Economic and Sustainability of Biodiesel Production—A Systematic Literature Review

As Earth’s fossil energy resources are limited, there is a growing need for renewable resources such as biodiesel. That is the reason why the social, economic and environmental impacts of biofuels became an important research topic in the last decade. Depleted stocks of crude oil and the significant level of environmental pollution encourage researchers and professionals to seek and find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-generation technology; however, further generations cannot be price-competitive at this moment due to the immature technology and high production costs. However, there are promising alternatives, such as wastewater-based microalgae with up to 70% oil content, fat, oils and grease (FOG), when production cost is below 799 USD/gallon, and municipal solid waste-volatile fatty acids technology, where the raw material is free. Proper management of the co-products (mainly glycerol) is essential, especially at the currently low petroleum prices (0.29 USD/L), which can only be handled by the biorefineries. Sustainability is sometimes translated as cost efficiency, but the complex interpretation is becoming more common. Common elements of sustainability are environmental and social, as well as economic, issues.

  • Related Documents

Transformative Practices to Support First-Generation College Students as Academic Learners: Findings From a Systematic Literature Review

Cultural sensitivity in sámi tourism: a systematic literature review in the finnish context.

The use of Sámi cultures in the Finnish tourism business has been problematic for many decades. The aim of this article is to explore how the notion of cultural sensitivity could help to find alternative approaches and new solutions to this situation, especially for Sámi tourism. For this purpose, a systematic literature review method was used to examine and describe how previous academic literature has approached the issue of cultural sensitivity in the Finnish context. While the concept has not been used in tourism research in Finland, previous discussions have focused on questions of respect, cultural sustainability, cultural carrying capacity, cultural representations and cultural identity in tourism contexts. Simultaneously, research in other fields of study has drawn attention to the importance of healing, reconciliation and recognition for Sámi cultures. Reviewing the social work and pedagogy literature indicates how the idea of cultural sensitivity can enrich the search for more responsible ways of thinking, doing and researching tourism. In sum, the article calls for future research, theoretical conceptualization and practical application of cultural sensitivity that emphasizes recognition of and respect for cultural differences.

Unlocking the social domain in sustainable development

Purpose – Beginning with a multitude of differing definitions and theories of CSR and sustainability, an analysis of the effects and impacts of the social domain to remain an untapped resource to strengthen and merge the practice of sustainable development. The paper aims to discuss these issues. Design/methodology/approach – Utilizing a systematic review of literature between 1977 and 2013 about CSR and sustainability definitions and theories to reveal knowledge fragmentation in the use of the social domain and its implications within sustainable development. Findings – Identifies the gaps of the social domain in sustainable development and raises awareness to advance sustainable development beyond current sustainable development strategies, initiatives and practices. The pertinent publications from the inclusion and exclusion criteria in the systematic literature review were analyzed to determine how the social domain is used and interpreted in CSR and sustainability. Based upon the findings, four themes represent the social domain as socio-economics, stakeholders, societal well-being and social sustainability with suggestions for further research. Research limitations/implications – The systematic literature review searched one academic search engine and focussed on journals and books written in English. Originality/value – The contribution of the paper highlights, first, how an underdeveloped social domain can contribute toward multiple meanings of sustainable development and the social domain’s untapped capacity to develop a clearer standard definition of sustainable development and second, the potential to advance competitive advantage for corporations and governments.

Public Participation in the Social Science: A Systematic Literature Review

Public participation is the right and obligation of citizens to contribute to development by contributing to initiative and creativity. Public participation has also attracted a lot of attention from academia as a concept of public policy. The authors conducted a systematic literature review of published articles in the social sciences to enhance our understanding of public participation. Some of the main issues are explained in this area through the NVIVO 12 plus software that qualitative analysis tool. The main issues are community, development, government, information, and interests. This article raises several propositions on the matter. This article suggests some new topics for further research.

Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review

Meeting the increasing global energy demand in a sustainable way is a major challenge for humanity. One of the solutions in the transportation sector is ethanol, which is currently the only economically viable direct fuel substitute. In addition to the first-generation technology, which provides the vast majority of production, better results can be continuously realized by using advanced technologies. This study aims to investigate the economic aspects and sustainability issues of ethanol production with a systematic literature review. During the selection process, 64 studies from a total of 16,141 identified articles were analyzed in-depth. There is a consensus that first-generation production methods cannot result in a long-term solution. However, advanced technologies are currently immature, and ethanol production is more expensive with them. The use of wastes/residues and coproducts can improve both the economic outlook and sustainability of the advanced technologies. Overall, the newer generations of technological advancements are constantly improving the environmental performance, whereas the economic performance is deteriorating. Considering low oil prices (0.36 USD/L), none of the ethanol production methods can be competitive on a purely cost basis. This increases the importance of coproducts (further processing and more valuable coproducts). Regarding sustainability, a complex analysis is essential, which must cover at least the environmental, social, and economic aspects. At the methodology level, a complex life cycle analysis seems to be the best tool, as it can take into account these relevant aspects (environmental, economic, and social).

LIVING LAB FOR DIGITAL LITERACY AND ACTIVE AGEING. SYSTEMATIC LITERATURE REVIEW OF SCIENTIFIC PRODUCTION IN THE SOCIAL SCIENCES

Social sustainability in the age of digitalization: a systematic literature review on the social implications of industry 4.0, techno-economic analysis of biodiesel production from microbial oil using cardoon stalks as carbon source.

Today one of the most interesting ways to produce biodiesel is based on the use of oleaginous microorganisms, which can accumulate microbial oil with a composition similar to vegetable oils. In this paper, we present a thermo-chemical numerical model of the yeast biodiesel production process, considering cardoon stalks as raw material. The simulation is performed subdividing the process into the following sections: steam explosion pre-treatment, enzymatic hydrolysis, lipid production, lipid extraction, and alkali-catalyzed transesterification. Numerical results show that 406.4 t of biodiesel can be produced starting from 10,000 t of lignocellulosic biomass. An economic analysis indicates a biodiesel production cost of 12.8 USD/kg, thus suggesting the need to increase the capacity plant and the lipid yield to make the project economically attractive. In this regard, a sensitivity analysis is also performed considering an ideal lipid yield of 22% and 100,000 t of lignocellulosic biomass. The biodiesel production costs related to these new scenarios are 7.88 and 5.91 USD/kg, respectively. The large capacity plant combined with a great lipid yield in the fermentation stage shows a biodiesel production cost of 3.63 USD/kg making the product competitive on the current market of biofuels by microbial oil.

Determinants of Energy Efficient Innovation: A Systematic Literature Review

Engaging firms to generate and adopt energy efficient innovation is crucial for balancing energy needs for sustainable development. In addition, a reduction in energy consumption can address environmental problems and lower production costs by reducing materials and/or energy costs and costs related to compliance with regulations. Considering the lack of systematic reviews focused on the determinants of energy efficient innovation, we address this gap and set forth to enhance the body of knowledge in the field of energy efficient innovation. To achieve the research aim, a systematic literature review and qualitative content analysis were conducted. This study offers two contributions. First, the study distinguishes the determinants of energy efficient innovation in three levels: micro-level, meso-level, and macro-level. According to the findings, the following determinants of energy efficient innovation are highlighted at the micro-level: (1) cost savings; (2) previous experience; (3) technological capabilities; (4) green capabilities; (5) innovation capabilities; (6) knowledge development; (7) organizational innovations; (8) financial resources; (9) investment in tangible assets. Meanwhile, the determinants are distinguished at the meso-level: (1) competitive pressure; (2) customer and provider pressure; (3) external knowledge cooperation; (4) social pressure; (5) voluntary agreements. Finally, the determinants are disclosed at the macro-level: (1) government subsidies; (2) current or future regulation. Second, the study provides insights on the determinants of energy efficient innovation and sets an agenda for future research. The study demonstrates the need for further investigations on the drivers of energy efficient innovation as compared to general eco-innovation.

PROGRAMA NACIONAL DE PRODUÇÃO E USO DO BIODIESEL: divergências sobre os resultados sociais da política de biocombustíveis

Um dos principais objetivos do Programa Nacional de Produção e Uso do Biodiesel (PNPB) tem sido desenvolver aagricultura familiar, através de incentivos fiscais às usinas produtoras de biodiesel que adquirem matérias-primas desse segmento. Este trabalho faz um breve levantamento das principais discussões em torno dos resultados sociais que o programa vem apresentando e conclui que mesmo o Estado mobilizando diversos agentes para atuarem em favor do eixo social, não há consenso em relação aos ganhos efetivos do programa no tocante a esse aspecto, tampouco desenvolvimento das regiões Norte e Nordeste como resultadoda implantação da política de biodiesel.Palavras-chave: PNPB, biodiesel, eixo social, agricultura familiar.NATIONAL PROGRAM OF BIODIESEL PRODUCTION AND USE: divergences on the social results of the biodiesel policyAbstract: One of the major objectives of the National Program of Biodiesel Production and Use has been the development of the family farm, through tax incentives for the biodiesel producers, which acquire raw material from this segment. This paper makes a survey of the main debates about the social results that have been presented by the program, concluding that even the State using their means in favor of the social side, there is no consensus on the program achievements at this point, nor the development of the North and Northeast regions as a result of the biodiesel policy.Key words: PNPB, biodiesel, social axis, family farming.

Export Citation Format

Share document.

Royal Society of Chemistry

Sustainable biodiesel generation through catalytic transesterification of waste sources: a literature review and bibliometric survey

ORCID logo

First published on 10th January 2022

Sustainable renewable energy production is being intensely disputed worldwide because fossil fuel resources are declining gradually. One solution is biodiesel production via the transesterification process, which is environmentally feasible due to its low-emission diesel substitute. Significant issues arising with biodiesel production are the cost of the processes, which has stuck its sustainability and the applicability of different resources. In this article, the common biodiesel feedstock such as edible and non-edible vegetable oils, waste oil and animal fats and their advantages and disadvantages were reviewed according to the Web of Science (WOS) database over the timeframe of 1970–2020. The biodiesel feedstock has water or free fatty acid, but it will produce soap by reacting free fatty acids with an alkali catalyst when they present in high portion. This reaction is unfavourable and decreases the biodiesel product yield. This issue can be solved by designing multiple transesterification stages or by employing acidic catalysts to prevent saponification. The second solution is cheaper than the first one and even more applicable because of the abundant source of catalytic materials from a waste product such as rice husk ash, chicken eggshells, fly ash, red mud, steel slag, and coconut shell and lime mud. The overview of the advantages and disadvantages of different homogeneous and heterogeneous catalysts is summarized, and the catalyst promoters and prospects of biodiesel production are also suggested. This research provides beneficial ideas for catalyst synthesis from waste for the transesterification process economically, environmentally and industrially.

1 Introduction

Biodiesel is a renewable and clean energy source and a mixture of alkyl esters got through the transesterification of several renewable resources such as animal fats and edible vegetable oils such as palm oil, sunflower oil, rapeseed oil, cottonseed oil, soybean oil and algal oil. It has qualities that are almost identical to petro-derived diesel and may thus be used in diesel engines with minor modifications. It's also biodegradable, non-toxic, and emits fewer hazardous pollutants than traditional petro-diesel. Nevertheless, the high cost of resources accounts for about 88% of the total biodiesel generation cost. 4 Hence, non-edible oil feedstock for biodiesel generation, such as waste cooking oil, natural fat, jatropha oil, waste grease and micro-algae, has gained a significant interest in recent years. 5 These feedstocks are difficult to handle because they mainly have water and high free fatty acid (FFA) contents, which require pretreatment for commercially acceptable conversion efficiency 6 in the presence of a suitable catalyst. 7 Another vital phase in the transesterification process is the selection of the catalyst that defines the cost of production, leading to the economic obstacle. The catalyst is the kingpin in the transesterification reaction and as seen in Fig. 1 , from 1970 to 2021, there were 2260 articles published in the WoS journals using biodiesel and catalyst in the title search. The number of publications and citations is growing rapidly from 2003, and the total link strength, which specifies the total strength of the co-authorship links of a given country with other countries, was also provided. It can be seen that the top ten most active countries with the highest total link strength in sequence are Malaysia, Saudi Arabia, India, Pakistan, China, Australia, Vietnam, Nigeria, Taiwan, and Thailand.

Alcoholysis or transesterification reactions with a base, acid, enzyme, and other catalysts were used for biodiesel production. 8 Biocatalysts and chemical catalysts are being examined, and both have their benefits and drawbacks. These catalysts are reported to be environmentally friendly and budget-friendly materials in industrial uses. 9 Chemical catalysts comprise homogeneous factors (acid or alkali), heterogeneous agents (solid alkali or acid catalyst), supercritical fluids (SCFs) and heterogeneous nanostructured catalysts. 9 Homogeneous catalysts can cause complications in biodiesel production, such as saponification of the feedstock by which vast quantity of by-products such as undesirable soap was produced by the reaction of the catalyst with the FFA, which then prevents the splitting of the FAME and glycerol and reduces the catalyst. 7 Although transesterification with homogeneous catalysts is easy and quick, it has drawbacks in catalyst separation, reusability, and renewable resources. 10

The context knowledge shows the growing significance of biodiesel processing, and the literature review below reveals the scarcity of scientometric research in this exciting field (see Table 1 ). The current research aims to summarize the feasibility and the challenges of biodiesel production using various heterogeneous and homogeneous catalytic processes from different waste feedstocks. The Web of Science (WOS) database was used to conduct the bibliometric study. Catalyst promoters' importance and contribution to biodiesel generation have not been adequately examined yet. There was no match for the four words of biodiesel, catalyst, promoter and review at the topic search of the WOS website. Built upon the favorable properties of catalysts and the importance of non-noble metal promoters in the transesterification process, this study also aims to gather information on synthesizing non-noble promoters supported on various organic and inorganic metal oxides to get a high biodiesel yield.

2 Biodiesel and its application

The application of biodiesel has been noticeably increasing during the last decades. As seen in Fig. 2 , biodiesel applications had risen from 7.3 million tonnes of oil equivalent (mtoe) in 1990 to 87.1 mtoe in 2020. The Renewable Fuel Standard, which was included in the Energy Policy Act of 2005, was the first to mandate the use of specific biofuel amounts. The goal was to use 4 billion gallons of renewables in transportation fuels in 2006 to increase their percentage over time. The lessening of the country's reliance on oil has been the driving concept of biofuel programmes. The Energy Independence and Security Act of 2007 set a goal of reducing gasoline usage by 20% over the following ten years. The 2008 Biomass Program has two essential purposes. The first is, by 2030, to reduce gasoline use by 30% as compared to 2004 levels. Second, corn-derived ethanol is used to generate cellulosic ethanol. 23 Algal biomass has been used as food and feed supplements for humans and animals, fertilisers in agriculture, nutritional supplements and medication in the pharmaceutical industry, and phycocolloids in the phycocolloid industry. 24,25 Higher prices for animal feeds have resulted from the growing use of agricultural commodities for biofuels; nevertheless, the more significant substitution of co-products for conventional feedstuffs in feed rations mitigates the input cost increases experienced by livestock and poultry farmers. In the next ten years, growth in agricultural commodities for biofuels is likely to continue. However, at a slower pace in major producing nations, government-imposed grain usage restrictions for biofuels are achieved, and new non-agricultural feedstocks are commercialised. 26 A previous work, 27 which examines renewable portfolio standards in the electricity sector and can be extended to transportation fuels, provides a detailed explanation of how such factors affect energy price. As a result, domestic fuel consumption may fall, offsetting the rise in global fuel consumption. The presence of biofuel subsidies mitigates the impact of any increases in domestic fuel prices. 28 The replacement of feedstocks should be explored to reduce biofuel synthesis or operating costs. Waste cooking oil and waste animal fat, for example, are viewed as preferable feedstocks for biodiesel production compared to edible vegetable oil since they are both inexpensive and plentiful. Furthermore, as seen in Fig. 3 , biodiesel has been used in an inclusive variety of applications such as bus 29,30 and rail 31,32 transportations, commercial steamships, 33–35 heavy trucks, 36,37 power systems such as generators, 38–40 agricultural machinery, 41–43 heating oil in domestic 44–46 and commercial 47–49 boilers, and aircraft. 50–52 Thus, biodiesel has been gaining more attention as a resource for the growing demand from several industrial sections because of its numerous advantages over fossil fuels.

3 Sources of biodiesel

3.1 edible vegetable oil, 3.2 non-edible vegetable oil, 3.3 animal fat, 3.4 waste oil, 4 catalysts for biodiesel production, 4.1 homogeneous catalysts.

Homogeneous chemical catalysts have some merits, such as easy activity optimization, high turnover frequency and selectivity, and a high reaction rate. 141,142 The most usual homogeneous catalysts used for transesterification reactions are sodium methoxide (CH 3 ONa), sodium (NaOH) and potassium (KOH) hydroxides. Using CH 3 ONa as catalysts is expensive but more applicable than KOH and NaOH compounds. CH 3 ONa was reported to be the best active basic catalyst, which prompted noble phase separation. 143 Further, CH 3 ONa will help to avoid the water and soap formation. 144 Two mechanisms are convoluted in the transesterification process, dependent on whether acid catalysts or basic catalysts are applied, which are discussed below.

4.2 Acidic catalysts

Fig. 7 illustrates the mechanisms of transesterification reactions of oil with acid catalysts for monoglycerides, and it can be extended to di- and triglyceride. 163 The carbonyl group protonation of the ester results in carbocation II, which, after nucleophilic alcohol strike, creates the tetrahedral intermediate III, which reduces glycerol for the new ester IV formation and catalyst H + regeneration. Transesterification reaction via acid catalysts is more applicable for unrefined or waste oils, but the downside is that acidic catalytic samples are suggestively less active than alkali ones. 164 Moreover, the ratio of methanol to oil in the transesterification process with acid catalysts is high with a low reaction rate; therefore, these catalysts are not gaining much attention as basic catalysts. 165 Even though, because of the existence of FFAs in high quantity in such oils and fat, homogeneous alkaline catalysts are not recommended. To solve this issue, free fatty acids are firstly esterified to FAME ( Fig. 8 ) using an acid catalyst 127 and thereafter, the transesterification reaction is implemented, usually by employing alkaline catalysts. In the pre-esterification technique, it is required to separate the esterified oil and the homogeneous acid catalyst, which is the principal disadvantage of this technique. This issue can be handled with the application of a heterogeneous acid catalyst. 166

4.3 Basic catalyst

The strong base (NaOH or KOH) catalysed through a homogenous transesterification process has certain constraints, such as product separation, which leads to increased biodiesel production costs. 11 The method involved numbers of washings and purification stages to sustain the specified condition. It was reasonably challenging to eliminate the K/Na residues lasting in the product, and the split of glycerin also caused practical experiments. The whole process cost might be increased using a higher amount of water in the washing step. 199 These factors indicate that using basic or acid heterogeneous catalysts, or better yet, a heterogeneous catalyst with acid and basic characteristics, may result in a more environmentally friendly and less expensive biodiesel manufacturing process. The triglycerides are transesterified at the basic internal sites (–O − ), whereas the free fatty acids are esterified at the acid exterior sites (–H + ). 200

4.4 Organometallic catalysis

4.5 enzymatic catalysis.

The most common method of decreasing free fatty acid of feedstocks such as oil and fat is the pre-esterification of free fatty acid by homogeneous acid catalysts before utilizing base catalyst transesterification reaction. 127,129 In this technique, it is necessary to discrete the homogeneous acid catalyst from oil which is the key disadvantage of this method. 233 In general, all homogeneous catalysts are linked with some other drawbacks, which might escalate the production cost because of wastewater emission and separation steps. 234 The product of glycerin after transesterification reaction is low when a homogeneous catalyst is used. Then multi-stage purifications with the lengthy process are needed, 79,235 which negatively affects the total costs of the transesterification process. Furthermore, the transesterification reaction via homogeneous base catalysts is not suitable for several feedstocks. Homogeneous catalysts are environmentally harmful in comparison with heterogeneous ones because they are naturally hygroscopic. 236 Homogeneous catalysts are often highly selective but not particularly active or stable. On the other hand, heterogeneous catalysts are highly active (you can run them at higher temperatures because they are more robust), but they are not particularly selective.

4.6 Heterogeneous catalysts

4.7 rice husk ash, 4.8 eggshells, 4.9 fly ash, 4.10 red mud, 4.11 iron and steel slag, 4.12 coconut, 4.13 lime mud, 4.14 catalyst promoters, 4.15 biodiesel waste products, 4.16 prospects, 5. conclusions, author contributions, conflicts of interest, acknowledgements.

  • V. B. Borugadda and V. V. Goud, Renewable Sustainable Energy Rev. , 2012, 16 , 4763–4784  CrossRef   CAS .
  • J. Boro, A. J. Thakur and D. Deka, Fuel Process. Technol. , 2011, 92 , 2061–2067  CrossRef   CAS .
  • Y. Xu, W. Du, D. Liu and J. Zeng, Biotechnol. Lett. , 2003, 25 , 1239–1241  CrossRef   CAS   PubMed .
  • N. Mansir, Y. H. Taufiq-Yap, U. Rashid and I. M. Lokman, Energy Convers. Manage. , 2017, 141 , 171–182  CrossRef   CAS .
  • D. Y. C. Leung, X. Wu and M. K. H. Leung, Appl. Energy , 2010, 87 , 1083–1095  CrossRef   CAS .
  • I. Idowu, M. O. Pedrola, S. Wylie, K. H. Teng, P. Kot, D. Phipps and A. Shaw, Renew. Energy , 2019, 142 , 535–542  CrossRef   CAS .
  • S. Boonyuen, S. M. Smith, M. Malaithong, A. Prokaew, B. Cherdhirunkorn and A. Luengnaruemitchai, J. Cleaner Prod. , 2018, 177 , 925–929  CrossRef   CAS .
  • H. C. Ong, H. H. Masjuki, T. M. I. Mahlia, A. S. Silitonga, W. T. Chong and T. Yusaf, Energy , 2014, 69 , 427–445  CrossRef   CAS .
  • B. Thangaraj, P. R. Solomon, B. Muniyandi, S. Ranganathan and L. Lin, Clean Energy , 2019, 3 , 2–23  CrossRef .
  • M. Gohain, A. Devi and D. Deka, Ind. Crops Prod. , 2017, 109 , 8–18  CrossRef   CAS .
  • R. Jothiramalingam and M. K. Wang, Ind. Eng. Chem. Res. , 2009, 48 , 6162–6172  CrossRef   CAS .
  • M. E. Borges and L. Díaz, Renewable Sustainable Energy Rev. , 2012, 16 , 2839–2849  CrossRef   CAS .
  • K. Ramachandran, T. Suganya, N. Nagendra Gandhi and S. Renganathan, Renewable Sustainable Energy Rev. , 2013, 22 , 410–418  CrossRef   CAS .
  • P. Zhang, H. Liu, M. Fan, Y. Liu and J. Huang, Curr. Org. Chem. , 2016, 20 , 752–760  CrossRef   CAS .
  • Z. I. Ishak, N. A. Sairi, Y. Alias, M. K. T. Aroua and R. Yusoff, Catal. Rev. , 2017, 59 , 44–93  CrossRef   CAS .
  • A. Singh and G. Kumar, J. Biochem. Technol. , 2018, 9 , 17  CAS .
  • E. Ghedini, S. Taghavi, F. Menegazzo and M. Signoretto, Sustainability , 2021, 13 , 10479  CrossRef   CAS .
  • A. E. Atabani, M. M. El-Sheekh, G. Kumar and S. Shobana, in Clean Energy for Sustainable Development , ed. M. G. Rasul, A. k. Azad and S. C. Sharma, Academic Press, 2017,  DOI: 10.1016/b978-0-12-805423-9.00017-x , pp. 507–556.
  • C. Shimasaki, in Biotechnology Entrepreneurship , Academic Press, Boston, 2014,  DOI: 10.1016/b978-0-12-404730-3.00009-9 , pp. 113–138.
  • J. R. Ziolkowska, in Biofuels for a More Sustainable Future , ed. J. Ren, A. Scipioni, A. Manzardo and H. Liang, Elsevier, 2020,  DOI: 10.1016/b978-0-12-815581-3.00001-4 , pp. 1–19.
  • E. Sadeghinezhad, S. N. Kazi, A. Badarudin, C. S. Oon, M. N. M. Zubir and M. Mehrali, Renewable Sustainable Energy Rev. , 2013, 28 , 410–424  CrossRef   CAS .
  • M. F. Othman, A. Adam, G. Najafi and R. Mamat, Renewable Sustainable Energy Rev. , 2017, 80 , 694–709  CrossRef .
  • G. Sorda, M. Banse and C. Kemfert, Energy Policy , 2010, 38 , 6977–6988  CrossRef .
  • N. Gaurav, S. Sivasankari, G. S. Kiran, A. Ninawe and J. Selvin, Renewable Sustainable Energy Rev. , 2017, 73 , 205–214  CrossRef   CAS .
  • A. Neori, T. Chopin, M. Troell, A. H. Buschmann, G. P. Kraemer, C. Halling, M. Shpigel and C. Yarish, Aquaculture , 2004, 231 , 361–391  CrossRef .
  • J. Popp, S. Kot, Z. Lakner and J. Oláh, J. Secur. Sustain. Issues , 2018, 7 , 477–493  Search PubMed .
  • C. Fischer, Energy J. , 2010, 31 , 101–120  Search PubMed .
  • D. Rajagopal, G. Hochman and D. Zilberman, Energy Policy , 2011, 39 , 228–233  CrossRef .
  • B. Kegl, Bioresour. Technol. , 2008, 99 , 863–873  CrossRef   CAS   PubMed .
  • S. Bari, Appl. Energy , 2014, 124 , 35–43  CrossRef   CAS .
  • Y. Zhang and A. L. Boehman, Energy Fuels , 2007, 21 , 2003–2012  CrossRef   CAS .
  • M. Kousoulidou, G. Fontaras, L. Ntziachristos and Z. Samaras, Fuel , 2010, 89 , 3442–3449  CrossRef   CAS .
  • Anonymous, Dyna , 2014, 89 , 14–15  Search PubMed .
  • P. H. Su, P. Geng, L. J. Wei, C. Y. Hou, F. Yin, G. T. Tomy, Y. F. Li and D. L. Feng, IET Intell. Transp. Syst. , 2019, 13 , 218–227  CrossRef .
  • P. Su, Y. Hao, Z. Qian, W. Zhang, J. Chen, F. Zhang, F. Yin, D. Feng, Y. Chen and Y. Li, J. Environ. Sci. , 2020, 91 , 262–270  CrossRef   PubMed .
  • K. Na, S. Biswas, W. Robertson, K. Sahay, R. Okamoto, A. Mitchell and S. Lemieux, Atmos. Environ. , 2015, 107 , 307–314  CrossRef   CAS .
  • I. Olatunji, S. Wayne, M. Gautam, N. Clark, G. Thompson, D. McKain, P. Sindler and J. Nuszkowski, 2010.
  • H. Bayındır, M. Z. Işık, Z. Argunhan, H. L. Yücel and H. Aydın, Energy , 2017, 123 , 241–251  CrossRef .
  • S. M. Krishna, P. Abdul Salam, M. Tongroon and N. Chollacoop, Appl. Therm. Eng. , 2019, 155 , 525–533  CrossRef   CAS .
  • M. R. Seraç, S. Aydın and C. Sayın, Energy Sources, Part A , 2020, 42 , 2316–2331  CrossRef .
  • G. Topilin, A. Yakovenko, S. Uminski and J. Nowak, TEKA Kom. Mot. Energ. Roln.-OL PAN , 2009, 9 , 352–356  Search PubMed .
  • G. Best, 2006.
  • N. Alt and F. L. im VDMA eV, 2004.
  • M. Eskiner, F. Bär, M. Rossner, A. Munack and J. Krahl, Fuel , 2015, 143 , 327–333  CrossRef   CAS .
  • A. Macor and P. Pavanello, Energy , 2009, 34 , 2025–2032  CrossRef   CAS .
  • J. F. González-González, A. Alkassir, J. San José, J. González and A. Gómez-Landero, Biomass Bioenergy , 2014, 60 , 178–188  CrossRef .
  • B. Bazooyar, A. Shariati and S. H. Hashemabadi, Energy Fuels , 2015, 29 , 6804–6814  CrossRef   CAS .
  • L. N. Komariah, S. Arita, N. Novia, S. S. Wirawan and M. Yazid, J. Renewable Sustainable Energy , 2013, 5 , 052005  CrossRef .
  • M. Mansourpoor and A. Shariati, Chem. Biochem. Eng. Q. , 2014, 28 , 95–103  CrossRef   CAS .
  • P. Arkoudeas, S. Kalligeros, F. Zannikos, G. Anastopoulos, D. Karonis, D. Korres and E. Lois, Energy Convers. Manage. , 2003, 44 , 1013–1025  CrossRef   CAS .
  • D. M. Korres, D. Karonis, E. Lois, M. B. Linck and A. K. Gupta, Fuel , 2008, 87 , 70–78  CrossRef   CAS .
  • W. E. R. Delgado, A. G. R. Meléndez, M. A. M. Betancourt, J. A. B. Páez and M. L. Gómez, Tecciencia , 2019, 14 , 53–60  CrossRef .
  • O. M. Ali, R. Mamat, N. R. Abdullah and A. A. Abdullah, Renew. Energy , 2016, 86 , 59–67  CrossRef   CAS .
  • A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki and S. Mekhilef, Renewable Sustainable Energy Rev. , 2012, 16 , 2070–2093  CrossRef .
  • N. Kumar, V. Goel and S. R. Chauhan, Renewable Sustainable Energy Rev. , 2013, 21 , 633–658  CrossRef   CAS .
  • H. M. Mahmudul, F. Y. Hagos, R. Mamat, A. A. Adam, W. F. W. Ishak and R. Alenezi, Renewable Sustainable Energy Rev. , 2017, 72 , 497–509  CrossRef   CAS .
  • L. Lin, Z. Cunshan, S. Vittayapadung, S. Xiangqian and D. Mingdong, Appl. Energy , 2011, 88 , 1020–1031  CrossRef .
  • A. Gaurav, S. Dumas, C. T. Q. Mai and F. T. T. Ng, Green Energy Environ. , 2019, 4 , 328–341  CrossRef .
  • A. P. Ingle, A. K. Chandel, R. Philippini, S. E. Martiniano and S. S. da Silva, Symmetry , 2020, 12 , 256  CrossRef   CAS .
  • L. N. Okoro, S. V. Belaboh, N. R. Edoye and B. Y. Makama, Synthesis , 2011, 1 , 3  Search PubMed .
  • A. Ayoola, F. Hymore, C. A. Omonhinmin, O. Olawole, O. Fayomi, D. Babatunde and O. Fagbiele, Chem. Data Collect. , 2019, 22 , 100238  CrossRef   CAS .
  • H. Karlsson, S. Ahlgren, M. Sandgren, V. Passoth, O. Wallberg and P.-A. Hansson, Biotechnol. Biofuels , 2016, 9 , 229  CrossRef   PubMed .
  • I. Ayadi, H. Belghith, A. Gargouri and M. Guerfali, BioMed Res. Int. , 2019, 2019 , 3213521  Search PubMed .
  • S. K. Bhatia, R. Gurav, T.-R. Choi, Y. H. Han, Y.-L. Park, J. Y. Park, H.-R. Jung, S.-Y. Yang, H.-S. Song and S.-H. Kim, Bioresour. Technol. , 2019, 289 , 121704  CrossRef   CAS   PubMed .
  • N. L. Boschen, M. G. P. Valenga, G. A. Maia, A. L. Gallina and P. R. P. Rodrigues, Ind. Crops Prod. , 2019, 140 , 111624  CrossRef   CAS .
  • A. Saydut, M. Z. Duz, C. Kaya, A. B. Kafadar and C. Hamamci, Bioresour. Technol. , 2008, 99 , 6656–6660  CrossRef   CAS   PubMed .
  • K. A. Younis, J. L. Gardy and K. S. Barzinji, Am. J. Appl. Chem. , 2014, 2 , 105–111  CAS .
  • U. Rashid and F. Anwar, Energy Fuels , 2008, 22 , 1306–1312  CrossRef   CAS .
  • C. Ilkılıç, S. Aydın, R. Behcet and H. Aydin, Fuel Process. Technol. , 2011, 92 , 356–362  CrossRef .
  • N. Dizge and B. Keskinler, Biomass Bioenergy , 2008, 32 , 1274–1278  CrossRef   CAS .
  • A. D'Cruz, M. G. Kulkarni, L. C. Meher and A. K. Dalai, J. Am. Oil Chem. Soc. , 2007, 84 , 937–943  CrossRef .
  • P. Nakpong and S. Wootthikanokkhan, Renew. Energy , 2010, 35 , 1682–1687  CrossRef   CAS .
  • D. Kumar, G. Kumar and C. Singh, Ultrason. Sonochem. , 2010, 17 , 555–559  CrossRef   CAS   PubMed .
  • S. Saka and D. Kusdiana, Fuel , 2001, 80 , 225–231  CrossRef   CAS .
  • P. Šimáček, D. Kubička, G. Šebor and M. Pospíšil, Fuel , 2009, 88 , 456–460  CrossRef .
  • S. Zullaikah, C.-C. Lai, S. R. Vali and Y.-H. Ju, Bioresour. Technol. , 2005, 96 , 1889–1896  CrossRef   CAS   PubMed .
  • S. Sinha, A. K. Agarwal and S. Garg, Energy Convers. Manage. , 2008, 49 , 1248–1257  CrossRef   CAS .
  • G. Antolın, F. Tinaut, Y. Briceno, V. Castano, C. Perez and A. Ramırez, Bioresour. Technol. , 2002, 83 , 111–114  CrossRef .
  • M. L. Granados, M. Z. Poves, D. M. Alonso, R. Mariscal, F. C. Galisteo, R. Moreno-Tost, J. Santamaría and J. Fierro, Appl. Catal., B , 2007, 73 , 317–326  CrossRef   CAS .
  • A. Yousuf, F. Sannino, V. Addorisio and D. Pirozzi, J. Agric. Food Chem. , 2010, 58 , 8630–8635  CrossRef   CAS   PubMed .
  • F. Sanchez and P. T. Vasudevan, Appl. Biochem. Biotechnol. , 2006, 135 , 1–14  CrossRef   CAS   PubMed .
  • P. Chand, C. V. Reddy, J. G. Verkade, T. Wang and D. Grewell, Energy Fuels , 2009, 23 , 989–992  CrossRef   CAS .
  • A. Kinney and T. Clemente, Fuel Process. Technol. , 2005, 86 , 1137–1147  CrossRef   CAS .
  • M. I. Al-Widyan and A. O. Al-Shyoukh, Bioresour. Technol. , 2002, 85 , 253–256  CrossRef   CAS   PubMed .
  • E. Crabbe, C. Nolasco-Hipolito, G. Kobayashi, K. Sonomoto and A. Ishizaki, Process Biochem. , 2001, 37 , 65–71  CrossRef   CAS .
  • C. Kaya, C. Hamamci, A. Baysal, O. Akba, S. Erdogan and A. Saydut, Renew. Energy , 2009, 34 , 1257–1260  CrossRef   CAS .
  • T. Nguyen, L. Do and D. A. Sabatini, Fuel , 2010, 89 , 2285–2291  CrossRef   CAS .
  • V. B. Veljković, M. O. Biberdžić, I. B. Banković-Ilić, I. G. Djalović, M. B. Tasić, Z. B. Nježić and O. S. Stamenković, Renewable Sustainable Energy Rev. , 2018, 91 , 531–548  CrossRef .
  • M. Gülüm and A. Bilgin, Fuel Process. Technol. , 2015, 134 , 456–464  CrossRef .
  • V. K. Mishra and R. Goswami, Biofuels , 2018, 9 , 273–289  CrossRef   CAS .
  • A. Demirbas, A. Bafail, W. Ahmad and M. Sheikh, Energy Explor. Exploit. , 2016, 34 , 290–318  CrossRef   CAS .
  • M. M. Gui, K. T. Lee and S. Bhatia, Energy , 2008, 33 , 1646–1653  CrossRef   CAS .
  • A. Demirbas, Biomass Bioenergy , 2009, 33 , 113–118  CrossRef   CAS .
  • R. Kumar, P. Tiwari and S. Garg, Fuel , 2013, 104 , 553–560  CrossRef   CAS .
  • N. Usta, B. Aydoğan, A. H. Çon, E. Uğuzdoğan and S. G. Özkal, Energy Convers. Manage. , 2011, 52 , 2031–2039  CrossRef   CAS .
  • V. B. Veljković, S. H. Lakićević, O. S. Stamenković, Z. B. Todorović and M. L. Lazić, Fuel , 2006, 85 , 2671–2675  CrossRef .
  • D. Royon, M. Daz, G. Ellenrieder and S. Locatelli, Bioresour. Technol. , 2007, 98 , 648–653  CrossRef   CAS   PubMed .
  • M. N. Nabi, M. M. Rahman and M. S. Akhter, Appl. Therm. Eng. , 2009, 29 , 2265–2270  CrossRef   CAS .
  • A. S. Ramadhas, S. Jayaraj and C. Muraleedharan, Fuel , 2005, 84 , 335–340  CrossRef   CAS .
  • M. Morshed, K. Ferdous, M. R. Khan, M. S. I. Mazumder, M. A. Islam and M. T. Uddin, Fuel , 2011, 90 , 2981–2986  CrossRef   CAS .
  • M. H. Ali, M. Mashud, M. R. Rubel and R. H. Ahmad, Procedia Eng. , 2013, 56 , 625–630  CrossRef   CAS .
  • A. Karmakar, S. Karmakar and S. Mukherjee, Renewable Sustainable Energy Rev. , 2012, 16 , 1050–1060  CrossRef   CAS .
  • U. Rashid, F. Anwar, B. R. Moser and G. Knothe, Bioresour. Technol. , 2008, 99 , 8175–8179  CrossRef   CAS   PubMed .
  • G. Kafuku and M. Mbarawa, Appl. Energy , 2010, 87 , 2561–2565  CrossRef   CAS .
  • L. C. Meher, V. S. S. Dharmagadda and S. N. Naik, Bioresour. Technol. , 2006, 97 , 1392–1397  CrossRef   CAS   PubMed .
  • M. Naik, L. C. Meher, S. N. Naik and L. M. Das, Biomass Bioenergy , 2008, 32 , 354–357  CrossRef   CAS .
  • A. Demirbas and M. F. Demirbas, Algae energy: algae as a new source of biodiesel , Springer Science & Business Media, 2010  Search PubMed .
  • M. N. Campbell, Guelph Engineering Journal , 2008, 1 , 2–7  Search PubMed .
  • A. Kumar Tiwari, A. Kumar and H. Raheman, Biomass Bioenergy , 2007, 31 , 569–575  CrossRef   CAS .
  • H. J. Berchmans and S. Hirata, Bioresour. Technol. , 2008, 99 , 1716–1721  CrossRef   CAS   PubMed .
  • A. Gupta, 2004.
  • Y. C. Sharma and B. Singh, Fuel , 2008, 87 , 1740–1742  CrossRef   CAS .
  • S. V. Ghadge and H. Raheman, Biomass Bioenergy , 2005, 28 , 601–605  CrossRef   CAS .
  • S. V. Ghadge and H. Raheman, Bioresour. Technol. , 2006, 97 , 379–384  CrossRef   CAS   PubMed .
  • L. Canoira, R. Alcántara, M. Jesús García-Martínez and J. Carrasco, Biomass Bioenergy , 2006, 30 , 76–81  CrossRef   CAS .
  • A. Sandouqa and Z. Al-Hamamre, Renew. Energy , 2019, 130 , 831–842  CrossRef .
  • C. W. Mohd Noor, M. M. Noor and R. Mamat, Renewable Sustainable Energy Rev. , 2018, 94 , 127–142  CrossRef   CAS .
  • P. M. F. d. Silva, E. O. Silva, M. d. S. C. Rêgo, L. M. d. R. Castro and A. I. Siqueira-Silva, Rev. Bras. Farmacogn. , 2019, 29 , 425–433  CrossRef   CAS .
  • S. Ramalingam, S. Rajendran, P. Ganesan and M. Govindasamy, Renewable Sustainable Energy Rev. , 2018, 81 , 775–788  CrossRef   CAS .
  • K.-H. Chung, J. Ind. Eng. Chem. , 2010, 16 , 506–509  CrossRef   CAS .
  • C.-Y. Lin and C.-L. Fan, Fuel , 2011, 90 , 2240–2244  CrossRef   CAS .
  • A. A. Pollardo, H.-s. Lee, D. Lee, S. Kim and J. Kim, J. Cleaner Prod. , 2018, 185 , 382–388  CrossRef   CAS .
  • Y. Dikmen, G. Oyman and T. Sepici, 2004.
  • A. Ribeiro, J. Carvalho, J. Castro, J. Araújo, C. Vilarinho and F. Castro, Mater. Sci. Forum , 2013, 730–732 , 623–629  CAS .
  • G. R. Srinivasan and R. Jambulingam, J. Environ. Sci. Technol. , 2018, 11 , 157–166  CrossRef   CAS .
  • S. S. Chen, T. Maneerung, D. C. W. Tsang, Y. S. Ok and C.-H. Wang, Chem. Eng. J. , 2017, 328 , 246–273  CrossRef   CAS .
  • E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce and J. G. Goodwin, Ind. Eng. Chem. Res. , 2005, 44 , 5353–5363  CrossRef   CAS .
  • M. Canakci and J. Van Gerpen, Trans. ASAE , 2001, 44 , 1429  CAS .
  • M. G. Kulkarni and A. K. Dalai, Ind. Eng. Chem. Res. , 2006, 45 , 2901–2913  CrossRef   CAS .
  • S. Marmesat, E. Rodrigues, J. Velasco and C. Dobarganes, Int. J. Food Sci. Technol. , 2007, 42 , 601–608  CrossRef   CAS .
  • M. J. Montefrio, T. Xinwen and J. P. Obbard, Appl. Energy , 2010, 87 , 3155–3161  CrossRef   CAS .
  • S. N. Gebremariam and J. M. Marchetti, Energy Convers. Manage. , 2018, 168 , 74–84  CrossRef   CAS .
  • G. Knothe and L. F. Razon, Prog. Energy Combust. Sci. , 2017, 58 , 36–59  CrossRef .
  • Y. Zhang, M. A. Dubé, D. D. McLean and M. Kates, Bioresour. Technol. , 2003, 90 , 229–240  CrossRef   CAS   PubMed .
  • A. Gaurav, F. T. T. Ng and G. L. Rempel, Green Energy Environ. , 2016, 1 , 62–74  CrossRef .
  • J. Mattson, N. V. Burnete, C. Depcik, D. Moldovanu and N. Burnete, Fuel , 2019, 255 , 115753  CrossRef   CAS .
  • O. Aboelazayem, M. Gadalla and B. Saha, Renew. Energy , 2018, 124 , 144–154  CrossRef   CAS .
  • S. M. Smith, C. Oopathum, V. Weeramongkhonlert, C. B. Smith, S. Chaveanghong, P. Ketwong and S. Boonyuen, Bioresour. Technol. , 2013, 143 , 686–690  CrossRef   CAS   PubMed .
  • A. Saydut, A. Kafadar, F. Aydin, S. Erdogan, C. Kaya and C. Hamamci, 2016.
  • N. Viriya-empikul, P. Krasae, B. Puttasawat, B. Yoosuk, N. Chollacoop and K. Faungnawakij, Bioresour. Technol. , 2010, 101 , 3765–3767  CrossRef   CAS   PubMed .
  • F. Ma and M. A. Hanna, Bioresour. Technol. , 1999, 70 , 1–15  CrossRef   CAS .
  • V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J.-M. Basset, Chem. Rev. , 2011, 111 , 3036–3075  CrossRef   CAS   PubMed .
  • R. A. Korus, D. S. Hoffman, N. Bam, C. L. Peterson and D. C. Drown, 1993.
  • D. Bacovsky, W. Körbitz, M. Mittelbach and M. Wörgetter, IEA task , 2007, vol. 39, p. 9  Search PubMed .
  • M. L. Testa, V. La Parola and A. M. Venezia, Catal. Today , 2014, 223 , 115–121  CrossRef   CAS .
  • L. Guerreiro, J. E. Castanheiro, I. M. Fonseca, R. M. Martin-Aranda, A. M. Ramos and J. Vital, Catal. Today , 2006, 118 , 166–171  CrossRef   CAS .
  • J. A. Melero, L. F. Bautista, G. Morales, J. Iglesias and D. Briones, Energy Fuels , 2009, 23 , 539–547  CrossRef   CAS .
  • S. N. Gebremariam and J. M. Marchetti, Energy Convers. Manage. , 2018, 174 , 639–648  CrossRef   CAS .
  • K. A. Shah, K. C. Maheria and J. K. Parikh, Energy Sources, Part A , 2016, 38 , 1470–1477  CrossRef   CAS .
  • K. Malins, V. Kampars and J. Brinks.
  • Y. C. Chen, D. Y. Lin and B. H. Chen, J. Taiwan Inst. Chem. Eng. , 2017, 79 , 31–36  CrossRef   CAS .
  • X. X. Han, W. Yan, C. T. Hung, Y. F. He, P. H. Wu, L. L. Liu, S. J. Huang and S. B. Liu, Korean J. Chem. Eng. , 2016, 33 , 2063–2072  CrossRef   CAS .
  • I. Istadi, D. D. Anggoro, L. Buchori, D. A. Rahmawati and D. Intaningrum, in Basic Researches in the Tropical and Coastal Region Eco Developments , ed. H. Hady, H. Susanto and O. K. Radjasa, 2015, vol. 23, pp. 385–393  Search PubMed .
  • C. O. Pereira, M. F. Portilho, C. A. Henriques and F. M. Z. Zotin, J. Braz. Chem. Soc. , 2014, 25 , 2409–2416  CAS .
  • N. Narkhede and A. Patel, Ind. Eng. Chem. Res. , 2013, 52 , 13637–13644  CrossRef   CAS .
  • Y. F. He, X. X. Han, Q. Chen and L. X. Zhou, Chem. Eng. Technol. , 2013, 36 , 1559–1567  CrossRef .
  • Z. Ma, Z. Y. Shang, E. J. Wang, J. C. Xu, Q. Q. Xu and J. Z. Yin, Ind. Eng. Chem. Res. , 2012, 51 , 12199–12204  CAS .
  • W. L. Xie and D. Yang, Bioresour. Technol. , 2012, 119 , 60–65  CrossRef   CAS   PubMed .
  • W. L. Xie, H. Y. Wang and H. Li, Ind. Eng. Chem. Res. , 2012, 51 , 225–231  CrossRef   CAS .
  • W. L. Xie and D. Yang, Bioresour. Technol. , 2011, 102 , 9818–9822  CrossRef   CAS   PubMed .
  • L. L. Xu, W. Li, J. L. Hu, K. X. Li, X. Yang, F. Y. Ma, Y. N. Guo, X. D. Yu and Y. H. Guo, J. Mater. Chem. , 2009, 19 , 8571–8579  RSC .
  • C. W. Wang, J. F. Zhou, W. Chen, W. G. Wang, Y. X. Wu, J. F. Zhang, R. A. Chi and W. Y. Ying, Energy Fuels , 2008, 22 , 3479–3483  CrossRef   CAS .
  • W. Stoffel, F. Chu and E. H. Ahrens, Anal. Chem. , 1959, 31 , 307–308  CrossRef   CAS .
  • A. Alsalme, E. F. Kozhevnikova and I. V. Kozhevnikov, Appl. Catal., A , 2008, 349 , 170–176  CrossRef   CAS .
  • N. U. Soriano, R. Venditti and D. S. Argyropoulos, Fuel , 2009, 88 , 560–565  CrossRef   CAS .
  • M. Di Serio, R. Tesser, M. Dimiccoli, F. Cammarota, M. Nastasi and E. Santacesaria, J. Mol. Catal. A: Chem. , 2005, 239 , 111–115  CrossRef   CAS .
  • F. Su and Y. Guo, Green Chem. , 2014, 16 , 2934–2957  RSC .
  • U. Schuchardt, R. Sercheli and R. M. Vargas, J. Braz. Chem. Soc. , 1998, 9 , 199–210  CrossRef   CAS .
  • M. K. Lam and K. T. Lee, in Biofuels , ed. A. Pandey, C. Larroche, S. C. Ricke, C.-G. Dussap and E. Gnansounou, Academic Press, Amsterdam, 2011,  DOI: 10.1016/b978-0-12-385099-7.00016-4 , pp. 353–374.
  • P. Morin, B. Hamad, G. Sapaly, M. G. Carneiro Rocha, P. G. Pries de Oliveira, W. A. Gonzalez, E. Andrade Sales and N. Essayem, Appl. Catal., A , 2007, 330 , 69–76  CrossRef   CAS .
  • S. Nasreen, M. Nafees, L. A. Qureshi, M. S. Asad, A. Sadiq and S. D. Ali, Biofuels: State of Development , 2018, pp. 93–119  Search PubMed .
  • R. O. Idem, S. P. R. Katikaneni and N. N. Bakhshi, Fuel Process. Technol. , 1997, 51 , 101–125  CrossRef   CAS .
  • A. Macario, G. Giordano, B. Onida, D. Cocina, A. Tagarelli and A. M. Giuffrè, Appl. Catal., A , 2010, 378 , 160–168  CrossRef   CAS .
  • T. Meechai, S. Kongchamdee, W. W. Mar and E. Somsook, J. Oleo Sci. , 2018, 67 , 355–367  CrossRef   CAS   PubMed .
  • M. D. G. de Luna, J. L. Cuasay, N. C. Tolosa and T.-W. Chung, Fuel , 2017, 209 , 246–253  CrossRef   CAS .
  • X. Han, W. Yan, C.-T. Hung, Y. He, P.-H. Wu, L.-L. Liu, S.-J. Huang and S.-B. Liu, Korean J. Chem. Eng. , 2016, 33 , 2063–2072  CrossRef   CAS .
  • I. Istadi, U. Mabruro, B. A. Kalimantini, L. Buchori and D. D. Anggoro, Bull. Chem. React. Eng. Catal. , 2016, 11 , 34–39  CrossRef   CAS .
  • R. Bhandari, V. Volli and M. K. Purkait, J. Environ. Chem. Eng. , 2015, 3 , 906–914  CrossRef   CAS .
  • F.-J. Li, H.-Q. Li, L.-G. Wang and Y. Cao, Fuel Process. Technol. , 2015, 131 , 421–429  CrossRef   CAS .
  • H. Wu, J. Zhang, Q. Wei, J. Zheng and J. Zhang, Fuel Process. Technol. , 2013, 109 , 13–18  CrossRef   CAS .
  • C. Ofori-Boateng and K. T. Lee, Chem. Eng. J. , 2013, 220 , 395–401  CrossRef   CAS .
  • J.-X. Wang, K.-T. Chen, B.-Z. Wen, Y.-H. B. Liao and C.-C. Chen, J. Taiwan Inst. Chem. Eng. , 2012, 43 , 215–219  CrossRef   CAS .
  • Y. Ding, H. Sun, J. Duan, P. Chen, H. Lou and X. Zheng, Catal. Commun. , 2011, 12 , 606–610  CrossRef   CAS .
  • D. Meloni, R. Monaci, Z. Zedde, M. G. Cutrufello, S. Fiorilli and I. Ferino, Appl. Catal., B , 2011, 102 , 505–514  CrossRef   CAS .
  • X. Liu, X. Piao, Y. Wang and S. Zhu, J. Phys. Chem. A , 2010, 114 , 3750–3755  CrossRef   CAS   PubMed .
  • A. Coker, A. Iretski, M. White, R. Hernandez and T. French, 2010.
  • G. Teng, L. Gao, G. Xiao and H. Liu, Energy Fuels , 2009, 23 , 4630–4634  CrossRef   CAS .
  • C. Fan, Z. Bin-Bin, L. Jing, Z. Guo-Yu, F. Wei-Ping and Y. Le-Fu, Acta Phys.-Chim. Sin. , 2008, 24 , 1817–1823  Search PubMed .
  • M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka and J. Hidaka, Fuel , 2008, 87 , 2798–2806  CrossRef   CAS .
  • X. Liu, X. Piao, Y. Wang, S. Zhu and H. He, Fuel , 2008, 87 , 1076–1082  CrossRef   CAS .
  • X. Liu, X. Piao, Y. Wang and S. Zhu, Energy Fuels , 2008, 22 , 1313–1317  CrossRef   CAS .
  • X. Liu, H. He, Y. Wang, S. Zhu and X. Piao, Fuel , 2008, 87 , 216–221  CrossRef   CAS .
  • M. Kouzu, T. Kasuno, M. Tajika, S. Yamanaka and J. Hidaka, Appl. Catal., A , 2008, 334 , 357–365  CrossRef   CAS .
  • X. Liu, H. He, Y. Wang and S. Zhu, Catal. Commun. , 2007, 8 , 1107–1111  CrossRef   CAS .
  • W. Xie, H. Peng and L. Chen, Appl. Catal., A , 2006, 300 , 67–74  CrossRef   CAS .
  • T. Hiwot, Chem. Int. , 2018, 4 , 198–205  CAS .
  • F. Ullah, L. Dong, A. Bano, Q. Peng and J. Huang, J. Energy Inst. , 2016, 89 , 282–292  CrossRef   CAS .
  • S. Semwal, A. K. Arora, R. P. Badoni and D. K. Tuli, Bioresour. Technol. , 2011, 102 , 2151–2161  CrossRef   CAS   PubMed .
  • A. L. de Lima, C. M. Ronconi and C. J. A. Mota, Catal. Sci. Technol. , 2016, 6 , 2877–2891  RSC .
  • J. Buendia, G. Grelier and P. Dauban, in Advances in Organometallic Chemistry , ed. P. J. Pérez, Academic Press, 2015, vol. 64, pp. 77–118  Search PubMed .
  • G. Parshall and S. Ittel, 1992.
  • B. Cornils and W. A. Herrmann, vol. 1, 245–258.
  • E. V. Gusevskaya, Quim. Nova , 2003, 26 , 242–248  CrossRef   CAS .
  • V. Terrasson and E. Guénin, in Novel Magnetic Nanostructures , ed. N. Domracheva, M. Caporali and E. Rentschler, Elsevier, 2018,  DOI: 10.1016/b978-0-12-813594-5.00010-2 , pp. 333–371.
  • A. B. Ferreira, A. Lemos Cardoso and M. J. da Silva, ISRN Renewable Energy , 2012, 2012 , 142857  CrossRef .
  • C.-S. Cho, D.-T. Kim, H.-J. Choi, T.-J. Kim and S.-C. Shim, Bull. Korean Chem. Soc. , 2002, 23 , 539–540  CrossRef   CAS .
  • C. E. Gonçalves, L. O. Laier and M. J. d. Silva, Catal. Lett. , 2011, 141 , 1111–1117  CrossRef .
  • M. R. Meneghetti and S. M. P. Meneghetti, Catal. Sci. Technol. , 2015, 5 , 765–771  RSC .
  • Y. C. Brito, D. A. C. Ferreira, D. M. d. A. Fragoso, P. R. Mendes, C. M. J. d. Oliveira, M. R. Meneghetti and S. M. P. Meneghetti, Appl. Catal., A , 2012, 443–444 , 202–206  CrossRef   CAS .
  • G. Deshayes, F. A. G. Mercier, P. Degée, I. Verbruggen, M. Biesemans, R. Willem and P. Dubois, Chem.–Eur. J. , 2003, 9 , 4346–4352  CrossRef   CAS   PubMed .
  • S. Shyamroy, B. Garnaik and S. Sivaram, J. Polym. Sci., Part A: Polym. Chem. , 2005, 43 , 2164–2177  CrossRef   CAS .
  • I. Shiina, Chem. Rev. , 2007, 107 , 239–273  CrossRef   CAS   PubMed .
  • A. K. Singh, R. Prakash and D. Pandey, RSC Adv. , 2012, 2 , 10316–10323  RSC .
  • D. R. de Mendonça, J. P. V. da Silva, R. M. de Almeida, C. R. Wolf, M. R. Meneghetti and S. M. P. Meneghetti, Appl. Catal., A , 2009, 365 , 105–109  CrossRef .
  • G.-H. Hu, Y.-J. Sun and M. Lambla, Die Makromolekulare Chemie , 1993, 194 , 665–675  CrossRef   CAS .
  • B. Norjannah, H. C. Ong, H. H. Masjuki, J. C. Juan and W. T. Chong, RSC Adv. , 2016, 6 , 60034–60055  RSC .
  • M. Kaieda, T. Samukawa, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, F. Nomoto, K. Ohtsuka, E. Izumoto and H. Fukuda, J. Biosci. Bioeng. , 1999, 88 , 627–631  CrossRef   CAS   PubMed .
  • V. Kumari, S. Shah and M. N. Gupta, Energy Fuels , 2007, 21 , 368–372  CrossRef   CAS .
  • L. C. Meher, D. Vidya Sagar and S. N. Naik, Renewable Sustainable Energy Rev. , 2006, 10 , 248–268  CrossRef   CAS .
  • S. Tamalampudi, M. R. Talukder, S. Hama, T. Numata, A. Kondo and H. Fukuda, Biochem. Eng. J. , 2008, 39 , 185–189  CrossRef   CAS .
  • J. Rodrigues, A. Canet, I. Rivera, N. M. Osório, G. Sandoval, F. Valero and S. Ferreira-Dias, Bioresour. Technol. , 2016, 213 , 88–95  CrossRef   CAS   PubMed .
  • G. Lazar and L. Eirich, 1989.
  • P. Radha, K. Prabhu, A. Jayakumar, S. AbilashKarthik and K. Ramani, Process Biochem. , 2020, 95 , 17–29  CrossRef   CAS .
  • K. V. Fernandes, E. D. C. Cavalcanti, E. P. Cipolatti, E. C. G. Aguieiras, M. C. C. Pinto, F. A. Tavares, P. R. da Silva, R. Fernandez-Lafuente, S. Arana-Peña, J. C. Pinto, C. L. B. Assunção, J. A. C. da Silva and D. M. G. Freire, Catal. Today , 2021, 362 , 122–129  CrossRef   CAS .
  • R. C. Rial, O. N. de Freitas, C. E. D. Nazário and L. H. Viana, Renew. Energy , 2020, 149 , 970–979  CrossRef   CAS .
  • S. J. H. Júnior, J. N. R. Ract, L. A. Gioielli and M. Vitolo, 2019.
  • M. Mittelbach, J. Am. Oil Chem. Soc. , 1990, 67 , 168–170  CrossRef   CAS .
  • Y. Chen, B. Xiao, J. Chang, Y. Fu, P. Lv and X. Wang, Energy Convers. Manage. , 2009, 50 , 668–673  CrossRef   CAS .
  • N. Dizge, C. Aydiner, D. Y. Imer, M. Bayramoglu, A. Tanriseven and B. Keskinler, Bioresour. Technol. , 2009, 100 , 1983–1991  CrossRef   CAS   PubMed .
  • L. P. Christopher, K. Hemanathan and V. P. Zambare, Appl. Energy , 2014, 119 , 497–520  CrossRef   CAS .
  • L. Fjerbaek, K. V. Christensen and B. Norddahl, Biotechnol. Bioeng. , 2009, 102 , 1298–1315  CrossRef   CAS   PubMed .
  • M. Di Serio, R. Tesser, L. Pengmei and E. Santacesaria, Energy Fuels , 2008, 22 , 207–217  CrossRef   CAS .
  • A. K. Endalew, Y. Kiros and R. Zanzi, Biomass Bioenergy , 2011, 35 , 3787–3809  CrossRef   CAS .
  • S. K. Karmee and A. Chadha, Bioresour. Technol. , 2005, 96 , 1425–1429  CrossRef   CAS   PubMed .
  • A. P. S. Chouhan and A. K. Sarma, Renewable Sustainable Energy Rev. , 2011, 15 , 4378–4399  CrossRef   CAS .
  • A. Galadima and O. Muraza, Energy , 2014, 78 , 72–83  CrossRef   CAS .
  • D. Vujicic, D. Comic, A. Zarubica, R. Micic and G. Boskovic, Fuel , 2010, 89 , 2054–2061  CrossRef   CAS .
  • Z.-E. Tang, S. Lim, Y.-L. Pang, H.-C. Ong and K.-T. Lee, Renewable Sustainable Energy Rev. , 2018, 92 , 235–253  CrossRef   CAS .
  • V. Vinu and N. N. Binitha, Mater. Today: Proc. , 2020, 25 , 241–245  CAS .
  • G. Anusha, Curr. Trends Biotechnol. Pharm. , 2020, 14 , 134–140  CrossRef   CAS .
  • A. Hidayat, A. Chafidz and B. Sutrisno, 2020.
  • A. Hidayat, G. K. Roziq, F. Muhammad, W. Kurniawan and H. Hinode, 2020.
  • G. Liu, J. Yang and X. Xu, Sci. Rep. , 2020, 10 , 10273  CrossRef   CAS   PubMed .
  • D. Chaos-Hernández, H. Reynel-Avila, D. Mendoza-Castillo and A. Bonilla-Petriciolet, Bulg. Chem. Commun. , 2019, 51 , 89–92  Search PubMed .
  • J. F. Puna, M. J. N. Correia, A. P. S. Dias, J. Gomes and J. Bordado, React. Kinet., Mech. Catal. , 2013, 109 , 405–415  CrossRef   CAS .
  • M. A. Mosaberpanah and S. A. Umar, Mater. Today Sustain. , 2020, 7–8 , 100030  CrossRef .
  • G. Golakiya, University of Saskatchewan, 2020.
  • M. N. A. Ahmad Zawawi, K. Muthusamy, A. P. P. Abdul Majeed, R. Muazu Musa and A. Mokhtar Albshir Budiea, J. Build. Eng. , 2020, 27 , 100924  CrossRef .
  • W. Wang, K. Sun and H. Liu, Constr. Build. Mater. , 2020, 241 , 118119  CrossRef   CAS .
  • G. Tang, X. Liu, L. Zhou, P. Zhang, D. Deng and H. Jiang, Adv. Powder Technol. , 2020, 31 , 279–286  CrossRef   CAS .
  • O.-A. Clarence, International Development Innovation Network, 2016.
  • J. Singh, Int. J. N. Innovat. Eng. Technol. , 2019, 15 , 61–66  Search PubMed .
  • F. Nuruddin, N. Shafiq and N. M. Kamal, 2008.
  • L. Armesto, A. Bahillo, K. Veijonen, A. Cabanillas and J. Otero, Biomass Bioenergy , 2002, 23 , 171–179  CrossRef   CAS .
  • K. Bonet-Ragel, L. López-Pou, G. Tutusaus, M. D. Benaiges and F. Valero, Biocatal. Biotransform. , 2018, 36 , 151–158  CrossRef   CAS .
  • V. P. Della, I. Kühn and D. Hotza, Mater. Lett. , 2002, 57 , 818–821  CrossRef   CAS .
  • K.-T. Chen, J.-X. Wang, Y.-M. Dai, P.-H. Wang, C.-Y. Liou, C.-W. Nien, J.-S. Wu and C.-C. Chen, J. Taiwan Inst. Chem. Eng. , 2013, 44 , 622–629  CrossRef   CAS .
  • N. Saengprachum and S. Pengprecha, 2012.
  • L. A.-t. Bui, C.-t. Chen, C.-l. Hwang and W.-s. Wu, Int. J. Miner. Metall. Mater. , 2012, 19 , 252–258  CrossRef   CAS .
  • R. Pode, Renewable Sustainable Energy Rev. , 2016, 53 , 1468–1485  CrossRef .
  • G. Tufaner, A. Çalışkan, H. B. Yener and Ş. Şeref, 2019.
  • E. Saputra, M. W. Nugraha, Z. Helwani, M. Olivia and S. Wang, IOP Conf. Ser.: Mater. Sci. Eng. , 2018, 345 , 012019  CrossRef .
  • N. Saengprachum and S. Pengprecha, J. Taiwan Inst. Chem. Eng. , 2016, 58 , 441–450  CrossRef   CAS .
  • G.-Y. Chen, R. Shan, J.-F. Shi and B.-B. Yan, Fuel Process. Technol. , 2015, 133 , 8–13  CrossRef   CAS .
  • M. C. Manique, C. S. Faccini, B. Onorevoli, E. V. Benvenutti and E. B. Caramão, Fuel , 2012, 92 , 56–61  CrossRef   CAS .
  • A. B. Soares, P. R. N. da Silva, A. M. Stumbo and J. C. C. Freitas, Quim. Nova , 2012, 35 , 268–273  CrossRef   CAS .
  • L. Aisyah, C. Wibowo, S. Bethari, D. Ufidian and R. Anggarani, 2018.
  • Z. Wei, C. Xu and B. Li, Bioresour. Technol. , 2009, 100 , 2883–2885  CrossRef   CAS   PubMed .
  • Y. C. Sharma, B. Singh and J. Korstad, Energy Fuels , 2010, 24 , 3223–3231  CrossRef   CAS .
  • M. T. Hincke, Y. Nys, J. Gautron, K. Mann, A. B. Rodriguez-Navarro and M. D. McKee, Front. Biosci. , 2012, 17 , 80  CrossRef   PubMed .
  • Y. Nys and J. Gautron, in Bioactive egg compounds , Springer, 2007, pp. 99–102  Search PubMed .
  • X. Xuan, C. Yue, S. Li and Q. Yao, Fuel , 2003, 82 , 575–579  CrossRef   CAS .
  • R. Kumar, S. Kumar and S. P. Mehrotra, Resour., Conserv. Recycl. , 2007, 52 , 157–179  CrossRef .
  • S. K. Chaudhuri and B. Sur, J. Environ. Eng. , 2000, 126 , 583–594  CrossRef   CAS .
  • Q. V. Trinh, S. Nagy and G. Mucsi, presented in part at the MultiScience – XXXIII. microCAD International Multidisciplinary Scientific Conference , 2019  Search PubMed .
  • S. M. Pavlović, D. M. Marinković, M. D. Kostić, I. M. Janković-Častvan, L. V. Mojović, M. V. Stanković and V. B. Veljković, Fuel , 2020, 267 , 117171  CrossRef .
  • J. Malonda Shabani, O. Babajide, O. Oyekola and L. Petrik, Catalysts , 2019, 9 , 1052  CrossRef .
  • T. Aniokete, M. Ozonoh and M. O. Daramola, Int. J. Renew. Energy Res. , 2019, 9 , 1924–1937  Search PubMed .
  • P. Y. He, Y. J. Zhang, H. Chen, Z. C. Han and L. C. Liu, Fuel , 2019, 257 , 116041  CrossRef   CAS .
  • Y. W. Go and S. H. Yeom, Environ. Eng. Res. , 2019, 24 , 324–330  CrossRef .
  • D. R. Lathiya, D. V. Bhatt and K. C. Maheria, ChemistrySelect , 2019, 4 , 4392–4397  CrossRef   CAS .
  • Z. Helwani, W. Fatra, E. Saputra and R. Maulana, IOP Conf. Ser.: Mater. Sci. Eng. , 2018, 334 , 012077  Search PubMed .
  • Y. Xiang, Y. Xiang and L. Wang, J. Taibah Univ. Sci. , 2017, 11 , 1019–1029  CrossRef .
  • M. C. Manique, L. V. Lacerda, A. K. Alves and C. P. Bergmann, Fuel , 2017, 190 , 268–273  CrossRef   CAS .
  • H. Satriadi, A. Khaibar and M. M. Almakhi, 2017.
  • H. Hadiyanto, S. P. Lestari, A. Abdullah, W. Widayat and H. Sutanto, Int. J. Energy Environ. Eng. , 2016, 7 , 297–305  CrossRef   CAS .
  • Y. Xiang, L. Wang and Y. Jiao, J. Environ. Chem. Eng. , 2016, 4 , 818–824  CrossRef   CAS .
  • P. Kumar, M. Aslam, N. Singh, S. Mittal, A. Bansal, M. K. Jha and A. K. Sarma, RSC Adv. , 2015, 5 , 9946–9954  RSC .
  • W. W. S. Ho, H. K. Ng, S. Gan and S. H. Tan, Energy Convers. Manage. , 2014, 88 , 1167–1178  CrossRef   CAS .
  • O. Babajide, Catal. Today , 2013, 201 , 210  CrossRef   CAS .
  • O. Babajide, N. Musyoka, L. Petrik and F. Ameer, Catal. Today , 2012, 190 , 54–60  CrossRef   CAS .
  • M. Senthil, K. Visagavel, C. G. Saravanan and K. Rajendran, Fuel Process. Technol. , 2016, 149 , 7–14  CrossRef   CAS .
  • W. Liu, J. Yang and B. Xiao, J. Hazard. Mater. , 2009, 161 , 474–478  CrossRef   CAS   PubMed .
  • H. da Silva Almeida, O. A. Corrêa, J. G. Eid, H. J. Ribeiro, D. A. R. de Castro, M. S. Pereira, L. M. Pereira, A. de Andrade Mâncio, M. C. Santos, J. A. da Silva Souza, L. E. P. Borges, N. M. Mendonça and N. T. Machado, J. Anal. Appl. Pyrolysis , 2016, 118 , 20–33  CrossRef   CAS .
  • Q. Liu, R. Xin, C. Li, C. Xu and J. Yang, J. Environ. Sci. , 2013, 25 , 823–829  CrossRef   CAS .
  • M. Senthil, K. Visagavel and A. Avinash, Energy Sources, Part A , 2016, 38 , 876–881  CrossRef   CAS .
  • G. Alkan, C. Schier, L. Gronen, S. Stopj and B. Friedrich, Metals , 2017, 7 , 458  CrossRef .
  • K. Yoon, J.-M. Jung, D.-W. Cho, D. C. W. Tsang, E. E. Kwon and H. Song, J. Hazard. Mater. , 2019, 366 , 293–300  CrossRef   CAS   PubMed .
  • L. Y. Zhang, Y. Z. Wang, G. T. Wei, Z. Y. Li and H. N. Huang, Energy Sources, Part A , 2016, 38 , 1713–1720  CrossRef   CAS .
  • A. Bhattacharyya and B. S. Rajanikanth, Energy Procedia , 2015, 75 , 2371–2378  CrossRef   CAS .
  • Y. N. Dhoble and S. Ahmed, J. Mater. Cycles Waste Manage. , 2018, 20 , 1373–1382  CrossRef   CAS .
  • T. A. Branca, V. Colla, D. Algermissen, H. Granbom, U. Martini, A. Morillon, R. Pietruck and S. Rosendahl, Metals , 2020, 10 , 345  CrossRef   CAS .
  • A. Galadima and O. Muraza, J. Cleaner Prod. , 2020, 263 , 121358  CrossRef   CAS .
  • F. Hildor, T. Mattisson, H. Leion, C. Linderholm and M. Rydén, Int. J. Greenhouse Gas Control , 2019, 88 , 321–331  CrossRef   CAS .
  • G. Kabir, A. T. Mohd Din and B. H. Hameed, Bioresour. Technol. , 2018, 249 , 42–48  CrossRef   CAS   PubMed .
  • R. Bakti Cahyono, A. N. Rozhan, N. Yasuda, T. Nomura, S. Hosokai, Y. Kashiwaya and T. Akiyama, Fuel , 2013, 109 , 439–444  CrossRef   CAS .
  • Y. Zong, X. Zhang, E. Mukiza, X. Xu and F. Li, Appl. Sci. , 2018, 8 , 1187  CrossRef .
  • H. Zhou, B. Li, Y. Wei, H. Wang, Y. Yang and A. McLean, Can. Metall. Q. , 2019, 58 , 187–195  CrossRef   CAS .
  • B. Li, Y. Wei, H. Wang and Y. Yang, ISIJ Int. , 2018, 58 , 1168–1174  CrossRef   CAS .
  • J. Wang, S. Xing, Y. Huang, P. Fan, J. Fu, G. Yang, L. Yang and P. Lv, Appl. Energy , 2017, 190 , 703–712  CrossRef   CAS .
  • X. Ma, Y. Li, L. Shi, Z. He and Z. Wang, Appl. Energy , 2016, 168 , 85–95  CrossRef   CAS .
  • Y. Kashiwaya, K. Toishi, Y. Kaneki and Y. Yamakoshi, ISIJ Int. , 2007, 47 , 1829–1831  CrossRef   CAS .
  • T. Siengchum, M. Isenberg and S. S. C. Chuang, Fuel , 2013, 105 , 559–565  CrossRef   CAS .
  • A. Tharwani, A. Sablani, G. Batra, S. Tiwari, D. Reel and M. N. Gandhi, Int. J. Innov. Sci. Technol. , 2017, 4 , 37–41  Search PubMed .
  • K. Gunasekaran, R. Annadurai and P. S. Kumar, Constr. Build. Mater. , 2012, 28 , 208–215  CrossRef .
  • M. Kaur and M. Kaur, Int. J. Appl. Eng. Res. , 2012, 7 , 05–08  Search PubMed .
  • A. R. Hidayu and N. Muda, Procedia Eng. , 2016, 148 , 106–113  CrossRef   CAS .
  • A. Endut, S. H. Y. S. Abdullah, N. H. M. Hanapi, S. H. A. Hamid, F. Lananan, M. K. A. Kamarudin, R. Umar, H. Juahir and H. Khatoon, Int. Biodeterior. Biodegrad. , 2017, 124 , 250–257  CrossRef   CAS .
  • Y. S. Pradana, A. Hidayat, A. Prasetya and A. Budiman, 2018.
  • A. Buasri, N. Chaiyut, V. Loryuenyong, C. Rodklum, T. Chaikwan, N. Kumphan, K. Jadee, P. Klinklom and W. Wittayarounayut, Sci. Asia , 2012, 38 , 283–288  CAS .
  • K. Vinukumar, A. Azhagurajan, S. C. Vettivel, N. Vedaraman and A. Haiter Lenin, Fuel , 2018, 222 , 180–184  CrossRef   CAS .
  • R. S. Pinheiro, A. M. M. Bessa, B. A. de Queiroz, A. M. S. F. Duarte, H. B. de Sant'Ana and R. S. de Santiago-Aguiar, Fluid Phase Equilib. , 2014, 361 , 30–36  CrossRef   CAS .
  • A. S. Shelke, K. R. Ninghot, P. P. Kunjekar and S. P. Gaikwad, Int. J. Civ. Eng. Res. , 2014, 2278–3652  Search PubMed .
  • H. Li, S. Niu, C. Lu, M. Liu and M. Huo, Sci. China: Technol. Sci. , 2014, 57 , 438–444  CrossRef   CAS .
  • J. Cheng, J. Zhou, J. Liu, X. Cao and K. Cen, Energy Fuels , 2009, 23 , 2506–2516  CrossRef   CAS .
  • H. Li, S. Niu, C. Lu, M. Liu and M. Huo, Energy Convers. Manage. , 2014, 86 , 1110–1117  CrossRef   CAS .
  • H. Li, S.-l. Niu, C.-m. Lu and S.-q. Cheng, Energy Convers. Manage. , 2015, 103 , 57–65  CrossRef   CAS .
  • A. Wahyudi, W. Kurniawan and H. Hinode, J. Chem. Eng. Jpn. , 2017, 50 , 561–567  CrossRef   CAS .
  • R. Shan, C. Zhao, P. Lv, H. Yuan and J. Yao, Energy Convers. Manage. , 2016, 127 , 273–283  CrossRef   CAS .
  • A. Marwaha, P. Rosha, S. K. Mohapatra, S. K. Mahla and A. Dhir, Fuel Process. Technol. , 2018, 181 , 175–186  CrossRef   CAS .
  • M. Arsalanfar, A. A. Mirzaei, H. R. Bozorgzadeh, A. Samimi and R. Ghobadi, J. Ind. Eng. Chem. , 2014, 20 , 1313–1323  CrossRef   CAS .
  • S. Mohebbi, M. Rostamizadeh and D. Kahforoushan, Fuel , 2020, 266 , 117063  CrossRef   CAS .
  • Z. T. Alismaeel, A. S. Abbas, T. M. Albayati and A. M. Doyle, Fuel , 2018, 234 , 170–176  CrossRef   CAS .
  • C. Thunyaratchatanon, A. Luengnaruemitchai, J. Jitjamnong, N. Chollacoop, S.-Y. Chen and Y. Yoshimura, Energy Fuels , 2018, 32 , 9744–9755  CrossRef   CAS .
  • L. M. Yang, P. M. Lv, Z. H. Yuan, W. Luo, Z. M. Wang and H. W. Li, 2011.
  • R. M. M. Bühler, A. C. Dutra, F. Vendruscolo, D. E. Moritz and J. L. Ninow, Food Sci. Technol. , 2013, 33 , 9–13  CrossRef .
  • B. J. Kerr, W. A. Dozier III and K. Bregendahl, 2007.
  • S. S. Yazdani and R. Gonzalez, Curr. Opin. Biotechnol. , 2007, 18 , 213–219  CrossRef   CAS   PubMed .
  • J.-H. Ng, S. K. Leong, S. S. Lam, F. N. Ani and C. T. Chong, Energy Convers. Manage. , 2017, 143 , 399–409  CrossRef   CAS .
  • W. Bühler, E. Dinjus, H. J. Ederer, A. Kruse and C. Mas, J. Supercrit. Fluids , 2002, 22 , 37–53  CrossRef .
  • Z. Ullah, A. S. Khan, N. Muhammad, R. Ullah, A. S. Alqahtani, S. N. Shah, O. B. Ghanem, M. A. Bustam and Z. Man, J. Mol. Liq. , 2018, 266 , 673–686  CrossRef   CAS .

Literature Review

  • First Online: 01 January 2014

Cite this chapter

literature review on biodiesel production

  • Pogaku Ravindra 3 &
  • Kenthorai Raman Jegannathan 4  

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

902 Accesses

The literature review of biodiesel production is presented in this chapter. In the first part, the various catalysts which are being used for biodiesel production was reviewed in detail. In the second part the need for immobilized enzyme, the various immobilization techniques and immobilized enzyme used for biodiesel production were reviewed critically. The third part in the literature review was devoted to κ-carrageenan, the enzymes, the methods used for immobilization using κ-carrageenan and applications were reviewed. In the fourth part the factors effecting the biodiesel production using immobilized lipase was reviewed critically and various suggestions were given based on the literature. The latter parts were devoted to the immobilized bioreactors, enzyme kinetics, life cycle assessment, and economics assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Akoh CC, Chang SS, Lee GG, Shaw JJ (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005

Article   PubMed   CAS   Google Scholar  

Al-Zuhair S (2005) Production of biodiesel by lipase-catalyzed transesterification of vegetable Oils: a kinetics study. Biotechnol Prog 21:1442–1448

Al-Zuhair S, Fan YW, Lim SJ (2007) Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem 42:951–960

Article   CAS   Google Scholar  

Al-Zuhair S, Jayaraman KS, Smita K, Chan W (2006) The effect of fatty acid concentration and water content on the production of biodiesel by lipase. Biochem Eng J 30:212–217

Al-zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuel Bioprod Bior 1:57–66

Bacovsky D, Körbitz W, Mittelbach M, Wörgetter M (2007) Biodiesel production: technologies and European providers. IEA Task 39 Report T39-B6

Google Scholar  

Balcão VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: state of the art. Enzyme Microb Technol 18:392–416

Article   PubMed   Google Scholar  

Be´Lafi-Bako K, Kova´Cs F, Gubicza L, Hancsok J (2002) Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system. Biocatal Biotransfor 20:437–439

Article   Google Scholar  

Bommarius AS, Riebel-Bommarius BR (2000) Biocatalysts: fundamentals and applications. John Wiley & sons, New York

Bondioli P (2004) The preparation of fatty acid esters by means of catalytic reactions. Top Catal 27:77–82

Bonrath W, Karge R, Netscher T (2002) Lipase-catalyzed transformations as key-steps in the large-scale preparation of vitamins. J Mol Catal B: Enzym 19:67–72

Bosley JA, Peilow AD (1997) Immobilization of lipase on porous polypropylene: reduction in esterification efficiency at low loading. J Am Oil Chem Soc 74:107–111

Canakci M, Gerpen VJ (2001) Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 44:1429–1436

Cao LQ, Langen VL, Sheldon RA (2003) Immobilized enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

Cao L (2005) Immobilized enzymes: science or art? Curr Opin Chem Biol 9:217–226

Caye MD, Nghiem PN, Terry HW (2008) Biofuels engineering process technology. McGraw-Hill, New York

Cecilia GA, Amalia AC, Ferreira M (2007) Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids. Enzyme Microb Technol 41:35–43

Chamorro S, Sanchez-Montero JM, Alcantara AR, Sinisterra JV (1998) Treatment of Candida rugosa lipase with short-chain polar organic solvents enhances its hydrolytic and synthetic activities. Biotechnol Lett 20:499–505

Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica Lipase for transesterification. J Biosci Bioeng 95:466–469

Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

Colton IJ, Ahmed SN, Kazlauskas RJ (1995) A2-propanol treatment increases the enantioselectivity of Candida rugosa lipase toward esters of chiral carboxylic acids. J Org Chem 60:212–217

Concawe (2006) Well-to-wheels analysis of future automotive fuels and power trains in the European context, European commission . EUCAR and EC Joint Research Centre. Report. ( http://ies.jrc.ec.europa.eu/wtw.html )

Diasakou M, Louloudi A, Papayannakos N (1998) Kinetics of the noncatalytic transesterification of soybean oil. Fuel 77:1297–1302

Dizge N, Aydiner C, Derya YI, Mahmut B, Aziz T, Keskinler B (2009) Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour Technol 100:1983–1991

Dong HL, Jung MK, Seong WK, Ji WL, Seung WK (2006) Pretreatment of lipase with soybean oil before immobilization to prevent loss of activity. Biotechnol Lett 28:1965–1969

Dossat V, Combes D, Marty A (2002) Lipase-catalyzed transesterification of high oleic sunflower oil. Enzyme Microb Technol 30:90–94

Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B: Enzym 30:25–129

Du W, Xu Y, Liu D, Li Z (2005) Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J Mol Catal B: Enzym 37:68–71

Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current State of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315

Freedman BW, Kwolek F, Pryde EH (1986) Quantitation in the analysis of transesterified soybean oil by capillary gas chromatography. J Am Oil Chem Soc 63:1370–1375

Halim SFA, Kamaruddin AH (2008) Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. Process Biochem 43:1436–1439

Halim SFA, Kamaruddin AH, Fernando WJN (2009) Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresour Technol 100:710–716

Harding KG, Dennis JS, Blottnitz HV, Harrison STL (2008) A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel. J Clean Prod 16:1368–1378

Hsu A, Jones K, Marmer WN, Foglia TA (2001) Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol-gel. J Am Oil Chem Soc 78:585–588

International Energy Agency (2007) Energy technology essentials: biomass for power generation and CHP. Report

Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B: Enzym 16:53–58

Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase- a critical review. Crit Rev Biotechnol 28:253–264

Jegannathan KR, Chan ES, Ravindra P (2009) Harnessing biofuels: a global renaissance in energy production? Renew Sust Energy Rev 13:2163–2168

Kang ST, Rhee JS (1989) Characteristics of immobilized lipase-catalyzed hydrolysis of olive oil of high concentration in reverse phase systems. Biotechnol Bioeng 33:1469–1476

Karube I, Yugeta Y, Suzuki S (1977) Electric field control of lipase membrane activity. Biotechnol Bioeng 19:1493–1501

Kasteren VJMN, Nisworo AP (2007) A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour Conserv Recycle 50:442–458

Kayode Coker A (2001) Modeling of chemical kinetics and reactor design. Gulf Publishing Company, Houston

Kennedy JF, Melo EHM, Jumel K (1990) Immobilized enzymes end cells. Chem Eng Prog 86:81–89

CAS   Google Scholar  

Kiwjaroun C, Tubtimdee C, Piumsomboon P (2009) LCA studies comparing biodiesel synthesized by conventional and supercritical methanol methods. J Clean Prod 17:143–153

Kreiner M, Parker MC, Barry DM (2001) Enzyme-coated micro-crystals: a 1-step method for high activity biocatalyst preparation. Chem Commun 12:1096–1097

Kumari V, Shah S, Gupta MN (2007) Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica . Energy Fuel 21:368–372

Kusdiana D, Saka S (2001) Methyl esterification of free fatty acids of rapeseed oil as treated in supercritical methanol. J Chem Eng Japan 34:383–387

Li L, Du W, Liu D, Wang L, Li Z (2006) Lipase catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvents as the reaction medium. J Mol Catal B: Enzym 43:58–62

Licht FO (2008) World ethanol & biofuels. Report, no. 16

López DE, Goodwin JG, Bruce DA (2007) Transesterification of triacetin with methanol on nafion acid resins. J Catal 245:379–385

Lu J, Nie K, Xie F, Wang F, Tan T (2007) Enzymatic synthesis of fatty acids methyl esters from lard with immobilized Candida sp. 99–125. Process Biochem 42:1367–1370

Malcata FX, Hill CG (1991) Use of a lipase immobilized in a membrane reactor to hydrolyze the glycerides of butter oil. Biotechnol Bioeng 38:853–868

Marchetti JM, Errazu AF (2008) Technoeconomic study of supercritical biodiesel production plant. Energy Conver Manag 49:2160–2164

Mittelbach M, Worgetter M, Pernkopf J, Junek H (1983) Diesel fuel derived from vegetable oils: preparation and use of rape oil methyl-ester. Energy Agric 2:369–384

Mittelbach M (1990) Lipase catalyzed alcoholysis of sunflower oil. J Am Oil Chem Soc 67: 168–170

Mittelbach M, Remschmidt C (2006) Biodiesel: the comprehensive handbook. Martin Mittelbach, Graz

Mukesh D, Anil Kumar K, Gaikar VG (2004) Biotransformations and bioprocesses. Marcel Dekker, New York

Mukesh KM, Reddy JRC, Rao BVSK, Prasad RBN (2006) Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor. Biotechnol Lett 28:637–640

Mukesh KM, Reddy JRC, Rao BVSK, Prasad RBN (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98:1260–1264

Nelson LA, Foglia TA, Marmer WN (1996) Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 73:1191–1195

Nie K, Xie F, Wang T, Tan T (2006) Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B: Enzym 43:142–147

Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777

Oliveira JV, Oliveira D (2001) Enzymatic alcoholysis of palm kernel oil in n-hexane and SCCO 2 . J Supercrit Fluid 19:141–148

Orcaire O, Buisson P, Pierre AC (2006) Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J Mol Catal B: Enzym 42:106–113

Piculell L (2006) Gelling carrageenans, food polysaccharides and their applications, 2nd edn. Taylor & Francis, London

Pleiss J, Fisher M, Schmid RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys 93:67–80

Posorske LH (1984) Industrial-Scale application of enzymes to the fats and oil industry. J Am Oil Chem Soc 61:1758–1760

Pronk W, Kerkhof PJA, Van Helden C, Vant Reit K (1988) The hydrolysis of triglycerides by immobilized lipase in a hydrophilic membrane reactor. Biotechnol Bioeng 32:512–518

Ramachandra MV, Jayadev B, Muniswaran PKA (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol Bioproc Eng 7:57–66

Rayon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–653

Reyed M (2007) Novel hybrid entrapment approach for probiotic cultures and its application during lyophilization. Internet J Biol Anthr 3: 2.

REN21 (2009) Renewables Global Status Report: Update

Sakai T, Kawashima A, Koshikawa T (2009) Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. Bioresour Technol 100:3268–3276

Salis A, Pinna M, Monduzzi M, Solinas V (2005) Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol 119:291–299

Samukawa T, Kaieda M, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Fukuda H (2000) Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J Biosci Bioeng 90:180–183

Sankalia MG, Mashru RC, Sankalia MJ, Sutariya VB (2006) Stability improvement of alpha-amylase entrapped in kappa-carrageenan beads: physicochemical characterization and optimization using composite index. Int J Pharm 312:1–14

Shah S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy Fuel 18:154–159

Shah S, Gupta MN (2006) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem 42:409–414

Sheehan J, Cambreco V, Duffield J, Garboski M, Shapouri H (1998) An overview of biodiesel and petroleum diesel life cycles. A report by US Department of Agriculture and Energy 1–35

Shimada Y, Watanabe Y, Samukawa T (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

Shimada Y, Watanabe H, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B: Enzym 17:133–142

Soumanou MM, Bornscheuer UT (2003) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33:97–103

Sriappareddy T, Shinji H, Takanori T, Talukder MR, Kondo A, Fukuda H (2007) Immobilized recombinant Aspergillus oryzae expressing heterologous lipase: an efficient whole-cell biocatalyst for enantioselective transesterification in non-aqueous medium. J Mol Catal B: Enzym 48:33–37

Sriappareddy T, Talukder MR, Hama S, Numata T, Kondo A, Fukuda H (2008) Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39:185–189

Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4:111–113

Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543:223–238

Sung HH, Lan MN, Lee SN, Hwang SM, Koo YM (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb Technol 41:480–483

Talukder MMR, Beatrice KLM, Song OP, Puah S, Wu JC, Won CJ, Chow Y (2007) Improved method for efficient production of biodiesel production from palm oil. Biocatal Biotransfor 22:141–144

Talukder MMR, Puah SM, Wu JC, Won CJ, Chow Y (2006) Lipase-catalyzed methanolysis of palm oil in presence and absence of organic solvent for production of biodiesel. Biocatal Biotransfor 24:257–262

Tillman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low input high-diversity grassland biomass. Science 314:1598–1600

Turkan A, Kalay S (2006) Monitoring lipase- catalyzed methanolysis of sunflower oil by reversed-phase high-performance liquid chromatography: elucidation of the mechanism of lipases. J Chromatogr A 1127:34–44

Velde FV, Ruiter GAD (2002) Polysaccharides II: polysaccharides from eukaryotes. Wiley-VCH, Weinheim

Wang L, Du W, Liu D, Li L, Dai N (2006) Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J Mol Catal B: Enzym 43:29–32

Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica Lipase. J Am Oil Chem Soc 77:355–360

Watanabe Y, Shimada Y, Sugihara A, Tominaga Y (2001) Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J Am Oil Chem Soc 78:703–707

West AH, Posarac D, Ellis N (2008) Assessment of four biodiesel production processes using HYSYS plant. Bioresour Technol 99:6587–6601

Wu WH, Foglia TA, Marmer WN, Phillips JG (1999) Optimizing production of ethyl esters of grease using 95 % ethanol by response surface methodology. J Am Oil Chem Soc 76:517–521

Xavier MF, Hector RR, Hugo SG, Charles GH, Clyde HA (1990) Immobilized lipase reactors for modification of fats and oils- a review. J Am Oil Chem Soc 67:890–910

Xu Y, Du W, Liu D, Zeng J (2003) A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnol Lett 25:1239–1241

Xu Y, Du W, Liu D (2005) Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. J Mol Catal B: Enzym 32:241–245

Yadav GD, Jadhav SR (2005) Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: transesterification in non-aqueous medium. Micropor Mesopor Mat 86:215–222

Yagiz F, Kazan D, Akin AN (2007) Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites. Chem Eng J 134:262–267

Yang G, Tian-Wei T, Kai-Li N, Fang W (2006) Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media. Chin J Biotechnol 22:114–118

Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–21

Yee KF, Tan KT, Abdullah AZ, Lee KT (2009) Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Appl Energy 86:189–196

Yesiloglu Y (2004) Immobilized lipase-catalyzed ethanolysis of sunflower oil. J Am Oil Chem Soc 81:157–160

You YD, Shie JL, Chang CY, Huang SH, Pai CY, Yu YH, Chang CH (2008) Economic cost analysis of biodiesel production: case in soybean oil. Energy Fuel 22:182–189

Zeng HG, Liao K, Deng X, Jiang H, Zhang F (2009) Characterization of the lipase immobilized on Mg–Al hydrotalcite for biodiesel. Process Biochem 44:791–798

Download references

Author information

Authors and affiliations.

University Malaysia Sabah School of Engineering & Info tech, Kota Kinabalu, Malaysia

Pogaku Ravindra

École polytechnique fédérale de Lausanne, Lausanne, Switzerland

Kenthorai Raman Jegannathan

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Ravindra, P., Jegannathan, K.R. (2015). Literature Review. In: Production of biodiesel using lipase encapsulated in κ-carrageenan. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-10822-3_2

Download citation

DOI : https://doi.org/10.1007/978-3-319-10822-3_2

Published : 23 September 2014

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-10821-6

Online ISBN : 978-3-319-10822-3

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. (PDF) International literature review on the possibilities of biodiesel

    literature review on biodiesel production

  2. (PDF) A review on biodiesel production as alternative fuel

    literature review on biodiesel production

  3. A Review on Biodiesel Production Using c

    literature review on biodiesel production

  4. (PDF) Synthesis of biodiesel

    literature review on biodiesel production

  5. (PDF) A review on production of biodiesel from waste cooking oils

    literature review on biodiesel production

  6. (PDF) A REVIEW ON BIODIESEL PRODUCTION TECHNIQUE

    literature review on biodiesel production

VIDEO

  1. Biodiesel : Transesterification, Synthesis and Advantages

  2. Biodiesel from Plant Vegetable Oils and its application as Engine fuel

  3. What is BioDiesel and Should I Use it?

  4. Modular Biodiesel Processing Plant for Bio-fuel

  5. Biodiesel production

  6. Chemistry Of Biodiesel Production

COMMENTS

  1. (PDF) A Review on Biodiesel Production

    Biodiesel is one of the pr omising alternatives for the replacement of the con-. ventional diesel. Currently about 36 billion liters of biodiesel has been produced globally by di erent countries ...

  2. Economic and Sustainability of Biodiesel Production—A ...

    As Earth's fossil energy resources are limited, there is a growing need for renewable resources such as biodiesel. That is the reason why the social, economic and environmental impacts of biofuels became an important research topic in the last decade. Depleted stocks of crude oil and the significant level of environmental pollution encourage researchers and professionals to seek and find ...

  3. Progress and facts on biodiesel generations, production methods

    In this review paper all the information about biodiesel fuels like various types of sources, methods of biodiesel production, factors affecting biodiesel production, techniques to promote biodiesel production, etc. are explained in an interactive way. Sources for literature research include Elsevier Science Direct, Web of Science, and the ...

  4. Review of biodiesel composition, properties, and specifications

    Utilizing an extensive literature review, this project investigated numerous topic areas, including policy drivers, fuel volumes and feedstocks, production technologies, fuel properties and specifications, in-use handling and performance, emissions impacts, and life-cycle analyses. ... Miao et al. reported the production of biodiesel from ...

  5. Sustainable biodiesel: A comprehensive review on feedstock, production

    Typically, biodiesel is blended with diesel fuel [6], with most biodiesel blends consisting of B5 (up to 5%) and B20 (6% to 20%).B20 biodiesel blends offer performance similar to that of diesel engines. Biodiesel, which is produced from vegetable oils or animal fats, consists of mono-alkyl esters of long-chain fatty acids, also known as FAMEs [7]. ...

  6. Economic and Sustainability of Biodiesel Production—A Systematic

    The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-generation technology; however, further generations cannot be ...

  7. Biodiesel blends: a comprehensive systematic review on ...

    Biodiesel is a renewable, clean-burning diesel replacement that can be used in existing diesel engines without modification. Biodiesel is among the nation's first domestically developed and economically usable advanced biofuels. Throughout the field of biodiesel including FAME/FAGE diesel variants, the concentrations of close to around 20% conform to every requirement out from the existing ...

  8. Literature Review

    2.2.1 Non-catalyzed Biodiesel Production. In a more recent development, non-catalytic supercritical transesterification with co-solvent provides a new way of producing biodiesel fuel from bio-based oils (triglycerides) (Gui, Lee, & Bhatia, 2009). It was reported that biodiesel can be produced at a relatively fast rate without the presence of catalyst by heating up to supercritical stage of ...

  9. Overview of Feedstocks for Sustainable Biodiesel Production and

    The energy demand of the world is skyrocketing due to the exponential economic growth and population expansion. To meet the energy requirement, the use of fossil fuels is not a good decision, causing environmental pollution such as CO2 emissions. Therefore, the use of renewable energy sources like biofuels can meet the energy crisis especially for countries facing oil shortages such as ...

  10. Short Review of Biodiesel Production by the Esterification

    Furthermore, this process is eco-friendly because it eliminates the use of harmful solvents and catalyst. Furthermore, an extensive literature review has been carried out in order to assess the advantages and disadvantages of the different methodologies in biodiesel production via catalytic esterification and transesterification (see Table 27.1 ...

  11. Biodiesel production from microalgae oils: A critical review

    This study explores various aspects of microalgal oils as biodiesel feedstock, including different microalgal species and their oil content, technologies used for biodiesel production from microalgal oils and biomass, and biodiesel standards and characterization across other countries.

  12. A review on biodiesel production, combustion, emissions ...

    Abstract. This article is a literature review on biodiesel production, combustion, performance and emissions. This study is based on the reports of about 130 scientists who published their results between 1980 and 2008. As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of ...

  13. Sustainable biodiesel generation through catalytic transesterification

    Sustainable biodiesel generation through catalytic transesterification of waste sources: a literature review and bibliometric survey. Walid Nabgan ab, Aishah Abdul Jalil * ab, Bahador Nabgan ab, Arvind H. Jadhav c, Muhammad Ikram * d, Anwar Ul-Hamid e, Mohamad Wijayanuddin Ali ab and Nurul Sahida Hassan ab a School of Chemical and Energy Engineering, Faculty of Engineering, Universiti ...

  14. PDF Economic and Sustainability of Biodiesel Production A Systematic

    and find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-

  15. Yeast-Mediated Biomass Valorization for Biofuel Production: A ...

    The basic idea behind biodiesel production is the transesterification process (transformation of oils (fatty acids) into fatty acid methyl esters, commonly ... Sheetal Thakur, Christine Jeyaseelan, and Debarati Paul. 2023. "Yeast-Mediated Biomass Valorization for Biofuel Production: A Literature Review" Fermentation 9, no. 9: 784 ...

  16. Literature Review

    The third part in the literature review was devoted to κ-carrageenan, the enzymes, the methods used for immobilization using κ-carrageenan and applications were reviewed. In the fourth part the factors effecting the biodiesel production using immobilized lipase was reviewed critically and various suggestions were given based on the literature.

  17. Biodiesel production: a review

    The laboratory scale process yielded 400 g of tallow ester from 500 g of beef tallow. More recently, several patents were awarded on transesterification of natural oils and fats to make biodiesel fuel. Wimmer (1992a) blended 27.8 g of KOH, 240 L of methanol and 1618 kg of unrefined rape oil and stirred it for 20 min.

  18. PDF Economic and Sustainability of Biodiesel Production— A Systematic

    find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first‐

  19. Biodiesel production from microalgae oils: A critical review

    The global energy demand is expected to rise due to improved living standards, population growth, and urbanization. It underscores the need to explore alternative energy sources. Biodiesel, derived from renewable feedstock, is considered a promising solution to meet future energy needs while addressing concerns about dwindling fossil fuel reserves and environmental issues. Microalgal oils are ...

  20. A review of biodiesel production from Jatropha curcas L. oil

    This paper reviews the production of biodiesel using vegetable oils, mainly of non-edible Jatropha curcas as potential feedstock, the technologies implemented, the process variables, economic aspects and environmental consideration of biodiesel production. 1.1. Vegetable oils as a diesel substitute.