psychology

Operational Hypothesis

An Operational Hypothesis is a testable statement or prediction made in research that not only proposes a relationship between two or more variables but also clearly defines those variables in operational terms, meaning how they will be measured or manipulated within the study. It forms the basis of an experiment that seeks to prove or disprove the assumed relationship, thus helping to drive scientific research.

The Core Components of an Operational Hypothesis

Understanding an operational hypothesis involves identifying its key components and how they interact.

The Variables

An operational hypothesis must contain two or more variables — factors that can be manipulated, controlled, or measured in an experiment.

The Proposed Relationship

Beyond identifying the variables, an operational hypothesis specifies the type of relationship expected between them. This could be a correlation, a cause-and-effect relationship, or another type of association.

The Importance of Operationalizing Variables

Operationalizing variables — defining them in measurable terms — is a critical step in forming an operational hypothesis. This process ensures the variables are quantifiable, enhancing the reliability and validity of the research.

Constructing an Operational Hypothesis

Creating an operational hypothesis is a fundamental step in the scientific method and research process. It involves generating a precise, testable statement that predicts the outcome of a study based on the research question. An operational hypothesis must clearly identify and define the variables under study and describe the expected relationship between them. The process of creating an operational hypothesis involves several key steps:

Steps to Construct an Operational Hypothesis

  • Define the Research Question : Start by clearly identifying the research question. This question should highlight the key aspect or phenomenon that the study aims to investigate.
  • Identify the Variables : Next, identify the key variables in your study. Variables are elements that you will measure, control, or manipulate in your research. There are typically two types of variables in a hypothesis: the independent variable (the cause) and the dependent variable (the effect).
  • Operationalize the Variables : Once you’ve identified the variables, you must operationalize them. This involves defining your variables in such a way that they can be easily measured, manipulated, or controlled during the experiment.
  • Predict the Relationship : The final step involves predicting the relationship between the variables. This could be an increase, decrease, or any other type of correlation between the independent and dependent variables.

By following these steps, you will create an operational hypothesis that provides a clear direction for your research, ensuring that your study is grounded in a testable prediction.

Evaluating the Strength of an Operational Hypothesis

Not all operational hypotheses are created equal. The strength of an operational hypothesis can significantly influence the validity of a study. There are several key factors that contribute to the strength of an operational hypothesis:

  • Clarity : A strong operational hypothesis is clear and unambiguous. It precisely defines all variables and the expected relationship between them.
  • Testability : A key feature of an operational hypothesis is that it must be testable. That is, it should predict an outcome that can be observed and measured.
  • Operationalization of Variables : The operationalization of variables contributes to the strength of an operational hypothesis. When variables are clearly defined in measurable terms, it enhances the reliability of the study.
  • Alignment with Research : Finally, a strong operational hypothesis aligns closely with the research question and the overall goals of the study.

By carefully crafting and evaluating an operational hypothesis, researchers can ensure that their work provides valuable, valid, and actionable insights.

Examples of Operational Hypotheses

To illustrate the concept further, this section will provide examples of well-constructed operational hypotheses in various research fields.

The operational hypothesis is a fundamental component of scientific inquiry, guiding the research design and providing a clear framework for testing assumptions. By understanding how to construct and evaluate an operational hypothesis, we can ensure our research is both rigorous and meaningful.

Examples of Operational Hypothesis:

  • In Education : An operational hypothesis in an educational study might be: “Students who receive tutoring (Independent Variable) will show a 20% improvement in standardized test scores (Dependent Variable) compared to students who did not receive tutoring.”
  • In Psychology : In a psychological study, an operational hypothesis could be: “Individuals who meditate for 20 minutes each day (Independent Variable) will report a 15% decrease in self-reported stress levels (Dependent Variable) after eight weeks compared to those who do not meditate.”
  • In Health Science : An operational hypothesis in a health science study might be: “Participants who drink eight glasses of water daily (Independent Variable) will show a 10% decrease in reported fatigue levels (Dependent Variable) after three weeks compared to those who drink four glasses of water daily.”
  • In Environmental Science : In an environmental study, an operational hypothesis could be: “Cities that implement recycling programs (Independent Variable) will see a 25% reduction in landfill waste (Dependent Variable) after one year compared to cities without recycling programs.”
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what is a hypothesis operational

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

what is a hypothesis operational

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • Operationalisation | A Guide with Examples, Pros & Cons

Operationalisation | A Guide with Examples, Pros & Cons

Published on 6 May 2022 by Pritha Bhandari . Revised on 10 October 2022.

Operationalisation means turning abstract concepts into measurable observations. Although some concepts, like height or age, are easily measured, others, like spirituality or anxiety, are not.

Through operationalisation, you can systematically collect data on processes and phenomena that aren’t directly observable.

  • Self-rating scores on a social anxiety scale
  • Number of recent behavioural incidents of avoidance of crowded places
  • Intensity of physical anxiety symptoms in social situations

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

Why operationalisation matters, how to operationalise concepts, strengths of operationalisation, limitations of operationalisation, frequently asked questions about operationalisation.

In quantitative research , it’s important to precisely define the variables that you want to study.

Without transparent and specific operational definitions, researchers may measure irrelevant concepts or inconsistently apply methods. Operationalisation reduces subjectivity and increases the reliability  of your study.

Your choice of operational definition can sometimes affect your results. For example, an experimental intervention for social anxiety may reduce self-rating anxiety scores but not behavioural avoidance of crowded places. This means that your results are context-specific and may not generalise to different real-life settings.

Generally, abstract concepts can be operationalised in many different ways. These differences mean that you may actually measure slightly different aspects of a concept, so it’s important to be specific about what you are measuring.

If you test a hypothesis using multiple operationalisations of a concept, you can check whether your results depend on the type of measure that you use. If your results don’t vary when you use different measures, then they are said to be ‘robust’.

Prevent plagiarism, run a free check.

There are three main steps for operationalisation:

  • Identify the main concepts you are interested in studying.
  • Choose a variable to represent each of the concepts.
  • Select indicators for each of your variables.

Step 1: Identify the main concepts you are interested in studying

Based on your research interests and goals, define your topic and come up with an initial research question .

There are two main concepts in your research question:

  • Social media behaviour

Step 2: Choose a variable to represent each of the concepts

Your main concepts may each have many variables , or properties, that you can measure.

For instance, are you going to measure the  amount of sleep or the  quality of sleep? And are you going to measure  how often teenagers use social media,  which social media they use, or when they use it?

  • Alternate hypothesis: Lower quality of sleep is related to higher night-time social media use in teenagers.
  • Null hypothesis: There is no relation between quality of sleep and night-time social media use in teenagers.

Step 3: Select indicators for each of your variables

To measure your variables, decide on indicators that can represent them numerically.

Sometimes these indicators will be obvious: for example, the amount of sleep is represented by the number of hours per night. But a variable like sleep quality is harder to measure.

You can come up with practical ideas for how to measure variables based on previously published studies. These may include established scales or questionnaires that you can distribute to your participants. If none are available that are appropriate for your sample, you can develop your own scales or questionnaires.

  • To measure sleep quality, you give participants wristbands that track sleep phases.
  • To measure night-time social media use, you create a questionnaire that asks participants to track how much time they spend using social media in bed.

After operationalising your concepts, it’s important to report your study variables and indicators when writing up your methodology section. You can evaluate how your choice of operationalisation may have affected your results or interpretations in the discussion section.

Operationalisation makes it possible to consistently measure variables across different contexts.

Scientific research is based on observable and measurable findings. Operational definitions break down intangible concepts into recordable characteristics.

Objectivity

A standardised approach for collecting data leaves little room for subjective or biased personal interpretations of observations.

Reliability

A good operationalisation can be used consistently by other researchers. If other people measure the same thing using your operational definition, they should all get the same results.

Operational definitions of concepts can sometimes be problematic.

Underdetermination

Many concepts vary across different time periods and social settings.

For example, poverty is a worldwide phenomenon, but the exact income level that determines poverty can differ significantly across countries.

Reductiveness

Operational definitions can easily miss meaningful and subjective perceptions of concepts by trying to reduce complex concepts to numbers.

For example, asking consumers to rate their satisfaction with a service on a 5-point scale will tell you nothing about why they felt that way.

Lack of universality

Context-specific operationalisations help preserve real-life experiences, but make it hard to compare studies if the measures differ significantly.

For example, corruption can be operationalised in a wide range of ways (e.g., perceptions of corrupt business practices, or frequency of bribe requests from public officials), but the measures may not consistently reflect the same concept.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalisation .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). Operationalisation | A Guide with Examples, Pros & Cons. Scribbr. Retrieved 27 May 2024, from https://www.scribbr.co.uk/thesis-dissertation/operationalisation/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Logo for Mavs Open Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10.3 Operational definitions

Learning objectives.

Learners will be able to…

  • Define and give an example of indicators and attributes for a variable
  • Apply the three components of an operational definition to a variable
  • Distinguish between levels of measurement for a variable and how those differences relate to measurement
  • Describe the purpose of composite measures like scales and indices

Conceptual definitions are like dictionary definitions. They tell you what a concept means by defining it using other concepts. Operationalization occurs after conceptualization and is the process by which researchers spell out precisely how a concept will be measured in their study. It involves identifying the specific research procedures we will use to gather data about our concepts. It entails identifying indicators that can identify when your variable is present or not, the magnitude of the variable, and so forth.

what is a hypothesis operational

Operationalization works by identifying specific  indicators that will be taken to represent the ideas we are interested in studying. Let’s look at an example. Each day, Gallup researchers poll 1,000 randomly selected Americans to ask them about their well-being. To measure well-being, Gallup asks these people to respond to questions covering six broad areas: physical health, emotional health, work environment, life evaluation, healthy behaviors, and access to basic necessities. Gallup uses these six factors as indicators of the concept that they are really interested in, which is well-being .

Identifying indicators can be even simpler than this example. Political party affiliation is another relatively easy concept for which to identify indicators. If you asked a person what party they voted for in the last national election (or gained access to their voting records), you would get a good indication of their party affiliation. Of course, some voters split tickets between multiple parties when they vote and others swing from party to party each election, so our indicator is not perfect. Indeed, if our study were about political identity as a key concept, operationalizing it solely in terms of who they voted for in the previous election leaves out a lot of information about identity that is relevant to that concept. Nevertheless, it’s a pretty good indicator of political party affiliation.

Choosing indicators is not an arbitrary process. Your conceptual definitions point you in the direction of relevant indicators and then you can identify appropriate indicators in a scholarly manner using theory and empirical evidence.  Specifically, empirical work will give you some examples of how the important concepts in an area have been measured in the past and what sorts of indicators have been used. Often, it makes sense to use the same indicators as previous researchers; however, you may find that some previous measures have potential weaknesses that your own study may improve upon.

So far in this section, all of the examples of indicators deal with questions you might ask a research participant on a questionnaire for survey research. If you plan to collect data from other sources, such as through direct observation or the analysis of available records, think practically about what the design of your study might look like and how you can collect data on various indicators feasibly. If your study asks about whether participants regularly change the oil in their car, you will likely not observe them directly doing so. Instead, you would rely on a survey question that asks them the frequency with which they change their oil or ask to see their car maintenance records.

TRACK 1 (IF YOU ARE CREATING A RESEARCH PROPOSAL FOR THIS CLASS):

What indicators are commonly used to measure the variables in your research question?

  • How can you feasibly collect data on these indicators?
  • Are you planning to collect your own data using a questionnaire or interview? Or are you planning to analyze available data like client files or raw data shared from another researcher’s project?

Remember, you need raw data . Your research project cannot rely solely on the results reported by other researchers or the arguments you read in the literature. A literature review is only the first part of a research project, and your review of the literature should inform the indicators you end up choosing when you measure the variables in your research question.

TRACK 2 (IF YOU AREN’T CREATING A RESEARCH PROPOSAL FOR THIS CLASS): 

You are interested in studying older adults’ social-emotional well-being. Specifically, you would like to research the impact on levels of older adult loneliness of an intervention that pairs older adults living in assisted living communities with university student volunteers for a weekly conversation.

  • How could you feasibly collect data on these indicators?
  • Would you collect your own data using a questionnaire or interview? Or would you analyze available data like client files or raw data shared from another researcher’s project?

Steps in the Operationalization Process

Unlike conceptual definitions which contain other concepts, operational definition consists of the following components: (1) the variable being measured and its attributes, (2) the measure you will use, and (3) how you plan to interpret the data collected from that measure to draw conclusions about the variable you are measuring.

Step 1 of Operationalization: Specify variables and attributes

The first component, the variable, should be the easiest part. At this point in quantitative research, you should have a research question with identifiable variables. When social scientists measure concepts, they often use the language of variables and attributes . A variable refers to a quality or quantity that varies across people or situations.  Attributes are the characteristics that make up a variable. For example, the variable hair color could contain attributes such as blonde, brown, black, red, gray, etc.

Levels of measurement

A variable’s attributes determine its level of measurement. There are four possible levels of measurement: nominal, ordinal, interval, and ratio. The first two levels of measurement are  categorical , meaning their attributes are categories rather than numbers. The latter two levels of measurement are  continuous , meaning their attributes are numbers within a range.

Nominal level of measurement

Hair color is an example of a nominal level of measurement. At the nominal level of measurement , attributes are categorical, and those categories cannot be mathematically ranked. In all nominal levels of measurement, there is no ranking order; the attributes are simply different. Gender and race are two additional variables measured at the nominal level. A variable that has only two possible attributes is called binary or dichotomous . If you are measuring whether an individual has received a specific service, this is a dichotomous variable, as the only two options are received or not received.

What attributes are contained in the variable  hair color ?  Brown, black, blonde, and red are common colors, but if we only list these attributes, many people may not fit into those categories. This means that our attributes were not exhaustive. Exhaustiveness means that every participant can find a choice for their attribute in the response options. It is up to the researcher to include the most comprehensive attribute choices relevant to their research questions. We may have to list a lot of colors before we can meet the criteria of exhaustiveness. Clearly, there is a point at which exhaustiveness has been reasonably met. If a person insists that their hair color is light burnt sienna , it is not your responsibility to list that as an option. Rather, that person would reasonably be described as brown-haired. Perhaps listing a category for  other color  would suffice to make our list of colors exhaustive.

What about a person who has multiple hair colors at the same time, such as red and black? They would fall into multiple attributes. This violates the rule of  mutual exclusivity , in which a person cannot fall into two different attributes. Instead of listing all of the possible combinations of colors, perhaps you might include a  multi-color  attribute to describe people with more than one hair color.

what is a hypothesis operational

Making sure researchers provide mutually exclusive and exhaustive attribute options is about making sure all people are represented in the data record. For many years, the attributes for gender were only male or female. Now, our understanding of gender has evolved to encompass more attributes that better reflect the diversity in the world. Children of parents from different races were often classified as one race or another, even if they identified with both. The option for bi-racial or multi-racial on a survey not only more accurately reflects the racial diversity in the real world but also validates and acknowledges people who identify in that manner. If we did not measure race in this way, we would leave empty the data record for people who identify as biracial or multiracial, impairing our search for truth.

Ordinal level of measurement

Unlike nominal-level measures, attributes at the  ordinal level of measurement can be rank-ordered. For example, someone’s degree of satisfaction in their romantic relationship can be ordered by magnitude of satisfaction. That is, you could say you are not at all satisfied, a little satisfied, moderately satisfied, or highly satisfied. Even though these have a rank order to them (not at all satisfied is certainly worse than highly satisfied), we cannot calculate a mathematical distance between those attributes. We can simply say that one attribute of an ordinal-level variable is more or less than another attribute.  A variable that is commonly measured at the ordinal level of measurement in social work is education (e.g., less than high school education, high school education or equivalent, some college, associate’s degree, college degree, graduate  degree or higher). Just as with nominal level of measurement, ordinal-level attributes should also be exhaustive and mutually exclusive.

Rating scales for ordinal-level measurement

The fact that we cannot specify exactly how far apart the responses for different individuals in ordinal level of measurement can become clear when using rating scales . If you have ever taken a customer satisfaction survey or completed a course evaluation for school, you are familiar with rating scales such as, “On a scale of 1-5, with 1 being the lowest and 5 being the highest, how likely are you to recommend our company to other people?” Rating scales use numbers, but only as a shorthand, to indicate what attribute (highly likely, somewhat likely, etc.) the person feels describes them best. You wouldn’t say you are “2” likely to recommend the company, but you would say you are “not very likely” to recommend the company. In rating scales the difference between 2 = “ not very likely” and 3 = “ somewhat likely” is not quantifiable as a difference of 1. Likewise, we couldn’t say that it is the same as the difference between 3 = “ somewhat likely ” and 4 = “ very likely .”

Rating scales can be unipolar rating scales where only one dimension is tested, such as frequency (e.g., Never, Rarely, Sometimes, Often, Always) or strength of satisfaction (e.g., Not at all, Somewhat, Very). The attributes on a unipolar rating scale are different magnitudes of the same concept.

There are also bipolar rating scales where there is a dichotomous spectrum, such as liking or disliking (Like very much, Like somewhat, Like slightly, Neither like nor dislike, Dislike slightly, Dislike somewhat, Dislike very much). The attributes on the ends of a bipolar scale are opposites of one another. Figure 10.1 shows several examples of bipolar rating scales.

Figure showing scales (Strongly agree, agree, neither agree nor disagree, disagree, strongly disagree and an anchored scale from 1 to 7 with Extremely Unlikely and Extremely Likely at the ends

Interval level of measurement

Interval measures are continuous, meaning the meaning and interpretation of their attributes are numbers, rather than categories. Temperatures in Fahrenheit and Celsius are interval level, as are IQ scores and credit scores. Just like variables measured at the ordinal level, the attributes for variables measured at the interval level should be mutually exclusive and exhaustive, and are rank-ordered. In addition, they also have an equal distance between the attribute values.

The interval level of measurement allows us to examine “how much more” is one attribute when compared to another, which is not possible with nominal or ordinal measures. In other words, the unit of measurement allows us to compare the distance between attributes. The value of one unit of measurement (e.g., one degree Celsius, one IQ point) is always the same regardless of where in the range of values you look. The difference of 10 degrees between a temperature of 50 and 60 degrees Fahrenheit is the same as the difference between 60 and 70 degrees Fahrenheit.

We cannot, however, say with certainty what the ratio of one attribute is in comparison to another. For example, it would not make sense to say that a person with an IQ score of 140 has twice the IQ of a person with a score of 70. However, the difference between IQ scores of 80 and 100 is the same as the difference between IQ scores of 120 and 140.

You may find research in which ordinal-level variables are treated as if they are interval measures for analysis. This can be a problem because as we’ve noted, there is no way to know whether the difference between a 3 and a 4 on a rating scale is the same as the difference between a 2 and a 3. Those numbers are just placeholders for categories.

Ratio level of measurement

The final level of measurement is the ratio level of measurement .  Variables measured at the ratio level of measurement are continuous variables, just like with interval scale. They, too, have equal intervals between each point. However, the ratio level of measurement has a true zero, which means that  a value of zero on a ratio scale means that the variable you’re measuring is absent. For example, if you have no siblings, the a value of 0 indicates this (unlike a temperature of 0 which does not mean there is no temperature). What is the advantage of having a “true zero?” It allows you to calculate ratios. For example, if you have a three siblings, you can say that this is half the number of siblings as a person with six.

At the ratio level, the attribute values are mutually exclusive and exhaustive, can be rank-ordered, the distance between attributes is equal, and attributes have a true zero point. Thus, with these variables, we can  say what the ratio of one attribute is in comparison to another. Examples of ratio-level variables include age and years of education. We know that a person who is 12 years old is twice as old as someone who is 6 years old. Height measured in meters and weight measured in kilograms are good examples. So are counts of discrete objects or events such as the number of siblings one has or the number of questions a student answers correctly on an exam. Measuring interval and ratio data is relatively easy, as people either select or input a number for their answer. If you ask a person how many eggs they purchased last week, they can simply tell you they purchased `a dozen eggs at the store, two at breakfast on Wednesday, or none at all.

The differences between each level of measurement are visualized in Table 10.2.

Levels of measurement=levels of specificity

We have spent time learning how to determine a variable’s level of measurement. Now what? How could we use this information to help us as we measure concepts and develop measurement tools? First, the types of statistical tests that we are able to use depend on level of measurement. With nominal-level measurement, for example, the only available measure of central tendency is the mode. With ordinal-level measurement, the median or mode can be used. Interval- and ratio-level measurement are typically considered the most desirable because they permit any indicators of central tendency to be computed (i.e., mean, median, or mode). Also, ratio-level measurement is the only level that allows meaningful statements about ratios of scores. The higher the level of measurement, the more options we have for the statistical tests we are able to conduct. This knowledge may help us decide what kind of data we need to gather, and how.

That said, we have to balance this knowledge with the understanding that sometimes, collecting data at a higher level of measurement could negatively impact our studies. For instance, sometimes providing answers in ranges may make prospective participants feel more comfortable responding to sensitive items. Imagine that you were interested in collecting information on topics such as income, number of sexual partners, number of times someone used illicit drugs, etc. You would have to think about the sensitivity of these items and determine if it would make more sense to collect some data at a lower level of measurement (e.g., nominal: asking if they are sexually active or not) versus a higher level such as ratio (e.g., their total number of sexual partners).

Finally, sometimes when analyzing data, researchers find a need to change a variable’s level of measurement. For example, a few years ago, a student was interested in studying the association between mental health and life satisfaction. This student used a variety of measures. One item asked about the number of mental health symptoms, reported as the actual number. When analyzing data, the student examined the mental health symptom variable and noticed that she had two groups, those with none or one symptoms and those with many symptoms. Instead of using the ratio level data (actual number of mental health symptoms), she collapsed her cases into two categories, few and many. She decided to use this variable in her analyses. It is important to note that you can move a higher level of data to a lower level of data; however, you are unable to move a lower level to a higher level.

  • Check that the variables in your research question can vary…and that they are not constants or one of many potential attributes of a variable.
  • Think about the attributes your variables have. Are they categorical or continuous? What level of measurement seems most appropriate?

Step 2 of Operationalization: Specify measures for each variable

Let’s pick a social work research question and walk through the process of operationalizing variables to see how specific we need to get. Suppose we hypothesize that residents of a psychiatric unit who are more depressed are less likely to be satisfied with care. Remember, this would be an inverse relationship—as levels of depression increase, satisfaction decreases. In this hypothesis, level of depression is the independent (or predictor) variable and satisfaction with care is the dependent (or outcome) variable.

How would you measure these key variables? What indicators would you look for? Some might say that levels of depression could be measured by observing a participant’s body language. They may also say that a depressed person will often express feelings of sadness or hopelessness. In addition, a satisfied person might be happy around service providers and often express gratitude. While these factors may indicate that the variables are present, they lack coherence. Unfortunately, what this “measure” is actually saying is that “I know depression and satisfaction when I see them.” In a research study, you need more precision for how you plan to measure your variables. Individual judgments are subjective, based on idiosyncratic experiences with depression and satisfaction. They couldn’t be replicated by another researcher. They also can’t be done consistently for a large group of people. Operationalization requires that you come up with a specific and rigorous measure for seeing who is depressed or satisfied.

Finding a good measure for your variable depends on the kind of variable it is. Variables that are directly observable might include things like taking someone’s blood pressure, marking attendance or participation in a group, and so forth. To measure an indirectly observable variable like age, you would probably put a question on a survey that asked, “How old are you?” Measuring a variable like income might first require some more conceptualization, though. Are you interested in this person’s individual income or the income of their family unit? This might matter if your participant does not work or is dependent on other family members for income. Do you count income from social welfare programs? Are you interested in their income per month or per year? Even though indirect observables are relatively easy to measure, the measures you use must be clear in what they are asking, and operationalization is all about figuring out the specifics about how to measure what you want to know. For more complicated variables such as constructs, you will need compound measures that use multiple indicators to measure a single variable.

How you plan to collect your data also influences how you will measure your variables. For social work researchers using secondary data like client records as a data source, you are limited by what information is in the data sources you can access. If a partnering organization uses a given measurement for a mental health outcome, that is the one you will use in your study. Similarly, if you plan to study how long a client was housed after an intervention using client visit records, you are limited by how their caseworker recorded their housing status in the chart. One of the benefits of collecting your own data is being able to select the measures you feel best exemplify your understanding of the topic.

Composite measures

Depending on your research design, your measure may be something you put on a survey or pre/post-test that you give to your participants. For a variable like age or income, one well-worded item may suffice. Unfortunately, most variables in the social world are not so simple. Depression and satisfaction are multidimensional concepts. Relying on a indicator that is a single item on a questionnaire like a question that asks “Yes or no, are you depressed?” does not encompass the complexity of constructs.

For more complex variables, researchers use scales and indices (sometimes called indexes) because they use multiple items to develop a composite (or total) score as a measure for a variable. As such, they are called composite measures . Composite measures provide a much greater understanding of concepts than a single item could.

It can be complex to delineate between multidimensional and unidimensional concepts. If satisfaction were a key variable in our study, we would need a theoretical framework and conceptual definition for it. Perhaps we come to view satisfaction has having two dimensions: a mental one and an emotional one. That means we would need to include indicators that measured both mental and emotional satisfaction as separate dimensions of satisfaction. However, if satisfaction is not a key variable in your theoretical framework, it may make sense to operationalize it as a unidimensional concept.

Although we won’t delve too deeply into the process of scale development, we will cover some important topics for you to understand how scales and indices developed by other researchers can be used in your project.

Need to make better sense of the following content:

Measuring abstract concepts in concrete terms remains one of the most difficult tasks in empirical social science research.

A scale , XXXXXXXXXXXX .

The scales we discuss in this section are a  different from “rating scales” discussed in the previous section. A rating scale is used to capture the respondents’ reactions to a given item on a questionnaire. For example, an ordinally scaled item captures a value between “strongly disagree” to “strongly agree.” Attaching a rating scale to a statement or instrument is not scaling. Rather, scaling is the formal process of developing scale items, before rating scales can be attached to those items.

If creating your own scale sounds painful, don’t worry! For most constructs, you would likely be duplicating work that has already been done by other researchers. Specifically, this is a branch of science called psychometrics. You do not need to create a scale for depression because scales such as the Patient Health Questionnaire (PHQ-9) [1] , the Center for Epidemiologic Studies Depression Scale (CES-D) [2] , and Beck’s Depression Inventory [3] (BDI) have been developed and refined over dozens of years to measure variables like depression. Similarly, scales such as the Patient Satisfaction Questionnaire (PSQ-18) have been developed to measure satisfaction with medical care. As we will discuss in the next section, these scales have been shown to be reliable and valid. While you could create a new scale to measure depression or satisfaction, a study with rigor would pilot test and refine that new scale over time to make sure it measures the concept accurately and consistently before using it in other research. This high level of rigor is often unachievable in smaller research projects because of the cost and time involved in pilot testing and validating, so using existing scales is recommended.

Unfortunately, there is no good one-stop-shop for psychometric scales. The Mental Measurements Yearbook provides a list of measures for social science variables, though it is incomplete and may not contain the full documentation for instruments in its database. It is available as a searchable database by many university libraries.

Perhaps an even better option could be looking at the methods section of the articles in your literature review. The methods section of each article will detail how the researchers measured their variables, and often the results section is instructive for understanding more about measures. In a quantitative study, researchers may have used a scale to measure key variables and will provide a brief description of that scale, its names, and maybe a few example questions. If you need more information, look at the results section and tables discussing the scale to get a better idea of how the measure works.

Looking beyond the articles in your literature review, searching Google Scholar or other databases using queries like “depression scale” or “satisfaction scale” should also provide some relevant results. For example, searching for documentation for the Rosenberg Self-Esteem Scale, I found this report about useful measures for acceptance and commitment therapy which details measurements for mental health outcomes. If you find the name of the scale somewhere but cannot find the documentation (i.e., all items, response choices, and how to interpret the scale), a general web search with the name of the scale and “.pdf” may bring you to what you need. Or, to get professional help with finding information, ask a librarian!

Unfortunately, these approaches do not guarantee that you will be able to view the scale itself or get information on how it is interpreted. Many scales cost money to use and may require training to properly administer. You may also find scales that are related to your variable but would need to be slightly modified to match your study’s needs. You could adapt a scale to fit your study, however changing even small parts of a scale can influence its accuracy and consistency. Pilot testing is always recommended for adapted scales, and researchers seeking to draw valid conclusions and publish their results should take this additional step.

Types of scales

Likert scales.

Although Likert scale is a term colloquially used to refer to almost any rating scale (e.g., a 0-to-10 life satisfaction scale), it has a much more precise meaning. In the 1930s, researcher Rensis Likert (pronounced LICK-ert) created a new approach for measuring people’s attitudes (Likert, 1932) . [4] It involves presenting people with several statements—including both favorable and unfavorable statements—about some person, group, or idea. Respondents then express their approval or disapproval with each statement on a 5-point rating scale: Strongly Approve ,  Approve , Undecided ,  Disapprove,  Strongly Disapprove . Numbers are assigned to each response a nd then summed across all items to produce a score representing the attitude toward the person, group, or idea. For items that are phrased in an opposite direction (e.g., negatively worded statements instead of positively worded statements), reverse coding is used so that the numerical scoring of statements also runs in the opposite direction.  The scores for the entire set of items are totaled for a score for the attitude of interest. This type of scale came to be called a Likert scale, as indicated in Table 10.3 below. Scales that use similar logic but do not have these exact characteristics are referred to as “Likert-type scales.” 

Semantic Differential Scales

Semantic differential scales are composite scales in which respondents are asked to indicate their opinions or feelings toward a single statement using different pairs of adjectives framed as polar opposites. Whereas in a Likert scale, a participant is asked how much they approve or disapprove of a statement, in a semantic differential scale the participant is asked to indicate how they about a specific item using several pairs of opposites. This makes the semantic differential scale an excellent technique for measuring people’s feelings toward objects, events, or behaviors. Table 10.4 provides an example of a semantic differential scale that was created to assess participants’ feelings about this textbook.

Guttman Scales

A specialized scale for measuring unidimensional concepts was designed by Louis Guttman. A Guttman scale (also called cumulative scale ) uses a series of items arranged in increasing order of intensity (least intense to most intense) of the concept. This type of scale allows us to understand the intensity of beliefs or feelings. Each item in the Guttman scale below has a weight (this is not indicated on the tool) which varies with the intensity of that item, and the weighted combination of each response is used as an aggregate measure of an observation.

Table XX presents an example of a Guttman Scale. Notice how the items move from lower intensity to higher intensity. A researcher reviews the yes answers and creates a score for each participant.

Example Guttman Scale Items

  • I often felt the material was not engaging                               Yes/No
  • I was often thinking about other things in class                     Yes/No
  • I was often working on other tasks during class                     Yes/No
  • I will work to abolish research from the curriculum              Yes/No

An index is a composite score derived from aggregating measures of multiple indicators. At its most basic, an index sums up indicators. A well-known example of an index is the consumer price index (CPI), which is computed every month by the Bureau of Labor Statistics of the U.S. Department of Labor. The CPI is a measure of how much consumers have to pay for goods and services (in general) and is divided into eight major categories (food and beverages, housing, apparel, transportation, healthcare, recreation, education and communication, and “other goods and services”), which are further subdivided into more than 200 smaller items. Each month, government employees call all over the country to get the current prices of more than 80,000 items. Using a complicated weighting scheme that takes into account the location and probability of purchase for each item, analysts then combine these prices into an overall index score using a series of formulas and rules.

Another example of an index is the Duncan Socioeconomic Index (SEI). This index is used to quantify a person’s socioeconomic status (SES) and is a combination of three concepts: income, education, and occupation. Income is measured in dollars, education in years or degrees achieved, and occupation is classified into categories or levels by status. These very different measures are combined to create an overall SES index score. However, SES index measurement has generated a lot of controversy and disagreement among researchers.

The process of creating an index is similar to that of a scale. First, conceptualize the index and its constituent components. Though this appears simple, there may be a lot of disagreement on what components (concepts/constructs) should be included or excluded from an index. For instance, in the SES index, isn’t income correlated with education and occupation? And if so, should we include one component only or all three components? Reviewing the literature, using theories, and/or interviewing experts or key stakeholders may help resolve this issue. Second, operationalize and measure each component. For instance, how will you categorize occupations, particularly since some occupations may have changed with time (e.g., there were no Web developers before the Internet)? As we will see in step three below, researchers must create a rule or formula for calculating the index score. Again, this process may involve a lot of subjectivity, so validating the index score using existing or new data is important.

Differences between scales and indices

Though indices and scales yield a single numerical score or value representing a concept of interest, they are different in many ways. First, indices often comprise components that are very different from each other (e.g., income, education, and occupation in the SES index) and are measured in different ways. Conversely, scales typically involve a set of similar items that use the same rating scale (such as a five-point Likert scale about customer satisfaction).

Second, indices often combine objectively measurable values such as prices or income, while scales are designed to assess subjective or judgmental constructs such as attitude, prejudice, or self-esteem. Some argue that the sophistication of the scaling methodology makes scales different from indexes, while others suggest that indexing methodology can be equally sophisticated. Nevertheless, indexes and scales are both essential tools in social science research.

Scales and indices seem like clean, convenient ways to measure different phenomena in social science, but just like with a lot of research, we have to be mindful of the assumptions and biases underneath. What if the developers of scale or an index were influenced by unconscious biases? Or what if it was validated using only White women as research participants? Is it going to be useful for other groups? It very well might be, but when using a scale or index on a group for whom it hasn’t been tested, it will be very important to evaluate the validity and reliability of the instrument, which we address in the rest of the chapter.

Finally, it’s important to note that while scales and indices are often made up of items measured at the nominal or ordinal level, the scores on the composite measurement are continuous variables.

Looking back to your work from the previous section, are your variables unidimensional or multidimensional?

  • Describe the specific measures you will use (actual questions and response options you will use with participants) for each variable in your research question.
  • If you are using a measure developed by another researcher but do not have all of the questions, response options, and instructions needed to implement it, put it on your to-do list to get them.
  • Describe at least one specific measure you would use (actual questions and response options you would use with participants) for the dependent variable in your research question.

what is a hypothesis operational

Step 3 in Operationalization: Determine how to interpret measures

The final stage of operationalization involves setting the rules for how the measure works and how the researcher should interpret the results. Sometimes, interpreting a measure can be incredibly easy. If you ask someone their age, you’ll probably interpret the results by noting the raw number (e.g., 22) someone provides and that it is lower or higher than other people’s ages. However, you could also recode that person into age categories (e.g., under 25, 20-29-years-old, generation Z, etc.). Even scales or indices may be simple to interpret. If there is an index of problem behaviors, one might simply add up the number of behaviors checked off–with a range from 1-5 indicating low risk of delinquent behavior, 6-10 indicating the student is moderate risk, etc. How you choose to interpret your measures should be guided by how they were designed, how you conceptualize your variables, the data sources you used, and your plan for analyzing your data statistically. Whatever measure you use, you need a set of rules for how to take any valid answer a respondent provides to your measure and interpret it in terms of the variable being measured.

For more complicated measures like scales, refer to the information provided by the author for how to interpret the scale. If you can’t find enough information from the scale’s creator, look at how the results of that scale are reported in the results section of research articles. For example, Beck’s Depression Inventory (BDI-II) uses 21 statements to measure depression and respondents rate their level of agreement on a scale of 0-3. The results for each question are added up, and the respondent is put into one of three categories: low levels of depression (1-16), moderate levels of depression (17-30), or severe levels of depression (31 and over) ( NEEDS CITATION) .

Operationalization is a tricky component of basic research methods, so don’t get frustrated if it takes a few drafts and a lot of feedback to get to a workable operational definition.

Key Takeaways

  • Operationalization involves spelling out precisely how a concept will be measured.
  • Operational definitions must include the variable, the measure, and how you plan to interpret the measure.
  • There are four different levels of measurement: nominal, ordinal, interval, and ratio (in increasing order of specificity).
  • Scales and indices are common ways to collect information and involve using multiple indicators in measurement.
  • A key difference between a scale and an index is that a scale contains multiple indicators for one concept, whereas an indicator examines multiple concepts (components).
  • Using scales developed and refined by other researchers can improve the rigor of a quantitative study.

Use the research question that you developed in the previous chapters and find a related scale or index that researchers have used. If you have trouble finding the exact phenomenon you want to study, get as close as you can.

  • What is the level of measurement for each item on each tool? Take a second and think about why the tool’s creator decided to include these levels of measurement. Identify any levels of measurement you would change and why.
  • If these tools don’t exist for what you are interested in studying, why do you think that is?

Using your working research question, find a related scale or index that researchers have used to measure the dependent variable. If you have trouble finding the exact phenomenon you want to study, get as close as you can.

  • What is the level of measurement for each item on the tool? Take a second and think about why the tool’s creator decided to include these levels of measurement. Identify any levels of measurement you would change and why.
  • Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of general internal medicine, 16(9), 606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x ↵
  • Radloff, L. S. (1977). The CES-D scale: A self report depression scale for research in the general population. Applied Psychological Measurements, 1, 385-401. ↵
  • Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of general psychiatry, 4, 561–571. https://doi.org/10.1001/archpsyc.1961.01710120031004 ↵
  • Likert, R. (1932). A technique for the measurement of attitudes.  Archives of Psychology, 140 , 1–55. ↵

process by which researchers spell out precisely how a concept will be measured in their study

Clues that demonstrate the presence, intensity, or other aspects of a concept in the real world

unprocessed data that researchers can analyze using quantitative and qualitative methods (e.g., responses to a survey or interview transcripts)

“a logical grouping of attributes that can be observed and measured and is expected to vary from person to person in a population” (Gillespie & Wagner, 2018, p. 9)

The characteristics that make up a variable

variables whose values are organized into mutually exclusive groups but whose numerical values cannot be used in mathematical operations.

variables whose values are mutually exclusive and can be used in mathematical operations

The lowest level of measurement; categories cannot be mathematically ranked, though they are exhaustive and mutually exclusive

Exhaustive categories are options for closed ended questions that allow for every possible response (no one should feel like they can't find the answer for them).

Mutually exclusive categories are options for closed ended questions that do not overlap, so people only fit into one category or another, not both.

Level of measurement that follows nominal level. Has mutually exclusive categories and a hierarchy (rank order), but we cannot calculate a mathematical distance between attributes.

An ordered set of responses that participants must choose from.

A rating scale where the magnitude of a single trait is being tested

A rating scale in which a respondent selects their alignment of choices between two opposite poles such as disagreement and agreement (e.g., strongly disagree, disagree, agree, strongly agree).

A level of measurement that is continuous, can be rank ordered, is exhaustive and mutually exclusive, and for which the distance between attributes is known to be equal. But for which there is no zero point.

The highest level of measurement. Denoted by mutually exclusive categories, a hierarchy (order), values can be added, subtracted, multiplied, and divided, and the presence of an absolute zero.

measurements of variables based on more than one one indicator

An empirical structure for measuring items or indicators of the multiple dimensions of a concept.

measuring people’s attitude toward something by assessing their level of agreement with several statements about it

Composite (multi-item) scales in which respondents are asked to indicate their opinions or feelings toward a single statement using different pairs of adjectives framed as polar opposites.

A composite scale using a series of items arranged in increasing order of intensity of the construct of interest, from least intense to most intense.

a composite score derived from aggregating measures of multiple concepts (called components) using a set of rules and formulas

Doctoral Research Methods in Social Work Copyright © by Mavs Open Press. All Rights Reserved.

Share This Book

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

10.4: Piaget formal operational stage

  • Last updated
  • Save as PDF
  • Page ID 180268

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

During the formal operational stage, adolescents are able to understand abstract principles . They are no longer limited by what can be directly seen or heard, and are able to contemplate such constructs as beauty, love, freedom, and morality. Additionally, while younger children solve problems through trial and error, adolescents demonstrate hypothetical-deductive reasoning , which is developing hypotheses based on what might logically occur. They are able to think about all the possibilities in a situation beforehand, and then test them systematically, (Crain, 2005) because they are able to engage in true scientific thinking.

Two girls wearing latex gloves and protective goggles perform a science experiment

Does everyone reach formal operations?

According to Piaget, most people attain some degree of formal operational thinking, but use formal operations primarily in the areas of their strongest interest (Crain, 2005). In fact, most adults do not regularly demonstrate formal operational thought. A possible explanation is that an individual’s thinking has not been sufficiently challenged to demonstrate formal operational thought in all areas.

Adolescent Egocentrism

Once adolescents can understand abstract thoughts, they enter a world of hypothetical possibilities and demonstrate egocentrism, a heightened self-focus. The egocentricity comes from attributing unlimited power to their own thoughts (Crain, 2005). Piaget believed it was not until adolescents took on adult roles that they would be able to learn the limits to their own thoughts.

David Elkind: On Piaget’s Theory

David Elkind (1967) expanded on the concept of Piaget’s adolescent egocentricity. Elkind theorized that the physiological changes that occur during adolescence result in adolescents being primarily concerned with themselves. Additionally, since adolescents fail to differentiate between what others are thinking and their own thoughts, they believe that others are just as fascinated with their behavior and appearance. This belief results in the adolescent anticipating the reactions of others, and consequently constructing an imaginary audience. The imaginary audience is the adolescent’s belief that those around them are as concerned and focused on their appearance as they themselves are (Schwartz, Maynard, & Uzelac, 2008, p. 441). Elkind thought that the imaginary audience contributed to the self-consciousness that occurs during early adolescence. The desire for privacy and the reluctance to share personal information may be a further reaction to feeling under constant observation by others.

Teen in foreground looking sad while three others in the background are whispering to each other

Another important consequence of adolescent egocentrism is the personal fable or belief that one is unique, special, and invulnerable to harm. Elkind (1967) explains that because adolescents feel so important to others (imaginary audience) they regard themselves and their feelings as being special and unique. Adolescents believe that only they have experienced strong and diverse emotions, and therefore others could never understand how they feel. This uniqueness in one’s emotional experiences reinforces the adolescent’s belief of invulnerability, especially to death. Adolescents will engage in risky behaviors, such as drinking and driving or unprotected sex, and feel they will not suffer any negative consequences. Elkind believed that adolescent egocentricity emerged in early adolescence and declined in middle adolescence, however, recent research has also identified egocentricity in late adolescence (Schwartz, et al., 2008).

Consequences of Formal Operational Thought

As adolescents are now able to think abstractly and hypothetically, they exhibit many new ways of reflecting on information (Dolgin, 2011). For example, they demonstrate greater introspection or thinking about one’s thoughts and feelings. They begin to imagine how the world could be, which leads them to become idealistic or insisting upon high standards of behavior. Because of their idealism, they may become critical of others, especially adults in their life. Additionally, adolescents can demonstrate hypocrisy , or pretend to be what they are not. Since they are able to recognize what others expect of them, they will conform to those expectations for their emotions and behavior seemingly hypocritical to themselves. Lastly, adolescents can exhibit pseudostupidity, which is when they approach problems at a level that is too complex and they fail because the tasks are too simple. Their new ability to consider alternatives is not completely under control and they appear “stupid” when they are in fact bright, just inexperienced. [4]

Attributions:

Child Growth and Development by Jennifer Paris, Antoinette Ricardo, and Dawn Rymond, 2019, is licensed under CC BY 4.0

[1] Image by the U.S. Army CCDC is licensed under CC BY 2.0

[2] Image by Ian Joslin is licensed under CC BY 4.0 .

[3] Image by Twentyfour Students is licensed under CC BY-SA 2.0

[4] Lifespan Development: A Psychological Perspective by Martha Lally and Suzanne Valentine-French is licensed under CC BY-NC-SA 3.0

The Research Hypothesis: Role and Construction

  • First Online: 01 January 2012

Cite this chapter

what is a hypothesis operational

  • Phyllis G. Supino EdD 3  

6023 Accesses

A hypothesis is a logical construct, interposed between a problem and its solution, which represents a proposed answer to a research question. It gives direction to the investigator’s thinking about the problem and, therefore, facilitates a solution. There are three primary modes of inference by which hypotheses are developed: deduction (reasoning from a general propositions to specific instances), induction (reasoning from specific instances to a general proposition), and abduction (formulation/acceptance on probation of a hypothesis to explain a surprising observation).

A research hypothesis should reflect an inference about variables; be stated as a grammatically complete, declarative sentence; be expressed simply and unambiguously; provide an adequate answer to the research problem; and be testable. Hypotheses can be classified as conceptual versus operational, single versus bi- or multivariable, causal or not causal, mechanistic versus nonmechanistic, and null or alternative. Hypotheses most commonly entail statements about “variables” which, in turn, can be classified according to their level of measurement (scaling characteristics) or according to their role in the hypothesis (independent, dependent, moderator, control, or intervening).

A hypothesis is rendered operational when its broadly (conceptually) stated variables are replaced by operational definitions of those variables. Hypotheses stated in this manner are called operational hypotheses, specific hypotheses, or predictions and facilitate testing.

Wrong hypotheses, rightly worked from, have produced more results than unguided observation

—Augustus De Morgan, 1872[ 1 ]—

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

De Morgan A, De Morgan S. A budget of paradoxes. London: Longmans Green; 1872.

Google Scholar  

Leedy Paul D. Practical research. Planning and design. 2nd ed. New York: Macmillan; 1960.

Bernard C. Introduction to the study of experimental medicine. New York: Dover; 1957.

Erren TC. The quest for questions—on the logical force of science. Med Hypotheses. 2004;62:635–40.

Article   PubMed   Google Scholar  

Peirce CS. Collected papers of Charles Sanders Peirce, vol. 7. In: Hartshorne C, Weiss P, editors. Boston: The Belknap Press of Harvard University Press; 1966.

Aristotle. The complete works of Aristotle: the revised Oxford Translation. In: Barnes J, editor. vol. 2. Princeton/New Jersey: Princeton University Press; 1984.

Polit D, Beck CT. Conceptualizing a study to generate evidence for nursing. In: Polit D, Beck CT, editors. Nursing research: generating and assessing evidence for nursing practice. 8th ed. Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins; 2008. Chapter 4.

Jenicek M, Hitchcock DL. Evidence-based practice. Logic and critical thinking in medicine. Chicago: AMA Press; 2005.

Bacon F. The novum organon or a true guide to the interpretation of nature. A new translation by the Rev G.W. Kitchin. Oxford: The University Press; 1855.

Popper KR. Objective knowledge: an evolutionary approach (revised edition). New York: Oxford University Press; 1979.

Morgan AJ, Parker S. Translational mini-review series on vaccines: the Edward Jenner Museum and the history of vaccination. Clin Exp Immunol. 2007;147:389–94.

Article   PubMed   CAS   Google Scholar  

Pead PJ. Benjamin Jesty: new light in the dawn of vaccination. Lancet. 2003;362:2104–9.

Lee JA. The scientific endeavor: a primer on scientific principles and practice. San Francisco: Addison-Wesley Longman; 2000.

Allchin D. Lawson’s shoehorn, or should the philosophy of science be rated, ‘X’? Science and Education. 2003;12:315–29.

Article   Google Scholar  

Lawson AE. What is the role of induction and deduction in reasoning and scientific inquiry? J Res Sci Teach. 2005;42:716–40.

Peirce CS. Collected papers of Charles Sanders Peirce, vol. 2. In: Hartshorne C, Weiss P, editors. Boston: The Belknap Press of Harvard University Press; 1965.

Bonfantini MA, Proni G. To guess or not to guess? In: Eco U, Sebeok T, editors. The sign of three: Dupin, Holmes, Peirce. Bloomington: Indiana University Press; 1983. Chapter 5.

Peirce CS. Collected papers of Charles Sanders Peirce, vol. 5. In: Hartshorne C, Weiss P, editors. Boston: The Belknap Press of Harvard University Press; 1965.

Flach PA, Kakas AC. Abductive and inductive reasoning: background issues. In: Flach PA, Kakas AC, ­editors. Abduction and induction. Essays on their relation and integration. The Netherlands: Klewer; 2000. Chapter 1.

Murray JF. Voltaire, Walpole and Pasteur: variations on the theme of discovery. Am J Respir Crit Care Med. 2005;172:423–6.

Danemark B, Ekstrom M, Jakobsen L, Karlsson JC. Methodological implications, generalization, scientific inference, models (Part II) In: explaining society. Critical realism in the social sciences. New York: Routledge; 2002.

Pasteur L. Inaugural lecture as professor and dean of the faculty of sciences. In: Peterson H, editor. A treasury of the world’s greatest speeches. Douai, France: University of Lille 7 Dec 1954.

Swineburne R. Simplicity as evidence for truth. Milwaukee: Marquette University Press; 1997.

Sakar S, editor. Logical empiricism at its peak: Schlick, Carnap and Neurath. New York: Garland; 1996.

Popper K. The logic of scientific discovery. New York: Basic Books; 1959. 1934, trans. 1959.

Caws P. The philosophy of science. Princeton: D. Van Nostrand Company; 1965.

Popper K. Conjectures and refutations. The growth of scientific knowledge. 4th ed. London: Routledge and Keegan Paul; 1972.

Feyerabend PK. Against method, outline of an anarchistic theory of knowledge. London, UK: Verso; 1978.

Smith PG. Popper: conjectures and refutations (Chapter IV). In: Theory and reality: an introduction to the philosophy of science. Chicago: University of Chicago Press; 2003.

Blystone RV, Blodgett K. WWW: the scientific method. CBE Life Sci Educ. 2006;5:7–11.

Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiological research. Principles and quantitative methods. New York: Van Nostrand Reinhold; 1982.

Fortune AE, Reid WJ. Research in social work. 3rd ed. New York: Columbia University Press; 1999.

Kerlinger FN. Foundations of behavioral research. 1st ed. New York: Hold, Reinhart and Winston; 1970.

Hoskins CN, Mariano C. Research in nursing and health. Understanding and using quantitative and qualitative methods. New York: Springer; 2004.

Tuckman BW. Conducting educational research. New York: Harcourt, Brace, Jovanovich; 1972.

Wang C, Chiari PC, Weihrauch D, Krolikowski JG, Warltier DC, Kersten JR, Pratt Jr PF, Pagel PS. Gender-specificity of delayed preconditioning by isoflurane in rabbits: potential role of endothelial nitric oxide synthase. Anesth Analg. 2006;103:274–80.

Beyer ME, Slesak G, Nerz S, Kazmaier S, Hoffmeister HM. Effects of endothelin-1 and IRL 1620 on myocardial contractility and myocardial energy metabolism. J Cardiovasc Pharmacol. 1995;26(Suppl 3):S150–2.

PubMed   CAS   Google Scholar  

Stone J, Sharpe M. Amnesia for childhood in patients with unexplained neurological symptoms. J Neurol Neurosurg Psychiatry. 2002;72:416–7.

Naughton BJ, Moran M, Ghaly Y, Michalakes C. Computer tomography scanning and delirium in elder patients. Acad Emerg Med. 1997;4:1107–10.

Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research. Lancet. 1991;337:867–72.

Stern JM, Simes RJ. Publication bias: evidence of delayed publication in a cohort study of clinical research projects. BMJ. 1997;315:640–5.

Stevens SS. On the theory of scales and measurement. Science. 1946;103:677–80.

Knapp TR. Treating ordinal scales as interval scales: an attempt to resolve the controversy. Nurs Res. 1990;39:121–3.

The Cochrane Collaboration. Open Learning Material. www.cochrane-net.org/openlearning/html/mod14-3.htm . Accessed 12 Oct 2009.

MacCorquodale K, Meehl PE. On a distinction between hypothetical constructs and intervening ­variables. Psychol Rev. 1948;55:95–107.

Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: ­conceptual, strategic and statistical considerations. J Pers Soc Psychol. 1986;51:1173–82.

Williamson GM, Schultz R. Activity restriction mediates the association between pain and depressed affect: a study of younger and older adult cancer patients. Psychol Aging. 1995;10:369–78.

Song M, Lee EO. Development of a functional capacity model for the elderly. Res Nurs Health. 1998;21:189–98.

MacKinnon DP. Introduction to statistical mediation analysis. New York: Routledge; 2008.

Download references

Author information

Authors and affiliations.

Department of Medicine, College of Medicine, SUNY Downstate Medical Center, 450 Clarkson Avenue, 1199, Brooklyn, NY, 11203, USA

Phyllis G. Supino EdD

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Phyllis G. Supino EdD .

Editor information

Editors and affiliations.

, Cardiovascular Medicine, SUNY Downstate Medical Center, Clarkson Avenue, box 1199 450, Brooklyn, 11203, USA

Phyllis G. Supino

, Cardiovascualr Medicine, SUNY Downstate Medical Center, Clarkson Avenue 450, Brooklyn, 11203, USA

Jeffrey S. Borer

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Supino, P.G. (2012). The Research Hypothesis: Role and Construction. In: Supino, P., Borer, J. (eds) Principles of Research Methodology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3360-6_3

Download citation

DOI : https://doi.org/10.1007/978-1-4614-3360-6_3

Published : 18 April 2012

Publisher Name : Springer, New York, NY

Print ISBN : 978-1-4614-3359-0

Online ISBN : 978-1-4614-3360-6

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • cognitive sophistication
  • tolerance of diversity
  • exposure to higher levels of math or science
  • age (which is currently related to educational level in many countries)
  • social class and other variables.
  • For example, suppose you designed a treatment to help people stop smoking. Because you are really dedicated, you assigned the same individuals simultaneously to (1) a "stop smoking" nicotine patch; (2) a "quit buddy"; and (3) a discussion support group. Compared with a group in which no intervention at all occurred, your experimental group now smokes 10 fewer cigarettes per day.
  • There is no relationship among two or more variables (EXAMPLE: the correlation between educational level and income is zero)
  • Or that two or more populations or subpopulations are essentially the same (EXAMPLE: women and men have the same average science knowledge scores.)
  • the difference between two and three children = one child.
  • the difference between eight and nine children also = one child.
  • the difference between completing ninth grade and tenth grade is  one year of school
  • the difference between completing junior and senior year of college is one year of school
  • In addition to all the properties of nominal, ordinal, and interval variables, ratio variables also have a fixed/non-arbitrary zero point. Non arbitrary means that it is impossible to go below a score of zero for that variable. For example, any bottom score on IQ or aptitude tests is created by human beings and not nature. On the other hand, scientists believe they have isolated an "absolute zero." You can't get colder than that.

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

One Mind Therapy

Operational Definition Psychology – Definition, Examples, and How to Write One

Elizabeth Research

Every good psychology study contains an operational definition for the variables in the research. An operational definition allows the researchers to describe in a specific way what they mean when they use a certain term. Generally, operational definitions are concrete and measurable. Defining variables in this way allows other people to see if the research has validity . Validity here refers to if the researchers are actually measuring what they intended to measure.

Definition: An operational definition is the statement of procedures the researcher is going to use in order to measure a specific variable.

We need operational definitions in psychology so that we know exactly what researchers are talking about when they refer to something. There might be different definitions of words depending on the context in which the word is used. Think about how words mean something different to people from different cultures. To avoid any confusion about definitions, in research we explain clearly what we mean when we use a certain term.

Operational Definition of Variables

Operational Definition Examples

Example one:.

A researcher wants to measure if age is related to addiction. Perhaps their hypothesis is: the incidence of addiction will increase with age. Here we have two variables, age and addiction. In order to make the research as clear as possible, the researcher must define how they will measure these variables. Essentially, how do we measure someone’s age and how to we measure addiction?

Variable One: Age might seem straightforward. You might be wondering why we need to define age if we all know what age is. However, one researcher might decide to measure age in months in order to get someone’s precise age, while another researcher might just choose to measure age in years. In order to understand the results of the study, we will need to know how this researcher operationalized age. For the sake of this example lets say that age is defined as how old someone is in years.

Variable Two: The variable of addiction is slightly more complicated than age. In order to operationalize it the researcher has to decide exactly how they want to measure addiction. They might narrow down their definition and say that addiction is defined as going through withdrawal when the person stops using a substance. Or the researchers might decide that the definition of addiction is: if someone currently meets the DSM-5 diagnostic criteria for any substance use disorder. For the sake of this example, let’s say that the researcher chose the latter.

Final Definition: In this research study age is defined as participant’s age measured in years and the incidence of addiction is defined as whether or not the participant currently meets the DSM-5 diagnostic criteria for any substance use disorder.

Example Two

A researcher wants to measure if there is a correlation between hot weather and violent crime. Perhaps their guiding hypothesis is: as temperature increases so will violent crime. Here we have two variables, weather and violent crime. In order to make this research precise the researcher will have to operationalize the variables.

Variable One: The first variable is weather. The researcher needs to decide how to define weather. Researchers might chose to define weather as outside temperature in degrees Fahrenheit. But we need to get a little more specific because there is not one stable temperature throughout the day. So the researchers might say that weather is defined as the high recorded temperature for the day measured in degrees Fahrenheit.

Variable Two: The second variable is violent crime. Again, the researcher needs to define how violent crime is measured. Let’s say that for this study it they use the FBI’s definition of violent crime . This definition describes violent crime as “murder and nonnegligent manslaughter, forcible rape, robbery, and aggravated assault”.

However, how do we actually know how many violent crimes were committed on a given day? Researchers might include in the definition something like: the number of people arrested that day for violent crimes as recorded by the local police.

Final Definition: For this study temperature was defined as high recorded temperature for the day measured in degrees Fahrenheit. Violent crime was defined as the number of people arrested in a given day for murder, forcible rape, robbery, and aggravated assault as recorded by the local police.

Examples of Operational Definitions

How to Write an Operational Definition

For the last example take the opportunity to see if you can write a clear operational definition for yourself. Imagine that you are creating a research study and you want to see if group therapy is helpful for treating social anxiety.

Variable One: How are you going to define group therapy? here are some things you might want to consider when creating your operational definition:

  • What type of group therapy?
  • Who is leading the therapy group?
  • How long do people participate in the therapy group for?
  • How can you “measure” group therapy?

There is no one way to write the operational definition for this variable. You could say something like group therapy was defined as a weekly cognitive behavioral therapy group led by a licensed MFT held over the course of ten weeks. Remember there are many ways to write an operational definition. You know you have written an effective one if another researcher could pick it up and create a very similar variable based on your definition.

Variable Two: The second variable you need to define is “effective treatment social anxiety”. Again, see if you can come up with an operational definition of this variable. This is a little tricky because you will need to be specific about what an effective treatment is as well as what social anxiety is. Here are some things to consider when writing your definition:

  • How do you know a treatment is effective?
  • How do you measure the effectiveness of treatment?
  • Who provides a reliable definition of social anxiety?
  • How can you measure social anxiety?

Again, there is no one right way to write this operational definition. If someone else could recreate the study using your definition it is probably an effective one. Here as one example of how you could operationalize the variable: social anxiety was defined as meeting the DSM-5 criteria for social anxiety and the effectiveness of treatment was defined as the reduction of social anxiety symptoms over the 10 week treatment period.

Final Definition: Take your definition for variable one and your definition for variable two and write them in a clear and succinct way. It is alright for your definition to be more than one sentence.

Why We Need Operational Definitions

There are a number of reasons why researchers need to have operational definitions including:

  • Replicability
  • Generalizability
  • Dissemination

The first reason was mentioned earlier in the post when reading research others should be able to assess the validity of the research. That is, did the researchers measure what they intended to measure? If we don’t know how researchers measured something it is very hard to know if the study had validity.

The next reason it is important to have an operational definition is for the sake of replicability . Research should be designed so that if someone else wanted to replicate it they could. By replicating research and getting the same findings we validate the findings. It is impossible to recreate a study if we are unsure about how they defined or measured the variables.

Another reason we need operational definitions is so that we can understand how generalizable the findings are. In research, we want to know that the findings are true not just for a small sample of people. We hope to get findings that generalize to the whole population. If we do not have operational definitions it is hard to generalize the findings because we don’t know who they generalize to.

Finally, operational definitions are important for the dissemination of information. When a study is done it is generally published in a peer-reviewed journal and might be read by other psychologists, students, or journalists. Researchers want people to read their research and apply their findings. If the person reading the article doesn’t know what they are talking about because a variable is not clear it will be hard to them to actually apply this new knowledge.

Receive updates from my blog!

what is a hypothesis operational

Live revision! Join us for our free exam revision livestreams Watch now →

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

Study Notes

  • Operationalisation

Last updated 22 Mar 2021

  • Share on Facebook
  • Share on Twitter
  • Share by Email

This term describes when a variable is defined by the researcher and a way of measuring that variable is developed for the research.

This is not always easy and care must be taken to ensure that the method of measurement gives a valid measure for the variable.

The term operationalisation can be applied to independent variables (IV), dependent variables (DV) or co variables (in a correlational design)

Examples of operationalised variables are given in the table below:

what is a hypothesis operational

You might also like

Observational techniques - introduction, a level psychology topic quiz - research methods.

Quizzes & Activities

Model Answer for Question 11 Paper 2: AS Psychology, June 2016 (AQA)

Exam Support

Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

Topic Videos

Example Answers for Research Methods: A Level Psychology, Paper 2, June 2018 (AQA)

Our subjects.

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

This is the Difference Between a Hypothesis and a Theory

What to Know A hypothesis is an assumption made before any research has been done. It is formed so that it can be tested to see if it might be true. A theory is a principle formed to explain the things already shown in data. Because of the rigors of experiment and control, it is much more likely that a theory will be true than a hypothesis.

As anyone who has worked in a laboratory or out in the field can tell you, science is about process: that of observing, making inferences about those observations, and then performing tests to see if the truth value of those inferences holds up. The scientific method is designed to be a rigorous procedure for acquiring knowledge about the world around us.

hypothesis

In scientific reasoning, a hypothesis is constructed before any applicable research has been done. A theory, on the other hand, is supported by evidence: it's a principle formed as an attempt to explain things that have already been substantiated by data.

Toward that end, science employs a particular vocabulary for describing how ideas are proposed, tested, and supported or disproven. And that's where we see the difference between a hypothesis and a theory .

A hypothesis is an assumption, something proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

What is a Hypothesis?

A hypothesis is usually tentative, an assumption or suggestion made strictly for the objective of being tested.

When a character which has been lost in a breed, reappears after a great number of generations, the most probable hypothesis is, not that the offspring suddenly takes after an ancestor some hundred generations distant, but that in each successive generation there has been a tendency to reproduce the character in question, which at last, under unknown favourable conditions, gains an ascendancy. Charles Darwin, On the Origin of Species , 1859 According to one widely reported hypothesis , cell-phone transmissions were disrupting the bees' navigational abilities. (Few experts took the cell-phone conjecture seriously; as one scientist said to me, "If that were the case, Dave Hackenberg's hives would have been dead a long time ago.") Elizabeth Kolbert, The New Yorker , 6 Aug. 2007

What is a Theory?

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, its likelihood as truth is much higher than that of a hypothesis.

It is evident, on our theory , that coasts merely fringed by reefs cannot have subsided to any perceptible amount; and therefore they must, since the growth of their corals, either have remained stationary or have been upheaved. Now, it is remarkable how generally it can be shown, by the presence of upraised organic remains, that the fringed islands have been elevated: and so far, this is indirect evidence in favour of our theory . Charles Darwin, The Voyage of the Beagle , 1839 An example of a fundamental principle in physics, first proposed by Galileo in 1632 and extended by Einstein in 1905, is the following: All observers traveling at constant velocity relative to one another, should witness identical laws of nature. From this principle, Einstein derived his theory of special relativity. Alan Lightman, Harper's , December 2011

Non-Scientific Use

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch (though theory is more common in this regard):

The theory of the teacher with all these immigrant kids was that if you spoke English loudly enough they would eventually understand. E. L. Doctorow, Loon Lake , 1979 Chicago is famous for asking questions for which there can be no boilerplate answers. Example: given the probability that the federal tax code, nondairy creamer, Dennis Rodman and the art of mime all came from outer space, name something else that has extraterrestrial origins and defend your hypothesis . John McCormick, Newsweek , 5 Apr. 1999 In his mind's eye, Miller saw his case suddenly taking form: Richard Bailey had Helen Brach killed because she was threatening to sue him over the horses she had purchased. It was, he realized, only a theory , but it was one he felt certain he could, in time, prove. Full of urgency, a man with a mission now that he had a hypothesis to guide him, he issued new orders to his troops: Find out everything you can about Richard Bailey and his crowd. Howard Blum, Vanity Fair , January 1995

And sometimes one term is used as a genus, or a means for defining the other:

Laplace's popular version of his astronomy, the Système du monde , was famous for introducing what came to be known as the nebular hypothesis , the theory that the solar system was formed by the condensation, through gradual cooling, of the gaseous atmosphere (the nebulae) surrounding the sun. Louis Menand, The Metaphysical Club , 2001 Researchers use this information to support the gateway drug theory — the hypothesis that using one intoxicating substance leads to future use of another. Jordy Byrd, The Pacific Northwest Inlander , 6 May 2015 Fox, the business and economics columnist for Time magazine, tells the story of the professors who enabled those abuses under the banner of the financial theory known as the efficient market hypothesis . Paul Krugman, The New York Times Book Review , 9 Aug. 2009

Incorrect Interpretations of "Theory"

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general use to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

More Differences Explained

  • Epidemic vs. Pandemic
  • Diagnosis vs. Prognosis
  • Treatment vs. Cure

Word of the Day

Obstreperous.

See Definitions and Examples »

Get Word of the Day daily email!

Games & Quizzes

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Commonly Confused

'canceled' or 'cancelled', is it 'home in' or 'hone in', the difference between 'race' and 'ethnicity', homophones, homographs, and homonyms, on 'biweekly' and 'bimonthly', grammar & usage, more words you always have to look up, 'fewer' and 'less', 7 pairs of commonly confused words, more commonly misspelled words, commonly misspelled words, great big list of beautiful and useless words, vol. 4, 9 other words for beautiful, why jaywalking is called jaywalking, pilfer: how to play and win, the words of the week - may 24.

  • Scientific Methods

What is Hypothesis?

We have heard of many hypotheses which have led to great inventions in science. Assumptions that are made on the basis of some evidence are known as hypotheses. In this article, let us learn in detail about the hypothesis and the type of hypothesis with examples.

A hypothesis is an assumption that is made based on some evidence. This is the initial point of any investigation that translates the research questions into predictions. It includes components like variables, population and the relation between the variables. A research hypothesis is a hypothesis that is used to test the relationship between two or more variables.

Characteristics of Hypothesis

Following are the characteristics of the hypothesis:

  • The hypothesis should be clear and precise to consider it to be reliable.
  • If the hypothesis is a relational hypothesis, then it should be stating the relationship between variables.
  • The hypothesis must be specific and should have scope for conducting more tests.
  • The way of explanation of the hypothesis must be very simple and it should also be understood that the simplicity of the hypothesis is not related to its significance.

Sources of Hypothesis

Following are the sources of hypothesis:

  • The resemblance between the phenomenon.
  • Observations from past studies, present-day experiences and from the competitors.
  • Scientific theories.
  • General patterns that influence the thinking process of people.

Types of Hypothesis

There are six forms of hypothesis and they are:

  • Simple hypothesis
  • Complex hypothesis
  • Directional hypothesis
  • Non-directional hypothesis
  • Null hypothesis
  • Associative and casual hypothesis

Simple Hypothesis

It shows a relationship between one dependent variable and a single independent variable. For example – If you eat more vegetables, you will lose weight faster. Here, eating more vegetables is an independent variable, while losing weight is the dependent variable.

Complex Hypothesis

It shows the relationship between two or more dependent variables and two or more independent variables. Eating more vegetables and fruits leads to weight loss, glowing skin, and reduces the risk of many diseases such as heart disease.

Directional Hypothesis

It shows how a researcher is intellectual and committed to a particular outcome. The relationship between the variables can also predict its nature. For example- children aged four years eating proper food over a five-year period are having higher IQ levels than children not having a proper meal. This shows the effect and direction of the effect.

Non-directional Hypothesis

It is used when there is no theory involved. It is a statement that a relationship exists between two variables, without predicting the exact nature (direction) of the relationship.

Null Hypothesis

It provides a statement which is contrary to the hypothesis. It’s a negative statement, and there is no relationship between independent and dependent variables. The symbol is denoted by “H O ”.

Associative and Causal Hypothesis

Associative hypothesis occurs when there is a change in one variable resulting in a change in the other variable. Whereas, the causal hypothesis proposes a cause and effect interaction between two or more variables.

Examples of Hypothesis

Following are the examples of hypotheses based on their types:

  • Consumption of sugary drinks every day leads to obesity is an example of a simple hypothesis.
  • All lilies have the same number of petals is an example of a null hypothesis.
  • If a person gets 7 hours of sleep, then he will feel less fatigue than if he sleeps less. It is an example of a directional hypothesis.

Functions of Hypothesis

Following are the functions performed by the hypothesis:

  • Hypothesis helps in making an observation and experiments possible.
  • It becomes the start point for the investigation.
  • Hypothesis helps in verifying the observations.
  • It helps in directing the inquiries in the right direction.

How will Hypothesis help in the Scientific Method?

Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:

  • Formation of question
  • Doing background research
  • Creation of hypothesis
  • Designing an experiment
  • Collection of data
  • Result analysis
  • Summarizing the experiment
  • Communicating the results

Frequently Asked Questions – FAQs

What is hypothesis.

A hypothesis is an assumption made based on some evidence.

Give an example of simple hypothesis?

What are the types of hypothesis.

Types of hypothesis are:

  • Associative and Casual hypothesis

State true or false: Hypothesis is the initial point of any investigation that translates the research questions into a prediction.

Define complex hypothesis..

A complex hypothesis shows the relationship between two or more dependent variables and two or more independent variables.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Physics related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

what is a hypothesis operational

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

what is a hypothesis operational

  • Customer stories AI Healthcare Frontline workers
  • May 28, 2024

Showcasing AI-powered business transformation in Japan

  • Thought leadership
  • Generative AI
  • Global AI innovation

This blog is part of the AI worldwide series, which highlights customer stories from around the globe. Read more stories from India , Australia and New Zealand , France , and Brazil .

AI’s transformative power is now evident globally. Deemed a technology of the future not long ago, AI-powered business transformation is unfolding across all sectors. It’s clear that mastering AI is crucial for maintaining a competitive edge, and Japan has risen to this challenge. Bolstered by robust infrastructure, advanced technological capabilities, and significant government support for AI initiatives, Japan ranks second on the Asia-Pacific AI Readiness Index. 1

To support this progress, Microsoft plans to invest $2.9 billion over the next two years to expand hyperscale cloud computing and AI infrastructure in Japan. This marks the largest investment Microsoft has made in Japan since it opened its first international office there 46 years ago.

The investment also emphasizes AI digital skilling, which Microsoft aims to provide to more than 3 million people in Japan within three years, targeting full-time and part-time workers, developers, students, and especially women. In partnership with Japan’s government, we will open the first Microsoft Research Asia Lab in Tokyo. Here, we’ll focus on embodied AI, societal AI wellbeing, and scientific discovery aimed at strengthening cybersecurity defenses in response to Japan’s updated National Security Strategy.

Building a Foundation for AI Success

Identify how to accelerate your company’s success with AI

Microsoft’s expanded initiatives and partnerships with educational, governmental, and private organizations in Japan are poised to enhance AI capabilities across various sectors and amplify the societal benefits and economic growth that are already part of Japan’s culture of innovation. I’m excited to showcase some of the very organizations that are contributing to AI leadership, not only in Japan or Asia, but globally.

Dentsu unlocks employee creativity with Microsoft Copilot support

Dentsu, a global leader in creative media with a 120-year history and 72,000 employees, has effectively integrated Microsoft Copilot into its operations to tackle the increasing demand for high-quality content across multiple channels. As part of this integration, Copilot has been deployed to automate routine tasks such as email management and meeting recaps, and to enhance creative processes through faster ideation and content visualization. This strategic deployment also includes Microsoft Teams Premium, which offers features like intelligent recap and real-time translations, optimizing communication across dentsu’s global teams.

Copilot for Microsoft 365

The adoption of these AI tools has significantly benefited dentsu employees by reducing the time spent on administrative tasks, thereby allowing more time for creative and strategic work. For instance, the automation provided by Copilot has saved employees approximately up to 60 minutes per day, translating into substantial productivity gains across the company. These efficiency improvements have also led to superior creative outputs, enabling dentsu to maintain its competitive edge in the fast-paced media industry.

“We started using Copilot with the hypothesis that it would elevate our people’s potential and bring additional value to our clients. I am delighted our high expectations proved to be accurate based on survey data and insights as we work to broaden access to this and other generative AI technologies,” said Brian Klochkoff, Executive Vice President, Innovation & Emerging Technologies at dentsu.

Moreover, the integration of AI has facilitated a cultural shift within dentsu, fostering an environment where technology enhances creativity rather than replacing it. The company continues to explore new AI capabilities through initiatives like Microsoft Copilot Studio , aiming to expand the use of AI across various functions to further streamline operations and enhance creative capabilities.

Recruit Co., Ltd. uses conversational AI to address nuanced customer requests

Recruit Co., Ltd., a prominent human resources technology company, has implemented a conversational AI user interface for Jalan.net , one of Japan’s leading travel booking platforms, powered by Microsoft Azure OpenAI Service. Initiated in May 2023, this innovative application aims to quickly gather user feedback and adapt to customer needs not typically met by conventional search functions.

As a result, user interactions on Jalan.net have been significantly enhanced through more dynamic exchanges that accommodate nuanced and implicit customer preferences related to travel themes, purposes, and modes, which were previously difficult to discern. Attracting tens of thousands of users monthly, the implementation has been widely accepted, with negative reactions constituting less than 1% of user responses.

The successful implementation of Jalan.net has prompted wider integration of Azure OpenAI Service within Recruit itself, creating more than 30 internal environments for projects like interactive resume building and internal information sourcing tools. Moving forward, the company plans to automate approval processes for AI usage and integrate internal data into AI models to enhance personalized experiences, maintaining a focus on security and compliance.

TXP Medical enhances emergency response with AI-powered mobile service

TXP Medical has released an AI-based smartphone application for paramedics , NSER mobile. With nearly 22,000 users per month, NSER mobile streamlines traditional, labor-intensive operations such as manual data entry, paperwork, and direct telephone communications, which are error-prone and time-consuming. The service incorporates AI-powered voice command input, allowing emergency personnel to input patient data hands-free using voice recognition algorithms that accurately interpret medical terminology, even in noisy environments, while AI-powered image analysis processes images of medical documents. Employing Optical Character Recognition (OCR) and advanced image processing allows NSER mobile to quickly extract essential data, speeding up the conversion of visual information into digital formats and reducing the need for phone confirmations with hospitals.

The impact of the NSER mobile service is notable, particularly in Kamakura, Japan, where it reduced average telephone communication time with hospitals from 3 minutes and 30 seconds to 2 minutes and 44 seconds, doubling the target time achievement ratio.

Overall, TXP Medical’s NSER mobile service not only boosts the operational efficiency of emergency medical teams but also improves patient care quality. It showcases AI’s potential to transform emergency medical services by optimizing critical processes and easing the workload on healthcare providers.

AI learning hub

Get skilled up to power AI transformation with the Microsoft Cloud

what is a hypothesis operational

DENSO enhances robot’s understanding with generative AI

DENSO Corporation, a leading automotive parts manufacturer in Japan, is leveraging Microsoft Azure OpenAI Service to develop advanced autonomous robots capable of human-like interaction. Designed to understand and execute tasks based on verbal instructions, DENSO faced numerous challenges, including the robots’ ability to adapt to unforeseen circumstances as well as managing the complexity of programming, ensuring operational accuracy, and integrating advanced AI technologies into practical robotic applications. These challenges were compounded by the need to create user-friendly interactions that allowed non-technical users to easily operate and instruct the robots based on simple verbal commands.

Advanced generative AI powered by Azure OpenAI Service addressed these challenges by enhancing the robots’ ability to understand and process complex verbal instructions for greater adaptability and functionality. The service improved operational accuracy through features that allowed for precise action selection based on input text, simplifying the programming process and making the technology accessible to non-technical users. Additionally, Azure’s cloud-based infrastructure facilitated scalability and flexibility in deployment, and streamlined the development processes, reducing complexity and boosting efficiency across various applications.

In addition, GitHub Copilot significantly enhanced DENSO’s development process by quickly generating and testing new robotic functions, thus reducing costs and accelerating capability expansion. This tool streamlined code generation and debugging, improving productivity and easing the learning curve for new developers.

Takeshi Narisako, Executive Officer of Cloud Service Development Department at DENSO, views the project as “a good start to research and development to create social value through the use of generative AI.” Looking forward, the company will invest in ongoing collaboration with various organizations, including Microsoft, to harness technological and operational strengths, furthering the development of AI-powered robotics and enriching society through human-robot interactions.

Mitsubishi Corporation leverages Azure OpenAI Service for customer GPT

Mitsubishi Corporation, one of Japan’s leading trade, investment, and management companies, is using generative AI to streamline text operations and support better investment and management decisions. Having explored AI from various vendors since 2015, including OpenAI’s ChatGPT, the company’s IT Services Department opted for Azure OpenAI Service to further the development of its custom generative AI application , MC-GPT, emphasizing security and comprehensive features.

“First of all, Azure itself is largest global service with the ability to handle a variety of languages including Japanese and English and operates securely at a high speed,” explained Hidenori Kurashima, team leader of the Process Transformation Promotion Team of Mitsubishi Corporation’s IT Services Department. “In fact, in the area of generative AI, Microsoft is ahead of the competition. On the other hand, peripheral tools such as Azure Cosmos DB and Azure Synapse Analytics are also available, making it easy to integrate with Microsoft Word and Microsoft Excel that we use in our daily work.”

Within two months of adoption, the company had created and evaluated two prototype applications internally. In collaboration with partner Knowledge Communication Co., Ltd., Mitsubishi established a robust environment for deploying Azure OpenAI Service extensively, integrating it with additional Azure services like Azure Cosmos DB and Azure Synapse Analytics for superior data handling and user interface development.

The prototypes generated interest from 12 different departments, prompting the company to create a customized AI engine using its internal data to address both overlapping needs and department-specific requirements. Looking forward, Mitsubishi plans to harness Microsoft’s extensive AI offerings, including Copilot for Microsoft 365 , to further streamline business processes, boost operational efficiency, and enhance decision-making in investments and management.

AI for everyone in Japan

DSC04542

These stories illustrate the substantial progress Japanese companies are making in integrating AI across sectors and highlight Japan’s collective commitment to reinforcing its position as a global leader in innovation.

Microsoft’s extensive investment and strategic initiatives underscore the robust foundation being laid for cutting-edge technological advancements and AI integration, focusing on enhancements in digital skilling, cybersecurity, and AI-powered automation that supports economic growth and fosters an environment where technology enhances human creativity and operational efficiency.

We hope these narratives have not only informed but also inspired you to explore how AI can revolutionize your own fields of interest or business. As we conclude our series, we encourage you to take the next steps in your AI journey, leveraging the insights and innovations shared to ignite transformative projects in your own organization.

Take the next step in your AI journey by exploring Microsoft’s AI solutions , diving into our insightful white paper on the five pillars of AI success , and getting skilled up with Microsoft Learn’s AI learning hub to ensure you’re ready to leverage Microsoft AI to its fullest potential.

1 New Salesforce Report Reveals How Asia Pacific AI Readiness Will Impact Deployment of Generative AI , Salesforce.

Related Posts

A decorative image of blocks and cubes in pastel blue and pink colors

Global Governance: Goals and Lessons for AI   chevron_right

Today, we’re excited to share Global Governance: Goals and Lessons for AI, a collection of external perspectives on international institutions from different domains, brought together with our own thoughts on goals and frameworks for global AI governance.

A decorative image with sparkling blue and b=green curves

Building AI solutions with partners: Empowering transformation with copilots   chevron_right

Microsoft helps partners create personalized, role-specific AI that can empower customers with meaningful and relevant experiences.

Decorative image of AI tour stop in Brazil.

  • Digital transformation

Brazilian organizations leverage AI for world-class innovation   chevron_right

The creativity and ingenuity of Brazilian organizations in leveraging cutting-edge AI technology for tangible, real-world impacts are incredibly inspiring.

  • Help and resources
  • Register for My Account
  • Sign in to My Account

Australian Government Coat of Arms

Federal Register of Legislation

  • All versions
  • Interactions

Statement of Principles concerning seborrhoeic keratosis (Reasonable Hypothesis) (No. 19 of 2024)

  • Department of Veterans' Affairs

This item is authorised by the following title:

  • Veterans' Entitlements Act 1986

Legislation text

There is no text version of the title available for this point-in-time. Other point-in-time versions of this title may be available.

View the versions for this title.

Please send a request to OPC using our feedback form to add this version of the Statement of Principles concerning seborrhoeic keratosis (Reasonable Hypothesis) (No. 19 of 2024) (28 May 2024) to our back capture version creation priority list.

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    what is a hypothesis operational

  2. What is an Hypothesis

    what is a hypothesis operational

  3. What is a Hypothesis

    what is a hypothesis operational

  4. How to Write a Hypothesis

    what is a hypothesis operational

  5. How to Write a Hypothesis

    what is a hypothesis operational

  6. How to Write a Hypothesis in 12 Steps 2024

    what is a hypothesis operational

VIDEO

  1. What Is A Hypothesis?

  2. Daly's Operational Principle of Sustainable Development Part

  3. Concept of Hypothesis

  4. Qualitative Data Analysis

  5. Research methods in psychology Part I experiment hypothesis double blind studies operational

  6. Role of Operation Research in Managerial Decision Making

COMMENTS

  1. Operational Hypothesis

    An Operational Hypothesis is a testable statement or prediction made in research that not only proposes a relationship between two or more variables but also clearly defines those variables in operational terms, meaning how they will be measured or manipulated within the study. It forms the basis of an experiment that seeks to prove or disprove ...

  2. Operationalization

    Operationalization example. The concept of social anxiety can't be directly measured, but it can be operationalized in many different ways. For example: self-rating scores on a social anxiety scale. number of recent behavioral incidents of avoidance of crowded places. intensity of physical anxiety symptoms in social situations.

  3. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  4. Operationalisation

    Example: Hypothesis Based on your literature review, you choose to measure the variables quality of sleep and night-time social media use. You predict a relationship between these variables and state it as a null and alternate hypothesis. Alternate hypothesis: Lower quality of sleep is related to higher night-time social media use in teenagers.

  5. 10.3 Operational definitions

    Apply the three components of an operational definition to a variable; ... Remember, this would be an inverse relationship—as levels of depression increase, satisfaction decreases. In this hypothesis, level of depression is the independent (or predictor) variable and satisfaction with care is the dependent (or outcome) variable.

  6. Experimental Method in Psychology: Variables, Operational ...

    This video describes the basics of an experiment in the field of psychology. It discusses and defines what a hypothesis is, the operational definition, the ...

  7. Operational Hypothesis definition

    An operational hypothesis in a research experiment clearly defines what the variables of interest are and how the different variables are related to each other. The operational hypothesis should also define the relationship that is being measured and state how the measurement is occurring. It attempts to take an abstract idea and make it into a ...

  8. 10.4: Piaget formal operational stage

    Figure 10.4.1 10.4. 1: Teenage thinking is characterized by the ability to reason logically and solve hypothetical problems such as how to design, plan, and build a structure. [1] Figure 10.4.2 10.4. 2: Piaget proposed that formal operational thinking - hypothesis creation, testing and deduction - is the last stage in cognitive development. [2]

  9. The Research Hypothesis: Role and Construction

    A hypothesis (from the Greek, foundation) is a logical construct, interposed between a problem and its solution, which represents a proposed answer to a research question. It gives direction to the investigator's thinking about the problem and, therefore, facilitates a solution. Unlike facts and assumptions (presumed true and, therefore, not ...

  10. Operationalization

    An example of operationally defining "personal space". In research design, especially in psychology, social sciences, life sciences and physics, operationalization or operationalisation is a process of defining the measurement of a phenomenon which is not directly measurable, though its existence is inferred from other phenomena.Operationalization thus defines a fuzzy concept so as to make it ...

  11. Guide 2: Variables and Hypotheses

    AN OPERATIONAL HYPOTHESIS links at least two operational variables. Again, some type of cause and effect is usually present in the hypothesis. EXAMPLE: Children with an encyclopedia in their home will achieve higher scores on the Stanford-Binet intelligence Test.

  12. Research Hypothesis In Psychology: Types, & Examples

    A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  13. Operational Definition Psychology

    Generally, operational definitions are concrete and measurable. Defining variables in this way allows other people to see if the research has validity. Validity here refers to if the researchers are actually measuring what they intended to measure. Definition: An operational definition is the statement of procedures the researcher is going to ...

  14. Operational definition

    An operational definition is designed to model or represent a concept or theoretical definition, also known as a construct. Scientists should describe the operations (procedures, actions, or processes) that define the concept with enough specificity such that other investigators can replicate their research. [4] [5]

  15. Operationalisation

    Operationalisation. This term describes when a variable is defined by the researcher and a way of measuring that variable is developed for the research. This is not always easy and care must be taken to ensure that the method of measurement gives a valid measure for the variable. The term operationalisation can be applied to independent ...

  16. PDF Chapter 5 Measurement Operational Definitions

    for our operational definition of anxiety. As another example, consider the hypothesis that we proposed in the last chapter. We hypothesized that the effect of TV violence on older children's aggressive behavior at school will be less if the characters are not human. Although this appears to be a clear statement, more specific operational

  17. What is operationalization?

    Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

  18. Hypothesis

    A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. ... For proper evaluation, the framer of a hypothesis needs to define specifics in operational terms. A hypothesis requires more work by the researcher in order to either confirm or disprove it. In due course, a confirmed hypothesis may become part of a theory or ...

  19. PDF DEVELOPING HYPOTHESIS AND RESEARCH QUESTIONS

    "A hypothesis is a conjectural statement of the relation between two or more variables". (Kerlinger, 1956) "Hypothesis is a formal statement that presents the expected relationship between an independent and dependent variable."(Creswell, 1994) "A research question is essentially a hypothesis asked in the form of a question."

  20. How to Write a Strong Hypothesis

    6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.

  21. Hypothesis vs. Theory: The Difference Explained

    A hypothesis is an assumption made before any research has been done. It is formed so that it can be tested to see if it might be true. A theory is a principle formed to explain the things already shown in data. Because of the rigors of experiment and control, it is much more likely that a theory will be true than a hypothesis.

  22. Hypothesis and Operational Definitions Flashcards

    20 terms. Ashley_102719. Preview. Exam 4 contemp. 111 terms. b3hrmad02. Preview. Study with Quizlet and memorize flashcards containing terms like The role of hypotheses, Example of hypothesis, The Research Hypothesis and more.

  23. What is Hypothesis

    Functions of Hypothesis. Following are the functions performed by the hypothesis: Hypothesis helps in making an observation and experiments possible. It becomes the start point for the investigation. Hypothesis helps in verifying the observations. It helps in directing the inquiries in the right direction.

  24. Ensure Reliable BI Hypothesis Testing Results

    Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample of data to infer that a certain condition holds true for the entire population.

  25. Showcasing AI-powered business transformation in Japan

    Looking forward, the company will invest in ongoing collaboration with various organizations, including Microsoft, to harness technological and operational strengths, furthering the development of AI-powered robotics and enriching society through human-robot interactions. Mitsubishi Corporation leverages Azure OpenAI Service for customer GPT

  26. Federal Register of Legislation

    Statement of Principles concerning seborrhoeic keratosis (Reasonable Hypothesis) (No. 19 of 2024) In force Administered by . Department of Veterans' Affairs ; This item is authorised by the following title: Veterans' Entitlements Act 1986; Latest version. Order print copy.