Select a Community

  • MB 1 Preclinical Medical Students
  • MB 2/3 Clinical Medical Students
  • ORTHO Orthopaedic Surgery

Are you sure you want to trigger topic in your Anconeus AI algorithm?

You are done for today with this topic.

Would you like to start learning session with this topic items scheduled for future?

Breech Presentation

https://upload.medbullets.com/topic/120379/images/breech_ultrasound.jpg

  • A 28-year-old G1P0 woman at 37 weeks of gestation presents to her obstetrician for a prenatal care appointment. She describes feeling some soreness under her ribs in the past few weeks and feels her baby kicking in her lower abdomen. An ultrasound is performed and is seen in the image. The obstetrician describes management approaches, including an external cephalic version before labor.
  • flexion of the hips and knees
  • some deflexion of one hip and knee
  • flexion of both hips with extension of both knees
  • 3-4% of all deliveries
  • 22-25% of births before 28 weeks of gestation
  • 7-15% of births at 32 weeks of gestation
  • 3-4% of births at term
  • prematurity
  • uterine malformations
  • uterine fibroids
  • polyhydramnios
  • placenta previa
  • multiple gestations
  • subcostal discomfort (due to fetal head in the uterine fundus)
  • feeling of kicking in the lower abdomen
  • presence of soft mass (buttocks) and absence of hard fetal skull on transabdominal examination of the lower uterine segment
  • when cervix is dilated
  • detection of breech presentation prior to 37 weeks does not warrant intervention
  • fetal head in the uterine fundus
  • buttocks in the lower uterine segment
  • extension angle > 90 degrees
  • at 37 weeks gestation or later
  • perform trial of vaginal delivery if the version is successful
  • may be planned for breech presentation, without a trial of external cephalic version
  • may be performed if trial of vaginal delivery is unsuccessful after external cephalic labor
  • ↑ up to 4-fold with breech presetnation
  • associated with malformations, prematurity, and intrauterine fetal demise
  • 17% of preterm breech deliveries
  • 9% of term breech deliveries
  • abnormalities include CNS malformations, neck masses, and aneuploidy
  • - Breech Presentation

Please Login to add comment

 alt=

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

Cover of StatPearls

StatPearls [Internet].

Breech presentation.

Caron J. Gray ; Meaghan M. Shanahan .

Affiliations

Last Update: November 6, 2022 .

  • Continuing Education Activity

Breech presentation refers to the fetus in the longitudinal lie with the buttocks or lower extremity entering the pelvis first. The three types of breech presentation include frank breech, complete breech, and incomplete breech. In a frank breech, the fetus has flexion of both hips, and the legs are straight with the feet near the fetal face, in a pike position. This activity reviews the cause and pathophysiology of breech presentation and highlights the role of the interprofessional team in its management.

  • Describe the pathophysiology of breech presentation.
  • Review the physical exam of a patient with a breech presentation.
  • Summarize the treatment options for breech presentation.
  • Explain the importance of improving care coordination among interprofessional team members to improve outcomes for patients affected by breech presentation.
  • Introduction

Breech presentation refers to the fetus in the longitudinal lie with the buttocks or lower extremity entering the pelvis first. The three types of breech presentation include frank breech, complete breech, and incomplete breech. In a frank breech, the fetus has flexion of both hips, and the legs are straight with the feet near the fetal face, in a pike position. The complete breech has the fetus sitting with flexion of both hips and both legs in a tuck position. Finally, the incomplete breech can have any combination of one or both hips extended, also known as footling (one leg extended) breech, or double footling breech (both legs extended). [1] [2] [3]

Clinical conditions associated with breech presentation include those that may increase or decrease fetal motility, or affect the vertical polarity of the uterine cavity. Prematurity, multiple gestations, aneuploidies, congenital anomalies, Mullerian anomalies, uterine leiomyoma, and placental polarity as in placenta previa are most commonly associated with a breech presentation.  Also, a previous history of breech presentation at term increases the risk of repeat breech presentation at term in subsequent pregnancies. [4] [5] These are discussed in more detail in the pathophysiology section.

  • Epidemiology

Breech presentation occurs in 3% to 4% of all term pregnancies. A higher percentage of breech presentations occurs with less advanced gestational age. At 32 weeks, 7% of fetuses are breech, and 28 weeks or less, 25% are breech.

Specifically, following one breech delivery, the recurrence rate for the second pregnancy was nearly 10%, and for a subsequent third pregnancy, it was 27%. Prior cesarean delivery has also been described by some to increase the incidence of breech presentation two-fold.

  • Pathophysiology

As mentioned previously, the most common clinical conditions or disease processes that result in the breech presentation are those that affect fetal motility or the vertical polarity of the uterine cavity. [6] [7]

Conditions that change the vertical polarity or the uterine cavity, or affect the ease or ability of the fetus to turn into the vertex presentation in the third trimester include:

  • Mullerian anomalies: Septate uterus, bicornuate uterus, and didelphys uterus 
  • Placentation: Placenta previa as the placenta is occupying the inferior portion of the uterine cavity. Therefore, the presenting part cannot engage
  • Uterine leiomyoma: Mainly larger myomas located in the lower uterine segment, often intramural or submucosal, that prevent engagement of the presenting part.
  • Prematurity
  • Aneuploidies and fetal neuromuscular disorders commonly cause hypotonia of the fetus, inability to move effectively
  • Congenital anomalies:  Fetal sacrococcygeal teratoma, fetal thyroid goiter
  • Polyhydramnios: Fetus is often in unstable lie, unable to engage
  • Oligohydramnios: Fetus is unable to turn to vertex due to lack of fluid
  • Laxity of the maternal abdominal wall: Uterus falls forward, the fetus is unable to engage in the pelvis.

The risk of cord prolapse varies depending on the type of breech. Incomplete or footling breech carries the highest risk of cord prolapse at 15% to 18%, while complete breech is lower at 4% to 6%, and frank breech is uncommon at 0.5%.

  • History and Physical

During the physical exam, using the Leopold maneuvers, palpation of a hard, round, mobile structure at the fundus and the inability to palpate a presenting part in the lower abdomen superior to the pubic bone or the engaged breech in the same area, should raise suspicion of a breech presentation.

During a cervical exam, findings may include the lack of a palpable presenting part, palpation of a lower extremity, usually a foot, or for the engaged breech, palpation of the soft tissue of the fetal buttocks may be noted. If the patient has been laboring, caution is warranted as the soft tissue of the fetal buttocks may be interpreted as caput of the fetal vertex.

Any of these findings should raise suspicion and ultrasound should be performed.

Diagnosis of a breech presentation can be accomplished through abdominal exam using the Leopold maneuvers in combination with the cervical exam. Ultrasound should confirm the diagnosis.

On ultrasound, the fetal lie and presenting part should be visualized and documented. If breech presentation is diagnosed, specific information including the specific type of breech, the degree of flexion of the fetal head, estimated fetal weight, amniotic fluid volume, placental location, and fetal anatomy review (if not already done previously) should be documented.

  • Treatment / Management

Expertise in the delivery of the vaginal breech baby is becoming less common due to fewer vaginal breech deliveries being offered throughout the United States and in most industrialized countries. The Term Breech Trial (TBT), a well-designed, multicenter, international, randomized controlled trial published in 2000 compared planned vaginal delivery to planned cesarean delivery for the term breech infant. The investigators reported that delivery by planned cesarean resulted in significantly lower perinatal mortality, neonatal mortality, and serious neonatal morbidity. Also, there was no significant difference in maternal morbidity or mortality between the two groups. Since that time, the rate of term breech infants delivered by planned cesarean has increased dramatically. Follow-up studies to the TBT have been published looking at maternal morbidity and outcomes of the children at two years. Although these reports did not show any significant difference in the risk of death and neurodevelopmental, these studies were felt to be underpowered. [8] [9] [10] [11]

Since the TBT, many authors since have argued that there are still some specific situations that vaginal breech delivery is a potential, safe alternative to planned cesarean. Many smaller retrospective studies have reported no difference in neonatal morbidity or mortality using these specific criteria.

The initial criteria used in these reports were similar: gestational age greater than 37 weeks, frank or complete breech presentation, no fetal anomalies on ultrasound examination, adequate maternal pelvis, and estimated fetal weight between 2500 g and 4000 g. In addition, the protocol presented by one report required documentation of fetal head flexion and adequate amniotic fluid volume, defined as a 3-cm vertical pocket. Oxytocin induction or augmentation was not offered, and strict criteria were established for normal labor progress. CT pelvimetry did determine an adequate maternal pelvis.

Despite debate on both sides, the current recommendation for the breech presentation at term includes offering external cephalic version (ECV) to those patients that meet criteria, and for those whom are not candidates or decline external cephalic version, a planned cesarean section for delivery sometime after 39 weeks.

Regarding the premature breech, gestational age will determine the mode of delivery. Before 26 weeks, there is a lack of quality clinical evidence to guide mode of delivery. One large retrospective cohort study recently concluded that from 28 to 31 6/7 weeks, there is a significant decrease in perinatal morbidity and mortality in a planned cesarean delivery versus intended vaginal delivery, while there is no difference in perinatal morbidity and mortality in gestational age 32 to 36 weeks. Of note, due to lack of recruitment, no prospective clinical trials are examining this issue.

  • Differential Diagnosis
  • Face and brow presentation
  • Fetal anomalies
  • Fetal death
  • Grand multiparity
  • Multiple pregnancies
  • Oligohydramnios
  • Pelvis Anatomy
  • Preterm labor
  • Primigravida
  • Uterine anomalies
  • Pearls and Other Issues

In light of the decrease in planned vaginal breech deliveries, thus the decrease in expertise in managing this clinical scenario, it is prudent that policies requiring simulation and instruction in the delivery technique for vaginal breech birth are established to care for the emergency breech vaginal delivery.

  • Enhancing Healthcare Team Outcomes

A breech delivery is usually managed by an obstetrician, labor and delivery nurse, anesthesiologist and a neonatologist. The ultimate decison rests on the obstetrician. To prevent complications, today cesarean sections are performed and experienced with vaginal deliveries of breech presentation is limited. For healthcare workers including the midwife who has no experience with a breech delivery, it is vital to communicate with an obstetrician, otherwise one risks litigation if complications arise during delivery. [12] [13] [14]

  • Review Questions
  • Access free multiple choice questions on this topic.
  • Comment on this article.

Disclosure: Caron Gray declares no relevant financial relationships with ineligible companies.

Disclosure: Meaghan Shanahan declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

  • Cite this Page Gray CJ, Shanahan MM. Breech Presentation. [Updated 2022 Nov 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

In this Page

Bulk download.

  • Bulk download StatPearls data from FTP

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Similar articles in PubMed

  • [What effect does leg position in breech presentation have on mode of delivery and early neonatal morbidity?]. [Z Geburtshilfe Neonatol. 1997] [What effect does leg position in breech presentation have on mode of delivery and early neonatal morbidity?]. Krause M, Fischer T, Feige A. Z Geburtshilfe Neonatol. 1997 Jul-Aug; 201(4):128-35.
  • The effect of intra-uterine breech position on postnatal motor functions of the lower limbs. [Early Hum Dev. 1993] The effect of intra-uterine breech position on postnatal motor functions of the lower limbs. Sival DA, Prechtl HF, Sonder GH, Touwen BC. Early Hum Dev. 1993 Mar; 32(2-3):161-76.
  • The influence of the fetal leg position on the outcome in vaginally intended deliveries out of breech presentation at term - A FRABAT prospective cohort study. [PLoS One. 2019] The influence of the fetal leg position on the outcome in vaginally intended deliveries out of breech presentation at term - A FRABAT prospective cohort study. Jennewein L, Allert R, Möllmann CJ, Paul B, Kielland-Kaisen U, Raimann FJ, Brüggmann D, Louwen F. PLoS One. 2019; 14(12):e0225546. Epub 2019 Dec 2.
  • Review Breech vaginal delivery at or near term. [Semin Perinatol. 2003] Review Breech vaginal delivery at or near term. Tunde-Byass MO, Hannah ME. Semin Perinatol. 2003 Feb; 27(1):34-45.
  • Review [Breech Presentation: CNGOF Guidelines for Clinical Practice - Epidemiology, Risk Factors and Complications]. [Gynecol Obstet Fertil Senol. 2...] Review [Breech Presentation: CNGOF Guidelines for Clinical Practice - Epidemiology, Risk Factors and Complications]. Mattuizzi A. Gynecol Obstet Fertil Senol. 2020 Jan; 48(1):70-80. Epub 2019 Nov 1.

Recent Activity

  • Breech Presentation - StatPearls Breech Presentation - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

breech presentation geeky medics

First, recognize breech presentation when the buttocks appear in the birth canal before the head does. Experienced providers can deliver some babies in frank or complete breech presentations. Have a cloth or surgical towel available as well as other instruments used for routine deliveries and prepare for what to do if vaginal delivery is unsuccessful.

This position is a frank breech.

This position is a complete breech.

And this position is an incomplete complete breech.

Allow delivery to the level of the umbilicus with maternal effort. If possible, do this without touching the infant. Anticipate umbilical cord compression and possibly fetal decelerations.

To deliver a leg, splint the medial thigh parallel to the femur and sweep the thigh laterally. Repeat this procedure to deliver the other leg.

Wrap a towel around the infant, putting your fingers on the anterior superior iliac spines and your thumbs on the sacrum.

Assist the mother’s efforts during contractions by applying gentle traction to help deliver the body to the level of the scapulas.

Rotate the body in either direction to make one shoulder anterior. Deliver the anterior arm by sweeping it across the chest. Rotate the infant 180 degrees in either direction. Deliver the arm that is now anterior the same way the other arm was delivered. Move the towel up to cover the arms and rotate the body to make the back anterior.

To deliver the head, place your index and middle fingers of one hand over the fetal maxilla to flex the head, while the body rests on your palm and forearm, as shown here. With your other hand, hook 2 fingers over the neck, grasp the shoulder, and apply gentle downward traction. Have an assistant apply suprapubic pressure to help maintain head flexion and deliver the head.

Procedure by Will Stone, MD, and Kate Leonard, MD, Walter Reed National Military Medical Center Residency in Obstetrics and Gynecology; and Shad Deering, COL, MD, Chair, Department of Obstetrics and Gynecology, Uniformed Services University. Assisted by Elizabeth N. Weissbrod, MA, CMI, Eric Wilson, 2LT, and Jamie Bradshaw at the Val G. Hemming Simulation Center at the Uniformed Services University.

  • Fetal Presentation, Position, and Lie (Including Breech Presentation)
  • Open access
  • Published: 03 May 2020

Revisiting the management of term breech presentation: a proposal for overcoming some of the controversies

  • Lionel Carbillon   ORCID: orcid.org/0000-0001-6367-4828 1 , 2 ,
  • Amelie Benbara 2 ,
  • Ahmed Tigaizin 2 ,
  • Rouba Murtada 2 ,
  • Marion Fermaut 2 ,
  • Fatma Belmaghni 2 ,
  • Alexandre Bricou 2 &
  • Jeremy Boujenah 2  

BMC Pregnancy and Childbirth volume  20 , Article number:  263 ( 2020 ) Cite this article

13k Accesses

11 Citations

4 Altmetric

Metrics details

The debate surrounding the management of term breech presentation has excessively focused on the mode of delivery. Indeed, a steady decline in the rate of vaginal breech delivery has been observed over the last three decades, and the soundness of the vaginal route was seriously challenged at the beginning of the 2000s. However, associations between adverse perinatal outcomes and antenatal risk factors have been observed in foetuses that remain in the breech presentation in late gestation, confirming older data and raising the question of the role of these antenatal risk factors in adverse perinatal outcomes. Thus, aspects beyond the mode of delivery must be considered regarding the awareness and adequate management of such situations in term breech pregnancies.

In the context of the most recent meta-analysis and with the publication of large-scale epidemiologic studies from medical birth registries in countries that have not abruptly altered their criteria for individual decision-making regarding the breech delivery mode, the currently available data provide essential clues to understanding the underlying maternal-foetal conditions beyond the delivery mode that play a role in perinatal outcomes, such as foetal growth restriction and gestational diabetes mellitus. In view of such data, an accurate evaluation of these underlying conditions is necessary in cases of persistent term breech presentation. Timely breech detection, estimated foetal weight/growth curves and foetal/maternal well-being should be considered along with these possible antenatal risk factors; a thorough analysis of foetal presentation and an evaluation of the possible benefit of external cephalic version and pelvic adequacy in each specific situation of persistent breech presentation should be performed.

The adequate management of term breech pregnancies requires screening and the efficient identification of breech presentation at 36 weeks of gestation, followed by thorough evaluations of foetal weight, growth and mobility, while obstetric history, antenatal gestational disorders and pelvis size/conformation are considered. The management plan, including external cephalic version and follow-up based on the maternal/foetal condition and potentially associated disorders, should be organized on a case-by-case basis by a skilled team after the woman is informed and helped to make a reasoned decision regarding delivery route.

Peer Review reports

The ideal management of women with term breech presentation remains a matter of intense debate. The rate of vaginal delivery has steadily declined in the last decades of the last century [ 1 ]. In 2000, the Term Breech Trial (TBT) Collaborative Group concluded that a composite variable combining perinatal and neonatal mortality or serious neonatal morbidity was significantly lower in the planned caesarean section (CS) group than in the planned vaginal birth group [ 2 ], which marked an apparent turning point in this controversy. Based on the short-term outcomes presented in the TBT study, the Royal College of Obstetricians and Gynaecologists (RCOG) [ 3 ] and the American College of Obstetricians and Gynecologists (ACOG) [ 4 ] recommended over the next few years that all women with persistent singleton breech presentation at term should undergo a planned CS delivery. An important and almost immediate impact on the practice was also observed in some countries that previously had a high proportion of vaginal breech deliveries [ 5 ]. TBT was the largest randomized trial ever published on the term breech mode of delivery. However, despite its undeniable strengths, a number of weaknesses have been identified. Specifically, there was a lack of adherence to strict criteria for vaginal birth in an important proportion of the included patients and nonoptimal methods of labour management as recognized by the TBT group itself [ 6 , 7 , 8 ]. In addition, when the TBT Collaborative Group published the 2-year analysis of paediatric outcomes, despite a large (greater than 50%) post-randomization loss to follow-up [ 9 ], these researchers found no reduction in the risk of death or neurodevelopmental delay in children at 2 years of age, thus raising questions regarding the real lessons to be drawn from this trial. Using multiple logistic regression analyses, the TBT group also reported [ 10 ] that the risk of maternal morbidity was lowest following vaginal birth (odds ratio [OR] 1.0) and highest following CS after active labour (36.1% in the TBT) (OR 3.33; 95% CI 1.75–6.33, P  < 0.001), particularly after a short second stage < 30 min (OR 0.25; 95% CI 0.11–0.57, P < 0.001) [ 9 ].

Later, population-based retrospective studies helped refine the consequences of applying recommendations of systematically planned CS for women with term breech presentation at the population level. Hartnack Tharin et al. [ 11 ] found that the rate of CS for term breech deliveries increased from 79.6 to 94.2% between 1997 and 2008 in Denmark, while intrapartum or early neonatal mortality decreased from 0.13 to 0.05% [relative risk (RR) 0.38 (95% CI 0.15–0.98)], which was a significant but lower reduction than the difference reported in the TBT. Using the Dutch National Perinatal Registry from 1999 to 2007, Vlemmix et al. [ 12 ] stated that after publication of the TBT, the elective CS rate increased from 24 to 60%, and overall perinatal mortality and short-term morbidity decreased. In contrast, these outcomes remained stable in the planned vaginal birth group. However, the authors estimated that 338 CS deliveries would need to be performed to prevent one perinatal death, and Schutte et al. [ 13 ] estimated the perinatal case fatality rate for elective CS for breech presentation in 2000–2002 at 0.47/1000 operations. At the same time, in the Netherlands the incidence of severe maternal morbidity (SMM) was estimated at 6.4/1000 during an elective CS compared with 3.9/1000 during an attempted vaginal delivery (OR 1.7; 95% CI 1.4–2.0), with an increased risk for SMM in the next pregnancy (OR 3.0; 95% CI 2.7–3.3) [ 14 ], despite the numerous facilities and adequate resources allocated to perinatal care in such a high-income country.

On the other hand, new guidelines were published in 2009 by the Society of Obstetricians and Gynaecologists of Canada (SOGC) stating that “planned vaginal delivery is reasonable in selected women with a term singleton breech foetus”. Afterwards, a study [ 15 ] including 52,671 breech deliveries in Canada (2003–2011) reported in 2011 that vaginal deliveries increased from 2.7% in 2003 to 3.9%. In this study, a concomitant increase in composite neonatal mortality and morbidity rates was observed with an adjusted rate ratio of 3.60 (95% CI 2.50–5.15), compared with CS without labour [ 15 ]. Moreover, CS with labour also increased from 8.7 to 9.8%, highlighting the particular difficulty in returning to previous practices after the clinical skills required to conduct a vaginal breech delivery have declined [ 15 , 16 ].

Some authors recently considered that “the TBT recommendations should be withdrawn” [ 6 ], while others still consider that the “results (of the TBT) are generalizable” [ 16 , 17 ]. Nevertheless, national guideline bodies have partially reversed their recommendations based on these discussions [ 18 , 19 , 20 ]. However, as rightly noted by Joseph et al. [ 16 ], the availability of clinical skills has declined in some of these countries, raising concerns from a pedagogic resident education and training standpoint [ 16 ]. In this regard, a meaningful role could be given to the possibility of training by simulation in building and maintaining specific skills and competencies for vaginal breech delivery.

A new meta-analysis [ 21 ] and several large-scale epidemiologic datasets from medical birth registries [ 22 , 23 , 24 ] recently evaluated risk factors associated with adverse perinatal outcomes in planned vaginal breech labours at term. These investigations were conducted in countries that have not abruptly modified their policies and that have continuously applied similar strict criteria over the last several decades for individual decision-making in cases of term breech presentation. We believe that the time has come to go beyond the sole question of delivery mode in the management of these situations.

Term breech presentation: are we asking the right questions?

It now appears time to expand our thinking and, considering recent important data that help elucidate the underlying significance of persistent breech presentation at term, to offer more dynamic and multidisciplinary insight into the management of these cases.

Indeed, similar to some older studies [ 25 , 26 , 27 ], several recent population-based studies [ 22 , 23 ] strongly suggest that the increased risk observed in foetuses that remain in the breech presentation at term is closely linked to antenatal or underlying disorders that may be associated with the breech presentation and is not solely due to the mode of delivery. Because adverse outcomes can be caused by underlying or gestational disorders, any discussion that is limited to delivery mode seems too restrictive and does not address the whole issue.

Most recent large-scale data

Deterministic or accidental breech presentation.

In a recent Finnish population-based case-control study including all singleton deliveries from 1 January 2005 to 31 December 2014 and excluding preterm deliveries, antepartum-diagnosed stillbirths, placenta previa and infants with congenital malformations (499,206 foetuses at term), Macharey et al. [ 22 ] evaluated the antenatal risk factors associated with adverse perinatal outcomes in planned vaginal breech labour at term. They found that the stillbirth rate was significantly higher in cases of planned vaginal breech labour than in cases of cephalic presentation (0.2 vs 0.1%, respectively), which was correlated with foetal growth restriction, oligohydramnios, gestational diabetes mellitus (GDM) and a history of CS. Furthermore, in another recent survey based on the same cohort of mother-neonate dyads that also excluded congenital malformations, placenta previa and prelabour stillbirths [ 23 ], this same group showed that breech presentation at term was significantly associated with antenatal stillbirth and a number of individual obstetric risk factors for adverse perinatal outcomes, including oligohydramnios, foetal growth restriction, gestational diabetes, history of CS section and congenital anomalies. Among all planned singleton vaginal deliveries with the foetus in the breech presentation at term, a composite adverse perinatal outcome defined as umbilical arterial pH < 7.00, 5-min Apgar score below 7 and/or neonatal mortality during the first 6 days of life (excluding stillbirth) was associated with foetal growth restriction (aOR 2.94 [1.30–6.67]), oligohydramnios (adjusted OR 2.94 [1.15–7.81]), gestational diabetes (aOR 2.89[1.54–5.40]), and a history of CS (aOR 2.94 [1.28–6.77]).

In another recent population-based study based on perinatal data of all (650,968) children born in Norway from 1999 to 2009 [ 24 ], the authors recognized the limitations of most registry-based studies, as the selection of women with breech presentation and planned vaginal delivery was based on criteria that might have identified pregnancies with a lower risk of adverse outcomes compared with those selected for CS delivery. Moreover, in this study [ 24 ], the intrapartum conversion of some of the planned vaginal deliveries to an emergency CS delivery may have increased the risk for adverse outcome in the CS group. However, Bjellmo et al. [ 24 ] conducted an innovative analysis comparing breech deliveries to vaginal cephalic births. Thus, they showed that singleton children born at term without congenital malformations had a higher risk for stillbirth and neonatal mortality if they were born in the breech presentation “regardless of whether they were born vaginally or by CS delivery” (0.9 per 1000 in those actually delivered vaginally and 0.8 per 1000 in those actually born by CS delivery) compared with those born by vaginal cephalic delivery (0.3 per 1000). Of note, among those children born in the breech rather than in the cephalic presentation, these authors [ 24 ] found that a higher proportion of infants were born small for gestational age (SGA). However, these authors [ 23 ] did not distinguish foetal growth restriction among SGA neonates. In their interpretation, Bjellmo et al. [ 23 ] considered that “the overall higher risk for stillbirth and the higher proportion of infants born SGA among children born in the breech than in the cephalic presentation may suggest that foetuses with antenatal acquired risk factors for adverse outcomes are more likely to present in the breech than in the cephalic presentation at birth.” According to these authors, the findings were most likely explained by a combination of antenatal acquired risk factors for neonatal death with increased vulnerability to the birth process. Of note, in the TBT group, birth weights of less than 2.8 kg were also associated with adverse perinatal outcomes ( P  = 0.003) [ 10 ]. In fact, a limitation in the Norwegian study [ 24 ] was that, unlike Macharey et al., the authors did not distinguish foetal growth restriction among these SGA neonates. Indeed, in a large cohort study conducted with the National Health Service region in England through a multivariable analysis of 92,218 normally formed singletons delivered during 2009–2011 from 24 weeks of gestation, including 389 stillbirths, Gardosi et al. [ 25 ] showed that foetal growth restriction had the largest population attributable risk for stillbirth which was fivefold greater if it was not detected antenatally than when it was (32.0% v 6.2%). The above data suggest that some antenatal features associated with term breech presentation, notably foetal growth restriction, and some gestational disorders (such as uncontrolled gestational diabetes mellitus) could affect the prognosis in term breech cases. Previous data also support this conclusion; Luterkort M et al. [ 26 ] had previously reported in a prospective follow-up of 228 pregnancies with the foetus in the breech presentation in the 33rd gestational week that the 96 foetuses (42%) who remained in the breech presentation at delivery weighed 4.9% less than their vertex controls after adjustments were made for gestational age and had an increased frequency of oligohydramnios. Krebs et al. [ 27 ] later confirmed this association between breech presentation and foetal growth restriction from a register-based, case-control cohort of infants with cerebral palsy born between 1979 and 1986 in East Denmark.

In fact, as reported by Fox and Chapman [ 28 ], up to 21% of all foetuses adopt a noncephalic presentation at 28–29 weeks of gestation, and this proportion progressively decreases to 5% from 37 to 38 weeks [ 28 ]. Certain conditions, such as uterine malformation, can disturb both this continuous process of spontaneous cephalic version and normal foetal growth, thereby leading to increased term breech presentation rates in these cases [ 29 ]. This point highlights the importance of estimating foetal weight and well-being in cases of persistent breech presentation at term. Furthermore, even some cases of controlled GDM may be associated with excess foetal weight during the last weeks of pregnancy, leading to possible dystocia due to this overgrowth, or with other GDM-related complications, such as preeclampsia; thus, foetal weight estimates should be monitored closely beginning in the 37th week of gestation, with regular reassessment as long as the patient has not delivered.

The impact of strict criteria on the selection of vaginal delivery

From a broad perspective, in the most recent meta-analysis investigating the risks of planned vaginal breech delivery versus planned CS for term breech birth [ 21 ], the overall heterogeneity (I 2  = 36%) was informative. The variability of neonatal mortality among 14 studies accounting for 74,094 breech vaginal deliveries was low (ranging from 0.08 to 0.37%). On the other hand, neonatal mortality was markedly higher in only 2 studies authored by Singh et al. [ 30 ] and Hannah et al. [ 2 ] (the TBT). These two studies [ 2 , 30 ] accounted for 1099 breech vaginal deliveries (1.5% of births) and had perinatal mortality rates as high as 21 and 1.3%, respectively, for planned vaginal births (25.6% of perinatal deaths). The same was true for neurological morbidity, which was 3.4 and 1%, respectively, in the studies by Singh et al. [ 30 ] and TBT [ 2 ], while it ranged from 0.07 to 0.2% in the 14 other studies encompassing 74,094 breech vaginal deliveries conducted with the implementation of more stringent exclusion criteria for vaginal breech delivery.

In these 14 studies accounting for 74,094 breech vaginal deliveries, the retrospective observational cohort study from the Finnish Medical Birth Register [ 31 ] and the prospective observational study PREMODA [ 32 ] (as well as the more recent Norwegian Medical Birth Registry study) applied similar pre-established exclusion criteria for planned vaginal birth. In the PREMODA study, an increased absolute rate of perinatal death or serious neonatal morbidity was observed in both the planned vaginal group (1.60, 95% CI 1.14–2.17) and planned CS delivery group (1.45 [1.16–1.81]) with breech presentation among the total population of 264,105 births, but the planned vaginal group and the planned CS delivery group with breech presentation did not differ significantly for the combined outcome of foetal/neonatal mortality or serious morbidity (odds ratio [OR] = 1.10, 95% CI [0.75–1.61]). The Royal College of Obstetricians and Gynaecologists proposes comparable pre-established criteria for the management of term breech presentation, recommending that “women should be informed that a higher risk of planned vaginal breech birth is expected where there are independent indications for CS section and in circumstances such as a hyperextended neck on ultrasound, high estimated foetal weight (more than 3,800 g), low estimated weight (less than tenth centile), footling presentation, [and] evidence of antenatal foetal compromise” but considers that “the role of pelvimetry is unclear” [ 20 ]. Of note concerning this last point, Van Loon et al. showed in a randomized controlled trial [ 33 ] that the adequacy of pelvis size, as assessed by pelvimetry, improved the selection of delivery route. In line with them, two recent studies support this view [ 34 , 35 ]. Other authors also included criteria for the adequate management and continuous monitoring of foetal heart rate during labour (which is common in maternity wards of most high-income countries but could be monitored intermittently in the TBT). Indeed, decreased variability and late decelerations are more prevalent during breech deliveries than vertex deliveries [ 36 ], and good labour progress is a predictor of better neonatal outcomes [ 37 ]. In the Finnish Medical Birth Register [ 31 ], 1270 women (43.6%) were selected as candidates for vaginal breech delivery, and the selection quality was confirmed by the low conversion rate of vaginal to CS breech delivery (11.4%). This rate was higher (36.1%) in the TBT [ 30 ].

As noted by methodologists [ 38 ], real-world prenatal patient care is subject to decision-making based on the continuous evaluation of risk factors, medical history, comorbidities, behavioural aspects, and other factors that indeed cannot be strictly reproduced in randomized controlled trials. For example, in the TBT [ 2 ], an upper limit of 4000–4500 g was given for estimated foetal weight. However, as the duration between randomization and delivery inevitably lengthened in the planned vaginal delivery group, a significantly higher number of macrosomic neonates were born in the planned vaginal delivery group ( P  = 0.002). In actuality, an informed woman who opts for vaginal delivery at 36 or 37 weeks of gestation usually changes her mind if she has not delivered several weeks later and if the clinician tells her that the birthweight will probably exceed 3800–4000 g, with an associated increased risk of adverse perinatal outcomes. Thus, in cases of even minor glycaemic disorder, special attention should be paid in the 37th week of gestation to foetal weight estimates and the possible occurrence of preeclampsia or associated gestational disorders; moreover, cases of SGA foetuses with possible foetal growth restriction should be closely followed, regardless of the delivery mode chosen by the patient [ 26 , 39 ].

How might we maximize patient benefit from a safe external cephalic version attempt?

With the restrictive practice of breech vaginal delivery in the last 15 years, national colleges of obstetricians (RCOG, ACOG, SOGC and RANZCOG) and FIGO updated their guidelines and recommended external cephalic version (ECV) at term to limit the increase in elective CS rate for cases of term breech presentation. However, recent data urge us to develop a broader perspective and an accurate assessment of the real impact of various ECV policies.

Indeed, the true impact of ECV may first be limited by the timely detection of breech presentation. In a retrospective cohort study of 394 consecutive cases of breech presentation at term, Hemelaar et al. [ 40 ] found that over two periods separated by 10 years (1998–1999 and 2008–2009), the proportion of breech presentations not diagnosed antenatally increased from 23.2 to 32.5% ( P  = 0.04), causing 52.8% of women who were eligible for ECV to miss an attempt in 2008–2009. The authors also reported that the proportion of women who declined ECV during the same period decreased significantly from 19.1 to 9.0%.

Eligibility is a second limitation. In Australia, a large-scale survey [ 41 ] showed that 22.3% of 32,321 singleton breech pregnancies were considered ineligible (due to oligohydramnios, antepartum haemorrhage or abruption, previous CS or pelvic abnormality, placenta previa, placenta accreta, or an infant with major congenital anomalies). In this survey [ 41 ], only 10.5% of the singleton breech pregnancies had an ECV. In a systematic review, Rosman et al. [ 42 ] identified 60 studies that reported 39 different contraindications and five guidelines with 18 contraindications (varying from five to 13 contraindications per guideline), with oligohydramnios being the only contraindication that was consistently mentioned in all guidelines. Thus, there was no general consensus on the eligibility of patients for ECV, but contraindications generally include all conditions in which this procedure may be associated with a particular risk for the foetus or mother. These conditions include the following: severe intrauterine growth restriction, abnormal umbilical artery Doppler index and/or nonreassuring foetal heart rate, which may require an emergency CS birth; foetuses with a hyperextended head and significant foetal or uterine malformations, which may carry a particular foetal risk; rhesus alloimmunization, which might be reactivated by the procedure; and recent vaginal bleeding or ruptured membranes, which were associated with cord prolapse in 33% of reported cases after ECV attempt [ 43 ].

If CS or rapid delivery is indicated for another obstetric condition, ECV is also contraindicated, notably in cases of placenta previa, severe preeclampsia, and increased risk of placental abruption. Other situations, such as maternal obesity, nonsevere SGA foetuses, and nonsevere oligohydramnios, merely decrease the likelihood of ECV success. In contexts such as severe oligohydramnios or multiple gestations, ECV is simply impracticable, except for a second twin after delivery of the first. Furthermore, previous uterine surgery (CS delivery, myomectomy, or hysteroplasty) is considered a relative contraindication for ECV by some but not all authors [ 44 ]. On the other hand, in patients with gestational diabetes mellitus, incomplete or uncontrolled glucose levels are associated with an increased risk of foetal macrosomia in late pregnancy, and even if the estimated foetal weight seems compatible with a planned vaginal delivery when the mode of delivery is discussed, rapid foetal growth during the last weeks may lead to major difficulties during delivery. Therefore, in such a context, we believe there is potential for a particular benefit from successful ECV at 36 weeks.

Predictors of successful ECV

Pinard previously observed that unengaged breech presentation is an important predictor of successful ECV [ 45 ]; the same observation was made by Lau et al. [ 46 ], Aisenbrey et al. [ 47 ], and Hutton et al. [ 48 ]. In the large series of 1776 ECVs published by Hutton et al. [ 48 ], descent and impaction of the breech foetus were the most discriminating factors for predicting successful ECV, regardless of parity. Other predictors of success include parity [ 45 , 47 , 49 , 50 ], abundant amniotic fluid [ 49 , 50 , 51 ], nonfrank breech presentation [ 47 ], gestational age under 38 weeks [ 43 ], and posterior placenta [ 50 ]. In contrast, nulliparity and tense uterus are associated with a lower likelihood of success [ 44 , 48 , 52 ].

Velzel et al. [ 53 ] recently reviewed prediction models, most of which were developed without any external validation, and found that the most reliable predictors of successful ECV were nonimpacted breech presentation, parity and uterine softness (which usually go hand in hand), normal amniotic fluid index, posterior placental location, and, as noted by Pinard [ 45 ], foetal head in a palpable situation. These criteria might be used to support patient counselling and decision-making about ECV and to reduce the proportion of women declining ECV, particularly in the most favourable situations for ECV.

Obstetric outcomes after an ECV attempt

De Hundt et al. [ 54 ] conducted a systematic review and meta-analysis and showed that women who have had a successful ECV for breech presentation are at increased risk for CS delivery (OR 2.2; 95% CI 1.6–3.0) and instrumental vaginal delivery (OR 1.4; 95% CI 1.1–1.7) compared with women with spontaneous cephalic presentation. Interestingly, stratification by time delay between successful ECV and delivery revealed a trend for increased risk of CS during the first week after ECV [ 55 ]. Furthermore, in a cohort of 301 women with successful ECV, De Hundt et al. [ 56 ] found that nulliparity was the only of seven factors that predicted the risk of CS and instrumental vaginal delivery (OR 2.7; 95% CI 1.2–6.1). Based on a retrospective, population-based cohort study using the CDC’s birth data files from the US in 2006, Balayla et al. [ 57 ] also showed that relative to breech controls without an ECV attempt, cases of ECV failure with persistent breech presentation and labour attempts were associated with increased odds of CS delivery (adjusted OR 1.38; 95% CI 1.21–1.57), assisted ventilation at birth (aOR 1.50; 95% CI 1.27–1.78), 5-min Apgar score < 7 (aOR 1.35; 95% CI 1.20–1.51), and neonatal intensive care unit admission (aOR 1.48; 95% CI 1.20–1.82).

This information should also be considered in the dialog with women regarding the way in which late pregnancy and delivery should be managed based on existing data, their own situations and their wishes.

The true benefit of an active and systematic ECV policy is widely appreciated [ 58 , 59 ], and such evaluation may be subject to bias. Burgos et al. [ 58 ] found that their policy decreased the rate of breech presentation at delivery by 39.0% and decreased the CS rate for cases of breech presentation at term from 59 to 44%. On the other hand, Coppola et al. [ 59 ] reported that their CS rate was not significantly reduced in the planned ECV group, even after adjustments were made for age, parity and previous CS delivery. Thus, each perinatal centre should implement an appropriate and coherent policy in accordance with the prevalence of pathologies in the population.

Towards a consensus for a global shared vision and management of term breech presentation that could include the following

A policy of breech presentation screening at 36 weeks of gestation is efficient and cost effective [ 60 ].

Such screening should allow timely ECV and a careful evaluation of potential underlying antenatal risks, considering obstetric history, estimated foetal weight/growth and potential gestational disorders [ 23 , 24 , 25 , 26 , 27 , 29 ].

Foetal weight estimates based on clinical and ultrasound examinations are essential, despite the large confidence interval of all available algorithms for producing such estimates. Vaginal birth may be excluded when the estimated foetal weight approximates the upper limit used for selection in most national guidelines (3800 g) [ 18 , 19 , 20 ], particularly in the absence of previous successful vaginal delivery.

Before vaginal delivery is considered, clinical pelvic examination is universally recommended to rule out pathological pelvic contraction. Radiologic or magnetic resonance imaging (MRI) pelvimetry is not universally conducted [ 20 , 23 , 24 , 31 , 32 ]. However, Van Loon et al. [ 33 ] demonstrated in a randomized controlled trial that the use of MRI pelvimetry in breech presentation at term allowed better selection of delivery route, with a significantly lower emergency CS rate. More specifically, several recent studies [ 34 , 35 ] have evaluated the contribution of pelvimetry and found that MRI pelvimetry provided useful criteria for the preselection and counselling of women with breech presentation and the desire for vaginal delivery. Therefore, pelvimetry is diversely used in Europe for the preselection and counselling of women (particularly nulliparous women) with breech presentation and is specifically used in regions where vaginal delivery is still considered an option [ 35 ].

In cases of failed ECV with persistent breech presentation, this policy should allow customized care tailored to each situation in the last weeks of pregnancy.

A discussion with the informed patient is essential. One must thoroughly consider the experience of the health care team/the availability of clinical skills required for conducting a vaginal breech delivery and carefully select women who are eligible for planned vaginal delivery (considering obstetric history and the criteria described above for the choice between planned vaginal and CS deliveries) [ 20 , 23 , 24 , 26 , 28 ].

Regardless of the planned mode of delivery [ 22 ], adequate follow-up during the last weeks of pregnancy is mandatory, with particular consideration of possible associated underlying disorders (particularly foetal growth restriction or excessive foetal weight in cases of gestational diabetes mellitus) [ 24 , 25 , 26 ]. Thus, the foetal weight estimation should be carefully considered in the 37th week of gestation, even in cases of minor glycaemic disorder, with regular reassessments and a plan for CS delivery if the patient remains pregnant for many more weeks and if foetal weight estimates reach approximately 3600–3800 g.

If vaginal delivery is planned, careful labour management by a skilled team is needed, accompanied by continuous foetal heart rate monitoring [ 36 ] and a particular focus on the rate of progress in the second delivery stage [ 37 ]. When such conditions are not or cannot be fulfilled, a planned CS may be the best choice.

When a CS has been planned, adequate follow-up during the last weeks of pregnancy and careful calculation of the delivery date are needed, taking into account possible comorbidities and gestational disorders.

Term breech presentation is a condition for which personalized obstetrical care is particularly needed. The best way is likely to be as follows: first, efficiently screen for breech presentation at 36–37 weeks of gestation; second, thoroughly evaluate the maternal/foetal condition, foetal weight and growth potential, and the type (frank, complete, or footling) and mobility of breech presentation; and three, consider the obstetric history and pelvic size/conformation. The management plan, including ECV and follow-up during the last weeks, should then be organized taking into account antenatal risk factors on a case-by-case basis by a skilled team after informing the woman, discussing her personal situation and criteria and helping her make a rational decision. Foetal overgrowth or growth restriction and/or oligohydramnios may necessitate timely CS, and the mode of delivery should be re-evaluated as necessary according to obstetric conditions (e.g., estimated foetal weight and Bishop score).

Availability of data and materials

Not applicable.

Abbreviations

American College of Obstetricians and Gynecologists

Caesarean section

External cephalic version

International Federation of Gynecology and Obstetrics

Royal Australian and New Zealand College of Obstetricians and Gynaecologists

Royal College of Obstetricians and Gynaecologists

  • Severe maternal morbidity

Society of Obstetricians and Gynaecologists of Canada

Term breech trial

Trends in vaginal breech delivery. J Epidemiol Community Health. 2015;69:1237–9.

Hannah ME, Hannah WJ, Hewson SA, Hodnett ED, Saigal S, Willan AR. Planned caesarean section versus planned vaginal birth for breech presentation at term: a randomized multicentre trial. Term Breech Trial Collaborative Group Lancet. 2000;356(9239):1375–83.

CAS   Google Scholar  

RCOG. Setting standards to improve women’s health. 2001.

Google Scholar  

ACOG committee opinion: number 265, December 2001. Mode of term single breech delivery. Committee on Obstetric Practice. Obstet Gynecol. 2001;98:1189–90.

Rietberg CC, Elferink-Stinkens PM, Visser GH. The effect of the term breech trial on medical intervention behaviour and neonatal outcome in the Netherlands: an analysis of 35,453 term breech infants. BJOG. 2005;112:205–9.

Article   PubMed   Google Scholar  

Glezerman M. Five years to the term breech trial: the rise and fall of a randomized controlled trial. Obstet Gynecol. 2015;125:1162–7.

Article   Google Scholar  

Kotaska A. Inappropriate use of randomised trials to evaluate complex phenomena: case study of vaginal breech delivery. BMJ. 2004;329(7473):1039–42.

Article   PubMed   PubMed Central   Google Scholar  

Su M, McLeod L, Ross S, et al. Term Breech Trial Collaborative Group Factors associated with adverse perinatal outcome in the Term Breech Trial. Am J Obstet Gynecol. 2003;189:740–5.

Whyte H, Hannah ME, Saigal S, et al. Term Breech Trial Collaborative Group. Outcomes of children at 2 years after planned cesarean birth versus planned vaginal birth for breech presentation at term: the International Randomized Term Breech Trial. Am J Obstet Gynecol. 2004;191:864–71.

Su M, McLeod L, Ross S, et al. Factors associated with maternal morbidity in the term breech trial. J Obstet Gynaecol Can. 2007;29:324–30.

Hartnack Tharin JE, Rasmussen S. Krebs L consequences of the term breech trial in Denmark. Acta Obstet Gynecol Scand. 2011;90:767–71.

Vlemmix F, Bergenhenegouwen L, Schaaf JM, et al. Term breech deliveries in the Netherlands: did the increased cesarean rate affect neonatal outcome? A population-based cohort study. Acta Obstet Gynecol Scand. 2014;93:888–96.

Schutte JM, Steegers EA, Santema JG, Schuitemaker NW, van Roosmalen J, Maternal Mortality Committee of the Netherlands society of obstetrics. Maternal deaths after elective cesarean section for breech presentation in the Netherlands. Acta Obstet Gynecol Scand. 2007;86:240–3.

van Dillen J, Zwart JJ, Schutte J, Bloemenkamp KW, van Roosmalen J. Severe acute maternal morbidity and mode of delivery in the Netherlands. Acta Obstet Gynecol Scand. 2010;89(11):1460–5.

Lyons J, Pressey T, Bartholomew S, Liu S, Liston R, Joseph KS. Delivery of breech presentation at term gestation, Canada, 2003 to 2011. Obstet Gynecol. 2015;125:1153–61.

Joseph KS, Pressey T, Lyons J, Bartholomew S, Liu S, Muraca G, et al. Once more unto the breech: planned vaginal delivery compared with planned cesarean delivery. Obstet Gynecol. 2015;125:1162–7.

Article   CAS   PubMed   Google Scholar  

Thornton JG. The term breech trial results are generalisable. BJOG. 2016;123(1):58.

ACOG Committee Opinion No. 340. Mode of term singleton breech delivery. ACOG Committee on obstetric practice. Obstet Gynecol. 2006;108:235–7.

SOGC clinical practice guideline: Vaginal delivery of breech presentation: no. 226, June 2009, Kotaska A, Menticoglou S, Gagnon R, Farine D, Basso M, Bos H, Delisle MF, Grabowska K, Hudon L, Mundle W, Murphy-Kaulbeck L, Ouellet A, Pressey T, Roggensack A. Society of Obstetricians and Gynaecologists of Canada. Int J Gynaecol Obstet. 2009;107:169–76.

RCOG. Setting standards to improve women’s health. Guideline No. 20b. December 2006, actualized in March 2017.

Berhan Y, Haileamlak A. The risks of planned vaginal breech delivery versus planned caesarean section for term breech birth: a meta-analysis including observational studies. BJOG. 2016;123:49–57.

Macharey G, Gissler M, Rahkonen L, et al. Breech presentation at term and associated obstetric risks factors-a nationwide population based cohort study. Arch Gynecol Obstet. 2017;295:833–8.

Macharey G, Gissler M, Ulander VM, et al. Risk factors associated with adverse perinatal outcome in planned vaginal breech labors at term: a retrospective population-based case-control study. BMC Pregnancy Childbirth. 2017;17:93.

Bjellmo S, Andersen GL, Martinussen MP, et al. Is vaginal breech delivery associated with higher risk for perinatal death and cerebral palsy compared with vaginal cephalic birth? Registry-based cohort study in Norway. BMJ Open. 2017;7:e014979.

Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. Maternal and fetal risk factors for stillbirth: population based study. BMJ. 2013;346:f108.

Luterkort M, Persson PH, Weldner BM. Maternal and fetal factors in breech presentation. Obstet Gynecol. 1984;64:55–9.

Krebs L, Topp M, Langhoff-Roos J. The relation of breech presentation at term to cerebral palsy. Br J Obstet Gynaecol. 1999;106:943–7.

Fox AJ, Chapman MG. Longitudinal ultrasound assessment of fetal presentation: a review of 1010 consecutive cases. Aust N Z J Obstet Gynaecol. 2006;46:341–4.

Hiersch L, Yeoshoua E, Miremberg H, et al. The association between Mullerian anomalies and short-term pregnancy outcome. J Matern Fetal Neonatal Med. 2016;29:2573–8.

Singh A, Mishra N, Dewangan R. Delivery in breech presentation: the decision making. J Obstet Gynaecol India. 2012;62:401–5.

Ulander VM, Gissler M, Nuutila M, Ylikorkala O. Are health expectations of term breech infants unrealistically high? Acta Obstet Gynecol Scand. 2004;83:180–6.

Goffinet F, Carayol M, Foidart JM, et al. Is planned vaginal delivery for breech presentation at term still an option? Results of an observational prospective survey in France and Belgium. Am J Obstet Gynecol. 2006;194:1002–11.

Van Loon AJ, Mantingh A, Serlier EK, Kroon G, Mooyaart EL, Huisjes HJ. Randomised controlled trial of magnetic-resonance pelvimetry in breech presentation at term. Lancet. 1997;350:1799–80.

Hoffmann J, Thomassen K, Stumpp P, Grothoff M, Engel C, Kahn T, Stepan H. New MRI Criteria for Successful Vaginal Breech Delivery in Primiparae. PLoS One. 2016;11:e0161028.

Article   PubMed   PubMed Central   CAS   Google Scholar  

Klemt AS, Schulze S, Brüggmann D, Louwen F. MRI-based pelvimetric measurements as predictors for a successful vaginal breech delivery in the Frankfurt breech at term cohort (FRABAT). Eur J Obstet Gynecol Reprod Biol. 2019;232:10–7.

Toivonen E, Palomäki O, Huhtala H, Uotila J. Cardiotocography in breech versus vertex delivery: an examiner-blinded, cross-sectional nested case-control study. BMC Pregnancy Childbirth. 2016;16:319.

Macharey G, Ulander VM, Heinonen S, Kostev K, Nuutila M, Väisänen-Tommiska M. Risk factors and outcomes in “well-selected” vaginal breech deliveries: a retrospective observational study. J Perinat Med. 2017;45:291–7.

Goodin A, Delcher C, Valenzuela C, Wang X, Zhu Y, Roussos-Ross D, Brown JD. The power and pitfalls of big data research in obstetrics and gynecology: a Consumer's guide. Obstet Gynecol Surv. 2017;72:669–82.

Vargha P, Fülöp V, Tabák ÁG. Breech presentation: its predictors and consequences. An analysis of the Hungarian Tauffer obstetric database (1996-2011). Acta Obstet Gynecol Scand. 2016;95:347–54.

Hemelaar J, Lim LN, Impey LW. The impact of an ECV service is limited by antenatal breech detection: a retrospective cohort study. Birth. 2015;42:165–72.

Bin YS, Roberts CL, Nicholl MC, Ford JB. Uptake of external cephalic version for term breech presentation: an Australian population study, 2002-2012. BMC Pregnancy Childbirth. 2017;17:244.

Rosman AN, Guijt A, Vlemmix F, Rijnders M, Mol BW, Kok M. Contraindications for external cephalic version in breech presentation at term: a systematic review. Acta Obstet Gynecol Scand. 2013;92:137–42.

Quist-Nelson J, Landers K, McCurdy R, Berghella V. External cephalic version in premature rupture of membranes: a systematic review. J Matern Fetal Neonatal Med. 2017;30:2257–61.

Burgos J, Cobos P, Rodríguez L, et al. Is external cephalic version at term contraindicated in previous caesarean section? A prospective comparative cohort study. BJOG. 2014;121:230–5.

Traité du palper abdominal au point de vue obstétrical et de la version par manœuvres externes / par A. Pinard. PARIS H. LATJWEREYNS, LIBRAIRE-ÉDITEUR, 1878.

Lau TK, Lo KW, Wan D, Rogers MS. Predictors of successful external cephalic version at term: a prospective study. Br J Obstet Gynaecol. 1997;104:798–802.

Aisenbrey GA, Catanzarite VA, Nelson C. External cephalic version: predictors of success. Obstet Gynecol. 1999;94:783–6.

Hutton EK, Simioni JC, Thabane L. Predictors of success of external cephalic version and cephalic presentation at birth among 1253 women with non-cephalic presentation using logistic regression and classification tree analyses. Acta Obstet Gynecol Scand. 2017;96:1012–20.

Kew N, DuPlessis J, La Paglia D, Williams K. Predictors of cephalic vaginal delivery following external cephalic version: an eight-year single-Centre study of 447 cases. Obstet Gynecol Int. 2017;2017:3028398.

Salzer L, Nagar R, Melamed N, Wiznitzer A, Peled Y, Yogev Y. Predictors of successful external cephalic version and assessment of success for vaginal delivery. J Matern Fetal Neonatal Med. 2015;28:49–54.

Buhimschi CS, Buhimschi IA, Wehrum MJ, et al. Ultrasonographic evaluation of myometrial thickness and prediction of a successful external cephalic version. Obstet Gynecol. 2011;118:913–20.

De La Version Par Manoeuvres Externes by Justus Heinrich Wigand (translated in french by François-Joseph Herrgott).

Velzel J, de Hundt M, Mulder FM, et al. Prediction models for successful external cephalic version: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2015;195:160–7.

De Hundt M, Velzel J, de Groot CJ, Mol BW, Kok M. Mode of delivery after successful external cephalic version: a systematic review and meta-analysis. Obstet Gynecol. 2014;123(6):1327–34.

Article   PubMed   CAS   Google Scholar  

Boujenah J, Fleury C, Bonneau C, Pharisien I, Tigaizin A, Carbillon L. Successful external cephalic version is an independent factor for caesarean section during trial of labor - a matched controlled study. J Gynecol Obstet Hum Reprod. 2017;46:737–42.

De Hundt M, Vlemmix F, Bais JM, de Groot CJ, Mol BW, Kok M. Risk factors for cesarean section and instrumental vaginal delivery after successful external cephalic version. J Matern Fetal Neonatal Med. 2016;29:2005–7.

Balayla J, Dahdouh EM, Villeneuve S, Boucher M, Gauthier RJ, Audibert F. Obstetrical and neonatal outcomes following unsuccessful external cephalic version: a stratified analysis amongst failures, successes, and controls. J Matern Fetal Neonatal Med. 2015;28:605–10.

Burgos J, Rodríguez L, Cobos P, et al. Management of breech presentation at term: a retrospective cohort study of 10 years of experience. J Perinatol. 2015;35:803–8.

Coppola C, Mottet N, Mariet AS, et al. Impact of the external cephalic version on the obstetrical prognosis in a team with a high success rate of vaginal delivery in breech presentation. J Gynecol Obstet Biol Reprod (Paris). 2016;45:859–65.

Article   CAS   Google Scholar  

Wastlund, et al. Screening for breech presentation using universal late-pregnancy ultrasonography: A prospective cohort study and cost effectiveness analysis. PLoS Med. 2019;16(4):e1002778.

Download references

Acknowledgements

Author information, authors and affiliations.

Department of Obstetrics and Gynecology, Sorbonne Paris Nord University, Assistance Publique – Hopitaux de Paris, Avenue du 14 juillet, Hôpital Jean Verdier, 93140, Bondy Cedex, France

Lionel Carbillon

Department of Obstetrics and Gynecology, Assistance Publique – Hôpitaux de Paris, Hôpital Jean Verdier, Bondy, France

Lionel Carbillon, Amelie Benbara, Ahmed Tigaizin, Rouba Murtada, Marion Fermaut, Fatma Belmaghni, Alexandre Bricou & Jeremy Boujenah

You can also search for this author in PubMed   Google Scholar

Contributions

Study conception and design: LC, AB, JB, AT, FB, AB. Analysis and interpretation of data: LC, JB. Drafting of manuscript: LC. Critical revision: LC, JB, RM, MF. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Lionel Carbillon .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Carbillon, L., Benbara, A., Tigaizin, A. et al. Revisiting the management of term breech presentation: a proposal for overcoming some of the controversies. BMC Pregnancy Childbirth 20 , 263 (2020). https://doi.org/10.1186/s12884-020-2831-4

Download citation

Received : 08 August 2019

Accepted : 20 February 2020

Published : 03 May 2020

DOI : https://doi.org/10.1186/s12884-020-2831-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Term breech delivery
  • Small-for-gestational-age
  • Foetal growth restriction
  • Oligohydramnios
  • Delivery route
  • Perinatal mortality
  • Perinatal morbidity

BMC Pregnancy and Childbirth

ISSN: 1471-2393

breech presentation geeky medics

Management of Breech Presentation (Green-top Guideline No. 20b)

Summary: The aim of this guideline is to aid decision making regarding the route of delivery and choice of various techniques used during delivery. It does not include antenatal or postnatal care. Information regarding external cephalic version is the topic of the separate Royal College of Obstetricians and Gynaecologists Green-top Guideline No. 20a,  External Cephalic Version and Reducing the Incidence of Term Breech Presentation .

Breech presentation occurs in 3–4% of term deliveries and is more common in preterm deliveries and nulliparous women. Breech presentation is associated with uterine and congenital abnormalities, and has a significant recurrence risk. Term babies presenting by the breech have worse outcomes than cephalic presenting babies, irrespective of the mode of delivery.

A large reduction in the incidence of planned vaginal breech birth followed publication of the Term Breech Trial. Nevertheless, due to various circumstances vaginal breech births will continue. Lack of experience has led to a loss of skills essential for these deliveries. Conversely, caesarean section can has serious long-term consequences.

COVID disclaimer: This guideline was developed as part of the regular updates to programme of Green-top Guidelines, as outlined in our document  Developing a Green-top Guideline: Guidance for developers , and prior to the emergence of COVID-19.

Version history: This is the fourth edition of this guideline.

Please note that the RCOG Guidelines Committee regularly assesses the need to update the information provided in this publication. Further information on this review is available on request.

Developer declaration of interests:

Mr M Griffiths  is a member of Doctors for a Woman's right to Choose on Abortion. He is an unpaid member of a Quality Standards Advisory Committee at NICE, for which he does receive expenses for related travel, accommodation and meals.

Mr LWM Impey  is Director of Oxford Fetal Medicine Ltd. and a member of the International Society of Ultrasound in Obstetrics and Gynecology. He also holds patents related to ultrasound processing, which are of no relevance to the Breech guidelines.

Professor DJ Murphy  provides medicolegal expert opinions in Scotland and Ireland for which she is remunerated.

Dr LK Penna:  None declared.

  • Access the PDF version of this guideline on Wiley
  • Access the web version of this guideline on Wiley

This page was last reviewed 16 March 2017.

Krames Patient Education - A Solution of StayWell

  • Breech Presentation

Breech presentation means that your baby is in a buttocks-first or feet-first position. Babies are usually in a head-first position. A breech position can make it hard for the baby’s head to fit through the birth canal during delivery. This can cause lack of oxygen or nerve damage in your baby.

Checking for breech presentation

Your healthcare provider can tell that your baby is in a breech presentation by gently pressing on your belly. If after about 35 weeks your baby still isn’t head-first, you may have a test called an ultrasound. This test uses sound waves to form an image of your baby on a screen.

Types of breech presentations

As you get close to your due date, your baby may be in one of these breech positions:

Frank breech. The baby's buttocks are closest to the birth canal. The hips are flexed, and the legs are straight up in front of the body. The feet are near the baby's head.

Complete breech. The baby's knees are bent, and the feet and buttocks are closest to the birth canal.

Incomplete breech. One or both of the baby's feet are closest to the birth canal.

Delivering your baby

Even if the baby’s position can’t be changed, a breech baby can sometimes be born vaginally. But this is rare. Your healthcare provider will talk with you about the risks. More often, a surgical delivery (cesarean section or C-section) is done. You will have medicine to block pain (anesthesia). But you may stay awake and alert.

Once you deliver

Whether you give birth vaginally or by C-section, you and your baby will most likely be fine. Just because your baby is in a breech position doesn’t mean that they will have health problems.

Can you have a vaginal delivery?

In some cases, your healthcare provider may try to turn the baby head-down by putting pressure on your belly. This method is called an external cephalic version. If this works, you might be able to have a vaginal delivery. Your provider will talk about this with you.

Related Items

Patient education.

  • After a Vaginal Birth
  • If Your Baby Is Breech: External Cephalic Version (ECV)
  • Labor and Childbirth- Right after Birth
  • Labor and Childbirth: Active Labor
  • View All 15
  • How to Prepare for Childbirth

IMAGES

  1. Breech Presentation

    breech presentation geeky medics

  2. Breech Presentation

    breech presentation geeky medics

  3. types of breech presentation ultrasound

    breech presentation geeky medics

  4. types of breech presentation ultrasound

    breech presentation geeky medics

  5. section for breech presentation

    breech presentation geeky medics

  6. Breech Presentation

    breech presentation geeky medics

VIDEO

  1. Breech Presentation

  2. Breech Presentation in C-Section #trending #breechbaby #adorable #jiyatanwar05

  3. breech presentation

  4. breech presentation #cow#calf#viral

  5. Breech Delivery story #bestgynecologist #drkshilpireddy #breechbaby #breechdelivery #normaldelivery

  6. Malpresentation

COMMENTS

  1. Breech Presentation

    Breech presentation is a type of malpresentation and occurs when the fetal head lies over the uterine fundus and fetal buttocks or feet present over the maternal pelvis (instead of cephalic/head presentation). The incidence in the United Kingdom of breech presentation is 3-4% of all fetuses. 1.

  2. Newborn Baby Assessment (NIPE)

    Breech presentation: if breech at 36 weeks gestation or delivery (if earlier), the baby will need to have an ultrasound scan of their hips as there is an increased risk of developmental dysplasia of the hip. ... Adapted by Geeky Medics. Cyanosis. Licence: CC BY-SA. Brar_j- Flickr. Adapted by Geeky Medics. Microcephaly. Licence: CC BY. Michael L ...

  3. Obstetric Abdominal Examination

    Fetal presentation. Fetal presentation refers to which anatomical part of the fetus is closest to the pelvic inlet. Assess the gravid uterus to determine fetal presentation: 1. Ensure you are facing the patient to observe for signs of discomfort and warn the patient this may feel a little uncomfortable. 2.

  4. Breech Presentation

    Breech Presentation. A 28-year-old G1P0 woman at 37 weeks of gestation presents to her obstetrician for a prenatal care appointment. She describes feeling some soreness under her ribs in the past few weeks and feels her baby kicking in her lower abdomen. An ultrasound is performed and is seen in the image.

  5. Breech Presentation

    Breech presentation refers to the fetus in the longitudinal lie with the buttocks or lower extremity entering the pelvis first. The three types of breech presentation include frank breech, complete breech, and incomplete breech. In a frank breech, the fetus has flexion of both hips, and the legs are straight with the feet near the fetal face, in a pike position. The complete breech has the ...

  6. PDF Management of breech presentation

    The most widely quoted study regarding the management of breech presentation at term is the 'Term Breech Trial'. Published in 2000, this large, international multicenter randomised clinical trial compared a policy of planned vaginal delivery with planned caesarean section for selected breech presentations.

  7. Management of Breech Presentation

    Labour with a preterm breech should be managed as with a term breech. C. Where there is head entrapment, incisions in the cervix (vaginal birth) or vertical uterine D incision extension (caesarean section) may be used, with or without tocolysis. Evidence concerning the management of preterm labour with a breech presentation is lacking.

  8. Breech presentation management: A critical review of leading clinical

    This pamphlet explains what a breech presentation is, the different types of breech presentation, discusses ECV and provides balanced information related to birth mode options along with visual representations of statistics comparing the perinatal mortality rate between cephalic vaginal birth, VBB and C/S. This pamphlet was also developed in ...

  9. How to Deliver a Baby in Breech Presentation

    Move the towel up to cover the arms and rotate the body to make the back anterior. To deliver the head, place your index and middle fingers of one hand over the fetal maxilla to flex the head, while the body rests on your palm and forearm, as shown here. With your other hand, hook 2 fingers over the neck, grasp the shoulder, and apply gentle ...

  10. External Cephalic Version and Reducing the Incidence of Term Breech

    The mode and technique of delivering a breech presentation is summarised in the Royal College of Obstetricians and Gynaecologists Green-top Guideline No. 20b Management of Breech Presentation. Breech presentation, which complicates 3-4% of term deliveries, occurs most frequently in nulliparous women. Breech presentation is also more common in ...

  11. NG201 Evidence review L

    [L] Identification of breech presentation NICE guideline NG201 Evidence reviews underpinning recommendations 1.2.36 to 1.2.37 August 2021 Final These evidence reviews were developed by the National Guideline Alliance, which is a part of the Royal College of Obstetricians and Gynaecologists

  12. How to Deliver a Baby in Breech Presentation

    -Learn how to deliver a baby in breech presentation vaginally: https://www.merckmanuals.com/professional/gynecology-and-obstetrics/abnormalities-and-complica...

  13. NG201 Evidence review M

    Breech presentation of the fetus in late pregnancy may result in prolonged or obstructed labour with resulting risks to both woman and fetus. Interventions to correct breech presentation (to cephalic) before labour and birth are important for the woman's and the baby's health. The aim of this review is to determine the most effective way of ...

  14. Revisiting the management of term breech presentation: a proposal for

    Term breech presentation is a condition for which personalized obstetrical care is particularly needed. The best way is likely to be as follows: first, efficiently screen for breech presentation at 36-37 weeks of gestation; second, thoroughly evaluate the maternal/foetal condition, foetal weight and growth potential, and the type (frank, complete, or footling) and mobility of breech ...

  15. Management of Breech Presentation (Green-top Guideline No. 20b)

    Information regarding external cephalic version is the topic of the separate Royal College of Obstetricians and Gynaecologists Green-top Guideline No. 20a, External Cephalic Version and Reducing the Incidence of Term Breech Presentation. Breech presentation occurs in 3-4% of term deliveries and is more common in preterm deliveries and ...

  16. Breech presentation management: A critical review of leading clinical

    1. Background. The management of breech presentation continues to cause academic and clinical contention globally [[1], [2], [3]].In recent years, research has shown that if certain criteria are met, and appropriately experienced and skilled clinicians are available, Vaginal Breech Birth (VBB) is a safe option [[4], [5], [6]].However, with Caesarean Section (C/S) rates for breech presentation ...

  17. Mechanism of Labour

    Describing the mechanism of labour is a common topic for OSCEs and MCQs. Although on the surface it can appear complicated, breaking the process down into individual steps makes it much easier to understand. Normal labour involves the widest diameter of the fetus successfully negotiating the widest diameter of the bony pelvis of the mother via ...

  18. Breech Presentation

    Breech Presentation. Breech presentation means that your baby is in a buttocks-first or feet-first position. Babies are usually in a head-first position. A breech position can make it hard for the baby's head to fit through the birth canal during delivery. This can cause lack of oxygen or nerve damage in your baby.

  19. Types of breech presentations

    Types of breech presentations. Brought to you by Merck & Co, Inc., Rahway, NJ, USA (known as MSD outside the US and Canada) — dedicated to using leading-edge science to save and improve lives around the world. Learn more about the MSD Manuals and our commitment to Global Medical Knowledge.

  20. Breech Presentation

    Definition. Most babies move into a head-down position in the uterus before labor. The baby is in a breech position when its buttocks or feet are in place to come out first. There are three types: Frank breech—the baby's buttocks are down and the legs extend straight up in front of the body with the feet up near the head. Complete breech ...

  21. Cord Prolapse

    Cord prolapse is defined as the umbilical cord descending below the presenting part in the presence of ruptured membranes. Risk factors include fetal malposition, multiple pregnancy, polyhydramnios and obstetric procedures. Management includes elevation of the fetal presenting part by either vaginal examination or filling the bladder.

  22. Caesarean Section

    A caesarean section is the delivery of a baby through a surgical incision in the abdominal wall and the uterine wall and accounts for 25-30% of births in the United Kingdom. The main indications are a previous C-section, fetal compromise, failure to progress in labour and breech presentation. Caesarean sections are commonly performed through a ...