical to true experimental designs, but lacking one key ingredient: random assignment. For instance, one entire class section or one organisation is used as the treatment group, while another section of the same class or a different organisation in the same industry is used as the control group. This lack of random assignment potentially results in groups that are non-equivalent, such as one group possessing greater mastery of certain content than the other group, say by virtue of having a better teacher in a previous semester, which introduces the possibility of selection bias . Quasi-experimental designs are therefore inferior to true experimental designs in interval validity due to the presence of a variety of selection related threats such as selection-maturation threat (the treatment and control groups maturing at different rates), selection-history threat (the treatment and control groups being differentially impacted by extraneous or historical events), selection-regression threat (the treatment and control groups regressing toward the mean between pretest and posttest at different rates), selection-instrumentation threat (the treatment and control groups responding differently to the measurement), selection-testing (the treatment and control groups responding differently to the pretest), and selection-mortality (the treatment and control groups demonstrating differential dropout rates). Given these selection threats, it is generally preferable to avoid quasi-experimental designs to the greatest extent possible.

N

In addition, there are quite a few unique non-equivalent designs without corresponding true experimental design cousins. Some of the more useful of these designs are discussed next.

Regression discontinuity (RD) design . This is a non-equivalent pretest-posttest design where subjects are assigned to the treatment or control group based on a cut-off score on a preprogram measure. For instance, patients who are severely ill may be assigned to a treatment group to test the efficacy of a new drug or treatment protocol and those who are mildly ill are assigned to the control group. In another example, students who are lagging behind on standardised test scores may be selected for a remedial curriculum program intended to improve their performance, while those who score high on such tests are not selected from the remedial program.

RD design

Because of the use of a cut-off score, it is possible that the observed results may be a function of the cut-off score rather than the treatment, which introduces a new threat to internal validity. However, using the cut-off score also ensures that limited or costly resources are distributed to people who need them the most, rather than randomly across a population, while simultaneously allowing a quasi-experimental treatment. The control group scores in the RD design do not serve as a benchmark for comparing treatment group scores, given the systematic non-equivalence between the two groups. Rather, if there is no discontinuity between pretest and posttest scores in the control group, but such a discontinuity persists in the treatment group, then this discontinuity is viewed as evidence of the treatment effect.

Proxy pretest design . This design, shown in Figure 10.11, looks very similar to the standard NEGD (pretest-posttest) design, with one critical difference: the pretest score is collected after the treatment is administered. A typical application of this design is when a researcher is brought in to test the efficacy of a program (e.g., an educational program) after the program has already started and pretest data is not available. Under such circumstances, the best option for the researcher is often to use a different prerecorded measure, such as students’ grade point average before the start of the program, as a proxy for pretest data. A variation of the proxy pretest design is to use subjects’ posttest recollection of pretest data, which may be subject to recall bias, but nevertheless may provide a measure of perceived gain or change in the dependent variable.

Proxy pretest design

Separate pretest-posttest samples design . This design is useful if it is not possible to collect pretest and posttest data from the same subjects for some reason. As shown in Figure 10.12, there are four groups in this design, but two groups come from a single non-equivalent group, while the other two groups come from a different non-equivalent group. For instance, say you want to test customer satisfaction with a new online service that is implemented in one city but not in another. In this case, customers in the first city serve as the treatment group and those in the second city constitute the control group. If it is not possible to obtain pretest and posttest measures from the same customers, you can measure customer satisfaction at one point in time, implement the new service program, and measure customer satisfaction (with a different set of customers) after the program is implemented. Customer satisfaction is also measured in the control group at the same times as in the treatment group, but without the new program implementation. The design is not particularly strong, because you cannot examine the changes in any specific customer’s satisfaction score before and after the implementation, but you can only examine average customer satisfaction scores. Despite the lower internal validity, this design may still be a useful way of collecting quasi-experimental data when pretest and posttest data is not available from the same subjects.

Separate pretest-posttest samples design

An interesting variation of the NEDV design is a pattern-matching NEDV design , which employs multiple outcome variables and a theory that explains how much each variable will be affected by the treatment. The researcher can then examine if the theoretical prediction is matched in actual observations. This pattern-matching technique—based on the degree of correspondence between theoretical and observed patterns—is a powerful way of alleviating internal validity concerns in the original NEDV design.

NEDV design

Perils of experimental research

Experimental research is one of the most difficult of research designs, and should not be taken lightly. This type of research is often best with a multitude of methodological problems. First, though experimental research requires theories for framing hypotheses for testing, much of current experimental research is atheoretical. Without theories, the hypotheses being tested tend to be ad hoc, possibly illogical, and meaningless. Second, many of the measurement instruments used in experimental research are not tested for reliability and validity, and are incomparable across studies. Consequently, results generated using such instruments are also incomparable. Third, often experimental research uses inappropriate research designs, such as irrelevant dependent variables, no interaction effects, no experimental controls, and non-equivalent stimulus across treatment groups. Findings from such studies tend to lack internal validity and are highly suspect. Fourth, the treatments (tasks) used in experimental research may be diverse, incomparable, and inconsistent across studies, and sometimes inappropriate for the subject population. For instance, undergraduate student subjects are often asked to pretend that they are marketing managers and asked to perform a complex budget allocation task in which they have no experience or expertise. The use of such inappropriate tasks, introduces new threats to internal validity (i.e., subject’s performance may be an artefact of the content or difficulty of the task setting), generates findings that are non-interpretable and meaningless, and makes integration of findings across studies impossible.

The design of proper experimental treatments is a very important task in experimental design, because the treatment is the raison d’etre of the experimental method, and must never be rushed or neglected. To design an adequate and appropriate task, researchers should use prevalidated tasks if available, conduct treatment manipulation checks to check for the adequacy of such tasks (by debriefing subjects after performing the assigned task), conduct pilot tests (repeatedly, if necessary), and if in doubt, use tasks that are simple and familiar for the respondent sample rather than tasks that are complex or unfamiliar.

In summary, this chapter introduced key concepts in the experimental design research method and introduced a variety of true experimental and quasi-experimental designs. Although these designs vary widely in internal validity, designs with less internal validity should not be overlooked and may sometimes be useful under specific circumstances and empirical contingencies.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Frontiers | Science News

  • Science News

Research Topics

Five research topics exploring the science of mental health.

experimental research topics about science

Mental wellbeing is increasingly recognized as an essential aspect of our overall health. It supports our ability to handle challenges, build strong relationships, and live more fulfilling lives. The World Health Organization (WHO) emphasizes the importance of mental health by acknowledging it as a fundamental human right.

This Mental Health Awareness Week, we highlight the remarkable work of scientists driving open research that helps everyone achieve better mental health.

Here are five Research Topics that study themes including how we adapt to a changing world, the impact of loneliness on our wellbeing, and the connection between our diet and mental health.

All articles are openly available to view and download.

1 | Community Series in Mental Health Promotion and Protection, volume II

40.300 views | 16 articles

There is no health without mental health. Thus, this Research Topic collects ideas and research related to strategies that promote mental health across all disciplines. The goal is to raise awareness about mental health promotion and protection to ensure its incorporation in national mental health policies.

This topic is of relevance given the mental health crisis being experienced across the world right now. A reality that has prompted the WHO to declare that health is a state of complete physical, mental, and social wellbeing.

View Research Topic

2 | Dietary and Metabolic Approaches for Mental Health Conditions

176.800 views | 11 articles

There is increased recognition that mental health disorders are, at least in part, a form of diet-related disease. For this reason, we focus attention on a Research Topic that examines the mechanistic interplay between dietary patterns and mental health conditions.

There is a clear consensus that the quality, quantity, and even timing of our human feeding patterns directly impact how brains function. But despite the epidemiological and mechanistic links between mental health and diet-related diseases, these two are often perceived as separate medical issues.

Even more urgent, public health messaging and clinical treatments for mental health conditions place relatively little emphasis on formulating nutrition to ease the underlying drivers of mental health conditions.

3 | Comparing Mental Health Cross-Culturally

94.000 views | 15 articles

Although mental health has been widely discussed in later years, how mental health is perceived across different cultures remains to be examined. This Research Topic addresses this gap and deepens our knowledge of mental health by comparing positive and negative psychological constructs cross-culturally.

The definition and understanding of mental health remain to be refined, partially because of a lack of cross-cultural perspectives on mental health. Also, due to the rapid internationalization taking place in the world today, a culturally aware understanding of, and interventions for mental health problems are essential.

4 | Adaption to Change and Coping Strategies: New Resources for Mental Health

85.000 views | 29 articles

In this Research Topic, scientists study a wider range of variables involved in change and adaptation. They examine changes of any type or magnitude whenever the lack of adaptive response diminishes our development and well-being.

Today’s society is characterized by change, and sometimes, the constant changes are difficult to assimilate. This may be why feelings of frustration and defenselessness appear in the face of the impossibility of responding adequately to the requirements of a changing society.

Therefore, society must develop an updated notion of the processes inherent to changing developmental environments, personal skills, resources, and strategies. This know-how is crucial for achieving and maintaining balanced mental health.

5 | Mental Health Equity

29.900 views | 10 articles

The goal of this Research Topic is to move beyond a synthesis of what is already known about mental health in the context of health equity. Rather, the focus here is on transformative solutions, recommendations, and applied research that have real world implications on policy, practice, and future scholarship.

Attention in the field to upstream factors and the role of social and structural determinants of health in influencing health outcomes, combined with an influx of innovation –particularly the digitalization of healthcare—presents a unique opportunity to solve pressing issues in mental health through a health equity lens.

The topic is opportune because factors such as structural racism and climate change have disproportionately negatively impacted marginalized communities across the world, including Black, Indigenous, People of Color (BIPOC), LGBTQ+, people with disabilities, and transition-age youth and young adults. As a result, existing disparities in mental health have exacerbated.

Post related info

May 13, 2024

Frontiers Science Communications

Post categories, featured news, related subjects, research topics, related content.

experimental research topics about science

Opening health for all: 7 Research Topics shaping a healthier world

experimental research topics about science

Frontiers' Research Topic publishing program: pioneering the future of scientific publishing

experimental research topics about science

Frontiers institutional partnerships update – winter 2024

Latest posts.

experimental research topics about science

Villars Institute Summit 2024: Catalyzing systematic change through interdisciplinary cooperation

experimental research topics about science

World’s deepest sinkhole discovered in Mexico: Here are five Frontiers articles you won’t want to miss

experimental research topics about science

Bumblebee nests are overheating due to climate change, threatening future populations

experimental research topics about science

Why do male chicks play more than females? Study finds answers in distant ancestor

110+ Best Science Investigatory Project Topics: Dive into Science

Science Investigatory Project Topics

  • Post author By admin
  • September 29, 2023

Explore a wide range of science investigatory project topics to engage in innovative research and make significant contributions to the field.

Get ready to dive headfirst into the thrilling world of Science Investigatory Project (SIP) topics! Imagine a journey where you become a scientist, an explorer of the unknown, and a solver of real-world puzzles.

This is what SIP offers – a chance to channel your inner curiosity and creativity into the fascinating realm of science.

From unlocking the secrets of life in biology to experimenting with the wonders of chemistry, from unraveling the mysteries of the universe in physics to addressing vital environmental issues – SIP topics are your keys to a world of exploration.

In this adventure, we’ll guide you through an array of captivating SIP ideas. These topics aren’t just assignments; they’re opportunities to uncover new knowledge, make a difference, and have a blast along the way.

So, gear up for an exciting journey, as we unveil the science topics that could spark your imagination and fuel your passion for discovery. Let’s begin!

Table of Contents

What is a Science Investigatory Project?

Imagine stepping into the shoes of a scientist – asking questions, running experiments, and discovering the secrets of the world around you. That’s exactly what a Science Investigatory Project, or SIP, is all about.

At its core, a SIP is a thrilling journey of scientific exploration. It’s a project that challenges you to pick a problem, make educated guesses (that’s your hypothesis), roll up your sleeves for experiments, collect data, and connect the dots to find answers.

Here’s how it works

Step 1: the mystery.

You start with a question – something that piques your curiosity. It could be anything from “Why do plants grow towards the light?” to “What makes the sky blue?” Your SIP is your ticket to unravel these mysteries.

Step 2: The Guess

Next comes your hypothesis – a fancy word for your best guess at the answer. It’s like saying, “I think this is what’s happening, and here’s why.”

Step 3: The Detective Work

Now, it’s time for the fun part – experimenting! You set up tests, tweak variables, and observe closely. Whether you’re mixing chemicals, observing insects, or measuring temperature, you’re the scientist in charge.

Step 4: Clues and Evidence

As you experiment, you collect clues in the form of data – numbers, measurements, observations. It’s like gathering puzzle pieces.

Step 5: The “Aha!” Moment

When you analyze your data, patterns start to emerge. You connect those puzzle pieces until you have a clear picture. Does your data support your guess (hypothesis), or do you need to rethink things?

Step 6: Sharing Your Discovery

Scientists don’t keep their findings to themselves. They share them with the world. Your SIP report or presentation is your chance to do just that. You explain what you did, what you found, and why it matters.

So, why do SIPs matter? They’re not just school projects. They’re your chance to think like a scientist, ask questions like a detective, and discover like an explorer. They’re where you become the expert, the innovator, the problem-solver.

From the mysteries of biology to the wonders of chemistry and the enigmas of physics, SIPs open doors to countless adventures in science. So, what question will you ask? What mystery will you solve? Your SIP journey awaits – embrace it, and you might just uncover something amazing.

Choosing the Right SIP Topic

Choosing the right Science Investigatory Project (SIP) topic is like selecting a path for your scientific adventure. It’s a critical decision, and here’s how to make it count:

Follow Your Passion

Your SIP topic should resonate with your interests. Pick something you’re genuinely curious about. When you’re passionate, the research becomes a thrilling quest, not a chore.

Real-World Relevance

Consider how your topic connects to the real world. Can your research shed light on a problem or offer solutions? SIPs are a chance to make a tangible impact.

Feasibility

Be realistic about the resources at your disposal. Choose a topic that you can explore within your time frame and access to equipment. Avoid overly ambitious projects that might overwhelm you.

Originality Matters

While it’s okay to explore well-trodden paths, strive for a unique angle. What can you add to the existing knowledge? Innovative ideas often lead to exciting discoveries.

Mentor Guidance

If you’re feeling uncertain, don’t hesitate to seek guidance from teachers or mentors. They can help you refine your ideas and offer valuable insights.

Remember, your SIP topic is the compass for your scientific journey. It should excite your curiosity, have real-world significance, and be feasible within your means. So, choose wisely, and let your scientific adventure begin!

Popular Science Investigatory Project Topics

Now that we’ve established the criteria for selecting a SIP topic, let’s explore some captivating ideas across various scientific domains.

  • Investigating the Effects of Various Soil Types on Plant Growth
  • The Impact of Different Water pH Levels on Aquatic Life
  • Studying the Behavior of Insects in Response to Environmental Changes
  • Analyzing the Effect of Different Light Intensities on Photosynthesis
  • Exploring the Microbial Diversity in Different Soil Samples
  • Investigating the Antioxidant Properties of Various Fruit Extracts
  • Studying the Growth Patterns of Mold on Different Types of Food
  • Analyzing the Effects of Temperature on Enzyme Activity
  • Investigating the Impact of Pollution on the Health of Local Wildlife
  • Exploring the Relationship Between Diet and Gut Microbiota Composition
  • Developing Eco-Friendly Cleaning Products from Household Ingredients
  • Investigating the Chemical Composition of Common Food Preservatives
  • Analyzing the Effects of Different Chemical Reactions on Metal Corrosion
  • Studying the Factors Affecting the Rate of Vitamin C Degradation in Fruit Juices
  • Exploring the Chemistry Behind the Colors of Fireworks
  • Investigating the Efficiency of Various Household Water Softeners
  • Synthesizing Biodegradable Polymers from Natural Sources
  • Studying the Chemical Reactions Involved in Baking Soda and Vinegar Reactions
  • Analyzing the Impact of Acids and Bases on Tooth Enamel
  • Investigating the Chemical Composition of Different Brands of Shampoos
  • Designing and Testing a Solar-Powered Water Heater
  • Investigating the Factors Affecting the Bounce Height of Balls
  • Studying the Relationship Between Temperature and Electrical Conductivity in Materials
  • Analyzing the Efficiency of Different Insulating Materials
  • Exploring the Effects of Magnetism on Plant Growth
  • Investigating the Behavior of Sound Waves in Different Environments
  • Studying the Impact of Projectile Launch Angles on Distance
  • Analyzing the Factors Affecting the Speed of Falling Objects
  • Investigating the Reflection and Refraction of Light in Different Media
  • Exploring the Relationship Between the Length of a Pendulum and Its Period

Environmental Science

  • Analyzing the Effects of Urban Green Spaces on Air Quality
  • Investigating the Impact of Microplastics on Marine Life
  • Studying the Relationship Between Temperature and Ocean Acidification
  • Exploring the Effects of Deforestation on Local Ecosystems
  • Investigating the Factors Contributing to Soil Erosion in a Watershed
  • Analyzing the Impact of Noise Pollution on Wildlife Behavior
  • Studying the Relationship Between Temperature and Ice Melt Rates
  • Investigating the Effect of Urbanization on Local Bird Populations
  • Exploring the Impact of Air Pollution on Human Health in Urban Areas
  • Analyzing the Biodiversity of Insects in Urban vs. Rural Environments

Social Sciences

  • Analyzing the Impact of Social Media Use on Teenagers’ Mental Health
  • Investigating the Factors Influencing Online Shopping Behavior
  • Studying the Effects of Different Teaching Methods on Student Engagement
  • Analyzing the Impact of Parenting Styles on Children’s Academic Performance
  • Investigating the Relationship Between Music Preferences and Stress Levels
  • Exploring the Factors Contributing to Workplace Stress and Burnout
  • Studying the Effects of Socioeconomic Status on Access to Healthcare
  • Analyzing the Factors Influencing Voting Behavior in Local Elections
  • Investigating the Impact of Advertising on Consumer Purchasing Decisions
  • Exploring the Effects of Cultural Diversity on Team Performance in the Workplace

These SIP topics offer a wide range of research opportunities for students in biology, chemistry, physics, and environmental science. Students can choose topics that align with their interests and contribute to their understanding of the natural world.

Conducting Your SIP

So, you’ve picked an exciting Science Investigatory Project (SIP) topic and you’re all set to dive into the world of scientific exploration. But how do you go from a brilliant idea to conducting your own experiments? Let’s break it down into easy steps:

Step 1: Dive into Research

Before you start mixing chemicals or setting up experiments, it’s time for some detective work. Dive into research! What’s already out there about your topic? Books, articles, websites – explore them all. This background study gives you the superpower of knowledge before you even start.

Step 2: Hypothesize Away!

With all that newfound wisdom, formulate a hypothesis. Don your scientist’s hat and make an educated guess about what you think will happen during your experiments. It’s like making a bet with science itself!

Step 3: Time for Action

Now comes the fun part. Design your experiments. What materials do you need? What steps should you follow? Imagine you’re a mad scientist with a plan! Then, go ahead and conduct your experiments. Be precise, follow your plan, and observe like Sherlock.

Step 4: Collect That Data

During your experiments, be a data ninja. Record everything. Measurements, observations, weird surprises – they’re all clues! The more detailed your notes, the better.

Step 5: Decode Your Findings

Time to put on your detective’s hat again. What do your data and observations tell you? Look for patterns, anomalies, and secrets your experiments are revealing. This is where the real magic happens.

Step 6: The Big Reveal

Now, reveal the grand finale – your conclusions! Did your experiments support your hypothesis, or did they throw you a curveball? Discuss what your findings mean and why they matter. It’s like solving the mystery in a thrilling novel.

Step 7: Your SIP Report

Finally, put it all together in your SIP report. Think of it as your scientific storybook. Share your journey with the world. Start with the introduction, add in your methodology, sprinkle your results and discussions, and wrap it up with a conclusion that leaves your readers in awe.

Remember, this isn’t just about science; it’s about your adventure in discovering the unknown. Have fun, be curious, and let your inner scientist shine!

What is a good topic for an investigatory project?

A good topic for an investigatory project depends on your interests and the resources available to you. Here are some broad categories and potential topics to consider:

  • The Impact of Different Fertilizers on Plant Growth
  • Investigating the Effect of Air Pollution on Local Plant Life
  • Analyzing the Quality of Drinking Water from Various Sources
  • Studying the Growth of Microorganisms in Different Water Types
  • Creating Biodegradable Plastics from Natural Materials
  • Investigating the Chemical Composition of Household Cleaning Products
  • Analyzing the Effects of Different Cooking Oils on Food Nutrition
  • Testing the pH Levels of Various Household Substances
  • Studying the Behavior of Ants in Response to Different Food Types
  • Investigating the Impact of Light Exposure on Seed Germination
  • Analyzing the Effects of Different Music Types on Plant Growth
  • Designing and Testing a Simple Wind Turbine
  • Investigating the Relationship Between Temperature and Electrical Conductivity in Materials
  • Studying the Behavior of Different Types of Pendulums
  • Analyzing the Factors Affecting the Efficiency of Solar Panels
  • Analyzing the Impact of Social Media Use on Teenagers’ Sleep Patterns
  • Investigating the Factors Influencing Consumer Behavior in Online Shopping
  • Studying the Effects of Different Teaching Methods on Student Learning
  • Analyzing the Relationship Between Music Preferences and Mood

Computer Science and Technology

  • Developing a Smartphone App for Personal Productivity
  • Investigating the Factors Affecting Wi-Fi Signal Strength in Different Locations
  • Analyzing the Impact of Screen Time on Productivity and Well-being
  • Studying the Efficiency of Different Coding Languages in Software Development

When choosing a topic, consider your interests, available resources, and the potential impact of your project. It’s essential to select a topic that excites you and allows you to conduct meaningful research.

Additionally, check with your school or instructor for any specific guidelines or requirements for your investigatory project.

What should I do in a science investigatory project?

So, you’re all set to embark on a thrilling adventure known as a Science Investigatory Project (SIP). But where do you start, and what should you be doing? Here’s your guide to diving headfirst into the world of scientific exploration:

Choose a Topic That Sparks Your Interest

Begin by picking a topic that genuinely excites you. It should be something you’re curious about, like “Why do plants grow towards the light?” or “How does pollution affect local water quality?”

Unleash Your Inner Detective with Background Research

Dive into the world of books, articles, and online resources. Learn everything you can about your chosen topic. It’s like gathering clues to solve a mystery.

Craft Your Hypothesis – Your Educated Guess

Formulate a hypothesis. Think of it as your scientific prediction. What do you think will happen when you investigate your question? Make an educated guess and write it down.

Plan Your Scientific Experiments

Now, let’s get hands-on! Plan your experiments. What materials will you need? What steps will you follow? Imagine you’re a mad scientist with a plan to uncover the secrets of the universe!

Collect Data – Be a Data Ninja

During your experiments, be a data ninja! Record everything meticulously. Measurements, observations, quirky surprises – they’re all part of your data treasure trove.

Decode Your Findings – Be a Scientific Sleuth

Time to decode the clues! Analyze your data like a scientific sleuth. Look for patterns, unexpected twists, and, most importantly, what your experiments are trying to tell you.

Share Your Scientific Tale: The SIP Report

It’s time to tell your scientific tale. Create your SIP report – your storybook of science. Start with the introduction, add in your experiments, sprinkle with results, and wrap it up with a conclusion that leaves your readers in awe.

Share Your Discoveries with the World

If you can, share your SIP findings. Present your work to your classmates, at science fairs, or anywhere you can. Share your excitement about science with the world!

Remember, SIP isn’t just about following steps; it’s about your adventure in discovering the mysteries of the universe. So, stay curious, have fun, and let your inner scientist shine!

What are the best topics for investigatory project chemistry class 12?

Hey there, future chemists! It’s time to explore the fascinating world of Chemistry with some class 12 investigatory project ideas that will not only challenge your scientific skills but also pique your curiosity:

Water Wizardry

Dive into the world of H2O and analyze water samples from different sources – tap water, well water, and that bottled stuff. Let’s uncover the secrets of your hydration!

Biodiesel Bonanza

Ever wondered if you could turn cooking oil into fuel? Investigate the synthesis of biodiesel from everyday vegetable oils, and let’s see if we can power the future with French fries!

Vitamin C Showdown

Put on your lab coat and determine the vitamin C content in various fruit juices. Is your morning OJ really packed with vitamin C? Let’s find out!

Race Against Time – The Iodine Clock

Get ready to race time itself! Study the kinetics of the iodine clock reaction and see how factors like concentration and temperature affect this chemistry marvel.

Shampoo Chemistry

Let’s turn your shower into a science lab! Test the pH levels of different shampoos – are they gentle or are they acidic? Your hair deserves the best!

Heavy Metal Detectives

Investigate soils for heavy metals. Are there hidden dangers lurking beneath our feet? Let’s discover the truth and protect the environment.

Metal Makeover

Ever dreamed of turning ordinary objects into shimmering treasures? Electroplate items like coins or jewelry with various metals and unveil their magical transformations!

The Dye Chronicles

Explore the vibrant world of food dyes used in your favorite treats. What’s really behind those bright colors? Let’s uncover the secrets of our rainbow foods!

Solubility Sleuths

Unravel the mysteries of solubility! How does temperature impact the solubility of common salts? Let’s dissolve some science questions.

Perfume Alchemy

Dive into the world of fragrances! Analyze the chemical components in different perfumes and discover the magic behind your favorite scents.

Remember, the best project is one that not only challenges you but also stirs your scientific curiosity. Choose a topic that excites you, and let your chemistry adventure begin!

What are good science experiment ideas?

  • Light Dance with Plants: Imagine plants swaying to the rhythm of light! Explore how different types of light affect plant growth – from disco-like colorful LEDs to the soothing glow of natural sunlight.
  • Kitchen Warriors: Don your lab coat and investigate everyday kitchen items like garlic, honey, and vinegar as germ-fighting superheroes. Who knew your kitchen could be a battleground for bacteria?
  • Animal Extravaganza: Dive into the world of critters! Observe and report on the curious behaviors of your chosen animal buddies. It’s like being a wildlife detective in your own backyard.
  • Fizz, Pop, and Bang: Get ready for some explosive fun! Experiment with classic chemical reactions that sizzle and explode, like the volcanic eruption of baking soda and vinegar.
  • Titration Showdown: Become a master of precision with acid-base titration. Unlock the secrets of unknown solutions, like a chemistry detective solving mysteries.
  • Crystal Kingdom: Step into the magical world of crystals. Grow your own dazzling crystals and reveal how factors like temperature and concentration influence their growth.
  • Swingin’ Pendulums: Swing into action with pendulums! Investigate how factors like pendulum length and mass affect the way they sway. It’s like dancing with physics.
  • Machine Marvels: Enter the world of simple machines. Uncover the mechanical magic behind levers, pulleys, and inclined planes as you lift heavy objects with ease.
  • Electromagnet Madness: Get electrified! Build your own electromagnet and experiment with coils and currents to see how they shape magnetic fields.
  • Water Adventure: Dive into water quality testing. Collect samples from different sources and become a water detective, searching for clues about pollution and health.
  • Air Expedition: Take to the skies with your own air quality station. Discover what’s floating in the air around you, from tiny particles to invisible gases.
  • Climate Crusaders: Join the battle against climate change. Investigate how shifts in temperature and precipitation patterns impact your local ecosystem.

Earth Science

  • Rock Detectives: Grab your magnifying glass and investigate rocks and fossils in your area. It’s like traveling through time to uncover Earth’s ancient secrets.
  • Weather Watchers: Become a meteorologist with your own weather station. Predict the weather and marvel at how the atmosphere behaves around you.
  • Volcano Eruption Spectacle: Get ready for volcanic eruptions without the lava! Create a stunning volcano model and watch it come to life with your own eruptions.
  • Starry Nights: Explore the cosmos with a telescope and discover celestial wonders, from the rings of Saturn to the galaxies far, far away.
  • Moon Phases Odyssey: Join the lunar calendar club! Track the Moon’s different faces over weeks and become an expert on lunar phases.
  • Solar Eclipse Spectacle: Witness the sky’s ultimate blockbuster – a solar eclipse! Safely observe this cosmic dance with eclipse glasses and telescopes.

These science experiments are not just about learning; they’re about unleashing your inner scientist and having a blast along the way! So, pick your favorite, put on your lab coat, and let the science adventures begin!

In wrapping up our exploration of Science Investigatory Project (SIP) topics, it’s clear that we’ve uncovered a treasure trove of possibilities. These topics are more than just words on a page; they’re gateways to adventure, inquiry, and understanding.

We’ve ventured into diverse realms of science, from the secrets of plant life to the hidden chemistry of everyday items. We’ve danced with the laws of physics, delved into environmental enigmas, and probed the complexities of human behavior. These topics aren’t just ideas; they’re invitations to explore the wonders of our world.

So, as you consider your own SIP journey, let your curiosity be your compass. Pick a topic that truly intrigues you, one that keeps you awake at night with questions. Embrace the process – the experiments, the surprises, and the “Aha!” moments.

Remember, it’s not just about reaching a conclusion; it’s about the exhilarating path you take to get there. SIPs are your chance to be a scientist, an explorer, and a storyteller all at once. So, go ahead, choose your topic, embark on your adventure, and share your discoveries with the world. Science is waiting for your curiosity to light the way!

Frequently Asked Questions

1. how long does it typically take to complete a science investigatory project, the duration of an sip varies, but it generally spans a few months to a year, depending on the complexity of the topic and available resources., 2. can i work on an sip alone, or is it better to collaborate with classmates, you can choose to work on an sip individually or in a group. both approaches have their advantages, so it depends on your preference and the project’s requirements., 3. are there any age restrictions for participating in sips, sips are typically undertaken by students in middle school and high school, but there are no strict age restrictions. anyone with a passion for scientific inquiry can engage in an sip., 4. how can i find a mentor or advisor for my sip, you can seek guidance from science teachers, professors, or professionals in your chosen field. they can provide valuable insights and support throughout your sip journey., 5. where can i showcase my sip findings, you can present your sip findings at science fairs, school exhibitions, or even submit them to relevant scientific journals or conferences for broader recognition..

  • australia (2)
  • duolingo (13)
  • Education (275)
  • General (75)
  • How To (16)
  • IELTS (127)
  • Latest Updates (162)
  • Malta Visa (6)
  • Permanent residency (1)
  • Programming (31)
  • Scholarship (1)
  • Sponsored (4)
  • Study Abroad (187)
  • Technology (12)
  • work permit (8)

Recent Posts

Public Health Project Topics

Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

experimental research topics about science

Enago Academy's Most Popular Articles

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

ResearchSummary

  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Journals Combat Image Manipulation with AI

Science under Surveillance: Journals adopt advanced AI to uncover image manipulation

Journals are increasingly turning to cutting-edge AI tools to uncover deceitful images published in manuscripts.…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

experimental research topics about science

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

experimental research topics about science

As a researcher, what do you consider most when choosing an image manipulation detector?

23 Ideas for Science Experiments Using Plants

ThoughtCo / Hilary Allison

  • Cell Biology
  • Weather & Climate
  • B.A., Biology, Emory University
  • A.S., Nursing, Chattahoochee Technical College

Plants are tremendously crucial to life on earth. They are the foundation of food chains in almost every ecosystem. Plants also play a significant role in the environment by influencing climate and producing life-giving oxygen. Plant project studies allow us to learn about plant biology and potential usage for plants in other fields such as medicine, agriculture, and biotechnology. The following plant project ideas provide suggestions for topics that can be explored through experimentation.

Plant Project Ideas

  • Do magnetic fields affect plant growth?
  • Do different colors of light affect the direction of plant growth?
  • Do sounds (music, noise, etc.) affect plant growth?
  • Do different colors of light affect the rate of photosynthesis ?
  • What are the effects of acid rain on plant growth?
  • Do household detergents affect plant growth?
  • Can plants conduct electricity?
  • Does cigarette smoke affect plant growth?
  • Does soil temperature affect root growth?
  • Does caffeine affect plant growth?
  • Does water salinity affect plant growth?
  • Does artificial gravity affect seed germination?
  • Does freezing affect seed germination?
  • Does burned soil affect seed germination?
  • Does seed size affect plant height?
  • Does fruit size affect the number of seeds in the fruit?
  • Do vitamins or fertilizers promote plant growth?
  • Do fertilizers extend plant life during a drought?
  • Does leaf size affect plant transpiration rates?
  • Can plant spices inhibit bacterial growth ?
  • Do different types of artificial light affect plant growth?
  • Does soil pH affect plant growth?
  • Do carnivorous plants prefer certain insects?
  • 8th Grade Science Fair Project Ideas
  • Plant and Soil Chemistry Science Projects
  • High School Science Fair Projects
  • Middle School Science Fair Project Ideas
  • Animal Studies and School Project Ideas
  • Environmental Science Fair Projects
  • Elementary School Science Fair Projects
  • College Science Fair Projects
  • Chemistry Science Fair Project Ideas
  • 11th Grade Science Fair Projects
  • Magnetism Science Fair Projects
  • 9th Grade Science Fair Projects
  • Science Fair Project Ideas
  • 4th Grade Science Fair Projects
  • Caffeine Science Fair Projects
  • Science Fair Experiment Ideas: Food and Cooking Chemistry

Science Bob

  • Experiments
  • Science Fair Ideas
  • Science Q&A
  • Research Help
  • Experiment Blog

Okay, this is the hardest part of the whole project…picking your topic. But here are some ideas to get you started. Even if you don’t like any, they may inspire you to come up with one of your own. Remember, check all project ideas with your teacher and parents, and don’t do any project that would hurt or scare people or animals. Good luck!

  • Does music affect on animal behavior?
  • Does the color of food or drinks affect whether or not we like them?
  • Where are the most germs in your school? ( CLICK for more info. )
  • Does music have an affect on plant growth?
  • Which kind of food do dogs (or any animal) prefer best?
  • Which paper towel brand is the strongest?
  • What is the best way to keep an ice cube from melting?
  • What level of salt works best to hatch brine shrimp?
  • Can the food we eat affect our heart rate?
  • How effective are child-proof containers and locks.
  • Can background noise levels affect how well we concentrate?
  • Does acid rain affect the growth of aquatic plants?
  • What is the best way to keep cut flowers fresh the longest?
  • Does the color of light used on plants affect how well they grow?
  • What plant fertilizer works best?
  • Does the color of a room affect human behavior?
  • Do athletic students have better lung capacity?
  • What brand of battery lasts the longest?
  • Does the type of potting soil used in planting affect how fast the plant grows?
  • What type of food allow mold to grow the fastest?
  • Does having worms in soil help plants grow faster?
  • Can plants grow in pots if they are sideways or upside down?
  • Does the color of hair affect how much static electricity it can carry? (test with balloons)
  • How much weight can the surface tension of water hold?
  • Can some people really read someone else’s thoughts?
  • Which soda decays fallen out teeth the most?
  • What light brightness makes plants grow the best?
  • Does the color of birdseed affect how much birds will eat it?
  • Do natural or chemical fertilizers work best?
  • Can mice learn? (you can pick any animal)
  • Can people tell artificial smells from real ones?
  • What brands of bubble gum produce the biggest bubbles?
  • Does age affect human reaction times?
  • What is the effect of salt on the boiling temperature of water?
  • Does shoe design really affect an athlete’s jumping height?
  • What type of grass seed grows the fastest?
  • Can animals see in the dark better than humans?

Didn’t see one you like? Don’t worry…look over them again and see if they give you an idea for your own project that will work for you. Remember, find something that interests you, and have fun with it.

To download and print this list of ideas CLICK HERE .

experimental research topics about science

  • The scientific method
  • science fair resources
  • a little helpful advice

ADS (these ads support our free website)

Share this page.

IMAGES

  1. 🎉 Example of experimental research topics. Simple Examples of

    experimental research topics about science

  2. 23 ideas para experimentos científicos con plantas

    experimental research topics about science

  3. ️ Experimental research topics. Types of Research Studies. 2019-02-18

    experimental research topics about science

  4. Top 50 Experimental Research Topic for School & College Students

    experimental research topics about science

  5. 130 Excellent Science Research Paper Topics to Consider

    experimental research topics about science

  6. What is Experimental Research & How is it Significant for Your Business

    experimental research topics about science

VIDEO

  1. 12 science experiments

  2. 10 AMAZING Science Experiments You Can Do at Home

  3. 6 Experimental Research Topics on Environmental Science

  4. 8 Amazing Science Experiments You Can Try To Do At Home

  5. Science Investigatory Projects (Physical Science)

  6. Easy and Mind-Blowing: Try These 5 Amazing Science Experiments at Home

COMMENTS

  1. 121+ Experimental Research Topics Across Disciplines

    121+ Experimental Research Topics Across Different Disciplines. Experimental research is a cornerstone of scientific inquiry, providing a systematic approach to investigating phenomena and testing hypotheses. This method allows researchers to establish cause-and-effect relationships, contributing valuable insights to diverse fields.

  2. 100 Science Topics for Research Papers

    Science papers are interesting to write and easy to research because there are so many current and reputable journals online. Start by browsing through the STEM research topics below, which are written in the form of prompts. Then, look at some of the linked articles at the end for further ideas.

  3. 143 Experimental Research Topics & Questions Ideas

    143 Experiment Research Topics. Welcome to our collection of experimental research topics! Experiments are the cornerstone of empirical research, allowing scholars to test hypotheses and expand knowledge. With our experimental research questions ideas, you can uncover the diverse realms of empirical studies, from the natural sciences to social ...

  4. Top 100 Experimental Research Topics for School & College Students

    Conclusion: 100 Experimental Research Topics for Students. Experimental research is a pivotal component of scientific exploration. It empowers us to establish causal relationships, expand our comprehension of the world, and discover solutions to issues across diverse fields of study. Engaging in an experimental research project can be a ...

  5. 55 Brilliant Research Topics For STEM Students

    Experimental research in STEM is a scientific research methodology that uses two sets of variables. They are dependent and independent variables that are studied under experimental research. Experimental research topics in STEM look into areas of science that use data to derive results. Below are easy experimental research topics for STEM students.

  6. 151+ Experimental Research Topics For Students

    Experiments help researchers test ideas and find new facts. They are essential for learning new things in science, health, and more. In this blog, we will examine some new topics researchers explore through experiments. You'll learn about new studies in many different areas. This includes new technology, medicine, psychology, business, and ...

  7. Top 50 Experimental Research Topic for School & College Students

    Environmental Studies Research Topics for School Students: The Impact of Temperature on Composting. Effects of Water Pollution on Aquatic Life. Impact of Urbanization on Local Bird Species. The Effect of Different Soil Types on Plant Growth. Examining the Impact of Acid Rain on Plant Growth.

  8. ScienceDaily: Your source for the latest research news

    Breaking science news and articles on global warming, extrasolar planets, stem cells, bird flu, autism, nanotechnology, dinosaurs, evolution -- the latest discoveries ...

  9. Top 10 Research Topics from 2021

    Find the answers to your biggest research questions from 2021. With collective views of over 3.7 million, researchers explored topics spanning from nutritional Frontiers | Science News

  10. 260+ Experimental Research Topics for STEM Students

    Environmental Science Experimental Research Topics for STEM Students. Studying the Impact of Deforestation on Local Climate Patterns. Investigating the Role of Ocean Acidification on Coral Reefs. Analyzing the Efficiency of Different Waste Management Strategies. Exploring the Effect of Air Pollution on Human Health.

  11. 100+ Environmental Science Research Topics

    Finding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. Here, we'll explore a variety research ideas and topic thought-starters related to various environmental science disciplines, including ecology, oceanography, hydrology, geology, soil science, environmental chemistry, environmental ...

  12. Experimental Research: What it is + Types of designs

    The classic experimental design definition is: "The methods used to collect data in experimental studies.". There are three primary types of experimental design: The way you classify research subjects based on conditions or groups determines the type of research design you should use. 01. Pre-Experimental Design.

  13. experimental research designs: Topics by Science.gov

    The emergence of modern statistics in agricultural science: analysis of variance, experimental design and the reshaping of research at Rothamsted Experimental Station, 1919-1933. PubMed. Parolini, Giuditta. 2015-01-01. During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by ...

  14. Guide to Experimental Design

    Table of contents. Step 1: Define your variables. Step 2: Write your hypothesis. Step 3: Design your experimental treatments. Step 4: Assign your subjects to treatment groups. Step 5: Measure your dependent variable. Other interesting articles. Frequently asked questions about experiments.

  15. Experimental demonstration of inequivalent mutually unbiased bases for

    Research groups demonstrated for the first time that inequivalent mutually unbiased bases (MUBs) have different information extraction capabilities for quantum information processing.

  16. Experimental research

    10 Experimental research. 10. Experimental research. Experimental research—often considered to be the 'gold standard' in research designs—is one of the most rigorous of all research designs. In this design, one or more independent variables are manipulated by the researcher (as treatments), subjects are randomly assigned to different ...

  17. Five Research Topics exploring the science of mental health

    This Mental Health Awareness Week, we highlight the remarkable work of scientists driving open research that helps everyone achieve better mental health. Here are five Research Topics that study themes including how we adapt to a changing world, the impact of loneliness on our wellbeing, and the connection between our diet and mental health.

  18. 110+ Best Science Investigatory Project Topics: Dive into Science

    Whether you're mixing chemicals, observing insects, or measuring temperature, you're the scientist in charge. Step 4: Clues and Evidence. As you experiment, you collect clues in the form of data - numbers, measurements, observations. It's like gathering puzzle pieces. Step 5: The "Aha!".

  19. animal experimental research: Topics by Science.gov

    PubMed. 2012-05-29. Animal experimentation in scientific research is a good thing: important, increasing and often irreplaceable. Careful experimental design and reporting are at least as important as attention to welfare in ensuring that the knowledge we gain justifies using live animals as experimental tools.

  20. Experimental Research Designs: Types, Examples & Advantages

    There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design. 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2.

  21. 23 Ideas for Science Experiments Using Plants

    23 Ideas for Science Experiments Using Plants. Plants are tremendously crucial to life on earth. They are the foundation of food chains in almost every ecosystem. Plants also play a significant role in the environment by influencing climate and producing life-giving oxygen. Plant project studies allow us to learn about plant biology and ...

  22. Medical Laboratory Science Student Research Projects

    Graduate students in the Department of Medical Laboratory Science work with their research mentors on a wide array of topics, as highlighted below. Academic years 2019-2021; Academic year 2018-2019; Academic year 2017-2018; Academic year 2016-2017; Academic year 2015-2016; Academic year 2014-2015; Academic year 2013-2014; Academic year 2012-2013

  23. Electronics

    With the rapid development of artificial intelligence in recent years, intelligent evaluation of college students' growth by means of the monitoring data from training processes is becoming a promising technique in the field intelligent education. Current studies, however, tend to utilize course grades, which are objective, to predict students' grade-point averages (GPAs), but usually ...

  24. List of Science Fair Ideas and Experiments You Can Do

    Okay, this is the hardest part of the whole project…picking your topic. But here are some ideas to get you started. Even if you don't like any, they may inspire you to come up with one of your own. Remember, check all project ideas with your teacher and parents, and don't do any project that would hurt or scare people or animals. Good luck!

  25. Experiment with Fruits and Vegetables Science Projects

    It is because the gelatin may not solidify well if it has these fruits in it. In this science project you will determine whether certain enzymes in some fruits are preventing gelatin from solidifying, and whether there is a way to still include these fruits without ruining your gelatin dessert. It is an experiment with edible results! Read more

  26. Plant virus treatment shows promise in fighting ...

    An experimental treatment made from a plant virus is effective at protecting against a broad range of metastatic cancers in mice, shows a new study. The treatment, composed of nanoparticles ...